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Π ερ ίλ η ψ η

Καθώς οι τεχνολογίες των Ηλεκτρονικών Υπολογιστών εξελίσσονται, καινούργια 
προβλήματα εμφανίζονται μαζί τους. 'Ενα απο τα αναδυόμενα προβλήματα είναι η 
μείωση της αξιοπιστίας των ηλεκτρονικών κυκλωμάτων. Η αύξηση της ευαισθη­
σίας των τρανζίστορ στη κοσμική ακτινοβολία, η διακυμάνσεις των ηλεκτρικών 
τους χαρακτηριστικών λόγο αστοχιών στη διαδικασία παραγωγής καθώς και η με­
ίωση της αποδοτικότητας της παραγωγής ηλεκτρονικών κυκλωμάτων αποτελούν 
καίρια ζητήματα προς επίλυση ώστε να διατηρήσουμε την αξιοπιστία των μελλοντι­
κών συστημάτων στα επιθυμητά επίπεδα. Σε αυτή τη κατεύθυνση δημιουργήσαμε 
ένα περιβάλλον εισαγωγής σφαλμάτων για την αξιολόγηση αξιόπιστης λειτουργίας 
υπολογιστικών συστημάτων. Παράλληλα, πειραματιστήκαμε με δύο εφαρμογές και 
παραθέτουμε μια εισαγωγή στο πώς επηρεάστηκε η συμπεριφορά τους απο σφάλ­
ματα υλικού.
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Κεφάλαιο 1

Εισαγωγή

Τις τελευταίες δεκαετίες γίναμε μάρτυρες της ραγδαίας ανάπτυξης των επιδόσε­
ων και δυνατοτήτων των ηλεκτρονικών υπολογιστών αλλά και γενικότερα όλων 
των ψηφιακών συστημάτων. Οι συνεχείς εξελίξεις στην τεχνολογία της λιθογρα­
φίας εξακολουθούν, τα τελευταία τριάντα χρόνια, να μειώνουν το μέγεθος των 
τρανζίστορ κατα το μισό κάθε 18 μήνες δημιουργώντας ένα πλεόνασμα σε κάθε 
νέα γενιά. Το πλεόνασμα αυτό χρησιμοποιείται για την υλοποίηση πιο περίπλο­
κων και αποδοτικών αρχιτεκτονικών, που ταυτόχρονα λειτουργούν σε υψηλότερες 
συχνότητες και μειωμένη τροφοδοσία.

Αυτή όμως η πρόοδος δεν γίνεται χωρίς την εμφάνιση προβλημάτων. Καθώς 
το μέγεθος των τρανζίστορ μίκρυνε δευτερεύοντα φαινόμενα που δεν επηρέαζαν 
τις προηγούμενες τεχνολογίες μετατράπηκαν στα κυρίως εμπόδια για περαιτέρω 
βελτίωση των ψηφιακών συστημάτων. Η δυσανάλογη επιτάχυνση των τρανζίστορ 
σε σχέση με τις δυναμικές μνήμες τυχαίας προσπέλασης δημιούργησε το επονομα­
ζόμενο “memory wall” , ενώ η συνεχής συσσώρευση τους ανέβασε την ενεργειακή 
πυκνότητα σε δυσβάσταχτα επίπεδα.

Πέρα των παραπάνω προβλημάτων, ένα ακόμη —ιδιαίτερα σημαντικό— πρόβλη­
μα είναι η μείωση της αξιοπιστίας των τρανζίστορ. Η μείωση των διαστάσεων τους 
έκανε τα ηλεκτρικά στοιχεία πιο ευάλωτα σε λάθη λόγω κοσμικής ακτινοβολίας. 
Παράλληλα, οι διαφορές λόγω ανακρίβειας στη διαδικασίας εκτύπωσης τους έχει 
επιπτώσεις στα ηλεκτρικά χαρακτηριστικά τους με αποτέλεσμα να συμπεριφέρονται 
πλέον περισσότερο ως τυχαίες μεταβλητές, αχρηστεύοντας την τεχνική της ανάλυ­
σης χρονισμού χειρότερης περίπτωσης. Ακόμη, η αποδοτικότητα της διαδικασίας 
παραγωγής, δηλαδή πόσα απο τα παραγόμενα συστήματα τελικά θα βγουν στην 
αγορά, γίνεται πιο περίπλοκη. Συγκεκριμένα, καθώς περισσότερα στοιχεία συν­
θέτουν το τελικό μας σύστημα, μεγαλώνει και η πιθανότητα να εμφανιστεί αστοχία 
ή ανακρίβεια σε κάποιο απο αυτά. Η τάση αυτή μπορεί να οδηγήσει στο μέλλον, 
για λόγους κόστους, να δίνονται στη κατανάλωση συστήματα που μόνο ένα μέρος 
αυτών θα έχουν αξιόπιστη λειτουργία. Διαβλέποντας ότι τα προβλήματα αυτά θα 
γίνουν πιο έντονα με τις επόμενες γενιές υπολογιστών και η προοπτική της αύξησης 
των σφαλμάτων σε τέτοιο βαθμό ώστε ακόμη και συστήματα στα οποία δεχόμαστε 
να παρουσιάζονται λάθη (π.χ. προσωπικός υπολογιστής) να γίνουν υπερβολικά α­
ναξιόπιστα, η ερευνητική κοινότητα στράφηκε τα τελευταία χρόνια στην αναζήτηση 
βιώσιμων λύσεων.

Προϋπόθεση για τη δημιουργία και παραγωγή λύσεων είναι η ανάλυση της ε­
πίδρασης των σφαλμάτων υλικού στις εφαρμογές που θα εκτελεστούν σε αυτό. Με
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τη σειρά του αυτό, προϋποθέτει την ύπαρξη κατάλληλων μετρικών για να ποσοτικο- 
ποιήσουμε την αξιοπιστία ενός συστήματος, εργαλεία τα οποία θα μας επιτρέψουν 
τον πειραματισμό με μη-αξιόπιστα περιβάλλοντα εκτέλεσης, αλλά και πρωτότυπα 
μηχανισμών επανάκαμψης από/αποφυγής σφαλμάτων. Σε αυτό το σημείο είναι και 
η συνεισφορά αυτής της διπλωματικής εργασίας.

Το προϊόν αυτής της εργασίας είναι η επέκταση ενός σύγχρονου, ευρέως δια­
δεδομένου προσομοιωτή πλήρων-συστημάτων (ακριβείας-κύκλου) με ένα σύνολο 
δομών και συναρτήσεων που επιτρέπουν την εισαγωγή σφαλμάτων στις δομές του. 
Ο επιλεγμένος προσομοιωτής (M5) παρέχει τη δυνατότητα προσομοίωσης μονο- 
πύρηνων/πολυπύρηνων συστημάτων, καθώς και συστήματος-συστημάτων. Η νέες 
δυνατότητες εισαγωγής σφαλμάτων στις δομές του δεν υπόκεινται σε κανέναν πε­
ριορισμό στον αριθμό, το χώρο ή το χρόνο. Υποστηρίζονται η εισαγωγή σφαλ­
μάτων σε 2 μοντέλα (λειτουργικό και αναλυτικό) της Μονάδας Επεξεργασίας Δ ε­
δομένων — συγκεκριμένα στο φάκελο καταχωρητών, το μετρητή προγράμματος 
και τα στάδια προσκόμισης, αποκωδικοποίησης και εκτέλεσης της εντολής — και 
στα περιεχόμενα της φυσικής μνήμης.

Όσον αφορά το τρόπο που θα αλλοιωθεί η τιμή του επιλεγμένου στοιχείου, 
το εργαλείο μας προσφέρει την επιλογή μεταξύ άμεσης ανάθεσης κάποιας τιμής, 
εναλλαγής ενός bit στη συμπληρωματική του τιμή, λογική διάζευξη της τιμής του 
στοιχείου με κάποια σταθερά καθώς και την ανάθεση σε όλα τα bit της δομής την 
τιμή 1 ή 0. Τα σφάλματα αυτά μπορεί να οριστούν ως παροδικά, μόνιμα ή στιγμιαία.

Μετά το πέρας της υλοποίησης της επέκτασης του προσομοιωτή συνεχίσαμε 
με πειραματισμό χρησιμοποιώντας το καινούργιο εργαλείο. Πειραματιστήκαμε με 
2 εφαρμογές: μια εφαρμογή πολλαπλασιασμού πινάκων 64x64 και τον αποκωδικο- 
ποιητή βίντεο AVS.

Τα συμπεράσματα αυτών των πειραμάτων ήταν, αφενός ότι δεν φανερώνον­
ται όλα τα λάθη στο επίπεδο της διεπαφής του χρήστη· δηλαδή αρκετά σφάλματα 
επικαλύπτονται/χάνονται και αυτό διότι υπάρχει επαναχρησιμοποίηση των κατα- 
χωρητών και ‘επιθετική’ προσκόμιση και εκτέλεση εντολών με αποτέλεσμα να μη 
χρησιμοποιούνται όλα τα αποτελέσματα που παράγονται/επηρεάζονται απο σφάλ­
ματα. Αφετέρου, ότι υπάρχουν τμήματα σε προγράμματα τα οποία μπορούν να 
υποστούν σφάλματα χωρίς να διακόπτεται η εκτέλεση ή η αλλοίωση των δεδο­
μένων να μην τα καθιστά άχρηστα (π.χ. σφάλματα στο κάτω-δεξί κελί του πινάκα 
iDCT στον AVSA.2). Η τελευταία παρατήρηση έχει ιδιαίτερη σημασία καθώς μπο­
ρεί να μας βοηθήσει στην επίλυση του ενεργειακού προβλήματος, “power wall” . 
Συγκεκριμένα, σε συνδυασμό με μια αρχιτεκτονική που θα προσφέρει ανοχή σε 
σφάλματα χρονισμού θα μας έδινε τη δυνατότητα να εκτελούμε τέτοιους κώδι­
κες σε Μονάδες Επεξεργασίας Δεδομένων που λειτουργούν σε τιμές τροφοδοσίας 
κάτω των προδιαγραφών, το οποίο δημιουργεί σφάλματα χρονισμού στο κύκλωμα 
αλλά παράλληλα εξοικονομεί ενέργεια (βλέπε συνάρτηση 1.1).

Power =  Capacitance *  Frequency *  Voltage2 (1.1)

4



C hapter 2

Introduction

During the last four decades we witnessed an enormous growth in the per­
formance and functionality of processors. Advances in fabrication technology 
conveyed us from 10^m features width in 1971 to today’s 32nm, a trend that 
led to the doubling of processors’ transistor count every two years — colloqui­
ally called Moore’s law. This surplus of transistors enabled computer architects 
to design more sophisticated circuits which, at the same time, functioned at a 
higher frequency and lower voltage.

On the other hand, secondary phenomena that had little or no effect on 
previous technologies were exacerbated as transistor features shrank creating 
new obstacles that halt performance [9]. The disproportional speed-up of tran­
sistors, compared to that of DRAMs, created the so called “memory wall” and 
their continuous accumulation increased circuit power density to an unbearable 
degree, a phenomenon called “power wall” .

Apart from the above problems, as transistors approached the nanometer 
threshold they became more vulnerable to radiation-induced faults (cosmic par­
ticles that enter the atmosphere). Furthermore, as their features size decreases, 
the problems from process variations increase. The electric characteristics of 
transistors now behave more like random variables making a deterministic worst 
case timing analysis ineffective. As the impact of physical variables becomes 
more intense, researchers are working on building reliable systems with unreli­
able components to guarantee the correct function of modern electronic devices 
under such constraints. Another important aspect, though not strictly techni­
cal, is the decrease of the process yield. Accumulation of more components for a 
single system means that there is a greater chance part of it to contain corrup­
tions, which will affect its output’s reliability. Currently, this problem is solved 
by disabling such modules, however, this is inefficient in both economic and 
performance terms. Except from the direct benefits from technological advance­
ments in this area other areas may be benefit too; for example, fault-tolerant 
architectures would enable the use of processors in sub-threshold voltage levels 
to improve power efficiency.

Reliable execution on unreliable components is the next “wall” electronic 
system designers should overcome to further improve computers performance. 
To effectively attack this problem we need to perform a thorough analysis of 
the way hardware faults manifest to errors in the different abstraction layers of 
computer systems. The analysis and categorization of the behavior of faults will
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enable the creation of a hierarchy of targets/modules that need to be enhanced 
to achieve robustness.

In order to expand our understanding on the aforementioned problems new 
tools need to be created or the existing ones should be augmented to support the 
new constrains and physical variables. The main contribution of this Thesis is 
in this direction. In order to study the behavior of applications in the presence 
of transient faults, we developed a fault injection framework on top of M5 (a 
full system, cycle-accurate simulator) as we could not find an existing tool to 
cover our needs.

We choose to work with a software simulator for the perspective and at­
tributes it provides. By using a simulator we are able to study architectures 
and configurations not yet implemented and at the same time exercise complete 
control over the nature of a fault; that is, the location and timing of the mani­
festation of the fault, as well as its effect on the affected module’s value. Also, 
the provided controllability in experimentation enables the partial examination 
of a program’s execution for a more thorough analysis of its behavior on an 
unreliable environment.

The other contribution of this Thesis is the experimental evaluation of two 
applications on an unreliable environment: an 64x64 matrix multiplication ker­
nel and the AVS decoder.

This document is structured in two basic blocks: the first one introduces the 
theoretical background and the second describes the framework and outlines the 
experimental evaluation.

In the first part, a brief introduction in fault-tolerance and fault injection is 
given in Chapters 3 and 4 . In Chapter 5 we discuss the benefits of full system 
simulation.

In the second part, starting at Chapter 6, we give an overview of the fault 
model in which this work was based upon. Chapters 7 and 8 discuss the im­
plementation details of the framework and an analysis of the results obtained 
using it, in respect.

Finally, Chapter 9 presents the conclusion of this work and directions for 
future work.
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C hapter 3

Fault Tolerant System s

In the previous section we discussed the need for fault-tolerant design of future 
systems. A system is fault-tolerant if it is capable of performing its specified 
tasks in the presence of faults, either at the hardware or at the software level.

For example, software bugs need to be overcomed for continuing correct 
execution and hardware module failures should not inhibit the system’s ability 
for correct execution. By correct we are not refering only to error free results, 
but also on results that maintain a small, user/application defined, margin of 
error.

Fault tolerance is an important feature of a system as it ensures its depend­
ability; it is, as stated in [6], the ability to deliver service that can justifiably be 
trusted.

3.1 D ependability A ttributes
Dependability can be considered as the integrating concept of the following 
attributes [6]:

R eliab ility  : continuity of correct service.

A vailab ility  : readiness for correct service.

Safety  : absence of catastrophic consequences on the user’s environment. 

M ain tain ab ility  : ability to undergo modifications and repairs.

Following, we will see in more details the two main attributes of dependability 
[41], re liab ility  and av ailab ility .

We can define reliab ility  (R) as the probability that a component will not 
experience an error, visible to the defined abstraction’s outer scope, in the time 
interval (0,t],

R(t) =  P (T  >  t),

where T  is a random variable expressing the component’s lifetime.

(3.1)
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The reliability of a system (i.e. an accumulation of similar components) of 
N  modules in a period of time (0, t] is given by the fraction of the unfaulted 
components until time t to the total amount of components.

R (t) Nunfaulted(t) Ntotal — N faulted(t) 1 Nfaulted(t) (32)
R n  (t) =  -----N----------= ---------- N-------------- =  1 ------- N-------- , (32)

Ntotal Ntotal Ntotal

where N ^ t a  is the total number of components, Nunfaup ed(t) is the total 
number of components that have not experienced an error in the time interval 
(0,t] and Nfaulted(t) is the total number of components that have experienced 
an error in the time interval (0, t].

As h azard  ra te  HN (t) we define the probability that a system of N  com­
ponents, that have not presented a fault till time t, will present an error in the 
time interval Δt.

Hn  (t) dt (Nfaulted(t)) 
Nunfaulted

** (Nfa,ulted(t)) 
Ntotal 

Nunfaulted 
Ntotal

By combining equation 3.3 and the derivative of equation 3.2,

we get,

dt (r n  (t))
dt (N faulted(t)) 

Ntotal

H n  (t) -  dt (r n  (t)) 
R n  (t)

which we can transform to equation 3.6,

(3.3)

(3.4)

(3.5)

R n (t) =  e—  Hn(t) dt, (3.6)

so as to represent reliab ility  in terms of the h azard  r a te .
The exponential relationship between a system’s reliability and time, as 

shown in equation 3.6, is known as the exponential failure law and enables 
us to compute the overall reliability of a system with N components by the 
following equation.

N
R N(t) =  Π  Ri(t) =  e- ( P = i(R Hi(t) dt))t (3.7)

i= 1

Finaly, availab ility  can be defined as the probability that the system will 
function correctly at a given time.

. , , , System up-time
Availability = ------------- ---------  (3.8)

System overall time
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3.2 D ependability T hreats
When the dependability of a system is compromised, we say a failure has oc­
curred; that is, the desired service of the system deviates from correct function. 
A failure occurs when an error is presented in a system component. An error 
is a divergence of a component to an incorrect state. The cause of an error is 
called a fault and with that we have formed the chain of dependability threats. 

The connection between the dependability threats is depicted in figure 3.1.

„ activation _ _  causation
^  Fault >  Error >  Failure

Figure 3.1: Chain of dependability threats [6].

Faults can be categorized according to their nature in three basic categories[41]:

P erm an en t: Permanent faults are present indefinitely in the system until cor­
rective measures are taken.

In term itten t: Intermittent faults appear, disappear and then reappear in the 
system’s life time and can be early indications of permanent faults.

T ran sient: Transient faults appear and disappear without repetition.

A brief correspondence of different hardware faults to fault types can be seen 
in table 3.1.

Fault Types
Permanent Transient

Electro-migration V
Metal Stress Voiding V
Gate Oxide Wear-out V
Hot Carrier Injection V

Hardware faults Negative Bias Temperature Instability V
Radiation V

Transistor Variability V
Thermal Cycling V

Erratic Fluctuation in minimum voltage V

Table 3.1: Hardware faults and their type

3.3 Faults Im pact on a  System  - An Architec­
tural Perspective

Whether a fault manifests to a failure depends on whether the error will be 
masked/corrected or not. Figure 3.2 shows all the possible outcomes of an error 
occurrence by an architectural perspective.
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Figure 3.2: Faults impact [42, 43, 41]

To find the possible outcomes and the impact of a fault on a system’s be­
havior we must first consider if the faulty part (bit) is used by the system for 
a particular service. If it is not used, then the fault is called benign and pro­
duces no error, otherwise we have to further consider if it is covered by any 
error-correction mechanism.

If the faulty part is covered by a detection and correction mechanism then 
the fault is corrected and produces no error. In case of no protection mechanism 
or a detection-only mechanism then we need to evaluate if the error influences 
the output of the particular service.

If no error protection covers the erroneous part but it does not influence the 
system’s output then the fault is benign and no error occurs, but in the case 
that the output is influenced then we have a Silent Data Corruption (SDC).

On the other hand, if the fault is covered by detection-only mechanism then 
again we observe the influence that it has on the system’s output. If the output 
is not altered we have a False Detected Unrecoverable Error (False DUE), else, 
if it affects the system’s output we have a True Detected Unrecoverable Error 
(True DUE).

True Detected Unrecoverable Error can be further divided into System-kill 
and Process-kill faults based on whether the error can be isolated in a single 
process or it requires a system wide restart.

3.4 Q uantitative A nalysis of ^arch Reliability
As the reliability assessment of a system is crucial and influences decisions in 
the design phase of a project, research has been made in producing quantitative 
measures of it.

The most well known measures of system’s reliability are Mean Time to Fail­
ure (M TTF), Failure in Time (FIT) and Mean Time between Failures (M TBF)
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M TTF expresses the mean time between two faults (i.e. if a module presents a 
fault every 2 years its M TTF is 2 years).

M T T F n  =  N 1 , (3.9)
^ i=0 M T T F i

Due to the complexity of computing the M TTF for a number of components 
many choose to use FIT  which is additive. One (1) FIT  represents a fault in a 
billion (109) hours, so if we have two components and the first one has a FIT  of 
10 and the other a FIT  of 20 then their overall FIT  is 30.

[41] .

N
F IT n  =  ^  f i t

i= 0
the relation between M TTF and FIT is:

(3.10)

M T T F i
109

in years F I T  x 24 hours x 365 days ( )

M TBF expresses the mean time between the occurrence of two faults. To com­
pute M TBF we need to know the Mean Time to Repair (MTTR).

M T B F  =  M T T F  +  M T T R  (3.12)

In the recent literature additional metrics have been proposed for use in eval­
uating a structure's reliability. In [43] and [42] the Architectural Vulnerability 
Factor (AVF) was introduced. AVF is defined as “the fraction of time an upset 
in a cell can cause a visible error in the final output of the program” . AVF 
integrates both the application and ^architecture vulnerability factors and does 
not provide any detail on the degree that a particular ^architecture or appli­
cation affects the vulnerability factor. An effort to separate these two factors 
into distinct metrics was made in [53] and [52] by introducing the Program 
Vulnerability Factor (PVF) and Hardware Vulnerability Factor (HVF).
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C hapter 4

Fault Injection

After introducing the general concept of dependability/fault-tolerance of a sys­
tem in this chapter we will present fault injection (FI) a technique to evaluate 
it.

Fault injection can be defined as the process of introducing and instrument­
ing faults/disruptions in a system for study of its behavior in the presence of 
faults. FI is an essential complement to other techniques used for validation of 
systems' dependability.

To enhance our confidence in the validation process of a system, it is neces­
sary to use a variety of different methods to thoroughly examine and ensure a 
good level of dependability. Fault injection allows to confirm the structure and 
calibrate the parameters of existing fault-tolerance models or to develop new 
fault-tolerance models and validate them: for example x% of errors of type y 
are detected [28].

Based on the phase of a project, fault injection is employed using differ­
ent techniques and layers of abstraction. During the design phase, simulation 
is mainly used for assessing the dependability of the system, whereas at the 
prototype phase physical fault injection is preferred.

4.1 A Fault Injection Taxonom y
This section serves as a brief taxonomy of fault injection techniques. The basic 
techniques will be presented along with related work and the advantages and 
disadvantages of each approach [60]. The first part classifies techniques based 
on the method used for the injection and the second enumerates the layers of 
abstraction at which the fault can be injected.

4.1 .1  P h y sica l F au lt In jection

Physical fault injection methods are using the actual hardware of the System 
Under Test (SUT) and the injection is done by augmenting the system with 
special hardware that enables the introduction of faults. Such techniques can 
be further divided to those that have direct contact with the SUT and those 
that don’t.
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Fault injection with contact is performed by producing voltage and current 
disturbances to the system’s external pins. The pins can be manipulated by 
either using active probes or using sockets. According to the first method, pin- 
level active probes are attached in the SUT pins in order to directly create 
stack-at faults or to short-circuit them to create bridging faults. According to 
the second method, injection is performed by inserting a socket between the 
targeted module and its circuit board. The socket enables the creation of stack- 
at, open or more complex logical faults like inverted, XORed, ANDed pins or 
previous value of them.

For fault injection without contact special equipment is needed and it mainly 
targets transient fault injection. To create hardware faults without contact one 
can employ radioactive isotopes, neutron beams, proton beams or other means 
for creating electromagnetic interferences in the SUT. Radioactive isotopes such 
us americium-241, uranium-238, californium-252 or thorium-232 that emit al­
pha particles can be used for measuring the impact of alpha particle induced 
errors, whereas for neutron induced soft errors one can use energetic proton or 
neutron beam s[36]. A list of locations where one can find the equipment for 
such experiments can be found at the JED EC  standard No.89[5].

The main advantage of physical fault injection is that it uses the original 
hardware without changes and experiments are executed at real-time enabling 
the experimentation with large workloads and unaltered applications. Moreover, 
it can inject faults in places that are hard to reach by other means without 
changing the SU T ’s hardware, thus it is one of the less-intrusive FI methods.

On the other hand, these methods have low portability over systems, requir­
ing new design and installation for each platform. The use of special purpose 
hardware that requires large funding and can be found in limited places makes 
difficult the broad adaptation of such techniques by the research community. 
In addition, physical fault injection lacks in terms of controllability and observ­
ability; especially in methods without contact it is extremely hard to create 
targeted and precise injection.

Physical fault injection was one of the first methods used to assess the de­
pendability of a system. A lot of tools and techniques have been developed 
during the past decades. Some of them are:

R I F L E [39] A pin-level fault injection system that employs the socket method 
and was developed at the University of Coimbra for dependability evalu­
ation.

M E S S A L IN E [4] A pin-level fault injection system developed at LAAS-CNRS 
that uses both socket and probe methods.

F I S T [34] Fault injection system developed at the Chalmers University of Tech­
nology for study of transient faults using heavy-ion radiation.

F T M P [26] A fault-tolerant processor created by NASA which has also been 
evaluated using fault injection techniques.

4 .1 .2  F au lt E m u lation

In Fault Emulation techniques (a.k.a SWIFI, Software Implemented Fault In­
jection) faults are introduced through changes in the software, so as to emulate
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corruptions from hardware faults, while executing in the actual SUT. Fault em­
ulation techniques can be divided into compile-time techniques and run-time 
techniques, based on the time the injection is performed.

Compile time fault injection modifies the source code or assembly instruc­
tions of the software under evaluation during the compilation process in order 
to emulate hardware and software (bugs) faults.

On the other hand, in run time fault injection the application's execution 
is halted through timers, traps/exceptions or code is injected to perform fault 
injection in the hardware structures that are accessible through software. When 
using timers (hardware or software) a timeout occurs at a specific time and 
control is given to system software that performs the fault injection. Similarly, 
traps or exceptions are used to specify the timing of fault injection based on 
events (e.g. specific instruction execution or memory address access). Finally, 
the last approach, code injection, inserts instructions in parts of the source code 
at run-time to emulate hardware faults.

Fault emulation fault injection has the advantage of been fast (execution at 
real time) and use the actual SUT. Also, it enables targeting parts of applica­
tions or operating systems, which is hard to do with other techniques. Another 
advantage of software based techniques is the high controllability that they pro­
vide and the repeatability of the experiments.

However, fault emulation is an intrusive method both in modifying the orig­
inal source code and in indirectly affecting the applications’ timing. The execu­
tion of the fault injection and control framework on the same system can disrupt 
the statistics and observations of the experiment. In addition, software-based 
methods can only access structures that are available through the ISA, thus 
restricting the injection capabilities.

Fault emulation was the prevaling choice for fault injection during the 90’s. 
Some of the most widely accepted frameworks are:

F E R R A R I [31] A framework for fault emulation using traps and systems calls 
developed at the University of Texas, Austin.

F I N E [32] A run-time fault injection and monitoring environment for the Unix 
OS developed at the University of Illinois, Urbana Champaign.

F T A P E [55] A fault injection framework for assessing a system’s fault tolerance 
developed at the University of Illinois, Urbana Champaign.

J I F I [51] An application-level fault injection framework developed for use on 
a fault tolerant parallel processing cluster at the California Institute of 
Technology.

X C E P T IO N [13] A software fault injection and monitoring environment that 
employs the debugging and performance monitoring capabilities of mi­
croprocessors for fault injection; developed at the University of Coimbra, 
Polo II.

D O C T O R [49] An integrated software fault injection environment developed 
at the University of Michigan with emphasis in portability.

E X F I [10] A SWIFI environment for fault coverage evaluation on embedded 
microprocessor-based boards that relies on the ’’ Trace Exception Mode” 
of multiprocessors; developed at Politecnico di Torino.
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N F T A P E [54] A configurable environment for automating fault injection ex­
periments. It was developed in a modular way to enable the usage of 
different tools for fault injection, triggering and monitoring. It was devel­
oped at the University of Illinois, Urbana Champaign.

G O O F I[1] A fault injection tool with support for pre-execution fault injection 
and injection through scan-chain capabilities of the processor. It was 
developed at the Chalmers University of Technology with emphasis on 
portability.

F A IL -F C I[25] A high-level fault injection framework for evaluation of dis­
tributed applications in the presence of faults (crashes) developed at IN- 
RIA, France.

4 .1 .3  So ftw are S im u lation

Simulation-based fault injection requires the design and development of a sim­
ulation model of the SU T (i.e. processor, devices) that is simulated on another 
system. The simulation model of a system can be described either using a 
common programming language like C and C + +  or a Hardware Description 
Language (VHDL, Verilog). Traditionally, the system under test is called tar­
get and the system in which the simulator is executed is called host.

Due to the extensive use of Hardware Description Languages, like VHDL, 
in the design process of modern ICs, several techniques have been proposed in 
simulation based fault injection with the use of HDL models. We can divide 
these techniques in two main categories: those that require modification of the 
original HDL source code and those that use built in capabilities of the simulator.

The first approach, that relies on code modification, augments the system's 
source code with dedicated fault injection modules called saboteurs or modify 
-mutate- the original code of a module to enable precise injection and tracing 
of faults.

The second approach uses modified simulators that support the injection and 
inspection of faults through built-in instructions/commands. The instructions 
target module signals and variables that can be directly accessed and manipu­
lated through the simulator interface at run-time.

Another approach in simulation-based fault injection is the system modeling 
in a high-level programming language. The system’s description in a functional 
layer enables full system simulation or system of systems simulation. Recent re­
search in fault injection and reliability favors the usage of full system simulators 
that can be used, not only for assessment of the robustness of an architecture, 
but also for characterizing behavior of large workloads in the presence of faults.

Simulation-based fault injection frameworks can support any system ab­
straction level, electrical, logical, functional, architectural or hybrids, providing 
a plethora of choices. In addition, the use of software enables full control over 
fault modeling (transient, permanent, intermittent) and injection. Simulation 
provides maximum observability without being intrusive, as any element or mod­
ule can be accessed at any time without influencing the behavior of the system. 
Simulation-based fault injection tools do not require the modification of appli­
cation source code, enabling the validation of applications whose source code is 
not available. Another advantage of such tools is the low cost of reproduction 
of the system for multiple parallel simulations.
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The main disadvantage of simulation based fault injection techniques is that 
experiments are consuming (compared to other methods). The more detailed the 
model, the more time it will take to have it simulated. This is in fact the main 
reason the research community started favoring simulators with higher level of 
abstraction, mainly developed using C and C + + . Also, the implementation of 
an accurate model is expensive in time and effort and crucial for the simulation 
to be realistic and representative. Finally, as many existing simulators are 
commercial products, their source code is not available for modification.

Nowadays, simulation-based fault injection has become the most widely ac­
cepted methodology. Some of the past and currently used frameworks are:

S IM IC S [40][8] A commercial full-system simulator that has been augmented 
with fault injection capabilities.

C O T S o n [3][23] A commercial full-system simulator that has been augmented 
with fault injection capabilities

SW A T-sim  [38] A framework for hierarchical simulation for studying the system- 
level manifestation of gate-level faults.

V E R I F Y [50] A simulation based fault injection framework that augmented 
the VHDL language with fault injection signals and their occurrence en­
abling the description of components behavior after faults and instrumen­
tation of fault injection campaigns.

D E P E N D [22] A functional simulation framework focusing in providing a de­
sign and fault injection framework for system level dependability analysis.

M E F IS T O [29] An integrated environment for applying fault injection with 
support of different levels of abstraction.

H E A R T L E S S [47] A hierarchical Register-Transfer-Level fault simulator.

G S T F [7] A simulation based fault injection tool with capabilities of evaluating 
medium-complexity system models.

4 .1 .4  H ard w are  E m u lation

To cope with the time overhead of simulating the SUT, the usage of FPGA s has 
been proposed. The circuit under examination is implemented using the stan­
dard synthesis, placement and routing design flows and then it is downloaded 
to an FPGA. The fault injection process is instrumented through a computer 
that is connected with a high speed communication link to the FPGA  board 
through its I/O  pins. There are two approaches for enabling fault injection in 
FPGAs: the first is to alter the source code of the SUT and augment it with 
modules and structures for fault injection, whereas the alternative is to use the 
run-time reconfiguration. Run-time reconfiguration (RTR) exploits the ability 
of FPGAs to be reprogrammed on-the-fly. That way, the hardware can be alter 
directly in its low level structures to inject faults in it.

The benefits of hardware emulation based fault injection is the speed-up of 
experimentation compared to simulation-based methods and also the compa­
rable controllability of these methods. Furthermore, FPGAs can be used for 
dependability assessment of reusable circuit components (IP blocks).
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On the other hand, hardware emulation methods experience the same prob­
lems, thought not in such extend, with pin-level fault injection techniques. The 
injection capabilities are constrained by the number of free I/O  pins of the pro­
grammable hardware. Moreover, the link used for the communication between 
the FPGA and the fault injection controller can influence the experimentation 
speed.

This approach for fault injection is new and has yet to receive wide ac­
ceptance from the research communication. Example publicatios on related 
research are:

F O C U S [14] A design automation environment developed at the University of 
Illinois at Urbana-Champaign that fashioned a scan-chain technique for 
fault injection in an FPGA board.

U sin g R T R  for F I  A pp lication s [2] A proposal for exploiting the run-time 
reconfiguration capabilities of modern FP G A ’s for speeding-up the fault 
injection process.

4.2 A bstraction  B ased  Categorization
Apart from the previous, method-oriented, categorization of fault injection tech- 
niques/frameworks, we can approach fault injection techniques based on the 
level of abstraction at which the faults are injected.

Experimentation in system’s dependability, fault-detection and fault recov­
ery mechanisms may be verified by injecting faults at any level of abstraction 
and allowing the errors to propagate to higher levels. Researchers prefer to 
work in the lowest level of abstraction to assure accuracy of the experiments, 
however, problems may arise from such a choice as it was previously described. 
Consequently, there has been extensive research in how physical faults manifest 
in higher levels (rtl, functional), to enable the usage of high-level simulators 
[59, 18, 12].

The following taxonomy is provided as given in [59] and presents a list of 
increasing levels of abstraction from the device level to the network level. It can 
be generalized into two broad categories: circuit-level abstractions at the lower 
end and functional-level abstractions at the higher end.

C ircu it: In this category, the physical makeup of the processor is considered.

D evice : Its main focus is the transistor and other circuit elements. For 
simulated fault injection an analog simulator is need, whereas for 
physical injection radiation or other physical stress may be used.

G ate : Its main focus are logic gates (AND, OR, NAND, XOR, multi­
plexers, etc). The stack-at or fixed-at model is employed although 
some implementations use more accurate models, modeling signals 
and storage cells coupling.

B a sic  B lock : Its main focus are functional units of the system like adders 
and registers and the fault models are high-level abstraction of phys­
ical fault models.

C hip : Its main focus is the chip’s boundary I/O.
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Functional: In this category, the circuit description itself is no longer consid­
ered, but instead a functional description of it is used.

M icro-operation : Its main focus in micro-instructions and faults are 
injected at data transfers and micro-sequencing.

M acro-operation : Its main focus are ISA instructions and faults are 
injected by flipping bits in the instruction word.

Sy stem : Its main focus is Memory and processor I/O in which faults are 
injected.

N etw ork: Its main focus are messages and other ways of communica­
tion where faults can be injected (e.g. message corruption, dropped 
package).

4.3 Our Choice
After studying past implementations and publication in the area of fault injec­
tion, we decided that simulation based fault injection and specifically full system 
simulation is what best serves our needs and objectives. Using a full system sim­
ulator we will be able to evaluate the impact of faults in large workloads, full 
OSs and in general real world applications which is our main target.

In brief, simulation provides maximum controllability over the injection pro­
cedure in both spatial and temporal manner, also, it enables the studying of 
independent or concurrent execution of applications. Another key feature that 
pushed toward this decision was the observability over the full trace of the be­
havior of the system, before and after an injection,that a simulator provides; 
needed for understanding the way different faults affect instructions and work­
load patterns.

As mention in section 4.1.3 software simulation is a non-intrusive method to 
the application that is executed and can provide statistics and logs of arbitrary 
detail. In addition, as our choosen simulation framework is open source we can 
alter the modules structure to match desired accuracy for each experiment.

Finally, we try to mitigate the time overhead of the simulation by running 
multiple simulation in parallel, something that can only be done with simulation- 
based fault injection techniques as the installations can be easily and with no 
cost reproduced.

In the next section we provide an overview of full system simulation and 
an introduction to the M5, the simulator we augmented with fault injection 
capabilities and used in for experiments.

18



C hapter 5

Full System  Simulation

5.1 Introduction
Full system simulation of a computer system is the process of modeling its 
physical components in such a high detail that any software for the targeted 
system can run unmodified on the virtual hardware. Simulated components 
can be anything from CPUs, cache memories, network connections or any other 
peripherals/modules that compose or interact with the SUT.

Due to these characteristics full-system simulators are able to run operat­
ing systems without the need of modifying them or their device drivers, thous 
expanding the capabilities in hardware and system software design.

We should note here that the models’ fidelity can be of arbitrary level, how­
ever, the more detailed the model the smaller the system we can test (model 
detail ft ^  simulation time ft).

5.2 Sim ulation A ttributes
Full system simulation is becoming more and more appealing for use in research. 
The advancements in simulation and testing theory have boosted the efficiency 
of simulators and the computational power explosion enabled us to simulate 
large systems on cheap personal computers.

Because of those two factors an increasing number of researchers (Table 5.1) 
choose to use simulators on their experiments.

However, these are not the only reasons behind the increase in the number 
of publications that use simulators. Since simulation is done using software it 
offers many advantages compared to the real machine environment (see section 
4.1.3).

Jakob Engblom lists the attributes that make simulation appealing in [19]. 
We set forth this list here for completeness.

C onfigurability . Technological barriers or lack of physical/hardware resources 
do not place constrains on system configuration options.

E xten dability . The simulator can be easily augmented with additional com­
ponents without any limitations (i.e. GPU/DRAM  slots).
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Year Total papers Simulation
2009 43 39
2004 31 27
2001 25 22
1997 30 24
1993 32 23
1985 43 12
1973 28 2

Table 5.1: Performance evaluation methodologies in papers appearing in
the Proceedings of the International Symposium on Computer Architecture. 
Adapted from [56]

C ontrollability . The execution of the simulation can be arbitrarily controlled, 
stopped, and restarted.

D eterm in ism . A simulation is completely deterministic (assuming correct pro­
gramming).

C heckpointing. The state of the simulated components can be saved and re­
stored.

A vailability . Creating a new machine is just a matter of copying the setup. 
There is no need to produce hardware prototypes or development boards.

In spectab ility . The complete state of the simulator can be investigated and 
monitored without disturbing the execution.

San d b o xin g . The simulation environment is completely isolated. No external 
variable can influence it and no code or data can escape unless explicitly 
allowed.

These attributes create an ideal environment for a system designer.
The coexistence of Configurability and Extendability expand the possible 

configurations for simulation beyond technological barriers. We can design soft­
ware for hardware that is not yet in production (e.g. Linux was compatible with 
the AMD 64bit architecture before it became available [35]).

The attributes of Controlability, Determinism, Checkpointing and Inspectabil- 
ity create an ideal environment for debugging. Each flaw can be spotted, isolated 
and recreated until it is solved.

Finally, sandboxing erases any environmental causes that can influence a 
physical system and prevent disasters from failed experiments (i.e. aircraft 
computer systems, nuclear factory sensors).

A major feature for both the industrial and academic community is the 
availability of the simulated system. After an initial cost for creating the setup, 
duplication comes with zero cost in time or budget. This can also be used to 
mitigate the time overhead of simulation by running multiple experiments in 
parallel. In addition, the development of a software description of the system 
is much faster than an actual physical implementation, thus the whole design 
process is boosted.
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5.3 An overview of the M5 sim ulator
For the purposes of our research we used and extended the M5 simulator [16, 
11]. M5 is described from its main site as ”a modular platform for computer 
system architecture research, encompassing system-level architecture as well as 
processor microarchitecture”.

M5 is a full-system simulator that initiated at the University of Michigan. 
Until now it consists of around 180K (C + +  & Python) lines of code, is freely 
distributed under a BSD-style license and has no dependency to any commercial 
or restrictive license software. These features make the M5 simulator an ideal 
tool for research on an academic environment and a great contribution to free 
and open source software.

As a framework, M5 is an event-driven simulator centered around a main 
event queue where all modules schedule their events. The implementation is 
heavily object oriented; all simulated components (i.e. CPUs, Caches) as well 
as their internal structures are instantiated as objects. This is the key to M5’s 
modularity and flexibility.

M5 uses Python to initialize the simulation and configure the scheme of 
the SUT. For this to be feasible all simulated objects developed in C + +  are 
wrapped using SW IG 1 and exported as Python interfaces for use on the system 
configuration process. The configuration scripts are semi declarative, hiding all 
the unnecessary information about how the modules connect and communicate. 
The simulators capabilities scale from uni-/multi- processor system to multi­
system systems without much overhead for creating the configuration.

Along with the scalability of configurations we can also choose from multiple 
object implementations based on our need for accuracy. For example, we can 
choose from 3 different CPU models, an 1 CPI CPU with atomic memory ac­
cesses, an 1 CPI CPU with detailed memory accesses and a full OoO Superscalar 
CPU based on the ALPHA 21264 processor.

Apart from the level of abstraction in the implementation, M5’s uniform 
(method-based) API across object types enables us to interchange similar sim­
ulated objects. The simulation can start with a simple, functional CPU (so 
as to speed up the initialization process of the experiment) and then change 
into a more detailed model from which we will acquire our statistics and re­
sults. Moreover, M5 features a detailed event-driven memory system able to 
model complex multi-level cache hierarchies coupled with a coherence protocol 
implementation. Together, all these modules give a vast amount of possible 
composition of custom/complex systems for simulation.

In order to enable the easy expansion of its capabilities the simulator has 
been developed from the start so that it would not be coupled with any ISA 
increasing the number of applications and OS that could be used with it. Cur­
rently, the Alpha, SPARC, MIPS, ARM and x86 ISAs are supported.

Finally, one of M5’s most appealing features is its full system simulation ca­
pabilities (M5 successfully simulates systems running an unmodified version of 
the Linux kernel). With full system simulation we are able to perform realistic 
simulation of the concurrent execution of applications on top of an operating 
system; in our case, to get a more detailed insight of specific parts of applica­
tions, the OS and their behavior under the influence of faults.

1 Simplified W rapper and Interface Generator: A software development tool that connects 
program s written in C and CH—H with a  variety of high-level program m ing languages

21

http://www.m5sim.org/wiki/index.php/Main_Page


All the above features conveyed us in choosing M5 as the most suitable 
simulator for experimenting and implementing our fault injection framework. 
Even though other full system simulators support fault injection, our framework 
is unique in that it covers a substantial amount of errors and provides high 
injection precision. Also, it is provided under a free-software license enabling 
modification and experimentation by anyone.
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C hapter 6

Generic Processor Fault 
Model

After explaining the reasons for choosing M5 as the base for our fault injection 
framework, in this section we provided an overview of the fault model on which 
we based our implementation. In general, proving the sufficiency of a fault model 
is very difficult. It is more realistic to assume that a fault model is sufficient 
and justify this assumption to the greatest extent possible with experimental 
and historical data or results published in literature.

To this end, Yount and Siewiorek [58, 57] developed a very generic fault 
model for the register file within a processor which Johnson, Cutringht and 
DeLong [18] have augmented through simulations [58, 57] so as to fully explain 
the results of their test.

The augmented generic behavioral-level fault model describe the faulty be­
havior of a general-purpose, implementation-independent processor like the one 
shown in Figure 6.1

The full model consists of seven locations where faults can manifest:

1. Register File

2. Program Counter

3. Control Unit/Instruction Decode

4. Bus

5. ALU

6. Fetch and Execute

7. Memory Mapped peripheral functional block

The framework that we developed covers only 4 of those locations for fault 
injection (  1, 2, 3, 5). Following, a description of the attributes - where, when, 
what - of each fault model that we implemented will be given. Excerpts from 
the following text are taken from [18] where a detailed presentation of the model 
can be found.
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Figure 6.1: General processor diagram [18]

6.1 R egister File Fault M odel

6.1.1 R e g is te r  F au lt M od el

The register fault model covers corruptions in the registers of the CPU. These 
can be general or special purpose registers.

W here

One or more registers of the CPU is/are potential candidate for corruption.

W hen

Corruption can occur at an instruction boundary.

W hat

There are four scenarios on how the structure's value can be corrupted:

1. M issed  load  (6.1) all or part of a register is not loaded when it should 
be.

Rk ^  expr ^  Rk ^  (expr (Q (m ask((w -1) . . .  0))) (6.1)
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2. E x tran eo u s load (6.2) all or part of a register is loaded when it should 
not be.

R k *  expr ^  R j  *  expr 3 (j =  k) (6.2)

3. Level change in sto rag e  (6.3) the value of one or more bits in the 
register is complemented.

R k ^  R k ^^(m ask ((w —1 ). . .  0)) (6.3)

4. A ll 0 /1  (6.4) Assign the value of all zeros and all ones to the register.

Rk ^  Rk φ  Rk 

Rk ^  Rk φ  Rk
(6.4)

6.1 .2  R e a d /W rite  R e g iste r  Se lection  F au lt M odel

The read/write register selection fault model covers faults within the decoding 
stage of the pipeline where an error can result in selecting the wrong register to 
be used as an input/output operand to the current operation (6.5)(6.6).

(Rk * R iopRj ) (R k * R x opRj ) 3(x =  i)

(Rk *— RiopRj ) (R k * R iopRx) 3(x =  j )

Rk *— RiopRj (Rx * - R iopR j) 3(x =  k)

W here

Instructions during the fetch and decoding stage.

W hen

Corruption can occur at an instruction boundary.

(6.5)

(6.6)

W hat

The corruption that will result to a read or write register selection error are 
shown in equations (6.7) and (6.8) respectively.

instr f'etch(addr)
instr f ' etch(addr)

φ
(((x — a — i)@ 0)#m ask((i +  a

(6.7)

1) ...i)# (i@ 0 )),

instr fe tch (addr)
instr f  etch(addr)

φ
(((x — b — j)@ 0)#m ask ((i +  b — 1) . . .  i ) # ( j @0)),

(6.8)
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where x is the instruction width, i / j  is the starting position of input/output 
register selection filed, a/b is the register selection field width, v@0 stands for 
repeating zero (0) v times and #  stands for concatenate.

6.2 P rogram  Counter Fault M odel
The Program Counter (PC) fault model covers corruptions of the Program 
Counter of a CPU.

W here

The processor’s Program Counter register.

W hen

Corruption can occur at an instruction boundary.

W hat

There are three scenarios on how the structure’s value can be corrupted:

1. M issed  load  (6.9) All or part of a register is not loaded when it should 
be.

P C  ^  expr ^  P C  ^  (expr (Q (m ask((w  — 1) . . .  0})) (6.9)

2. Level change in sto rag e  (6.10) The value of one or more bits in the 
register is complemented.

P C  ^  P C  0 (mask((w — 1) . . .  0}) (6.10)

3. A ll 0 /1  (6.11) Assign the value of all zeros and all ones to the register.

P C  ^  P C  0  P C  

P C  ^  P C  0  P C
(6.11)

6.3 Control U nit/In struction  Decode Fault M odel
The Control Unit/Instruction Decode fault model covers corruptions of similar 
type to the read/write register fault model and mainly refers to corruption of 
the opcode field.

W here

Any location where an instruction may reside (i.e. memory, instruction register).

W hen

Corruption can manifest at an instruction boundary or on a memory reference.
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W hat

The corruption that will result in a fetch/decode error is described in equations
(6.7)

instr f  etch(addr) ^
instr fe tch (addr)

0
(((x — c — k)@ 0)#m ask((k +  c — 1) . . .  k)#(k@0))

(6.12)

where k is the starting position of the operation code field, and c is the width 
of the operation code. Note that values for k and c may vary, depending on the 
format of a given instruction.

6.4 A LU  Fault M odel
The ALU fault model covers corruptions in the ALU module of the processor, 
based on a general arithmetic instruction format such as (6.13)

D ^  S iopS2, (6.13)

where D is the destination for the result of the operation (i.e. a register or 
a memory location) and S i, S 2 are the sources for the operation again of the 
same possible types as the destination.

We define as possible locations for corruptions D , S i , and S 2 , as well as 
the operation itself, which could be corrupted to another valid instruction or an 
invalid instruction.

The behavior of the ALU fault model can be defined as a subset of the other 
fault models behavior and thus expressed through them.
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C hapter 7

Implementation

In the introductory section we gave a brief overview of the reliability problems 
that arise with aggressive feature, voltage and frequency scaling and highlighted 
the importance of understanding how the function of each abstraction layer in 
computer systems is affected by such faults. The characterization and modeling 
of the errors will enable us to design and implement feasible solutions to preserve 
the current levels of system’s robustness.

In order to assess the impact of faults to each layer, new tools need to 
be developed or the existing ones should be enhanced. An example of such a 
tool is M5, the full system, cycle-accurate simulator with broad acceptance in 
the area of performance analysis that we described in Section 5.3. To avoid re­
inventing the wheel we augmented its existing infrastructure with fault injection 
capabilities, following the general processor fault model descibed in Chapter 
6. The end-result is a modular and configurable framework for studying the 
effect of transient faults in reliability of applications. In addition, the developed 
framework can be used for the evaluation of new fault tolerance techniques or 
to calculate the robustness of a system through fault injection campaigns which 
can be automated using the provided tools and API.

The framework was developed using C + +  and employed the SWIG library 
for exporting the instrumentation API to the configuration interface of M5, thus 
creating a uniform development environment for the simulator and the fault 
injection framework. We should note here that fault injection is currently only 
supported in the ALPHA ISA. However, porting it to other ISAs does not require 
extensive modification as the only ISA-depended portion of the framework is 
the functions used to distinguishing processes/threads and user/privileged mode 
execution.

In the following Sections, we will attempt to give a general description of 
fault injection frameworks and present implementation details and choices that 
were made for the development of our tool.

7.1 Introduction: W here, When, W hat
Fault injection’s instrumentation variables can be divided into three basic categories[23]:

1. Where: The location of the injected fault.
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2. When: The time when the fault should manifest.

3. What: The nature of the fault; the way that the faulted structure will be 
influenced.

7.1.1 W here

The first aspect that we need to clarify when creating a fault injection scenario is 
the location of the faults, namely the modules/structures that will be targeted. 
A good method for selecting injection targets is the top-down approach; that is, 
we first select the high-level unit (CPU, DRAM module), then we proceed with 
internal modules and finally pick a single bit that will be affected. Common 
locations for fault injection are the levels of memory hierarchy, special and 
general purpose registers, control logic and pipeline stages of a processor (fetch, 
decoding and execution).

The location where a fault will be injected is crucial, as it partially de- 
fines/bounds the possible errors that can be created[24]. As different modules 
have different functions and process different types of data, we can create groups 
that contain all the possible errors for each structure, however, we should note 
that some interleaving does exist between errors in different structures.

A fault occurring in a register (integer, floating point or special purpose) will 
affect its internal storage and in the case of miscellaneous register the processor 
state (e.g. corruption of the processor’s execution mode register).

A fault at a memory location will affect its internal storage and possibly the 
execution and output of a process that uses its content.

A fault at the fetch and decoding stage will affect the decoding of the in­
struction (i.e. register selection, operation selection (e.g. Table 7.1), immediate 
value).

A fault at the execution stage will affect the result of the ALU operation 
and the content of the destination register or memory location, or -in the case 
of program control instruction- a wrong path can be taken.

Mnemonic Format Opcode (hex) Function Code (hex) Description
BEQ Bra 39 — Branch if =  

zero
BGE Bra 3E

-
Branch if 
> =  zero

BGT Bra 3F Branch if >  
zero

BIC Opr 11 08 Bit clear
BIS Opr 11 20 Logical sum

BLBC Bra 38
-

Branch if 
low bit clear

Table 7.1: Qualifiers for operate instructions, excerpt from Table A-2[17]

In general, the location of an injection is described deterministically and 
the spatial distribution of faults in the simulated modules is produced by a 
distribution function. The distribution function can be derived from low level
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characterization of the hardware’s behavior under different internal and exter­
nal conditions (i.e. radiation, thermal distribution, utilization). Alternatively, 
statistical fault injection can be used as shown in [37]. Note that most fault 
injection frameworks are evaluated through statistical fault injection and not 
by strict mathematical proof of their correctness.

7.1.2 W hen

Another essential variable in a fault injection campaign is the timing of the 
injections; the time that a fault will occur (manifest).

Faults can be set to occur based on the value of a system variable. Commonly 
used variables are overall simulation time, processor cycles, executed/fetched 
instructions or occurrence of a specific addresses in the Program Counter (PC).

The flexibility in setting the manifestation time of a fault is of great impor­
tance when one is interested in acquiring targeted results; for example, when 
we are interested in studying specific regions of an application.

However, fault manifestation based on simulation time, clock cycles and 
fetched instructions is not deterministic especially when done on a full system 
multi-core simulation environment, where multiple applications are running and 
no control over their scheduling in time and hardware is possible. As a more 
precise timing method the PC value can be used.

Similarly to the location variable, the timing variable of the injection can be 
generated from temporal distribution models of hardware faults (module error 
rate) or statistical methods (e.g. uniform, logarithmic distribution function).

7.1.3 W h at

The final fault injection instrumentation variable that we will describe is the 
nature of the fault; how the structure’s value will be corrupted. As faults 
manifest in different ways, based on their cause, we need to use different models 
for each type of hardware fault.

The most common way to model permanent faults is the stuck-at model[30] 
where a signal is permanently set (stuck) to one (1) or zero (0) (Figure 7.1). 
Transient faults are modeled using the bit-flip model[41] where a b it’s value is 
flipped to its complement (Figure 7.2).

Figure 7.1: Stuck-at model illustration
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Figure 7.2: Bit-flip model illustration [41]

Except from these two methods, more accurate models can be used for mod­
eling hardware faults. Recent research results show an increase in multi-bit [21] 
and circuit timing errors that are not covered by the above fault models.

7.2 Our Im plem entation
Having explained the aspects of fault injection instrumentation, we will try to 
place our implementation details in the general picture. For the development 
of our tool we abhered to the object oriented approach of the M5 simulator. 
The framework is composed of classes that define different fault types and fault 
queues where the objects are stored for quick access and easy manipulation.

The hierarchy of fault types that our framework currently supports is de­
picted in Figure 7.3. All fault objects derive from the InjectedFault class that 
contains the basic variables for fault injection and the generic attributes of a 
fault. The InjectedFault class derives from the SimObject/MemObject classes so 
that we can use the fault injection objects at the configuration interface. More 
details about each fault type will be given later.

A core component of the fault injection framework is the queue structure. All 
faults described at the configuration file are inserted in 4 queues, based on their 
characteristics; execution, fetch, decode and other. The queues are constructed 
at the beginning of the simulation and are global to the framework and the 
simulator. The queue class provides public functions for inserting, removing 
and searching a fault (based on injection time and location). In addition, to 
improve performance the faults are kept in a descending order to decrease the 
average search time.

At the initialization of the simulation the configuration file is parsed and 
simulation objects are created for all described components. All faults that can 
be scheduled at that point are send in the global event queue of the simulator or 
a processor's instruction event queue. Faults that manifest on a specific cycle are 
pushed into the m ain E ven tQ ueue and faults that manifest based on a CPU’s 
fetched instruction count are pushed into the CPU ’s com ln stE ven tQ u eu e. 
All other instances are kept in the queues that are scanned in every cycle to 
find if any fault instance is ready to manifest. The scanning of the queues is done 
independently for each pipeline stage in order to support injection in-between 
them. This is the main reason we altered the source code of the CPU models, 
even though are initial approach was to avoid any changes to existing M5 code.
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tcpu: BaseCPU * 
ttcontent: int

+addres5 Addr 
tpHem: PhysicalMemory *

tcpu: 03CPU * 
ttcontext int

OpCodelnjectedFault lEW StagelnjectedFault

tregister int

tsrcOrDst: RegisterDecodinglnjectedFaultType 
tregToChange: int 
tchangeToReg: int

tready bool
■ndiere; atd:: string
■niien: atd::string
■udiat: 5td:: string
trelative bool
tfaultType: InjectedFaultType
ttimuigType: InjectedFaultTningType
ttiimng uint64_t
traloeType: InjectedFaultValueType 
tralue: uint64 t

Injected Fault

CPUInjectedFault Hem oryln jectedFault O iCPUInjectedFault

RegisterlnjectedFault
P Cm jectedFault

GeneralFetchStagelnjectedFault

RegisterDecodinglnjectedFault

Figure 7.3: Fault classes

Another feature of our framework is “Relative Fault Injection” , that is, faults 
can be set to manifest relatively to the value of a processor’s variable. To enable 
relative fault injection an extra instruction has been added to the ISA, namely 
f iv a d d r A n s t 1.

The fi_vadd rJ,n st instruction is used to set a relative point for fault injec­
tion. When executed by the processor it stores the PC address, Tick cycles and 
fetched instructions number so that these values can be used as reference points 
in the injection of relative faults.

At the section where we described the timing of an injection (When) we 
mentioned the importance/need of bounding faults’ occurrence. In our imple­
mentation this is supported through the use of another instruction that was 
introduced to the ISA, f ia c t iv a te A n s t2, and a function of the M5 simulator 
namely in U serM od e().

The fi^activateA nst is used to enable and disable the manifestation of 
faults. More specifically, when inserted in a code its first occurrence enables 
the manifestation of faults for the specific process/thread and the second one 
disables it. To achieve such behavior we exploit the Process Control Block

1 fi-vad d rA n st ^  a sm (“ .long 0x04X X X X 67” )3
2fi-ac tiv a te - in st  ^  a sm (“ .long 0x04X X X X 66” )3
3The X s can be of any value.
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(PCB) address 3, which is unique for each process/thread. Whenever a fault 
event tries to manifest, we search using the PCB address as a key on a hash table 
that contains the processes/threads for which fault injection has been enabled.

For the needs of our experiments we used an already implemented function 
of the M5 simulator, the in U serM o d e() function. in U serM o d e() returns 
true if the processor is currently in user mode, thus enabling us to restrict faults 
in user mode application code; in the same way we are able to inject faults only 
to operating system code. As we were not interested in injecting faults in the 
OS, by-default our framework isolates fault injection to the user mode of the 
processor. However, this feature can easily became a run-time argument of the 
configuration file.

7.2.1 W here

As described previously (Chapter 6), our implementation is based on the generic 
processor fault model described in [18]. It supports fault injection in memory 
locations, registers and the fetch, decode and execution stages of an instruction.

All the possible locations for fault injection, according to [18], are shown in 
table 7.2; the supported locations are marked with a a/ .

Faults Status
Register File V
Program Counter V
Memory Unit V
Control Unit V
Fetch & Decode Logic Block X
Internal Data Bus, Internal Address 
Bus, and Internal Control Bus, as 
well as the External Bus Interface

X

ALU V
Memory-Mapped Peripheral Devices X

Table 7.2: Modules where fault injection is supported

A fault location in our framework is described in a deterministic way, how­
ever, statistical fault injection is easily implemented at a higher level through 
use of python scripts and the configuration file. As a proof of concept, we have 
automated statistical fault injection campaigns through python scripts for eval­
uating our framework with real world applications; the statistical model we used 
is described in [37].

7.2.2 W hen

Our implementation provides three different options for the timing of the mani­
festation: simulation ticks, fetched instructions or the value of the PC in a CPU. 
The value of the manifestation time can be either absolute (i.e. global from the 
beginning of the simulation) or relative to a simulation milestone.

3In the case of A LPH A  ISA the pointer to the P C B  is stored on the IPR_PALtem p32 
register

33



Another supported timing feature is the enabling and disabling of the man­
ifestation of fault using a “magic instruction” , fi_activate_in st, mentioned 
previously.

Except from the timing of the injection, we can also specify the duration of 
the fault, enabling the emulation of intermittent and permanent faults. How­
ever, even though a fault’s first occurrence can be given with any of the three 
available timing methods, faults that use the PC  address as a trigger can only be 
used when experimenting with repeated corruption when a specific instruction 
is fetched. This limitation is necessary due to branches. In the presence of a 
branch instruction we do not know its result so as to set the correct consequent 
PC value in which the fault should manifest. Nevertheless, this does not reduce 
the capabilities of the framework as the PC Address timing option is ideal in 
studying repeated corruptions of a specific data/computation; for example, the 
upper-left cell of the iDCT matrix.

It is also worth noting here that memory fault injection can only be used 
with absolute timing. Otherwise it should have been coupled with a specific 
CPU.

—-—————Timing Methods 
Fault T y p ^  '—————____ Inst Tick Addr relative

Memory V
PC V V V V

Register V V V V
Fetch V V V V

Operation Code V V V V
Register Decoding V V V V

Execution V V V V

Table 7.3: Trigger Mechanisms for each Fault Type

7.2.3 W h at

In our implementation a module’s/structure’s value can be corrupted in a variety 
of ways. The supported methods of affecting the value of the structure that is 
injected are:

Im m ed iate  V alue Assign the provided constant to the structure.

X O R  XOR the current value with the given constant.

Figure 7.4: XOR example
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B it-F lip  Change the specified bit to its complementary value.

A ll0 Set all bits to zero (0). 

A ll l  Set all bits to one (1).

Taking into account the possible changes and enhancements of fault models 
in the future, our implementation for the corruption of the targeted structures 
was design to be as modular as possible.

7.3 U sag e /E xp o rt to M5 configuration file
As we have previously mentioned, the instrumentation API of the fault injection 
framework is exported at the M5 configuration interface using SWIG. A fault 
can be considered as another simulated object that thus we describe in the 
configuration file. A reference, example, configuration file can be found in the 
tarball provided with this Thesis.

Following, we give examples of different fault types and how they would have 
been defined in the configuration script.

The mandatory fields for all faults are:

W here: In which CPU/Memory to inject the fault (format: jmodule’s name 
at the configuration script^).

W hen: When to inject the fault (format: jtimingType:timingValue^).

W h at: What value should be injected and how (format: jvalueType:value^). 

and the optional fields are:

R e lative : Is the fault injection timing relative to a “magic instruction” ? By 
default false.

O ccurrence: How many times should the fault manifest? By default one (1) - 
transient fault.
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7.3.1 R e g is te r  In jected  F au lt C on figu ration

The additional required fields for a register fault are:

R eg T y p e : what type of register should be fault-injected (value: “int” , “float” , 
“misc” ).

R eg iste r : which register should be injected.

Examples:

1. Inject a permanent fault at the first (1) integer register of CPU “sys- 
tem.cpu” when the PC is 8 +  (PC @ magic instruction). After the fault 
the register should contain the value 57005.

RegisterInjectedFault(RegType = "int",
Register = 1, 
where = "system.cpu", 
when = "Addr:8", 
what = "Immd:57005", 
relative = True, 
occurrence = 0)

2. Inject a transient fault at the first (1) floating point register of CPU “sys- 
tem.cpu” when the total CPU cycles are 50000. After the fault the regis­
ter should contain the result of the XOR product of 57005 and the initial 
value.

RegisterInjectedFault(RegType = "float",
Register = 1, 
where = "system.cpu", 
when = "Tick:50000", 
what = "Mask:57005")

3. Inject an intermittent fault at the first (1) miscellaneous register of CPU 
“system.cpu” when the total fetched instructions are 1984 +  (fetched in­
structions @ magic instruction ). After the fault the register should con­
tain the value 0.

RegisterInjectedFault(RegType = "misc",
Register = 1, 
where = "system.cpu", 
when = "Inst:1984", 
what = "Immd:0", 
relative = True, 
occurrence = 3)
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PC faults do not require any additional field.
Examples:

1. Inject a fault at the PC register of CPU “system.cpu” when the PC of the 
CPU becomes 4831838348. After the fault the register should contain the 
result of the XOR of 2 and the register’s previous value.

PCInjectedFault(where = "system.cpu",
when = "Addr:4831838348", 
what = "Mask:2")

7.3.2 P C  In je c te d  F au lt C o n fig u ra tio n

7.3.3 M em ory  In jected  F au lt C on figu ration

Memory faults do not require any additional field.
Examples:

1. Inject a fault at address 512 of memory module “system.physmem” when 
the total amount of simulation ticks is 2000. After the fault the address 
should contain the value 3.

MemoryInjectedFault(address = 512,
where = "system.physmem", 
when = "Tick:2000", 
what = "Immd:3")

7.3.4 Fetch  S ta g e  In jected  F au lt C on figu ration

Fetch stage injected faults can either be “general” , in the whole bitwidth of a 
fetched instruction, or targeted at the Opcode.
Examples:

1. Inject a fault at the fetched instruction of CPU “system.cpu” in the 45.000 
tick. After the fault the instruction should be 540999681 — hex(203F0001).

GeneralFetchInjectedFault(where = "system.cpu",
when = "Tick:45000", 
what = "Immd:540999681")

2. Inject a fault at the Opcode of the fourth (4) fetched instruction of CPU 
“system.cpu” . After the fault the instruction’s Opcode should be 32 — 
hex(20).

OpCodeInjectedFault( where = "system.cpu",
when = "Inst:4", 
what = "Immd:32")

37



Decode stage faults are targeted at the decoding of source and destination reg­
isters and require an additional field:

regD ec: format: whether it should inject the (destination or source regis- 
ters^:jwhich register to change^:jin which register to change^.

7.3.5 D ecode  S tage  In je c te d  F au lt C o n fig u ra tio n

Example:

1. Change the destination register zero (0), of the instruction that will be 
decoded in the 45.000 simulation tick at CPU “system.cpu” , to one (1).

RegisterDecodingInjectedFault(regDec = "Dst:0:1",
where = "system.cpu", 
when = "Tick:45000", 
what = "Immd:0")

7.3.6 E x ecu tio n  S ta g e  In jected  F au lt C on figu ration

Execution stage faults do not require any additional configuration field and 
target the output of the ALU, if any.
Example:

1. Inject a fault at the execution result of the 10th relative (to the magic 
instruction) instruction of the CPU “system.cpu” , the result should be 
10.

IEWStageInjectedFault(where = "system.cpu",
when = "Inst:10", 
what = "Immd:10", 
relative = True)

7.3 .7  M on ito rin g

When running fault injection campaigns it is essential to have the ability to 
observe how a fault influences the function of the system under test. In M5 
simulation can be monitored through enabling various trace/debug flags. The 
simulator by-default provides an excessive amount of options on what simulation 
events should it print as output throughout the simulation. In this way fetching, 
decoding, execution, memory and register accesses can be set to be printed out 
whenever they happen, creating a full trace of the application’s execution.

We have expanded the monitoring capabilities of the simulator by introduc­
ing a new trace/debug flag called F au ltIn jec tio n , used for creating output for 
the fault injection framework. This consists of printing the creation of a fault 
and the manifestation of it, together with the attributes of the fault and the 
way that it influenced the targeted structure.
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C hapter 8

Fault Injection Cam paigns/ 
Experim ents

Even though the main target of this Thesis was the creation of a fault injection 
framework, our final goal is an analysis of the behavior of applications in the 
presence of faults. Therefore, we conducted a series of fault injection campaigns 
in order to validate the fault injection functionality and at the same time to 
perform a preliminary evaluation of application behavior in the presence of 
faults. This Section presents the results of these experiments that targeted two 
(2) applications: a simple matrix multiplication kernel and the AVS decoder.

8.1 Experim entation M ethodology
In our experiments we used two (2) different system configurations. Their main 
difference lies in the CPU model's abstraction level/detail.

Both applications have been tested using statistical fault injection in order 
to narrow the possible injection configurations, yet maintain a good confidence 
interval on our results. Still, the volume of the needed experiments required 
the automation of the experimentation and results analysis process; for that, 
additional python and bash scripts were created.

In addition to the statistical fault injection, in the case of AVS we targeted 
specific functions to assess their inherent reliability and to test the existence of 
variations in fault-tolerance between portions of the application.

To acquire the instrumentation variables for the statistical fault injection 
campaigns we assumed that faults in all structures and bits are equally possi­
ble. In addition, we assumed that fault occurrences in time follow a uniform 
distribution [37]. Finally, in each simulation a single fault was injected.

All programs were compiled using a cross-compiler, version 4.3.2 of gcc for 
the Alpha ISA, without any optimization options enabled. The compiler can be 
found at Alpha ISA:gcc-4.3.2, glibc-2.6.1 (NPTL,x86/64) or a new one can be 
created following the instructions at crosstool.
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8.2 S tatistical Fault Injection in M atrix  M ulti­
plication

This Section presents the results from our first fault injection campaign. The 
faults were injected in the matrix multiplication kernel, which was executed in 
the detailed system configuration.

The fault injection campaign was composed of 2450 experiments. Each ex­
periment contained a single fault injection, whose instrumentation variables (i.e. 
Where, When, W hat) were provided by a uniform distribution function (Python 
implementation of Mersenne Twister). In Table 8.1 we see the accumulated out­
come of the experiments. Table 8.2 provides a more detailed view of the same 
results. The results are also given as pie-charts in Figure 8.1.

No Diff(Activated) 1912 78.04%
Diff 105 4.29%

Panic 345 14.08%
Infinite 1 0.04%

No Output 4 0.16%
Stack Overflow 13 0.53%
Unimplemented 2 0.08%
Not Activated 23 0.94%

No Diff(NotActivated) 45 1.84%
T otal 2450 100%

Table 8.1: (MM)Minimal: Fault Injection Outcomes.

Fetch Execute PC Register T otal %
No Diff(Activated) 8 17 6 1881 1912 78.04%

Diff 17 22 2 64 105 4.29%
Panic 13 33 60 239 345 14.08%

Infinite 0 0 0 1 1 0.04%
No Output 0 0 2 2 4 0.16%

Stack Overflow 0 0 0 13 13 0.53%
Unimplemented 0 0 2 0 2 0.08%
Not Activated 0 0 2 21 23 0.94%

No Diff(NotActivated) 38 7 0 0 45 1.84%
T otal 76 79 74 2221 2450 100%

% 3.1% 3.22% 3.02% 90.65% 100%

Table 8.2: (MM)Detailed: Fault Injection Outcomes Per Structure. 

Description of row data for Tables 8.2 and 8.1.

N o D iff(A ctivated ) The fault manifested but did not create any user-visible 
error.

D iff The fault created a user-visible error but was not detected (SDC).

P an ic The fault created an error that was caught by the system’s error detec­
tion mechanisms and resulted in a crash (DUE).
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Infin ite The fault created an error that had as a result the infinite execution 
of the application.

N o O utpu t The fault created an error that had as a result the absence of an 
output (the program terminated properly).

S tack  Overflow The fault created an error that had as a result the overflow 
of the stack structure.

U n im plem ented  The fault created an error due to an unimplemented function 
of the simulator.

N o D iff(N otA ctiv ated ) The error did not manifest. Either because the fault 
injection framework was disabled or the CPU was not in User Mode.

From Table 8.1 and Figure 8.1 (a) we can observe that almost 80% of the 
injected faults were masked; that is, they did not produce any visible errors in 
the user abstraction layer. The rest 18% (2% of fault were not activated 1) of in­
jected faults create user-visible errors that can be split into two basic categories: 
Detected Unrecoverable Errors (DUE) and Silent Data Corruption (SDC). Their 
percentiles are 14% and 4% respectively; for more details on the definition of 
the fault types please see Section 3.3 and [41].

The results create a strong impression that the Matrix Multiplication is 
acceptably fault-tolerant, considering the absence of a reliability mechanism. 
However, if we separate the results based on the structure that was corrupted, 
we can see that the robustness of the structures exhibit great variance. Table 
8.2 and Figures 8.1 (b), (c), (d) and (e) provide the per structure outcomes.

We observe that the register file is the most fault-tolerant of all structures. 
85% of faults produce no user-visible error. This is a result of fault masking 
through register rewriting, unused registers, registers that were injected after 
their last use and logical masking (e.g. an AND operation that will keep only 
a part of the original value of the register). Another important aspect that 
improves the robustness of the register file is the bit-width that has been selected 
during coding and compilation for the application's variables. The program 
manipulates 32bit integer variables, which makes part of faults injected between 
the 64th and 33rd bit ineffective.

On the other hand, the rest of the injected structures — led by the PC 
register with 89% of injections resulting in user-visible errors and followed by 
the Fetch and Execution stage of the pipeline — are less fault-tolerant. If we 
disregard the experiments in which the faults did not manifest (notActivated), 
the percentage of PC register, Fetch and Execution stage experiments that 
resulted in erroneous execution equals 80% on average .

The PC register is the most likely structure to create an unrecoverable er­
ror as all of its bits are important and its value is needed on every cycle. A 
corruption of the PC can create an error by moving the execution flow before 
(re-executing part of the instructions2) or after the correct execution address 
(skipping part of the application, e.g. the computational part) or even point at 
an unmapped address space.

1 Not Activated faults are faults that either were set to manifest when the CPU  was op­
erating in non User M ode(not allowed by default to  our framework) or out of our region of 
interest

2 However, this does not always result in a  user-visible error
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Figure 8.1: (MM) Behavior under fault injection (w/out notActivated). (a) 
Total, (b) Fetch, (c) Execute, (d) PC, (e) Int Registers
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In the faults that were injected in the Execution and Fetch stage we can see 
a similar behavior to that observed for the PC. On average, 75% of the injected 
faults create a SDC or DUE error. In regard to the fetch stage, possible cor­
ruptions can either change the immediate value, registers that would be used 
(source/destination) and the function or operation code, altering the instruc­
tion's behavior or creating an unrecognizable value. As for the execution stage, 
we observe that the faults mainly produce SDC on the output of the program 
or panic due to accessing unmapped addresses. This can be coupled with the 
nature of the code that it is used, as it contains a lot of computations that 
directly influence the output and manipulates all values through load/stores in 
the memory.

An outcome that we did not mention earlier is the case of infinite execution. 
In this case, an injected fault corrupts a value in such a way that the application 
never reaches termination. This is an example of how a fault can influence 
the run-time of an application. Other possible ways in which the run-time or 
performance can be effected is in the presence of fault-tolerance techniques; 
fault-tolerance techniques are known to create extra overhead, something that 
can be quantified through the simulator performance statistics.

You can see more graphs and data related to the results of the statistical 
fault injection in the MM kernel in Appendix A.1.

8.3 S tatistical Fault Injection In The AVS D e­
coder

The second application with which we experimented was the AVS Decoder[27]; 
an H.264/ACC competitor video compression standard. Our first approach was 
similar to the MM. We created a random fault injection campaign, using the 
previously mentioned uniform distribution function, to get a general picture 
of the application’s behavior in an unreliable environment. As a second step, 
we experimented with targeted fault injection to assess the fault-tolerance of 
specific functions and modules. All the injections were done in integer registers, 
as the AVS Decoder lacks floating point calculations.

In the configuration of the statistical fault injection campaign a detailed out- 
of-order CPU was used, combined with a 2 level cache hierarchy and a physical 
memory module.

No Diff(Activated) 1135 67%
Diff 163 9.62%

Panic 396 23.38%
Infinite 0 0%

No Output 0 0%
Stack Overflow 0 0%
Unimplemented 0 0%
Not Activated 0 0%

T otal 1694 100%

Table 8.3: (AVS)Fault Injection Outcome.
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■ No Diff(Activated)
■ Diff
□  Panic
□  Infinite
■ No Output
□  Stack Overflow
■ Unimplemented
□  Not Activated

Figure 8.2: (AVS)Total Outcomes Chart

In Table 8.3 and Figure 8.2 we summarize the outcome of the random fault 
injection campaign for the AVS decoder. We can see that compared to the MM 
application AVS is less fault-tolerant as the percentage of incorrect executions 
is almost double of MM, reaching 33% of the overall outcomes. This can be 
justified by the fact that AVS is a more complex application, facilitating all of 
the available registers and containing a lot of control instructions and memory 
accesses that can create a DUE when corrupted. We can observe the influence 
of more memory accesses in the reliability of the application by observing that 
the number of errors due to attempts of accessing unmapped addresses is double 
(compared to the MM number) even though we conducted less experiments with 
the AVS decoder.

8.4 Targeted Fault Injection In The AVS D e­
coder

Except from the random fault injection in the AVS decoder, we also executed 
targeted fault injection campaigns to assess the fault-tolerance of different code 
modules.

Through these experiments we wanted to assess the correctness of our as­
sumption that there exist code segments that do not require reliable execution 
or at least not on their entirety. This assumption has also been presented and 
evaluated by other research groups [33, 48].

For the execution of these experiments we used a “simple” CPU model cou­
pled with a physical memory module; no cache memory was simulated.

Due to timing constrains (each experiment required 4 hours even when using 
the simple timing simulation objects) we only targeted reading of the inverse 
transformation matrix, motion vector decoding, header segments of I,P and B  
frames, the sequence header and the chroma and luma coefficients.

The fault environment we wanted to simulate was a heavily unreliable one, 
where faults would be continuously injected on the targeted functions.

In the experiments targeting the inverse transformation we injected faults in
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the upper-left and lower-right cells of the matrices in order to prove that data 
or computational parts can be categorized based on their impact in the quality 
of the application’s output. As expected, the injections only affected the quality 
of the produced video (SDC errors) and verified our assumption. The videos in 
which the upper-left cell (containing the most significant part of information) 
was corrupted exhibited worse quality compared to the same corruption in the 
lower-right cell. For the quality comparison two metrics were used: Mean Square 
Error (MSE) and Peak Signal to Noise Ratio (PSNR) (see Appendix A.5).

Even though the quality of the video is affected in a more negligible way 
when corrupting less significant data and computations, we observed that it can 
still make the output unacceptable for use. A better approach would be the use 
of a default value (acquired through offline statistical sampling). In the case of 
inverse transformation, when pervasive errors are present in the computation 
of the lower-right cell of the matrix, it may be better to skip the computation 
and use as a default value zero (0). This would affect the produced output in a 
more favorable way.

Having experimented with a fault-tolerant3 function, we proceeded to the 
assessment of a code segment that we expected to be non-fault-tolerant: the 
sequence and frame header data. In these experiments we corrupt a bit of the 
read value to emulate faults during the processing of data. Even though the 
header data were generally non-fault-tolerant this behavior did not cover 100% 
of the cases. Due to reserved bits and/or unused field, we recorded cases where 
faults did not manifest to the user visible output. Together with the header 
data we tested the fault-tolerance of the chroma and luma coefficients reading 
functions. These also prooved unable to sustain multiple faults.

The last segment we selected to test in our experiments is the motion vector 
(MV) values. The injections on the motion vector values did not create any DUE 
error, however, SDCs were produced and the quality of the image degraded due 
to missing/blank macroblocks. We should note here that the periodic occurrence 
of I frames in the video encoding had a positive influence on the video’s quality, 
as MV values are computed using the last I frame.

For a graphical representation of the experimental outcome and additional 
data, we refer you to Section A.4 of this chapter’s appendices.

3 in term s that the program  did not crash
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A ppendix A

A

A.1 Statistical Fault Injection in M atrix  M ulti­
plication —  A dditional D ata

This section contains percentile data for the inter-fault-type outcomes.

Fetch Execute PC Register
No Diff(Activated) 10.53% 21.52% 8.11% 84.69%

SDC 22.37% 27.85% 2.7% 2.88%
Panic 17.11% 41.77% 81.08% 10.76%

Infinite 0% 0% 0% 0.05%
No Output 0% 0% 2.7% 0.09%

Stack Overflow 0% 0% 0% 0.59%
Unimplemented 0% 0% 2.7% 0%
Not Activated 0% 0% 2.7% 0.95%

No Diff(NotActivated) 50% 8.86% 0% 0%

Table A.1: (MM)Detailed: Inter-Fault-Type Outcomes (Percentiles)

A.2 Statistical Fault Injection in M atrix  M ulti­
plication —  Overview of D U E  errors

This section provides a more detailed overview of DUE errors and their causes 
for the statistical fault injection campaign in the Matrix Multiplication program. 

The possible causes for a panic (sudden termination of the program) are:

1. Attempt to access unmapped address

2. Attempt to execute unknown instruction

3. dfault (Data stream fault or sign check error on virtual address)

4. Attempt to execute unmapped address

5. unalign (Data stream unaligned reference)
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6. iaccvio (Instruction stream access violation or sign check error on PC)

Fetch Execute PC Register T otal
Tried to access unmapped address 3 24 5 127 159

Attempt to execute unknown instruction 4 0 3 0 7
dfault 0 8 1 88 97

Tried to execute unmapped address 2 0 27 12 41
unalign 4 1 4 12 21
iaccvio 0 0 20 0 20
T otal 13 33 60 239 345

Table A.2: (MM)Detailed: Panic Causes

A.3 Statistical Fault Injection in AVS —  Overview 
of D U E  errors

This section provides a more detailed overview of DUE errors and their causes 
for the statistical fault injection campaign in the AVS decoder.

Tried to access unmapped address 215
Attempt to execute unknown instruction 2

dfault 98
Tried to execute unmapped address 27

unalign 30
iaccvio 24
Total 396

Table A.3: (AVS)Detailed: Panic Causes

A .4 Targeted Fault Injection in AVS —  D etailed
R esu lts

1bit 2bit 4bit 8bit 16bit 32bit 64bit
header F F F F C C

picture_data F F F F C C
I_Picture_Header F |X ~ |X ~ |X ~ |x |x

PB_Picture_Header F F F F
SequenceHeader X |x ~ |x ~ F F F
readLumaCoeff F F F F F F
readCromaCoeff F F F F F F

I_Picture_Header -  bbv_delay | C | C
I_Picture_Header -  time_code_flag F |f |f
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I_Picture_Header -  marker_bit
I_Picture_Header -  picture_distance F F X X X

I_Picture_Header -  progressive_frame F F F F F
I_Picture_Header -  top_field_first

I_Picture_Header -  repeat_first_field
I_Picture_Header -  fixed_picture_qp

I_Picture_Header -  picture_qp
I_Picture_Header -  reserved_bits

F

X

I_Picture_Header -  loop_filter_disable X X X X X
PB_Picture_Header -  bbv_delay

X

PB_Picture_Header -  picture_coding_type F F F F |f |f

X |X
|F |F ~

C c

C c

C C
|F |f ~

C C
C C
C C

|x |X

C C
C C
C C
F F
F F

PB_Picture_Header -  picture_distance F F X X
PB_Picture_Header -  progressive_frame F F F F

PB_Picture_Header -  top_field_first
PB_Picture_Header -  repeat_first_field
PB_Picture_Header -  fixed_picture_qp F

PB_Picture_Header -  picture_qp X X X
PB_Picture_Header -  no_forward_reference_flag

PB_Picture_Header -  reserved_bits
PB_Picture_Header -  skip_mode_flag F

PB_Picture_Header -  loop_filter_disable X X X X
SequenceHeader -  profile dd
SequenceHeader -  leveLid

SequenceHeader -  progressive_sequence
SequenceHeader -  horizontaLsize X X X F

SequenceHeader -  verticaLsize X X X F
SequenceHeader -  chroma_format

SequenceHeader -  sample_precision
SequenceHeader -  aspect_ratio_information

SequenceHeader -  frame_rate_code
SequenceHeader -  bit_rate_lower

SequenceHeader -  marker_bit
SequenceHeader -  bit_rate_upper

SequenceHeader -  low_delay F F F F
SequenceHeader -  marker_bit

SequenceHeader -  bbv_buffer_size
SequenceHeader -  reseved_bits

|f |f

C C
C C
C C
X X
X X
X X

motion_vectors_1 X X X X
motion_vectors_2 X X X X
motion_vectors_3 X X X X
Table A.4: Targeted fault injection campaign in AVS results 
section and faulted bit. X :SDC, F :Panic, C :Correct,

per
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The above table presents the outcome for targeted fault injection in various 
functions of the AVS Decoder. The first rows contain the outcome for injection 
in all fields, if more than one, of the named function. The following rows present 
the outcome for injection only on the named field of the function. Finally, the 
last three rows contain the outcome for fault injection in the motion vectors.

A.5 Exam ple Fram es with SD C
This section contains images from experiments that produced Silent Data Cor­
ruptions (SD C ) on the output of the AVS decoder.

Figure A.1: Example outputs for fault injection in the AVS inverse transforma­
tion function. Left: top-left cell, right: bottom-right cell. 32nd least significant 
bit flipped. No error produced as the idct matrix manipulates short(16bit) 
values.

Figure A.2: Example output for fault injection in the AVS inverse transfor­
mation function. Left: top-left cell, right: bottom-right cell. All bits set to
0.
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Figure A.3: Example outputs for fault injection in the AVS inverse transfor­
mation function. Left: top-left cell, right: bottom-right cell. Row 1, least 
significant bit (LSB) flipped. Row 2, 8th LSB flipped. Row 3, 16th LSB flipped.
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Figure A.4: First 3 frames from fault injection in the AVS motion vector values. 
Left faulted, right original
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Figure A.5: Next 2 frames from the fault injection in the AVS motion vector 
values. Left faulted, right original
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C hapter 9

Conclusions

After the presentation of our framework and the analysis of the experiments 
results, in this final Section we restate our observations, we discuss potential 
future work and conclude.

9.1 Conclusion
As we mentioned in Chapter 2, the effort to enhance the performance of digital 
systems through the shrinking of the transistor's size had a negative effect in 
the reliability of the ICs. The increased susceptibility of transistors to cosmic 
radiation along with the incompetence of deterministic worst-case timing anal­
ysis of modern digital circuits raise a new “Wall” in the progress of electronic 
systems. To overcome this obstacle we praised the need to assess the impact of 
the newly introduced faults in the behavior of applications in order to create 
new fault-tolerance techniques that will preserve the reliability of future systems 
in acceptable levels.

In this direction the first contribution of this Thesis is the enhancement of 
a modern, widely adapted, full system simulator with fault injection capabili­
ties. This new framework enables the injection of transient, intermittent and 
permanent faults, in order to simulate an unreliable environment. Furthermore, 
it is not limited to models covering radiation or timing induced faults, but also 
facilitates an easily extensible architecture to support the adaptation of future 
fault models. Through experiments our framework proved its effectiveness and 
ability to work with large workloads, in whole or partially, and to produce accu­
rate injections. Moreover, the automation of the fault injection campaign and 
the ability to run multiple simulations on parallel create a great environment 
for experiments mitigating the effect of large simulation time per experiment. 
However, this tool does not try to invalidate other techniques but to serve as a 
complement to them in the design process.

An additional contribution of this Thesis is the experiment analysis we pre­
sented in Chapter 8 which validated previous research on this area [48, 23] 
and gave us a better insight on the behavior of applications in an unreliable 
environment. We observed the difference between the fault-tolerance of CPU 
components (integer registers v.s. PC register, fetch and execution stage) and 
the effect of manipulating 32bit data on a 64bit architecture. Another important
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observation is the variance of fault-tolerance in modules of the same application. 
Specifically, the targeted fault injection proved the existence of code segments 
that even in the presence of a substantial amount of faults can produce results 
in the margin of acceptable error. This inherent reliability can be exploited in 
order to improve other metrics, for example power consumption. As proposed 
in [33] reliability tags can be placed in the application code to characterize the 
reliability requirements of its each segment. In that way, we can use CPUs or 
computational units that function in subthreshold voltage, to execute portions 
with high fault-tolerance with lower power consumption.

9.2 Future Work
As an enhancement of this work we are interested in experimenting with more 
applications and creating a model of how faults affect computational patterns or 
groups of similar applications. Moreover, as a next step we plan to implement 
the mechanism for scheduling different code parts in processing units/CPUs 
based on their reliability needs proposed at [33, 48] and to evaluate its effective­
ness in terms of performance and power consumption.
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