[TANEIIZTHMIO OEZTAAIAY

AIMAOMATIKH EPrAYIA

Ewoaywyn cpaipdtony yio
AVAALOT AELOTILOTNG AELTOLEY LS
o€ ENEEEQYACTEG TOAAATTAWY
TUENVWYV

EmpBAérovteg:
Avamhnpetic xadnyntic
Yuyvpagéac: Tyns :
~YPLPaS; Nixéhaog MIEAAAT
[ewpyroc TZIANTZIOTAHS) ,)
Enixoupog xadnyntic
Xpriotoc ANTQNOIIOTAOE

6 Touhiou 2011

IMepirndn

Kodoe ou teyvorories twy Hiextpouxdy Troroyiotdy eleilocovta, xouvolpyLo
mpof3auore enpavilovtor yall touc. ‘Eve arno o avebubpeve npoiiucta eivon 1
petwor) e afomatiog Y NAEXTEOVIXGY xuxieoudtwy. H abiner tne suaoir-
oloc twv tpavliotop otr xoouxy| axTvoBorla, 1) BLOXULUSVOELS TBY TREXTELKOV
TOUC YOURUXTNELOTIXMY ASYO HOTOYIMY aTh dtodixaalo mopaywy i xomade xon 1) ye-
lwon TNg amodoTUOTATAS TN TUEAYWYHC NAEXTEOVINMY XUXAWBUITWY OTOTEAODY
wobprer Inthpato mpog enlhuct) Gote va Slrtnerioouue TV aflomoTie TV LEMNOYTL-
OV oLUOTUATLY oTo embuuntd eminede. e aut) T xatelBuver SruoLe Y |ouUE
Evor TERIBAMAOY ELGAYOYTC CPUARETLY Yio TNV afloAdY o alldoToTre Asttoupyiog
UTOAOYIOTIXGY cusTUdTOY. [lupdhhnia, TEWOUUTIETAXOUE UE VO EQUPUOYES Xol
TopadETOUNE UL ELOUYWY T OTO TOC ENNEEACTNNE 1) CUUTERLGPORE TOUC a0 opdi-
porTel LoD,

ITepieyopeva

1 Ewcaywyh
2 Introduction

3 Fault Tolerant Systems
3.1 Dependability Attributes.
3.2 Dependability Threats
3.3 Faults Impact on a System - An Architectural Perspective
3.4 Quantitative Analysis of parch Reliability

4 Fault Injection
4.1 A Fault Injection Taxonomy
4.1.1 Physical Fault Injection
4.1.2 Fault Emulation
4.1.3 Software Simulation
4.1.4 Hardware Emulation
4.2 Abstraction Based Categorization
4.3 Our Choice

5 Full System Simulation
5.1 Introduction
5.2 Simulation Attributes
5.3 An overview of the M5 simulator

6 Generic Processor Fault Model
6.1 Register File Fault Model
6.1.1 Register Fault Model
6.1.2 Read/Write Register Selection Fault Model
6.2 Program Counter Fault Model
6.3 Control Unit/Instruction Decode Fault Model
6.4 ALU Fault Model

7 Implementation
7.1 Introduction: Where, When, What
711 Whereo
712 When
713 What ..o
7.2 Our Implementation

721 Where
722 When
723 What
7.3 Usage/Export to M5 configuration file
7.3.1 Register Injected Fault Configuration
7.3.2 PC Injected Fault Configuration
7.3.3 Memory Injected Fault Configuration
7.3.4 Fetch Stage Injected Fault Configuration
7.3.5 Decode Stage Injected Fault Configuration
7.3.6 Execution Stage Injected Fault Configuration
7.3.7 Monitoring

8 Fault Injection Campaigns/ Experiments

8.1 Experimentation Methodology
8.2 Statistical Fault Injection in Matrix Multiplication
8.3 Statistical Fault Injection In The AVS Decoder
8.4 Targeted Fault Injection In The AVS Decoder

A A

A.1 Statistical Fault Injection in Matrix Multiplication — Additional

Data
A.2 Statistical Fault Injection in Matrix Multiplication — Overview

of DUEerrors
A.3 Statistical Fault Injection in AVS — Overview of DUE errors . .
A.4 Targeted Fault Injection in AVS — Detailed Results
A5 Example Frames with SDC

9 Conclusions

9.1 Conclusion
9.2 Future Work

39
39
40
43
44

46

46

46
47
47
49

Kegpdiowo 1

Ewcaywy

Tic teheutaiee dexoetics yivaue ydptupes Tne paydoioc avéntuéne twy emdboe-
WY KoL QUVHTOTATLY TWY NAEUTEOVIXGY UTOAOYLOTOY ARG %o YEVIXOTEPA GAWY
v Pnglomxey cuotipdtwy. O cuveyele eZelileic oty teyvohovia tne Mboypa-
wlag eoaxohoutoly, To TeheuTtaio TEIEYTY YEOVLY, Vo HEWOVOLY To pEYEDOC TwWY
tpavllotop xota o wad xdde 18 phvec dnpoupy®viac éva TAedvaoua o xade
véo yewd. To miedvaoua autd ypnoworoeiton yio TV vhomofnoy mo neplnio-
HEWY KoL OTOBOTIRGDY JPYITEXTOUNGDY, TOL TAUTEY POV AElToupYoUY ot UYMAdTEpEC
SUYVOTATES KAl HELWUEVY Teopodoala.

Avth) buwe 1 mpdodoc dev yiveton ywplc TV cupdvon npofinudtwy. Kadde
o péyedog v tpaviioTtop uixpuve Beutepebovia gonvoueve tou dev enrpéaloy
TIC TEOTYOUUEVES TEYVOLOYIEC UETATEAMUAY o1 xUpltdC eumdOLa Yio TEpaTERL
Bertiwon v Inoomdy custrudtwy. H Sucavéhoyn emtdyuvon tov tpavliotop
oe oyéan pE Tig Suvopxés UVANES Tuyalog TpoaTélace SNULolEYNOE TO ETOVOU-
Lopevo “memory wall”, vy v cuveyic cucompEeELcT) TouC avEBUcE TNHY EVERYELUXY)
muxvéTnTa o8 duoBdotay To eninedo.

[Epe 1oV mopanéve TpofAnudtwy, éve axdur —diultepa oNUoVTIKd— TESBAT-
o elvan 1) pelwon e sdomotiog twv Tpavliotop. H uslwon v Siuotdoeny toug
EXOVE ToL NAEXTEXE oTouyels mo sLdAGTE o At Aéyw xooumic axtvoBoriag.
Houpddanha, ov Swapogéc Aoy avaxpifeias otn ddixaciog exTiTweNg Toug €yel
EMUNTOOELS OTY NAEUTEIS YOeUX TNELOTIXE TOUC UE UTOTEASGHY YO CUUTECLOECOVTOL
TAEOV TERLOCHTERO WC Tuydleg UETAPANTES, oy eNoTEDOVTIC TNY TEYWUXY| TNC oVEAU-
one ypowouol yepbtepne neplntworng. Axéuy, v anodotixdtnta e dedixactoc
TopaywYhe, dnhady| Tdou amo To mapaySUEVE cuCTHUNTY TeEMxd Yo Pyouv oty
ayopd, yiveton mo meplmiony. Luyxexpéve, xodoe neplocdtepa oTolyelo guy-
Bétouy 10 TEANS Yag UCTHUY, YEYUAGYEL xou 1) TwdavéTnTo Vo eponatel aotoylo
1y avexp{Bea oe xdmowo ano avtd. H tdor auty| unopet va odryfiost oto péhioy,
v Moyoug xbaTtoug, Vo Blvovton ot xaTaviA: T CUSTAUNTY Tou WdVo Ve UERPOC
autey Sa éyouy afiémoty) Aettoupyio. Awfrénoviog T ta npofBifuarte autd Yo
yivouy mo évTove e TiC EROUEVEC YEVES UTOAOYLGTEMY XoL 1) TpoonTuny| TN abdnemg
WY CPUALETOY ot TéTowo Budud date andun ko CUCTALNTY 6Te onola deyduacTe
vo, tapouadlovior Addn (.. mpocswmxde utoroviothc) va yivouy unepBolxd o
VOELOTLOTA, 1) EPELVNTIXT XOLVOTITA GTEAPNXE Tor TEAeuTala yedvia 6TV avalfTtnon
Budoumy Aooewy.

Mpotnddeor yia T Sruoveyio xon Topaywyh Aoswy elvor 1) avdiucy Trg e-
T{Bpaong TV CQUAUETOY UAXOD OTIC EQuproYES Tou Vo exteieaToby ot autd. Me

TN oepd Tou autd, tpolnodétel Ty UNuedn XUTEAANAGY UETELXMY YL VO TOCOTIXO-
moticouye TNV adlomotio evic cuoTHuatog, epyohela ta omola Vo poc emtpédouy
TOV TELPUMATIONS UE UN-alloToTe TEEBOAOVTY eEXTENESTC, dAAS Xou TepwToTUTY
WY VLOUOY ETaVExapne and /anopuyic sourudTtoy. Y autd to onusto elvor xou
1) CUVELGPORE AUTAHS TNE OIMAPATIXAC EpYaslog.

To mpoidy authc Tne epyouciog elven 1 enéxtaoy evde olyypovou, cupéwe dLo-
dedopévou mpooouowt| TARpwY-cusTpdtey (axeBelac-xixhou) ue Eva GOVOO
SOUMY HoL CUVIPTATEWY TOU ETTEETOUY TNV ELTAYWY T CPUAUSTOY GTIC BoUéC Tou.
O emreyuévoc nposopolwthc (MB) nupéyel tn duvatdtnta npocouolwsne povo-
TOENYEY/TOAUTOENYWY GUSTNUSTEY, Xaddc xoL cusTAdatoc-ousTndTnY. H véec
BuvaTdTATES ELOAYOYNC CPUAUETOY 0TS Bouéc Tou BEV UTEHELVTAL OF KOVEVAY TE-
proplopd otov aptdud, o YOpo ¥ to ypbdvo. Trootnpllovial 1 ecayoyr o@ok-
pdrtwv o 2 povréra (Aettoupynd xon ovohutind) tne Movédoc Enelepyoaoiog As-
BOUEVEWY — CUYKEXQUUEVY GTO MEXENO AATUYWENTHY, TO UETENTY TEOYEHUHATOC
AL T OTEOL TEOOHOULONG, AmoxwOLXOTolNeNE Ko EXTEASONS TNC EVIOAAS — Kol
GO TEPLEYOUEVAL TNS PUOLXTE UVAUTC.

‘Ooov agopd 10 Tpbdno mou Hu ahhowsdel 1 Tiwh Tou emheyuévou atouyelou,
To gpyursilo pac mpoceépetl TNy emhovh petall dusone avédeone xdmolas T,
evadhoy g evoc bit otn cuuminewpaTiny Tou Ty, Aoyt ddlevn e TS Tou
stoyelou pe xémowx otadepd wudde xon Ty avéldeon oe bha Ta bit tTne Sourc Ty
T 1% 0. To opdipota autd unopel vor oploToby we nopodixd, ubviua v atiyuelo.

Meté to mépac Tng LAomolNoNg TG EMEXTUCTC TOU TEOCOUOLLTY cuveyloous
HE TELPUUATIONS YENOLLOTOIMVTAS To xouvoleylo epyorsio. Tlepouatiotinoue ue
2 QupuoYES: UL EQUEULOYTH ToAamAdCLoUol mvénmy 64x64 xan Tov amoxwdixo-
mounty Bivieo AVS.

To cuumepdouuTa AUTHOY TV TERIMETOY ATUY, APeVOS 6TL DEV PaveEpdVOoV-
Ton She T MG oTo eninedo g Slemughc Tou YenoTr: ONAadY) dprETd o@iApaTY
EmxONOTTOVTOL YévovTor xon oauTtd SLETL LTEPYEL EMAUVAYENOWOTOMNOT TOY XoTo
YWENTOY xon ‘emieTiny) TEooxOUoT) Kot EXTENEST) EVIOADY UE AMOTEAECUN VoL UT)
YENOULOTOLOUVTOL HAOL T UTOTEAESUUTY TOU TopdyovTon/ennpedlovTon ono G-
porta. Agetépou, 61 UTdpyouv TAUTE oE TEoYpdUMaTY Ta onola UTopolY Vo
UTOGTOUY adipaTa Yoelc vo Blaxdntetan 1) extérear) ¥ 1 ailolworn twy dedo-
pEVLY Vo Uy T xarthatd dyenota (T, opdidate oto xéte-0edl xehl Tou mvéna
iDCT otov AVSA .2). H teheutolo nopatienen Eyet buitepn onpoacio xadde yno-
eel va wog Bondhoer oty enlhuoy tou evepyewnol npolifuatog, “power wall”.
Yuyrenpéva, o8 cuVBLUOUS UE ML CEYLTEXTOVXY Tou Yo TpocpEpEL avoyy| ot
codhuate ypovionol Jo pog €8tve Tn SuvatdtnTa vor eExTEAODUE TETOLOUC XOI-
xec ot Movddee Enelepyoaoiog AeSouévey nou hettoupyolv oe twéc tpopodootioc
AT TWY TEOOLAYpAGKY, To onolo dMuoupYel c@IALITE YPOVIGUOD GTO XUXAWDUY
G Topdddnia eEowovouel evépyeia (Bhéne ouvdptnor 1.1).

Power = Capacitance x Frequency x Voltage® (1.1)

Chapter 2

Introduction

During the last four decades we witnessed an enormous growth in the per-
formance and functionality of processors. Advances in fabrication technology
conveyed us from 10pm features width in 1971 to today’s 32nm, a trend that
led to the doubling of processors’ transistor count every two years — colloqui-
ally called Moore’s law. This surplus of transistors enabled computer architects
to design more sophisticated circuits which, at the same time, functioned at a
higher frequency and lower voltage.

On the other hand, secondary phenomena that had little or no effect on
previous technologies were exacerbated as transistor features shrank creating
new obstacles that halt performance [9]. The disproportional speed-up of tran-
sistors, compared to that of DRAMs, created the so called “memory wall” and
their continuous accumulation increased circuit power density to an unbearable
degree, a phenomenon called “power wall”.

Apart from the above problems, as transistors approached the nanometer
threshold they became more vulnerable to radiation-induced faults (cosmic par-
ticles that enter the atmosphere). Furthermore, as their features size decreases,
the problems from process variations increase. The electric characteristics of
transistors now behave more like random variables making a deterministic worst
case timing analysis ineffective. As the impact of physical variables becomes
more intense, researchers are working on building reliable systems with unreli-
able components to guarantee the correct function of modern electronic devices
under such constraints. Another important aspect, though not strictly techni-
cal, is the decrease of the process yield. Accumulation of more components for a
single system means that there is a greater chance part of it to contain corrup-
tions, which will affect its output’s reliability. Currently, this problem is solved
by disabling such modules, however, this is inefficient in both economic and
performance terms. Except from the direct benefits from technological advance-
ments in this area other areas may be benefit too; for example, fault-tolerant
architectures would enable the use of processors in sub-threshold voltage levels
to improve power efficiency.

Reliable execution on unreliable components is the next “wall” electronic
system designers should overcome to further improve computers performance.
To effectively attack this problem we need to perform a thorough analysis of
the way hardware faults manifest to errors in the different abstraction layers of
computer systems. The analysis and categorization of the behavior of faults will

enable the creation of a hierarchy of targets/modules that need to be enhanced
to achieve robustness.

In order to expand our understanding on the aforementioned problems new
tools need to be created or the existing ones should be augmented to support the
new constrains and physical variables. The main contribution of this Thesis is
in this direction. In order to study the behavior of applications in the presence
of transient faults, we developed a fault injection framework on top of M5 (a
full system, cycle-accurate simulator) as we could not find an existing tool to
cover our needs.

We choose to work with a software simulator for the perspective and at-
tributes it provides. By using a simulator we are able to study architectures
and configurations not yet implemented and at the same time exercise complete
control over the nature of a fault; that is, the location and timing of the mani-
festation of the fault, as well as its effect on the affected module’s value. Also,
the provided controllability in experimentation enables the partial examination
of a program’s execution for a more thorough analysis of its behavior on an
unreliable environment.

The other contribution of this Thesis is the experimental evaluation of two
applications on an unreliable environment: an 64x64 matrix multiplication ker-
nel and the AVS decoder.

This document is structured in two basic blocks: the first one introduces the
theoretical background and the second describes the framework and outlines the
experimental evaluation.

In the first part, a brief introduction in fault-tolerance and fault injection is
given in Chapters 3 and 4. In Chapter 5 we discuss the benefits of full system
simulation.

In the second part, starting at Chapter 6, we give an overview of the fault
model in which this work was based upon. Chapters 7 and 8 discuss the im-
plementation details of the framework and an analysis of the results obtained
using it, in respect.

Finally, Chapter 9 presents the conclusion of this work and directions for
future work.

Chapter 3

Fault Tolerant Systems

In the previous section we discussed the need for fault-tolerant design of future
systems. A system is fault-tolerant if it is capable of performing its specified
tasks in the presence of faults, either at the hardware or at the software level.

For example, software bugs need to be overcomed for continuing correct
execution and hardware module failures should not inhibit the system’s ability
for correct execution. By correct we are not refering only to error free results,
but also on results that maintain a small, user/application defined, margin of
error.

Fault tolerance is an important feature of a system as it ensures its depend-
ability; it is, as stated in [6], the ability to deliver service that can justifiably be
trusted.

3.1 Dependability Attributes

Dependability can be considered as the integrating concept of the following
attributes [6]:

Reliability : continuity of correct service.
Availability : readiness for correct service.
Safety : absence of catastrophic consequences on the user’s environment.

Maintainability : ability to undergo modifications and repairs.

Following, we will see in more details the two main attributes of dependability
[41], reliability and availability.

We can define reliability (R) as the probability that a component will not
experience an error, visible to the defined abstraction’s outer scope, in the time
interval (0,¢],

R(t) = P(T > 1), (3.1)

where 1" is a random variable expressing the component’s lifetime.

The reliability of a system (i.e. an accumulation of similar components) of
N modules in a period of time (0,¢] is given by the fraction of the unfaulted
components until time ¢ to the total amount of components.

Ry(t) = Nunfaulted® _ Niotal = Nfaulted®) _ | Nfaulted () 52)
N total N, total N total

where N1 18 the total number of components, N faulted(®) 18 the total
number of components that have not experienced an error in the time interval
(0,t] and Ng,y1ted () is the total number of components that have experienced
an error in the time interval (0, ¢].

As hazard rate Hy (L) we define the probability that a system of N com-
ponents, that have not presented a fault till time ¢, will present an error in the
time interval At.

. # (Vaulted ®)
Hy(t) = dt (Nfaulted(t)) _ Notal (3.3)
Nunfaulted W
total

By combining equation 3.3 and the derivative of equation 3.2,

d (Rn (1) = _M7 (3.4)

dt Ntotal
we get,

—4 (Bn (1))

Hy(t) = 35
wit) =~ (35)

which we can transform to equation 3.6,
Ry(t) = e S Hn) dt (3.6)

so as to represent reliability in terms of the hazard rate.

The exponential relationship between a system’s reliability and time, as
shown in equation 3.6, is known as the exponential failure law and enables
us to compute the overall reliability of a system with N components by the
following equation.

N
Ry(t) = [J Ri(t) = - (B U Hany an)e 57
i=1

Finaly, availability can be defined as the probability that the system will
function correctly at a given time.

Syst -t
Availability = ystem up-time

3.8
System overall time (38)

3.2 Dependability Threats

When the dependability of a system is compromised, we say a failure has oc-
curred; that is, the desired service of the system deviates from correct function.
A failure occurs when an error is presented in a system component. An error
is a divergence of a component to an incorrect state. The cause of an error is
called a fault and with that we have formed the chain of dependability threats.

The connection between the dependability threats is depicted in figure 3.1.

activation causation
s > > 3
> TFault > Error > Failure

Figure 3.1: Chain of dependability threats [6].

Faults can be categorized according to their nature in three basic categories[41]:

Permanent: Permanent faults are present indefinitely in the system until cor-

rective measures are taken.

Intermittent: Intermittent faults appear, disappear and then reappear in the

system’s life time and can be early indications of permanent faults.

Transient: Transient faults appear and disappear without repetition.

A brief correspondence of different hardware faults to fault types can be seen

in table 3.1.

Fault Types

Permanent

Transient

Electro-migration
Metal Stress Voiding
Gate Oxide Wear-out
Hot Carrier Injection
Hardware faults | Negative Bias Temperature Instability
Radiation
Transistor Variability
Thermal Cycling
Erratic Fluctuation in minimum voltage

L

LA

Table 3.1: Hardware faults and their type

3.3 Faults Impact on a System - An Architec-

tural Perspective

Whether a fault manifests to a failure depends on whether the error will be
masked/corrected or not. Figure 3.2 shows all the possible outcomes of an error

occurrence by an architectural perspective.

< Processill DUE >< system-kill DUE >

Corrupted bit is read?

Has error protection?

Bening fault
No Error Detection
[

Correction Detection-only

Bening fault False DUE True DUE
No Error

Figure 3.2: Faults impact [42, 43, 41|

To find the possible outcomes and the impact of a fault on a system’s be-
havior we must first consider if the faulty part (bit) is used by the system for
a particular service. If it is not used, then the fault is called benign and pro-
duces no error, otherwise we have to further consider if it is covered by any
error-correction mechanism.

If the faulty part is covered by a detection and correction mechanism then
the fault is corrected and produces no error. In case of no protection mechanism
or a detection-only mechanism then we need to evaluate if the error influences
the output of the particular service.

If no error protection covers the erroneous part but it does not influence the
system’s output then the fault is benign and no error oceurs, but in the case
that the output is influenced then we have a Silent Data Corruption (SDC).

On the other hand, if the fault is covered by detection-only mechanism then
again we observe the influence that it has on the system’s output. If the output
is not altered we have a False Detected Unrecoverable Error (False DUE), else,
if it affects the system’s output we have a True Detected Unrecoverable Error
(True DUE).

True Detected Unrecoverable Error can be further divided into System-Kkill
and Process-kill faults based on whether the error can be isolated in a single
process or it requires a system wide restart.

3.4 Quantitative Analysis of parch Reliability

As the reliability assessment ol a system is erucial and influences decisions in
the design phase of a project, research has been made in producing quantitative
measures of it.

The most well known measures of system’s reliability are Mean Time to Fail-
ure (MTTE), Failure in Time (FIT) and Mean Time between Failures (MTBI)

10

[41].
MTTEF expresses the mean time between two faults (i.e. if a module presents a
fault every 2 years its MTTF is 2 years).

1
N1
i=0 MITE,

MTTFy = (3.9)

Due to the complexity of computing the MTTF for a number of components
many choose to use FIT which is additive. One (1) FIT represents a fault in a
billion (10°) hours, so if we have two components and the first one has a FIT of
10 and the other a FIT of 20 then their overall FIT is 30.

N
FITy = FIT; (3.10)
i=0
the relation between MTTF and FIT is:
10°
FIT x 24 hours x 365 days

MTBF expresses the mean time between the occurrence of two faults. To com-
pute MTBF we need to know the Mean Time to Repair (MTTR).

MTTFiy years = (3.11)

MTBF = MTTF + MTTR (3.12)

In the recent literature additional metrics have been proposed for use in eval-
uating a structure’s reliability. In [43] and [42] the Architectural Vulnerability
Factor (AVF) was introduced. AVF is defined as “the fraction of time an upset
in a cell can cause a visible error in the final output of the program”. AVF
integrates both the application and parchitecture vulnerability factors and does
not provide any detail on the degree that a particular parchitecture or appli-
cation affects the vulnerability factor. An effort to separate these two factors
into distinct metrics was made in [53] and [52] by introducing the Program
Vulnerability Factor (PVF) and Hardware Vulnerability Factor (HVF).

11

Chapter 4

Fault Injection

After introducing the general concept of dependability/fault-tolerance of a sys-
tem in this chapter we will present fault injection (FI) a technique to evaluate
it.

Fault injection can be defined as the process of introducing and instrument-
ing faults/disruptions in a system for study of its behavior in the presence of
faults. FI is an essential complement to other techniques used for validation of
systems’ dependability.

To enhance our confidence in the validation process of a system, it is neces-
sary to use a variety of different methods to thoroughly examine and ensure a
good level of dependability. Fault injection allows to confirm the structure and
calibrate the parameters of existing fault-tolerance models or to develop new
fault-tolerance models and validate them: for example x% of errors of type y
are detected [28].

Based on the phase of a project, fault injection is employed using differ-
ent techniques and layers of abstraction. During the design phase, simulation
is mainly used for assessing the dependability of the system, whereas at the
prototype phase physical fault injection is preferred.

4.1 A Fault Injection Taxonomy

This section serves as a brief taxonomy of fault injection techniques. The basic
techniques will be presented along with related work and the advantages and
disadvantages of each approach [60]. The first part classifies techniques based
on the method used for the injection and the second enumerates the layers of
abstraction at which the fault can be injected.

4.1.1 Physical Fault Injection

Physical fault injection methods are using the actual hardware of the System
Under Test (SUT) and the injection is done by augmenting the system with
special hardware that enables the introduction of faults. Such techniques can
be further divided to those that have direct contact with the SUT and those
that don’t.

12

Fault injection with contact is performed by producing voltage and current
disturbances to the system’s external pins. The pins can be manipulated by
either using active probes or using sockets. According to the first method, pin-
level active probes are attached in the SUT pins in order to directly create
stack-at faults or to short-circuit them to create bridging faults. According to
the second method, injection is performed by inserting a socket between the
targeted module and its circuit board. The socket enables the creation of stack-
at, open or more complex logical faults like inverted, XORed, ANDed pins or
previous value of them.

For fault injection without contact special equipment is needed and it mainly
targets transient fault injection. To create hardware faults without contact one
can employ radioactive isotopes, neutron beams, proton beams or other means
for creating electromagnetic interferences in the SUT. Radioactive isotopes such
us americium-241, uranium-238, californium-252 or thorium-232 that emit al-
pha particles can be used for measuring the impact of alpha particle induced
errors, whereas for neutron induced soft errors one can use energetic proton or
neutron beams[36]. A list of locations where one can find the equipment for
such experiments can be found at the JEDEC standard No.89[5].

The main advantage of physical fault injection is that it uses the original
hardware without changes and experiments are executed at real-time enabling
the experimentation with large workloads and unaltered applications. Moreover,
it can inject faults in places that are hard to reach by other means without
changing the SUT’s hardware, thus it is one of the less-intrusive FI methods.

On the other hand, these methods have low portability over systems, requir-
ing new design and installation for each platform. The use of special purpose
hardware that requires large funding and can be found in limited places makes
difficult the broad adaptation of such techniques by the research community.
In addition, physical fault injection lacks in terms of controllability and observ-
ability; especially in methods without contact it is extremely hard to create
targeted and precise injection.

Physical fault injection was one of the first methods used to assess the de-
pendability of a system. A lot of tools and techniques have been developed
during the past decades. Some of them are:

RIFLE[39] A pin-level fault injection system that employs the socket method
and was developed at the University of Coimbra for dependability evalu-
ation.

MESSALINE[4] A pin-level fault injection system developed at LAAS-CNRS
that uses both socket and probe methods.

FIST[34] Fault injection system developed at the Chalmers University of Tech-
nology for study of transient faults using heavy-ion radiation.

FTMP[26] A fault-tolerant processor created by NASA which has also been
evaluated using fault injection techniques.

4.1.2 Fault Emulation

In Fault Emulation techniques (a.k.a SWIFI, Software Implemented Fault In-
jection) faults are introduced through changes in the software, so as to emulate

13

corruptions from hardware faults, while executing in the actual SUT. Fault em-
ulation techniques can be divided into compile-time techniques and run-time
techniques, based on the time the injection is performed.

Compile time fault injection modifies the source code or assembly instruc-
tions of the software under evaluation during the compilation process in order
to emulate hardware and software (bugs) faults.

On the other hand, in run time fault injection the application’s execution
is halted through timers, traps/exceptions or code is injected to perform fault
injection in the hardware structures that are accessible through software. When
using timers (hardware or software) a timeout occurs at a specific time and
control is given to system software that performs the fault injection. Similarly,
traps or exceptions are used to specify the timing of fault injection based on
events (e.g. specific instruction execution or memory address access). Finally,
the last approach, code injection, inserts instructions in parts of the source code
at run-time to emulate hardware faults.

Fault emulation fault injection has the advantage of been fast (execution at
real time) and use the actual SUT. Also, it enables targeting parts of applica-
tions or operating systems, which is hard to do with other techniques. Another
advantage of software based techniques is the high controllability that they pro-
vide and the repeatability of the experiments.

However, fault emulation is an intrusive method both in modifying the orig-
inal source code and in indirectly affecting the applications’ timing. The execu-
tion of the fault injection and control framework on the same system can disrupt
the statistics and observations of the experiment. In addition, software-based
methods can only access structures that are available through the ISA, thus
restricting the injection capabilities.

Fault emulation was the prevaling choice for fault injection during the 90’s.
Some of the most widely accepted frameworks are:

FERRARI[31] A framework for fault emulation using traps and systems calls
developed at the University of Texas, Austin.

FINE[32] A run-time fault injection and monitoring environment for the Unix
OS developed at the University of Illinois, Urbana Champaign.

FTAPE[55] A fault injection framework for assessing a system’s fault tolerance
developed at the University of Illinois, Urbana Champaign.

JIFI[51] An application-level fault injection framework developed for use on
a fault tolerant parallel processing cluster at the California Institute of
Technology.

XCEPTION][13] A software fault injection and monitoring environment that
employs the debugging and performance monitoring capabilities of mi-

croprocessors for fault injection; developed at the University of Coimbra,
Polo 1II.

DOCTORJ[49] An integrated software fault injection environment developed
at the University of Michigan with emphasis in portability.

EXFI[10] A SWIFI environment for fault coverage evaluation on embedded
microprocessor-based boards that relies on the ” Trace Exception Mode”
of multiprocessors; developed at Politecnico di Torino.

14

NFTAPE[54] A configurable environment for automating fault injection ex-
periments. It was developed in a modular way to enable the usage of
different tools for fault injection, triggering and monitoring. It was devel-
oped at the University of Illinois, Urbana Champaign.

GOOFI[1] A fault injection tool with support for pre-execution fault injection
and injection through scan-chain capabilities of the processor. It was
developed at the Chalmers University of Technology with emphasis on
portability.

FATIL-FCI|[25] A high-level fault injection framework for evaluation of dis-
tributed applications in the presence of faults (crashes) developed at IN-
RIA, France.

4.1.3 Software Simulation

Simulation-based fault injection requires the design and development of a sim-
ulation model of the SUT (i.e. processor, devices) that is simulated on another
system. The simulation model of a system can be described either using a
common programming language like C and C++ or a Hardware Description
Language (VHDL, Verilog). Traditionally, the system under test is called tar-
get and the system in which the simulator is executed is called host.

Due to the extensive use of Hardware Description Languages, like VHDL,
in the design process of modern ICs, several techniques have been proposed in
simulation based fault injection with the use of HDL models. We can divide
these techniques in two main categories: those that require modification of the
original HDL source code and those that use built in capabilities of the simulator.

The first approach, that relies on code modification, augments the system’s
source code with dedicated fault injection modules called saboteurs or modify
-mutate- the original code of a module to enable precise injection and tracing
of faults.

The second approach uses modified simulators that support the injection and
inspection of faults through built-in instructions/commands. The instructions
target module signals and variables that can be directly accessed and manipu-
lated through the simulator interface at run-time.

Another approach in simulation-based fault injection is the system modeling
in a high-level programming language. The system’s description in a functional
layer enables full system simulation or system of systems simulation. Recent re-
search in fault injection and reliability favors the usage of full system simulators
that can be used, not only for assessment of the robustness of an architecture,
but also for characterizing behavior of large workloads in the presence of faults.

Simulation-based fault injection frameworks can support any system ab-
straction level, electrical, logical, functional, architectural or hybrids, providing
a plethora of choices. In addition, the use of software enables full control over
fault modeling (transient, permanent, intermittent) and injection. Simulation
provides maximum observability without being intrusive, as any element or mod-
ule can be accessed at any time without influencing the behavior of the system.
Simulation-based fault injection tools do not require the modification of appli-
cation source code, enabling the validation of applications whose source code is
not available. Another advantage of such tools is the low cost of reproduction
of the system for multiple parallel simulations.

15

The main disadvantage of simulation based fault injection techniques is that
experiments are consuming (compared to other methods). The more detailed the
model, the more time it will take to have it simulated. This is in fact the main
reason the research community started favoring simulators with higher level of
abstraction, mainly developed using C and C++. Also, the implementation of
an accurate model is expensive in time and effort and crucial for the simulation
to be realistic and representative. Finally, as many existing simulators are
commercial products, their source code is not available for modification.

Nowadays, simulation-based fault injection has become the most widely ac-
cepted methodology. Some of the past and currently used frameworks are:

SIMICS[40][8] A commercial full-system simulator that has been augmented
with fault injection capabilities.

COTSon[3][23] A commercial full-system simulator that has been augmented
with fault injection capabilities

SWAT-sim [38] A framework for hierarchical simulation for studying the system-
level manifestation of gate-level faults.

VERIFY[50] A simulation based fault injection framework that augmented
the VHDL language with fault injection signals and their occurrence en-
abling the description of components behavior after faults and instrumen-
tation of fault injection campaigns.

DEPEND|22] A functional simulation framework focusing in providing a de-
sign and fault injection framework for system level dependability analysis.

MEFISTO[29] An integrated environment for applying fault injection with
support of different levels of abstraction.

HEARTLESS[47] A hierarchical Register-Transfer-Level fault simulator.

GSTF[7] A simulation based fault injection tool with capabilities of evaluating
medium-complexity system models.

4.1.4 Hardware Emulation

To cope with the time overhead of simulating the SUT, the usage of FPGAs has
been proposed. The circuit under examination is implemented using the stan-
dard synthesis, placement and routing design flows and then it is downloaded
to an FPGA. The fault injection process is instrumented through a computer
that is connected with a high speed communication link to the FPGA board
through its /O pins. There are two approaches for enabling fault injection in
FPGAs: the first is to alter the source code of the SUT and augment it with
modules and structures for fault injection, whereas the alternative is to use the
run-time reconfiguration. Run-time reconfiguration (RTR) exploits the ability
of FPGAs to be reprogrammed on-the-fly. That way, the hardware can be alter
directly in its low level structures to inject faults in it.

The benefits of hardware emulation based fault injection is the speed-up of
experimentation compared to simulation-based methods and also the compa-
rable controllability of these methods. Furthermore, FPGAs can be used for
dependability assessment of reusable circuit components (1P blocks).

16

On the other hand, hardware emulation methods experience the same prob-
lems, thought not in such extend, with pin-level fault injection techniques. The
injection capabilities are constrained by the number of free /O pins of the pro-
grammable hardware. Moreover, the link used for the communication between
the FPGA and the fault injection controller can influence the experimentation
speed.

This approach for fault injection is new and has yet to receive wide ac-
ceptance from the research communication. Example publicatios on related
research are:

FOCUSJ[14] A design automation environment developed at the University of
Illinois at Urbana-Champaign that fashioned a scan-chain technique for
fault injection in an FPGA board.

Using RTR for FI Applications [2] A proposal for exploiting the run-time
reconfiguration capabilities of modern FPGA’s for speeding-up the fault
injection process.

4.2 Abstraction Based Categorization

Apart from the previous, method-oriented, categorization of fault injection tech-
niques/frameworks, we can approach fault injection techniques based on the
level of abstraction at which the faults are injected.

Experimentation in system’s dependability, fault-detection and fault recov-
ery mechanisms may be verified by injecting faults at any level of abstraction
and allowing the errors to propagate to higher levels. Researchers prefer to
work in the lowest level of abstraction to assure accuracy of the experiments,
however, problems may arise from such a choice as it was previously described.
Consequently, there has been extensive research in how physical faults manifest
in higher levels (rtl, functional), to enable the usage of high-level simulators
[59, 18, 12].

The following taxonomy is provided as given in [59] and presents a list of
increasing levels of abstraction from the device level to the network level. It can
be generalized into two broad categories: circuit-level abstractions at the lower
end and functional-level abstractions at the higher end.

Circuit: In this category, the physical makeup of the processor is considered.

Device: Its main focus is the transistor and other circuit elements. For
simulated fault injection an analog simulator is need, whereas for
physical injection radiation or other physical stress may be used.

Gate: Its main focus are logic gates (AND, OR, NAND, XOR, multi-
plexers, etc). The stack-at or fixed-at model is employed although
some implementations use more accurate models, modeling signals
and storage cells coupling.

Basic Block: Its main focus are functional units of the system like adders
and registers and the fault models are high-level abstraction of phys-
ical fault models.

Chip: Its main focus is the chip’s boundary /0.

17

Functional: In this category, the circuit description itself is no longer consid-
ered, but instead a functional description of it is used.

Micro-operation: Its main focus in micro-instructions and faults are
injected at data transfers and micro-sequencing.

Macro-operation: Its main focus are ISA instructions and faults are
injected by flipping bits in the instruction word.

System: Its main focus is Memory and processor 1/0 in which faults are
injected.

Network: Its main focus are messages and other ways of communica-
tion where faults can be injected (e.g. message corruption, dropped
package).

4.3 QOur Choice

After studying past implementations and publication in the area of fault injec-
tion, we decided that simulation based fault injection and specifically full system
simulation is what best serves our needs and objectives. Using a full system sim-
ulator we will be able to evaluate the impact of faults in large workloads, full
OSs and in general real world applications which is our main target.

In brief, simulation provides maximum controllability over the injection pro-
cedure in both spatial and temporal manner, also, it enables the studying of
independent or concurrent execution of applications. Another key feature that
pushed toward this decision was the observability over the full trace of the be-
havior of the system, before and after an injection,that a simulator provides;
needed for understanding the way different faults affect instructions and work-
load patterns.

As mention in section 4.1.3 software simulation is a non-intrusive method to
the application that is executed and can provide statistics and logs of arbitrary
detail. In addition, as our choosen simulation framework is open source we can
alter the modules structure to match desired accuracy for each experiment.

Finally, we try to mitigate the time overhead of the simulation by running
multiple simulation in parallel, something that can only be done with simulation-
based fault injection techniques as the installations can be easily and with no
cost reproduced.

In the next section we provide an overview of full system simulation and
an introduction to the M5, the simulator we augmented with fault injection
capabilities and used in for experiments.

18

Chapter 5

Full System Simulation

5.1 Introduction

Full system simulation of a computer system is the process of modeling its
physical components in such a high detail that any software for the targeted
system can run unmodified on the virtual hardware. Simulated components
can be anything from CPUs, cache memories, network connections or any other
peripherals/modules that compose or interact with the SUT.

Due to these characteristics full-system simulators are able to run operat-
ing systems without the need of modifying them or their device drivers, thous
expanding the capabilities in hardware and system software design.

We should note here that the models’ fidelity can be of arbitrary level, how-
ever, the more detailed the model the smaller the system we can test (model
detail f# — simulation time).

5.2 Simulation Attributes

Full system simulation is becoming more and more appealing for use in research.
The advancements in simulation and testing theory have boosted the efficiency
of simulators and the computational power explosion enabled us to simulate
large systems on cheap personal computers.

Because of those two factors an increasing number of researchers (Table 5.1)
choose to use simulators on their experiments.

However, these are not the only reasons behind the increase in the number
of publications that use simulators. Since simulation is done using software it
offers many advantages compared to the real machine environment (see section
4.1.3).

Jakob Engblom lists the attributes that make simulation appealing in [19].
We set forth this list here for completeness.

Configurability. Technological barriers or lack of physical /hardware resources
do not place constrains on system configuration options.

Extendability. The simulator can be easily augmented with additional com-
ponents without any limitations (i.e. GPU/DRAM slots).

19

Year || Total papers | Simulation
2009 43 39
2004 31 27
2001 25 22
1997 30 24
1993 32 23
1985 43 12
1973 28 2

Table 5.1: Performance evaluation methodologies in papers appearing in
the Proceedings of the International Symposium on Computer Architecture.
Adapted from [56]

Controllability. The execution of the simulation can be arbitrarily controlled,
stopped, and restarted.

Determinism. A simulation is completely deterministic (assuming correct pro-
gramming).

Checkpointing. The state of the simulated components can be saved and re-
stored.

Availability. Creating a new machine is just a matter of copying the setup.
There is no need to produce hardware prototypes or development boards.

Inspectability. The complete state of the simulator can be investigated and
monitored without disturbing the execution.

Sandboxing. The simulation environment is completely isolated. No external
variable can influence it and no code or data can escape unless explicitly
allowed.

These attributes create an ideal environment for a system designer.

The coexistence of Configurability and Extendability expand the possible
configurations for simulation beyond technological barriers. We can design soft-
ware for hardware that is not yet in production (e.g. Linux was compatible with
the AMD 64bit architecture before it became available [35]).

The attributes of Controlability, Determinism, Checkpointing and Inspectabil-
ity create an ideal environment for debugging. Each flaw can be spotted, isolated
and recreated until it is solved.

Finally, sandboxing erases any environmental causes that can influence a
physical system and prevent disasters from failed experiments (i.e. aircraft
computer systems, nuclear factory sensors).

A major feature for both the industrial and academic community is the
availability of the simulated system. After an initial cost for creating the setup,
duplication comes with zero cost in time or budget. This can also be used to
mitigate the time overhead of simulation by running multiple experiments in
parallel. In addition, the development of a software description of the system
is much faster than an actual physical implementation, thus the whole design
process is boosted.

20

5.3 An overview of the M5 simulator

For the purposes of our research we used and extended the M5 simulator [16,
11]. M5 is described from its main site as ”a modular platform for computer
system architecture research, encompassing system-level architecture as well as
processor microarchitecture”.

M5 is a full-system simulator that initiated at the University of Michigan.
Until now it consists of around 180K (C++ & Python) lines of code, is freely
distributed under a BSD-style license and has no dependency to any commercial
or restrictive license software. These features make the M5 simulator an ideal
tool for research on an academic environment and a great contribution to free
and open source software.

As a framework, M5 is an event-driven simulator centered around a main
event queue where all modules schedule their events. The implementation is
heavily object oriented; all simulated components (i.e. CPUs, Caches) as well
as their internal structures are instantiated as objects. This is the key to M5’s
modularity and flexibility.

M5 uses Python to initialize the simulation and configure the scheme of
the SUT. For this to be feasible all simulated objects developed in C++ are
wrapped using SWIG! and exported as Python interfaces for use on the system
configuration process. The configuration scripts are semi declarative, hiding all
the unnecessary information about how the modules connect and communicate.
The simulators capabilities scale from uni-/multi- processor system to multi-
system systems without much overhead for creating the configuration.

Along with the scalability of configurations we can also choose from multiple
object implementations based on our need for accuracy. For example, we can
choose from 3 different CPU models, an 1 CPI CPU with atomic memory ac-
cesses, an 1 CPI CPU with detailed memory accesses and a full OoO Superscalar
CPU based on the ALPHA 21264 processor.

Apart from the level of abstraction in the implementation, M5’s uniform
(method-based) API across object types enables us to interchange similar sim-
ulated objects. The simulation can start with a simple, functional CPU (so
as to speed up the initialization process of the experiment) and then change
into a more detailed model from which we will acquire our statistics and re-
sults. Moreover, M5 features a detailed event-driven memory system able to
model complex multi-level cache hierarchies coupled with a coherence protocol
implementation. Together, all these modules give a vast amount of possible
composition of custom/complex systems for simulation.

In order to enable the easy expansion of its capabilities the simulator has
been developed from the start so that it would not be coupled with any ISA
increasing the number of applications and OS that could be used with it. Cur-
rently, the Alpha, SPARC, MIPS, ARM and x86 ISAs are supported.

Finally, one of M5’s most appealing features is its full system simulation ca-
pabilities (M5 successfully simulates systems running an unmodified version of
the Linux kernel). With full system simulation we are able to perform realistic
simulation of the concurrent execution of applications on top of an operating
system; in our case, to get a more detailed insight of specific parts of applica-
tions, the OS and their behavior under the influence of faults.

1Simplified Wrapper and Interface Generator: A software development tool that connects
programs written in C and C++4 with a variety of high-level programming languages

21

http://www.m5sim.org/wiki/index.php/Main_Page

All the above features conveyed us in choosing M5 as the most suitable
simulator for experimenting and implementing our fault injection framework.
Even though other full system simulators support fault injection, our framework
is unique in that it covers a substantial amount of errors and provides high
injection precision. Also, it is provided under a free-software license enabling
modification and experimentation by anyone.

22

Chapter 6

Generic Processor Fault
Model

After explaining the reasons for choosing M5 as the base for our fault injection
framework, in this section we provided an overview of the fault model on which
we based our implementation. In general, proving the sufficiency of a fault model
is very difficult. It is more realistic to assume that a fault model is sufficient
and justify this assumption to the greatest extent possible with experimental
and historical data or results published in literature.

To this end, Yount and Siewiorek [58, 57] developed a very generic fault
model for the register file within a processor which Johnson, Cutringht and
DeLong [18] have augmented through simulations [58, 57] so as to fully explain
the results of their test.

The augmented generic behavioral-level fault model describe the faulty be-
havior of a general-purpose, implementation-independent processor like the one
shown in Figure 6.1

The full model consists of seven locations where faults can manifest:

1. Register File

2. Program Counter

3. Control Unit/Instruction Decode

4. Bus

5. ALU

6. Fetch and Execute

7. Memory Mapped peripheral functional block

The framework that we developed covers only 4 of those locations for fault
injection (1, 2, 3, 5). Following, a description of the attributes - where, when,
what - of each fault model that we implemented will be given. Excerpts from
the following text are taken from [18] where a detailed presentation of the model
can be found.

23

Control Datapath
Signals 5
= | | Register File Fetch and
{contains general Decode Block
prpose a"F‘ . (instruction
Spt‘Clﬂ] [C‘ng[E[SJ registcrls] and

decode logic)

Status

Information| Program -
- Counter ALU

? : - Memory-Mapped

- ! - Peripheral
e S Functional

Internal | Internal | Internal Block
Address | Data | Control
'Bus Bus * Bus

External Bus Interface |

processor

Address I Data y Control
Bus Bus ' Bus

‘igure 6.1: General processor diagram [18
Figure 6.1 I o

6.1 Register File Fault Model
6.1.1 Register Fault Model

The register fault model covers corruptions in the registers of the CPU. These
can be general or special purpose registers.

Where

One or more registers of the CPU is/are potential candidate for corruption.

When

Corruption can occur at an instruction boundary.

What

There are four scenarios on how the structure’s value can be corrupted:

1. Missed load (6.1) all or part of a register is not loaded when it should
be.

Ry — expr = Ry, — (c:r:;m'@(mms#((iv—l] ..0)) (6.1)

24

2. Extraneous load (6.2) all or part of a register is loaded when it should
not be.
Ry — ecxpr = R —expr 3(j#k) (6.2)

3. Level change in storage (6.3) the value of one or more bits in the
register is complemented.

Ry = Ry P (mask((w-1)...0)) (6.3)
4. All 0/1 (6.4) Assign the value of all zeros and all ones to the register.

_ (6.4)

6.1.2 Read/Write Register Selection Fault Model

The read/write register selection fault model covers faults within the decoding
stage of the pipeline where an error can result in selecting the wrong register to
be used as an input/output operand to the current operation (6.5)(6.6).

(R = RiopR;) = (Rj, « RiopR;) 3z # j)
Ry — RiopR; = (Ry «— RyopR;) Iz # k) (6.6)

Where

Instructions during the fetch and decoding stage.

When

Corruption can occur at an instruction boundary.

What

The corruption that will result to a read or write register selection error are
shown in equations (6.7) and (6.8) respectively.

instr_fetch(addr) =
instr_fetch(addr)

(6.7)
D
(((z — a —)Q0)#mask{(i +a — 1) ...i)#(4@0)),
instr_fetch(addr) =
instr_fetch(addr)
(6.8)

D

(& = b —j)@0)H#mask({(i +b—1)...4)#(jQ0)),

25

where z is the instruction width, i/j is the starting position of input/output
register selection filed, a/b is the register selection field width, v@0 stands for
repeating zero (0) v times and # stands for concatenate.

6.2 Program Counter Fault Model

The Program Counter (PC) fault model covers corruptions of the Program
Counter of a CPU.

Where

The processor’s Program Counter register.

When

Corruption can occur at an instruction boundary.

What

There are three scenarios on how the structure’s value can be corrupted:

1. Missed load (6.9) All or part of a register is not loaded when it should
be.
PC — expr = PC — (expr @(mask((w —1)...0))) (6.9)

2. Level change in storage (6.10) The value of one or more bits in the
register is complemented.

PC = PC P (mask((w —1)...0)) (6.10)

3. ANl 0/1 (6.11) Assign the value of all zeros and all ones to the register.

PC:PC@PC

L (6.11)
PC = PC@PC

6.3 Control Unit/Instruction Decode Fault Model
The Control Unit/Instruction Decode fault model covers corruptions of similar

type to the read/write register fault model and mainly refers to corruption of
the opcode field.

Where

Any location where an instruction may reside (i.e. memory, instruction register).

When

Corruption can manifest at an instruction boundary or on a memory reference.

26

What

The corruption that will result in a fetch/decode error is described in equations
(6.7)

instr_fetch(addr) =
instr_fetch(addr)

D

(((# — c — B)Q0)#mask((k +c—1) ... k)#(kQ0))
(6.12)

where k is the starting position of the operation code field, and ¢ is the width
of the operation code. Note that values for k and ¢ may vary, depending on the
format of a given instruction.

6.4 ALU Fault Model

The ALU fault model covers corruptions in the ALU module of the processor,
based on a general arithmetic instruction format such as (6.13)

D «— S10pSa, (6.13)

where D is the destination for the result of the operation (i.e. a register or
a memory location) and Sy, Sy are the sources for the operation again of the
same possible types as the destination.

We define as possible locations for corruptions D , 5S¢ , and S5 , as well as
the operation itself, which could be corrupted to another valid instruction or an
invalid instruction.

The behavior of the ALU fault model can be defined as a subset of the other
fault models behavior and thus expressed through them.

27

Chapter 7

Implementation

In the introductory section we gave a brief overview of the reliability problems
that arise with aggressive feature, voltage and frequency scaling and highlighted
the importance of understanding how the function of each abstraction layer in
computer systems is affected by such faults. The characterization and modeling
of the errors will enable us to design and implement feasible solutions to preserve
the current levels of system’s robustness.

In order to assess the impact of faults to each layer, new tools need to
be developed or the existing ones should be enhanced. An example of such a
tool is M5, the full system, cycle-accurate simulator with broad acceptance in
the area of performance analysis that we described in Section 5.3. To avoid re-
inventing the wheel we augmented its existing infrastructure with fault injection
capabilities, following the general processor fault model descibed in Chapter
6. The end-result is a modular and configurable framework for studying the
effect of transient faults in reliability of applications. In addition, the developed
framework can be used for the evaluation of new fault tolerance techniques or
to calculate the robustness of a system through fault injection campaigns which
can be automated using the provided tools and API.

The framework was developed using C++ and employed the SWIG library
for exporting the instrumentation API to the configuration interface of M5, thus
creating a uniform development environment for the simulator and the fault
injection framework. We should note here that fault injection is currently only
supported in the ALPHA ISA. However, porting it to other ISAs does not require
extensive modification as the only ISA-depended portion of the framework is
the functions used to distinguishing processes/threads and user/privileged mode
execution.

In the following Sections, we will attempt to give a general description of
fault injection frameworks and present implementation details and choices that
were made for the development of our tool.

7.1 Introduction: Where, When, What

Fault injection’s instrumentation variables can be divided into three basic categories[23]:

1. Where: The location of the injected fault.

28

2. When: The time when the fault should manifest.

3. What: The nature of the fault; the way that the faulted structure will be
influenced.

7.1.1 Where

The first aspect that we need to clarify when creating a fault injection scenario is
the location of the faults, namely the modules/structures that will be targeted.
A good method for selecting injection targets is the top-down approach; that is,
we first select the high-level unit (CPU, DRAM module), then we proceed with
internal modules and finally pick a single bit that will be affected. Common
locations for fault injection are the levels of memory hierarchy, special and
general purpose registers, control logic and pipeline stages of a processor (fetch,
decoding and execution).

The location where a fault will be injected is crucial, as it partially de-
fines/bounds the possible errors that can be created|24]. As different modules
have different functions and process different types of data, we can create groups
that contain all the possible errors for each structure, however, we should note
that some interleaving does exist between errors in different structures.

A fault occurring in a register (integer, floating point or special purpose) will
affect its internal storage and in the case of miscellaneous register the processor
state (e.g. corruption of the processor’s execution mode register).

A fault at a memory location will affect its internal storage and possibly the
execution and output of a process that uses its content.

A fault at the fetch and decoding stage will affect the decoding of the in-
struction (i.e. register selection, operation selection (e.g. Table 7.1), immediate
value).

A fault at the execution stage will affect the result of the ALU operation
and the content of the destination register or memory location, or -in the case
of program control instruction- a wrong path can be taken.

| Mnemonic | Format | Opcode (hex) | Function Code (hex) || Description |

BEQ Bra 39 - Branch if =
Zero
BGE Bra 3E - Branch if
== Zero
BGT Bra IF Branch if >
ZEero
BIC Opr 11 08 Bit clear
BIS Opr 11 20 Logical sum
BLBC Bra 38 - Branch if
low bit clear

Table 7.1: Qualifiers for operate instructions, excerpt from Table A-2[17]
In general, the location of an injection is described deterministically and

the spatial distribution of faults in the simulated modules is produced by a
distribution function. The distribution function can be derived from low level

29

characterization of the hardware’s behavior under different internal and exter-
nal conditions (i.e. radiation, thermal distribution, utilization). Alternatively,
statistical fault injection can be used as shown in [37]. Note that most fault
injection frameworks are evalnated through statistical fault injection and not
by strict mathematical proof of their correctness.

7.1.2 When

Another essential variable in a fault injection campaign is the timing ol the
injections; the time that a fault will oceur (manifest).

Fanlts can be set to oceur based on the value of a system variable. Commonly
used variables are overall simulation time, processor cycles, executed/fetched
instructions or occurrence of a specific addresses in the Program Counter (PC).

The flexibility in setting the manifestation time of a fault is of great impor-
tance when one is interested in acquiring targeted results; for example, when
we are interested in studying specific regions of an application.

However, fault manifestation based on simulation time, clock eyeles and
fetched instructions is not deterministic especially when done on a full system
multi-core simulation environment, where multiple applications are running and
no control over their scheduling in time and hardware is possible. As a more
precise timing method the PC value can be used.

Similarly to the location variable, the timing variable of the injection can be
cenerated from temporal distribution models of hardware faults (module error
rate) or statistical methods (e.g. uniform, logarithmic distribution function).

7.1.3 What

The final fault injection instrumentation variable that we will describe is the
nature of the fault; how the structure’s value will be corrupted. As faults
manifest in different ways, based on their cause, we need to use different models
for each type of hardware fault.

The most common way to model permanent faults is the stuck-at model[30]
where a signal is permanently set (stuck) to one (1) or zero (0) (Figure 7.1).
Transient faults are modeled using the bit-flip model[41] where a bit’s value is
flipped to its complement (Figure 7.2).

1 0
r o

1 » 1 stuck-at 0 0

1)(>
r o

0 r o

Figure 7.1: Stuck-at model illustration

30

Alpha particle or neutron strike

s scsannnsninninnnann,
amssmsanmnnnn

Figure 7.2: Bit-flip model illustration [41]

Except from these two methods, more accurate models can be used for mod-
eling hardware faults. Recent research results show an increase in multi-bit [21]
and ecirenit timing errors that are not covered by the above fault models.

7.2 Our Implementation

Having explained the aspects of fault injection instrumentation, we will try to
place our implementation details in the general picture. For the development
of our tool we abhered to the object oriented approach of the M5 simulator.
The framework is composed of classes that define different fault types and fault
queues where the objects are stored for quick access and easy manipulation,

The hierarchy of fault types that our framework currently supports is de-
picted in Figure 7.3. All fault objects derive from the InjectedFault class that
contains the basic variables for fault injection and the generic attributes of a
fault. The Injected Fault class derives from the SimObject/MemObject classes so
that we can use the fault injection objects at the configuration interface. More
details about each fault type will be given later.

A core component of the fanlt injection framework is the queue structure. All
faults described at the configuration file are inserted in 4 queues, based on their
characteristics; execution, fetch, decode and other. The queues are constructed
at the beginning of the simulation and are global to the framework and the
simulator. The queue class provides public functions for inserting, removing
and searching a fault (based on injection time and location). In addition, to
improve performance the faults are kept in a descending order to decrease the
average search time.

At the initialization of the simulation the configuration file is parsed and
simulation objects are ereated for all deseribed components. All faults that can
be scheduled at that point are send in the global event queue of the simulator or
a processor’s instruction event queue. Faults that manifest on a specific cycle are
pushed into the mainEventQuene and faults that manifest based on a CPU’s
fetched instruction count are pushed into the CPU’s comInstEventQueue.
All other instances are kept in the queues that are scanned in every cycle to
find if any fault instance is ready to manifest. The scanning of the queues is done
independently for each pipeline stage in order to support injection in-between
them. This is the main reason we altered the source code of the CPU models,
even though are initial approach was to avoid any changes to existing M5 code.

31

Injected Fault

+ready: bool

+here: std;;string

wahen: std::string

+hat; std::string

+ralative: bool

+faultType: InjectedraultType
+timingType: InjectedFaultTiningType
+timing: uint6d_t

+valueType: InjectedraultValueType
+value: uint6d_t

CPUInjectedFault| [MemoryinjectedFault| |03CPUInjectedFault

+opu: BaseCPU * taddress; Addr +cpu: 03CPU *
+teontext: Int pMem: PhysicalMemory * ticontext: int

[IEWStagelnjectedFault

RegisterinjectedFault
+register: mt PQnjectedFault

| GeneralFetchStagelnjectedFault|

RegisterDecodinglnjectedFault

tsrcOrdst: RegisterDecodinglnjectedFanltType
tregToChange: int
+changeToReq: Int

Figure 7.3: Fault classes

Another feature of our framework is “Relative Fault Injection”, that is, faults
can be set to manifest relatively to the value of a processor’s variable. To enable
relative fault injection an extra instruction has been added to the ISA, namely
fi_vaddr_inst'.

The fi_vaddr_inst instruction is used to set a relative point for fault injec-
tion. When executed by the processor it stores the PC address, Tick cyeles and
fetched instructions number so that these values can be used as reference points
in the injection of relative faults.

At the section where we deseribed the timing of an injection (When) we
mentioned the importance/need of bounding faults’ oceurrence. In our imple-
mentation this is supported through the use of another instruction that was
introduced to the ISA, fi_activate_inst?, and a function of the M5 simulator
namely snUserMode().

The fi_activate_inst is used to enable and disable the manifestation of
faults. More specifically, when inserted in a code its first occurrence enables
the manifestation of faults for the specilic process/thread and the second one
disables it. To achieve such behavior we exploit the Process Control Block

'fi_vaddr_inst — asm(* Jong 0x04XXXX67")*
2 fi_activate_inst — asm(“.long Ox04XXXX66")?
#The Xs can be of any value.

(PCB) address 2, which is unique for each process/thread. Whenever a fault
event tries to manifest, we search using the PCB address as a key on a hash table
that contains the processes/threads for which fault injection has been enabled.

For the needs of our experiments we used an already implemented function
of the M5 simulator, the inUserMode() function. inUserMode() returns
true if the processor is currently in user mode, thus enabling us to restrict faults
in user mode application code; in the same way we are able to inject faults only
to operating system code. As we were not interested in injecting faults in the
OS, by-default our framework isolates fault injection to the user mode of the
processor. However, this feature can easily became a run-time argument of the
configuration file.

7.2.1 Where

As described previously (Chapter 6), our implementation is based on the generic
processor fault model described in [18]. It supports fault injection in memory
locations, registers and the fetch, decode and execution stages of an instruction.

All the possible locations for fault injection, according to [18], are shown in
table 7.2; the supported locations are marked with a /.

Faults Status
Register File

Program Counter

Memory Unit

Control Unit

Fetch & Decode Logic Block
Internal Data Bus, Internal Address
Bus, and Internal Control Bus, as
well as the External Bus Interface
ALU v
Memory-Mapped Peripheral Devices | x

XX =

Table 7.2: Modules where fault injection is supported

A fault location in our framework is described in a deterministic way, how-
ever, statistical fault injection is easily implemented at a higher level through
use of python scripts and the configuration file. As a proof of concept, we have
automated statistical fault injection campaigns through python scripts for eval-
uating our framework with real world applications; the statistical model we used
is described in [37].

7.2.2 When

Our implementation provides three different options for the timing of the mani-
festation: simulation ticks, fetched instructions or the value of the PC in a CPU.
The value of the manifestation time can be either absolute (i.e. global from the
beginning of the simulation) or relative to a simulation milestone.

3In the case of ALPHA ISA the pointer to the PCB is stored on the IPR_PALtemp32
register

33

Another supported timing feature is the enabling and disabling of the man-
ifestation of fault using a “magic instruction”, fi_activate_inst, mentioned
previously.

Execept from the timing of the injection, we can also specify the duration of
the fault, enabling the emulation of intermittent and permanent faults. How-
ever, even though a fault’s first occurrence can be given with any of the three
available timing methods, faults that use the PC address as a trigger can only be
used when experimenting with repeated corruption when a specific instruction
is fetched. This limitation is necessary due to branches. In the presence of a
branch instruction we do not know its result so as to set the correct consequent
PC value in which the fault should manifest. Nevertheless, this does not reduce
the capabilities of the framework as the PC Address timing option is ideal in
studying repeated corruptions of a specific data/computation; for example, the
upper-left cell of the iDCT matrix.

[t is also worth noting here that memory fault injection can only be used
with absolute timing. Otherwise it should have been coupled with a specific
CPU.

—

———___Timing Methods

Fanlt Type Inst | Tick | Addr || relative
Memory
pC
Register
Fetch

Operation Code

Register Decoding
Execution

i R LS S LS L
NSNS~
NSNS
NS

Table 7.3: Trigger Mechanisms for each Fault Type

7.2.3 What

In our implementation a module’s/structure’s value can be corrupted in a variety
of ways. The supported methods of affecting the value of the structure that is
injected are:

Immediate Value Assign the provided constant to the structure.

XOR XOR the current value with the given constant.

Register 1010 1010 1010 1010 1010 1010 1010 1010
Mask 0ooo oooe ooDD 0010 000D 0000 0000 0000
XOR 1010 1010 1010 1000 1010 1010 1010 1010

Iigure 7.4: XOR example

34

Bit-Flip Change the specified bit to its complementary value.
A0 Set all bits to zero (0).

Alll Set all bits to one (1).

Aegister 1010 1010 1010 1010 1010 1010 1010 1010
Mk 0000 0000 0000 0000 0000 0000 0000 0000
AND Q000 0000 0000 0000 D000 0000 0000 BDOO

Figure 7.5: AND example

Taking into account the possible changes and enhancements of fault models
in the future, our implementation for the corruption of the targeted structures
was design to be as modular as possible.

7.3 Usage/Export to M5 configuration file

As we have previously mentioned, the instrumentation APl of the fault injection
framework is exported at the M5 configuration interface using SWIG. A fault
can be considered as another simulated object that thus we describe in the
configuration file. A reference, example, configuration file can be found in the
tarball provided with this Thesis.

Following, we give examples of different fault types and how they would have
been defined in the configuration seript.

The mandatory fields for all faults are:

Where: In which CPU/Memory to inject the fault (format: jmodule’s name
at the configuration seript;).

When: When to inject the fault (format: jtimingType:timingValue;,).
What: What value should be injected and how (format: jvalueType:value;).
and the optional fields are:

Relative: [s the fault injection timing relative to a “magic instruction”? By
default false.

Occurrence: How many times should the fault manifest? By default one (1) -
transient fault.

7.3.1 Register Injected Fault Configuration

The additional required fields for a register fault are:

RegType: what type of register should be fault-injected (value: “int”, “float”,
“misc”).

Register: which register should be injected.
Examples:

1. Inject a permanent fault at the first (1) integer register of CPU “sys-
tem.cpu” when the PC is 8 + (PC @ magic instruction). After the fault
the register should contain the value 57005,

"

RegisterInjectedFault (RegType = "int",
Register = 1,

o

. Inject a transient fault at the first (1) floating point register of CPU “sys-
tem.cpu” when the total CPU cyeles are 50000. After the fault the regis-
ter should contain the result of the XOR product of 57005 and the initial
value.

RegisterInjectedFault (RegType = "fleoat",
Register = 1,
where = LE
when =
what =

3. Inject an intermittent fault at the first (1) miscellaneous register of CPU
“system.cpu” when the total fetched instructions are 1984 4 (fetched in-
structions @ magic instruction). After the fault the register should con-
tain the value 0.

RegisterInjectedFault (RegType = "misc",
Register = 1,
where = S
when
what = mme 2 C
relative = True
occurrence = 3)

1l

36

7.3.2 PC Injected Fault Configuration

PC faults do not require any additional field.
Examples:

1. Inject a fault at the PC register of CPU “system.cpu” when the PC of the
CPU becomes 4831838348. After the fault the register should contain the
result of the XOR of 2 and the register’s previous value.

PCInjectedFault (where = "
when = "
what

Il

7.3.3 Memory Injected Fault Configuration

Memory faults do not require any additional field.
Examples:

1. Inject a fault at address 512 of memory module “system.physmem” when
the total amount of simulation ticks is 2000. After the fault the address
should contain the value 3.

MemoryInjectedFault (address = 512,
where = "= -
when = "T
what = "I

L1} I
1
It

7.3.4 Fetch Stage Injected Fault Configuration

Fetch stage injected faults can either be “general”, in the whole bitwidth of a
fetched instruction, or targeted at the Opcode.
Examples:

1. Inject a fault at the fetched instruction of CPU “system.cpu” in the 45.000
tick. After the fault the instruction should be 540999681 — hex(203F0001).

W aep

2. Inject a fault at the Opeode of the fourth (4) fetched instruetion of CPU
“system.cpu”. After the fault the instruction’s Opcode should be 32 -
hex(20).

OpCodeInjectedFault (where
when =

what =

37

7.3.5 Decode Stage Injected Fault Configuration

Decode stage fanlts are targeted at the decoding of source and destination reg-
isters and require an additional field:

regDec: format: whether it should inject the jdestination or source regis-
ters; :;jwhich register to change;:jin which register to change;,.

Example:

1. Change the destination register zero (0), of the instruction that will be
decoded in the 45.000 simulation tick at CPU “system.cpu”, to one (1).

RegisterDecodingInjectedFault (regDec ISEE013"

r
1
. 1-.‘

r

7.3.6 Execution Stage Injected Fault Configuration

Execution stage faults do not require any additional configuration field and
target the output of the ALU, if any.
Example:

1. Inject a fault at the execution result of the 10th relative (to the magic
instruction) instruction of the CPU “system.cpu”, the result should be
10.

IEWStageInjectedFault (where

"

when = "1

what = "I
relative

7.3.7 Monitoring

When running fault injection campaigns it is essential to have the ability to
observe how a fault influences the function of the system under test. In M5
simulation can be monitored through enabling various trace/debug flags. The
simulator by-default provides an excessive amount of options on what simulation
events should it print as output throughout the simulation. In this way fetching,
decoding, execution, memory and register accesses can be set to be printed out
whenever they happen, creating a full trace of the application’s execution.

We have expanded the monitoring capabilities of the simulator by introduc-
ing a new trace/debug flag called FaultInjection, used for creating output for
the fault injection framework. This consists of printing the creation of a fault
and the manifestation of it, together with the attributes of the fault and the
way that it influenced the targeted structure.

38

Chapter 8

Fault Injection Campaigns/
Experiments

Even though the main target of this Thesis was the creation of a fault injection
framework, our final goal is an analysis of the behavior of applications in the
presence of faults. Therefore, we conducted a series of fault injection campaigns
in order to validate the fault injection functionality and at the same time to
perform a preliminary evaluation of application behavior in the presence of
faults. This Section presents the results of these experiments that targeted two
(2) applications: a simple matrix multiplication kernel and the AVS decoder.

8.1 Experimentation Methodology

In our experiments we used two (2) different system configurations. Their main
difference lies in the CPU model’s abstraction level /detail.

Both applications have been tested using statistical fault injection in order
to narrow the possible injection configurations, yet maintain a good confidence
interval on our results. Still, the volume of the needed experiments required
the automation of the experimentation and results analysis process; for that,
additional python and bash scripts were created.

In addition to the statistical fault injection, in the case of AVS we targeted
specific functions to assess their inherent reliability and to test the existence of
variations in fault-tolerance between portions of the application.

To acquire the instrumentation variables for the statistical fault injection
campaigns we assumed that faults in all structures and bits are equally possi-
ble. In addition, we assumed that fault occurrences in time follow a uniform
distribution [37]. Finally, in each simulation a single fault was injected.

All programs were compiled using a cross-compiler, version 4.3.2 of gcc for
the Alpha ISA, without any optimization options enabled. The compiler can be
found at Alpha [SA:gce-4.3.2, glibe-2.6.1 (NPTL,x86/64) or a new one can be
created following the instructions at crosstool.

39

http://www.m5sim.org/dist/current/alphaev67-unknown-linux-gnu.tar.bz2
http://www.kegel.com/crosstool/

8.2 Statistical Fault Injection in Matrix Multi-
plication

This Section presents the results from our first fault injection campaign. The
faults were injected in the matrix multiplication kernel, which was executed in
the detailed system configuration.

The fault injection campaign was composed of 2450 experiments. Each ex-
periment contained a single fault injection, whose instrumentation variables (i.e.
Where, When, What) were provided by a uniform distribution function (Python
implementation of Mersenne Twister). In Table 8.1 we see the accumulated out-
come of the experiments. Table 8.2 provides a more detailed view of the same
results. The results are also given as pie-charts in Figure 8.1.

No Diff(Activated) 1912 || 78.04%
Dift 105 4.29%

Panic 345 14.08%

Infinite 1 0.04%

No Output 4 0.16%
Stack Overflow 13 0.53%
Unimplemented 2 0.08%
Not Activated 23 0.94%

No Diff(NotActivated) | 45 1.84%
Total 2450 || 100%

Table 8.1: (MM)Minimal: Fault Injection Outcomes.

Fetch | Execute PC Register | Total %
No Diff(Activated) 8 17 6 1881 1912 78.04%
Diff 17 22 2 64 105 4.29%
Panic 13 33 60 239 345 14.08%
Infinite 0 0 0 1 1 0.04%
No Output 0 0 2 2 4 0.16%
Stack Overflow 0 0 0 13 13 0.53%
Unimplemented 0 0 2 0 2 0.08%
Not Activated 0 0 2 21 23 0.94%
No Diff(NotActivated) 38 7 0 0 45 1.84%
Total 76 79 74 2221 2450 100%
| % | 31% | 322% [3.02% | 90.65% [100% || |

Table 8.2: (MM)Detailed: Fault Injection Outcomes Per Structure.

Description of row data for Tables 8.2 and 8.1.

No Diff(Activated) The fault manifested but did not create any user-visible
error.

Diff The fault created a user-visible error but was not detected (SDC).

Panic The fault created an error that was caught by the system’s error detec-
tion mechanisms and resulted in a crash (DUE).

40

Infinite The fault created an error that had as a result the infinite execution
of the application.

No Output The fault created an error that had as a result the absence of an
output (the program terminated properly).

Stack Overflow The fault created an error that had as a result the overflow
of the stack structure.

Unimplemented The fault created an error due to an unimplemented function
of the simulator.

No Diff(NotActivated) The error did not manifest. Either because the fault
injection framework was disabled or the CPU was not in User Mode.

From Table 8.1 and Figure 8.1 (a) we can observe that almost 80% of the
injected faults were masked; that is, they did not produce any visible errors in
the user abstraction layer. The rest 18% (2% of fault were not activated!) of in-
jected faults create user-visible errors that can be split into two basic categories:
Detected Unrecoverable Errors (DUE) and Silent Data Corruption (SDC). Their
percentiles are 14% and 4% respectively; for more details on the definition of
the fault types please see Section 3.3 and [41].

The results create a strong impression that the Matrix Multiplication is
acceptably fault-tolerant, considering the absence of a reliability mechanism.
However, if we separate the results based on the structure that was corrupted,
we can see that the robustness of the structures exhibit great variance. Table
8.2 and Figures 8.1 (b), (¢), (d) and (e) provide the per structure outcomes.

We observe that the register file is the most fault-tolerant of all structures.
85% of faults produce no user-visible error. This is a result of fault masking
through register rewriting, unused registers, registers that were injected after
their last use and logical masking (e.g. an AND operation that will keep only
a part of the original value of the register). Another important aspect that
improves the robustness of the register file is the bit-width that has been selected
during coding and compilation for the application’s variables. The program
manipulates 32bit integer variables, which makes part of faults injected between
the 64th and 33rd bit ineffective.

On the other hand, the rest of the injected structures — led by the PC
register with 89% of injections resulting in user-visible errors and followed by
the Fetch and Execution stage of the pipeline — are less fault-tolerant. If we
disregard the experiments in which the faults did not manifest (notActivated),
the percentage of PC register, Fetch and Execution stage experiments that
resulted in erroneous execution equals 80% on average .

The PC register is the most likely structure to create an unrecoverable er-
ror as all of its bits are important and its value is needed on every cycle. A
corruption of the PC can create an error by moving the execution flow before
(re-executing part of the instructions®) or after the correct execution address
(skipping part of the application, e.g. the computational part) or even point at
an unmapped address space.

1Not Activated faults are faults that either were set to manifest when the CPU was op-
erating in non User Mode(not allowed by default to our framework) or out of our region of
interest

2However, this does not always result in a user-visible error

41

B No Diff(Activated)
B Diff

[panic

E Infinite

B No Output

[stack Overflow
B Unimplemented
[Not Activated

e

Figure 8.1: (MM) Behavior under fault injection (w/out notActivated). (a)
Total, (b) Fetch, (¢) Execute, (d) PC, (e) Int Registers

In the faults that were injected in the Execution and Fetch stage we can see
a similar behavior to that observed for the PC. On average, 75% of the injected
faults create a SDC or DUE error. In regard to the fetch stage, possible cor-
ruptions can either change the immediate value, registers that would be used
(source/destination) and the function or operation code, altering the instruc-
tion’s behavior or creating an unrecognizable value. As for the execution stage,
we observe that the faults mainly produce SDC on the output of the program
or panic due to accessing unmapped addresses. This can be coupled with the
nature of the code that it is used, as it contains a lot of computations that
directly influence the output and manipulates all values through load/stores in
the memory.

An outcome that we did not mention earlier is the case of infinite execution.
In this case, an injected fault corrupts a value in such a way that the application
never reaches termination. This is an example of how a fault can influence
the run-time of an application. Other possible ways in which the run-time or
performance can be effected is in the presence of fault-tolerance techniques;
fault-tolerance techniques are known to create extra overhead, something that
can be quantified through the simulator performance statistics.

You can see more graphs and data related to the results of the statistical
fault injection in the MM kernel in Appendix A.1.

8.3 Statistical Fault Injection In The AVS De-
coder

The second application with which we experimented was the AVS Decoder[27];
an H.264/ACC competitor video compression standard. Our first approach was
similar to the MM. We created a random fault injection campaign, using the
previously mentioned uniform distribution function, to get a general picture
of the application’s behavior in an unreliable environment. As a second step,
we experimented with targeted fault injection to assess the fault-tolerance of
specific functions and modules. All the injections were done in integer registers,
as the AVS Decoder lacks floating point calculations.

In the configuration of the statistical fault injection campaign a detailed out-
of-order CPU was used, combined with a 2 level cache hierarchy and a physical
memory module.

No Diff(Activated) | 1135 67%
Diff 163 9.62%
Panic 396 23.38%
Infinite 0 0%
No Output 0 0%
Stack Overflow 0 0%
Unimplemented 0 0%
Not Activated 0 0%
Total 1694 100%

Table 8.3: (AVS)Fault Injection Outcome.

43

B No Diff(Activated)
B Diff

] panic

B Infinite

B No Output

[l stack Overflow
B Unimplemented
[Not Activated

Figure 8.2: (AVS)Total Outcomes Chart

In Table 8.3 and Figure 8.2 we summarize the outcome of the random fault
injection campaign for the AVS decoder. We can see that compared to the MM
application AVS is less fault-tolerant as the percentage of incorrect executions
is almost double of MM, reaching 33% of the overall outcomes. This can be
justified by the fact that AVS is a more complex application, facilitating all of
the available registers and containing a lot of control instructions and memory
accesses that can create a DUE when corrupted. We can observe the influence
of more memory accesses in the reliability of the application by observing that
the number of errors due to attempts of accessing unmapped addresses is double
(compared to the MM number) even though we conducted less experiments with
the AVS decoder.

8.4 Targeted Fault Injection In The AVS De-
coder

Except from the random fault injection in the AVS decoder, we also executed
targeted fault injection campaigns to assess the fault-tolerance of different code
modules.

Through these experiments we wanted to assess the correctness of our as-
sumption that there exist code segments that do not require reliable execution
or at least not on their entirety. This assumption has also been presented and
evaluated by other research groups (33, 48].

For the execution of these experiments we used a “simple” CPU model cou-
pled with a physical memory module; no cache memory was simulated.

Due to timing constrains (each experiment required 4 hours even when using
the simple timing simulation objects) we only targeted reading of the inverse
transformation matrix, motion vector decoding, header segments of I,P and B
frames, the sequence header and the chroma and luma coefficients.

The fault environment we wanted to simulate was a heavily unreliable one,
where faults would be continuously injected on the targeted functions.

[n the experiments targeting the inverse transformation we injected faults in

44

the upper-left and lower-right cells of the matrices in order to prove that data
or computational parts can be categorized based on their impact in the quality
of the application’s output. As expected, the injections only affected the quality
of the produced video (SDC errors) and verified our assumption. The videos in
which the upper-left cell (containing the most significant part of information)
was corrupted exhibited worse quality compared to the same corruption in the
lower-right cell. For the quality comparison two metrics were used: Mean Square
Error (MSE) and Peak Signal to Noise Ratio (PSNR) (see Appendix A.5).

Even though the quality of the video is affected in a more negligible way
when corrupting less significant data and computations, we observed that it can
still make the output unacceptable for use. A better approach would be the use
of a default value (acquired through offline statistical sampling). In the case of
inverse transformation, when pervasive errors are present in the computation
of the lower-right cell of the matrix, it may be better to skip the computation
and use as a default value zero (0). This would affect the produced output in a
more favorable way.

Having experimented with a fault-tolerant® function, we proceeded to the
assessment of a code segment that we expected to be non-fault-tolerant: the
sequence and frame header data. In these experiments we corrupt a bit of the
read value to emulate faults during the processing of data. Even though the
header data were generally non-fault-tolerant this behavior did not cover 100%
of the cases. Due to reserved bits and/or unused field, we recorded cases where
faults did not manifest to the user visible output. Together with the header
data we tested the fault-tolerance of the chroma and luma coefficients reading
functions. These also prooved unable to sustain multiple faults.

The last segment we selected to test in our experiments is the motion vector
(MV) values. The injections on the motion vector values did not create any DUE
error, however, SDCs were produced and the quality of the image degraded due
to missing/blank macroblocks. We should note here that the periodic occurrence
of I frames in the video encoding had a positive influence on the video’s quality,
as MV values are computed using the last I frame.

For a graphical representation of the experimental outcome and additional
data, we refer you to Section A.4 of this chapter’s appendices.

3in terms that the program did not crash

45

Appendix A

A

A.1 Statistical Fault Injection in Matrix Multi-
plication — Additional Data

This section contains percentile data for the inter-fault-type outcomes.

Fetch | Execute PC Register
No Diff(Activated) 10.53% | 21.52% R.11% 84.69%
SDC 22.37% | 27.85% 2.7% 2.88%
Panic 17.11% | 41.77% | 81.08% | 10.76%
Infinite 0% 0% 0% 0.05%
No Output 0% 0% 2.7% 0.09%
Stack Overflow 0% 0% 0% 0.59%
Unimplemented 0% 0% 2.7% 0%
Not Activated 0% 0% 2.7% 0.95%
No Diff(NotActivated) | 50% 8.86% 0% 0%

Table A.1: (MM)Detailed: Inter-Fault-Type Outcomes (Percentiles)

A.2 Statistical Fault Injection in Matrix Multi-
plication — Overview of DUE errors

This section provides a more detailed overview of DUE errors and their causes
for the statistical fault injection campaign in the Matrix Multiplication program.
The possible causes for a panic (sudden termination of the program) are:

1. Attempt to access unmapped address
Attempt to execute unknown instruction

dfault (Data stream fault or sign check error on virtual address)

L

Attempt to execute unmapped address

5. unalign (Data stream unaligned reference)

46

6. iacevio (Instruction stream access violation or sign check error on PC)

Fetch | Execute | PC | Register || Total
Tried to access unmapped address 2 24 5 127 159
Attempt to execute unknown instruction 4 0 3 0 i
dfault 0 8] 88 97
Tried to execute unmapped address 2 0 27 12 41
unalign 4 1 4 12 21
iacevio 0 0 20 0 20
| Total I 13 l 33] 60 l 239 ” 345]

Table A.2: (MM)Detailed: Panic Causes

A.3 Statistical Fault Injection in AVS — Overview

of DUE errors

This section provides a more detailed overview of DUE errors and their causes
for the statistical fault injection campaign in the AVS decoder.

Tried to access unmapped address 215
Attempt to execute unknown instruction 2
dfault 98
Tried to execute unmapped address 27
unalign 30
iacevio 24
| Total 396 |

Table A.3: (AVS)Detailed: Panic Causes

A.4 Targeted Fault Injection in AVS — Detailed

Results
Ibit | 2bit | 4bit | 8bit | 16bit | 32bit | 64bit
header F F F P = = F
picture_data F F F E
[_Picture_Header F E: E :E E E IE
PB_Picture_Header F F F F I I
SequenceHeader I E —E B F F
readLumaCoeff F F F B F F r
readCromaCoefl I F I E I F
I_Picture_Header — bbv_delay .: . . :. . . IE
[_Picture_Header — time_code_flag F F F F F F

47

[_Picture_Header — marker_bit

[_Picture_Header — picture_distance

[_Picture_Header — progressive_frame

[_Picture_Header — top_field_first

[_Picture_Header — repeat _first_field

[_Picture_Header — fixed_picture_qp

I_Picture_Header — picture_qp

I_Picture_Header — reserved_bits

[_Picture_Header — loop_filter_disable

PB_Picture_Header — bbv_delay

PB_Picture_Header — picture_coding_type

,%
il
i
11

PB_Picture_Header — picture_distance

-
- mem

—
Ak

PB_Picture_Header — progressive_frame

PB_Picture_Header — top_field_first

PB_Picture_Header — repeat_first_field

PB_Picture_Header — fixed_picture_qp

PB_Picture_Header — picture_gp

PB_Picture_Header — no_forward_reference_flag

PB_Picture_Header — reserved_bits

PB_Picture_Header — skip_mode_flag

PB_Picture_Header — loop_filter_disable

SequenceHeader — profile_id

Sequenceleader — level_id

SequenceHeader — progressive_sequence

SequenceHeader — horizontal size

SequenceHeader — vertical size

SequenceHeader — chroma_format

SequenceHeader — sample_precision

SequenceHeader — aspect _ratio_information

SequenceHeader — frame_rate_code

SequenceHeader — bit_rate_lower

SequenceHeader — marker_bit

Sequenceleader — bit_rate_upper

R S——

I

- Il = N - -

- <l - NN -l

E
I

i
]
B
!
1A
1
i1
1
|
1

Loy

SequenceHeader — low_delay

SequenceHeader — marker_bit

Sequenceleader — bbv_buffer_size

SequenceHeader — reseved_bits

motion_vectors_1

motion_vectors_2

motion_vectors_3

F

i1

section and faulted bit. |

48

==« Hlll - AlIEEEE

|
|
|
|
B
|
|
|
|
|
|
8

gn in AVS
:SDC, F :Pani(:,i: Correct,

The above table presents the outcome for targeted fault injection in various
functions of the AVS Decoder. The first rows contain the outcome for injection
in all fields, if more than one, of the named function. The following rows present
the outcome for injection only on the named field of the function. Finally, the
last three rows contain the outecome for fault injection in the motion vectors.

A.5 Example Frames with SDC

This section contains images from experiments that produced Silent Data Cor-
ruptions (SDC) on the output of the AVS decoder.

Figure A.1: Example outputs for fault injection in the AVS inverse transforma-
tion function. Left: top-left cell, right: bottom-right cell. 32nd least significant
bit flipped. No error produced as the idet matrix manipulates short(16bit)
values.

Figure A.2: Example output for fault injection in the AVS inverse transfor-
mation function. Left: top-left cell, right: bottom-right cell. All bits set to
0.

49

Figure A.3: Example outputs for fault injection in the AVS inverse transfor-
mation function. Left: top-left cell, right: bottom-right cell. Row 1, least
significant bit (LSB) flipped. Row 2, 8th LSB flipped. Row 3, 16th LSB flipped.

50

Figure A.4: First 3 frames from fault injection in the AVS motion vector values.
Left faulted, right original

51

Figure A.5: Next 2 frames from the fault injection in the AVS motion vector
values. Left faulted, right original

Chapter 9

Conclusions

After the presentation of our framework and the analysis of the experiments
results, in this final Section we restate our observations, we discuss potential
future work and conclude.

9.1 Conclusion

As we mentioned in Chapter 2, the effort to enhance the performance of digital
systems through the shrinking of the transistor’s size had a negative effect in
the reliability of the ICs. The increased susceptibility of transistors to cosmic
radiation along with the incompetence of deterministic worst-case timing anal-
ysis of modern digital circuits raise a new “Wall” in the progress of electronic
systems. To overcome this obstacle we praised the need to assess the impact of
the newly introduced faults in the behavior of applications in order to create
new fault-tolerance techniques that will preserve the reliability of future systems
in acceptable levels.

In this direction the first contribution of this Thesis is the enhancement of
a modern, widely adapted, full system simulator with fault injection capabili-
ties. This new framework enables the injection of transient, intermittent and
permanent faults, in order to simulate an unreliable environment. Furthermore,
it is not limited to models covering radiation or timing induced faults, but also
facilitates an easily extensible architecture to support the adaptation of future
fault models. Through experiments our framework proved its effectiveness and
ability to work with large workloads, in whole or partially, and to produce accu-
rate injections. Moreover, the automation of the fault injection campaign and
the ability to run multiple simulations on parallel create a great environment
for experiments mitigating the effect of large simulation time per experiment.
However, this tool does not try to invalidate other techniques but to serve as a
complement to them in the design process.

An additional contribution of this Thesis is the experiment analysis we pre-
sented in Chapter 8 which validated previous research on this area [48, 23]
and gave us a better insight on the behavior of applications in an unreliable
environment. We observed the difference between the fault-tolerance of CPU
components (integer registers v.s. PC register, fetch and execution stage) and
the effect of manipulating 32bit data on a 64bit architecture. Another important

53

observation is the variance of fault-tolerance in modules of the same application.
Specifically, the targeted fault injection proved the existence of code segments
that even in the presence of a substantial amount of faults can produce results
in the margin of acceptable error. This inherent reliability can be exploited in
order to improve other metrics, for example power consumption. As proposed
in [33] reliability tags can be placed in the application code to characterize the
reliability requirements of its each segment. In that way, we can use CPUs or
computational units that function in subthreshold voltage, to execute portions
with high fault-tolerance with lower power consumption.

9.2 Future Work

As an enhancement of this work we are interested in experimenting with more
applications and creating a model of how faults affect computational patterns or
groups of similar applications. Moreover, as a next step we plan to implement
the mechanism for scheduling different code parts in processing units/CPUs
based on their reliability needs proposed at [33, 48] and to evaluate its effective-
ness in terms of performance and power consumption.

54

Bibliography

1]

2]

8]

9]

[10]

[11]

[12]

J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. Goofi: Generic
object-oriented fault injection tool, 2001.

L. Antoni, R. Leveugle, and B. Feher. Using run-time reconfiguration for
fault injection in hardware prototypes. Defect and Fault-Tolerance in VLSI
Systems, IEEE International Symposium on, 0:245, 2002.

E. Argollo, A. Falcon, P. Faraboschi, M. Monchiero, and D. Ortega. Cotson:
infrastructure for full system simulation. SIGOPS Oper. Syst. Rev., 43:52—
61, January 2009.

J Arlat, M. Aguera, L. Amat, Y. Crouzet, JC. Fabre, JC. Laprie, E. Mar-
tins, and D. Powell. Fault injection for dependability validation: A method-
ology and some applications. IEEE Trans. Softw. Eng., 16:166—182, Febru-
ary 1990.

Jedec Solid State Technology Association. Measurement and reporting of
alpha particles and terrestrial cosmic ray-induced soft errors in semicon-
ductor devices.

A. Avizienis, JC. Laprie, B. Randell, and C. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 1:11-33, 2004.

J. C. Baraza, J. Gracia, D. Gil, and P. J. Gil. A prototype of a vhdl-
based fault injection tool: description and application. J. Syst. Archit.,
47:847-867, April 2002.

B. Bastien. A technique for performing fault injection in system level simu-
lations for dependability assesment. Master’s thesis, University of Virginia.

R. Baumann. Soft errors in advanced computer systems. Design Test of
Computers, IEEFE, 22(3):258 — 266, may-june 2005.

A. Benso, P. Prinetto, M. Rebaudengo, and M. Sonza Reorda. Exfi: a
low-cost fault injection system for embedded microprocessor-based boards.
ACM Trans. Des. Autom. Electron. Syst., 3:626—634, October 1998.

N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and S. Reinhardt. The
mb simulator: Modeling networked systems. IEEE Micro, 26:52—60, 2006.

D. Brah and J. A. Abraham. Functional testing of microprocessors. IEEE
Trans. Comput., 33:475-485, June 1984.

55

[13]

[14]

[15]

J. Carreira, H. Madeira, and J. Gabriel Silva. Xception: Software fault
injection and monitoring in processor functional units, 1995.

P. Civera, L. Macchiarulo, M. Rebaudengo, M.S. Reorda, and A. Violante.
Exploiting fpga for accelerating fault injection experiments. In On-Line
Testing Workshop, 2001. Proceedings. Seventh International, 2001.

P. Civera, L.. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, and M. Vi-
olante. Exploiting fpga for accelerating fault injection experiments. On-
Line Testing Workshop, IEEE International, 0:0009, 2001.

M5 Community. M5 simulator, http://www.mbsim.org.

Compaq. Alpha 21264 microprocessor data sheet, revision 1.0 edition, 1999.
EC-R4ACFA-TE.

E. Cutringht, T. DelLong, and B. Johnson. Generic processor fault model.
Technical report, University Of Virginia, 2003.

J. Engblom. Full-system simulation technology, 2003.

L. Entrena, C. Lopez, and E. Olias. Automatic generation of fault-tolerant
vhdl designs in rtl. Forum for Design Languages.

G. Georgakos, P. Huber, M. Ostermayr, E. Amirante, and F. Ruckerbauer.
Investigation of increased multi-bit failure rate due to neutron induced seu
in advanced embedded srams. In VLSI Circuits, 2007 IEEE Symposium
on, pages 80 —81, 2007.

K. Goswami, R. Iyer, and L. Young. Depend: A simulation-based envi-
ronment for system level dependability analysis. IEEE Transactions on
Computers, 46:60—74, 1997.

J. Gramacho. Analyzing the effects of transient faults into applications.
Master’s thesis, Universitat Autonoma de Barcelona.

J. Gramacho. Analyzing the effects of transient faults into applications.
Master’s thesis, Universitat Autonoma de Barcelona, 2009.

W. Hoarau, S. Tixeuil, and F. Vauchelles. Fail-fci: Versatile fault injection.
Future Generation Computer Systems, 23(7):913 — 919, 2007.

Jr. Hopkins, A.L., III Smith, T.B., and J.H. Lala. Ftmp a highly re-
liable fault-tolerant multiprocess for aircraft. Proceedings of the IFEE,
66(10):1221 — 1239, oct. 1978.

http://www.avs.org.cn/en/. Audio video standard.

Arlat J. Validation de la surete de fonctionnement par injection de fautes.
Master’s thesis, INP Toulouse.

E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. Fault injection
into vhdl models: the mefisto tool. In Fault-Tolerant Computing, 1994.
FTCS-24. Digest of Papers., Twenty-Fourth International Symposium on,
pages 66 —75, June 1994.

56

http://www.m5sim.org
http://www.avs.org.cn/en/

[30]
[31]

[32]

[33]

B. Johnson. Design and Analysis of Fault-Tolerant Digital Systems.

G. A. Kanawati, N. A. Kanawati, and J. A. Abraham. Ferrari: A flexible
software-based fault and error injection system. IEEE Transactions on
Computers, 44:248-260, 1995.

WL. Kao, Iyer R., and D. Tang. Fine: A fault injection and monitoring
environment for tracing the unix system behavior under faults. IEEE Trans.
Software Eng., 19(11):1105-1118, 1993.

G. Karakonstantis, N. Bellas, C. Antonopoulos, G. Tziantzioulis, V. Gupta,
and K. Roy. Significance-driven computation on next-generation unreliable
platforms. In IEEE Design Automation Conference (DAC), 2011.

J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo. Using
heavy-ion radiation to validate fault-handling mechanisms. IEEE Micro,
14:8-11, 13-23, 1994.

A. Kleen. Porting linux to x86-64. Technical report, SUSE Labs, 2001.

P. Kudva, J. Kellington, Pia N. S., R. Mcbeth, J. Schumann, and R. Kalla.
Fault injection verification of ibm power6 soft error resilience.

R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert. Statistical fault
injection: quantified error and confidence. In Proceedings of the Conference
on Design, Automation and Test in Furope, DATE ’09, pages 502-506,
3001 Leuven, Belgium, Belgium, 2009. European Design and Automation
Association.

Xiaodong Li, Sarita V. Adve, Pradip Bose, and Jude A. Rivers.
Architecture-level soft error analysis: Examining the limits of common
assumptions. In Proceedings of the 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN '07, pages 266275,
Washington, DC, USA, 2007. IEEE Computer Society.

H. Madeira, F. Moreira, and J. Gabriel Silva. Rifle: A general purpose
pin-level fault injector, 1994.

P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35:50-58, 2002.

S. Mukherjee. Architecture Design for Soft Errors.

S. Mukherjee, J. Emer, and S. Reinhardt. The soft error problem: An
architectural perspective. High-Performance Computer Architecture, In-
ternational Symposium on, 0:243-247, 2005.

S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin. A sys-
tematic methodology to compute the architectural vulnerability factors for
a high performance microprocessor. In In International Symposium on
Microarchitecture, pages 29—42, 2003.

57

[44]

[45]

[46]

[49]
[50]

[51]

[52]

[53]

J. H. Patel and L. Y. Fung. Concurrent error detection in alu’s by recomput-
ing with shifted operands. IFEE Transactions on Computers, 31:589-595,
1982.

J. H. Patel and L. Y. Fung. Concurrent error detection in multiply and
divide arrays. IEEE Transactions on Computers, 32:417-422, 1983.

D. Priore. Circuit implementation of a 600mhz superscalar risc micro-
processor. In ICCD ’98: Proceedings of the International Conference on
Computer Design, page 104, Washington, DC, USA, 1998. IEEE Computer
Society.

C. Rousselle, M. Pflanz, A. Behling, T. Mohaupt, and H. Vierhaus. A
register-transfer-level fault simulator for permanent and transient faults in

embedded processors. Design, Automation and Test in Furope Conference
and FErhibition, 0:0811, 2001.

S. Roy, T. Clemons, S. M. Faisal, K. Liu, N. Hardavellas, and P. Srinivasan.
Elastic fidelity: Trading-off computational accuracy for energy reduction.
Technical report, Northwestern University, 2011.

H. Seungjae, K.G. Shin, and H.A. Rosenberg.

V. Sieh and O. Tschache. Verify: Evaluation of reliability using vhdl-models
with embedded fault descriptions, 1997.

R.R. Some, W.S. Kim, G. Khanoyan, L. Callum, A. Agrawal, and J.J. Bea-
han. A software-implemented fault injection methodology for design and
validation of system fault tolerance. In Dependable Systems and Networks,
2001. DSN 2001. International Conference on, pages 501 —506, 2001.

V. Sridharan and D. Kaeli. Using hardware vulnerability factors to enhance
avf analysis. In Proceedings of the 37th Annual International Symposium
on Computer Architecture.

V. Sridharan and D.R. Kaeli. Eliminating microarchitectural dependency
from architectural vulnerability. In High Performance Computer Architec-
ture, 2009. HPCA 2009. IEEE 15th International Symposium on, pages
117 128, 2009.

D.T. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and R K. Iyer. Nf-
tape: a framework for assessing dependability in distributed systems with
lightweight fault injectors. In Computer Performance and Dependability
Symposium, 2000. IPDS 2000. Proceedings. IEEE International, 2000.

T. Tsai and R. Iyer. Ftape: A fault injection tool to measure fault toler-
ance,. In Computing in aerospace, San Antonio, TX.

J.J. Yi, L. Eeckhout, D.J. Lilja, B. Calder, L.K. John, and J.E. Smith.
The future of simulation: A field of dreams. Computer, 39(11):22 —29, nov.
2006.

C. Yount. The automatic generation of instruction-level error manifesta-
tions of hardware faults: a new fault-injection model. PhD thesis, Pitts-
burgh, PA, USA, 1993.

58

[58] C. Yount and D. Siewiorek. A methodology for the rapid injection of tran-
sient hardware errors. IEEE Trans. Comput., 45(8):881-891, 1996.

[59] C. R. Yount and D. P. Siewiorek. Software-implemented fault injection of
transient errors.

[60] H. Ziade, R. Ayoubi, and R. Velazco. A survey on fault injection techniques,
2003.

59

