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IHHEPIAHYH

H peiowon g mtoong tdong oe éva diktvo dtavoung 1oyvog eival €va amd ta
peyoAvtepa mpoPfAnuota  aflomotiog yio o onuepwva kokiopato VLSI. Ta keld
KOl Ol OHAOES TOV AOYIKOV TUAMV OTOpPOeovV HEYAAEG TOCOTNTES PEOMOTOS Ol
omoleg TPOKAAOVY TTTMGT TACNG Kot EMAywYKO B0pvPfo 610 4iKTLO dlOVOUNG 1oYVOG

(grid noise).

Mo va avIYETOTGTOOY aVTA To TPOPANUATA TPEMEL VO IKAVOTOLEITAL 1] EVOTABELN
(robustness)ov diktHov Stovoung 1oyvoc. AVTO oNUOivel TOC 1) TAOT TPENEL VAL
dwtnpeitan o€ va acPaAES eminedo. Anhadn, vo Unv TEPTEL KAT® amd £vo KATOOAL
.Y Koto omd o 10% e apykng téong (10% VDD). Avtd to mpoBAnua ovapépetan
®¢ EAeYYX0G TNG aKePALOTNTAG TPOPOOOGING Kot TNG EVOTAOELNG TOV HIKTOHOV JVOUNG
oyvog (grid verification) kot givatl to éva amd o dVO TPOPANUATA TOV OVAADOVTOL

GTNV TOPOVGA EPYOCIAL.

To devtepo mpoOPAnua avapépetor ®g mPOPAnua Pertictomoinong tov SIKTHOL
dravoung toyvoc (grid optimization)kot éxet va Kavel pe v eA0yIOTOTOIMNON NG
emeavelog mov kataiapPdver to diktvo (grid area)n pue v glayiotonoinon Tov
BopvPov oL Swktvov (grid noise). Q¢ grid areaopilovpe ™V EMEAVELD. TOL
KatalopPavoov ot opldvtieg kol ol kdbeteg Ypouués Tpo@odooiag kabmg kol ot
TokvoTég anoovlevéng. Q¢ grid noiseopilovpe to dOpoicpo TV oAokAnpoudTOV
G MTAOONG TAONG, 0€ OAOVG TOVS KOUPOVE TOV SIKTVOV, OTAV AVTH PPIicKETOL KATW®

Ao £VO EMTPENTO KOTDOPAL

H Bektiotomoinon apyikd opiletar £€oviog oG OVTIKEYEVIK GLUVAPTNON TNV
EMPAVELX TOV SIKTVOL O1VOUNG 1GYV0G, 1| omoia TPEmEL va, ElaytotomomBet, vTd Tovg
TEPLOPIOUOVS TOV dEOOUEVOV HEYEDDV TOV TAUTOV TOV YPOUUDOV TPOPOOOGIG Kot
TOV UNKOV TOV TUKVOTOV 0mocV{gLéng Kobmg Kot Tng Slotipnong e TToong Taong
0€ EMTPENTA EMIMEDD, WG OVEEAPTNTES TAPOUETPOVS. XT1 GLVEYELD, N fEATIoTOMOIN O
opileton €yoviog ¢ AVIIKEWUEVIKN] ovvaptnon to 00pvPo, o omoiog mpémer va

elaylotomoindel, VO TOVS TEPLOPICUOVG TOV OESOUEVOV PEYEDDY TOV TAUTOV TOV
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YPOUU®V TPOPOSOGING KAl TOV UNKOV TOV TUKVOTOV amocVIEVENG, o aveaptnteg

TOPAUETPOVE.

H mapovoa epyacio opyavdvetor og e€ng: 1o 2° kepdlaio yivetar 1 dnuovpyio kot
N ovaALGN TOL SIKTVOL OOVOUNG 1oYVOG He Pdon v Tpomomoinpuévn pébodo twv
koupov (Modified Nodal Analysis)kat oto 3° avaAidoviar to mTpofAfpoTe TOL
EAEYYOL NG OKEPALOTNTOG TOL OIKTVOV KOl TNnG PEATIOTONOINGNG TOL JIKTLOV
davounc oyvog. 1o 4’ kepdlato vroloyiloviar ot XEPOTEPES TTMOCEIS TAONG OF
K@ KOKAO poAOYLOV Yoo GAOVS TOVG KOUPOLE TOV OIKTVOV, VITOAOYILOVTOG TPAOTA TIG
TTOCEL TAoNG oto peylotikd onueia (Maximal points).Zto 5° kepdioto yiveral
avantoén wog mpoktikny pebodoroyiag ywo grid verification evdd oto emodpevo
Kkepdhoo (6°) avolvetar n cuvolkny porp tov akyopibpov. Eto 7° Ke@dAaio
Bpiokovtor To TEPOUOTIKO OTOTEAEGUOTA OO TNV TPOCOUOIMCT) OPICUEVAOV
KUKAOUATOV £@apurolovtag Tic nefdoove mov mTapovstaloviol 6Ty pyacio Kol yio
va emPeforwboiv ta omOTEAEGUOTO, £YIVE GTOTIOTIKN OVAALGY OKPOI®OV TIU®OV.
Yrndpyer Eegxoplotd keedhowo pe TG omodeifel tov  Beopnuitov  Tov

ypnoporomOnkay Kabmg Kot Eexmplotd KEPAAOLO LE TOV KOOIKO TOV aVOTTUYONKE.

H exndévnon mg epyasiog avtig o Ba rav dvvar yopic T cvpPoin, fondeia kot
ocvumapdotacn tov emiPAénovro kabnynt) k. Evpopeomoviov Néotopo kabng kot
TV kadnyntov k. Ztapovin 'eodpylov ko k. Movvtavo lodvvn tovg omoiovg BEA®

Vo 0Y0PLoTNo® Bepud.
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|.INTRODUCTION

The deterioration of the voltage level supplied on the active cells or modules by the
lines of the power distribution network (voltage-drop or IR-drop) constitutes one of
the biggest reliability problems in modern nanometer-scale VLSI circuits. Excessive
currents drawn by the active modules and flowing through the finite resistance of the
power distribution lines cause substantial voltage drops at the modules and adversely
affect circuit speed and noise margins [1]-[2]. Upcoming generations of ICs are going
to experience even greater voltage drops (due to increased currents and parasitics),
which combined to the reduced supply levels (and increased drop-to-supply ratios)
will make the situation extremely harsh.

To get around these problems designers need to have the ability to check if a given
power grid isrobugt, i.e. if it constantly maintains a safe voltage level at all active
modules under all possible loading conditions. This is commonly referred to as the
power grid verification problem. In the unfortunate situation, however, where a
certain power grid fails to pass a robustness check, there will typically ensue a long
and tedious process of tweaking the sizes of power lines and re-checking (under the
same circuit loading) until robustness is reached. A common practice is to try over-
designing the grid and its lines (i.e. draw them with excessive sizes) at the outset, in
an effort to suppress their resistance. However, such an overdesign is in direct conflict
with the ever increasing stake of signal lines in routing resources, especially in the
less resistive upper metal layers. Besides, since the voltage drop effect is further
exacerbated with each new generation of ICs, one cannot tell anymore if a specific
design is classified as overdesign or is in fact underdesign. In such cases where an
initial robust as well as area-efficient design is dubious, there is need for a systematic
methodology that gives the minimum-area grid which satisfies the robustness
specifications. This is referred to as the power gpiiimization (or optimum design)
problem. Such a problem is naturally formulated as a constrained optimization
problem where the grid area is an objective function to be minimized with respect to
the widths of the power lines and the lengths of the decoupling capacitors (as
independent variables) and under constraints on voltage drop at all active modules

[20], [22]. It is also formulated as a constrained optimization problem where noise (a

7
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sum of the integrals of the voltage drop in the nodes where it remains below a user
specified noise ceiling) is an objective function to be minimized with respect to the
widths of the power lines and the lengths of the decoupling capacitors (as independent
variables) [21]. The constraints arise from an explicit network analysis which
expresses the voltage drops at the modules as function of the independent variable
widths with one or more vectors of current excitations from these modules (denoted
as current sourcedYlost recent attempts [3]-[5] were based on a modification of the
above framework proposed some years ago [6] in which two sets of independent
variables (branch currents and node voltages) were employed instead of the single set
of branch widths, and the network - current and voltage - laws were taken as
additional constraints (effectively performing an implicit network analysis within the
optimization algorithm). This was done in order to relax the original problem and
solve it in two steps (by successively fixing one set of parameters at each step)
involving a convex programming and a linear programming problem, both of which
can be solved efficiently by known methods in the literature. However, there are
several important problems and shortcomings with the aforementioned modification.
First of all, the relaxation process does not actually solve the original problem but its
relaxed counterpart, a fact that inevitably introduces inaccuracies in the final solution.
Without the relaxation process the problem is no more than a nonlinear programming
problem, which is also characterized by an almost twofold increase in the number of
optimization parameters along with hundreds (or thousands) of additional constraints
emerging from the network laws. The greatest problem, however, with the modified
framework is that since node voltages and branch currents are selected as unknown
parameters for optimization, only one set of current waveform excitations can be
specified which finally produce those unknown currents and voltages. Also, since the
output of the simulation for the sink currents is a function of the sequence of input
patterns applied on the digital circuit, to fully check grid robustness or build a
complete set of constraints one has to enumerate all possible input patterns, which is

clearly impractical.
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II. MODEL AND TRANSIENT ANALYSISOF THE
POWER GRID

As already stated, we will be concerned with the full RLC model of the power grid.

Let the power grid be composedbranches anah+ p nodes, of whiclp nodes are

connected to the external power supply via power pads, and the renranodgs are
divided tom sink nodes (with current sources to an external ground nodef-and

internal nodes.

Due to the presence of both C and L elements in a full RLC model, we will employ
the Modified Nodal Analysis (MNA) — instead of the standard Nodal Analysis — for
the analysis of the power grid, wherein inductor currents constitute additional
variables alongside node voltages. Especially for networks representing power grids
we typically model each wire segment (between two contacts) as a resistance in series
with an inductance, with capacitances to ground at the two contact nodes (Fig. 1).
Thus, in the analysis that follows we will consider théranches of the grid as

composite resistive-inductive (R-L) branches.

Crinl2 I Icrmfz

Fig. 1. Typical model of a wire segment in power grids.

The Kirchhoff's current and voltage laws for the linear network representing the

power grid are as follows:

iy (1)

KCL: [A, AC]L 0

}zen(t) , or

(1) Arlib(t)+ic(t):en(t)
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| AY v,
KVL: {Az}vn(t) = {vc(t)] or
(2a) ALV, (1) =V,()

(2b) v, ([O)=v.()

In the above,A, is the nxb incidence matrix of the directed composite R-L

branches (with arbitrary reference directions), whose elements are defined as follows:

+1, when direction of branchis away from node
a =<— . . . .
! when direction of branchis towards node

when branch is not incident with node

Furthermore,v, (t), v, (t), andi,(t) are thenxl, bx1, and bx1 vectors of node

voltages, branch voltages, and branch currents respecteygty, is a nx1 vector of
excitations from independent sources (either current or voltage ones) at the nodes,

i.(t) is anxl vector of currents of the additional capacitive branches which appear
at then nodes, andA is the nxn incidence matrix of those branches, for which

A_ =1, (the nxn identity matrix) since all capacitive branches are directed away

c

from the nodes and are connected to ground.

The current-voltage relationships of theapacitive branches and th&eomposite R-

L branches are as follows:

B) i ()=CV . ()=C.V,(1)
@) v, () =Ry, () +L,i,(t)

where V_(t) and i, () are the time derivatives of vectorg, (t) and i,(t)
respectively,C, is anxn diagonal matrix of the node capacitances, Byd L, are

bxb matrices of the resistances and inductances of the composite R-L branches. The

10
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matrix R, is a diagonal matrix, whild, is either diagonal if there are only self-

inductances at the branches, or a full matrix if there are also mutual inductances
between branches. We assume that each R-L branch has nonzero self-inductance and

each node has nonzero capacitance, so that the mdtrjcaad C, are nonsingular

(invertible).

In MNA we replace (3) into (1), and (4) into (2a), in order to obtain the following

system of first-order differential equations (with respect {¢) andi, (t)):
(5) Arlib(t)+cnvn(t) =en(t)

(6) Rbib(t)_‘_Lbi‘b(t)_A:—lvn(t):O

. v, (t
If we write the variable vectors ,(t) andi,(t) as the new vectox(t) :{ ( )} we

i, (1)

can write the systems of equations (5) and (6) as the new system:

(7)  Gx(t) + Cx(t) = e(t)

Whereé:{ OT A”]E:{Cn O},e(t)z{e”(t)}.
“AT R, 0 L, 0

rl

In the above system, (t) is the vector of node voltages, but the system is easily re-

expressed with respect to thatage drops at the nodes by omitting the independent

voltage sources in the excitation vecg(t) and reversing the sign of the current
sources (from — to +). From now on we will denatg(t) as the vector of voltage

drops at the nodes.

We remark here that in the optimization problem the matrix of node capacitances

(C,) as well as the matrices of the resistances and inductances of the composite R-L
branches R, and L, respectively) are no longer constant but depend on decap
lengths [) and wire widths W) and should be written a€ (w,l), R, (w,l) and
L,(w,l).

11
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By the Backward Euler differential approximation for a fixed time stegve can

replace the time derivative x(t) with its finite difference formula

X(t) = x(t—h)
h

X(t) ~ in (7) and obtain (G + C/h)x(t) = (C/h)x(t —h) +e(t) for

t=kh, k=12..., or:

(8)  x(kh) = (G +C/h)"e(kh) + (G + C/h) *(C /h)x((k = 1h)
= B, e(kh) + Bx((k —Dh)

whereB, = (G +C/h)* and B=(G+C/h)*(C/h)=B,(C/h).

The latter recursive relation is used to calculate all node voltage drops and all branch

currents at a particular time instaint kh,k = 1,2... based on the voltage drops and

branch currents at the previous time instaatk —1)h.

12
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1. STATEMENT OF THE PROBLEMS OF POWER
GRID VERIFICATION AND OPTIMIZATION

A. Verification Problem

The process of power grid verification typically involves checking that the maximum

voltage drop at all sink nodes, under all possible transient current waveforms, does

not exceed a safety threshold voltagée.g. v, = 0.1vdd ) at all time instants t

v (t)<v,, VteR.

Since the latter is equivalent m%xvs(t) <V, (where the “max” operator is interpreted
ted

component-wise in vecton,(t)), we need to find the maximum voltage drop

maxv, (t) at each sink<k<n.

B. Optimization Problem

In the optimization problem we seek to minimize the objective function of the area
which is the sum of the area of horizontal wires, the area of vertical wires and the area
of the decoupling capacitors. We assume that decoupling capacitors are square blocks.
The optimization is subject to keeping noise (voltage drop) in every grid node less
than a threshold value (10%Vdd) and keeping wire widths and decoupling capacitors

lengths between reasonable bounds.

ndec

by b,
Minimize  Area(w,l)=L > w +L> w, +> 1,7
i=1 j=1 k=1

Subject to rp%xvs(t) <V, Optimization Problem (1)

and W, SW<w

max?

Imin Sl < Imax

13
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Where L, is the length of horizontal wire4,, is the length of vertical wiresyis the
width of a wire,b, is the number of horizontal branchdsg,is the number of vertical

branches| is the length of the decoupling capacitors aml#cis the number of the

decoupling capacitors, which in our case is equal to the number of nodes.

Vilttw, 1}

A

[ ',r,g — -

0% Ve -—+-- - “Qi{{:/fffjfﬁﬂ M

] f i I
Fig. 2. Voltage waveform of one node on the Vdd grid.

Another formulation of the optimization problem is minimizing noise. Noise at a node
can be efficiently measured using the integral of the voltage drop below a user
specified noise ceiling as:

Z,(w,1)= [ max{NM,, —v(t w,)0} = [TNM,, —v,(t w, )}t

where (,l) represent the tunable circuit parameters which, in our case, are the

widths of the power grid wires and the lengths of the decoupling capacitors
(supposing decoupling capacitors are square). This idea is pictorially illustrated in the
above figure, which shows the voltage waveform of one node on the Vdd grid.

The noise metric for the entire circuit (which is now the objective function) is defined

as the (possibly weighted) sum of all of the individual node metrics:
K

Z=>Y z,(w,l)
j=1

K is the number of nodes. This metric penalizes more harshly transients that exceed
the imposed noise ceiling by a large amount for a long time, and has empirically been

seen to be more effective in practice than one that penalizes merely the maximum

14
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noise violation. Intuitively, this can be explained by the fact that the metric
incorporates, in a sense, both the voltage and time axes together, as well as spatial
considerations through the summation over all nodes in the circuit. The optimization
now is subject to keeping wire widths and decoupling capacitors lengths between

reasonable bounds.

The optimization problem can be formulated as:
K

Minimize ~ Z=) z(w,l)
j=1

Subject to w

min

<w<w,

max?

lin <1 <1 Optimization Problem (2)

max

15
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|V. DETERMINATION OF THE WORST-CASE
CURRENT EXCITATIONS

A. Instantaneous and cycle-mean voltage drop as function of the

excitation waveforms

Both for the verification and the optimization problem we seek to find all current
waveforms that constitute worst-case waveforms, in the sense that they produce the

worst voltage drop during a clock cycle.

By successive substitutions of the recursive expressions(fer-1)h), x((k —2)h),

..., X(h) into (8) we obtain:

x (kh) = B,e(kh) + BB,e((k - Dh) + --- + BB, e(h) + B*x(0)

[N

B'B,e(k - j)h)+B*x(0), k=12...

j=0
However, both for timing and noise purposes, the peak instantaneous voltage drop is
not as important as the integral of voltage drop (or the mean voltage drop) within a
specified time interval = Nh, which may be equal or smaller than the clock period —
e.g. an interval of high activity within the clock cycle (a large instantaneous voltage
drop will not severely affect timing but a large cumulative voltage drop over a time
interval will). The mean vector of voltage drops and branch currents within such an

interval is:

_— _
X=X+ X(2h) +-+ X(N)]

%[Ble(NhH (I +B)B,e((N-Dh)+---+ (I +B+---+B" ™) B,egh) +c] where
c=(B+B?+---+B")x(0).

. ~ ~, |Ct O
SinceB, =hBC ™ (whereC ™ = N ) we haveB,e(kh) = hBe_ (kh)

b

16
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(wheree, (kh) = [C" e(;(kh)}) for eachk = 12...N , 50

x:%[Bec(Nh)Jr(BJrBz)ec (N=Dh)+--+(B+B?+--+B")ec(h) +d]

By denoting the upper-leftnxn blocks of the matricesB, B+B?,...,

B+B?+---+B" as (B),.,, (B+B?) ., (B+B*+---+B") ., we have for the

nxn? nxn?1°*° nxn?

block v, of voltage drops within the vectox:

Cle,(N-Dh)+

nxn

©) vn=%{(B)Mc;eﬂ(Nh)+<B+BZ)

++(B+B*+---+BY) Cle (h)+c,,]

nxn

[(B)nxncaleN +(B+ Bz)nxncgleN—l +--+(B+B?+--+B") C7191 +Cpal

nxn n

_1
N
where we have written the vectors of excitati@yéNh), e ((N-Dh),..., e,(h) at

time instantst =kh,k=12....N as ey, ey,,..., e since we will treat them as
variables hereafter. Thus we have arrived at the result that the mean voltage drop at
each nodei = 12...,n (i.e. each component, i=12...,n within V) is a linear

function (or a linear affine function if the constasgctor ¢ is not0) of the super-

vector of M = mN dimensions:

Y= @uiBuz o Bum Byt Btz ree Bamr e €102 € )

which consists of the (discretized) current waveform excitations antsiek nodes

(we remind that in eachx1 vectore,, €,,,..., € onlym of then components that

correspond to sink nodes are nonzero).

B. Maximizersof alinear (or linear affine) function with nonnegative

coefficients

The variable vectoy in every functionV, =V, (y), i = 12...,n does not attain all
values in theM-dimensional spac&" =R™ . Instead, the excitation values at each

17
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sink j=12...,m and at each time instabt kh, k= 12...,N depend on the specific
clock cycle where they are considered, i.e. on the pair of binary vedigré }

being applied on the digital circuit before and after the clock edge. This means that
the vectory is actually a vector-valued functiop=y({b, b }) whose range of
valuesD cR" constitutes thelomain on which the linear functiof, (y) is defined.

This domainD (henceforth referred to as the “excitation space”) is obviously bounded

(since the drawn currents at every time instant are all finite) and closed (since it
contains its boundary points), which means that itdsnapact set of " . Due to the
well-known Weierstrass theorem [7], a continuous functibfy) defined on a

compact setDcR" (i.e. f:D—>NR) always attains a maximum at some point

y e D (maximizing point or maximizer off (y)). Each functionv. (y), i = 12...,n

is a linear function of/, and for R or RC grid models it is well known and easy to

prove that it hasonnegative coefficients in all components of the vecyofdue to the

matrix G +C/h being inverse-nonnegative in the absence of inductive elements —

for general RLC models see next section). We seek to locate the maximizing points
y €D for V(y) among allyeD (i.e. among all possible clock cycles and

corresponding binary vector pairs) which can be characterized as the worst-case
excitations. For this specific type of function the following hold with respect to its

maximizing points:

Definition 1. A point ye D is called amaximal (or noninferior) point of the set
DcR" if for every y'e D the relationy’ >y implies y' =y, or equivalently if
there does not exist §'e D such thaty’ >y (component-wise) with at least one

component =1,...,M beingy' >v..

M
Theorem 1. [15] Let f(y)=Zai y,=a' -y be a linear (or linear affine) function
i=1

with nonnegative coefficient vecter (i.e. a>0 component-wise) which is defined

on a compact séd c R" . If y" € D is a maximizer off (y) [i.e. f " )= max f (y)
ye

], theny’ is a maximal point of D
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The above theorem effectively means that in order to find the maximizing points of a

linear function f (y) =a' -y with a>0 which is defined on a closed and bounded set

D < ®"™ we may confine our search to the subset consisting of the maximal points of
D (Fig. 3).

aly=c

Maximal
points

>y,

Fig. 3. Maximal points of a compact sdd c R and maximization of a linear
function f(y)=a' -y over it (only the level line off (y) at the maximizing poiny’

is shown in the figure — the actual graphfdfy) is a plane in 3 dimensions).

C. Nonnegativity of the coefficients of the voltage drop function in the

case of general RLC grid models

In contrast to the case of R or RC grid models, it is not at all obvious whether every
mean voltage drop functioy =V, (y) in (9) has nonnegative coefficients, in order for

the maximal waveform points to still represent the worst-case excitations.

At first, since all capacitances in the diagonal ma@ijx are positive, the matric_*

is also positive diagonal and thus it is sufficient to examinenthe upper-left blocks

B).... (B+B?) (B+B2+---+B")__ of the matricesB, B+B?,...,

nxn?i®** nxn

B+B?+---+B". The matrixB can be written as:

(10) B=(G+C/h)™(C/h)=(hC(G+C/h)*=(C'G+I)"
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_ In AC B
|-A, 1, +R,

A =hLAT, R =hLR,

where A, =hC'A

rl Y

and I, |, and I, are the (n+b)x(n+b), nxn, and bxb identity matrices

n?

respectively.

By performing block matrix inversion [8] in (10) we have:

11) B:{ Q —-QA:U }

UA Q U-UA,_QA_.U

whereU=(l, +R, )" andQ=(,+A.UA )"

I A
(just multiply (11) by " ¢ and verify that their product is the
-A I, +R,

(n+Db)x (n+Db) identity matrixI).

For the moment, we will assume only self-inductances in the power grid model so that
the matrixL , (and L") is positive diagonal (we will treat mutual inductances in the

next section). With this assumption we can readily show that the uppersteft

block (B),.,=Q of B has only nonnegative elements (i©.>0 element-wise).

Indeed, ifL , is positive diagonal, thethL;' = (I, +hL 'R, ) *hL}" is also positive
diagonal, and the produst = A, (UhL;")A] where A, is an incidence matrix and
UhL' is a positive diagonal matrix is well known to have the following properties
[9]: (i) positive diagonal elements/( >0, i=1...,n), (ii) nonpositive off-diagonal
elements ¢; < Qi,j=1...,n, i = |), (iii) symmetry (v, =v;, i,j=1...,n), (iv)

diagonal dominance, defined as follows:
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Definition 2. A nxn matrix V =[v;] is called row diagonally dominant if

E Z;‘vij‘, Vi=1,...,n. Correspondingly, it is calledolumn diagonally dominant
j=
j#i

it vy |2 ] V=10,
i=1

i#]

Obviously a symmetric matrix is both row and column diagonally dominant. It is
easy, now, to show the following result about symmetric diagonally dominant

matrices with positive diagonal elements and nonpositive off-diagonal elements:

Lemmal. If V=[v;] isanxn symmetric diagonally dominant matrix with positive
diagonal elements and nonpositive off-diagonal elementsCanfc,], D =[d,] are
nxn positive and nonnegative diagonal matrices respectivelyc(ie0 andd, >0,

i=1...,n), then W=D+CV is a nxn row diagonally dominant matrix and

Y=D+VC is a nxn column diagonally dominant matrix, both with positive

diagonal elements and nonpositive off-diagonal elements (proof in Appendix A).

Because of the above theorem we have that the  matrix

| +A.UA =1 +hC'A_ UhLA] is row diagonally dominant with positive
diagonal elements and nonpositive off-diagonal elements. These properties are
sufficient for a matrix to be classified as Bhmatrix [10], which by definition is
inverse-nonnegative, i.€Q = (I . +A.UA )" >0.

For the remaining blockéB + B?) ., (B+B?*+---+B")_ _ we have thaB=S,,

nxn?*°* nxn

B+B*=S,,..., B+B?+--+B" =S, constitute partial sums of the series

B+B2+---=B(I +B+--)=B) B" which converges to the matr&(l -B) ™" =S

N=0

, On condition thatllim B" =0 [11]. This means that the sequence ofijtieelements

sé“’ of the partial sumsS; converges to thejth elements; of S for every
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i,j=21...,n+b (i.e. Lim sV =s;, Vi,j=1...,n+b), and this of course is true for

1] !

the upper-lefnxn elementss{") ands, , i,j =1...,n. By writing the limit matrixS
via (10) as:
(12) S=B(-B)*=B"'-1)'= 0 Al

_AL RL

we find by block matrix inversion that its<n upper-left block is:

(13) (D =(BU-B) ") =(ARIA ) =(hCJA RFAT)™

rl

The matrixhC.'A 'R;'A] is — on account of Lemma 1 — row diagonally dominant
with positive diagonal elements and nonpositive off-diagonal elements, and is thus an

M-matrix which is inverse-nonnegative, i), = 0.

Overall, we have a series of matrices which starts off by a first &mB with a

nonnegative upper-lefhxn block, accepts additive termB?, B®,... (to form the

intermediate partial sums) which have gradually smaller elementsBh@ue to

lim B" =0, which is equivalent to,limHBNH:O — see in a moment about this), and

N—o0

converges to a limiS=B(l —B)™ with also a nonnegative upper-lait<n block.

This ensures us that all intermediate partial sBnsB?, B+ B +B?,... will have

nonnegative upper-lefix n blocks, i.e.(B+B?)., >0, (B+B*+B?%),, >0,....

As a practical example, consider a grid with: 6 nodes and =8 branches, and the

following incidence, node capacitance, branch resistance and branch inductance

matrices:
1 0 0 0 1 0 0 O]
-11 0 0O 0 1 o0 -1
A, = 0O-10 0 0 0 1 O
' O 0 1 0 -120 0 O
O 0-11 0 -10 0
/1 0 0 0-10 0 -1 0]

22

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:35:58 EEST - 3.145.107.127



C,= ({iag5250 8000 5250 5250 7000 5250 fF

n

R,= ({liagl75 175 175 175 350 350 350 500]Q
L, = [diagl?53 1753 1753 1753 3507 3507 3507 10.00] pH

For this particular case the upper-l&& 6 blocks of the first three partial sums, as

well as the limit of the series are:

00291 0.0335 0.0222 0.0252 0.0314 0.0229
00220 0.0341 0.0220 0.0216 0.0289 0.0216
00222 0.0335 0.0291 0.0229 0.0314 0.0252
00252 0.0330 0.0229 0.0329 0.0370 0.0260
00236 0.0330 0.0236 0.0277 0.0401 0.0277
00229 0.0330 0.0252 0.0260 0.0370 0.0329

(B)nen

00329 0.0389 0.0261 0.0294 0.0370 0.0271
00255 0.0390 0.0255 0.0255 0.0340 0.0255
(B+B?) - 00261 0.0389 0.0329 0.0271 0.0370 0.0294

™" | 00294 0.0388 0.0271 0.0374 0.0430 0.0305
00277 0.0388 0.0277 0.0322 0.0461 0.0322
00271 0.0388 0.0294 0.0305 0.0430 0.0374

00336 0.0398 0.0267 0.0301 0.0379 0.0278
00261 0.0398 0.0261 0.0261 0.0348 0.0261
(B+B?+B?%) = 00267 0.0398 0.0336 0.0278 0.0379 0.0301

mn 00301 0.0398 0.0278 0.0382 0.0440 0.0313
00284 0.0398 0.0284 0.0330 0.0471 0.0330
00278 0.0398 0.0301 0.0313 0.0440 0.0382

00337 0.0400 0.0268 0.0303 0.0381 0.0280|
00262 0.0400 0.0262 0.0262 0.0350 0.0262
00268 0.0400 0.0337 0.0280 0.0381 0.0303
00303 0.0400 0.0280 0.0383 0.0442 0.0314
00285 0.0400 0.0285 0.0331 0.0472 0.0331
00280 0.0400 0.0303 0.0314 0.0442 0.0383

(B(-B) )y, =
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which are all nonnegative as expected (observe the remarkably fast convergence of

the series to its limit after only three partial sums).

In order, now, to prove thaNtm B" =0 (which is necessary for the above to hold) we

first establish thatB" has the general form shown at the bottom of the page (just
multiply B" by B of (11) and verify that the resultinB""* has the same form).

Therefore, in order to prove thﬁm B" =0 we just need to prove thak‘ilm ut =0

and lim Q" = 0. For this we will need the following theorem:

N—o©

Theorem 6. If V =[v;] is anxn — row or column — diagonally dominant matrix

with positive diagonal elements, then for the matW¥ =(1 +V)™" it holds

lim W" =0 (proof in Appendix A).

N—o0

Since Q=(1,+A.UA )" whereA_UA, =hC.'A ,UhL'A] is a row diagonally
dominant matrix with positive diagonal elements, the above theorem proves that

lim QM =0. Also, as a special case, it proves e (I, + R, )™ that lim uM =0,

N—w

since the positive diagonal matriR, =hL 'R, is obviously diagonally dominant
with positive diagonal elements. Thus, we have finally established the nonnegativity

of the upper-left block¢B), ., (B+B?) (B+B?+---+B")__, along with the

nxn? nxn?1°°"1 nxn?

coefficients of the linear functiong =V, (y), i = 12...,n in (9).

D. Extension in the case of mutual inductances

When mutual inductances are present in the model of the power grid, then the matrix

L, of branch inductances is no longer positive diagonal and we cannot rigorously

show that the block¢B).. ., (B+B?), .. ,..., (B+B*+---+B") . are nonnegative.
N iZ(HQN-a«ACUN-b.ALQN-C\) _ ( N- aJA .) N A A UN_a“HA QN—ckACUI\
B" =
S(UNa A QY e T (U A QY AU AQ ) _Z(HUNaA Q A UN)
|

m n
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However, it is known that thiewverse L' is a symmetric diagonally dominant matrix

with positive diagonal elements [12].

With the below theorems we will prove thatfis a symmetric diagonally dominant
matrix with positive diagonal elements abDdis a positive diagonal matrix, then the
matrix (I + VD)™V is also symmetric diagonally dominant with positive diagonal

elements.

Lemma 2. If A=[a;] is a nxn matrix with positive diagonal elements which

n

satisfies |A[ = maxzn:‘a” |<1 (resp., |A], = an_axZ‘aﬁ‘ <1), then the matrix
-1 <l<n 7

I<i<n £

B=I-A is row (resp., column) diagonally dominant with positive diagonal

elements (proof in Appendix A).

Theorem 2. If A=[a;] is a nxn row diagonally dominant matrix with positive

-1

diagonal elements the»A‘luw < I’LQISI;I a, —jzn;‘aﬁ‘ . If A is column diagonally
=i
1
dominant with positive diagonal elements td)en’lul < Jr_pjlgnn a; —an:‘aij‘ (proof
i%]
in Appendix A).

Theorem 3. Let A =[a;] be anxn — row or column — diagonally dominant matrix

with positive diagonal elements. / is an eigenvalue oA then Red > 0 (proof in
Appendix A).

Theorem 4. If A =[a;] is anxn — row or column — diagonally dominant matrix

with positive diagonal elements thex™ has only positive diagonal elements (proof

in Appendix A).
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Theorem 5. If A =[a;] is anxn row (resp., column) diagonally dominant matrix

with  positive  diagonal  elements then the  matrixl —(I + A)™
=(1+A)'A=(A"+1)" is also row (resp., column) diagonally dominant with

positive diagonal elements (proof in Appendix A).

Corollary 1. If A =[g;] is anxn row (resp., column) diagonally dominant matrix
with positive diagonal elements afdli=[d,] is anxn positive diagonal matrix, then

the matrix (A"+D) " =(1+AD)"A is also row (resp., column) diagonally

dominant with positive diagonal elements (proof in Appendix A).

Thus we finally proved that i¥/ is a symmetric diagonally dominant matrix with
positive diagonal elements ardl is a positive diagonal matrix, then the matrix

(1 + VD) 'V is also symmetric diagonally dominant with positive diagonal elements.
This result applies to the matri}dhL, = (I, +hL'R,)*hL}} which is hence
symmetric diagonally dominant with positive diagonal elements. Due to its diagonal
dominance property, the matridhL,' (especially if it is a large one) is expected to
behave a lot like a positive diagonal matrix within the prodgt(UhL ')A and
produce a matrix where the entries originating from diagonal elements “dominate”.
Therefore the results of the previous section derived for a positive diaggnare

expected to still hold becauds, is now diagonally dominant with positive diagonal

elements. In particular, the matrlx, + A_UA_ =1_+hC'A UhL AT is expected

to be an M-matrix or quite like an M-matrix and still be inverse-nonnegative, i.e.
Q=B),.,=0.

To demonstrate with a practical example, consider the same grid as in the previous
section, but with the following branch inductance matrix which also has mutual
inductances between branches (this matrix is an expansion of the matrix given in
[12]):
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25
18
14
11
09

42
25
18
14
11

42
114
4.2
25
18
14

114 42 25 18
42 114

25
4.2
114

42 114

14
18
25
4.2

11
14
18
25
42

09
11
14
18
25

25 42 114 42

07 ]

09
11
14
18
25

18 25 42 114 42

07 09 11 14 18 25 4.2 114

pH

The inverse ofL , is easy to verify that it is symmetric diagonally dominant with

positive diagonal elements. The mattix+ A UA | is then the following:

16330- 10847 024 - 5443 008 030 |

- 7118 20384 - 7113 - 005 - 3557 007
024- 10839 16345 019 - 009 - 5437

— 5443- 007 019 16353 - 10835 013
006 — 4066- 007- 8126 20431 - 8139
i 030 011 - 5437 013 -10852 16327 |

Observe that the entries not originating from diagonal elements are over two orders of

magnitude smaller than those originating from diagonal elements, and normally do

not play any role in the matrix properties. Indeed, this matrix is inverse-nonnegative,

as can be easily verified.

For the sake of comparison, consider the same branch inductance matrix but without

mutual inductances, i.e. the diagonal matrix:
L, = cﬂiagll4 114 114 114 114 114 114 114] pH

The matrix! , + AcUA becomes now:

16338 — 10813 0 - 5424 0 0
— 7096 20347 — 7096 0 — 3559 0
0 - 10813 16338 0 0 — 5424
— 5424 0 0 16338 — 10813 0
0 - 4068 0O - 8110 20389 - 8110
i 0 0 - 5424 0 10813 16338
which is a proper M-matrix.
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For the same reason as above it is expectedllinhnaQN =0. That alsollim ut =0

can be proved directly from Theorem 6 and the factBhat hL 'R, is now column
diagonally dominant with positive diagonal elements (on account of Lemma 1).
Therefore the serieB + B? +--- is still expected to converge to the limit (12), whose
upper-left nxn block, given by (13), is independent df, and is always
nonnegative. This establishes the nonnegativity of the upperieft blocks of all

intermediate partial sumB + B, B+B? +B?,....

Before closing this section, we remark that the nonnegative coefficieits of (7)

also establish that the mean — or the integral of — voltage drop within a time interval is
monotone on the vector of excitations (meaning that increasing the current at any sink

and at any time instant can only result in the increase of the mean voltage drop) which
has long been known for R or RC grid models [14] but was an open problem for

general RLC models (and, in fact, it doest hold for the instantaneous value of

voltage drop).
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V.DEVELOPMENT OF A PRACTICAL POWER GRID
VERIFICATION METHODOLOGY

There can possibly be a variety of ways to estimate the maximal subset of the
excitation space of a digital circuit in order to employ it for verification of the power
grid. In this paper, like in [15], we have adopted a statistical estimation framework,
which consists of acquiring a sample of discretized current waveforms drawn from the
sinks for a number of binary input vectors, computing the sample’s own set of
maximal points, and then statistically projecting this set to the expected global
position of the maximal subset of the excitation space.

To be more specific, we first acquire a samfe={y, V., ...y} of mN-

dimensional waveform super-vectors (henceforth referred to as the “sample space”)

by simulating the digital circuit fot random binary vector pairsb , b }. This

multivariate sample is made up of an assortmentnd univariate samples

S ={Yis VY- Yy}, i=12...,mN, each one representing the current observed at
one sink and at a particular time instant for kirandom vector pairsi{, b, .}In
each univariate sampl& we can estimate the expected maximurty,) of the
random variabley, sampled byS by results from statistical extreme value theory.
Specifically, if S is partitioned intol/r sub-samples of size from which the
maxima unitsz ; = max{y; ; ., »-- ¥ ¥} 1 =12...,1/r, are taken out to create a
new sampleZ, ={z ,, z,,..., z,,,} of sizel/r, then an estimate for the expected
maximuma(y;) of y, can be computed as follows [13]:

o

1+ r/7 logr (erf(\/logr ) —1)

14)  a(y,) = +

2
NE

the location-scale parameters of the asymptotic extreme value distribution (not related

where erf(x) = jox exp(t?)dt is the “error function” andi, , &, are estimates of

to the corresponding parameters of the normal distribution), which are usually
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obtained byMaximum Likelihood (ML) estimation on the sample . However, due

to the large dimensionniN) of the space of current waveforms it is somewhat
impractical (though not entirely prohibitive) to perform ML estimation (meaning the

solution of a nonlinear optimization program) for ak 12,...,mN, and we have
instead used the method of matching the first and second moments (i.e. mean and

standard deviation) of the sampfe with those of the extreme value distribution, by

which we have [13]:
(15a) 6, = (V6/7)std(Z;)
(15b) i =mean(Z;) - yo,

wherey =~ 05772.. is the “Euler gamma” constant. Experiments have shown that the

above approximations found by moment matching are remarkably close to the actual

ML estimates.

Now, the sample spacB={y,, ¥, ... ¥,} has a set of maximal points of its own,
which will be scaleddown in each individual coordinate= 12,...,mN (Fig. 4) with

respect to the maximal subset of the excitation spa¢since there will always be

pointsy € D lying outside the outermost boundaryS)f A reasonable approximation
for this down-scaling of the maximal subset awt®le in eachi=212,...,mN is
ao(y;) —max{y,,, ¥, .. ¥}, wheremax{y, ,, ¥;,, ..., ¥;,} is the maximum value
of each univariate sampl& (i.e. the maximum of the sample spa8dan each

coordinate axis). Writing this succinctly in vector form foria 1,2,...,mMN as:

(16) d=o(y) -max{y,, ¥, ... ¥}

(where the max operator in interpreted component-wise) we have a difference vector
by which we can shift the maximal subsetSin order to move it to the expected
location of the maximal subset bfin R™ . It must, of course, be mentioned that the
maximal subset dD will have much different structure and include many more points

than the maximal subset & but the maximum value of a linear function is fairly
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insensitive to the local structure of the maximal subset and instead depends

predominantly on its global position tR™ (Fig. 5). In order, finally, to compute the
maximal points of the spa&consisting ot points, we have to compare each point to

all others (to determine whether a specific poirmasdominated byny others inall

components, according to Definition 1), which leads to a totaf afomparisons. It

can be shown [14], however, that the necessary comparisons can be reduced to at

most O(I (log, I)mN’Z), where mN is the dimension of the space and its constituent

points.

peY

o(y)-max(y,.....y,)

Fig. 4. Sample spac8 and shift of its maximal points towards the expected position

of the maximal points of the excitation space D

aT'yZC

bg

Fig. 5. Insensitivity of the maximum of a linear function to the local structure of the

subset of maximal points.
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VI.FLOW OF THE ALGORITHM AND COMPLEXITY
ANALYSIS

For each digital circuit the process of creation of the sample spdbg circuit
simulation), univariate extreme value estimation in each of the coordinate axes
i =12...,mN, and shifting of the maximal points of(®wards the global position of

the maximal points of the excitation space)ndependent of the supplying power

grid and needs to be carried out only once. The main steps in this process are
summarized hereafter along with some brief remarks on their implementation and

computational complexity:

e Generate a total of | =2500 random pairs of binary vectors {b, b} for the

circuit under consideration. This step can be performed by any standard random
number generator producing uniform numbers. The seletto2500 for the number

of input pairs is discussed below.

e Smulate the circuit under all generated pairs and record the discretized current

waveforms in each sink j = 1,2...,m and for each time instant t=kh, k= 12...,N

within an interval of interest (eg. a clock period). The recorded data

S ={Yis VY- Yyt i=12...,mN, taken jointly asmN -dimensional vectors will

constitute the sample spae={y,, ¥, ..., ¥,} . The numbeN of time instants within

an interval can be kept small, as seen in the examples of the previous section (a
number N =10 should be enough). The computational time required to complete this
step is entirely up to the simulator program employed, since there are many different
simulators with speeds that range considerably depending on the detail of the analysis
and their algorithmic efficiency. Although larger circuits will definitely take longer to
simulate for every clock cycle, we must emphasize that a total of 2500 binary input
pairs is sufficient to produce a reasonable statistical estimdgpendently of the

circuit size or sink size, as is further explained below.
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e Arrange each univariate sample S, i=122,...,mN, into | /r =100 sub-samples

of size r =25. Here the size only needs to be adequate so that the sample of the
maxima units from the sub-samples follows an asymptotic extreme value distribution.
We have found by experimentation thrat 25 is a fair value. The numbér/r =100

of sub-samples (leading to a total lof 2500 units) yields estimates with relative
estimation error (i.e. quotient of confidence interval to estimate) of about 5% — at a
confidence level 95% — fany sink irrespective of its size or the size of the broader
circuit, as was observed in [13]. This happens because with an increase in the sink
size, both the mean and the standard deviation of the distribution of sink currents are
increased, but their ratio which determines the relative estimation error remains
roughly constant. Only in the case where a smaller estimation error and/or a higher
confidence level are desired, the numbkr of sub-samples will have to be increased

(together with the total numbenof input pairs).

e Foreachi=212...,mN construct thesample Z, of the maxima unitsfromthe | /r

sub-samplesof S .

e For each i=12...,mN calculate the estimates ,,0, of the extreme value
distribution parameters from (15), and the estimate @(y,) of the expected maximum
o(y;) from (14).

e Determine the maxima max{y,, Y, ..., ¥} of all univariate samples S,
i=212...,mN, and in conjunction with the estimates @(y,), i =12,...,mN for the

expected maxima, compute the mN -dimensional difference vector d from (16).

e Locate the maximal points of the sample space S. As already mentioned, this step

has complexity ofO(I (log, I)mN‘Z) comparisons.

e Shift the maximal points of the sample space S by the computed difference vector d.
This step is performed by plain component-wise addition of the velctmr the

maximal points of§ and is a trivial one.
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The output of all the above steps is a set of shifted sample maximal points for a
particular circuit which approximate the position of the maximal points of its
excitation space, and thus constitute worst-case waveform excitations for any grid

supplying the circuit.

Having extracted a set of worst-case current waveforms, the verification of any given

grid can be performed as follows:

e Apply the shifted maximal points as excitation waveforms in a linear network
simulator to perform an analogous number of transient analyses for the given power

grid. This step relies exclusively on a linear network simulator, and its execution time
is determined by the capability of the simulator to carry out the required analyses for
the given grid.

e For each sink j=12...,m compute the mean voltage drop for each transient
analysis and determine the maximum value among the computed mean voltage drops.
The resulting value for each sink finally constitutes an estimate of the worst-case
cycle-mean voltage drop over all possible cycles and corresponding binary vector

pairs.

On the basis of the same set of worst-case current waveforms the solution of
optimization problem (1) (minimizing grid area subject to voltage drop at all active
modules, wire widths and decoupling capacitor lengths) and optimization problem (2)
(minimizing grid noise subject to wire widths and decoupling capacitor lengths)

consist of three main stages:

1) Evaluation of objective function and constraints at the current value of the
parameter vector. The evaluation of the voltage drop constraints in problem
(1) or the noise metric (objective function) in problem (2) is performed by

transient analysis of the power grid.
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2) Calculate the sensitivities (or gradient vector) of the parameters at the current
step. These can be calculated either by finite difference approximations or by

the method of adjoint networks [16].

3) Update vector of parameters according to their sensitivities. The procedure
solves a quadratic subproblem in each iteration step, resulting from a quadratic

approximation of the Lagrangian function [17]-[18].
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VII. EXPERIMENTAL RESULTS

In order to validate our method we have generated a number of test power grids (since
there are no universally accepted benchmarks) that will be denoted@samBeren

stands for the number of all (internal/sink/voltage) nodes @fa the number of
voltage nodes on which supply pads are to be connected (e.g. the label G150-6
denotes a grid with 150 nodes and 6 supply pads). All test grids were uniform
rectangularmeshes and had equal widths for all branches inyestaight line
(horizontal or vertical). For the digital circuits supplied by the grids we have

implemented the traditional ISCAS85 benchmarks 0®9um technology, and

partitioned each one of them to a number of functional modules (representimmg the
current sinks). The placements of the current sinks and the power pads across the grid
area were chosen in random. Decoupling capacitors were placed in every node of the

grid.

The results for the maximum voltage drops in various test grids supplying some of the
ISCAS85 benchmark circuits are shown in Table I. All computed worst-case voltage
drops are compared to accurate statistical estimates obtained by directly applying the
univariate extreme value estimation procedure (relations (14) and (15)) on samples of
voltage drops for the sane= 2500 input pairs (it must be stressed, however, that a
direct statistical estimation of maximum voltage drop — instead of determining the
worst-case current excitations — is not a viable solution for power grid verification,
since the grid typically undergoes many iterations of redesign and verification with
the same underlying circuit until deemed robust). From the table it can be readily
verified that the two estimates come remarkably close to each other. A slight
pessimism which is observed for the proposed method is not a matter of concern
(since it will not lead to any grid underdesign), and can possibly be attributed to the
deviation of the shifted maximal points of the sample space compared to the maximal
points of the excitation space which eventually seems to lie on the pessimistic side

(i.e. the vector (16) slightly overestimates their relative positions).
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Table I.Maximum voltage drop (accurate and pessimistic results) at two current sinks
for various benchmark circuits and test power grids.

Max. voltagedrop to sink-A (mV) Max. voltagedrop to sink-B (mV)
study Grid Cireuit Our Statistical Palrr;;gc % Our Statistical Paln;stslc %
Method estimation (MEC) difference | method estimation (MEC) difference

#1 G25-2 c1355 539.2 481.5(x40.6) 732.5 35.9 548.5 494.0(+41.7) 7438.8 36.6

#2 G50-3 c1355 303.7 275.6(+23.p) 416.7 37.2 2921 265.2(+23.1) 397.8 36.2

#3 G75-6 c1355 141.7 129.6(x11.p) 190.1 34.1 126. 115.5(x10.3) 168.8 3B.9

#4 G100-10 c1355 57.1 52.2(+4.7 77.8 36.2 54.1L 49.4(+4.4) 73, 36.1

#5 G150-10 c1355 56.6 51.7(x4.6 77.1 36.1 55.p 50.6 (+4.5) 75, 36.0

#6 G150-15 c1355 72.2 65.0(+5.4 98.2 36.0 711 65.9(+5.6) 96, 34.8

#7 G100-6 c2670 230.8 167.7(x114) 341.5 48.0 2247 163.7(x11.1) 332.4 417.9

#8 G150-10 c2670 119.4 90.4(+6.6] 178.7 49.6 1195 93.0(+6.8) 178.6 49.4

#9 G150-15 c2670 87.3 65.4(+4.6 134.1 53.5 69.p 52.3(+3.7) 104.4 52.8
#10 G225-10 €2670 185.7 138.6(+9.4) 275.9 48.5 188.9 140.1(49.8) 274.1 47.4
#11 G400-10 €2670 82.9 63.3(+4.6 126.1 52.1 81(5 61.6(11.5) 122.2 49.9
#12 G625-15 €2670 66.6 49.5 (+3.4) 98.6 48.0 650 48.6(+3.4) 96J0 41.8
#13 G400-10 c6288 160.7 121.1(#3.7) 247.2 53.4 157.6 118.7(43.7) 249.0 58.6
#14 G400-15 c6288 108.0 80.3(+2.1 166.5 54.1 113.0 83.2(+2.3) 172.5 51.0
#15 G900-15 c6288 107.5 81.8(+2.7 165.7 54.2 104.7 79.8(x2.5) 161.4 51.1
#16 | G1369-20| 6288 69.0 52.2(+1.6 106.0 53.5 679 51.4(+1.5) 104.3 5B.5
#17 G400-10 c7552 425.7 343.7(£30{4) 590.§ 38.4 433.4 350.1(+31.0) 60[L.1 38.7
#18 G400-15 c7552 248.9 200.2(+17(9) 345.0 38.4 229.3 184.5(416.4) 31).7 38.5
#19 G900-15 c7552 290.7 232.4(+20(5) 400.§ 37.9 299.3 239.4(+21.1) 41p.4 37.8
#20 | G1369-20| c7552 191.9 153.1(+13|5) 265.6 38.4 194.3 154.9(413.7) 268.5 38.2

For every case a pessimistic analysis has also been carried out by forming a fictitious

waveform consisting of the estimates of the expected maxifyg), i = 1,2,...,mN,

for each sink and each time instant. This is effectively a construction of the Maximum

Envelope Current (MEC) waveform that was introduced in [19] and which was

subsequently used in a number of papers as a (pessimistic) upper bound waveform for

power grid verification. We can clearly see the overestimation incurred by this

pessimistic analysis which is above 30% even for a small circuit such as the c1355,

and reaches 55% for ¢6288 which is one of the largest circuits among the tested

benchmarks. Since the ISCAS85 benchmarks are actually small circuits compared to

today’s standards, the differences between the proposed method and the MEC-based

analysis are expected to be a lot more pronounced in the case of larger designs with

several current sinks and more complex interdependencies between them.
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Timing analysis for the above simulations is shown in Table IlI. In the fourth column
one can see the number of maximal points. In the fifth column there is the time for
statistical maximal estimation and calculation of differential vector (statistical
estimation). In the next column there is time for calculation and shifting of maximal
points (shift maximal points). The next four columns show time for system matrix
decomposition (T1), time for estimation with maximal excitations (T2), time for

direct statistical estimation (T3) and time for estimation with MEC excitations (T4).

Table I.Timing Analysis

. Statistical Shift
;ﬁ; Grid Circuit #r;iﬁl];r;al estimation M aximal (;i) (;i) (;3;) (;Aé)
(sec) Paints (sec)

#1 G25-2 c1355 1547 0 2.184 0 0.499 0.827 0

#2 G50-3 c1355 1430 0 2.074 0 1.857 3.291 0

#3 G75-6 c1355 1479 0 2.356 0.01p 4,758 7.92b 0]

#4 G100-10 c1355 1434 0.002 2.133 0.044 8.144 14.042 0.005

#5 G150-10 c1355 1434 0.002 2.216 0.107 17.777 31.15 0.013

#6 G150-15 c1355 1547 0.003 2.237 0.086 17.979 31.351 Q.013

#7 G100-6 c2670 2440 0.006 8.638 0.033 13.105 13.456 0.005

#8 G150-10 c2670 2427 0.007 8.573 0.141 33.066 32.084 0.013

#9 G150-15 c2670 2434 0.008 8.721 0.067 30.888 31.937 0.013
#10 G225-10 c2670 2431 0.006 8.441 0.294 68.193 70.515 1.028
#11 G400-10 c2670 2434 0.007 8.639 1.172 267.478 263.862 0.105
#12 G625-15 c2670 2417 0.006 8.592 4.522 6872 715.483 CH.289
#13 G400-10 c6288 2500 0.017 21.064 1.228 260.7411 261.p76 0.106
#14 G400-15 c6288 2500 0.016 21.014 1.17 274.963 273.139 0.11
#15 G900-15 c6288 2500 0.047 20.701 13.104 1660.839 1659.186 D.586
#16 G1369-20 c6288 2500 0.018 20.768 46.116 3649.444 3611.215 1.407
#17 G400-10 c7552 2200 0.031 25.581 1.285 231.137 263.046 (.105
#18 G400-15 c7552 2262 0.031 25.772 1.1%55 230.709 256.074 0.109
#19 G900-15 c7552 2258 0.026 26.22 13.315 1443.437 1663.997 D.735
#20 G1369-20 c7552 2262 0.022 25.493 45.975 3212779 3674.132 1.416

The results for area optimization are shown in Table Ill. In the second column there is
the power grid and in the third column there is the circuit that is being optimized. The

power grid wire area and the decoupling capacitor area are shown in the next two
columns (Wire area and Decap area). Total area is shown in column six (Total area)
while pessimistic total area is shown in column seven (Pessimistic total area). Perc is
the percentage difference of the (value of the) objective funbitneen our method

and the pessimistic analysis and is shown in the last column.
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Table Il . Area Optimization

Case Wire Decap Total area | Pessimistic
Grid Circuit Area Area (m) Total Area | Perc%
Study
(m) (m) (m)
#1 G100-6 C1355 3.2529%e-9 2.4305e-§ 2.7558e-8 3.1879e-8 15.7
#2 G100-10 C1355 4.0187e-9 2.3340e-8 2.7359e-8 2.963%e-8 3.3
#3 G150-10 C1355 4.1355e-9 2.2007e-8 2.6143p-8 3.3370e-8 7.7
#4 G150-15 C1355 5.1579e-9 1.9424e-8 2.4582p-8 2.911%e-8 18.4
#5 G100-6 C2670 3.1609e-9 3.5151e-§ 3.8312¢-8 4.6509e-8 21.4
#6 G100-10 C2670 3.1898e-9 3.2006e-8 3.5196g-8 4.4554e-8 26.6
#7 G150-10 C2670 4.3022e-9 3.3103e-8 3.7405g-8 4.468%e-8 19.5
#8 G150-15 C2670 3.8773e-9 2.7992e-8 3.1869e-8 4.1320e-8 29.7

In some first experiments we placed decoupling capacitors only in voltage and current

nodes, since grid noise is higher in these nodes.

We set as an initial starting point for wire widthm and as an initial starting point
for decoupling capacitor lengt@50um, as decoupling capacitors are expected to

occupy bigger area.

The wire widths are assumed to Bgxm as a lower bound and as an upper bound

was used the vertical size of the chip for vertical wires and the horizontal size of the

chip for horizontal wires.

We set the lower bound for the length of decoupling capacitof4am because it is

a small value that does not affect the overall optimization and is not zero, since we

wanted every node to have a decoupling capacitor.

We set the upper bound for the length of decoupling capacitors as the horizontal size
of the chip but such a size for a decoupling capacitor was not enough to deteriorate
the voltage drop effect, especially for circuits with a small number of voltage nodes.
Hence, we added decoupling capacitors in every node of the grid and set a higher
value for an upper bound of a decoupling capacitor length. This slightly perturbed

simulation time and resulted in more reasonable lengths for decoupling capacitors.
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The wire widths as well as the decoupling capacitors lengths returned by the
optimizer are continuously between the lower and the upper bound. The wire widths
are usually near the lower bound. Decoupling capacitors placed in nodes where
current sinks are placed tend to be bigger (this happens in order to deteriorate grid

noise).

The results for noise optimization are shown in €. In the second and third
column one can see the power grid and the circuit being optimized. Voltage Drop is
the value of the objective functiofor our method, which is actually the sum of
voltage drop at nodes where the noise-metric is above the threshold, and is shown in
the next column. Pessimistic Voltage Drop which is shown in fifth column is the
value of the objective functioffor the pessimistic analysis. Perc is the percentage
difference of the (value of the) objective functitmetween our method and the

pessimistic analysis and is shown in the last column.

Table IV. Noise Optimization

Case Study Grid Circuit Voltez%/e)drop Pess rglrit‘l)c(://g)ltage Perc%
#1 G100-6 C1355 84.6 110.3 30.4
#2 G100-10 C1355 62.1 82.9 335
#3 G150-10 C1355 54.7 77.3 41.2
#4 G150-15 C1355 42.6 59.7 40.1
#5 G100-6 C2670 1425 199.8 40.2
#6 G100-10 C2670 111.6 159.6 43.0
#7 G150-10 C2670 115.3 171.0 48.2
#8 G150-15 C2670 83.8 131.0 56.2
#9 G400-10 C7552 825.2 1038.7 25.9

#10 G400-15 C7552 746.1 944.9 26.6

We can see that when simulating a circuit with the same grid and different amount of
voltage nodes we get lower voltage drop for the circuit which has more voltage nodes.
Wire widths and decoupling capacitor lengths reach the upper bounds for almost all

cases.

We can see that in noise optimization problem we get even better results for the
percentage difference between our method and the pessimistic analysis, even for

larger circuits.
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APPENDIX A

PROOFSOF THE ALGORITHMS

Lemmal. If V=[v;] isanxn symmetric diagonally dominant matrix with positive
diagonal elements and nonpositive off-diagonal elementsCanfc,], D =[d,] are
nxn positive and nonnegative diagonal matrices respectivelyc(ie0 andd, >0,

i=1...,n), then W=D+CV is a nxn row diagonally dominant matrix and

Y=D+VC is a nxn column diagonally dominant matrix, both with positive

diagonal elements and nonpositive off-diagonal elements.

Proof. It is easily observed that thi¢h element of the matrix produ€V equalscy;

(i.e. the effect of pre-multiplying a matri¥ by a diagonal matrixC is simply to
multiply each element of théh row ofV by theith diagonal element &). Similarly,

theijth element ofvc equalsc,v; (i.e. the effect of post-multiplying a matrikby a

diagonal matrixC is to multiply each element of théh column ofV by thejth

diagonal element ofC). Then for the matrixW we have w, =d +cv, >0 (

i=1..,n)andw; =cv; < 0(i,j=1...,n,i= ), and also:

n
_d+clvn>di+clz‘vij‘> ‘Ilj‘_ ‘ ‘ VI
j=1
}¢i ]¢I ]¢I
i.e.W is a row diagonally dominant matrix.

Likewise, for Y we havey; =d; +c,v; >0 (j=1...,n) and y; =c;v; <0 (

i,j=1...,n,i#j),and also:

y, =d, +c,v, 2d, +c,z\v,,\> Sle,v, =3y |, ¥i=1....n
=1 i=1

I¢j |¢j i;j

i.e.Y is a column diagonally dominant matrix. Q.E.D.
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Lemma 2. If A=[a;] is a nxn matrix with positive diagonal elements which

n

satisfies |A|_ :maxzn:‘aﬂ‘<1 (resp., ||A||1=max2‘aﬂ‘<l), then the matrix
-1

Ki<n 4 <j<n i1

B=I-A is row (resp., column) diagonally dominant with positive diagonal

elements.

I<i<n “

Proof. If |A| =maxzn:‘a1j‘<1, then Zn:‘ayj‘<1, Vi=1...,n, or (considering also
j=1 j=1
thata, >0,i=1...,n):
0< i\aj\zi\qj\d—a“ =b,, Vi=1...,n
j=1 j=1
ji ji

i.,e. B=1-A is row diagonally dominant with positive diagonal elements.

n

Likewise, if |A|, = m_axZ‘aij‘ <1, then Zn:‘aﬁ‘ <1, Vj=1...,n, or (considering also
i=1

<1<
Kj=ni3

thata; > 0, j=1...,n):

0<§\@j\=g\qj\<1_ajj —b,, ¥j=1...,n

i#] i#]
i.,e. B=1-A is column diagonally dominant with positive diagonal elements.
Q.E.D.

M
Theorem 1. [15] Let f(y)=Zai y,=a' -y be a linear (or linear affine) function
i=1

with nonnegative coefficient vectar (i.e. a>0 component-wise) which is defined

on a compact séd c R" . If y" € D is a maximizer off (y) [i.e. f " )= max f (y)
ye

], theny” is a maximal point ob.
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Theorem 2. If A=[a;] is a nxn row diagonally dominant matrix with positive

-1

diagonal elements the»A‘l‘ <{m|n{a1I Z‘a”‘]] . If A is column diagonally
=1
j#

I<i<n
-1
mint a, -2 fa
|==J

dominant with positive diagonal elements tlﬂén’lul

Proof. For every induced matrix norm it is:

e T T I P TN 1
g e ves b Tl )

y#0

x#O

(provided, of course, tha is nonsingular). Now, ifA is row diagonally dominant

with positive diagonal elements (in which case' always exists [23]), then in order

1
to show that HA1HOO<{m|n(a —Z‘a”‘ﬂ we just need to show that
j#i

I<i<n
Ayl mm{
2 a; —

||y|| 1i<n i @>0, vy e R". Assume that for some arbitrary vector

i=
Ik

yeR"itis|y,|= ||y|| = ma>1y,| Then we have:

I<i<n

Y V. |akkyk| Zakjyj |akkyk|_z‘akjuyj‘
Za, Yi Yi

pol, TRV ZA] TR M
Ivl.. Ivkl il [l [Vl
EWAES Z\ak,\lyk

j¢k 4
P =a, — " > — i
> =2, — Y [ay| = min a, ‘a1‘ >0

[Vl = i

j=k ]==|
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Similarly, if A is column diagonally dominant with positive diagonal elements we

A, i &,

need to show th ” ” min

‘ >0, Vy e R". For some arbitrary vector

y e R" we have:

n

Zn: ijyj‘ 2| 3y - ;aijyj |a1 vil- ‘a,,Hy ‘
j#i

- > > B

ML 3 Syl 3yl

=) 1<j<n

Zn: ‘allyl‘ Z‘auuy‘ ; ‘yi‘ a; _izl:‘a”‘ (i‘yi‘]mm a;; ‘a'l‘
|==J

i#] |==
> J

2 |vil 21| 21y
=1 j=1 =1

=minl a; ‘aij‘ >0 Q.E.D.

I<j<n

|¢j
Theorem 3. Let A =[a;] be anxn — row or column — diagonally dominant matrix
with positive diagonal elements.  is an eigenvalue & then Rel > 0.

Proof. This is an immediate consequence of the Gershgorin circle theorem [23], by

which every eigenvalud, , k= 1...,n of a square matriA is located in one of the

disks in the complex plane defined 3z:|z—a,.i|£2‘aﬁ‘ , i=1..n (i.e. then
=
disks centered a, and having radiu"|a, |, i = 1...,n). Obviously, if the matri
-1

J#
is row diagonally dominant with positive diagonal elements, then all Gershgorin disks

lie entirely in the positive real semi-plane and thus all eigenvaluashaive positive
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real parts, i.e.Red, >0, Vk=1...,n. Since the Gershgorin circle theorem can be

restated for the set of dis sz:‘z—ajj‘s Zn:‘aﬁ‘ , j=1...n (by applying it toA"

=

iz
and becausé\,A” have the same eigenvalues [24]), it holds agRel, >0,
vk =1....n for the case wheré is column diagonally dominant with positive

diagonal elements.

There is an alternative way of proving the theorem. Suppose, to derive a
contradiction, that there exists an eigenvaluef A which hasRed <0. Then, ifA

is row diagonally dominant with positive diagonal elements it would be

1-ay|= \/(aii +|Re2f* +(Im ) > a; > Z‘aij‘, which means that the matrix
=
Al —A is also row diagonally dominant (generally, with complex diagonal elements).

However such a matrix is always nonsingular [23], idet@dl — A)=0, which

contradicts our initial hypothesis that is an eigenvalue d& (a similar proof can be
derived for the case && being column diagonally dominant with positive diagonal
elements). Q.E.D.

Theorem 4. If A =[ga;] is anxn — row or column — diagonally dominant matrix

with positive diagonal elements théxi* has only positive diagonal elements.

Proof. Let A™ =[] . For the diagonal elements, of A™ it holds:

i detA;) det(A;)

= ,1=1...n
det(A)  det(A)

(24

i = -9

where A, is the (principal) submatrix oA obtained by striking out thigh row and

theith column. IfA is — row or column — diagonally dominant with positive diagonal

elements, then so is every principal submatix, i =1...,n, as is easily verified.
Thus, by Theorem 3 all eigenvalues/fas well as of any principal submatri; ,
i =1...,n have positive real parts. Let, , k=1...,n, andy,,7., kK=1...n. be the —
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not necessarily distinct — real and complex eigenvalues spectively (the latter

occurring in conjugate pairs), where +2n_ =n. Let alsox”, k=1...n" and y"
70, k=1...n" denote the real and complex eigenvalues of the principal submatrix

A.,i=1..n, wheren®” +2n’ =n-1 for everyi = 1...,n. Since the determinant

of any square matrix is equal to the product of its eigenvalues [24], we arrive at the
desired result:

ﬁﬂ(i)ﬁ[(Re)/(i))Z +(Imy“))2]
“ :dde;fA@")) S : & : .0,i-1.n QED.
lk—!ﬂklk_![(Rer)Z +(|m7/k)2]

Theorem 5. If A =[a;] is anxn row (resp., column) diagonally dominant matrix

with  positive  diagonal  elements then the  matrixl —(I + A)™
=(I+A)*A=(A"+1)" is also row (resp., column) diagonally dominant with

positive diagonal elements.

Proof. If A is row diagonally dominant with positive diagonal elements then clearly
the same holds fot + A . This implies that the invers@ + A)™ has only positive

diagonal elements (due to Theorem 4) and also satisfies (on account of Theorem 1):

-1

[a+A)H <] mi 1+aii—i\qj\ <1
j=1

I<i<n

J#

Thus Lemma 2 is applicable and the matrix(I + A)™ is row diagonally dominant

with positive diagonal elements.

Likewise, if A is column diagonally dominant with positive diagonal elements then so

is | + A, whose inversél + A)™ has only positive diagonal elements and satisfies:
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-1

[a+A) <] mi 1+ajj—g\aﬁ\ <1

I<j<n

i#]

Thus it follows that the matriX — (I + A)™" is column diagonally dominant with

positive diagonal elements.Q.E.D.

Corollary 1. If A =[a;] is anxn row (resp., column) diagonally dominant matrix
with positive diagonal elements afdl=[d,] is anxn positive diagonal matrix, then

the matrix (A" +D)™" =(1+AD)™"A is also row (resp., column) diagonally

dominant with positive diagonal elements.

Proof. If A is a row diagonally dominant matrix with positive diagonal elements and

D is a positive diagonal matrix, then by successive use of Lemma 1, Theorem 5, and
again Lemma 1 we have that the matric&®A, ((DA)'+1)™", and
D*((DA)*+1)'=(A™"+D)™" are also row diagonally dominant with positive

diagonal elements.

In a similar manner, ifA is column diagonally dominant with positive diagonal
elements, then the matrica®, (AD) ™" +1)™", and(AD) '+ 1)"'D* = (A" +D)™

are also column diagonally dominant with positive diagonal element).E.D.

Theorem 6. If A=[g;] is anxn — row or column — diagonally dominant matrix

with positive diagonal elements, then for the matd= (I +A)™" it holds
limB" =0.

N—o0

Proof. It is well known [23] that a sufficient condition to havien B" =0 is either

N—o

IB|, <1 or |B|, <1, which for B= (I + A)™ follows directly from Theorem 1 when

A is — row or column — diagonally dominant with positive diagonal elements.
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As an alternative proof, it is also well known [23] thhlelim B" =0 if and only if

pB)= Jr_rlaﬁﬂk (B) <1, where 4,(B), k=1...,n are the — not necessarily distinct —

eigenvalues oB and p(B) is the largest of their magnitudes (called #pectral

1

radius of B). Also, for B = (I + A)™ it is true that4, (B) = ————,
1+ 4, (A)

k=1...n [24].

If A is —row or column — diagonally dominant with positive diagonal elements, then

it follows from Theorem 3 thaReA, (A) >0, Vk = 1...,n. This gives:

1 1
L+ 2B (14 Rea (A +(Im A (A))

|4, (B)| = <1, vk=1...n,

or finally p(B)<1. Q.E.D.
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APPENDIX B

MATLAB CODE

B.1 Minimize area

B.1.1 Create waveformsfor currentsof theinput fileand find current nodes and

voltage nodes

load c1355_5000.txt %input data file
idc=c1355 5000; %currents in A

nms=size(idc,1); %size of input data

T=1e-9; %clock period in s
N=10; %number of sampling points

h=T/N; %sampling step

t1=(1:N/2)*h; %first half of period
itril=2*dc*t1/T;

iwavl=itril;

t2=(N/2+1:N)*h; %second half of period
itri2=2*idc*(N*T-T+2*t2-N*t2)/(N*T);
iwav2=itri2;

t=[t1 t2];

iwav=[iwavl iwav2];

n1=10; %number of vertical lines in the grid
n2=10; %number of horizontal lines in the grid
vn=6; %number of voltage nodes in the grid
sn=5; %number of current sinks

ish =[56 45 18 93 6];

ivn =[52 60 23 75 2 19];
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B.1.2 Find movement vector and maximal points

nmM=3000; %size of main sample
off=2000; %number of extra samples (offset) in input data
%number of sampling points (N) in a clock period must already
%be defined
mvarsam=zeros(nm,N*sn);
for i=1:sn

mvarsam(:,N*(i-1)+1:N*i)=iwav(off*i+nm*(i-
1)+1:off*i+nm*i,); %create multivariate sample (array of

%eurrent waveforms must already exist)

end

n=30; %size of sub-samples for estimation (must be at least
%30)
m=nm/n; %number of sub-samples - or size of sample of maxima

% for estimation (must be at least 100)

%+ +%
%]| Statistical maxima estimation |%
%+ +%

xm=zeros(m,1);
eulg=0.5772; %Euler gamma constant
den=1/(1+n*sqrt(pi*log(n))*(erf(sqrt(log(n)))-1));

%denominator of estimate

stmat=zeros(2,N*sn);
for i=1:N*sn
sam=mvarsam(_,i);
smax=max(sam);
for j=1:m
xm(j)=max(sam(n*(j-1)+1:n%))); %sample of maxima

end
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bg=std(xm)*sqrt(6)/pi;
ag=mean(xm)-bg*eulg;

wg=ag+bg*den; %upper endpoint estimate
stmat(:,i)=[smax;wg];

end

mov=stmat(2,:)-stmat(1,:); %omovement vector for the sample

%maximal points

Qot--mmmmm mmmmmmmm e --—-+0p
%| Calculation of worst-case current vectors |%

3 —+%

%locate maximal points of the sample space
mmal=[];
for i=1:nm
mmali=mvarsam(i,:);
comp=(repmat(mmali,nm,1)<mvarsam);
comp2=(sum(comp,2)==N*sn);
if sum(comp2)==0
mmal=[mmal;mmali];
end
end

nmal=size(mmal,1);

iex=mmal+repmat(mov,nmal,1); %statistically project sample

%maximal points into the whole population

%alternative configuration of array of maximal points
ialt=zeros(nmal,N*sn);
for j=1:N
fori=1:sn
ialt(;,(j-1)*sn+i)=iex(:,N*(i-1)+j);
end

end
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%MEC excitations (in alternative configuration) for
Ypessimistic analysis
ialt_pes=zeros(1,N*sn);
for j=1:N
fori=1:sn
ialt_pes(;,(j-1)*sn+i)=stmat(2,N*(i-1)+j);
end
end

B.1.3 Constraint function (gconstr)

Create and analyze the power grid

function [c,ceq]=gconstr(x,ialt,co,ivn,isn,idec)

rsh=co(1);
rsv=co(2);
Ish=co(3);
Isv=co(4);
vo=co(5);
nl=co(8);
n2=co(9);
pv=co(10);
ph=co(11);
vn=co(12);
cffh=co(13);
cffv=co(14);
cpph=co(15);
cppv=co(16);
cox=co(17);
Ipin=co(19);
rpin=co(20);
cpin=co(21);
sn=co(22);
N=co(24);
h=co(25);
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ndec=co(26);
hsub=co(27);

% %

%capacitance and incidence matrix
ch=repmat(cpph*pv*x(1:n2,:)+cffh*pv,1,n1-1); %horizontal

%branch capacitances
cv=repmat(cppv*ph*x(n2+1:n2+nl,:)+cffv*ph,1,n2-1); %vertical

%branch capacitances
C=zeros(n1*n2,n1*n2);
Al=zeros(n1*n2,n1*(n2-1)+n2*(n1-1)+vn);

%enumerate horizontal branches

for i=1:n2
for j=1:n1-1
nil=(i-1)*n1+j; %node indices for current branch
ni2=nil+1;
ni3=(i-1)*(n1-1)+j; %branch index conversion from 2D

%to 1D
C(nil1,nil)=C(nil,nil)+(1/2)*ch(i,));
C(ni2,ni2)=C(ni2,ni2)+(1/2)*ch(i,));
Al(ni1,ni3)=1,;
Al(ni2,ni3)=-1,
end

end

%enumerate vertical branches
fori=1:nl
for j=1:n2-1
nil=(j-1)*n1+i; %node indices for current branch
ni2=nil+ni;
ni3=(i-1)*(n2-1)+j+n2*(n1-1); %branch index conversion
%rom 2D to 1D

C(nil1,nil)=C(nil,nil)+(1/2)*cv(i,));
C(ni2,ni2)=C(ni2,ni2)+(1/2)*cv(i,));
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Al(ni1,ni3)=1,;
Al(ni2,ni3)=-1,;
end
end

%enumerate supply branches
fori=1:vn
C(ivn(i),ivn(i))=C(ivn(i),ivn(i))+cpin;
Al(ivn(i),n1*(n2-1)+n2*(n1-1)+i)=-1;
end

%enumerate decoupling capacitors

cdec=cox;

for i=1:ndec
C(idec(i),idec(i))=C(idec(i),idec(i))+cdec*x(n2+n1+i).”2;

end

% %

%inductance matrix
Ih=repmat(Ish*pv*log(8*hsub./x(1:n2,:)),1,n1-1);
%horizontal branch inductances
Iv=repmat(Isv*ph*log(8*hsub./x(n2+1:n2+n1,:)),1,n2-1);

%vertical branch inductances

Ibranch=[reshape(lh',n2*(n1-1),1);reshape(lv',n1*(n2-
1),1);Ipin*ones(vn,1)];

L=diag(Ibranch);

% %

%resistance matrix
rh=repmat(rsh*pv./x(1:n2,:),1,n1-1); %horizontal branch
% resistances

rv=repmat(rsv*ph./x(n2+1:n2+n1,:),1,n2-1);
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%vertical branch resistances
rbranch=[reshape(rh',n2*(n1-1),1);reshape(rv',n1*(n2-
1),1);rpin*ones(vn,1)];

R=diag(rbranch);

% %

%transient analysis for maximal waveform excitations
Gb=[zeros(n1*n2,n1*n2) ALAI' -R];

Cb=[C zeros(n1*n2,n1*(n2-1)+n2*(n1-1)+vn);zeros(n1*(n2-
1)+n2*(n1-1)+vn,n1*n2) -L];

D=inv(Gb+Cb/h);
B=D*Cbl/h;

nialt=size(ialt,1);
Is=zeros(n1*n2+n1*(n2-1)+n2*(n1-1)+vn,nialt);
%current excitations from gates
Vb=zeros(n1l*n2+n1*(n2-1)+n2*(n1-1)+vn,nialt);
%node voltages and branch currents

Vmean=zeros(nl*n2,nialt);

for j=1:N
Is(isn,:)=ialt(:,sn*(j-1)+1:sn%))";
Vb=D*Is+B*Vb;
Vmean=Vmean+Vb(1:n1*n2,:);
end

Vmean=Vmean/N;

Vm=max(Vmean,[],2); Yomaximum voltage drops (in V)
Vms=Vm(isn,:); %voltage drops at sinks
c=Vms-vo;

ceqg=[];
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B.1.4 Objective function (gridarea)

Calculatearea

function a=gridarea(x,ialt,co,ivn,isn,idec)
Sizv=co(6);

sizh=co(7);

nl=co(8);

n2=co(9);

ndec=co(26);
a=sizh*sum(x(1:n2,:))+sizv*sum(x(n2+1:n2+nl,;))+
sum(x(n2+nl1+1:n2+nl+ndec,:).”2);

B.1.5 Initialization of the variables and optimization of thegrid

R — +%
%]| Grid setup |%
R — +%

%Optimization code starts here

rsh=1e-1; %horizontal sheet resistance (in Ohms/sq)
rsv=1e-1; %vertical sheet resistance (in Ohms/sq)
Ish=2e-7; %horizontal inductance per unit length (in H/m)
Isv=2e-7; %vertical inductance per unit length (in H/m)
vo=0.1; %voltage drop tolerance

sizv=350e-6; %vertical size of chip (in m)
sizh=350e-6; %horizontal size of chip (in m)
pv=sizh/(n1-1); %pitch of vertical lines

ph=sizv/(n2-1); %pitch of horizontal lines

cffh=1e-10;  %horizontal cff capacity (in F/m)
cfiv=1e-10;  %vertical cff capacity (in F/m)
cpph=1e-4;  %horizontal cpp capacity (in F/m”2)
cppv=le-4;  %vertical cpp capacity (in F/m”2)
cox=14.16e-3; %eox/tox (in F/m"2)

hsub=18.75e-6; %(150e-6)/8

hd=10e-6; %height of decoups (in m)

Ipin=1e-10;  %pin inductance (in H)
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rpin=1e3; %\Vdd pin resistance in Ohms

cpin=10e-12; %pin capacitance in F

% -> (n1 x n2) nodes in the grid (including voltage nodes)
idec=[1:n1*n2];

ndec=size(idec,2); %%number of decaps used

co=[rsh rsv Ish Isv vo sizv sizh n1 n2 pv ph vn cffh cffv cpph

cppv cox hd Ipin rpin cpin sn T N h ndec hsub];

winit=ones(n2+n1,1)*1e-6;
wlb=0.4*0ones(n2+n1,1)*1e-6;
wub=ones(n2+n1,1);
wub(1:n2,:)=ph; %taking into account the pitch of

% horizontal lines
wub(n2+1:n2+n1,:)=pv;%taking into account the pitch of

% vertical lines

linit=250*ones(ndec,1)*1e-6;
lIb=0.4*ones(ndec,1)*1e-6;
lub=ones(ndec,1); %taking into account the horizontal

% size of chip

xinit=[winit; linit];
xIb=[wlb; lIb];
xub=[wub; lub];

options=optimset(‘Algorithm’,'active-set','Display','iter");

[xeff,areff,exitflag]=fmincon(@gridarea,xinit,[],[],[],[].xIb,

xub,@gconstr,options,ialt,co,ivn,isn,idec);

exitflag

areff

%%area of wires

war=sizh*sum(xeff(1:n2,:))+sizv*sum(xeff(n2+1:n2+n1,:))
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%%area of decaps
dar=sum(xeff(n2+n1+1:n2+nl+ndec,:)."2)
%evaluate constraints at the final solution

geff=gconstr(xeff,ialt,co,ivn,isn,idec);

[Xpes,arpes,flagpes]=fmincon(@gridarea,xinit,[],[.[I.[],xlb,x

ub,@gconstr,options,ialt_pes,co,ivn,isn,idec);

flagpes

arpes

%%area of wires
pwar=sizh*sum(xpes(1:n2,:))+sizv*sum(xpes(n2+1:n2+nl,:))
%%area of decaps
pdar=sum(xpes(n2+nl+1:n2+nl+ndec,:)."2)

%evaluate constraints at the final solution

gpes=gconstr(xpes,ialt,co,ivn,isn,idec);

perc=100*(arpes-areff)/areff
percw=100*(pwar-war)/war
percd=100*(pdar-dar)/dar
xeff

my=geff+vo

myp=gpes+vo

B.2 Minimize noise (Voltage drop)

B.2.1 Create waveformsfor currents of theinput fileand find current nodes and

voltage nodes

load c7552_4002.txt %input data file
idc=c7552_4002; %currents in A

nms=size(idc,1); %size of input data
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T=1e-9; %clock period in s
N=10; %number of sampling points

h=T/N; %sampling step

t1=(1:N/2)*h; %first half of period
itril=2*dc*t1/T;

iwavl=itril;

t2=(N/2+1:N)*h; %second half of period
itri2=2*idc*(N*T-T+2*t2-N*t2)/(N*T);
iwav2=itri2;

t=[t1 t2];

iwav=[iwavl iwav2];

n1=20; %number of vertical lines in the grid
n2=20; %number of horizontal lines in the grid
vn=15; %number of voltage nodes in the grid

sn=42; %number of current sinks

isn=[2 10 18 31 49 56 57 65 79 86 89 107 128 140 143 145 146
152 164 174 176 180 237 243 260 264 273 281 287 290 293 314
339 341 352 357 359 363 378 386 395 397]

ivn=[16 30 34 38 63 67 81 96 98 149 159 277 351 370 376]

B.2.2 Find movement vector and maximal points

nm=3000; %size of main sample

off=1002; %number of extra samples (offset) in input data

mvarsam=zeros(nm,N*sn);

fori=1:sn
mvarsam(:,N*(i-1)+1:N*)=iwav(off*i+nm*(i-

1)+1:off*i+nm*i,:);

end
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n=30; %size of sub-samples for estimation (must be at least
30)
m=nm/n; %number of sub-samples - or size of sample of maxima -

for estimation (must be at least 100)

%+ +%
%]| Statistical maxima estimation |%

%+ +%

xm=zeros(m,1);

eulg=0.5772; %Euler gamma constant
den=1/(1+n*sqrt(pi*log(n))*(erf(sqrt(log(n)))-1));
%denominator of estimate

stmat=zeros(2,N*sn);

for i=1:N*sn
sam=mvarsam(:,i);

smax=max(sam);

for j=1:m
xm(j)=max(sam(n*(j-1)+1:n*))); Y%esample of maxima

end

bg=std(xm)*sqrt(6)/pi;
ag=mean(xm)-bg*eulg;

wg=ag+bg*den; %upper endpoint estimate

stmat(:,i)=[smax;wg];

end

mov=stmat(2,:)-stmat(1,:);

%movement vector for the sample maximal points
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%+ +%
%| Calculation of worst-case current vectors |%
%+ +%

%locate maximal points of the sample space

mmal=[];
for i=1:nm
mmali=mvarsam(i,:);
comp=(repmat(mmali,nm,1)<mvarsam);
comp2=(sum(comp,2)==N*sn);
if sum(comp2)==0
mmal=[mmal;mmali];
end
end

nmal=size(mmal,1);

iex=mmal+repmat(mov,nmal,l); %statistically project sample

%maximal points into the whole population

%alternative configuration of array of maximal points
ialt=zeros(nmal,N*sn);
for j=1:N
for i=1:sn
ialt(;,(j-1)*sn+i)=iex(:,N*(i-1)+j);
end

end

%MEC excitations (in alternative configuration) for
Ypessimistic analysis
ialt_pes=zeros(1,N*sn);
for j=1:N
for i=1:sn
ialt_pes(:,(j-1)*sn+i)=stmat(2,N*(i-1)+));
end

end
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B.2.3 Objective function (gridnoise)

Create and analyze the power grid

function [a b]=gridnoise(x,ialt,co,ivn,isn,idec)
rsh=co(1);
rsv=co(2);
Ish=co(3);
Isv=co(4);
vo=co(5);
nl=co(8);
n2=co(9);
pv=co(10);
ph=co(11);
vn=co(12);
cffh=co(13);
cffv=co(14);
cpph=co(15);
cppv=co(16);
cox=co(17);
Ipin=co(19);
rpin=co(20);
cpin=co(21);
sn=co(22);
N=co(24);
h=co(25);
ndec=co(26);
hsub=co(27);

% %

%capacitance and incidence matrix

ch=repmat(cpph*pv*x(1:n2,:)+cffh*pv,1,n1-1);
%horizontal branch capacitances
cv=repmat(cppv*ph*x(n2+1:n2+nl,:)+cffv*ph,1,n2-1);

%vertical branch capacitances

62

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 18:35:58 EEST - 3.145.107.127



C=zeros(n1*n2,n1*n2);
Al=zeros(n1*n2,n1*(n2-1)+n2*(n1-1)+vn);

%enumerate horizontal branches

for i=1:n2
for j=1:n1-1
nil=(i-1)*n1+j; %node indices for current branch
ni2=nil+1,;
ni3=(i-1)*(n1-1)+j; %branch index conversion from 2D

%to 1D
C(nil1,nil)=C(nil,nil)+(1/2)*ch(i,));
C(ni2,ni2)=C(ni2,ni2)+(1/2)*ch(i,));
Al(ni1,ni3)=1,;
Al(ni2,ni3)=-1,
end
end

%enumerate vertical branches
fori=1:nl
for j=1:n2-1
nil=(j-1)*n1+i; %node indices for current branch
ni2=nil+ni;
ni3=(i-1)*(n2-1)+j+n2*(n1-1);

%branch index conversion from 2D to 1D
C(nil1,nil)=C(nil,nil)+(1/2)*cv(i,));
C(ni2,ni2)=C(ni2,ni2)+(1/2)*cv(i,));
Al(ni1,ni3)=1;

Al(ni2,ni3)=-1,
end
end
%enumerate supply branches
for i=1:vn
C(ivn(i),ivn(i))=C(ivn(i),ivn(i))+cpin;
Al(ivn(i),n1*(n2-1)+n2*(n1-1)+i)=-1;

end
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%enumerate decoupling capacitors

cdec=cox;

for i=1:ndec
C(idec(i),idec(i))=C(idec(i),idec(i))+cdec*x(n2+n1+i).”2;

end

% %

%inductance matrix
Ih=repmat(Ish*pv*log(8*hsub./x(1:n2,:)),1,n1-1);
%horizontal branch inductances
Iv=repmat(Isv*ph*log(8*hsub./x(n2+1:n2+n1,:)),1,n2-1);

%vertical branch inductances

Ibranch=[reshape(lh',n2*(n1-1),1);reshape(lv',n1*(n2-
1),1);Ipin*ones(vn,1)];

L=diag(Ibranch);

% %
%resistance matrix

rh=repmat(rsh*pv./x(1:n2,:),1,n1-1); %horizontal branch

% resistances
rv=repmat(rsv*ph./x(n2+1:n2+n1,:),1,n2-1);
%vertical branch resistances
rbranch=[reshape(rh’,n2*(n1-1),1);reshape(rv',n1*(n2-
1),1);rpin*ones(vn,1)];
R=diag(rbranch);

% %
%transient analysis for maximal waveform excitations
Gb=[zeros(n1*n2,n1*n2) ALAl' -R];

Cb=[C zeros(n1*n2,n1*(n2-1)+n2*(n1-1)+vn);zeros(n1*(n2-
1)+n2*(n1-1)+vn,n1*n2) -L];
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D=inv(Gb+Cb/h);
B=D*Cbl/h;

nialt=size(ialt,1);
Is=zeros(n1*n2+n1*(n2-1)+n2*(n1-1)+vn,nialt);
%current excitations from gates
Vb=zeros(n1l*n2+n1*(n2-1)+n2*(n1-1)+vn,nialt);
%node voltages and branch currents

Vmean=zeros(nl*n2,nialt);

for j=1:N
Is(isn,:)=ialt(:,sn*(j-1)+1:sn%))";
Vb=D*Is+B*Vb;
Vmean=Vmean+max(Vb(1:n1*n2,:)-vo,zeros(n1*n2,nialt));

end

Vm=max(Vmean,[],2); Y%amaximum voltage drops (in V)
a=sum(Vm); %voltage drops at sinks

b=(Vm>eps);

B.2.4 Initialization of the variables and optimization of thegrid

R —— +%
%| Grid setup |%
R —— +%

%Optimization code starts here

rsh=1e-1; %horizontal sheet resistance (in Ohms/sq)
rsv=1e-1; %vertical sheet resistance (in Ohms/sq)
Ish=2e-7; %horizontal inductance per unit length (in H/m)
Isv=2e-7; %vertical inductance per unit length (in H/m)
vo=0.1; %voltage drop tolerance

sizv=350e-6; %vertical size of chip (in m)
sizh=350e-6; %horizontal size of chip (in m)
pv=sizh/(n1-1); %pitch of vertical lines

ph=sizv/(n2-1); %pitch of horizontal lines

cffh=1e-10;  %horizontal cff capacity (in F/m)
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cfiv=1e-10;  %vertical cff capacity (in F/m)
cpph=1e-4;  %horizontal cpp capacity (in F/m”2)
cppv=le-4;  %vertical cpp capacity (in F/m”2)
cox=14.16e-3; %eox/tox (in F/m"2)
hsub=18.75e-6; %(150e-6)/8

hd=10e-6; %height of decoups (in m)
Ipin=1e-10;  %pin inductance (in H)

rpin=1e3; %\Vdd pin resistance in Ohms
cpin=10e-12; %pin capacitance in F

% -> (n1 x n2) nodes in the grid (including voltage nodes)
idec=[1:n1*n2];

ndec=size(idec,2); %%number of decaps used

co=[rsh rsv Ish Isv vo sizv sizh n1 n2 pv ph vn cffh cffv cpph

cppv cox hd Ipin rpin cpin sn T N h ndec hsub];

winit=ones(n2+n1,1)*1e-6;
wlb=0.4*ones(n2+n1,1)*1e-6;
wub=ones(n2+n1,1);
wub(1:n2,:)=ph; %taking into account the pitch of

% horizontal lines
wub(n2+1:n2+n1,:)=pv;%taking into account the pitch of

% vertical lines

linit=30*ones(ndec,1)*1e-6;

lIb=0.4*ones(ndec,1)*1e-6;

lub=ones(ndec,1)*1e-5;%taking into account the horizontal size
%of chip

xinit=[winit; linit];
xIb=[wlb; lIb];
xub=[wub; lub];

options=optimset('Algorithm’,'active-set','Display"','iter");

[xeff,noiseff,exitflag]=fmincon(@gridnoise,xinit,[],[1,[].[],x

Ib,xub,[],options,ialt,co,ivn,isn,idec);
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exitflag
noiseff

[Xpes,hoisepes,flagpes]=fmincon(@gridnoise,xinit,[],[],[.[],x
Ib,xub,[],options,ialt_pes,co,ivn,isn,idec);

flagpes

noisepes

perc=100*(noisepes-noiseff)/noiseff

xeff

[a b]=gridnoise(xeff,ialt,co,ivn,isn,idec);
a

s=sum(b)
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