

Performance Analysis and
Design of Systems Under

Power and Reliability
Constraints

Jona Babi
babijona@inf.uth.gr

July 4, 2012

__

Advisor: Georgios Stamoulis (University of Thessaly) georges@inf.uth.gr
Co-advisor: Nestoras Eumorfopoulos (University of Thessaly) nestemvo@inf.uth.gr

mailto:georges@inf.uth.gr
mailto:nestemvo@inf.uth.gr

© Jona Babi

The thesis was carried out in collaboration with the
Telecommunication Circuits Lab of the Swiss Federal Institute of

Technology, Lausanne (EPFL).
I would like to thank

Dr. Georgios Karakonstantis and Prof. Andreas Burg for their idea, for
the inspiring discussions and their support.

Ανάλυση απόδοσης και σχεδίαση συστημάτων

ύπο περιορισμούς ισχύος και αξιοπιστίας

 Πριν την τεχνολογία νανομέτρων, τα κύρια κριτήρια σχεδιασμού ολοκληρωμένων κυκλωμάτων
ήταν η βελτιστοποίηση για ταχύτητα, έκταση και κατανάλωση ησχύος παραμελώντας τις φυσικές
και ηλεκτρικές ιδιότητες των τρανζίστορ, οι οποίες παίζανε λιγότερο σημαντικό ρόλο. Συγκεκριμένα,
κατά τη διάρκεια ζωής τους, τα τρανζίστορ θεωρούνταν ότι συμπεριφέρονται νομοτελειακά όπως
είχαν σχεδιαστεί. Αυτό ήταν περίπου μέχρι το μέγεθος των 0,35 μm, επειδή το μέγεθος του
τρανζίστορ ήταν πολύ μεγάλο σε σχέση με τα διαφορετικά είδη των διαδικαστικών διακυμάνσεων.
Ωστόσο, με τη συνεχιζόμενη κλιμάκωση των κόμβων της τεχνολογίας μέχρι τα 65 nm, η φύση των μη
ντετερμινιστικών ιδιοτήτων των τρανζίστορ άρχισε να αποκτήσει σημασία για τη σωστή λειτουργία
των συσκευών. Στα 65 nm,επειδή το μέγεθος του τρανζίστορ είναι τόσο μικρός, η διαδικασία
κατασκευής πάσχει από ασάφειες σχετικά με τα μεγέθη συσκευών που οδηγούν σε διαφορετικές
παραλλαγές στα χαρακτηριστικά των τρανζίστορ. Τέτοιου είδους διαδικαστικές διακυμάνσεις
περιλαμβάνουν τις χωρικές και χρονικές παραμετρικές διακυμάνσεις και απειλούν τη σωστή
λειτουργία των νανομετρικών κυκλωμάτων.

 Η λειτουργία των κυττάρων, στατικής τυχαίας προσπέλασης (SRAM) επηρεάζεται πολύ από
όλες τις προαναφερθείσες διαφοροποιήσεις σε μεγαλύτερο βαθμό από ό, τι λογικά κυκλώματα. Τα
αποτελέσματα των διακυμάνσεων στα κύτταρα μνήμης είναι πιο κυρίαρχα, δεδομένου ότι
τρανζίστορ με πολύ μικρές διαστάσεις χρησιμοποιούνται για την κατασκευή της μνήμης, ώστε να
ελαχιστοποιηθεί η κατεχόμενη περιοχή για την υψηλότερη πυκνότητα μνήμης. Οι συνέπειες των
μεταβολών στο κελί SRAM εξαρτούνται από το είδος της μεταβολής που βιώνει. Για παράδειγμα,
παραμετρικές μεταβολές οδηγούν σε διαφορετικές δυνάμεις των τρανζίστορ που στη χειρότερη
περίπτωση προκαλούν αποτυχία του κυττάρου. Συγκεκριμένα, οι διάφορες αποτυχίες είναι οι εξής:
αποτυχία του χρόνο πρόσβασης, αδυναμία διατήρησης, αποτυχία γραψήματος και αποτυχία
διβάσματος. Εκτός από τις συνεχείς αποτυχίες μνήμης που προκαλούνται κατά τη διάρκεια της
κατασκευής, υπάρχουν επίσης μη εμμένουσες αδυναμίες της μνήμης που δεν βλάπτουν το κύτταρο
σε μόνιμη βάση, που οφείλονται κυρίως σε σωματίδια άλφα .

 Οι σχεδιαστές έχουν καταλήξουμε σε διάφορες τεχνικές στο κυκλωματικό επίπεδο και στο
επίπεδο της αρχιτεκτονικής, όπως κλιμάκωση του μέγεθος του τρανζίστορ, προσθέτοντας επιπλέον
γραμμές / στήλες στη μνήμη του, προσθέτοντας τρανζίστορ σε ένα κελί μνήμης, τροποποίοντας
δυναμικά το μέγεθος της μνήμης ή προςθέτοντας κώδικες διόρθωσης λαθών. Δυστυχώς, όλες αυτές
οι τεχνικές υπάρχουν εις βάρος του αυξημένου μέγεθου του καλουπιού και της αυξημένης
κατανάλωσης ισχύος, δεδομένου ότι βασίζονται στην προσθήκη πλεονάζον υλικό για τον εντοπισμό
και τη διόρθωση τυχόν σφαλμάτων, ως εκ τούτου έρχεται σε αντίθεση με τα άλλα κύρια πρόκληση
στο σχεδιασμό κόμβων νανομέτρων που είναι η κατανάλωση ενέργειας.

 Επομένως, υπάρχει ανάγκη να αντιμετωπισθούν τέτοια ζητήματα, να μελετήθουν και να
αναλύθουν και να βρεθούν νέες μεθόδους που επιτρέπουν την αξιόπιστη λειτουργία σε χαμηλή
ισχύ και μικρό κόστος. Για το σκοπό αυτό, στην παρούσα διπλοματική εξετάζουμε μια νέα τεχνική
για την αντιμετώπιση των ενδεχόμενων βλαβών της μνήμης, η οποία δεν έχει διερευνηθεί μέχρι
στιγμής.

 Η τεχνική εξερευνεί την αντοχή της αναπαράστασης δεδομένων (ο τρόπος που τα δεδομένα
αποθηκεύονται στη μνήμη) σε επίπεδο συστήματος. Θα μπορούσε να είναι δυνατό διαφορετικές
αναπαράστασεις δεδομένων να είναι πιο αξιόπιστες κάτω από ελαττώματα του υλικού με δεδομένη
την κατανομή των εισαγόμενων δεδομένων. Για το σκοπό αυτό, στόχος μας είναι να βρούμε κάποια
αναπαράσταση των δεδομένων που ελαχιστοποιεί τα μη-επίμονα σφάλματα στη μνήμη. Πιο
συγκεκριμένα, για να επιτύχουμε το στόχο μας έχουμε σχεδιάσει έναν εξομοιωτή σφαλμάτων σε
επίπεδο συστήματος. Η απόδοση αξιολογείται με βάση το μέσο τετραγωνικό σφάλμα των
δεδομένων που γράφονται και διαβάζονται από τη μνήμη. Για μικρά μεγέθη bit είναι δυνατό να
εκτελέστει μια εξαντλητική αναζήτηση για να βρούμε την καλύτερη αναπαράσταση των δεδομένων.
Είναι ενδιαφέρον ότι τα αποτελέσματα έδειξαν ότι υπάρχουν πολλές αναπαραστάσεις που έχουν
ένα καλύτερο μέσο τετραγωνικό σφάλμα από τις αναπαραστάσεις που χρησιμοποιούνται σήμερα
για την αποθήκευση των δεδομένων στη μνήμη. Επιπλέον, έχουμε αναπτύξει έναν αλγόριθμο που
εκτελεί το έργο της εύρεσης της καλύτερης αναπαράστασης. Η απόδοση του αλγορίθμου
αξιολογείται με τη χρήση της Gaussian κατανομής για διάφορες παραμέτρους ώστε να
προσεγγισθούν διαφορετικές κατανομές, όπως η Gaussian, Uniform, Άθροισμα Gaussians, Rayleigh
και Laplace οι οπόιες μοντελοποιούν καλά κατανομές δεδομένων από δημοφιλείς εφαρμογές. Σε
όλες τις περιπτώσεις, ο αλγόριθμος βρίσκει αρκετά καλές αναπαραστάσεις με σημαντικά λιγότερη
υπολογιστική προσπάθεια και χρόνο από την εξαντλητική αναζήτηση ή την τυχαία αναζήτηση. Τα
αποτελέσματα δείχνουν ότι ο αριθμός των αναπαραστάσεων οι οποίες είναι καλύτερες από την
αναπαράσταση του συμπληρώματος ως προς δύο και η διαφορά μεταξύ της καλύτερης
αναπαράστασης που βρέθηκε και της αναπαράστασης του συμπληρώματος ως προς δύο από την
άποψη του μέσου τετραγωνικού σφάλματος εξαρτάται σημαντικά από την κατανομή των
δεδομένων εισόδου και των παραμέτρων της.

iii

Abstract
The impact of hardware defects and the resultant errors on the
performance and yield of memory, potentially induced by
voltage scaling and parametric variations, is analyzed. For
modeling the memory and capturing the impact of the defects,
a system-level fault simulator is designed. The performance is
assessed based on the Mean Squared Error of the data written
and read from the memory. An exhaustive search for the best
data representation, which minimizes this Mean Squared Error
in the memory, is performed for small bit sizes. Furthermore,
an algorithm is presented to perform the task of finding the
best representation with significantly less computational
effort. The algorithm is analyzed using various input data
distributions. The impact of the algorithm on memory yield
and power is analyzed. To this end, a system model of a
wireless communication channel containing a decoder is
combined with our error resilient memory model and the
improvement of the output quality is analyzed.

iv

Contents
1. Introduction 1

2. State of the Art 4
 2.1 Circuit Level 4
 2.2 Redundant Rows and Columns 4
 2.3 Bit Cells 4
 2.4 High Level Solutions 5
 2.5 Error Correcting Codes (ECC) 5
 2.5.1 Hamming Code and Extended Hamming Code 5

2.5.2 Low-Density Parity-Check Codes (LDPC) 6
2.5.3 Convolutional Codes 6
2.5.4 ECC Use for Improving Memory Reliability 6

2.6 Design Implications of Existing Methods 6

3. Proposed Approach 8

3.1 System Level Fault-Simulation Methodology 8
3.2 Symbols and Input Data Distribution 9
3.3 Memory Model 10
3.4 Metric: Mean Squared Error 12
3.5 Conventional Mappings 13
 3.5.1 Ones’ and Two’s Complement 13
 3.5.2 Sign Magnitude 13
 3.5.3 Gray Mapping 13

4. Exploration of Mappings 15
 4.1 Exhaustive Search 15
 4.2 Random Mappings – Analytical Method 18

5. Algorithm for Choosing the Mappings 19
 5.1 Main Idea 19
 5.2 Number of Generated Mappings 20
 5.3 Generation of Mappings 20
 5.4 Pseudo-code 21
 5.5 Results: The Selected Mappings 22

6. Results Comparison between the Algorithm, Analytical Method and MC Simulations 23
 6.1 Reference Distribution 23
 6.2 Algorithm Runtime 24
 6.3 Dependence on the Distribution Parameters 26
 6.4 MSE Efficiency 27
 6.5 Impact on Quality 29
 6.6 Power and Yield Improvement 30

7. Conclusion 32

8. Future considerations 33

References 34

v

List of Figures
1. Memory failure probability (65nm) 2

2. System level fault-simulation approach 8

3. Symbol type distributions for B = 4 9

4. Binary symmetric channel (BSC) 11

5. System model of memory with mapping and de-mapping stages 11

6. Evaluation of mappings using a Monte Carlo simulation flow 15

7. The mappings with a lower MSE than the two’s complement (3 bits, Gaussian distribution, 16
 variance 1, mean 0)

8. Comparison between the MSE in dB calculated by Analytical method and MC trials
 simulations 17

9. The number of mappings M as a function of the number of bits B 17

10. Best mappings groups based on their first symbol 19

11. Visual explanation of how the algorithm generates the mappings 20

12. Gaussian distributions for and mean zero 24

13. Comparison of the number of all possible mappings and the number of the mappings that 25
 the algorithm checks

14. Percentages of checked mappings and mappings better than the two’s complement 26

15. Number of mappings better than two’s complement depending on input distribution 26
 parameters

16. MSE of the best mapping depending on input distribution parameters 27

17. Gain of MSE in percentage for the mappings better than the two’s complement 28

18. Gain of MSE in dB and percentage of the best mapping compared to the two’s 28
 complement mapping

19. Wireless communication system 29

20. SNR gain in percentage 30

vi

List of Tables
1. Look up table for example mapping 12

2. Generating 3-bit Gray code from 2-bit 14

3. Comparison between the MSE calculated by the exhaustive search and the MC trials 16
 simulations

4. Gaussian variances used for different bit length 24

5. Number of mappings generated by the exhaustive search and the algorithm 25

6. Gain of MSE in dB and percentage for the three methods 29

7. Speedup and gain of MSE in percentage 29

vii

List of Algorithms
1. Mapping generation algorithm 22

 1

Chapter 1
Introduction
 Before nanometer technologies emerged, the main design criteria for integrated circuits were
optimization for speed, area and power consumption neglecting the physical and electrical
properties of the transistors which played a less important role. Specifically, during their device
lifetime, the transistors were assumed to behave deterministically as they were designed. That was
approximately until a feature size of 0.35 , because the transistor size was very large compared to
the different kinds of process variations. However, with the continuing scaling of technology nodes
down to the 65 nm regime, the nondeterministic nature of transistor properties started to become
relevant for the proper operation of the devices. At this size, since the transistor size is so small, the
manufacturing process suffers from larger imprecisions regarding device sizes that lead to different
variations in transistor characteristics. Such process variations include both spatial and temporal
parametric variations and threaten the correct functionality of nanometer circuits.

 Parametric variations are categorized into two groups: intradie and interdie [1]-[3]. On one
side, the variations of transistor strength that occur within the same die are called intradie. They can
be caused mainly by random dopant fluctuations in the channel region resulting from lithography,
chemical and mechanical polishing, line edge roughness and change of geometric dimensions
compared to the specifications due to lithographic and etching techniques during the fabrication [1],
[4]-[9]. Modeling the intradie variations is difficult because a large number of random variables are
required [3]. On the other side, interdie variations are observed between different dies that might
have been produced from different wafers. The causes for interdie variations are the fluctuations in
length due to variations in the exposure time during fabrication and fluctuations in transistors width
and oxide thickness.

 Temporal variation is another problem that arises with decreasing transistor size. The temporal
variations can be divided into two categories: aging-related and environmental. Aging variations
include negative bias temperature instability (NBTI) [10]-[26], positive bias temperature instability
[27], [28], hot carrier injection [29]-[31], time-dependent dielectric breakdown [32]-[34] and electro-
migration [35]. Using the device for a long time decreases its strength because of aging issues (i.e.
NBTI). Moreover, transistors experience temperature and voltage variations that are classified as
environmental variations and associated with the variations in circuit functionality. For instance,
temperature fluctuations occur when the large power consumption of a circuit is transformed into
heat and the device is not equipped with mechanisms to limit the rise of temperature.

 All the above variations result in large fluctuations of transistor threshold voltage , which
degrade the overall system performance by affecting both logic (digital and analog) and memory. The
variations in logic manifest increased delay and spread of the delay distribution. As a result, the delay
specifications are not met and the yield is degraded [1], [2].

 The operation of static random access memory (SRAM) cells is highly influenced by all the
mentioned types of variations to a larger degree than logic circuits. The variation effects on memory
cells are more dominant, since transistors with very small dimensions are used to build the memory
in order to minimize the occupied area for higher memory density. The consequences of the
variations on the SRAM cell depend on the type of variation that the cells experience. For instance,
parametric variations lead to different strengths of transistors that in the worst case cause failure of

 2

the cell. Specifically, different failures that can occur are: access time failure, retention failure, write
failure and read failure. An access time failure is the violation of the delay specifications and it takes
place during a read operation when the differential voltage across the bit lines is not sufficient to
identify the correct value. A hold or retention failure is the loss of the cell information when the cell
is in standby mode, for example as a result of a voltage drop. Write failures happen when it is not
possible to write the cell, because the cell content cannot be toggled. Read failures occur when the
data stored in the cell is flipped and the read value is not the correct one. Such failures are mainly
the result of noise developed in the node that stores the zero that is becoming larger than the trip
point of the inverter. The size and type (i.e. 6T, 8T) of the memory bit cell, the array organization and
the supply voltage determine the degree of such failures.

 During memory development, it is common that designers try to operate memories in the
lowest possible voltages, since voltage downscaling is considered as one of the most effective
methods for power reduction. However, operation at low voltages in combination with variations
makes circuits very prone to failures [36]. Figure 1 depicts the dependence of the failure probability
on the supply voltage for different cell types: medium sized 6T bit cells, 6T cells upsized by 15% and
8T bit cells in a 65 nm technology node [37].

Figure 1: Memory failure probability (65nm)

 Except of the persistent memory failures that are caused during manufacturing (e.g. stack-at -
faults), there also exist non-persistent memory failures that do not damage the cell permanently, i.e.
soft errors or erratic bit failures which are primarily due to alpha particles. Even if soft error rate
slightly reduces as transistor size scale down, the number of errors increases because the probability
of hitting a larger number of transistors by a particle increases [38]. Although the failure probability
of the cell increases when soft errors happen, the overall failure rate in memories is still dominated
by random dopant fluctuations induced errors [39] as it is shown in Figure 1.

 Both persistent and non-persistent errors have a significant impact not only on the memory
system, but also on the overall system. For instance, in a cache of a modern processor, a bit flip error
during the decoding phase of the instructions may result to execute erroneously an instruction that
may lead to complete failure of the system. The persistent errors cause defected cells which cannot
be used for reliable storage having as a consequence the reduction of yield and thus the increase of
manufacturing cost.

 Designers have come up with various techniques at a circuit and architecture level, such as
scaling the transistor size, adding extra rows/columns in the memory [40], [41], adding transistors to
a memory cell [39] or modifying the memory size dynamically [42]. Unfortunately, all these
techniques come at a cost of increased die area and power since they are based on the addition of

 3

redundant hardware for the detection and correction of any errors, thus contradicting with the other
main design challenge in nanometer nodes that is the reduction of power consumption.

 Therefore there is a need to deal with such issues, study and analyze them and find new
methods that allow reliable low power operation at a minor cost. To this end, in this report we
investigate a new technique for dealing with potential memory failures, which has not been explored
so far. Our approach exploits the resilience of data representation (the way that data is stored in the
memory) at the system level for improving the output quality and the yield as well as the power
consumption (by allowing lower voltages) of the memory. For this purpose a system level fault-
simulator is developed, a performance metric and various input data distributions are analyzed.
Furthermore, an algorithm that finds the best data representation in terms of the chosen
performance metric is developed. The algorithm impact is assessed using a wireless communication
system.

 The rest of the report is organized as follows. The next chapter (Chapter 2) introduces an
overview of the state of the art techniques that are designed to solve the above issues .Chapter 3
describes the system model of our solution and gives a general overview of the input data,
performance metrics and the data representation in the memory. The following chapter (Chapter 4)
discusses some simple, straight forward solutions. The quality of the solutions is assessed by
comparison with results from Monte Carlo simulations. The next chapter (Chapter 5) presents our
solution to the problem. A new algorithm is discussed. In chapter 6 the results of the new algorithm
are presented and compared with the simple solutions of chapter 4. The impact of the algorithm on
the output quality of a wireless communication system is shown. Moreover, the improvement of the
memory yield and the power consumption is discussed.

 4

Chapter 2
State of the art
 Today there exist a lot of different techniques on different levels of the design hierarchy that
address memory failures. Most of such techniques are based on the addition of redundant hardware
or the design with safety margins achieved by transistor up-scaling. While such techniques provide
sufficient robustness, they unfortunately come at a cost of increased area and power overhead.

2.1 Circuit Level

 An important circuit level solution is scaling of the transistor size since failure probability and
array yield strongly depend on the transistor size of a memory bit cell as well as the relatives ratios
between them [43], [44]. The length and the width of different transistors in a SRAM cell affect the
cell failure probability by modifying the nominal values of access time, the trip point of the inverter,
read voltage, write time and minimum retention voltage as we discussed briefly in Section 1.

 Some other circuit level solutions have to do with supply voltage (VDD) scaling. Designers limit
or even up-scale the lower voltage in order to ensure stronger noise margins and more reliable
operation. Another technique used after fabrication to compensate mainly the inter process
variations is Adaptive Body Bias [28]. Specifically, each die is set to its own biasing voltage to reach
the best frequency. This solution does not work for intradie variations, because a lot of different
voltages are needed. It can work only if the die is divided into regions and if each region has a
different body biasing.

2.2 Redundant Rows and Columns

 Adding extra rows/columns is used to address the persistent manufacturing faults and
consequently to improve the yield of SRAM arrays [41]. Specifically, a small number of redundant
columns of SRAM cells is added to the array during the design stage. During the testing stage that
takes place after the manufacturing, the defective cells are identified and the array is reconfigured to
access one of the redundant columns instead of the column which contains the defective cell.

2.3 Bit Cells

 Another approach is increasing the number of transistors in a cell. The 8T and 10T SRAM cells
isolate the read and the write operations from each other, so it is much easier to optimize each of
them separately under low voltage [45]-[50]. The area overhead of such bit-cells amounts to more
than 30% and is a good price for the gained robustness, but these cells still suffer from pseudo-read
errors because two or more of the words in a row share one word line.

 Some of the SRAM cells have a build-in feedback mechanism that achieves process variation
tolerance under a very low supply voltage. The design is based on the idea of Schmitt Trigger
differential sensing. Overcoming the disadvantage of the read and write operations that the normal
6T cells have, Schmitt Trigger operation ensures a better read and write stability [48], [49].

 5

2.4 High Level Solutions

 A high level solution to the variations is modifying the memory architecture. For instance, a
popular technique that is followed in cache memories in modern processors is designing a dynamical
cache that resizes itself [51]. The resize happens when the cache finds not-working cells and maps
them to working spare cells. Another way is a mechanism that deletes all the caches lines that are
considered faulty. Cache line fault detection is implemented using an availability bit for each line
[52], [53]. A cache line can be deleted only if the availability bit is turned off. A different way to locate
the failures is using on-chip reliability sensors.

 Cell-flipping technique is another high level technique to address the variation inside memory
cells [16]. It relies on a memory structure that flips the cell state taking advantage of the unbalanced
signal probability. The aim of this technique is the reduction of the Negative Bias Temperature
Instability, allowing the PMOS operation to have periods of relaxation in between the continuing
stress. Therefore the threshold voltage increase recovers dynamically.

 Two other techniques that enable cache lines to operate at low voltages despite very high
memory cell failure rates are the Word-disable scheme and the Bit-fix scheme [42]. The schemes
identify and disable different sizes of the cache, individual words or pairs of bits. In the Word-disable
scheme, if a 32-bits word contains defective bits, it is disabled. If a word is disabled, the other words
are combined to form a line that has only non-failing words. Experimental results show that this
scheme permits a 32kB cache to operate at 490mV. The Bit-fix scheme stores the location of the
erratic bits and the correct value of the same bits. It allows a 2MB cache to operate at 475mV. During
high voltage operation both schemes use 100% of the cache. At low voltages they sacrifice 50% and
25% cache capacity respectively.

2.5 Error Correcting Codes (ECC)

 Instead of improving the structure of the cell of a circuit, a designer can build Error Correcting
Codes (ECC) into the array. ECC is being added to data storages. It detects the errors at the data and
when necessary corrects them. It is different from parity bits that only detect errors. When a word is
sent to the memory to be stored, ECC calculates a code that corresponds to the bit sequence which is
also stored along with the word. When a data word needs to be read the code is calculated again by
the original algorithm and if the code stored in the memory and the one just calculated match, the
data is free of errors and can be read. If not, then the word is corrected based on the comparison of
the codes.

 To correct the word that is going to be read from the storage, a simple ECC solution is to repeat
each bit n times in order to create a group for each original bit and then consider as the correct bit
the majority of the read bits in each group. For example with the word 110 will be extended to
111111110000. This technique works for a minimum of . If the number of errors is smaller than
 in each group, then the word will be recuperated in every case. However, this approach is not
practical, because when n increases, the overhead also increases.

2.5.1 Hamming Code and Extended Hamming Code

 The Hamming code permits correcting single bit errors, by adding control bits to the
information. However, a single error correction is not enough for many applications. Some other kind
of ECC, called Double-bit Error Detection (SEC-DED) or extended Hamming correction codes can
correct more errors but they also need to add to the control bits additional parity bits compared to
the Hamming code.

 6

2.5.2 Low-Density Parity-Check Codes (LDPC)

 Low-Density Parity-Check Codes (LDPC) are encodings that use parity bits. The main idea is that
each parity bit checks a number of bits and each bit is checked by a number of parity bits. One of the
advantages of LDPC is that every code word has the same hamming distance from all the others.
LDPC have two decoding algorithms: the first one check each digit and compares it with its parity
check operators. Depending on what the majority of them indicate, the bit is flipped or not. The
digits are checked repetitively until all bits settle to a fixed state. The second algorithm is similar to
the first one but more accurate. Instead of deciding based on what the majority of the parity bits
indicate about a bit, it computes the probability that a certain bit is one, taking into account all the
other bits. It cycles through the bits until the bits are in a static state. These algorithms are not
deterministic, since they depend on the order that the bits are checked.

2.5.3 Convolutional Codes

 Convolutional codes process blocks not as an independent entity. They take into consideration
the result of the previous bits. The initial state has a key that is known from both encoder and
decoder. Each input bit is processed in multiple ways and has different output results. Therefore
each output bit represents the results of different input bits. Convolutional codes can be
implemented by different algorithms but they all depend on two variables: how many bits each state
has and how many bits are produced per input bit. The main categories are the systematic and the
recursive algorithms. The systematic code has an output that only depends on the input. The
recursive code uses a prior output as part of the new input. The convolutional codes are fast and
efficient. Their main disadvantage is that their accuracy depends on the input.

2.5.4 ECC Use for Improving Memory Reliability

 The different ECC groups are exploited in order to create robust memories, i.e. some
techniques utilize the SEC-DED [54] or the LDPC codes [55]. One of the approaches uses a two
dimensional ECC that corrects multi-bit errors [56]. Specifically, this scheme is appropriate when
contiguous bits in multiple rows and columns fail concurrently. The location of the defective bits
defines the success of this scheme. If the defective bits are randomly distributed in each cache line,
which happens as a result of random dopant fluctuations, this technique fails.

 Another technique, called multi-bit segmented ECC (MS-ECC), addresses both persistent and
non-persistent failures by using Orthogonal Latin Square Codes at the cost of more check bits [38],
[57]. MS-ECC is an adaptive mechanism that enables different parts of the memory to be used for
error correction. To increase the reliability during low-voltage operation, some associative ways in
each cache set are used to store the ECC check bits for the remaining ways. The operating system can
chose the number of associative ways used for storing ECC depending on the desired reliability level.
Increasing the number of ways increases the reliability, but the cache capacity becomes smaller. This
technique can correct 1-4 errors for each 64-bit segment.

2.6 Design Implications of Existing Methods

 Using all these state of the art approaches for handling errors in the nanometer regime makes it
possible to meet the design constraints, but these solutions come with disadvantages. The redundant
hardware (i.e. redundant rows/columns in memory) increases the die area and limits performance.

 7

But the most important aspect is that these techniques lead to significant power consumption
overhead, which is another main design challenge in nanometer nodes. For example 8T and 10T cells,
and also ECC can increase the power by more than 50% [39], [40], [42], [54], [58]. Techniques that
achieve the reduction of power consumption are: multiple voltage and frequency islands [37] and
supply voltage scaling [59]. Unfortunately, the best technique that is voltage scaling leads to more
variations. In general, process variation resilience and reduction of power consumption have
contradictory requirements so finding the best tradeoff is becoming very difficult and new methods
with lower overhead are required.

 8

Chapter 3
Proposed Approach
 Memories are very important, because every digital system integrates at least one or even
several different kinds of memory components. The minimum supply voltage for a processor as a
whole is typically determined by the failures in the memory cells [42]. While researchers have
explored different memory resilience techniques, the resilience of the data representation on a
system level has not been explored. It might be possible that different data representations are more
reliable under hardware defects given an input distribution. To this end, our goal is to find the data
representation that minimizes non-persistent errors in the memory. More specifically, to reach our
goal we design a system-level fault simulator. The performance is evaluated based on the Mean
Squared Error of the data written and read from the memory. For small bit sizes it is possible to
perform an exhaustive search to find the best data representation. Interestingly, results showed that
there are a lot of representations that have a better Mean Squared Error than the representations
that are used nowadays to store the data in the memory. Furthermore, we develop an algorithm that
performs the task of finding the best representation. By analyzing the algorithm using various input
data distributions, we find out that the algorithm can find one of the best representations using
significantly less computational effort compared to an exhaustive search of the solution space.

3.1 System Level Fault-Simulation Methodology

 We develop a system level fault-simulation approach that is depicted in Figure 2. It consists of
four stages: symbols and input distribution, memory model, metrics, and conventional mappings.
The next sections explain analytically the stages.

Figure 2: System level fault-simulation approach

 9

3.2 Symbols and Input Data Distribution

 The number of different symbols that will be written and read from the faulty memory depends
on how many bits are used to represent a data word. Let be the total number of bits that are used
to represent the data, then there will be different symbols that range from the signed
integer values ⌊ ⌋ to ⌊ ⌋. For instance, if each symbol is represented with 3 bits, there will
be 7 symbols from ⌊ ⌋ to ⌊ ⌋ . Using bits, there are
possible different symbols that range from ⌊ ⌋ to ⌊ ⌋ , but for symmetry reasons we use
one symbol less. We do not use the symbol with the larger absolute value. Hence there are an equal
number of negative and positive symbols. We showed that when and our symbols are
 , three of them are positive and three of them are negative. But all possible
symbols are ⋃ .

 So far, we assumed that the symbols stored in the memory represent only integers. The
symbols that represent fractional numbers are converted into integers by being multiplied by the
appropriate power of two before being stored into the memory. The inverse procedure is applied
upon reading the symbols. still remains the total number of bits, but now is the sum of the number
of bits used for the decimal part (, and the number of bits used for the fractional part (,

 + .

 The distribution of the symbol types stored in the memory depends on the system that the
memory will be included in. We utilize Gaussian distributions with different values for its parameters
in order to emulate four other different input distributions: Uniform, sum of Gaussians, Rayleigh and
Laplace as shown in Figure 3. The reason for choosing five different distributions is to be able to
model different kinds of input data accurately. We chose these specific five distributions, because
they are commonly encountered in practice and used in different areas i.e. statistics, multimedia and
digital signal processing. For instance it is common that the data that is saved in the memory of a
decoder, which is used in wireless communication channels (i.e. Viterbi decoder), follows a sum of
Gaussians distribution. The Laplacian distribution is for example used in speech recognition to model
priors on Discrete Fourier Transform coefficients. The Gaussian distribution is one of the well-known
probability distributions in statistics and is encountered very often in practice and also in other
sciences such as natural and social sciences. The central limit theorem uses the Gaussian distribution
to model many practical problems. Emulating five different common distributions and changing their
parameters, allows fitting other unknown data distributions to one of the five aforementioned
distributions with a small approximation error.

a) b)

 10

3.3 Memory Model

 Memory system models can be described on various levels of abstraction, starting from the
very low transistor level, up to higher level descriptions, such as application programming interfaces.
The selection of the memory system model is based on the main goal that will be explored. Our goal
is to evaluate the impact of errors at the system level by exploring various input distributions. Since
circuit level simulations are very costly in terms of time and processing power, we model the circuit
failures as bit flips and the memory as a non-binary symmetric channel.

 A binary symmetric channel (BSC), as shown in Figure 4, includes a transmitter which sends two
different types of symbols (zero or one) and a receiver that receives the symbols through a
communication channel. During transmission a symbol is ‘flipped’ with a crossover probability of . A
non-binary symmetric channel is a BSC which is capable of transmitting more than 2 different types
of symbols.

 We model the faulty memory as a non-binary symmetric channel. The communication channel
is the faulty memory. The transmitted symbol is the symbol that is going to be written in the memory
and the received symbol is the symbol that is going to be read from the same memory cell that the
previous symbol was written to.

c) d)

e)

Figure 3: Symbol type distributions for

B

(a) Uniform

(b) Gaussian (variance .6 ,

mean)

(c) Sum of Gaussians (variance ,

mean)

(d) Rayleigh

(e) Laplace (b)

 11

Figure 4: Binary symmetric channel (BSC)

 Our goal is to minimize the mean difference between the value of the symbol written into the
memory and the value of the symbol that is read back from the memory. We add 2 new stages to the
memory model, one before and one after the memory as it is shown in Figure 5.

 Figure 5: System model of memory with mapping and de-mapping stages

 The first stage , which is the mapping, maps the input symbol according to a look up table
to another symbol that is then stored in the memory. The second new stage , which is the
de-mapping , de-maps the symbol that is read from the memory to using the inverse look

up table. A mapping is an ordered sequence of all the different types of symbols, each appearing only
once. For instance for the mapping corresponds to the look up table
shown in Table 1.

 The number of possible mappings depends exponentially on the number of symbols :

The number of symbols depends on the number of bits (cf. Section 2.2), therefore the number of
mappings depends on the number of bits:

 12

Table 1: Look up table for example mapping

 The middle stage of the system in Figure 5 is the faulty memory which is modeled as a simple
array. The memory size depends on the number of symbols that will be stored and on the number of
bits used to represent each symbol. The injected errors are bit flips which are spread uniformly
throughout the whole memory. The number of errors is defined by multiplying the size of the
memory by the probability of a bit flip error . The model is highly configurable and the
aforementioned characteristics are parameterizable.

3.4 Metric: Mean Squared Error

 Various metrics can be used to assess the memory performance depending on the memory
model and on the design goal. The most relevant metrics to evaluate the impact of errors in high
level memory models are the mean squared error (MSE) and the signal to noise ratio (SNR). We
evaluate our performance in terms of MSE, since the MSE is always a basic component of the SNR.
The MSE of an estimator quantifies the error between values implied by an estimator and the true
values of the quantity being estimated. The MSE measures the average of the squares of the errors.

In our case, the estimator is the symbol that is read from the memory and the true value is the

symbol written to the memor. The missing information for the estimator is the amount and the
position of the errors in the memory.

 To compute the MSE we start with the error cost or the square error, which is computed for
two symbols and .

 | |

 The next step is to find out the crossover probability of to be transformed to .

Transformation of to corresponds to transformation of to) in our memory model.

Each bit has a probability of to be flipped, consequently each bit has 1- probability to not
change. The number of bits that are flipped is equal to the hamming distance

between and). The Hamming distance between two vectors of equal length is the number

of positions at which the corresponding vector elements differ. In other words, it equals the number
of errors that transform one vector into the other. In our case, the vectors are the binary
representation of and). The total number of bits is , hence the probability of

 being transformed into) is:

 13

 The product of the probability and the cost (gives the square error for

being transformed to . Summing up the products for every , we get the mean squared error for

being transformed to all the possible symbols. The MSE of one mapping is calculated from the
probability of each symbol which depends on the input data distribution described in Section
3.2. Multiplying by the previous sum and summing it again for all the possible symbols gives
the MSE for one mapping m:

 ∑ ∑

3.5 Conventional Mappings

 Four well-known data mappings are: ones’ complement, two’s complement, sign magnitude
and gray code. The most popular one and the one that is usually used to store the data in the
memory in almost all of today’s digital systems is the two’s complement format. Hence, to evaluate
our results we will be comparing the MSE of every mapping to the MSE of the two’s complement
mapping.

3.5.1 Ones’ and Two’s Complement

 Calculating the ones’ complement of a binary number is done by inverting each bit that is one
to zero and each bit that is zero to one. The two’s complement is computed by computing first the
ones’ complement and then adding one using the binary representation. Another very easy way is to
start from the last significant bit and keep the bits the same till the first one appears. Leave the one
untouched and swap all the next bits till the most significant one.

 The two’s complement data representation is the most common of storing signed integers into
memory devices. In this arithmetic the positive numbers do not change. For the negative numbers,
the two’s complement of their absolute value is stored into the memory. An -bit two's-
complement system can represent every integer in the range B−1 to B−1 while ones’
complement can only represent integers in the range B−1 to B−1 .

3.5.2 Sign Magnitude

 The sign magnitude representation is so well-known because it is close to the natural way of
showing that a number is negative or positive which is putting the sign in the beginning of the
number. In this system the first bit of the binary representation is used to represent the sign and the
other ones to represent the amplitude or the absolute value. One of the disadvantages is that the
zero is represented in two different ways 000000 (0) and 100000 (-0).

3.5.3 Gray Mapping

 Gray code is a numeric format where the successive binary representation of the numbers
differs in only one bit. The gray code for -bits can be generated recursively from bits. First
writing down the bits binary representation list, then reflecting the list and concatenating the
first list with the second one and in the end putting as prefixes to the entries in the first list a zero
and in the second one a one. For example, Table 2 shows generation of the list from the
 list.

 14

Table 2: Generating 3-bit Gray code from 2-bit

 The grey mapping can be applied just for positive numbers. In our case we have also negative
numbers. Therefore, we shift the symbols in order that the smallest negative symbol corresponds to
zero. Hence, all the numbers will be positive and afterwards the gray encoding can be applied.

 15

Chapter 4
Exploration of Mappings
 In this section we describe the methods for exploring the solution space and finding the
mappings that can reduce the MSE under various hardware defects compared to the two’s
complement mapping. To verify our results we run 1000 Monte Carlo (MC) trials for each mapping,
on a memory that contains 10000 random symbols, which are sampled from the same assumed input
data distribution. The evaluation of the mappings using a MC based simulation flow is depicted in
Figure 6. Initially some mappings are randomly selected or all of them are selected in case that it is
computationally feasible. Afterwards, based on the input data distribution 10000 symbols are
generated and stored in the memory according to the specific mapping. Then depending on the bit
flip error probability (explained in Section 3.4), an array instance which contains uniformly
distributed fault locations throughout the whole memory is created. Furthermore, the MSE is
evaluated for all the selected mappings. The last stage compares the MSE of each selected mapping
with the MSE of the two’s complement and returns the mappings with a better MSE than the two’s
complement.

Figure 6: Evaluation of mappings using a Monte Carlo simulation flow

4.1 Exhaustive Search

 The most straight forward method is to explore the complete solution space exhaustively. We
run an exhaustive search for and bits, evaluating the MSE as shown in Section 2.4. The
results show that there are a lot of other mappings with smaller MSE than the two’s complement,

 16

sign magnitude and gray code. For instance, in the case of bits with input data generated by a
Gaussian distribution with a variance of one, zero mean and . , we evaluate all the 5040
possible mappings. As can be seen in Figure 7, there are more than 1000 mappings that perform
better than the two’s complement representation. Specifically, we find that a mapping that assigns
 to the two’s complement representation of
provides 45.3 % less MSE compared to the two’s complement. Interestingly, sign mapping and gray
encoding give 33.7% and 27.4% less MSE accordingly. In general, the mappings that are better than
the two’s complement achieve on average 20% less MSE, while the best of them achieve 50% less
MSE.

Figure 7: The mappings with a lower MSE than the two’s complement (3 bits, Gaussian
distribution, variance 1, mean 0)

 To verify our results we run MC trials on a 30 kb memory as shown in Figure 8. In general the
results of the exhaustive search and MC simulations are very close for various bit flip probabilities
and number of bits. Table 3 presents the difference between the two methods for nine random
mappings and the two’s complement mapping for the instance of a Gaussian distribution with ,
variance one, mean zero and . . The average deviation of the two methods for the specific
example is 0.03976. For the same example and the same mappings shown in Table 3, Figure 8 depicts
a comparison of the MSE in dB between the analytical method and MC trials results. We can
graphically see that the two methods converge to similar results.

Table 3: Comparison between the MSE calculated by the exhaustive search and the MC trials

simulations

 17

Figure 8: Comparison between the MSE in dB calculated by Analytical method and MC trials

simulations

 Unfortunately as the number of bits increases, the number of possible mappings increases
exponentially, as can be seen in Figure 9. After bits, the number of mappings in dB exceeds a
level of . Therefore the exhaustive search of the results space is computationally impossible for
a large number of bits. Since checking all the mappings is not feasible, the question that arises is if
checking only some of the mappings makes it still possible to find better representations than the
two’s complement.

Figure 9: The number of mappings M as a function of the number of bits B

 18

4.2 Random Mappings – Analytical Method

 Since we have to choose some of the mappings to compare with the two’s complement
representation, the simplest way is random selection and evaluation of the results using an analytical
method as introduced in Section 3. For a small number of bits until , the random selection of
mappings results in finding some mappings that are better than the two’s complement. For a larger
number of bits, unfortunately choosing randomly representations does not find any mappings that
have a smaller MSE than the two’s complement. Therefore a better algorithm for choosing the
mappings is needed. The proposed algorithm is explained in the next chapter.

 19

Chapter 5

Algorithm for Choosing the
Mappings

 The analytical method that tries 5000 random mappings can find a few better mappings than
the two’s complement until bits. For a larger number of bits this is not possible, because the
ratio between the mappings with a lower MSE than that of the two’s complement and all the
possible mappings decreases significantly. Hence, we devise an algorithm that chooses the mappings
in a systematic fashion and finds best mappings faster with a limited number of checked mappings.

5.1 Main Idea

 The motivation for our algorithm stems from our observations during the exhaustive search
simulations. Specifically, we observe that if we divide the best mappings into groups based on their
first symbol, all the groups have a similar amount of mappings. For instance, in case of bits
there are 7 different symbols that can be written and read from the memory .
Therefore there will be 7 different groups and each group will include all the mappings that start with
a specific symbol, i.e. the group of -3 will contain mappings such as
 , the group of 0 will contain
mappings such as , etc. Figure 10 shows for the example of a Gaussian
distribution with , variance one, mean zero and . that the number of different
mappings in each group is similar. Therefore, if we make sure that the algorithm produces mappings
that have as a first symbol all the possible different symbols, i.e. that the algorithm produces the
same number of mappings for each group, we increase the probability of finding one or more good
mappings, without having to exhaustively explore any of the groups.

Figure 10: Best mappings groups based on their first symbol

 20

5.2 Number of Generated Mappings

 The algorithm generates a different number of mappings depending on the number of
symbols , hence depending on the number of bits used to store the data in the memory. The
total number of generated mappings is the sum of the mappings in each of the groups that start
with one different symbol as explained in Section 5.1. The number of mappings in each group
is , therefore the total number of mappings is:

For example for the bit representation the number of mappings is:
 6

5.3 Generation of Mappings

 Figure 11 shows an example of generating mappings for . In general, the mappings are
generated each time by changing the place of the last symbol with all the other symbols of the
mapping. The replacement of the symbols starts from the second last symbol and ends with the first
symbol. When the first symbol is reached, the algorithm restarts from the symbol before the last.
After every replacement, the new vector is used as initial vector for the next replacement. After
 changes the algorithm stops because the next change returns the vector to the initial mapping
(two’s complement).

 This method of symbol exchange allows for an equal number of generated mappings in each
group. For instance, in the case of the bit representation, all the possible symbols are -3,
-2, -1, 0, 1, 2, 3, with each symbol generating 6 mappings that start with that symbol.

 21

●

●

●

Figure 11: Visual explanation of how the algorithm generates the mappings

5.4 Pseudo-code

 The algorithm pseudo-code is presented in Algorithm 1. Mappings is the array that stores all
the possible mappings. The first entry of Mappings is initialized with the two’s complement mapping
as it is shown in Line 1. Line 2 initializes a counter to initially hold the second last symbol of the last
generated mapping. In Line 3 the total number of mappings is defined and the mappings are counted
until the algorithm generates the determined number of mappings. Since the first mapping is by
default the two’s complement one, the counting starts from the second mapping. Line 4 through 6
reset the counter that holds the symbol which is going to be exchanged if it has reached the first
symbol of the mapping. In Line 7 through 9 the symbols are exchanged to form the next mapping.
Line 10 updates the place of the symbol that is going to be exchanged with the last symbol, to form
the new next mapping.

 22

1- Mappings(1,:) = two_complement;

2- j = N-1;

3- For i =2:1: M_a

4- if (j == 0)

5- j = N-1;

6- end;

7- Mappings (i,:) = Mappings (i-1,:);

8- Mappings (i, N-1) = Mappings (i-1,j);

9- Mappings (i,j) = Mappings (i-1, N-1);

10- j=j-1;

11- end;

Algorithm 1: Mapping generation algorithm

5.5 Results: The Selected Mappings

 For each selected mapping the algorithm calculates the mean squared error as explained in
Section 2.4. The algorithm returns the mappings with a smaller mean squared error than the two’s
complement mapping. The algorithm results will be presented and compared in the next chapter.

 23

Chapter 6
Results Comparison between
the Algorithm, Analytical
Method and MC Simulations
 In the next sections we will be comparing the results of the algorithm with the results of the
analytical method and MC simulations regarding their quality (MSE) and their computational
complexity (algorithm runtime).

6.1 Reference Distribution

 To explain the results, the Gaussian (or normal) distribution and its different parameters will be
used as a reference. The Gaussian distribution is a continuous probability distribution known as the
Gaussian function. Informally it is called the bell curve because it has a bell-shaped probability
density function f:

 √

The parameter μ is the mean or expectation and σ 2 is the variance. σ is known as the standard
deviation.

 The normal distribution is one of the well-known probability distributions in statistics and is
encountered very often in practice and also in other sciences such as natural and social sciences. The
most important reasons for this are: The central limit theorem states that given certain conditions,
the mean of a sufficient large number of variables from the same distribution with a finite mean and
variance, will each be approximately normally distributed. Moreover, the normal distribution can be
easily processed analytically, that means that a large number of results involving this distribution can
be derived in explicit form.

 We use different variances during the presentation of our results. Table 4 defines for every
number of bits the exact value of small (0.3σ), medium (3σ) and big variance (27σ). All the following
examples are illustrated utilizing one setup that uses a Gaussian distribution with zero mean.
Changing the variance of the Gaussian distribution makes it possible to emulate also different other
distributions as explained in Section 3.2. For example, since the number of bits that can be used to
represent the data is not infinite, a Gaussian distribution with a very large variance tends to the
uniform distribution as shown in Figure 12. Figure 12 also depicts a Gaussian distribution with a very
small variance which tends to the Dirac delta distribution.

 24

Table 4: Gaussian variances used for different bit length

Figure 12: Gaussian distributions for and mean zero (a) variance 0.05 (b) variance 200

 We choose as number of bits , because for three bits we can explore the whole solution
space using the MC trial simulations and the exhaustive search. Therefore it is possible to fully
evaluate the algorithm performance in comparison with the two aforementioned methods and the
analytical method. The number of performed MC simulations is 1000 on a 30kb memory. We assume
that 10% of the bit cells have errors, that means specifically on average 3kb of the memory contains
erroneous information. We choose 10% of the memory to contain wrong data, because we want to
evaluate our algorithm in the worst case scenario [58]. In this scenario 10% of the memory suffers
from failures induced by process variations or voltage scaling as discussed in Chapter 1. In our case,
since we assume that all the cell failures are independent and the errors are uniformly distributed
throughout the whole memory, the bit cell probability error (cf. Section 3.4) is the same as the
percentage of the memory that is erroneous.

6.2 Algorithm Runtime

 As the number of bits increases, the number of all possible mappings grows exponentially.
Our algorithm, as described in Chapter 5, checks a specific number of mappings that grows
polynomially. Figure 13 depicts both and from to 6 by using a logarithmic scale
for the number of mappings. As it can be seen, there is a very large difference between the number
of checked mappings and all possible mappings. Hence, investigating only such a small number of

a) b)

 25

mappings makes the algorithm very fast compared to the exhaustive search. Table 5 presents more
detailed numbers comparing all possible mappings and the number of checked mappings depending
on the number of bits used to represent the data for through .

Figure 13 : Comparison of the number of all possible mappings and the number of the

mappings that the algorithm checks

Table 5: Number of mappings generated by the exhaustive search and the algorithm

 Our algorithm finds one of the mappings with smaller MSE than the two’s complement in a very
short time compared to not only the exhaustive search, but also compared to the analytical method
which selects randomly mappings. Figure 14 compares results from the MC simulations, analytical
method and the algorithm for medium (3σ) variance. The bars in the figure show percentages. The
first bar shows how many mappings are checked from all the possible mappings. The second bar
shows how many mappings are better than the two’s complement of all the checked mappings. As
can be seen in the figure, the algorithm checks a very small percentage of the mappings and around
half of them are better than the two’s complement. Specifically, our algorithm and the analytical
method check 0.8% of all the possible mappings compared to the MC simulations that check 100% of
the mappings. The algorithm finds that 48% of the checked mappings are better than the two’s
complement while the analytical method finds that approximately 35% of the investigated
representations have a smaller MSE than the two’s complement. MC simulations show that 28% of
all the mappings are better than the two’s complement.

 26

Figure 14: Percentages of checked mappings and mappings better than the two’s

complement

6.3 Dependence on the Distribution Parameters

 The number of the mappings better than the two’s complement that the algorithm finds,
depends on the input data distribution. In case of a Gaussian distribution, the algorithm finds four
times more mappings in case of a small variance compared to the case of a nine times larger variance
as shown in Figure 15. This can be attributed to the fact that when the variance increases, the
Gaussian distribution tends to approach the uniform distribution. For a uniform distribution, all
possible values of the input data tend to appear with the same frequency in the memory. Therefore
is not possible to find mappings which exploit the different frequencies of the symbols in the input
data.

Figure 15: Number of mappings better than two’s complement depending on input

distribution parameters

 27

 In case that the data distribution tends to the uniform distribution, which happens for a
variance greater than 9 (27σ) for , even if the algorithm cannot find a lot of mappings
compared to how many it finds for the other distributions, it can find a few that have a good gain in
dB, as depicted in Figure 16. The gain in dB is the absolute difference between the MSE of the best
mapping and the two’s complement mapping. Specifically, Figure 16 shows that in the case of a
Gaussian distribution with a variance of one (0.3σ), the algorithm achieves a gain of 1.634 dB and for
the same distribution with a variance of nine (27σ), it attains a gain of 1.3578 dB.

Figure 16: MSE of the best mapping depending on input distribution parameters

6.4 MSE Efficiency

 The main goal of the algorithm is not to find as many mappings as possible better than the
two’s complement, but to find the one that has the largest reduction in terms of MSE compared to
the two’s complement representation. Figure 17 shows the relative gain in terms of MSE for the 20
best mappings ordered with increasing MSE. The computation is done with reference to the two’s
complement representation for the same setup described in Section 6.1 and 3σ variance. We note
that 10 of the mappings provide more than 10% less MSE than the two’s complement, 3 of the
mappings more than 15%, 2 of the mappings more than 20% and the best mapping reduces the MSE
by more than 30%. Specifically, if we choose the best mapping the MSE is decreased by 31.3 %.

 A comparison between the algorithm results, the exhaustive search method and MC trial
simulation for the same setup and parameters, shows that the algorithm finds a mapping with
slightly less gain in terms of dB and percentage than the two other methods as shown in Figure 18.
The gain in dB is the difference between the MSE of the two’s complement mapping and the best
mapping. The gain in percentage is the relative difference of the gain in dB. The exact values of both
gains for the three methods are shown in Table 6. To summarize the results, the last row of Table 6
shows for each method the percentage of all the possible mappings that is checked. Interestingly, the
algorithm finds a very good representation, while only checking a small percentage of all the
mappings. For the specific case of , since the number of bits is very small, the exhaustive
search is possible and the tradeoff that the algorithm performs between the performance in terms of
MSE gain and the computational time may not be that obvious. For larger number of bits the tradeoff
becomes significantly more apparent. For the instance of and a variance of 3.61 using the
previous setup, the gain in percentage is , checking only a small fraction . of all

 28

the possible mappings. For the instance of and a variance of 441, the gain in percentage is X%,
checking only . of all the possible mappings. Table 7 shows a comparison of the
speedup and the gain of MSE in percentage for the initial setup between the algorithm and the
analytical method for different number of bits. For the case of 5 and 7 bits 0% means that the
analytical method cannot find any mapping better than the two’s complement. We note that the
algorithm is 100 times faster than choosing random mappings, and as the number of bits increases
the results of the algorithm have also a better quality than the analytical method. Note that the
number of mappings that the analytical method checks is arbitrarily chosen as 100 times more than
the number of mappings checked by the algorithm.

Figure 17: Gain of MSE in percentage for the mappings better than the two’s complement

Figure 18: Gain of MSE in dB and percentage of the best mapping compared to the two’s

complement mapping

 29

Table 6: Gain of MSE in dB and percentage for the three methods

Table 7: Speedup and gain of MSE in percentage

6.5 Impact on Quality

 In order to realize the significance of our approach, let us consider briefly a wireless system
scenario and evaluate the potential impact on the quality of such a case study. A wireless system in a
high level description includes different blocks as shown in Figure 19. The first block is the
transmitter which transmits the signal over a channel. The receiver receives the distorted signal
which includes the original signal and noise. A decoder is used to decode the received distorted
signal in order to reconstruct the original signal. The information needed to decode the data is called
Likelihood ratio (LLR), which is received and then stored in the memory. The distribution of the LLR
input data usually follows a sum of Gaussians distribution and thus by modeling such data through a
sum of Gaussians distribution we can evaluate the potential impact of our approach in such an
application [60].

Figure 19: Wireless communication system

 For instance, we could replace the memory system showed in Figure 11 with our memory
model (cf. Section 3.3) and assess the Signal to Noise Ratio (SNR) in dB of the signal for the two’s
complement mapping and for mappings that our algorithm chooses. In this case the SNR is calculated
as follows:

The input is the LLR data before being stored in the memory and the Output is the LLR data after
being read from the memory.

 30

For our case study we encode the LLR data as a sum of Gaussians distribution using three bits
and we assume 10% random bit-flip errors in the memory of size 30 kb. Interestingly the results show
that there is a significant improvement in terms of percentage gain of SNR, as shown in Figure 20.
There are eight mappings that increase the SNR more than 20% compared to the SNR when the two’s
complement is used. Five mappings improve the SNR by more than 40%, two mappings by more than
60% and the best mapping by more than 80%. Therefore it is evident that our approach could
improve the quality of the processed LLR data and potentially the decoding capability of the overall
system.

Figure 20: SNR gain in percentage

6.6 Power and Yield Improvement

 Our algorithm achieves a better quality (quantified above in terms of MSE and SNR), which
means that the output has a more satisfactory quality even if the memory has up to 10% errors.
Since all the memory chips that contain up to 10% faulty cells or equivalently have a cell failure
probability of . can now be used (cf. Section 6.1), the yield is significantly increased. For a
model with a reliability of 100%, i.e. where dies are accepted only if they are error free, the yield for
a memory array that contains cells is:

In our case we accept memory chips that contain up to a specific number of errors , hence the yield
is redefined [37]:

 ∑ (

)

The yield can be rewritten as:

 ∑ (

)

 31

If the first part of the expression is replaced with the yield then corresponds to:

 ∑ (

)

The above equation shows the yield improvement that can be achieved by not discarding chips with
a number of defective cells smaller than .

 The improvement in quality achieved by the algorithm translates also into improvement of the
yield of the memories, which is important since memories play a very significant role for the
scalability of the supply voltage, for example failures in cache memory cells can determine the
minimum supply voltage for a processor as a whole [32]. Although voltage scaling makes memories
prone to errors as discussed in Chapter 1, using the proposed error resilient data representation for a
given application enables aggressive voltage scaling, since more errors can be tolerated. Therefore
the mappings found by the proposed algorithm offer the potential for power savings, since memory
can be operated at a lower supply voltage. All the aforementioned improvements come at a low cost,
since we do not use the expensive mechanisms of the techniques presented in Chapter 2.
Specifically, our overhead is only two look up tables used to map and de-map the data going in and
out of the memory.

 32

Chapter 7
Conclusion

 To minimize the impact of hardware failures on memory systems caused by process and power
variations, an error resilient memory model is developed. The evaluation of the model performance
is performed by using the Mean Squared Error of the data written and read from the memory. The
simulations performed showed that for small bit sizes (e.g. 3 bits), the exhaustive search of the best
data representation, which minimizes the Mean Squared Error, is possible. Since the computational
time increases exponentially, the exhaustive search becomes infeasible for larger bit sizes. Only
analyzing a small number of random data representations or mappings does not ensure that a
representation with a lower Mean Squared Error than the two’s complement will be found. For this
purpose, an algorithm that systematically checks a small number of the mappings is developed. The
algorithm performance is assessed using as main distribution the Gaussian, and emulating the
Uniform, Sum of Gaussians, Rayleigh and Laplace distributions by the Gaussian distribution with
changing mean and variance. In all the cases, the algorithm finds several good mappings using
significantly less computational effort and time than the exhaustive search or the random search.
The results show that the number of mappings better than two’s complement and the difference
between the best mapping found and the two’s complement mapping in terms of Mean Squared
Error depend considerably on the input data distribution and its parameters. The mappings that the
algorithm generates improve not only the output quality and the yield of the memory by increasing
its error resilience, but also permit the memory to operate under a very low voltage in order to
reduce the power consumption.

 Furthermore, the algorithm is implemented in a case study. Our error resilient memory system
is included in a wireless communication channel system model that contains a decoder. The output
data of the decoder has a lower bit error rate, when the data is stored in the memory using one of
the mappings that our algorithm found, compared to when it is stored using the two’s complement
representation. The best result achieved is 80% more Signal to Noise Ratio (SNR).

 33

Chapter 8
Future considerations

 Future work should mainly focus on constructing the mappings number system, i.e. how to
convert algorithmically a number expressed by the decimal system to its binary representation
according to a specific mapping. This means indexing the bits and putting the right weight to each bit
according to its position. The weight of each bit should not necessarily be a power of two. In this way
the conversion from binary to decimal and the other way around would be possible without the use
of a look-up table, through a mathematical formula.

 Another interesting direction of future work is evaluation of the algorithm using advanced input
data distributions and several case studies of other models that include a memory system.

 34

References
[1] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, “Parameter variations and
impact on circuits and microarchitecture,” IEEE Design Autom. Conf., pp. 338–342, Jun. 2003.

[2] K. A. Bowman, S. G. Duvall, and J. D. Meindl, “Impact of die-to-die and within-die parameter
fluctuations on the maximum clock frequency distribution for gigascale integration,” IEEE J. Solid-
State Circuits, vol. 37, no. 2, pp. 183–190, Feb. 2002.

[3] A. Shrivastava, D. Sylvester, and D. Blaauw, “Statistical Analysis and Optimization for VLSI: Timing
and Power,” New York: Springer, 2005.

[4] A. Asenov, A. R. Brown, J. H. Davies, S. Kaya, and G. Slavcheva, “Simulation of intrinsic parameter
fluctuations in decananometer and nanometer-scale MOSFETs,” IEEE Trans. Electron Devices, vol. 50,
no. 9, pp. 1837–1852, Sep. 2003.

[5] M. Hane, Y. Kawakami, H. Nakamura, T. Yamada, K. Kumagai, and Y. Watanabe, “A new
comprehensive SRAM soft error simulation based on 3D device simulation incorporating neutron
nuclear reactions,” Simul. Semiconductor Processes Devices, pp. 239–242, 2003.

[6] S. R. Nassif, “Modeling and analysis of manufacturing variations,” Custom Integrated Circuit Conf.,
pp. 223–228, 2001.

[7] C. Visweswariah, “Death, taxes and failing chips,” Design Autom. Conf., pp. 343–347, 2003.

[8] A. Bhavnagarwala, X. Tang, and J. D. Meindl, “The impact of intrinsic device fluctuations on CMOS
SRAM cell stability,” IEEE J. Solid State Circuits, vol. 36, no. 4, pp. 658–665, Apr. 2001.

[9] X. Tang, V. De, and J. D. Meindl, “Intrinsic MOSFET parameter fluctuations due to random dopant
placement,” Trans. Very Large Scale Integr. (VLSI) Syst., vol. 5, no. 4, pp. 369–376, Dec. 1997.

[10] B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, “Characteristics of the surface-state charge (Qss)
of thermally oxidized silicon,” J. Electrochem. Soc., vol. 114, pp. 266–273, 1967.

[11] E. H. Nicollian and J. R. Brews, “MOS Physics and Technology,” New York: Wiley-Interscience,
1982.

[12] C. E. Blat, E. H. Nicollian, and E. H. Poindexter, “Mechanism of negative bias temperature
instability,” J. Appl. Phys., vol. 69, pp. 1712–1720, 1991.

[13] M. F. Li, G. Chen, C. Shen, X. P. Wang, H. Y. Yu, Y. Yeo, and D. L. Kwong, “Dynamic bias
temperature instability in ultrathin SiO2 and HfO2 metal-oxide semiconductor field effect transistors
and its impact on device lifetime,” Jpn. J. Appl. Phys., vol. 43, pp. 7807–7814, Nov. 2004.

[14] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “NBTI-aware synthesis of digital circuits,” Design
Autom. Conf., pp. 370–375, 2007.

[15] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “An analytical model for negative bias temperature
instability,” Int. Conf. Comput.-Aided Design, pp. 493–496, 2006.

 35

[16] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “Impact of NBTI on SRAM read stability and design
for reliability,” Int. Symp. Quality Electron. Design, pp. 210–218, 2006.

[17] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “Adaptive techniques for overcoming performance
degradation due to aging in digital circuits,” Asia-South Pacific Design Autom. Conf., pp. 284–289,
2009.

[18] E. Karl, P. Singh, D. Blaauw, and D. Sylvester, “Compact in-situ sensors for monitoring negative
bias-temperature-instability effect and oxide degradation,” Int. Solid-State Circuits Conf., pp. 410–
623, 2008.

[19] W. Wang, V. Reddy, A. T. Krishnan, S. Krishnan, and Y. Cao, “An integrated modeling paradigm of
circuit reliability for 65 nm CMOS technology,” Custom Integr. Circuits Conf., pp. 511 514, 2007.

[20] W. Wang, Z. Wei, S. Yang, and Y. Cao, “An efficient method to identify critical gates under circuit
aging,” Int. Conf. Comput.-Aided Design, pp. 735–740, 2007.

[21] K. Kang, H. Kufluoglu, M. A. Alam, and K. Roy, “Efficient transistor-level sizing technique under
temporal performance degradation due to NBTI,” Int. Conf. Comput. Design, pp. 216–221, 2006.

[22] B. C. Paul, K. Kang, H. Kuflouglu, M. A. Alam, and K. Roy, “Temporal performance degradation
under NBTI: Estimation and design for improved reliability of nanoscale circuits,” Design Autom. Test
Eur., pp. 780–785, 2006.

[23] B. C. Paul, K. Kang, H. Kufluoglu, M. A. Alam, and K. Roy, “Impact of NBTI on the temporal
performance degradation of digital circuits,” IEEE Electron Device Lett., vol. 26, no. 8, pp. 560–562,
Aug. 2005.

[24] K. Kang, M. A. Alam, and K. Roy, “Characterization of NBTI induced temporal performance
degradation in nano-scale SRAM array using IDDQ,” Int. Test Conf., pp. 1–10, 2007.

[25] K. Kang, S. P. Park, K. Roy, and M. A. Alam, “Estimation of statistical variation in temporal NBTI
degradation and its impact in lifetime circuit performance,” Int. Conf. Comput.-Aided Design, pp.
730–734, 2007.

[26] K. Kang, S. Gangwal, S. P. Park, and K. Roy, “NBTI induced performance degradation in logic and
memory circuits: How effectively can we approach a reliability solution?,’’ Asia South Pacific Design
Autom. Conf., pp. 726–731, 2008.

[27] S. Jafar, Y. H. Kim, V. Narayanan, C. Cabral, V. Paruchuri, B. Doris, J. Stathis, A. Callegari, and M.
Chudzik, “A comparative study of NBTI and PBTI (charge trapping) in SiO2/HfO2 stacks with FUSI, TiN,
Re gates,” Very Large Scale Integr. (VLSI) Circuits, pp. 23–25, 2006.

[28] F. Crupi, C. Pace, G. Cocorullo, G. Groeseneken, M. Aoulaiche, and M. Houssa, “Positive bias
temperature instability in nMOSFETs with ultra-thin Hf-silicate gate dielectrics,” J. Microelectron.
Eng., vol. 80, pp. 130–133, 2005.

[29] T. H. Ning, P. W. Cook, R. H. Dennard, C. M. Osburn, S. E. Schuster, and H. Yu, “1 _m MOSFET
VLSI technology: Part IV-hot electron design constraints,” Trans. Electron Devices, vol. 26, no. 4, pp.
346–353, Apr. 1979.

[30] A. Abramo, C. Fiegna, and F. Venturi, “Hot carrier effects in short MOSFETs at low applied
voltages,” Int. Electron Device Meeting, pp. 301–304, 1995.

 36

[31] Y. Taur and T. H. Ning, “Fundamentals of Modern VLSI Devices,” New York: Cambridge Univ.
Press, 1998.

[32] JEDEC Solid State Technology Association, ‘‘Failure mechanisms and models for semiconductor
devices,’’ JEP122-A, 2002.

[33] M. T. Quddus, T. A. DeMassa, and J. J. Sanchez, “Unified model for Q(BD) prediction for thin gate
oxide MOS devices with constant voltage and current stress,” Microelectron. Eng., vol. 51–52, pp.
357–372, May 2000.

[34] M. A. Alam, B. Weir, and A. Silverman, “A future of function or failure,” IEEE Circuits Devices
Mag., vol. 18, no. 2, pp. 42–48, Mar. 2002.

[35] D. Young and A. Christou, “Failure mechanism models for electromigration,” IEEE Trans. Rel., vol.
43, no. 2, pp. 186–192, Jun. 1994.

[36] S. Garg and D. Marculescu, “System-level process variation driven throughput analysis for single
and multiple voltage-frequency island designs,” ACM Trans. Design Autom. Electron. Syst., vol. 13,
Sep. 2008.

[37] G. Karakonstantis, C. Roth, C. Benkeser, A. Burg, “On the exploitation of the inherent error
resilience of wireless systems under unreliable silicon” IEEE Design Autom. Conf., pp. 510-515, June
2012.

[38] Z. Chishti, et al., “Improving Cache Lifetime Reliability at Ultralow Voltages”, Micro, pp. 89-99,
Dec. 2009.

[39] K. Zhang, “Embedded Memories for Nanoscale VLSIs”, Springer, 2009.

[40] Shi-Ting Zhou, et al. “Minimizing Total Area of Low-Voltage SRAM Arrays through Joint
Optimization of Cell Size, Redundancy, and ECC,” IEEE ICCD, 2010.

[41] S. E. Schuster, “Multiple word/bit line redundancy for semiconductor memories,” IEEE J. Solid
State Circuits, vol. SC-13, pp. 698–703, Oct. 1978.

[42] C. Wilkerson, et al., “Trading off Cache Capacity for Reliability to Enable Low Voltage Operation,”
35th International Symposium on Computer Architecture (ISCA-35), pp. 203-214, June 2008.

[43] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Modeling of failure probability and statistical
design of SRAM array for yield enhancement in nanoscaled CMOS,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 24, no. 12, pp. 1859–1880, Dec. 2005.

[44] J. M. Rabaey, “Digital Integrated Circuits: A Design Perspective,” Upper Saddle River, NJ:
Prentice-Hall, 1996.

[45] L. Chang, D. M. Fried, J. Hergenrother, J. W. Sleight, R. H. Dennard, R. K. Montoye, L. Sekaric, S. J.
McNab, A. W. Topol, A. D. Adams, K. W. Guarini, and W. Haensch, “Stable SRAM cell design for the 32
nm node and beyond,” Very Large Scale Integr. (VLSI) Technol., pp. 128–129, 2005.

[46] B. H. Calhoun and A. Chandrakasan, “A 256-kb 65-nm sub-threshold SRAM design for ultra-low
voltage operation,” IEEE J. Solid State Circuits, vol. 42, no. 3, pp. 680–688, Mar. 2007.

 37

[47] I. Chang, J. J. Kim, S. P. Park, and K. Roy, “A 32 kb 10 T Sub-threshold SRAM array with bit
interleaving and differential read scheme in 90 nm CMOS,” IEEE J. Solid State Circuits, vol. 44, no. 2,
pp. 650–658, Feb. 2008.

[48] J. P. Kulkarni, K. Kim, S. Park, and K. Roy, “Process variation tolerant SRAM design for ultra low
voltage application,” Design Autom. Conf., pp. 108–113, 2008.

[49] J. P. Kulkarni, K. Kim, and K. Roy, “A 160 mV robust Schmitt trigger based subthreshold SRAM,”
IEEE J. Solid State Circuits, vol. 42, no. 10, pp. 2303–2313, Oct. 2007.

[50] T. Kim, J. Liu, J. Keane, and C. H. Kim, “A 0.2 V, 480 kb subthreshold SRAM with 1 k cells per
bitline for ultra-low-voltage computing,” IEEE J. Solid State Circuits, vol. 43, no. 2, pp. 518–529, Feb.
2008.

[51] A. Agarwal, B. C. Paul, H. Mahmoodi, A. Datta, and K. Roy, “A process-tolerant cache
architecture for improved yield in nano-scale technologies,” Trans. Very Large Scale Integr.
(VLSI) Syst., pp. 27–38, 2005.

[52] D. A. Patterson, P. Garrison, M. Hill, D. Lioupis, C. Nyberg, T. Sippel, and K. Van Dyke,
“Architecture of a VLSI instruction cache for a RISC,” Int. Symp. Comput. Architecture, pp.
108–116, 2003.

[53] D. C. Bossen, J. M. Tendler, and K. Reick, “Power4 system design for high reliability,”
IEEE Micro, vol. 22, no. 2, pp. 16–24, Mar./Apr. 2002.

[54] Y. Emre, et al., “Memory Error Compensation Techniques for JPEG2000,” IEEE SiPS,
2010.

[55] F.Zhang, “LDPC Codes for Rank Modulation in Flash Memories,” IEEE ISIT , pp. 859-863,
Jun. 2010.

[56] J. Kim, et. al, “Multi-bit Tolerant Caches Using Two Dimensional Error Coding”, Micro-40,
pp 197-209, 2007.

[57] H. Y. Hsiao et al., “Orthogonal Latin Square Codes,” IBM Journal of Research and
Development, Vol.. 14, Number 4, pp. 390-394, July 1970.

[58] I. J. Chang, et al., “A Priority-Based 6T/8T Hybrid SRAM Architecture for Aggressive
Voltage Scaling in Video Applications.,” IEEE Trans. on CSVT, 2011.

[59] K. Zhang, U. Bhattacharya, Z. Chen, F. Hamzaoglu, D. Murray, N. Vallepalli,
Y. Wang, B. Zheng, and M. Bohr, “A 3 GHz 70 Mb SRAM in 65 nm CMOS technology with
integrated column-based dynamic power suppl,” IEEE J. Solid-State Circuits, vol. 41, no. 1,
pp. 146–151, Jan. 2006.

[60] K.Sayana, J.Zhuang and K.Stewart, „Short Term Link Performance Modeling for ML
Receivers with Mutual Information per Bit Metrics,” IEEE GLOBECOM, pp.1-6, 2008.

