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Ανάλυση απόδοσης και σχεδίαση  συστημάτων 

ύπο περιορισμούς ισχύος και αξιοπιστίας 

 

          Πριν την τεχνολογία νανομέτρων, τα κύρια κριτήρια σχεδιασμού ολοκληρωμένων κυκλωμάτων 
ήταν η βελτιστοποίηση για ταχύτητα, έκταση και κατανάλωση ησχύος παραμελώντας τις φυσικές 
και ηλεκτρικές ιδιότητες των τρανζίστορ, οι οποίες παίζανε λιγότερο σημαντικό ρόλο. Συγκεκριμένα, 
κατά τη διάρκεια ζωής τους, τα τρανζίστορ θεωρούνταν ότι συμπεριφέρονται νομοτελειακά όπως 
είχαν σχεδιαστεί. Αυτό ήταν περίπου μέχρι το μέγεθος των 0,35 μm, επειδή το μέγεθος του 
τρανζίστορ ήταν πολύ μεγάλο σε σχέση με τα διαφορετικά είδη των διαδικαστικών διακυμάνσεων. 
Ωστόσο, με τη συνεχιζόμενη κλιμάκωση των κόμβων της τεχνολογίας μέχρι τα 65 nm, η φύση των μη 
ντετερμινιστικών ιδιοτήτων των τρανζίστορ άρχισε να αποκτήσει σημασία για τη σωστή λειτουργία 
των συσκευών. Στα 65 nm,επειδή το μέγεθος του τρανζίστορ είναι τόσο μικρός, η διαδικασία 
κατασκευής πάσχει από ασάφειες σχετικά με τα μεγέθη συσκευών που οδηγούν σε διαφορετικές 
παραλλαγές στα χαρακτηριστικά των τρανζίστορ. Τέτοιου είδους διαδικαστικές διακυμάνσεις 
περιλαμβάνουν τις χωρικές και χρονικές παραμετρικές διακυμάνσεις και απειλούν τη σωστή 
λειτουργία των νανομετρικών κυκλωμάτων.  

           
          Η λειτουργία των κυττάρων, στατικής τυχαίας προσπέλασης (SRAM) επηρεάζεται πολύ από 
όλες τις προαναφερθείσες διαφοροποιήσεις σε μεγαλύτερο βαθμό από ό, τι λογικά κυκλώματα. Τα 
αποτελέσματα των διακυμάνσεων στα κύτταρα μνήμης είναι πιο κυρίαρχα, δεδομένου ότι 
τρανζίστορ με πολύ μικρές διαστάσεις χρησιμοποιούνται για την κατασκευή της μνήμης, ώστε να 
ελαχιστοποιηθεί η κατεχόμενη περιοχή για την υψηλότερη πυκνότητα μνήμης. Οι συνέπειες των 
μεταβολών στο κελί SRAM εξαρτούνται από το είδος της μεταβολής που βιώνει. Για παράδειγμα, 
παραμετρικές μεταβολές οδηγούν σε διαφορετικές δυνάμεις των τρανζίστορ που στη χειρότερη 
περίπτωση προκαλούν αποτυχία  του κυττάρου. Συγκεκριμένα, οι διάφορες αποτυχίες είναι οι εξής: 
αποτυχία του χρόνο πρόσβασης, αδυναμία διατήρησης, αποτυχία γραψήματος και αποτυχία 
διβάσματος. Εκτός από τις συνεχείς αποτυχίες μνήμης που προκαλούνται κατά τη διάρκεια της 
κατασκευής, υπάρχουν επίσης μη εμμένουσες αδυναμίες της μνήμης που δεν βλάπτουν το κύτταρο 
σε μόνιμη βάση, που οφείλονται κυρίως σε σωματίδια άλφα .  

 
          Οι σχεδιαστές έχουν καταλήξουμε σε διάφορες τεχνικές στο κυκλωματικό επίπεδο και στο 
επίπεδο της αρχιτεκτονικής, όπως κλιμάκωση του μέγεθος του τρανζίστορ, προσθέτοντας επιπλέον 
γραμμές / στήλες στη μνήμη του, προσθέτοντας τρανζίστορ σε ένα κελί μνήμης, τροποποίοντας 
δυναμικά το μέγεθος της μνήμης ή προςθέτοντας κώδικες διόρθωσης λαθών. Δυστυχώς, όλες αυτές 
οι τεχνικές υπάρχουν εις βάρος του αυξημένου μέγεθου του καλουπιού και της αυξημένης 
κατανάλωσης ισχύος, δεδομένου ότι βασίζονται στην προσθήκη πλεονάζον υλικό για τον εντοπισμό 
και τη διόρθωση τυχόν σφαλμάτων, ως εκ τούτου έρχεται σε αντίθεση με τα άλλα κύρια πρόκληση 
στο σχεδιασμό κόμβων νανομέτρων που είναι η κατανάλωση ενέργειας. 

 
          Επομένως, υπάρχει ανάγκη να αντιμετωπισθούν τέτοια ζητήματα, να μελετήθουν και να 
αναλύθουν και να βρεθούν νέες μεθόδους που επιτρέπουν την αξιόπιστη λειτουργία σε χαμηλή 
ισχύ και μικρό κόστος. Για το σκοπό αυτό, στην παρούσα διπλοματική εξετάζουμε μια νέα τεχνική 
για την αντιμετώπιση των ενδεχόμενων βλαβών της μνήμης, η οποία δεν έχει διερευνηθεί μέχρι 
στιγμής.  



 
 

 

 
          Η τεχνική εξερευνεί την αντοχή της αναπαράστασης δεδομένων (ο τρόπος που τα δεδομένα 
αποθηκεύονται στη μνήμη) σε επίπεδο συστήματος. Θα μπορούσε να είναι δυνατό διαφορετικές 
αναπαράστασεις δεδομένων να είναι πιο αξιόπιστες κάτω από ελαττώματα του υλικού με δεδομένη 
την κατανομή των εισαγόμενων δεδομένων. Για το σκοπό αυτό, στόχος μας είναι να βρούμε κάποια 
αναπαράσταση των δεδομένων που ελαχιστοποιεί τα μη-επίμονα σφάλματα στη μνήμη. Πιο 
συγκεκριμένα, για να επιτύχουμε το στόχο μας έχουμε σχεδιάσει έναν εξομοιωτή σφαλμάτων σε 
επίπεδο συστήματος. Η απόδοση αξιολογείται με βάση το μέσο τετραγωνικό σφάλμα των 
δεδομένων που γράφονται και διαβάζονται από τη μνήμη. Για μικρά μεγέθη bit είναι δυνατό να 
εκτελέστει μια εξαντλητική αναζήτηση για να βρούμε την καλύτερη αναπαράσταση των δεδομένων. 
Είναι ενδιαφέρον ότι τα αποτελέσματα έδειξαν ότι υπάρχουν πολλές αναπαραστάσεις που έχουν 
ένα καλύτερο μέσο τετραγωνικό σφάλμα από τις αναπαραστάσεις που χρησιμοποιούνται σήμερα 
για την αποθήκευση των δεδομένων στη μνήμη. Επιπλέον, έχουμε αναπτύξει έναν αλγόριθμο που 
εκτελεί το έργο της εύρεσης της καλύτερης αναπαράστασης. Η απόδοση του αλγορίθμου 
αξιολογείται με τη χρήση της Gaussian κατανομής για διάφορες παραμέτρους ώστε να 
προσεγγισθούν διαφορετικές κατανομές, όπως η Gaussian, Uniform,  Άθροισμα Gaussians, Rayleigh 
και Laplace οι οπόιες μοντελοποιούν καλά κατανομές δεδομένων από δημοφιλείς εφαρμογές. Σε 
όλες τις περιπτώσεις, ο αλγόριθμος βρίσκει αρκετά καλές αναπαραστάσεις με σημαντικά λιγότερη 
υπολογιστική προσπάθεια και χρόνο από την εξαντλητική αναζήτηση ή την τυχαία αναζήτηση. Τα 
αποτελέσματα δείχνουν ότι ο αριθμός των αναπαραστάσεων οι οποίες είναι καλύτερες από την 
αναπαράσταση του συμπληρώματος ως προς δύο και η διαφορά μεταξύ της καλύτερης 
αναπαράστασης που βρέθηκε και της αναπαράστασης του συμπληρώματος ως προς δύο από την 
άποψη του μέσου τετραγωνικού σφάλματος εξαρτάται σημαντικά από την κατανομή των 
δεδομένων εισόδου και των παραμέτρων της. 
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Abstract 
The impact of hardware defects and the resultant errors on the 
performance and yield of memory, potentially induced by 
voltage scaling and parametric variations, is analyzed. For 
modeling the memory and capturing the impact of the defects, 
a system-level fault simulator is designed. The performance is 
assessed based on the Mean Squared Error of the data written 
and read from the memory. An exhaustive search for the best 
data representation, which minimizes this Mean Squared Error 
in the memory, is performed for small bit sizes. Furthermore, 
an algorithm is presented to perform the task of finding the 
best representation with significantly less computational 
effort. The algorithm is analyzed using various input data 
distributions. The impact of the algorithm on memory yield 
and power is analyzed. To this end, a system model of a 
wireless communication channel containing a decoder is 
combined with our error resilient memory model and the 
improvement of the output quality is analyzed. 
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Chapter 1 
Introduction 
          Before nanometer technologies emerged, the main design criteria for integrated circuits were 
optimization for speed, area and power consumption neglecting the physical and electrical 
properties of the transistors which played a less important role. Specifically, during their device 
lifetime, the transistors were assumed to behave deterministically as they were designed. That was 
approximately until a feature size of 0.35   , because the transistor size was very large compared to 
the different kinds of process variations. However, with the continuing scaling of technology nodes 
down to the 65 nm regime, the nondeterministic nature of transistor properties started to become 
relevant for the proper operation of the devices. At this size, since the transistor size is so small, the 
manufacturing process suffers from larger imprecisions regarding device sizes that lead to different 
variations in transistor characteristics. Such process variations include both spatial and temporal 
parametric variations and threaten the correct functionality of nanometer circuits.  
 
          Parametric variations are categorized into two groups: intradie and interdie [1]-[3]. On one 
side, the variations of transistor strength that occur within the same die are called intradie. They can 
be caused mainly by random dopant fluctuations in the channel region resulting from lithography, 
chemical and mechanical polishing, line edge roughness and change of geometric dimensions 
compared to the specifications due to lithographic and etching techniques during the fabrication [1], 
[4]-[9]. Modeling the intradie variations is difficult because a large number of random variables are 
required [3]. On the other side, interdie variations are observed between different dies that might 
have been produced from different wafers. The causes for interdie variations are the fluctuations in 
length due to variations in the exposure time during fabrication and fluctuations in transistors width 
and oxide thickness.  
 
          Temporal variation is another problem that arises with decreasing transistor size. The temporal 
variations can be divided into two categories: aging-related and environmental. Aging variations 
include negative bias temperature instability (NBTI) [10]-[26], positive bias temperature instability 
[27], [28], hot carrier injection [29]-[31], time-dependent dielectric breakdown [32]-[34] and electro-
migration [35]. Using the device for a long time decreases its strength because of aging issues (i.e. 
NBTI). Moreover, transistors experience temperature and voltage variations that are classified as 
environmental variations and associated with the variations in circuit functionality. For instance, 
temperature fluctuations occur when the large power consumption of a circuit is transformed into 
heat and the device is not equipped with mechanisms to limit the rise of temperature.  
 
          All the above variations result in large fluctuations of transistor threshold voltage      , which 
degrade the overall system performance by affecting both logic (digital and analog) and memory. The 
variations in logic manifest increased delay and spread of the delay distribution. As a result, the delay 
specifications are not met and the yield is degraded [1], [2].  
 
          The operation of static random access memory (SRAM) cells is highly influenced by all the 
mentioned types of variations to a larger degree than logic circuits. The variation effects on memory 
cells are more dominant, since transistors with very small dimensions are used to build the memory 
in order to minimize the occupied area for higher memory density. The consequences of the 
variations on the SRAM cell depend on the type of variation that the cells experience. For instance, 
parametric variations lead to different strengths of transistors that in the worst case cause failure of 
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the cell. Specifically, different failures that can occur are: access time failure, retention failure, write 
failure and read failure. An access time failure is the violation of the delay specifications and it takes 
place during a read operation when the differential voltage across the bit lines is not sufficient to 
identify the correct value. A hold or retention failure is the loss of the cell information when the cell 
is in standby mode, for example as a result of a voltage drop. Write failures happen when it is not 
possible to write the cell, because the cell content cannot be toggled. Read failures occur when the 
data stored in the cell is flipped and the read value is not the correct one. Such failures are mainly 
the result of noise developed in the node that stores the zero that is becoming larger than the trip 
point of the inverter. The size and type (i.e. 6T, 8T) of the memory bit cell, the array organization and 
the supply voltage determine the degree of such failures.  
 
          During memory development, it is common that designers try to operate memories in the 
lowest possible voltages, since voltage downscaling is considered as one of the most effective 
methods for power reduction. However, operation at low voltages in combination with variations 
makes circuits very prone to failures [36]. Figure 1 depicts the dependence of the failure probability 
on the supply voltage for different cell types: medium sized 6T bit cells, 6T cells upsized by 15% and 
8T bit cells in a 65 nm technology node [37].  
         

 
Figure 1: Memory failure probability (65nm) 

 
          Except of the persistent memory failures that are caused during manufacturing (e.g. stack-at -
faults), there also exist non-persistent memory failures that do not damage the cell permanently, i.e. 
soft errors or erratic bit failures which are primarily due to alpha particles. Even if soft error rate 
slightly reduces as transistor size scale down, the number of errors increases because the probability 
of hitting a larger number of transistors by a particle increases [38]. Although the failure probability 
of the cell increases when soft errors happen, the overall failure rate in memories is still dominated 
by random dopant fluctuations induced errors [39] as it is shown in Figure 1.  
 
           Both persistent and non-persistent errors have a significant impact not only on the memory 
system, but also on the overall system. For instance, in a cache of a modern processor, a bit flip error 
during the decoding phase of the instructions may result to execute erroneously an instruction that 
may lead to complete failure of the system. The persistent errors cause defected cells which cannot 
be used for reliable storage having as a consequence the reduction of yield and thus the increase of 
manufacturing cost. 

          Designers have come up with various techniques at a circuit and architecture level, such as 
scaling the transistor size, adding extra rows/columns in the memory [40], [41], adding transistors to 
a memory cell [39] or modifying the memory size dynamically [42]. Unfortunately, all these 
techniques come at a cost of increased die area and power since they are based on the addition of 
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redundant hardware for the detection and correction of any errors, thus contradicting with the other 
main design challenge in nanometer nodes that is the reduction of power consumption. 

          Therefore there is a need to deal with such issues, study and analyze them and find new 
methods that allow reliable low power operation at a minor cost. To this end, in this report we 
investigate a new technique for dealing with potential memory failures, which has not been explored 
so far. Our approach exploits the resilience of data representation (the way that data is stored in the 
memory) at the system level for improving the output quality and the yield as well as the power 
consumption (by allowing lower voltages) of the memory. For this purpose a system level fault-
simulator is developed, a performance metric and various input data distributions are analyzed. 
Furthermore, an algorithm that finds the best data representation in terms of the chosen 
performance metric is developed. The algorithm impact is assessed using a wireless communication 
system. 

          The rest of the report is organized as follows. The next chapter (Chapter 2) introduces an 
overview of the state of the art techniques that are designed to solve the above issues .Chapter 3 
describes the system model of our solution and gives a general overview of the input data, 
performance metrics and the data representation in the memory. The following chapter (Chapter 4) 
discusses some simple, straight forward solutions. The quality of the solutions is assessed by 
comparison with results from Monte Carlo simulations. The next chapter (Chapter 5) presents our 
solution to the problem. A new algorithm is discussed. In chapter 6 the results of the new algorithm 
are presented and compared with the simple solutions of chapter 4. The impact of the algorithm on 
the output quality of a wireless communication system is shown. Moreover, the improvement of the 
memory yield and the power consumption is discussed. 
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Chapter 2 
State of the art 
          Today there exist a lot of different techniques on different levels of the design hierarchy that 
address memory failures. Most of such techniques are based on the addition of redundant hardware 
or the design with safety margins achieved by transistor up-scaling. While such techniques provide 
sufficient robustness, they unfortunately come at a cost of increased area and power overhead. 

2.1 Circuit Level 

          An important circuit level solution is scaling of the transistor size since failure probability and 
array yield strongly depend on the transistor size of a memory bit cell as well as the relatives ratios 
between them [43], [44]. The length and the width of different transistors in a SRAM cell affect the 
cell failure probability by modifying the nominal values of access time, the trip point of the inverter, 
read voltage, write time and minimum retention voltage as we discussed briefly in Section 1. 
 
          Some other circuit level solutions have to do with supply voltage (VDD) scaling. Designers limit 
or even up-scale the lower voltage in order to ensure stronger noise margins and more reliable 
operation. Another technique used after fabrication to compensate mainly the inter process 
variations is Adaptive Body Bias [28]. Specifically, each die is set to its own biasing voltage to reach 
the best frequency. This solution does not work for intradie variations, because a lot of different 
voltages are needed. It can work only if the die is divided into regions and if each region has a 
different body biasing. 

2.2 Redundant Rows and Columns 

          Adding extra rows/columns is used to address the persistent manufacturing faults and 
consequently to improve the yield of SRAM arrays [41]. Specifically, a small number of redundant 
columns of SRAM cells is added to the array during the design stage. During the testing stage that 
takes place after the manufacturing, the defective cells are identified and the array is reconfigured to 
access one of the redundant columns instead of the column which contains the defective cell. 

2.3 Bit Cells 

          Another approach is increasing the number of transistors in a cell. The 8T and 10T SRAM cells 
isolate the read and the write operations from each other, so it is much easier to optimize each of 
them separately under low voltage [45]-[50]. The area overhead of such bit-cells amounts to more 
than 30% and is a good price for the gained robustness, but these cells still suffer from pseudo-read 
errors because two or more of the words in a row share one word line. 
 
          Some of the SRAM cells have a build-in feedback mechanism that achieves process variation 
tolerance under a very low supply voltage. The design is based on the idea of Schmitt Trigger 
differential sensing. Overcoming the disadvantage of the read and write operations that the normal 
6T cells have, Schmitt Trigger operation ensures a better read and write stability [48], [49]. 
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2.4 High Level Solutions 

          A high level solution to the variations is modifying the memory architecture. For instance, a 
popular technique that is followed in cache memories in modern processors is designing a dynamical 
cache that resizes itself [51]. The resize happens when the cache finds not-working cells and maps 
them to working spare cells. Another way is a mechanism that deletes all the caches lines that are 
considered faulty. Cache line fault detection is implemented using an availability bit for each line 
[52], [53]. A cache line can be deleted only if the availability bit is turned off. A different way to locate 
the failures is using on-chip reliability sensors.   
 
          Cell-flipping technique is another high level technique to address the variation inside memory 
cells [16]. It relies on a memory structure that flips the cell state taking advantage of the unbalanced 
signal probability. The aim of this technique is the reduction of the Negative Bias Temperature 
Instability, allowing the PMOS operation to have periods of relaxation in between the continuing 
stress. Therefore the threshold voltage increase recovers dynamically. 
 
          Two other techniques that enable cache lines to operate at low voltages despite very high 
memory cell failure rates are the Word-disable scheme and the Bit-fix scheme [42]. The schemes 
identify and disable different sizes of the cache, individual words or pairs of bits. In the Word-disable 
scheme, if a 32-bits word contains defective bits, it is disabled. If a word is disabled, the other words 
are combined to form a line that has only non-failing words. Experimental results show that this 
scheme permits a 32kB cache to operate at 490mV. The Bit-fix scheme stores the location of the 
erratic bits and the correct value of the same bits. It allows a 2MB cache to operate at 475mV. During 
high voltage operation both schemes use 100% of the cache. At low voltages they sacrifice 50% and 
25% cache capacity respectively. 

2.5 Error Correcting Codes (ECC)   

          Instead of improving the structure of the cell of a circuit, a designer can build Error Correcting 
Codes (ECC) into the array. ECC is being added to data storages. It detects the errors at the data and 
when necessary corrects them. It is different from parity bits that only detect errors. When a word is 
sent to the memory to be stored, ECC calculates a code that corresponds to the bit sequence which is 
also stored along with the word. When a data word needs to be read the code is calculated again by 
the original algorithm and if the code stored in the memory and the one just calculated match, the 
data is free of errors and can be read. If not, then the word is corrected based on the comparison of 
the codes.  
 
          To correct the word that is going to be read from the storage, a simple ECC solution is to repeat 
each bit n times in order to create a group for each original bit and then consider as the correct bit 
the majority of the read bits in each group. For example with     the word 110 will be extended to 
111111110000. This technique works for a minimum of    . If the number of errors is smaller than 
    in each group, then the word will be recuperated in every case. However, this approach is not 
practical, because when n increases, the overhead also increases.  

2.5.1 Hamming Code and Extended Hamming Code 

          The Hamming code permits correcting single bit errors, by adding control bits to the 
information. However, a single error correction is not enough for many applications. Some other kind 
of ECC, called Double-bit Error Detection (SEC-DED) or extended Hamming correction codes can 
correct more errors but they also need to add to the control bits additional parity bits compared to 
the Hamming code. 
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2.5.2 Low-Density Parity-Check Codes (LDPC) 

          Low-Density Parity-Check Codes (LDPC) are encodings that use parity bits. The main idea is that 
each parity bit checks a number of bits and each bit is checked by a number of parity bits. One of the 
advantages of LDPC is that every code word has the same hamming distance from all the others. 
LDPC have two decoding algorithms: the first one check each digit and compares it with its parity 
check operators. Depending on what the majority of them indicate, the bit is flipped or not. The 
digits are checked repetitively until all bits settle to a fixed state. The second algorithm is similar to 
the first one but more accurate. Instead of deciding based on what the majority of the parity bits 
indicate about a bit, it computes the probability that a certain bit is one, taking into account all the 
other bits. It cycles through the bits until the bits are in a static state. These algorithms are not 
deterministic, since they depend on the order that the bits are checked.  
 

2.5.3 Convolutional Codes 

          Convolutional codes process blocks not as an independent entity. They take into consideration 
the result of the previous bits. The initial state has a key that is known from both encoder and 
decoder. Each input bit is processed in multiple ways and has different output results. Therefore 
each output bit represents the results of different input bits. Convolutional codes can be 
implemented by different algorithms but they all depend on two variables: how many bits each state 
has and how many bits are produced per input bit. The main categories are the systematic and the 
recursive algorithms. The systematic code has an output that only depends on the input. The 
recursive code uses a prior output as part of the new input. The convolutional codes are fast and 
efficient. Their main disadvantage is that their accuracy depends on the input. 
 

2.5.4 ECC Use for Improving Memory Reliability  

           The different ECC groups are exploited in order to create robust memories, i.e. some 
techniques utilize the SEC-DED [54] or the LDPC codes [55]. One of the approaches uses a two 
dimensional ECC that corrects multi-bit errors [56]. Specifically, this scheme is appropriate when 
contiguous bits in multiple rows and columns fail concurrently. The location of the defective bits 
defines the success of this scheme. If the defective bits are randomly distributed in each cache line, 
which happens as a result of random dopant fluctuations, this technique fails. 
 
          Another technique, called multi-bit segmented ECC (MS-ECC), addresses both persistent and 
non-persistent failures by using Orthogonal Latin Square Codes at the cost of more check bits [38], 
[57]. MS-ECC is an adaptive mechanism that enables different parts of the memory to be used for 
error correction. To increase the reliability during low-voltage operation, some associative ways in 
each cache set are used to store the ECC check bits for the remaining ways. The operating system can 
chose the number of associative ways used for storing ECC depending on the desired reliability level. 
Increasing the number of ways increases the reliability, but the cache capacity becomes smaller. This 
technique can correct 1-4 errors for each 64-bit segment. 
 

2.6 Design Implications of Existing Methods 

        Using all these state of the art approaches for handling errors in the nanometer regime makes it 
possible to meet the design constraints, but these solutions come with disadvantages. The redundant 
hardware (i.e. redundant rows/columns in memory) increases the die area and limits performance. 
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But the most important aspect is that these techniques lead to significant power consumption 
overhead, which is another main design challenge in nanometer nodes. For example 8T and 10T cells, 
and also ECC can increase the power by more than 50% [39], [40], [42], [54], [58]. Techniques that 
achieve the reduction of power consumption are: multiple voltage and frequency islands [37] and 
supply voltage scaling [59]. Unfortunately, the best technique that is voltage scaling leads to more 
variations. In general, process variation resilience and reduction of power consumption have 
contradictory requirements so finding the best tradeoff is becoming very difficult and new methods 
with lower overhead are required. 
  



 8 
 

 

Chapter 3 
Proposed Approach 
          Memories are very important, because every digital system integrates at least one or even 
several different kinds of memory components. The minimum supply voltage for a processor as a 
whole is typically determined by the failures in the memory cells [42]. While researchers have 
explored different memory resilience techniques, the resilience of the data representation on a 
system level has not been explored. It might be possible that different data representations are more 
reliable under hardware defects given an input distribution. To this end, our goal is to find the data 
representation that minimizes non-persistent errors in the memory. More specifically, to reach our 
goal we design a system-level fault simulator. The performance is evaluated based on the Mean 
Squared Error of the data written and read from the memory. For small bit sizes it is possible to 
perform an exhaustive search to find the best data representation. Interestingly, results showed that 
there are a lot of representations that have a better Mean Squared Error than the representations 
that are used nowadays to store the data in the memory. Furthermore, we develop an algorithm that 
performs the task of finding the best representation. By analyzing the algorithm using various input 
data distributions, we find out that the algorithm can find one of the best representations using 
significantly less computational effort compared to an exhaustive search of the solution space. 

3.1 System Level Fault-Simulation Methodology 

          We develop a system level fault-simulation approach that is depicted in Figure 2. It consists of 
four stages: symbols and input distribution, memory model, metrics, and conventional mappings. 
The next sections explain analytically the stages. 

 

 

Figure 2: System level fault-simulation approach 
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3.2 Symbols and Input Data Distribution  

          The number of different symbols that will be written and read from the faulty memory depends 
on how many bits are used to represent a data word. Let   be the total number of bits that are used 
to represent the data, then there will be        different symbols that range from the signed 
integer values   ⌊   ⌋  to ⌊   ⌋. For instance, if each symbol is represented with 3 bits, there will 
be          7 symbols from   ⌊   ⌋      to ⌊   ⌋   . Using   bits, there are      
possible different symbols that range from  ⌊   ⌋    to ⌊   ⌋ , but for symmetry reasons we use 
one symbol less. We do not use the symbol with the larger absolute value. Hence there are an equal 
number of negative and positive symbols. We showed that when     and     our symbols are 
                  , three of them are positive and three of them are negative. But all possible 
symbols are     ⋃                  . 

          So far, we assumed that the symbols stored in the memory represent only integers. The 
symbols that represent fractional numbers are converted into integers by being multiplied by the 
appropriate power of two before being stored into the memory. The inverse procedure is applied 
upon reading the symbols.   still remains the total number of bits, but now is the sum of the number 
of bits used for the decimal part (      , and the number of bits used for the fractional part (    ,                   

         +   .  

          The distribution of the symbol types stored in the memory depends on the system that the 
memory will be included in. We utilize Gaussian distributions with different values for its parameters 
in order to emulate four other different input distributions: Uniform, sum of Gaussians, Rayleigh and 
Laplace as shown in Figure 3. The reason for choosing five different distributions is to be able to 
model different kinds of input data accurately. We chose these specific five distributions, because 
they are commonly encountered in practice and used in different areas i.e. statistics, multimedia and 
digital signal processing. For instance it is common that the data that is saved in the memory of a 
decoder, which is used in wireless communication channels (i.e. Viterbi decoder), follows a sum of 
Gaussians distribution. The Laplacian distribution is for example used in speech recognition to model 
priors on Discrete Fourier Transform coefficients. The Gaussian distribution is one of the well-known 
probability distributions in statistics and is encountered very often in practice and also in other 
sciences such as natural and social sciences. The central limit theorem uses the Gaussian distribution 
to model many practical problems. Emulating five different common distributions and changing their 
parameters, allows fitting other unknown data distributions to one of the five aforementioned 
distributions with a small approximation error.  

 
a) b)
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3.3 Memory Model 

          Memory system models can be described on various levels of abstraction, starting from the 
very low transistor level, up to higher level descriptions, such as application programming interfaces. 
The selection of the memory system model is based on the main goal that will be explored. Our goal 
is to evaluate the impact of errors at the system level by exploring various input distributions. Since 
circuit level simulations are very costly in terms of time and processing power, we model the circuit 
failures as bit flips and the memory as a non-binary symmetric channel. 

          A binary symmetric channel (BSC), as shown in Figure 4, includes a transmitter which sends two 
different types of symbols (zero or one) and a receiver that receives the symbols through a 
communication channel. During transmission a symbol is ‘flipped’ with a crossover probability of  . A 
non-binary symmetric channel is a BSC which is capable of transmitting more than 2 different types 
of symbols.  

          We model the faulty memory as a non-binary symmetric channel. The communication channel 
is the faulty memory. The transmitted symbol is the symbol that is going to be written in the memory 
and the received symbol is the symbol that is going to be read from the same memory cell that the 
previous symbol was written to.  

c) d)

e)

Figure 3: Symbol type distributions for 

B      

(a) Uniform 

(b) Gaussian (variance    .6  , 

mean    ) 

(c) Sum of Gaussians (variance     , 

mean    ) 

(d) Rayleigh  

(e) Laplace (      b    ) 
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Figure 4: Binary symmetric channel (BSC) 

 

          Our goal is to minimize the mean difference between the value of the symbol written into the 
memory and the value of the symbol that is read back from the memory. We add 2 new stages to the 
memory model, one before and one after the memory as it is shown in Figure 5. 

 

 

 

              Figure 5: System model of memory with mapping and de-mapping stages 

          The first stage  , which is the mapping, maps the input symbol    according to a look up table 
to another symbol       that is then stored in the memory. The second new stage    , which is the 
de-mapping , de-maps the symbol        that is read from the memory to    using the inverse look 

up table. A mapping is an ordered sequence of all the different types of symbols, each appearing only 
once. For instance for     the mapping                    corresponds to the look up table 
shown in Table 1. 

          The number of possible mappings   depends exponentially on the number of symbols  :  

      

The number of symbols depends on the number of bits   (cf. Section 2.2), therefore the number of 
mappings depends on the number of bits:  

             



 12 
 

 

 

 

Table 1: Look up table for example mapping                    

          The middle stage of the system in Figure 5 is the faulty memory which is modeled as a simple 
array. The memory size depends on the number of symbols that will be stored and on the number of 
bits used to represent each symbol. The injected errors are bit flips which are spread uniformly 
throughout the whole memory. The number of errors is defined by multiplying the size of the 
memory by the probability of a bit flip error   . The model is highly configurable and the 
aforementioned characteristics are parameterizable.  

3.4 Metric: Mean Squared Error  

          Various metrics can be used to assess the memory performance depending on the memory 
model and on the design goal. The most relevant metrics to evaluate the impact of errors in high 
level memory models are the mean squared error (MSE) and the signal to noise ratio (SNR). We 
evaluate our performance in terms of MSE, since the MSE is always a basic component of the SNR. 
The MSE of an estimator quantifies the error between values implied by an estimator and the true 
values of the quantity being estimated. The MSE measures the average of the squares of the errors. 

In our case, the estimator is the symbol    that is read from the memory  and the true value is the 

symbol    written to the memor. The missing information for the estimator is the amount and the 
position of the errors in the memory. 

          To compute the MSE we start with the error cost   or the square error, which is computed for 
two symbols    and   .  

            |     |
 
 

          The next step is to find out the crossover probability of    to be transformed to   . 

Transformation of     to    corresponds to transformation of       to     ) in our memory model. 

Each bit has a probability of     to be flipped, consequently each bit has 1-   probability to not 
change. The number of bits that are flipped is equal to the hamming distance                

between       and     ). The Hamming distance between two vectors of equal length is the number 

of positions at which the corresponding vector elements differ. In other words, it equals the number 
of errors that transform one vector into the other. In our case, the vectors are the binary 
representation of       and     ). The total number of bits is  , hence the probability of   

      being transformed into     ) is: 
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           The product of the probability          and the cost   (       gives the square error for    

being transformed to   . Summing up the products for every   , we get the mean squared error for    

being transformed to all the possible symbols. The MSE of one mapping is calculated from the 
probability of each symbol       which depends on the input data distribution described in Section 
3.2. Multiplying        by the previous sum and summing it again for all the possible symbols gives 
the MSE for one mapping m: 

      ∑     ∑           

  

       

          

3.5 Conventional Mappings 

          Four well-known data mappings are: ones’ complement, two’s complement, sign magnitude 
and gray code. The most popular one and the one that is usually used to store the data in the 
memory in almost all of today’s digital systems is the two’s complement format. Hence, to evaluate 
our results we will be comparing the MSE of every mapping to the MSE of the two’s complement 
mapping. 

3.5.1 Ones’ and Two’s Complement 

           Calculating the ones’ complement of a binary number is done by inverting each bit that is one 
to zero and each bit that is zero to one. The two’s complement is computed by computing first the 
ones’ complement and then adding one using the binary representation. Another very easy way is to 
start from the last significant bit and keep the bits the same till the first one appears. Leave the one 
untouched and swap all the next bits till the most significant one. 

          The two’s complement data representation is the most common of storing signed integers into 
memory devices. In this arithmetic the positive numbers do not change. For the negative numbers, 
the two’s complement of their absolute value is stored into the memory.  An  -bit two's-
complement system can represent every integer in the range    B−1 to  B−1   while ones’ 
complement can only represent integers in the range    B−1    to  B−1  . 

3.5.2 Sign Magnitude 

          The sign magnitude representation is so well-known because it is close to the natural way of 
showing that a number is negative or positive which is putting the sign in the beginning of the 
number. In this system the first bit of the binary representation is used to represent the sign and the 
other ones to represent the amplitude or the absolute value. One of the disadvantages is that the 
zero is represented in two different ways 000000 (0) and 100000 (-0). 

3.5.3 Gray Mapping 

          Gray code is a numeric format where the successive binary representation of the numbers 
differs in only one bit. The gray code for  -bits can be generated recursively from     bits. First 
writing down the     bits binary representation list, then reflecting the list and concatenating the 
first list with the second one and in the end putting as prefixes to the entries in the first list a zero 
and in the second one a one. For example, Table 2 shows generation of the       list from the 
      list. 
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Table 2: Generating 3-bit Gray code from 2-bit 

          The grey mapping can be applied just for positive numbers. In our case we have also negative 
numbers. Therefore, we shift the symbols in order that the smallest negative symbol corresponds to 
zero. Hence, all the numbers will be positive and afterwards the gray encoding can be applied.  
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Chapter 4 
Exploration of Mappings 
          In this section we describe the methods for exploring the solution space and finding the 
mappings that can reduce the MSE under various hardware defects compared to the two’s 
complement mapping. To verify our results we run 1000 Monte Carlo (MC) trials for each mapping, 
on a memory that contains 10000 random symbols, which are sampled from the same assumed input 
data distribution. The evaluation of the mappings using a MC based simulation flow is depicted in 
Figure 6. Initially some mappings are randomly selected or all of them are selected in case that it is 
computationally feasible. Afterwards, based on the input data distribution 10000 symbols are 
generated and stored in the memory according to the specific mapping. Then depending on the bit 
flip error probability    (explained in Section 3.4), an array instance which contains uniformly 
distributed fault locations throughout the whole memory is created. Furthermore, the MSE is 
evaluated for all the selected mappings. The last stage compares the MSE of each selected mapping 
with the MSE of the two’s complement and returns the mappings with a better MSE than the two’s 
complement. 

 

 

Figure 6: Evaluation of mappings using a Monte Carlo simulation flow 

4.1 Exhaustive Search 

          The most straight forward method is to explore the complete solution space exhaustively. We 
run an exhaustive search for     and     bits, evaluating the MSE as shown in Section 2.4. The 
results show that there are a lot of other mappings with smaller MSE than the two’s complement, 
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sign magnitude and gray code. For instance, in the case of     bits with input data generated by a 
Gaussian distribution with a variance of one, zero mean and     . , we evaluate all the 5040 
possible mappings. As can be seen in Figure 7, there are more than 1000 mappings that perform 
better than the two’s complement representation. Specifically, we find that a mapping that assigns 
                      to the two’s complement representation of                       
provides 45.3 % less MSE compared to the two’s complement. Interestingly, sign mapping and gray 
encoding give 33.7% and 27.4% less MSE accordingly. In general, the mappings that are better than 
the two’s complement achieve on average 20% less MSE, while the best of them achieve 50% less 
MSE. 

 

Figure 7: The mappings with a lower MSE than the two’s complement (3 bits, Gaussian 
distribution, variance 1, mean 0) 

          To verify our results we run MC trials on a 30 kb memory as shown in Figure 8. In general the 
results of the exhaustive search and MC simulations are very close for various bit flip probabilities 
and number of bits. Table 3 presents the difference between the two methods for nine random 
mappings and the two’s complement mapping for the instance of a Gaussian distribution with    , 
variance one, mean zero and     . . The average deviation of the two methods for the specific 
example is 0.03976. For the same example and the same mappings shown in Table 3, Figure 8 depicts 
a comparison of the MSE in dB between the analytical method and MC trials results. We can 
graphically see that the two methods converge to similar results. 

 

Table 3: Comparison between the MSE calculated by the exhaustive search and the MC trials 

simulations 
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Figure 8: Comparison between the MSE in dB calculated by Analytical method and MC trials 

simulations 

 

          Unfortunately as the number of bits increases, the number of possible mappings increases 
exponentially, as can be seen in Figure 9. After     bits, the number of mappings in dB exceeds a 
level of      . Therefore the exhaustive search of the results space is computationally impossible for 
a large number of bits. Since checking all the mappings is not feasible, the question that arises is if 
checking only some of the mappings makes it still possible to find better representations than the 
two’s complement. 

 

Figure 9: The number of mappings M as a function of the number of bits B 
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4.2 Random Mappings – Analytical Method 

          Since we have to choose some of the mappings to compare with the two’s complement 
representation, the simplest way is random selection and evaluation of the results using an analytical 
method as introduced in Section 3. For a small number of bits until    , the random selection of 
mappings results in finding some mappings that are better than the two’s complement. For a larger 
number of bits, unfortunately choosing randomly representations does not find any mappings that 
have a smaller MSE than the two’s complement. Therefore a better algorithm for choosing the 
mappings is needed. The proposed algorithm is explained in the next chapter. 
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Chapter 5 

Algorithm for Choosing the 
Mappings 

          The analytical method that tries 5000 random mappings can find a few better mappings than 
the two’s complement until     bits. For a larger number of bits this is not possible, because the 
ratio between the mappings with a lower MSE than that of the two’s complement and all the 
possible mappings decreases significantly. Hence, we devise an algorithm that chooses the mappings 
in a systematic fashion and finds best mappings faster with a limited number of checked mappings. 

 

5.1 Main Idea 

          The motivation for our algorithm stems from our observations during the exhaustive search 
simulations. Specifically, we observe that if we divide the best mappings into groups based on their 
first symbol, all the groups have a similar amount of mappings. For instance, in case of     bits 
there are 7 different symbols that can be written and read from the memory                   . 
Therefore there will be 7 different groups and each group will include all the mappings that start with 
a specific symbol, i.e. the group of -3 will contain mappings such as 
                                                       , the group of 0 will contain 
mappings such as                , etc. Figure 10 shows for the example of a Gaussian 
distribution with    , variance one, mean zero and     .  that the number of different 
mappings in each group is similar. Therefore, if we make sure that the algorithm produces mappings 
that have as a first symbol all the possible different symbols, i.e. that the algorithm produces the 
same number of mappings for each group, we increase the probability of finding one or more good 
mappings, without having to exhaustively explore any of the groups. 

 

Figure 10: Best mappings groups based on their first symbol 
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5.2 Number of Generated Mappings 

          The algorithm generates a different number of mappings depending on the number of 
symbols  , hence depending on the number of bits   used to store the data in the memory. The 
total number of generated mappings     is the sum of the mappings in each of the groups that start 
with one different symbol as explained in Section 5.1. The number of mappings in each group 
is    , therefore the total number of mappings is: 

            

For example for the     bit representation the number of mappings is: 
                6      

5.3 Generation of Mappings 

          Figure 11 shows an example of generating mappings for    . In general, the mappings are 
generated each time by changing the place of the last symbol with all the other symbols of the 
mapping. The replacement of the symbols starts from the second last symbol and ends with the first 
symbol. When the first symbol is reached, the algorithm restarts from the symbol before the last. 
After every replacement, the new vector is used as initial vector for the next replacement.  After 
    changes the algorithm stops because the next change returns the vector to the initial mapping 
(two’s complement). 

          This method of symbol exchange allows for an equal number of generated mappings in each 
group. For instance, in the case of the     bit representation, all the possible symbols are -3,  
-2, -1, 0, 1, 2, 3, with each symbol generating 6 mappings that start with that symbol. 
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Figure 11: Visual explanation of how the algorithm generates the mappings 

5.4 Pseudo-code 

          The algorithm pseudo-code is presented in Algorithm 1. Mappings is the array that stores all 
the possible mappings. The first entry of Mappings is initialized with the two’s complement mapping 
as it is shown in Line 1. Line 2 initializes a counter to initially hold the second last symbol of the last 
generated mapping. In Line 3 the total number of mappings is defined and the mappings are counted 
until the algorithm generates the determined number of mappings. Since the first mapping is by 
default the two’s complement one, the counting starts from the second mapping. Line 4 through 6 
reset the counter that holds the symbol which is going to be exchanged if it has reached the first 
symbol of the mapping. In Line 7 through 9 the symbols are exchanged to form the next mapping. 
Line 10 updates the place of the symbol that is going to be exchanged with the last symbol, to form 
the new next mapping. 
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1-      Mappings(1,:) = two_complement; 

2-      j = N-1; 

3-      For i =2:1: M_a 

4-        if (  j == 0 ) 

5-         j = N-1; 

6-                            end; 

7-                            Mappings (i,:) = Mappings (i-1,:); 

8-                            Mappings (i, N-1) = Mappings (i-1,j); 

9-                            Mappings (i,j) = Mappings (i-1, N-1); 

10-                         j=j-1; 

11-      end; 

Algorithm 1: Mapping generation algorithm 

5.5 Results: The Selected Mappings  

          For each selected mapping the algorithm calculates the mean squared error as explained in 
Section 2.4. The algorithm returns the mappings with a smaller mean squared error than the two’s 
complement mapping. The algorithm results will be presented and compared in the next chapter. 
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Chapter 6 
Results Comparison between 
the Algorithm, Analytical 
Method and MC Simulations 
          In the next sections we will be comparing the results of the algorithm with the results of the 
analytical method and MC simulations regarding their quality (MSE) and their computational 
complexity (algorithm runtime). 

6.1 Reference Distribution 

          To explain the results, the Gaussian (or normal) distribution and its different parameters will be 
used as a reference. The Gaussian distribution is a continuous probability distribution known as the 
Gaussian function. Informally it is called the bell curve because it has a bell-shaped probability 
density function f: 

            
 

 √  
 

  
 

  
   
 

   

The parameter μ is the mean or expectation and σ 2 is the variance. σ is known as the standard 
deviation.  

          The normal distribution is one of the well-known probability distributions in statistics and is 
encountered very often in practice and also in other sciences such as natural and social sciences. The 
most important reasons for this are: The central limit theorem states that given certain conditions, 
the mean of a sufficient large number of variables from the same distribution with a finite mean and 
variance, will each be approximately normally distributed. Moreover, the normal distribution can be 
easily processed analytically, that means that a large number of results involving this distribution can 
be derived in explicit form. 

          We use different variances during the presentation of our results. Table 4 defines for every 
number of bits the exact value of small (0.3σ), medium (3σ) and big variance (27σ). All the following 
examples are illustrated utilizing one setup that uses a Gaussian distribution with zero mean. 
Changing the variance of the Gaussian distribution makes it possible to emulate also different other 
distributions as explained in Section 3.2. For example, since the number of bits that can be used to 
represent the data is not infinite, a Gaussian distribution with a very large variance tends to the 
uniform distribution as shown in Figure 12. Figure 12 also depicts a Gaussian distribution with a very 
small variance which tends to the Dirac delta distribution. 
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Table 4: Gaussian variances used for different bit length  

 

Figure 12: Gaussian distributions for     and mean zero (a) variance 0.05 (b) variance 200 

          We choose as number of bits    , because for three bits we can explore the whole solution 
space using the MC trial simulations and the exhaustive search. Therefore it is possible to fully 
evaluate the algorithm performance in comparison with the two aforementioned methods and the 
analytical method. The number of performed MC simulations is 1000 on a 30kb memory. We assume 
that 10% of the bit cells have errors, that means specifically on average 3kb of the memory contains 
erroneous information. We choose 10% of the memory to contain wrong data, because we want to 
evaluate our algorithm in the worst case scenario [58]. In this scenario 10% of the memory suffers 
from failures induced by process variations or voltage scaling as discussed in Chapter 1. In our case, 
since we assume that all the cell failures are independent and the errors are uniformly distributed 
throughout the whole memory, the bit cell probability error    (cf. Section 3.4) is the same as the 
percentage of the memory that is erroneous.  

6.2 Algorithm Runtime 

        As the number of bits   increases, the number of all possible mappings   grows exponentially. 
Our algorithm, as described in Chapter 5, checks a specific number of mappings     that grows 
polynomially. Figure 13 depicts both   and     from     to   6 by using a logarithmic scale 
for the number of mappings. As it can be seen, there is a very large difference between the number 
of checked mappings and all possible mappings. Hence, investigating only such a small number of 

a) b)
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mappings makes the algorithm very fast compared to the exhaustive search. Table 5 presents more 
detailed numbers comparing all possible mappings and the number of checked mappings depending 
on the number of bits used to represent the data for     through    .  

 
Figure 13 : Comparison of the number of all possible mappings and the number of the 

mappings that the algorithm checks 

 

Table 5: Number of mappings generated by the exhaustive search and the algorithm 

          Our algorithm finds one of the mappings with smaller MSE than the two’s complement in a very 
short time compared to not only the exhaustive search, but also compared to the analytical method 
which selects randomly mappings. Figure 14 compares results from the MC simulations, analytical 
method and the algorithm for medium (3σ) variance. The bars in the figure show percentages. The 
first bar shows how many mappings are checked from all the possible mappings. The second bar 
shows how many mappings are better than the two’s complement of all the checked mappings. As 
can be seen in the figure, the algorithm checks a very small percentage of the mappings and around 
half of them are better than the two’s complement. Specifically, our algorithm and the analytical 
method check 0.8% of all the possible mappings compared to the MC simulations that check 100% of 
the mappings. The algorithm finds that 48% of the checked mappings are better than the two’s 
complement while the analytical method finds that approximately 35% of the investigated 
representations have a smaller MSE than the two’s complement. MC simulations show that 28% of 
all the mappings are better than the two’s complement. 
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Figure 14: Percentages of checked mappings and mappings better than the two’s 

complement 

6.3 Dependence on the Distribution Parameters 

          The number of the mappings better than the two’s complement that the algorithm finds, 
depends on the input data distribution. In case of a Gaussian distribution, the algorithm finds four 
times more mappings in case of a small variance compared to the case of a nine times larger variance 
as shown in Figure 15. This can be attributed to the fact that when the variance increases, the 
Gaussian distribution tends to approach the uniform distribution. For a uniform distribution, all 
possible values of the input data tend to appear with the same frequency in the memory. Therefore 
is not possible to find mappings which exploit the different frequencies of the symbols in the input 
data. 

 

Figure 15: Number of mappings better than two’s complement depending on input 

distribution parameters 
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           In case that the data distribution tends to the uniform distribution, which happens for a 
variance greater than 9 (27σ) for    , even if the algorithm cannot find a lot of mappings 
compared to how many it finds for the other distributions, it can find a few that have a good gain in 
dB, as depicted in Figure 16. The gain in dB is the absolute difference between the MSE of the best 
mapping and the two’s complement mapping. Specifically, Figure 16 shows that in the case of a 
Gaussian distribution with a variance of one (0.3σ), the algorithm achieves a gain of 1.634 dB and for 
the same distribution with a variance of nine (27σ), it attains a gain of 1.3578 dB. 

 

Figure 16: MSE of the best mapping depending on input distribution parameters 

6.4 MSE Efficiency 

          The main goal of the algorithm is not to find as many mappings as possible better than the 
two’s complement, but to find the one that has the largest reduction in terms of MSE compared to 
the two’s complement representation. Figure 17 shows the relative gain in terms of MSE for the 20 
best mappings ordered with increasing MSE. The computation is done with reference to the two’s 
complement representation for the same setup described in Section 6.1 and 3σ variance. We note 
that 10 of the mappings provide more than 10% less MSE than the two’s complement, 3 of the 
mappings more than 15%, 2 of the mappings more than 20% and the best mapping reduces the MSE 
by more than 30%. Specifically, if we choose the best mapping the MSE is decreased by 31.3 %. 

          A comparison between the algorithm results, the exhaustive search method and MC trial 
simulation for the same setup and parameters, shows that the algorithm finds a mapping with 
slightly less gain in terms of dB and percentage than the two other methods as shown in Figure 18. 
The gain in dB is the difference between the MSE of the two’s complement mapping and the best 
mapping. The gain in percentage is the relative difference of the gain in dB. The exact values of both 
gains for the three methods are shown in Table 6. To summarize the results, the last row of Table 6 
shows for each method the percentage of all the possible mappings that is checked. Interestingly, the 
algorithm finds a very good representation, while only checking a small percentage of all the 
mappings. For the specific case of    , since the number of bits is very small, the exhaustive 
search is possible and the tradeoff that the algorithm performs between the performance in terms of 
MSE gain and the computational time may not be that obvious. For larger number of bits the tradeoff 
becomes significantly more apparent. For the instance of     and a variance of 3.61 using the 
previous setup, the gain in percentage is    , checking only a small fraction  .              of all 
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the possible mappings. For the instance of     and a variance of 441, the gain in percentage is X%, 
checking only  .              of all the possible mappings. Table 7 shows a comparison of the 
speedup and the gain of MSE in percentage for the initial setup between the algorithm and the 
analytical method for different number of bits. For the case of 5 and 7 bits 0% means that the 
analytical method cannot find any mapping better than the two’s complement. We note that the 
algorithm is 100 times faster than choosing random mappings, and as the number of bits increases 
the results of the algorithm have also a better quality than the analytical method. Note that the 
number of mappings that the analytical method checks is arbitrarily chosen as 100 times more than 
the number of mappings checked by the algorithm. 

 

Figure 17: Gain of MSE in percentage for the mappings better than the two’s complement 

           

 

Figure 18: Gain of MSE in dB and percentage of the best mapping compared to the two’s 

complement mapping 
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Table 6: Gain of MSE in dB and percentage for the three methods 

 

Table 7: Speedup and gain of MSE in percentage 

6.5 Impact on Quality 

          In order to realize the significance of our approach, let us consider briefly a wireless system 
scenario and evaluate the potential impact on the quality of such a case study. A wireless system in a 
high level description includes different blocks as shown in Figure 19. The first block is the 
transmitter which transmits the signal over a channel. The receiver receives the distorted signal 
which includes the original signal and noise. A decoder is used to decode the received distorted 
signal in order to reconstruct the original signal. The information needed to decode the data is called 
Likelihood ratio (LLR), which is received and then stored in the memory. The distribution of the LLR 
input data usually follows a sum of Gaussians distribution and thus by modeling such data through a 
sum of Gaussians distribution we can evaluate the potential impact of our approach in such an 
application [60]. 

 

Figure 19: Wireless communication system 

          For instance, we could replace the memory system showed in Figure 11 with our memory 
model (cf. Section 3.3) and assess the Signal to Noise Ratio (SNR) in dB of the signal for the two’s 
complement mapping and for mappings that our algorithm chooses. In this case the SNR is calculated 
as follows: 

                                    

The input is the LLR data before being stored in the memory and the Output is the LLR data after 
being read from the memory.  
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For our case study we encode the LLR data as a sum of Gaussians distribution using three bits 
and we assume 10% random bit-flip errors in the memory of size 30 kb. Interestingly the results show 
that there is a significant improvement in terms of percentage gain of SNR, as shown in Figure 20. 
There are eight mappings that increase the SNR more than 20% compared to the SNR when the two’s 
complement is used. Five mappings improve the SNR by more than 40%, two mappings by more than 
60% and the best mapping by more than 80%. Therefore it is evident that our approach could 
improve the quality of the processed LLR data and potentially the decoding capability of the overall 
system.  

                      

Figure 20: SNR gain in percentage 

 

6.6 Power and Yield Improvement 

          Our algorithm achieves a better quality (quantified above in terms of MSE and SNR), which 
means that the output has a more satisfactory quality even if the memory has up to 10% errors. 
Since all the memory chips that contain up to 10% faulty cells or equivalently have a cell failure 
probability of     .  can now be used (cf. Section 6.1), the yield is significantly increased. For a 
model with a reliability of 100%, i.e. where dies are accepted only if they are error free, the yield for 
a memory array that contains   cells is: 

        
  

In our case we accept memory chips that contain up to a specific number of errors  , hence the yield 
is redefined [37]: 

     ∑ (
 

 
)        

 
 

   
      

    

The yield can be rewritten as: 
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If the first part of the expression is replaced with the yield   then      corresponds to: 

       ∑ (
 

 
)        

 
 

   
      

    

The above equation shows the yield improvement that can be achieved by not discarding chips with 
a number of defective cells smaller than  . 

          The improvement in quality achieved by the algorithm translates also into improvement of the 
yield of the memories, which is important since memories play a very significant role for the 
scalability of the supply voltage, for example failures in cache memory cells can determine the 
minimum supply voltage for a processor as a whole [32]. Although voltage scaling makes memories 
prone to errors as discussed in Chapter 1, using the proposed error resilient data representation for a 
given application enables aggressive voltage scaling, since more errors can be tolerated. Therefore 
the mappings found by the proposed algorithm offer the potential for power savings, since memory 
can be operated at a lower supply voltage. All the aforementioned improvements come at a low cost, 
since we do not use the expensive mechanisms of the techniques presented in Chapter 2. 
Specifically, our overhead is only two look up tables used to map and de-map the data going in and 
out of the memory. 
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Chapter 7 
Conclusion 
 
          To minimize the impact of hardware failures on memory systems caused by process and power 
variations, an error resilient memory model is developed. The evaluation of the model performance 
is performed by using the Mean Squared Error of the data written and read from the memory. The 
simulations performed showed that for small bit sizes (e.g. 3 bits), the exhaustive search of the best 
data representation, which minimizes the Mean Squared Error, is possible. Since the computational 
time increases exponentially, the exhaustive search becomes infeasible for larger bit sizes. Only 
analyzing a small number of random data representations or mappings does not ensure that a 
representation with a lower Mean Squared Error than the two’s complement will be found. For this 
purpose, an algorithm that systematically checks a small number of the mappings is developed. The 
algorithm performance is assessed using as main distribution the Gaussian, and emulating the 
Uniform, Sum of Gaussians, Rayleigh and Laplace distributions by the Gaussian distribution with 
changing mean and variance. In all the cases, the algorithm finds several good mappings using 
significantly less computational effort and time than the exhaustive search or the random search. 
The results show that the number of mappings better than two’s complement and the difference 
between the best mapping found and the two’s complement mapping in terms of Mean Squared 
Error depend considerably on the input data distribution and its parameters. The mappings that the 
algorithm generates improve not only the output quality and the yield of the memory by increasing 
its error resilience, but also permit the memory to operate under a very low voltage in order to 
reduce the power consumption. 
  
         Furthermore, the algorithm is implemented in a case study. Our error resilient memory system 
is included in a wireless communication channel system model that contains a decoder. The output 
data of the decoder has a lower bit error rate, when the data is stored in the memory using one of 
the mappings that our algorithm found, compared to when it is stored using the two’s complement 
representation. The best result achieved is 80% more Signal to Noise Ratio (SNR). 
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Chapter 8 
Future considerations 
 
          Future work should mainly focus on constructing the mappings number system, i.e. how to 
convert algorithmically a number expressed by the decimal system to its binary representation 
according to a specific mapping. This means indexing the bits and putting the right weight to each bit 
according to its position. The weight of each bit should not necessarily be a power of two. In this way 
the conversion from binary to decimal and the other way around would be possible without the use 
of a look-up table, through a mathematical formula. 
 
          Another interesting direction of future work is evaluation of the algorithm using advanced input 
data distributions and several case studies of other models that include a memory system. 
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