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Euxoaplotieg

Oa BsAa KatapxnVv va guxopLlotriow Tov eniBAEmovta Kabnyntr pou KUpLo
Invpo Kapapdvo yla tn cuvepyacia mou eiyape Katd tn SLApKELA TWV TEAEUTALWV
eTwv. H BonBela kat n kaBodriynon tou ATV KATAAUTIKA yla TNV OAOKARpwWOoNn TG
napovoag epyacioag. AloBdvopal emiong tnv UTOXPEWOCH VO EUXAPLOTAOW TOUG
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Abstract

The current study examines the Armstrong — Frederick cyclic plasticity model
and evaluates its performance on simulating structural steel member behavior. The
formulation of the constitutive equations and their numerical implementation in an
in-house finite element code are discussed in detail. The performance of the model
on the prediction of the cyclic plasticity related phenomena such as the Bauschinger
effect and the accumulation of plastic strain is evaluated through appropriately
selected examples. The behavior of a pipe subjected to cyclic bending and cyclic
bending in the presence of constant internal/external pressure is examined with the
use of finite element models adopting the Armstrong — Frederick model. Finally, the
UOE manufacturing process and the effect it has on the maximum collapse pressure
of the produced pipe is simulated accurately. The predictions of the isotropic
hardening model, the linear kinematic hardening model and the Armstrong —
Frederick model are compared with the corresponding predictions of more elaborate
model developed and implemented elsewhere adopting the “Bounding Surface”
concept.
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Edapupoyn tou MovtéAou KukAltkne MAOOTIKOTNTOC

Armstrong — Frederick ywa thv NMpocopoilwon tne

Tuunepldopac MetaAAKWY AOULKWYV ZTOLXELWV

Nwpyog E. BapéAng
Maverotnuo Oeooaliag, TuApna MnxavoAoywv Mnxavikwy, 2010

EmBAEnwv: Imvpocg A. Kapapavog

NepiAnyn

H mopoloa epyoaocia TPAYHATEVETOL TO HOVTEAO KUKALKAG TTAOLOTIKOTNTOC
Armstrong — Frederick kot efetdalel tn SuvatoTNTA TOU VO TPOCOMOLWVEL TN
ouuneplpopd SOUIKWVY oTolXElwV amd xaAuBa. H SatiTwon Twv KOTOOTATIKWY
€€LOWOEWV TOU HOVTEAOU Kal N aplOUNTIKN TOUG ELOAYWYH O KWOLKO TIEMEPACUEVWV
otolelwv Tmapouvotaletal  AsmTopEPwWS. H  amdédoon TOu  poOviEAOU  oTnV
npooopoiwon dawvopévwyv mou oxeTilovtal HE O€pato KUKALKAC TAQLOTIKOTNTOG
Omw¢ to datvopevo Bauschinger kol N CUCCWPEUCN TTAOOTIKWY TIAPOHOPPWOEWV
efetaletal péoa amd Kot@AAnAa emiheypéva mapadeiypata. H ocuumepidpopd
OWANVWTWY OTOLYXELWV TIOU UTIOKELVTAL O KUKALKA KA n Kal KUKALKA Kappn pe tnv
napouoia sowteplkng/e€wteplkng Tieong e€etaletal HE TN XPNON HOVIEAWV
TIEMEPACUEVWV OTOLXELWV TTOU ULOBeTOUV TO poviélo Armstrong — Frederick. TéAog,
n Stadkaoio popdomnoinong aywywv UOE kot n enidpacn mou €xeL otV HEYLOTN
Tiieon mou odnyel 0g KOTAPPEUCN TOU OywyoU TMPOCOHOLWvVOoVTaL HE akpifeta. Ot
TIPOPAEPEL TOU HOVTEAOU LOOTPOTIKIC KPATUVONG, TOU HOVIEAOU YPOUULKAG
KLVNMOTLKAG KPATUVONG Kal Tou povtéAou Armstrong — Frederick ouykpivovtal pe Tig
avtiotolxeg mpoPAEPel piag mpdéodatng epyaciag mou XPNOLUOTIOLEL €val TILO
e€eAlyévo poviélo mou Baocilopevo otnv Woea tng «OpLakng Emipavelag».
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1. Introduction to cyclic plasticity

Metal cyclic plasticity is a particular area in the general field of constitutive
equations which studies metal material behavior in the plastic range under cyclic
(repeated) loading conditions. Several interesting phenomena related to plasticity
take place under alternating loading in the plastic regime and their understanding is
of crucial importance for the safe and economic design of metal structures. Before
the presentation of the cyclic plasticity effects in engineering problems, it is
necessary to discuss briefly metal material behavior under cyclic loading.

The behavior of metals when subjected to loading cycles exceeding the
elastic range can vary significantly depending on the micro structural characteristics
of the material. Experimental studies have shown that yield surfaces, defining the
limit of the elastic regime, translate, change size and possibly change shape during
plastic loading. Each stress state is history dependent; this implies that the stress
path followed until the current state is needed for the accurate prediction of any
subsequent change in the stress state. Several phenomena are strictly related to the
plastic behavior of the material under cyclic loading. The most important ones are
briefly discussed below:

1)  The most well-known cyclic loading related phenomenon is the Bauschinger
effect [Bauschinger (1881), Armstrong & Frederick (1966), Kyriakides and
Corona (2007)]. This effect occurs when a metal is loaded past its elastic limit
followed by loading in the opposite direction. During reverse loading, plastic
deformation will begin at a significantly lower stress level. Furthermore, the
hardening modulus changes gradually as the amount of plastic strain increases.

2)  Cyclic hardening/softening may also take place under symmetric strain loading.
In general, initially soft or annealed metals tend to harden toward a stable
limit, and initially hard metals tend to soften [Hassan & Kyriakides 91992)].

3)  When a metal is subjected to unsymmetrical stress-controlled cycles, this
causes progressive “creep” in the direction of the mean stress, a phenomenon
often reported as “ratcheting” [Bari & Hassan (2000)]. As loading is repeated,
each consecutive hysteresis loop translates in this direction in a varying rate
due to the fact that the cycles do not have complete closure of each loop. This
phenomenon will be extensively discussed in Chapter 3 of the present study.

1.1 Engineering problems with cyclic plasticity

Many engineering applications from the structural and mechanical
engineering field involve cyclic loading well beyond the elastic regime. Even
structures that are designed to perform elastically, cyclic plastic actions often occur
due to discontinuities or cracks. This necessitates the prediction of metal cyclic

1
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behavior in the inelastic range through simple and robust cyclic plasticity models.
Some well known engineering problems where cyclic plasticity is involved will be
briefly discussed in the following paragraphs.

Fatigue is the most well known engineering problem related to engineering
failures. Many famous failures have been attributed to this phenomenon over the
years. Depending on the number of cycles, fatigue is categorized into High or Low
cycle fatigue. For loading cycles up to about 10* the problem is in the range of Low
cycle fatigue, while for loading cycles exceeding this nominal limit, the problem is
referred to as High cycle fatigue problem. Both problems involve plastic loading of
the material even if the applied load cycles are in the elastic range. High cycle fatigue
is usually connected with varying loads significantly lower from the elastic limit.
Nevertheless, due to material defects, discontinuities or cracks the material is
plasticized locally. The local cyclic loading induces material deterioration which
causes crack propagation until failure. On the contrary, Low cycle fatigue is
associated with a small number of cycles of intense loading and repeated excursions
in the inelastic range. The maximum number of cycles that a structure can sustain is
related directly to the ability of the material to sustain its mechanical characteristics
under this strong cyclic loading.

In the mechanical engineering field, simulation of metal forming is an aspect
that gained a lot of attention in the last years with significant application in the
aerospace and automobile industry. Furthermore, industrial pressure vessels and
other metal components, widely used in the chemical, petrochemical and power
plant facilities, as well as pipes that are used to transmit or distribute hydrocarbon or
other energy/water resources are the outcome of similar forming processes. In
Chapter 4 of the present study a popular manufacturing process, the UOE process,
will be presented. In general, the cyclic loading of some parts of the final product
due to the forming process causes geometric imperfections as well as fields of
residual stresses and strains. As a consequence, the structural behavior of the final
product is highly influenced by the production procedure adopted.

Elbows are also important component of industrial piping components. They
are initially curved tubular elements that are used as flexible connections in the
piping system. Their performance under cyclic loading due to operational and
seismic actions has attracted the scientific interest for a long time. Their initial
curvature, the material nonlinearities resulting from the forming process and the
potential presence of internal or external pressure highly affect their structural
behavior. The combination of all the above is often responsible for the element
failure. The failure can occur in many different forms with local or global buckling
being the most catastrophic one [Slagis (1997)]. In every case, the material
undergoes cyclic plastic deformations which have to be precisely predicted for the
safe design of these elements.
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Cyclic plasticity is also present in several structural engineering applications.
Steel structural elements that undergo cyclic loading due to strong earthquake or
wind generated intense actions are candidates for failure due to cyclic plasticity
related phenomena. The requirement of precise prediction of the materials
performance in the critical parts of a steel structure has motivated significant
research in the area of constitutive modeling during the last three decades. Many
advanced cyclic plasticity models are today employed by the engineering community
in order to capture the total structure behavior starting from the material level. A
brief overview for some of them follows.

1.2 Brief overview of the Cyclic Plasticity models

Significant research effort has been devoted in the formulation of
phenomenological plasticity models to predict the behavior of materials subjected to
cyclic loading. The models developed perform in a different manner and their
efficiency in predicting the cyclic loading related effects has been extensively
analyzed [Corona et al. (1996), Bari and Hassan (2000)]. Nevertheless, all the models
are based on the same basic principles which stem from the classical theory of
plasticity.

These characteristics are:
i) the additive decomposition of total strain in an elastic and a plastic part
ii) the yield criterion
iii) the flow rule
iv) the hardening rule.
i) The total strain decomposition

When loading takes place elastically, then the total strain is elastic and fully
recoverable. When the elastic limit is excided, then the loading is elastoplastic. In
this case we assume that the total strain is the sum of an elastic and a plastic part:

e=¢°+¢gf (1.1)
The elastic part is recoverable when the loading is removed, while the plastic part is
permanent. The above equation is also used in its rate form.

ii) The yield criterion

The vyield criterion defines whether at every stress increment the material
behavior is elastic or inelastic and for classical metal plasticity it has the following

general formF(c,u,gq)=O, where ¢ is the stress tensor, ais the tensor that

describes the position of the center of the yield surface sometimes referred to as

“backstress” and ¢, is the equivalent plastic strain.
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For metal materials, it has been proven that the plastic deformation is not
affected by the hydrostatic part of the stress tensor. Therefore, the initial yield
criterion function depends only on the second and third deviatoric stress tensor
invariants. F(J,,J;)=0.

The two most popular initial yield criteria for metal plasticity are the following:
a) The von Mises yield criterion:

F=3J,-k’=0 (1.2)
also written as
2
les.s_k_zo (1.3)
2 3

b) The Tresca yield criterion:
F=4(3,)"-27(3,)" -36K?(J,)" —96k*J, —64k° =0 (1.4)
In both criteriak is the size of the yield surface. In metal plasticity, the so called “J; —

von Mises” yield criterion is widely used giving better results compared to the Tresca
criterion.

iii) The flow rule

The flow rule governs the plastic strain rate increment through the use of a
plastic multiplier/i. In general:
. . 0
£f = Z—Q
06
where Qis the so-called plastic potential function that depends on (c,a,gq) . In the

(1.5)

case of associated plasticity for metals Q= F, therefore:

g i (1.6)
oo

iv) The hardening rule

The hardening rule describes the change of shape and location of the yield
surface. Among other features it describes the evolution of the “backstress” tensor
o in the stress space and it can take several forms. In the following paragraphs the
cases of Linear, Multilinear and Nonlinear hardening rules are briefly discussed.

1.2.1 Models using kinematic hardening rules

The simplest way to describe plasticity is the Perfect Plasticity model
(sometimes refer to as Prandt- Reuss model). According to this model, the center of
the yield surface is assumed fixed in the origin of the stress space and its size is

4
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assumed constant. An advancement of the above model is the plasticity model that
uses the isotropic hardening rule. In that case, the yield surface is assumed to remain
fixed in the stress space and change size according to the magnitude of the

equivalent plastic strain &,, which means that k is a function of ¢_.

An alternative class of plasticity models includes those that use the kinematic
hardening rule in a Linear, Multilinear or Nonlinear form. According to this concept,
the yield surface size can be assumed constant while the position of the yield surface
center is described by the “backstress” tensora . Moreover, some changes of size of
the yield surface can be also taken into consideration combined with the kinematic
hardening rule in any of the aforementioned forms. In the following paragraph the
general features of the von Mises Plasticity model combined with the Kinematic
hardening rule are discussed.

Von Mises Plasticity with Kinematic hardening

The von Mises (Jz) plasticity models employing the kinematic hardening rule

examined in the present study have the following common characteristics:

a) The von Mises yield criterion:

1 k?
F(c—a)==(s-a)-(s—a)——=0 (1.7)
2 3
b) The flow rule, written here in a more general form:
gp o L [OF NOF (1.8)
H \ do oo
c) The kinematic hardening rule:
a=g(o,e" a,6,:",€etc) (1.9)

where ¢ is the stress tensor, €° is the plastic strain tensor, s is the deviatoric stress
tensor defined as S=o6+pl (p is the equivalent pressure stress and | is the
identity tensor), a is the current center of the yield surface, a is the current center of
the yield surface in the deviatoric space, k is the size of the yield surface (constant

for a cyclically stable material), and H is the plastic modulus. Also, < >indicates the

MacCauley bracket and the dot express the inner product of two tensors.

The models discussed in the following paragraphs are distinguished in two
groups. The categorization is based on the way that the hardening modulus is
defined and this affects the translation or change of shape of the yield surface in the
stress space in each plastic stress increment. The plastic modulus H can be defined

in two different ways. The first way is through the consistency condition F =0,

5

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 17:52:31 EEST - 18.224.31.34



which couples the hardening modulus with the kinematic hardening rule, as
described in the classical model proposed by Prager (1956). The models that belong
to this category are called as “coupled models”. The second category comprises the
so-called “uncoupled” models.

The uncoupled models differ from the coupled models in the definition of the
plastic modulus; the plastic modulus is defined directly and it is influenced only
indirectly by the kinematic hardening rule. Examples of plasticity models that belong
to this class are the models proposed by Dafalias and Popov (1976), Drucker and
Palgen (1981) and Tseng and Lee (1983).

1.3 Coupled models for cyclic plasticity

Several plasticity models belong to this class, in which the kinematic
hardening rules adopted can vary. A short description for some characteristic
coupled models is given in the following paragraphs.

1.3.1 Linear and multilinear kinematic hardening rule

The linear kinematic hardening rule is the simplest model for cyclic plasticity
modeling. Prager (1956) and Ziegler (1959) were the first to introduce the linear
kinematic hardening model which employs a linear form of the kinematic hardening
rule:

a=_CsgP (1.10)
where C is a constant. The development of such a model is rather standard and it is
described in several textbooks [Kyriakides and Corona (2007)].

Improvement to the linear kinematic hardening model was proposed by Mroz
(1967) as a multisurface model, where each surface represents a constant work
hardening modulus in the stress space.

1.3.2 The nonlinear kinematic hardening rules

From the large number of models that fall into this category, only the most
representative ones are reported in the following paragraphs starting from the
Armstrong Frederic model.

i.  The Armstrong and Frederic model

The most well-known nonlinear kinematic hardening model has been
proposed by Armstrong and Frederick (Armstrong and Frederick (1966)). This is a
model that many researchers were base on as it will be noticed in the following
paragraphs. Armstrong and Frederick introduced a kinematic hardening rule for the
“backstress” containing a “recall' term which incorporates the fading memory effect

6
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of the strain path and essentially makes the rule nonlinear in nature. The kinematic
hardening rule in this model is given in the form:
(1.11)

. ep .
a=C¢" —yag,

where the equivalent plastic strain is defined as:
. 3 .P .P
&, 24/58 -€ (1.12)

and C, y are parameters calibrated from cyclic test data. More specifically, C is the
initial kinematic hardening modulus, and y determines the rate at which the

kinematic hardening modulus decreases with increasing plastic deformation.

The Armstrong - Frederick nonlinear kinematic hardening model was a
breakthrough at the time it was introduced. Its advantages and capabilities were
well appreciated by other researchers. Several of them applied improvements on its
original form in order to improve its deficiencies and introduced new advanced
models based on the same nonlinear hardening rule. Some characteristic models of
this category will be briefly described below.

Models that employ the nonlinear kinematic hardening rule concept have
also been proposed. They have some important similarities with the Armstrong —
Frederick model, which are obvious through the equations formulation. The most
characteristic models of this type are briefly presented and discussed in the
following.

ii.  The Guionnet model

Guionnet (1992) proposed a model which uses some parameters, determined
from biaxial ratcheting experiments. The Guionnet model basically modifies the
original Armstrong - Frederick hardening rule by incorporating the effect of
accumulated plastic strain in it. For cyclically stabilized material, the kinematic
hardening rule in this model is reduced to the form:

a= mm—lHEC—yl(a-n)}é” —(Vza)adp]

(1.13)
2( dgP
n==| —
3l dp
where the coefficient atakes the following form:
a= p1n: pr’for P = P s
o B
a=p, | —M | forp, < , 1.14
le ( le + pl J pl le ( )
Q I,
p.=[dpand p,, = [ dp
Ik lka
7
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Here, p, is the accumulated plastic strain between the last reversal (1, and
the current loading point (Q), and p,, is the accumulated plastic strain between
the last two reversals (1, ;and I, ). The parameters C and y are similar to those in

the Armstrong and Frederick model and are determined from a uniaxial stable
hysteresis curve. Two ratcheting parameters, y,and S are determined using a biaxial
ratcheting response. No clear guidelines are provided by Guionnet (1992) to
determine m and n.as reported by Bari and Hassan (2000).
iii.  The Chaboche model
Chaboche and his co-workers (1979, 1986) proposed a model based on the

decomposition of the nonlinear kinematic hardening rule proposed by Armstrong
and Frederick in the form:

M
a=>ya,
i=1

a =CgP _yiaiéq
iv.  The Ohno and Wang model

(1.15)

The Ohno-Wang (1993) model is also a superposition of several kinematic
hardening rules. It was introduced in the form:

M
a=y a,
i=1

2

, . . a ., [C

aizcisp_7i31<£p'—>H & _(_j
f(a) 7,

and H here stands for the Heaviside step function.

(1.16)

1.4 Uncoupled models for cyclic plasticity

In the case of the uncoupled models, the plastic modulus is defined directly
by an expression and it is only indirectly influenced by the kinematic hardening rule.
Three representative models of this category will be presented.

i.  The Drucker - Palgen model

According to the Drucker — Palgen (1981) model, the plastic modulus H is
assumed to be strictly a function of the second invariant of the deviatoric stress
tensor J, of the following form:

H=(An)" (1.17)

where A and N are material constants evaluated from a segment of a stable
hysteresis loop.

ii.  The Dafalias - Popov model

The Dafalias — Popov (1976) model constitutes one of the most effective
models to describe complex loading histories including cyclic plasticity. In this model,
8
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in addition to the yield surface the concept of a “Bounding Surface” is introduced,
which obeys kinematic hardening. The yield surface is free to translate within the
bounding surface describing any possible stress state. During excessive loading these
two surfaces may come in contact at a unique point that describes the current stress
state. If loading continuous into the plastic regime, then the two surfaces translate
together, so that an intersection may not occur.

Special attention is also paid on the definition of the plastic modulus in order
to achieve a smooth transition from the elastic to the fully-plastic state which is also
compatible with experimental observations. The model accounts for the gradual
decrease of the value of H as hardening proceeds, and this evolution is of great
importance for the successful modeling of a complex loading history associated with
reverse plastic loading, especially in cases where Bauschinger effects are important.

The basic idea of this model is that the current tangent modulus depends on
the "distance" o in stress space of the current stress state and of that representing
the immediately previous elastic stress state from a bounding surface. The plastic
modulus H is described as follows:

H(a,@n)=Eop+h(5m)( 2 5] (1.18)

where E/ is the (final) constant value of the plastic modulus tends to after sufficient
plastic strain, &, is the distance of the last elastic state point from the bound and
h(o,,) is a model parameter function of &, which controls the “steepness” of the

stress-strain curve and is defined as follows:

h(3,.) -« (1.19)

1+ b( O j
20,

In the above equation o, b and m are model constants and o, is the size of the

Bounding Surface. Function his calibrated through an experimental stress-strain
curve.

iii. The Tseng — Lee model

The Tseng — Lee (1983) model is similar to the model outlined above, except
that the bounding surface is replaced by the so-called “memory surface”. This
surface is centered at the origin and hardens isotropically every time its stress level is
exceeded. Thus, it represents the biggest state of stress developed in the loading
history. During initial loading, since the two surfaces are in contact, the flow rule is
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based on the memory surface. During the loading phase the yield surface stays
attached to the memory surface at the current stress point. It detaches on the first
reverse loading that includes plastic deformation. Then the plastic modulus is
described as follows:

in

, 5
H(5,8,)=EP {1+ h(ﬁ 5)} (1.20)

where E! is the plastic modulus of the memory surface after sufficient plastic strain.

Similarly ¢,,is the value of ¢ at the last elastic state

1.5 Scope of the present study

The present study aims at the detailed examination of the Armstrong —
Frederick cyclic plasticity model. For all the variations of this model, the
corresponding equations are extensively discussed in Chapter 2. Moreover the
numerical integration of the governing equations is also presented. The effect of the
model parameters on the predicted cyclic behavior of steel are examined through
simple one-element tests.

The nonlinear kinematic hardening rule combined with a J2 von Mises
plasticity model formulation is used to simulate two cyclic plasticity problems. The
first problem refers to the bending of tubes and it is reported in Chapter 3. The
moment capacity of a tube subjected to monotonic, symmetric and asymmetric
cyclic bending is examined. The effect of the plasticity model used to simulate the
tube bending problem on the ovalization of the cross section and moment capacity
prediction is also discussed.

In Chapter 3, the combination of internal pressure and cyclic bending of a
tube is also examined. The effect of the internal pressure on the ultimate capacity of
the tube is examined along with cyclic plasticity related phenomena such as
ratcheting. The simulation of a similar problem discussed by Rahman et al (2007) is
also presented and the numerical results are compared with experimental
measurements.

Finally, in Chapter 4 of the present study, the UOE pipe manufacturing
process is presented for a 24-inch line pipe. The forming process induces
plastisfication of the pipe cross section and as a consequence, its ultimate capacity
against external pressure is significantly affected. This effect is simulated with a J2-
plasticity constitutive model adopting the isotropic, kinematic and nonlinear
kinematic hardening rule. The capabilities of each hardening rule to simulate the
forming process accurately and predict the maximum collapse pressure of the 24-
inch pipe are compared results from a more elaborate model presented by Herynk et
al (2007).

10
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2. The Armstrong - Frederick model

Model equations and numerical implementation

In the present paragraph the features of the Armstrong — Frederick model are
presented. The constitutive equations of the two model variations and their
numerical implementation are discussed in detail. The Armstrong — Frederick model
and the nonlinear kinematic hardening rule it adopts is advancement of the simpler
linear kinematic hardening model. The aforementioned models are presented
bellow.

2.1 Linear and nonlinear kinematic hardening models

The von Mises plasticity model, which uses the linear kinematic hardening
rule, has been appreciated by many researchers for its simplicity and the benefits it
provides in modeling cyclic plasticity effects compared to the use of simple isotropic
hardening rule [Kyriakides and Corona (2007)]. In several applications it has been
proven an adequate model. However, the use of linear kinematic hardening rule
provides limited capabilities when it is used to simulate accurately cyclic loading
histories in the plastic range.

The Armstrong — Frederick model (Armstrong and Frederick (1966)) is an
enhancement of the linear kinematic hardening model. It introduces a nonlinear
term on the evolution law added to the linear one and can be used to model
phenomena such as the Bauschinger effect and cyclic creep. Furthermore it can be
combined with an isotropic part which accounts for the change of size of the yield
surface, and may model cyclic hardening/softening.

More specifically, the Armstrong — Frederick model can be expressed in two
different ways depending on the assumption made for the size of the yield surface.
The size of the yield surface can be assumed either to remain constant or it can be
allowed to change while plastic deformation takes place. On those grounds, the
adopted formulation distinguishes between the so-called “nonlinear kinematic
hardening model” which does not allow for change of size of the yield surface and
the “nonlinear kinematic/isotropic hardening model” which accounts for yield
surface change of size. Both model variations will be discussed in detail in the
following paragraphs. Before proceeding to the presentation of the two versions of
the Armstrong — Frederick model, it is judged necessary to present the linear
kinematic hardening model equations.

2.1.1 Review of the linear kinematic hardening model

The von Mises plasticity model which uses the linear kinematic hardening
rule is the basis of all the models using the kinematic hardening rule. It is based on
the concept that the yield surface has constant size and it is free to move into the
stress space. The pressure independent von Mises yield surface is given by the
following expression:
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2

1 k
F—E(s—a)-(s—a)—?—o (2.1)

where s is the deviatoric stress tensor defined as S=6+ pl ( p is the equivalent

pressure stress and | is the identity tensor), ais the back stress tensor that
expresses the current center of the yield surface in the deviatoric space and k is the
parameter that defines the size of the yield surface. In this model k is constant.

Furthermore, the linear kinematic hardening model assumes an associated
plastic flow defined as:

g i F A(s—a) (2.2)

N
The equivalent plastic strain rate is defined as:

gq = Eg" &P
2 (2.3)

& -2k
3
Combining the above equations,
3.
P=—=¢ (s—a 2.4
2kq( ) (2.4)

The linear kinematic hardening rule is described by the following linear expression:

a=CeP (2.5)
where C is the kinematic hardening modulus which is considered constant and £ is
the plastic strain rate defined in Eq. (2.2).

Enforcing the consistency condition F=O, expressed as follows:

a—F-ma—F-a:o (2.6)
06 oa

one results that the plastic loading parameter /iequals to:

: 31 .
A= G (s—a)-s (2.7)
or equivalently, taking into account Eq.(2.3), the equivalent plastic strain rate £, s
written as:
£, = 1 (s—a)-$ (2.8)
9 kC '
It is straight forward to relate C to the hardening modulus from a uniaxial tension
test.
The general elasticity equation is used next,
o =D¢° (2.9)
which can also be written in its rate form
6=D¢g° (2.10)

where D is the forth order elastic rigidity tensor and €° is the elastic strain tensor.
It is further assumed that the total strain tensor is decomposed into an elastic and a
plastic part:

12

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 17:52:31 EEST - 18.224.31.34



e=¢c°+¢gf (2.11)
Using the above decomposition and substituting in to the rate form of the general
elasticity equation(2.10) one obtains:

6=D(¢-¢")

6 =Di¢—DA(s—a)
Since (S—a)is a deviatoric tensor, one can readily show that the product D(S—a) is
equal to 2G(S—a). Using this tensor property and Eq.(2.7) , Eq.(2.12) can be
rewritten as:

(2.12)

6:Dé—%éq(s—a) (2.13)

For the simplification of the product [(S—a)-§]in Eq.(2.8), both parts of the rate form
of the general elasticity equation are multiplied with the term (S—a). This results in:

$-(s—a) = (D¢)-(s—-a) - 2Gké, (2.14)

and using Eq. (2.8), the final expression of the equivalent plastic strain rate is

.1
&, :E(De)-(s—a), (2.15)

B = kC + 2Gk

Defining tensor § as the tensor difference s—a and using Eq.(2.15), the incremental
stress-strain relations Eq. (2.13) can be rewritten as:

6 =(D— 6:: (&@&)ji—:

6G
g c®%

where D? is the fourth-order elastoplastic rigidity tensor and ® denotes the tensor
product of two second order tensors.

(2.16)
D¥ =D-

2.1.2 Nonlinear kinematic hardening model

For the description of the Armstrong - Frederick model, which adopts the
nonlinear kinematic hardening rule, J,-plasticity theory is used adopting the
pressure- independent von Mises yield surface as described in Eq.(2.1). In the
formulation of the model in the present section, the yield surface is free to move
within the stress space, while the size of it is assumed constant.

The nonlinear kinematic hardening model assumes associated plastic flow.
Therefore, the plastic strain rate is defined as in Eqg.(2.2), the equivalent plastic strain
rate is defined as in Eq.(2.3). Combination of these two equations results in Eq.(2.4)
for the plastic strain increment.

The nonlinear kinematic hardening rule is expressed as follows:

a=Cé® - yag, (2.17)
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where C is the linear kinematic hardening modulus and y is the parameter that

determines the rate at which the kinematic hardening modulus decreases with
increasing plastic deformation.

Enforcing the consistency condition Ii:O, as described in Eq.(2.6), one results

in the following expression the plastic parameter/i:
3 1

A=—
2k [kC—ya-(s—a)]
or equivalently, taking into account Eq.(2.3) , the equivalent plastic strain rate &, 1s

(s—-a)-$ (2.18)

written as:
1

& =
" [kC-ya:(s-a)]

(s—a)-$ (2.19)

Substitution of Eq.(2.19) into Eq.(2.4) results in the following expression for the
plastic strain rate:
3 1
2k [KC —ya-(s—a)]
The general elasticity equations described in Eqg.(2.9) and Eqg.(2.10) are also
valid and the total strain tensor is decomposed into an elastic and a plastic part as
written in Eqg.(2.11). Using the above decomposition also on a rate form and
substituting it to the rate form of the general elasticity equation, one results in
EqQ.(2.12).
Following the same procedure as described in section 2.1.1, the final
expression of the rate of the equivalent plastic strain rate is now written as:

o P

[(s—a)-§|(s—a) (2.20)

&, =é(Dé)-(s—a) (2.21)
where B=kC-ya-(s—a)+2CGk

Defining tensor & as the tensor difference s—a and using Eq.(2.21) , Eq.(2.13) can be
now rewritten as follows:
6 =D%¢
6G2 (2.22)
®
B (E®E)

where D? is the fourth-order elastoplastic rigidity tensor and ® denotes the tensor
product of two second order tensors.

D¥® =D-

2.1.3 Nonlinear kinematic/isotropic (combined) hardening model

The most general version of the Armstrong — Frederick model assumes that
the size of the vyield surface is no longer a constant, but it is allowed to change
depending on the amount of the equivalent plastic strain; that is k = k(e,) - The
equation describing the von Mises yield surface is now written as:

2
k(&) _
3

F =%(S—a)-(s—a)— 0 (2.23)
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where s is the deviatoric stress tensor defined as S=6+ pl ( p is the equivalent

pressure stress and | is the identity tensor), ais the current center of the yield
surface in the deviatoric space and k(e,)is now a function of the equivalent plastic

strain that defines the size of the vyield surface. Following the same procedure
described previously for the nonlinear kinematic hardening, the modifications of the
aforementioned equations due to the substitution of the yield size k by the function
k(£q) will be presented.

The plastic strain rate is defined in Eq.(2.2), the equivalent plastic strain rate is
defined in Eq.(2.3) and combining these two equations one results in an expression
for the plastic strain increment identical to Eq.(2.4).

The nonlinear kinematic hardening rule is described by the following
expression:

a=Ce" —yag, (2.24)
where Cis the linear kinematic hardening modulus and yis the parameter that

determines the rate at which the kinematic hardening modulus decreases with
increasing plastic deformation.

The consistency condition F=0 now contains one more term related to the
size of the yield surface and it is expressed as follows:
F . .
OF s+ F 4% o
06 oa ok
dk(gq)

dgq

Adopting a procedure similar to the one followed previously, one obtains that the

(2.25)
K =

plastic parameter Aequals to:

A= ZK? ) ! & (s-a)-$ (2.26)
£
V| k(e,)C - ya-(s-a) + 2k(s,) TlEa)
3 de,
or equivalently, taking into account Eq.(2.3), the equivalent plastic strain rate £, 18
written as:
£q = 1 (s—a)-$ (2.27)
2 dk(g,)
kC-ya-(s—a)+_k(g,)
3 de,

Substitution of Eqg.(2.27) into Eqg.(2.4) results in the following expression for the
plastic strain rate:
#= L

kl: 2
kC—-ya-(s—a) +§ k(e,)

[(s—a)-§|(s—a) (2.28)

de

q
Following the same procedure as described in section 2.1.1, the final
expression of the equivalent plastic strain rate is now written as:

dk(gq)}
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£q= %(Dé)(s—a)

(2.29)

dk(e,)
de

q

+ 2Gk

B=kC-ya-(s—a) +§k(gq)

Defining tensor & as the tensor difference s—a and using Eq.(2.21) , the Eq.(2.13)
can be now rewritten as follows:

e
6=D"¢ (2.30)

6G*
kB

D¥ =D--_-(£®8)

where D? is the fourth-order elastoplastic rigidity tensor and ® denotes the tensor
product of two second order tensors.

2. 2 Numerical implementation of the Armstrong - Frederick model

The numerical integration of the models described in the previous section is
based on a standard “elastic predictor — plastic corrector” scheme. At the beginning
of each step, elastic prediction takes place. During this step the total material
behavior is assumed elastic and the stress prediction is based on the trivial
integration of the elasticity equations. The validity of this assumption is verified by a
check, which demands that the von Mises yield criterion is not violated by the
elastically predicted stress. If this check is not passed, then it is assumed that the
step is elastoplastic and therefore the elastoplastic equations are used. These two
steps are described in detail in the following.

2.2.1 Numerical implementation of the linear kinematic hardening
model

The problem under consideration can be expressed as follows:
At a specific integration point, for given state (sya,,&,,) and a given strain

increment Ag, the new state parameters (s £qn,y) aresought:

n+1? a‘n+1’
1. Elastic Prediction

Assume Ag = Ag®.

Following a direct integration of the elasticity equations, elastic prediction of
(e

stresses ¢~ can be written as:
¢ =0, +DAs (2.31)
The deviatoric form of the above equation is:
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S,.. =S, +DAg

.. _® (2.32)
Since no plastic loading is assumed to take place during this step:
a=0 (2.33)
or equivalently:
a,, =4a, (2.34)
A check must be performed to examine whether the yield criterion is satisfied:
2
F :%(Sml_aml)'(sml_aml)_%S 0 (235)

If yes, then the elastic stress prediction is valid and the step is elastic. If no, then go
to the plastic corrector step.

2. Plastic Correction
From the rate form of the general elasticity equation it results that:
6 =D¢g° (2.36)
6=D(&—¢") '
Integration of the above equation provides:
6_.=06_+DAe—DAg”
n+l n (237)
c,..,= 6 —2GAe’
The flow rule is
3
P=—=¢ (s—a 2.38
K ACEE) (2.38)
is integrated as follows:
3
AgP :EM"(S”“ -a,,,) (2.39)

and because (S—a) is deviatoric, using the property of tensor D:
D(s—a) =2G(s—a) (2.40)
the deviatoric part of the above equation is written as:

3G
s, =59 —Tquém (2.41)
Subsequently, the linear kinematic hardening rule,
a=_CgP
3 (2.42)
a=C—¢, (s—a
K 4(s—2)
is integrated to obtain
3
a,, =a, +CEqugn+l (2.43)

To proceed, it is necessary to write the tensor £ ,; as the difference of s ,, a

n+l n+l°

Towards this purpose (2.41) and (2.43) are combined:

&m—l = S(E) _%qugml - (an + Cz_?;(qugmlJ (244)
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or equivalently:

1
%m =—(S(e) _an)
' AFACT (2.45)

q

= /3
g_ Eéml'gml (246)

The value of the plastic parameter Ag, can be given by the following closed form

AFACT = 1+E(G +%) Ag

and verify that & =k, where

equation:
-k
qu :q(e)—C (247)
3(G+j
2
3 €) €)
where q(ze):E(s()_an)'(s()_an)

2.2.2 Numerical implementation of the nonlinear Kinematic/isotropic
(combined) hardening model

The numerical implementation of the nonlinear kinematic hardening model
and the nonlinear kinematic/isotropic hardening model follows the same “elastic
predictor — plastic corrector” scheme as described above. The elastic predictor step
remains the same as in the case of the nonlinear kinematic hardening model. The
plastic corrector step is modified accordingly since in this case the size of the yield
surface is not a constant but a function of the equivalent plastic strain.

Here the numerical implementation of the nonlinear kinematic/isotropic
hardening model is presented. The numerical implementation of the nonlinear
kinematic hardening model (with constant size of yield surface) is a sub case. The
present numerical scheme results assuming that the size of the vyield surface is
constant and its derivative with respect to the equivalent plastic strain equal to zero.

More specifically: for given state (Sy,a,,&,,) and a given strain increment Ag,

the new state parameters (s ,,a,,,,&,,,) aresought:
1. Elastic Prediction
Following a direct integration of the elasticity equations, elastic prediction can be
written as:
¢ =¢, +DAs (2.48)
The deviatoric form of the above equation is:
s® =s, +DAg (2.49)
Since no plastic loading is assumed to take place during this step:
a=0
) 2.50
;-0 (2.50)
A check must be performed to examine whether the yield criterion is satisfied:
18
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k2
F =%(s(e’—an)-(s(e’—an)—%go (2.51)

If yes, then elastic stress prediction is valid and the step is elastic. In such a case,

Ay, =8y, gy =Egpande, =6, s =s.If no, then go to the Plastic Corrector.
2. Plastic Corrector Step
The nonlinear kinematic hardening rule:
a=Ce" —yag, (2.52)
. . 3. )
can be written a= Cﬂg“ (s—a)-yag,

Substituting & for (S—a) and integrating over the step one results in:

a,,=a,+ CW?;M)AEqénA —ra,,Ag, (2.53)
Equivalently,
Ay = L {an +CLA8 &,MJ (2.54)
1+ yAg, 2K (&gn,1) a
Integrating the elasticity equations:
Ac = DAg—DAg’ (2.55)

the above equation is written as:
6., =6, +DAe—DAe?

(2.56)
6., =6 —2GAe"
Furthermore, the flow rule is integrated as follows:
3
AgP = Aeg (S, —a 2.57
2k(€q) q( n+1 n+l) ( )
and using the deviatoric tensor property of the rigidity tensor:
D(s—a) = 2G¢ (2.58)
the deviatoric part of the above equation is written as:
N+l S(e) - 3G qu&ml (259)
K(&qne1)
From Eq.(2.54) and Eq.(2.59) the tensor &, can be written as follows:
%ml = S(e) - 3G qu%ml - L a,+ CLqugml (260)
k(gqn+1) 1+ yqu 2k(£qn+1)
Equivalently:
1 o 1
§n+l EP— ( ) - an
AFACT 1+ yAe,
(2.61)
AFACT =1+ 3 G+ ¢ Ag,
k(gqn+1) 2(1+ J/qu)
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Because of the consistency property of the flow rule, the new state parameters
should satisfy the yield condition. This equation results to a nonlinear algebraic
equation in terms of Ae,.

1 1
Egnﬂ '§n+l _E k2 (gqn+1) =0 (262)

The above equation is solved in terms of the unknown Ag, with the use of an

iterative Newton — Raphson scheme as follows:

f (qu )(‘)
Ag . =Ag,  ———F (2.63)
q(i+D) agi) )
f (qu )(i)
df (Ag
where f'(qu) :M .
dAg,
The nonlinear procedure is continued until the following criterion is satisfied:
Ag,
—a®) < E (2.64)
Ag,

where E is the desired tolerance.
In general, the function k(g,) can take several forms. The user has to define

the desired form based on experimental data (hardening or softening).

2.3 Plane stress formulation and numerical integration

In this section the application of the backward Euler method to problems of
plane stress is discussed. In such problems, the out-of-plane strain components are
not defined kinematically (Aravas (1987) and some modifications to the method
described in the previous section are needed. In the following paragraphs the cases
of linear kinematic hardening and nonlinear kinematic/isotropic hardening are
discussed, in terms of the plane stress formulation and numerical integration.

As far as the elastoplastic rigidity tensor D®is concerned, in sections 2.1.1 to
2.1.3 this tensor has been calculated for the cases of linear kinematic hardening,
nonlinear kinematic hardening and nonlinear kinematic /isotropic (combined)
hardening. It has been reported that the rate form of the general elastoplastic
equation is written as:

6 =D%¢

6G’B (2.65)
- K(e) (E®E)

where D®is the modified rigidity tensor that takes into account the plastic
correction of the original rigidity tensor D and the parameter B varies according to
the case examined.

The plane stress formulation of the tangent elastoplastic rigidity tensor
D%®for the cases presented in sections 2.3.1 and 2.3.2 is based on the corresponding

D* =D
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formulation of D®for the cases presented in sections 2.1.1 to 2.1.3. In the plane
stress formulation the restriction o, = Ohas to be satisfied also in its rate form:

G4 =0 (2.66)
This allows for the decomposition of the stress rate tensor in two parts:
G6=0+0y (2.67)

The Eq.(2.65) can be written in the following format:

s] [p2 p2][% 68
on| D3 DE ] [éx '

and the “Static condensation” rule can be applied. Taking into account Eq.(2.66), it
results that:

DP -g+DY-£,=0 (2.69)
or equivalently:
. D? .
Egq=——1"¢ 2.70
=~ Do (2.70)

The second valid equation resulting from the “Static condensation” rule is:

6=D2 .-t+D¥ &, (2.71)
and by substituting the £,,term from Eq.(2.70) it results that:
- D®.D2 | .
c:(Dj';—%j-s (2.72)
33

The Eq.(2.72) can now be treated as the rate form of the general elastoplastic
equation for the plane stress formulation that takes into account the plastic
correction of the rigidity tensor D . Therefore, Eq.(2.72) can be written as:

c=D".¢
5% | p® _ D®.D? (2.73)
aa D?,;

Finally, the plane stress formulation of the elastoplastic problem regardless
the hardening rule adopted can be summarized in the satisfaction of two main
equations. The first equation that has to be satisfied is the von Mises yield criterion.
As it will be presented in the following paragraphs, it results that the yield criterion is
a function of Ag and Aggand it can be written as F (Ag,,Agy;) =0. The second

restriction that has to be also valid is that o, = 0. Again, this equation is a function
of Ag,and Aegzand it can be written asF,(A¢,,Ag;;) = 0. These two equations have

to be solved simultaneously as a system of equations. The Newton method is
commonly used and it is described in detail in the work of Aravas (1987). In the
following paragraphs the form of the F and F, system equations for the linear

kinematic hardening rule and the nonlinear kinematic/isotropic (combined)
hardening rule are presented.
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2.3.1 Numerical implementation of linear kinematic hardening model in plane
stress conditions

In the plane stress formulation of the linear kinematic hardening model, the
equations (2.1) to (2.13) that describe the yield criterion, the plastic strain rate, the
hardening law, the equivalent plastic strain rate and the rate form of the general
elasticity equation are still valid. The modification introduced by the plane stress
conditions is described in the following paragraphs.

In the present case, the problem is considered planar on the 1-2 plane in a
rectangular coordinate system where the only non vanishing out-of-plane strain
increment is Ag,,. Then, the total strain increment Agcan be decomposed in two

parts as follows:
Ag = AttAg b (2.74)
where At ,b are defined as:
Ag=Ag, (€, ®€)+Asy (e, ®6,) +Ag,[(e, ®E,) +(e,®€)]

(2.75)
b=(e,®e,)
Therefore Eq.(2.13) can be now written as:
6,.,=6,+DAg+DAs b —%Aaq (S,..—a..,) (2.76)

_ 3G
or equivalently 6,.,=6"+DAg,b Y Ae (S, —,.)

subsequently, b is decomposed in a hydrostatic and a deviatoric part as follows:

b :%bml b’ (2.77)
then the product Db equals to:
Db = DEbml ; b’} (2.78)
or Db = Kb, | +2Gb’
and Eq.(2.76) can be written as:
6,,= 6"+ Acy,[Kh,| +2Gb] —%qu (5.-a ) (2.79)

The hydrostatic and the deviatoric parts of Eq.(2.79) are:

Pra= P —KAgy
(2.80)

_ 3G
Sn+1= Se + 2A83:;Gb’ —TAEQ (Sn+1 — an+1)
The linear kinematic hardening rule is described by the following linear expression:
a=_Cg’ (2.81)

where C is the linear kinematic hardening modulus and £ is the plastic strain rate.
The integration of the hardening rule results in:
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3C
A= a, +Equ(Sn+l_an+l) (2.82)

From EQ.(2.80) and Eq.(2.82) tensor & can be written as follows:

Cni = 5+ ZAgasGb, _%qugml _(an + Cz_?;(qugmlj (2.83)

or equivalently:

— 1 (€) ’
&1 = 2EACT (s +2A£,,Gb'-a, )
(2.84)

AFACT = 1+E(G + %) qu

2
The von Mises yield criterion F,,, = %E,,nﬂ'én-v-l —% =0

can be now written at the final state (n+1) as:

10 1 YView —
Fia== 59.5@ +4A£5GD' b +4a,-a, |+
i Z(AFACTJ [ % 3,
2 (2.85)
+1( 1 j [4Ag Gs®.b'-25®.a —4GAe, b -a ]_k_zz
2\ AFACT ® BTy

The products 5 -5 p'.b", 5 -b’ and b’-a, can be simplified as follows:

0

() — 2_
5@ .50 = 3 q.

2
b'b =%
3 (2.86)

59 . p'=g®
b’-a =a>

And the von Mises yield criterion can be written as:

1/ 1 Y 2
F.== q.°+4A 2Gz+—a.~a}+
et 3(AFACT) {q‘* = 3

, (2.87)

L 2 = _ =@ k
+( AFACT) [2A83SG S TS A ZGAg%a%n] ) =0

The Aggincrement of strain in the out-of-plane direction should be treated as an

extra unknown. For its determination the following constraint at stage (n+1) applies:

Oxng = 0

%3,n+l + pn+l = 0
The s,;quantity is calculated with the use of Eq.(2.80) and Eq.(2.82) by eliminating
the term a,,,,. It can be written as:

(2.88)
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3G
Sy = B ( Sp + 2Ae,Ghl; + rquagsnj

re_ + (2.89)
1+ —Ac¢
k q
B="% - 3CT
1+—A¢ (1+j
k 2k

By taking into consideration Eq.(2.80), the final form of Eq.(2.89) is written as:

4 3G e
(533 +— 3 Ae5,Ghy, + FAeqa%nj + P -KAgy; =0 (2.90)

Equations (2.87) and (2.90) are solved simultaneously as a system with the
unknowns being the quantities Ag,and Ag,;.

2.3.2 The nonlinear kinematic/isotropic (combined) hardening
model

As it has been discussed in paragraph 2.1.3, in the most general formulation
of the Armstrong — Frederick model the size of the yield surface is no longer a
constant, but it is allowed to change depending on the amount of the equivalent
plastic strain. The equation modifications due to the plane-stress formulation are
presented in this paragraph. For simplicity, only the nonlinear kinematic/isotropic
(combined) hardening model equations will be presented. The nonlinear kinematic
hardening model equations can be easily derived by assuming that the size of the
yield surface is constant. The presented model can also reduce to the simple linear
kinematic hardening formulation by using the linear form of the hardening rule and
also assuming a constant size of the yield surface, as it has been presented in the
previous paragraph.

The nonlinear kinematic hardening rule is described Eq. (2.17) and its
integration is given by Eq.(2.54). The integrated form of the general elasticity
equation can be now written as:

6,,=6,+DAT+D(Acyb)- S «(Sha—an1)

qn+1)

(2.91)

6,,= 6 +D(Agyb)-

k( AE (Sn+l an+1)

and by using the decomposition of b described in Eq.(2.77), the hydrostatic and the
deviatoric parts of Eq.(2.91) are:

qn+1)

Poa =P —KAgy

2.92
S,.= S*+2A¢g,,Gb" - 3G ———Ag (Sn+1 -a,,,) ( )

qn+l)
From EQ.(2.92) and Eq.(2.54) tensor & can now be written as:
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3G

gm—l = §(e) + 2A833Gb’ VYN quaml
gqn+1)
(2.93)
! ( . CLMQ@M]
1+yAeg, 2K (&4n.1)
or equivalently:
&1 = 1 s +2A&,,Gb’ — 1 a,
AFACT 1+ A,
(2.94)

AFACT =1+ 3 G+ c Ag,
k(&g4n.1) 21+ yAg,)

The von Mises yield criterion defined in Eq.(2.1) can be now written at the final state
(n+1) as:

2 2
F.= E( 1 j 5.5 + AL G- b’ + ! a, -a, |+
2\ AFACT 1+ S

2 2
+1( 1 j 4A(933G§<e>-b'—Lg@-ah—%b'-an Ko
2\ AFACT 1+yA¢g, 1+A¢g,

The simplification of the products described in Eq. (2.86) can be used and the von
Mises yield criterion can be written as:

2 2
F.= E( 1 j 0. +4Ae2G? 21 a,a |+
3UAFACT 3 1+ A¢g,

2 —(e) 2
+( L j {2&33@ S Py }_k_:o

AFACT 1+yAe, 1+yAg, | 3

Using the constraints described in Eq. (2.88) for A¢,,, the s,;quantity is calculated
with the use of Eq.(2.80) and Eq.(2.82) by eliminating the term a,_,. It can be
written as:

e , 3G
Sy = B ( S+ 2A&,,Ghl + ——— [Ag 8y, J

K(&qni1)
1
= T (2.97)
1+ Ag
2(1+ yqu)k(‘c“qml) ‘
B= !
1+ G Ag, 1+ Cr
K(Eqnt) 2(1+ yhe,)K(eqn)

Taking into consideration Eq.(2.80), the final form of Eq.(2.89) is written as:
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4 3G T
B| S, +—Ae,.G+ Ag +p°*-KAg,, =0 2.98

Equations (2.96) and (2.98) are solved simultaneously as a system with the
unknowns being the quantities Ag,and Ag,;.

2.4 Implementation of the nonlinear kinematic/isotropic (combined)
hardening model and comparison with ABAQUS

The nonlinear kinematic/isotropic (combined) hardening model described in
the previous paragraphs of the present chapter has been implemented and
incorporated in an in-house finite element code written in FORTRAN programming
language in a user subroutine. The implementation is based on two-dimensional
(plane-strain) elastoplasticity formulation. The user subroutine is presented in detail
at the end of this paragraph.

The same plasticity model is already included in the general-purpose
commercial finite element code ABAQUS. In ABAQUS, the isotropic hardening part of
the model can be defined in many different ways. If the “cyclic hardening —
parameters” sub option is used for the description of the plastic part of the model,
the following equation for the size of the yield surface is adopted:

k(g,) =k, +Q, (1-€™) (2.99)
where k, is the yield stress at zero plastic strain and Q_and b are material
parameters. Q_is the maximum change in the size of the yield surface, and b

defines the rate at which the size of the yield surface changes as plastic straining
develops. Instead, for large valued of the equivalent plastic strain g, (g4 ), the

size of the yield surface is stabilized at the value of k, +Q, . The parameter Q_ may

also take negative values.
When the equivalent stress defining the size of the yield surface remains constant
(k(gq) = ko), the model reduces to the more standard version of nonlinear

kinematic hardening model.

2.4.1 Presentation of the developed subroutine

In the in-house finite element code “NONSA1” used for the implementation
of the nonlinear kinematic/isotropic (combined) hardening model, the material
model is implemented though the user-defined “Subroutine SS”. In this part of the
code, the stress calculation as well as the calculation of the rigidity tensor
components is performed at every loading increment at each integration point. The
subroutine is based on the “elastic predictor — plastic corrector” scheme as
described in previous paragraphs. The necessary Newton Raphson iterations for the
solution of the nonlinear algebraic equations are conducted in another subroutine
named “Subroutine NR”, which is called by “Subroutine SS”. Finally, the equation
that describes the size of the yield surface and its derivative with respect to the
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equivalent plastic strain is defined through “Function ASIZE(X)” and “Function
DSIZE(X)” respectively. All the above parts of the in-house code are quoted at the
end of this paragraph.

The material parameters which are necessary for the implementation of the
model are the Young modulus E, the Poison ratio v, the initial size of the yield
surfacek, and the cinematic hardening parameters C, y. These values are inserted

to the code though an input file where the geometry of the problem (nodal
coordinates and connectivity) and the loading history are also specified. The
description of the change of size of the yield surface function and the parameters
used are described by the corresponding functions.

The nonlinear kinematic/isotropic (combined) hardening model reduces to
the nonlinear kinematic hardening model excluding the isotropic hardening part.
Moreover, it yields the simple linear kinematic hardening rule by setting the » value

equal to zero. Setting both parameters C, ¥ equal to zero but allowing for change of

the size of the yield surface in terms of the equivalent plastic strain, the model
reduces to the classical isotropic hardening model.

2.4.2 Verification of the user-subroutine

For the verification of the developed subroutine, the same uniaxial one-
element example problem is simulated in both ABAQUS and the in-house code. For
this simulation the 8-noded isoparametric plane-strain quadrilateral, reduced-
integration element is used in both codes (in ABAQUS it is denoted as CPE8R
element). The problem is imposed as load-controlled and the cyclic loading applied
has the following characteristics:

O =000 MPa o, =240 MPa,
o.in =-180 MPa Ao =420 MPa

The values of material hardening parameter are chosen as follows:

C =15000, y =15, Q, =200, b=10

The comparison of the results from the in-house code and the ABAQUS code
is very good as shown in Fig.(2.1). The minor differences that appear are attributed
to issues of numerical accuracy. As described in the previous paragraph, the in-house
code can be also used as nonlinear kinematic hardening model, as a simple kinematic
hardening model or even as an isotropic hardening model through the proper choice
of the parameter values. For verification reasons, the same problem described above
has been simulated using all the possible model modifications. The results are very
satisfactory. In the following graph only the simulation results of the combined
hardening are shown. For this case the maximum difference is at the range of 0.8%
which is considered to be very satisfactory.
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Fig. (2.1) Cyclic loading history predicted by the in-house code and ABAQUS.

2.4.3 The predicted material behavior

The nonlinear kinematic/isotropic (combined) hardening model ability to
predict cyclic plasticity related phenomena is examined through one-element
uniaxial numerical tests. Special focus is given in the prediction of the phenomena
discussed in Chapter 1 such as the Bauschinger effect, cyclic hardening/softening and
ratcheting (cyclic creep).

The Bauschinger effect is taken into consideration by the linear kinematic
hardening rule in very approximate manner. In that model, due to the constant size
of the yield surface assumption, when loading is followed by reverse loading, the
material plastisfication begins when the distance covered in the stress space is twice
the size of the yield surface (2k,) which reduces the accuracy of the simulation.

Moreover, the gradual change of the plastic modulus is not captured by this model.
When the nonlinear kinematic hardening model is used and nonzero values for the
parameter y are adopted, the shape of the stress-strain curve is improved. Such an
example is illustrated in Fig. (2.2). The values of nonlinear kinematic hardening
material parameter are chosen as follows:

C =47000, y =500
The hardening modulus adopted for the kinematic hardening rule is kept the same.
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Fig. (2.2) Cyclic loading using the linear and nonlinear kinematic hardening rule.

The cyclic hardening/softening of the materials is modeled through the
isotropic part of the combined hardening model. In the present formulation, Eq.
(2.99) is employed for the isotropic hardening description. After a few load reversals,
the hardening/softening effect extinguishes and the material reaches a stabilized
hysteresis loop. Note that in Eq.(2.99) parameters Q_and b have a strong influence
on the material behavior. In particular, the parameter Q_ defines if the material
hardens or softens after repeated load cycles. For positive values of Q_ the material
exhibits strain hardening, while for negative values of Q_the material exhibits strain
softening. The parameter b affects the rate at which the material reaches the stable
state; the higher the value of b, the faster the material behavior is stabilized.

The effect these parameters on the shape of the hysteresis loop is shown in
Fig.(2.3)(a) and (b). In Fig.(2.3)(a) the effect of the isotropic part of the hardening
rule is examined. The numerical predictions of the nonlinear kinematic hardening
rule are compared with those of the nonlinear kinematic/isotropic hardening rule
with negative and positive values of the parameterQ_, which implies that cyclic
softening behavior and cyclic hardening behavior is assumed respectively. In Fig.(2.3)
(b) the rate at which cyclic hardening takes place is examined. In particular this rate
is influenced by the value of the parameter b The different value of the parameter

b leads to different number of cycles until stabilization of the material. Both
simulations adopt the same positive value of Q, .
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Fig. (2.3) The effect of the parameters Q_ and b on the hysteresis loop.

(a) Cyclic hardening/softening of the material, (b) Different rate of cyclic hardening,
(c) The effect of the parameter b on the rate of cyclic hardening.

When cyclic loading contains unsymmetrical stress-controlled cycles in the
plastic regime, then ratcheting takes place in the direction of the mean stress. It is
observed that the rate of ratcheting depends on the level of the mean stress. For low
mean stress levels, the initial transient phase of ratcheting is followed by zero
ratcheting rate indicating a stabilization of the material behavior. On the contrary,
for high levels of mean stress, the ratcheting rate is kept constant as the number of
cycles increases. The linear kinematic hardening predicts zero ratcheting. The
resulting stress-strain curve is a closed loop. The nonlinear kinematic hardening rule
(no isotropic hardening) predicts constant rate of ratcheting regardless the
magnitude of the mean stress. The nonlinear combined hardening model (that
contains an isotropic hardening part) predicts an initial ratchet rate which is
gradually reduced until it becomes constant. At this point the change of size of the
yield surface is completed and the material is stabilized. The predicted behavior of
these models is depicted in Fig. (2.4).
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3 Tubular members under cyclic loading

3.1 Introduction

Tubular members or pipes are widely used in structural or mechanical
engineering applications. Nowadays they are produced in a wide variety of diameter
sizes and wall thicknesses. From the engineering point of view, tubular elements are
beneficial as they have the material symmetrically distributed around the cross-
section. This fact results to the same inertial characteristics regardless the direction
of the bending loading applied. They are also preferred over other typical steel cross
sections due to their aesthetics.

In the structural engineering field, tubular members are often used as
columns or parts of bracing systems in many important types of structures such as
medium or high rise buildings. They are also employed in the construction of off-
shore platforms, bridges, latticed (trussed) structures, cranes and towers.

In the mechanical engineering field tubular members are commonly used as
onshore or offshore pipes that transfer liquids or gasses. Their shape provides an
advanced pressure resistance and therefore they are able to operate in significant
pressure levels. They are employed for transmission or distribution pipelines for oil,
gas and water, as well as for industrial piping. As a consequence, these pipes are
subjected to a combination of bending loading and internal or external pressure.

In most of the cases described above, the applied loading has a cyclic
character which stems from variations of the prescribed operational loads of the
structure. In addition, accidental actions such as strong earthquakes or intense wind
loading generate cyclic actions beyond the elastic range. For the special case of
offshore structures and undersea pipes, wave-induced loading constitutes one of the
main types of strong cyclic loading which is directly related to low cycle fatigue
failures.

Bending behavior of tubular members has some particularities that make this
problem more demanding from the bending problem of members from other
structural sections (e.g. I-beams). When tubular members or pipe components are
subjected to bending loading, the circular cross-section distorts in the form of an
oval shape, leading to a reduction of the plastic moment capacity. Furthermore, the
development of compressive stresses at the compression zone of the cylinder may
cause wrinkling of the cylinder wall, leading to buckling in the form of a localized
buckling pattern. The work of Brazier (1927) was the first to relate the bending
behavior of a thin-walled cylinder to the ovalization of its cross-section. Brazier,
assuming elastic behavior of the cylinder material, obtained closed-formed
expressions for the moment-curvature and the ovalization-curvature relations. His
results were confirmed by more accurate semi-analytical solutions of the ovalization
problem in elastic cylinders (Axelrad (1962), Reissner & Weinitschke (1963)), as well
as by more rigorous numerical simulations (Levyakov (2001), Karamanos (2002)).

Nevertheless, tubes used in the vast majority of engineering applications fail
in the plastic regime, after exhibiting significant inelastic deformation. Ades (1957)
examined the same problem in the inelastic range, using the simplifying assumption
that the cylinder ovalizes to an elliptical shape. The problem was revisited by Gellin
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(1980), using a numerical formulation. Kyriakides and Shaw (1982), and Corona &
Kyriakides (1988) presented extensive experimental results on this problem,
supported by simplified numerical analyses. A more rigorous investigation of hollow
cylinder ovalization under monotonic bending was presented by Karamanos &
Tassoulas (1991), using a nonlinear elasto-plastic finite element procedure.

Figures 3.1 and 3.2 show the response of metal tubular members under
monotonic bending loading conditions. Figure 3.1 shows the moment-curvature
diagram of the tube, obtained experimentally by Kyriakides & Ju (1992). The
equilibrium path is nonlinear, due to the combined effect of plastic deformation and
cross-section ovalization. The results indicate that upon reaching a limit (ultimate
moment) the moment capacity drops very rapidly. This sudden drop may occur
immediately after a maximum moment is reached (in the case of thin-walled
cylinders), or after the member exhibits a certain plastic plateau (in the case of
relatively-thick-walled cylinders). In both cases, failure is in the form of localized
buckling, as shown in Figures 3.2(a) and 3.2(b).
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Figure 3.1: Bending response of aluminum shell with D/t=60.5 and D/t=19.5: Moment-
curvature (Kyriakides & Ju, 1992)

(a) (b)

Figure 3.2: Examples of collapse modes under pure bending: (a) diffuse local collapse
characteristic of tubes with low D/t values (b) diamond-mode for tubes with high D/t values
[Kyriakides & Corona (2007)]
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The response of tubular members under repeated (cyclic) loading has been
examined experimentally by Toma & Chen (1982, 1983), Popov et al. (1979) and
Zayas et al. (1982), motivated by the necessity of determining failure limits of
tubular lattice structures under strong earthquake loading. Furthermore, motivated
by the structural response of offshore pipelines and risers, Shaw & Kyriakides (1982,
1985) and Corona & Kyriakides (1991) presented experimental results for cyclic
bending of tubular members, demonstrating that in every cycle, plastic strain and
ovalization is accumulated, as shown in Figure 3.3, resulting in tube failure. Similar
experimental results have been presented by Pan & Lee (2002) and Chang, Pan & Lee
(2008) where the effect of the mean curvature and mean moment effects in cyclic
inelastic bending are discussed.

1.2 Buckling
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Figure 3.3: Response of an Al-6061-T6 tube to curvature-symmetric cyclic bending.
(a) Moment-curvature, (b) ovalization-curvature [Corona & Kyriakides ( 1991)]

The simulation accuracy of a tubular element behavior under cyclic bending
or under cyclic bending in the presence of internal/external pressure depends highly
on the constitutive model used for simulating material behavior. Rahman et al (2008)
presented a thorough evaluation of certain cyclic plasticity models capabilities to
simulate the ratcheting phenomenon. In this work all the examined models share
the same basic characteristics as the nonlinear kinematic/isotropic (combined)
hardening model presented in Chapter 2 of the present study. They are all based on
the Armstrong — Frederick nonlinear kinematic hardening rule and its enhancements
as proposed by Chaboche (1979, 1986), Guionnet (1991), Ohno and Wang (1993) and
others. Rahman et al (2008) work will be discussed in detail in a following paragraph.
Before proceeding to the examination of the work of Rahman et al (2008), it is
considered helpful to examine the behavior of a tube element under pure cyclic
bending and under pure cyclic bending combined with axial force.
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3.2 Tubular members subjected to cyclic bending and constant
internal/external pressure

The effect of the application of cyclic bending in the presence of internal or
external pressure is examined in the present paragraph. This loading condition is
very common in piping components and pipelines. The accumulation of plastic
strain, referred to as ratcheting of the pipe material (as a result of cyclic loading), is
investigated in terms of its influence the general bending behavior of the pipe. The
cases of internal and external pressure are examined separately in the following
paragraphs.

3.2.1 Tubular members subjected to cyclic bending and steady
internal pressure.

The ratcheting failure mechanism of pipes subjected to internal pressure and
cyclic bending has been investigated by Rahman et al. (2008). In this study, the
performance of seven plasticity models has been examined. The plasticity models
have been implemented into ANSYS finite element code and their predictions are
compared with experimental results provided by a cyclic bending device originally
developed by Kyriakides and his coworkers [Kyriakides and Shaw (1987), Corona and
Kyriakides (1991)]. The comparison has shown that none of the examined model was
robust enough to simulate accurately all the measured parameters.

The prediction capabilities of the Armstrong — Frederick nonlinear
kinematic/isotropic hardening rule are examined in the present paragraph. The
problem examined by Rahman et al. is simulated in ABAQUS, where the Armstrong —
Frederick plasticity model is already implemented. For this purpose, a “slice” finite
element model using shell elements has been developed in ABAQUS FE software.
The outer diameter of the pipe is 31.85 mm and the wall thickness is 0.911 mm. This
implies a diameter-to-thickness ratio (D/t) of 34.96 and it is considered as
moderately thick pipe (Fig.3.4). In order to minimize the size of the model and the
computational cost, the symmetry of the cross-section was taken into consideration
through the appropriate boundary conditions and only the half pipe section was
modeled. The length of the created model in the longitudinal direction is equal to 1
mm. The applied bending loading is introduced through a reference point located at
the center of the pipe and connected with all the circumferential nodes through a
“kinematic coupling” bond.
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Figure 3.4: FE “slice” model in ABAQUS for ovalization analysis.

Additionally, for the simulation of the experiment conducted by Rahman et al
(2008) a 3D shell finite element model was created in ABAQUS general purpose
software. Taking advantage of the symmetry of the problem only the one quarter of
the pipe cross section was modeled and the appropriate symmetry boundary
conditions were applied. The model is presented in Fig. 3.5. A similar model was
developed in ANSYS software by Rahman et al (2008). The geometry and mesh of the
test specimen is similar to the one considered by Rahman et al. (2008) for direct
comparison of the resulting behavior.

At the right end of the model where the symmetry condition is applied, the
boundary conditions introduced are similar to those used in the “slice” model. On
the contrary, at the left end of the model the adopted conditions are now changed.
At the same position of the actual experimental setup the applied end rotation is
introduced with the use of a solid end plug as shown in Fig. 3.9. This plug is inserted
into the pipe for four inches and it is sealed by welding on the pipe. This interaction
is introduced in to the FE model with the use of “cap-type” formulation. This end
condition results to an extensive accumulation of plastic strain near the pipe end and
consequently leads to failure of the pipe at this area after a number of cycles. Similar
failures due to caped pipe ends are also reported in an extensive experimental work
conducted by Slagis (1997). Rahman et al. do not report any failure of this kind in
their work though.
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Figure 3.5: The present model in ABAQUS.

The material used for this pipe is steel alloy 4130. The material behavior
under cyclic strain-controlled was tested and reported by Rahman et al (2008). The
simulation of the material behavior is conducted through one-element test in
ABAQUS software using the linear kinematic hardening rule, the nonlinear kinematic
hardening rule and the nonlinear kinematic/isotropic hardening rule. The
experimental stabilized cyclic stress-strain curve of steel alloy 4130 is shown in Fig.
3.6 along with the predictions of the three kinematic hardening rules.
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Figure 3.6: Simulation of the material behavior. (a) Monotonic stress-strain curve
(b) Stable cyclic stress-strain hysteresis loop.

The material parameters of the aforementioned hardening rules were
properly calibrated to fit the experimental stress-strain curve. The different
hardening rules using the parameters reported in Table 3.1 predict different
monotonic and cyclic material behavior as shown in Fig.3.6(a) and (b). The resulting
material parameters are presented in the following table.

Linear kinematic NLKH NLKH+ISO NLKH+1SOmod
k (MPa) 550 300 300 280
C (MPa) 18620 160000 160000 47000
¥ 0 510 510 1
Q, (MPa) 0 0 20 -20
b 0 0 10 30

Table 3.1. : Material parameters used for the numerical simulation

After the material parameter calibration, the pipe was first subjected to
monotonic bending in order to evaluate its ultimate bending capacity using initially
the “slice model”. The cross-sectional ovalization is a key parameter for predicting of
the bending behavior of the tube. Along with the bending moment-curvature of the
pipe, the resulting pipe ovalization was also monitored using three different
hardening rules. The resulting ovalization is defined as:

_D,-D;

2D (3.1)

¢
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where D, is the diameter measurement normal to the plane of bending, D, is the
diameter measurement on the plane of bending and D is the initial diameter of the
pipe. The curvature is normalized by the value k, =t/ D?. The results of this analysis
are shown in Fig. 3.7. The observed difference in the behavior of the pipe when the
nonlinear kinematic hardening rule is adopted are attributed to the different size of
the yield surface and the different hardening modulus considered, as described in
Table 3.1. When the NLKH/NLKH+ISO parameter sets are adopted, the pipe enters
earlier in the plastic range and therefore it exhibits a reduced bending capacity.
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Figure 3.7: Monotonic pipe bending — “slice” model. (a) Moment-curvature diagram, (b)
Ovalization-Normalized curvature diagram.

40

Institutional Repository - Library & Information Centre - University of Thessaly
16/06/2024 17:52:31 EEST - 18.224.31.34



The same monotonic bending test is also simulated using the 3D model and
the same geometry and material parameters. This is done for verification that the
two developed models predict the dame pipe behavior. The simulation results of the
two models adopted are presented in Fig. 3.8. Both models predict the same
moment — curvature curve up to the point where the 3D model predicts a rapid loss
of the pipe’s bending capacity. This is due to local buckling failure of the pipe, a
phenomenon which cannot be predicted with the “slice” model.
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Figure 3.8: Monotonic pipe bending — 3D and “slice” model.
(a) Moment-curvature diagram, (b) Ovalization-Normalized curvature diagram.
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3.2.2 Test setup, specimen geometry and material characteristics

The experiments were carried out on pipe specimens of steel alloy 4130. The
test specimen was thin walled pipe with thickness 0.911 mm, outside diameter of
31.85 mm and length of 711 mm, which implies a diameter-to-thickness ratio equal
to 34.96. This is the same pipe examined in the previous paragraphs. First, the pipe
was subjected to internal pressure. When the desired internal pressure level was
achieved, the pipe was subjected to cyclic bending by introducing rotation of its both
ends. Two different values of rotation amplitude were tested. The smaller rotation
was 6, =0.0924 rad and the larger rotation value was 8, =+0.1930 rad . The internal

pressure level in both cases was constant and equal to P=11.03 MPa.

A schematic representation of the bending device is show in Fig. 3.9. It is
basically a four point bending device capable of applying loading and reverse loading
through the rotation of the two sprockets. The pipe internal pressure is provided by
a pressure intensifier with closed loop control, which allows maintaining a constant
pressure in spite of the change of internal volume of the specimen. For more details
concerning the test device, the reader is referred to the original work by Kyriakides
and his coworkers [Kyriakides and Shaw (1987), Corona and Kyriakides (1991)].

Load Cell
Sprocket  Sirand Chain

/— Hydraulic Cylinder
|

—

\ \_LC Hydraulic Cylinder

Solid End Plug Pipe Specimen

Figure 3.9: Schematic representation of the test setup, Rahman et al. (2008)

All the models examined in the study by Rahman et al. (2008) had to be
calibrated through the proper definition of their parameters. Therefore symmetric,
axial-strain controlled experiments were conducted on material specimens of the
chosen alloy. The strain range was 0.75% and the results of the stable hysteresis loop
are shown in Fig. 3.6. Certain models also required uniaxial and biaxial ratcheting
test results for the calibration of their parameters. Therefore, two additional
ratcheting tests were carried out. The uniaxial ratcheting test load amplitude chosen
was o,, =540 MPa and the mean stress was o,, =64 MPa. The biaxial loading

conditions for the second test were a constant stress level of o,,, =71 MPain the
circumferential direction and axial strain amplitude of &, =+0.4%. These
experimental results are shown in Fig. 3.10 (a) and (b).
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Figure 3.10: Experimental result of 4130 steel alloy:
(a) uniaxial ratcheting experiment, (b) biaxial ratcheting experiment. [Rahman et al. (2008)]

The uniaxial ratcheting experiment presented in Fig. 3.10(a) was simulated by
a one-element test in ABAQUS using the material parameters reported in Table 3.1
for each hardening rule adopted. The linear kinematic hardening rule predicts zero
ratcheting as it was expected. The nonlinear kinematic hardening rule as well as the
nonlinear kinematic/isotropic hardening rule predict ratcheting rates that are over-
estimated and far from the measured behavior of the 4130 steel alloy. Therefore,
one additional set of parameters under the name “NLKH ISO mod” is introduced. The
corresponding values for each parameter used in this set are reported in the last
column of Table 3.1. This new set is aimed at providing better ratcheting
predictions. However, the model fails to simulate accurately the cyclic material
loading test. All the above simulations are depicted in Fig.3.11 and Fig. 3.12.
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Figure 3.11: Uniaxial ratcheting experiment simulation
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Figure 3.12: Simulation of the stable cyclic stress-strain hysteresis loop.

3.2.3 Experiment simulation - ovalization analysis

The pipe under consideration was subjected to symmetric rotation-controlled
cyclic bending in the presence of internal pressure. The developed “slice” model
shown in Fig. 3.4 was used to simulate the experimental results. The simulation
predictions for cyclic applied rotation €, =0.1930rad in the presence of internal
pressure of P=11.03 MPa are compared with the measured values in Fig. 3.13.
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Figure 3.13: Moment rotation diagram for 6, =0.1930 rad .
Experimental results and numerical simulation predictions of the “slice” model.
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The predicted cyclic behavior of the pipe resulting from the numerical
simulation is close to the measured one on the experimental setup. The possible
local buckling failure of the pipe cannot be captured though as discussed above.
Therefore the 3D model has been used for the simulation of this experiment and all
the following results are derived from it. As it will be discussed there, the influence
of the boundary conditions is significant when the similar modeling used by Rahman
et al. is adopted.

3.2.4 Experiment simulation - 3D model analysis

The developed 3D model is subjected to cyclic bending with two different
applied end rotations equal to 8, =0.0924 rad and 6. =0.1930 rad in the presence

of internal pressure P=11.03 MPa, as described in the previous paragraphs. The
internal pressure is applied in a first step and it is kept constant for the subsequent
steps. The pressure loading is decomposed in two parts; the pressure applied to the
pipe wall and the axial pressure load due to the capped ends of the pipe. The results
of this simulation are shown in Fig.3.14.

In the case of the smaller value of applied end rotation 6, =0.0924 rad (Fig.

3.14(a)), all the predictions are very close to each other and close to the
experimental measurements too. In the case of the applied rotation 8, =0.1930 rad,

the predicted behavior of each hardening rule differs significantly. It is rather
interesting that the linear kinematic hardening rule is capable of predicting a
bending behavior very close to the one measured in the experiment. The predictions
of the nonlinear kinematic hardening rule and the nonlinear kinematic/isotropic
hardening rule coincide after a few cycles and are in fairly good agreement with the
measured behavior. Finally, the modified nonlinear kinematic/isotropic hardening
rule predictions are also not satisfactory as far as the shape of the hysteresis loop is
concerned, but are closer to the maximum moment value predicted compared to the
other nonlinear hardening rules.
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Figure 3.14: Moment rotation diagrams. (a) Applied rotation 6, = 0.0924 rad

(b) Applied rotation 6. =0.1930 rad

In this simulation, the local stresses near the pipe ends due to the ovalization
prevention imposed by the cap that develop during the internal pressure application
step are quite higher than the stresses caused by the bending of the pipe. When
nonlinear kinematic hardening rules (with or without the isotropic part) are
employed, the stresses at the end of the internal pressure application step are very
close to the yield stress of the material. As a consequence, the material exhibits local
plastic deformations when the cyclic bending is applied. The drawback of the linear
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kinematic hardening rule is that it cannot predict the localization of plastic
deformations near the member end that lead to failure as shown in Fig.3.15. The
reason behind this difference is the much higher yield stress that is used when the
linear kinematic hardening rule is adopted.
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Figure 3.15: Localization of plastic deformations on the deformed geometry of the
pipe after a few loading cycles.

Apart from the bending behavior of the pipe, the in-plane and out-of-plane
diameter change is also monitored throughout the simulation. The deviation from
the perfect round shape of the pipe cross-section is measured in the experimental
setup with two strain gages at the middle of the pipe length as shown in Fig.3.16(a)
and (b) . This point corresponds to the right end of the developed FE model (Fig.3.5)
where the symmetry conditions are applied. The evaluation of the mean in-plane
and out-of-plane diameter change peaks in each cycle is depicted in Fig.3.17.
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Figure 3.16: (a) Schematic representation of the pipe specimen, (b)Diameter change
of the pipe cross-section.[ Rahman et al (2008)]
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Figure 3.17: (a) Mean in-plane diameter change peaks versus the number of cycles
N, (b) Mean out-of-plane diameter change peaks versus the number of cycles N.

The predictions of the in-plane and out-of-plane diameter change of all the
adopted hardening rules are not satisfactory compared to the experimental
measurements. Nevertheless, the nonlinear kinematic hardening rule and the
nonlinear kinematic/isotropic hardening rule provide almost the same predictions
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which are generally closer to the measured values. It should be noted that due to the
fact that the local plastisfication phenomenon near the pipe end can be predicted by
both these hardening rules, the analysis stops in less than 20 cycles due to local
failure phenomena (Fig. 3.17(a) and (b)). The predictions of the linear kinematic
hardening rule and the modified nonlinear kinematic/isotropic hardening rule are far
from the measured values, especially in the out-of-plane diameter change
measurements (Fig.3.17(b)). Finally, all the adopted hardening rules predict a
constant ovalization after about 12 cycles. This observation contradicts the
measured values, especially for a number of cycles greater than 50, not plotted in
Fig.3.17.

3.2.5 Tubular members subjected to cyclic bending and constant
external pressure

The effect of the external pressure on pipes has been of interest for many
years, motivated by applications in deepwater tubular towers and pipelines, where
external pressure is critical for the structural integrity of the pipe. External pressure
actions are often combined with cyclic bending actions, as for example in the case of
underwater pipeline installation procedure or due to wave actions on submerged
parts of offshore structures. The effect of the external pressure combined with cyclic
bending will be examined in the following paragraphs through illustrative examples,
with curvature-controlled and moment-controlled cyclic bending simulations.

3.2.5.1 Curvature-controlled cyclic bending and constant external
pressure.

To examine curvature-controlled cyclic bending problem in the presence of
steady external pressure the “slice” model presented in Paragraph 3.2 is used. The
external pressure is applied in a first step and then it is kept constant as the
subsequent cyclic bending steps take place. The three different types of hardening
rules examined so far will be employed here as well, keeping the parameters used
for each hardening rule the same with those reported in Table 3.1.

In Fig.3.18 the results of a symmetric cyclic bending ( R=—1) simulation with
steady external pressure applied of the specific pipe geometry are presented. The
applied external pressure is 19.5% of the critical pressure described by the following
equation:

=
4r3(1-v?)
where v is the Poisson ratio equal to 0.302.

The linear kinematic hardening rule predictions present a slight cyclic
softening phenomenon which stabilizes after a few bending cycles. On the contrary,
the nonlinear kinematic hardening rule and the nonlinear kinematic/isotropic
hardening rule predictions present an intense cyclic softening phenomenon which

P (3.2)
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stabilizes when almost 70% of the pipe’s bending capacity is lost (Fig.3.18(a)). The
ovalization predictions of the three hardening rules adopted differ significantly as
well. The linear kinematic hardening rule predicts in general smaller ovalization
values. The initial rate at which the ovalization of the pipe cross-section propagates
is small and tends to zero after some cycles. The nonlinear kinematic hardening rule
and the nonlinear kinematic/isotropic hardening rule ovalization predictions are
remarkably different than the predictions of the linear kinematic hardening rule.
These two hardening rules predict an ovalization value about 4 times higher after 10
cycles compared to the linear kinematic hardening predictions. Moreover, the initial
rate of ovalization evolution increases and then decreases rapidly when stabilization
takes place (Fig. 3.18(b) and (c)).

The predicted behavior is not in good agreement with similar experimental
data (Corona & Kyriakides (1991)) where the ovalization propagation rate increases
monotonically. It should be noted that the linear kinematic hardening rule
predictions are closer to the actual expected behavior. Generally, none of the
examined hardening rules can provide accurate and safe predictions about the
bending behavior and ovalization propagation of the pipe.
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(c)
Figure 3.18: Cyclic pipe bending ( R=—1) in the presence of steady external pressure.
(a) normalized moment- curvature diagram, (b) Ovalization- curvature diagram,
(c) Ovalization versus the number of cycles.

3.2.5.2 Moment-controlled cyclic bending and constant external
pressure.

I o

The two-dimensional “slice” model is used to simulate a moment-controlled
cyclic bending experiment in the presence of steady external pressure. As in the case
described in the previous paragraph, external pressure is applied in a first step and it
is kept constant for the subsequent cyclic bending steps. The value of the applied
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pressure as well as the parameter sets of the hardening rules are the same for all
analyses considered.

The predictions from the three hardening rules are different. The linear
kinematic hardening rule predicts a closed and stable hysteresis loop. The nonlinear
kinematic hardening rule and the nonlinear kinematic/isotropic hardening rule
predictions are significantly different compared to the linear kinematic hardening
rule. The predicted maximum curvature is about 2 times the one predicted by the
linear kinematic hardening rule and it increases with repeated loading. The
ovalization increases at each cycle as presented in Fig.3.19(a) and (b), but the
nonlinear kinematic hardening rule and the nonlinear kinematic/isotropic hardening
rule predict different ovalization values after the first cycles. This is clearly attributed
to the external pressure applied. Finally, the linear kinematic hardening rule is the
only hardening rule that predicts stabilization of the ovalization evolution, while the
other two nonlinear hardening rules predict a rapid increase of the ovalization
indicating that failure will follow in the subsequent cycles (Fig. 3.19(c)).
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(c)
Figure 3.19: Cyclic pipe bending ( R=—1) in the presence of steady external pressure.
(a) Normalized moment- curvature diagram, (b) Ovalization- curvature diagram, (c)
Ovalization evolution in terms of the number of cycles.

3.3 Tubular members subjected to cyclic bending

The behavior of tubular members subjected to monotonic and cyclic bending
is investigated in the present paragraph through an appropriate selected example
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case. In all the following simulations the developed “slice” model is used. The effect
of the Armstrong — Frederick hardening rule on the accurate prediction of the total
pipe behavior is illustrated.

3.3.1 Curvature-controlled cyclic bending.

Following the simulation of monotonic bending of the pipe and keeping the
same geometry and material parameters, the pipe is subjected to 10 cycles of
curvature-controlled bending. The chosen normalized curvature limits are equal
tok/k, =—-0.5254and k/k, =1.0507, which results to a loading ratio R=Kk,, /K.,

equal to -0.5. The normalized curvature limits are as shown in Fig. 3.20(a). The
resulting moments are normalized by M =ayD2t, where for the values of D,tare

kept the same as in the monotonic case, while the yield stress o, value is chosen

equal to 550 MPa; in all cases, the yield stress assumed when the linear kinematic
hardening rule is adopted. The ovalization propagation is also plotted in Fig. 3.20(b).

The observed differences in these the normalized moment — curvature are
attributed to the different size of the yield surface assumed when the different
hardening rules are adopted as described in Table 3.1. The linear kinematic
hardening rule predicts almost stable hysteresis loops (Fig. 3.20(a)). The
corresponding curvature propagates during the first cycles but stabilizes after the
first five cycles until the end of the loading (10th cycle). On the contrary, when the
nonlinear kinematic hardening rule or the nonlinear kinematic/isotropic hardening
rule is adopted, cyclic softening is observed. The corresponding curvature
propagates with almost constant rate (Fig. 3.20(b)).
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Figure 3.20: Cyclic pipe bending ( R=—-0.5). (a) Normalized moment- Normalized curvature
diagram, (b) Ovalization-Normalized curvature diagram.

In order to examine the effect of the unsymmetrical bending of a tube on the
hysteresis loops and the corresponding curvature evolution for the three hardening
rules examined, two sets of curvature-controlled cyclic bending simulations are
conducted. In these simulations the maximum applied curvature is kept constant
and equal to k/kN =1.0507. The minimum limit of the applied curvature is now fixed

to k/ky =0 to and k/k, = 0.5254respectively. This results to minimum to maximum
curvature ratios R=K ;. /K. equal to 0 and 0.5 respectively.

Both loading schemes limit the applied curvature to zero and positive values.
The results in Fig.3.21 and Fig.3.22 show that the consequence of the loading
scheme is important on both the cyclic softening phenomenon predictions and the
predicted rate of the ovalization propagation. As far as cyclic softening of the tube is
concerned, increasing the ratio of minimum to maximum curvature, the
phenomenon is more intense in the first one or two cycles but stabilizes faster after
these cycles. The corresponding ovalization predictions are also very interesting. For
R=0, the rate of the ovalization development is significantly lower (about half)
compared to the rate of development when R=-0.5. Moreover, when R=0.5, the
ovalization of the tube section initially decreases due to the reverse loading. But
since the reverse loading does not imply normalized curvature less than 0.4 (Fig.3.21
and Fig.3.22), the ovalization stabilizes in this part of the graph.
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Figure 3.21: Cyclic pipe bending under rotation-controlled conditions (R=0). (a)
Normalized moment- curvature diagram, (b) Ovalization- curvature diagram.
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Figure 3.22: Cyclic pipe bending under rotation-controlled conditions ( R= 0.5).
(a) Normalized moment - curvature diagram, (b) Ovalization- curvature diagram.

3.3.2 Moment-controlled cyclic bending

Starting from symmetric loading, as the one described in Fig. 3.23 with
R=M,,/M,, ratio equal to -1, and using the same material parameter sets
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described in Table 3.1, the hardening rule adopted can influence the predicted
behavior significantly. The linear kinematic hardening rule predicts a closed
hysteresis loop as in the case of curvature controlled cyclic bending. The nonlinear
kinematic hardening rule and the nonlinear kinematic/isotropic hardening rule
predict a slight cyclic degradation behavior of the pipe which is stabilized after a few
loading cycles. The observed difference in size of the predicted hysteresis loops is
shown in Fig. 3.23(a). Moreover, the corresponding curvature to the maximum
applied moment differs significantly as it is clearly shown in Fig. 3.23(b) as well.
Finally, after a few loading cycles, the curvature predictions of the nonlinear
kinematic hardening rule and the nonlinear kinematic/isotropic hardening rule start
not to coincide due to the cyclic hardening of the material assumed in the second
hardening rule (Fig. 3.23(b)).
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Figure 3.23: Cyclic pipe bending under moment-controlled conditions ( R=—1).
(a) Normalized moment- curvature diagram, (b) Ovalization- curvature diagram.
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In the case of unsymmetric bending loading, the predicted behavior of the FE
model depending on the hardening rule is more significant. In Fig.3.24, the
simulation of such cyclic loading sequence with R=M_, /M __ equal to -0.41 is

depicted. It is observed that the hysteresis loops translate in the direction of the
mean curvature; that is, after each loading cycle there is accumulation of curvature
resulting to the horizontal shift of the center of each hysteresis loop. The reader is
referred to the works of Chang, Pan and Lee (2008) among other researchers, where
the aforementioned phenomenon is verified by experimental measurements.

The linear kinematic hardening rule prediction may not simulate this
phenomenon in a precise and robust way. According to this hardening rule, there is
nonlinear behavior of the pipe only during the first quarter of the first loading cycle
and then during all the subsequent cycles the tube performs elastically (Fig. 3.24(a)).
This has also a consequence on the predicted curvature (Fig. 3.24(b)). A significantly
better description of this phenomenon in terms of experimental observations is
given by both the nonlinear kinematic hardening rule and the nonlinear
kinematic/isotropic hardening rule. The horizontal shifting of the subsequent
hysteresis loop centers is captured in a consistent manner. The isotropic part of the
nonlinear kinematic/isotropic hardening rule is responsible for the observed
differences in Fig. 3.24(a) and (b). The initial shifting rate predicted by both these
hardening rules is the same. As the equivalent plastic strain increases though, the
size of the yield surface increases as well, which results to a reduction of the shifting
rate (Fig.3.25).
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Figure 3.24: Cyclic pipe bending under moment-controlled conditions ( R=-0.41).
(a) Normalized moment- curvature diagram, (b) Ovalization - curvature diagram.
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4. Simulation of the UOE pipe manufacturing and
structural behavior

4.1 Introduction

Oil and gas pipelines are widely used in transporting hydrocarbon energy
resources in the most effective and safe way. Pipelines usually require a significant
initial investment cost for their manufacturing, but during their service life (30-40
years) they have relatively low maintenance and operation costs. In the recent years
a considerable number of pipelines has been constructed or are in the design stage.
In addition several important pipeline projects are in the planning stage, which quite
often connect different countries or different continents (e.g. Europe — Asia, Europe
— Africa). In some cases, a long segment of the pipeline is underwater. The current
technological know-how allows for the installation of such pipes in water depths
exceeding 2000 m, as for example the Blue Stream gas pipeline that connects Russia
and Turkey through the Black Sea (DeGeer et al. (2005).

The mechanical design of offshore pipelines, according to the modern design
concept, is based on the limit-state design approach, where pipeline design should
consider all possible failure modes. Buckling under external pressure constitutes a
fundamental limit state for the design of offshore pipelines. The external pressure is
due to the significant water depth, the corresponding failure is commonly
mentioned as “collapse” (Langner (1984), Karamanos and Tassoulas (1991), Yeh and
Kyriakides (1986)), associated with a flattened “dog-bone” shape of the pipe cross-
section.

To resist high levels of external pressure, deep-water pipelines are thick-walled
with a value of diameter-to-thickness ratio D/t that is usually less than 25. The

external pressure capacity of thick-walled pipelines has been studied in numerous
publications as for example in the work of Yeh and Kyriakides (1986), Gresnigt et al.
(2000) and Kyriakides and Corona (2007) among others. In those publications, it was
recognized that those pipelines fail at a pressure level which is close to the nominal
yield pressure of the pipe cross-section ( p, = 20yt/D ). In addition, it was found that

the value of the ultimate pressure is sensitive to the presence of initial imperfections
and residual stresses.

The manufacturing process has a significant effect on the level of imperfections
and residual stresses in a line pipe, and therefore, it should be taken into
consideration for the prediction of the ultimate external pressure. In the present
paper, the UOE cold-forming manufacturing process is examined in terms of its
effects on the mechanical behavior of offshore pipelines under external pressure. An
initial study on the effects of the UOE process has been reported by Kyriakides et al.
(1992) using a simple analytical model. Recent studies (Herynk et al. (2007), Toscano
et al. (2008)) that employed finite element analysis have highlighted the influence of
this manufacturing process on the value of maximum external pressure. In the
present study, the UOE forming process for a 24-inch pipeline, candidate for deep-
water pipeline applications, is simulated using nonlinear finite element models, so
that initial imperfections and residual stresses at the end of the manufacturing
process are predicted. Subsequently, using the finite element simulation, the pipe is
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subjected to external pressure loading for the calculation of the ultimate external
pressure. The present simulation may be employed as a useful tool for predicting the
ultimate capacity of the pipeline, and optimizing the UOE manufacturing process.

4.2 Description of the UOE manufacturing

A popular manufacturing method for large diameter pipes used in subsea
applications consists of cold-forming long plates through the UOE process. The name
UOE stems from the initials of the last three of these mechanical steps (U-ing, O-ing,
E-xpansion). The UOE steel pipe forming process was originally proposed for buried
onshore pipes and was extended to subsea pipes in the recent years.

The process is realized in four sequential mechanical steps:
(a) Crimping the plate edges
(b) U-ing phase where the pipe is formed into a U-shape
(c) O-ing phase where the pipe is pressed into a quasi-circular shape and both
ends of the plate are welded
(d) Expansion phase through the application of internal pressure for improving
the “circularity” of the pipe
All the above steps will be described in detail in the following.

4.2.1 Crimping phase

The first forming step involves crimping of the plate edges at both sides into
circular arcs of about one radius width. This is achieved by pressing the ends
between two shaped dies as shown in Fig. 4.1. Because of the large forces required
in this step, the forming is executed in steps.

Figure 4.1: The crimping phase, where the lower die moves upwards; (a) Representative
phase of the forming process (b) Schematic representation of crimping press.

[Herynk et al. (2007)]

The length of the plate in the longitudinal direction varies between one and four
times the pipe diameter, depending on the pipe thickness. Each production factory is
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equipped with several sets of dies in order to adjust the forming process to the
desired thickness and diameter of the pipes required. In particular, for a given pipe
the dies with the most appropriate inner and outer radii (p.gand per,) are

selected, as depicted in Fig. 4.1(b). The relative horizontal positions of the dies can
be adjusted as desired. The width of the steel plate to be crimped is defined from
the horizontal position of the dies ( L;) and depends on the plate thickness and the

maximum load capacity F., of the press (Fig. 4.1(b)).

4.2.2 U-ing phase

Upon completion of the crimping step, the steel plate proceeds to the U-ing
phase described in Fig. 4.2. The U-ing step is performed in two stages. During the
first stage, the U-punch moves downwards and bends the entire plate through a
three-point bending process. The U-punch radius is selected so that the lower half of
the steel plate acquires a radius close to the desired pipe radius at the end of the
step. The U-punch stops moving when the plate touches the anvil. The U-punch is
then held in place, and the side rollers move inwards approaching one another. The
horizontal position (h ) where the side rollers are placed and the distance (J,) they

cover are selected so that the final form of the plate to be close to a “U” shape and
the two branches of the plate are nearly vertically positioned.

(a) (b)

Figure 4.2: The U-ing phase is realized with the displacement of the U-punch, the
displacement of the side rollers and the unloading of the steel; (a) Representative picture of
U-ing [Toscano et al. (2008)] (b) Schematic representation of U-ing process.

[Herynk et al. (2007)]

4.2.3 0-ing phase

Subsequently the plate is conveyed in the O-ing phase, which is realized by the
approach of two semi-circular rigid dies with radius po. The upper die is pushed
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downwards, forcing the plate to acquire a circular form (Fig. 4.3). The forming ends
when the O-die covers the predefined displacement. After the O-ing phase the two
edges of the pipe already beveled from the initial phase are welded together with
SAW (Submerged Arc Welding), first on the inside and then on the outside (Fig. 4.4).
At this stage, extensive ultrasonic checks are also performed to detect any weld
defects prior to the pipe expansion.

=

(a) (b)

Figure 4.3: The O-ing phase where the semi-circular die moves downwards until it touches
the other die to facilitate the welding of the two beveled edges; (a) Representative picture
of this phase [Toscano et al. (2008)] (b) Schematic representation of O-press.

[Herynk et al. (2007)]

Fema] Affacles
= N

Figure 4.4: Welding metallography at the top edge of the plate.

[Kyriakides and Corona (2007)].
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4.2.4 Expansion phase

The final step of the forming process consists of the pipe expansion. This step is
necessary to control the shape of the pipe cross-section so that welding (girth welds)
between adjacent pipe segments is performed without significant misalignment.
Furthermore the expansion improves the roundness of the pipe giving, and provides
its final size, improving its structural performance in terms of ultimate buckling
pressure. The step is realized using a mandrel which is inserted in the pipe (Fig. 4.5).
The mandrel usually consists of 8, 10 or 12 segments. In the model 8 segments were
assumed in the circumference of the pipe. These segments are selected so that their
radii (pe) to be almost equal to the internal radius of the pipe. The mandrel is
hydraulically actuated and all the segments move outwards radially. The distance
covered by the segments depends on the plate thickness and constitutes a basic
parameter of the manufacturing process.

(b)

Figure 4.5: Pipe expansion
(a) Representative picture of the expansion phase [Toscano et al. (2008)],

(b) Schematic representation of expansion. [Herynk et al. (2007)].

4.3 Numerical modeling of the UOE process and external pressure
behavior

The simulation of the UOE forming process is conducted with finite element
simulation aimed primarily at computing the stress (residual stresses) and strain
(initial imperfections, initial ovalization) field at the end of the forming process. The
second purpose of this numerical simulation is the examination of the pipe
performance and ultimate strength under external pressure.

For this numerical simulation, a two-dimensional model is used and plane strain
conditions are assumed. Taking advantage of the symmetry of the problem, only the
half cross-section of the pipe is examined. The simulation is realized through the
ABAQUS finite element software. For the discretization of the deformable plate,
linear reduced-integration plane-strain continuum finite elements are used (CPE4R).
A displacement-controlled algorithm is used for simulating the forming process,
while the Riks algorithm is employed for applying external pressure.

The material behavior under reverse or cyclic loading is of major importance for
the accurate simulation of the UOE process, as well as for the reliable prediction of
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the buckling strength under external pressure. The reverse loading of the base metal
in the plastic range is characterized by a “rounded” stress-strain curve due to the
Bauschinger effect. In the present study a von Mises plasticity model is employed
and the isotropic and linear kinematic hardening rules are considered first. These are
the most commonly used hardening rules and in the present study their results are
used as reference. The stress-strain material curves of those two simple models
together with test data are shown in Fig.4.6. The two hardening rules considered are
expected to provide an upper and a lower bound for the maximum pressure capacity
of the pipe cross-section. However, it should be noted that both hardening rules are
not accurate in predicting the onset of yielding in reverse loading. To improve the
ability of the present model to predict the structural performance of the UOE pipe,
the Armstrong — Frederick model that uses the non-linear Kinematic hardening rule
is also considered and its predictions are compared with the predictions of other
models.

Three different parameter sets are introduced for the Armstrong — Frederick
model. In the first set (denoted as NLKH1) no isotropic hardening of the model is
assumed. In the other two sets, the non linear Kinematic hardening parameters C
and y are combined with data pairs of the size of the yield surface k with respect to

the equivalent plastic strain &y These pairs define the isotropic hardening part of the

model. Finally, the initial size of the vyield surfacekis assumed higher in the
parameter set NLKH3. All the set parameters are reported in Table 4.1 and they are
inserted as input in the so called “Non linear Kinematic/Isotropic hardening model”,
of the general-purpose finite element software ABAQUS.

NLKH1 NLKH2 NLKH3
k (MPa) 350 450 450
C (MPa) 3000 3500 900
y 150 50 10
(k(gg): 24) - (450, 0) (450, 0)
- (474, 0.07) (500, 0.07)
- - (550, 0.1)

Table 4.1. : Material parameter sets used for the numerical simulation

For better comparison with the experimental stress-strain curve, a more
elaborate plasticity model, possibly based on the bounding surface theory, would be
more suitable for the purpose of the present simulations. Such a model was
employed by Herynk et al. (2007) through an in-house user subroutine in ABAQUS.
The experimental uniaxial stress strain curve reported by Herynk et al. (2007) is
compared with the predictions provided by the isotropic hardening model and the
kinematic hardening model in Fig.4.6, while in Fig. 4.7the predictions of the
Armstrong — Frederick model for the three different parameter sets are shown.

In Fig. 4.7 the Armstrong — Frederick model predictions are slightly different in the
first loading part of the curve, but seem to be closer to the ones by Herynk et al.
(2007) when reverse loading takes place. In this part of the curve, parameter sets
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NLKH1 and NLKH2 provide a smooth transition from the elastic to the plastic region
but after extended plastic deformation they predict an almost zero hardening
modulus shown as a horizontal plateau in the curve. On the contrary, the parameter
set NLKH3 is not as accurate as the other two when predicting the smooth transition,
but it provides a constant hardening modulus when extended plastic deformation
takes place. The effect of these differences on the UOE process simulation and the
structural performance of the pipe will be discussed in the following sections.
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Figure 4.6: Material modeling, uniaxial stress — strain curve. The Isotropic and Kinematic
hardening rule.
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Figure 4.7: Material modeling, uniaxial stress — strain curve. The Armstrong — Frederick
model.

An interesting aspect of the numerical simulation is the modeling of the forming
dies. Herein, the dies are modeled as analytical rigid surfaces, as opposed to the
deformable steel plate. For the interaction between the surfaces a “master-slave”
type algorithm is adopted, where the rigid surfaces are the “master” surfaces and
the deformable surfaces of the steel plate are the “slave” surfaces in a contact pair.
These contact pairs are allowed to slide without friction. An exception to that is the
contact pair between the U-punch and the upper part of the steel plate located in
the lowest cross-section. For this contact pair a “no-separation” (“hard” contact)
type is used to prevent the relative displacement between the two surfaces. In such
a way, the steel plate is prevented from sliding from the U-punch as it moves
downwards. In every step, all the “active” and “inactive” bodies are defined using
the appropriate commands. This is necessary because in each step of the forming
process certain bodies are used/acted (active) while others are neglected (inactive).

For simulating the welding procedure and in order to avoid adding new elements
to the model, an additional material in the bevel of the welding is assumed in the
initial geometry. This material is considered to have a low Young’s modulus (equal to
about 0.5% of the Young’s modulus assumed in the rest part of the steel plate) and
does not affect the UOE process until the O phase (Fig. 4.4). At the welding stage,
the properties of this material are replaced with the same material properties of the
rest steel plate. The welding part is discretized using CPE3 linear, three-node finite
elements.
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4.3.1 Numerical parametric study

The developed numerical model described in the previous paragraph is utilized to
study a pipe of 609.6 mm external nominal diameter (24 in) and 32.3 mm wall
thickness (1.273 in). The material of the plate was assumed to have a Young modulus
E=210 GPa, a yield stress o,=448.5 MPa (65 ksi) (API X65 steel grade) and a Poisson

ratio v =0.3. The material model adopted for this analysis is von Mises plasticity with
hardening laws. The hardening laws examined here is the isotropic, Kinematic and
non linear kinematic/Isotropic hardening law (Armstrong — Frederick model). All the
forming parameters considered are reported in Table 4.2, which are similar to the
ones considered in the work of Herynk et al. (2007).

Symbol Description Value
Plate t Plate thickness (mm) 32.33
w Plate width (mm) 1803
X Steel grade (Mpa) 448.5
Crimping Peri Internal crimping radius (mm) 265.4
Lero External crimping radius (mm) 298.5
Ocr Final distance of the 2 dies (mm) 0.5
Ler Horizontal distance of the dies (mm) 676.7
her Height of the external crimping die (mm) 150
U-ing oy U-Punch radius (mm) 246.4
oy Distance covered by the U-Punch (mm) 724
o, Distance covered by the Roller (mm) 102
h Horizontal Roller position (mm) 457
L, Vertical position of the Anvil (mm) 724
O-ing 6 Radius of the semi-circular dies (mm) 303.8
% Distance covered by the O-die (mm) 218.55
Expansion Pe Mandrel radius (mm) 260
O Expansion value (mm) 11
N Mandrel segments 8

Table 4.2: Characteristics of the UOE numerical simulation. Herynk et al. (2007).

In the numerical simulation, expansion takes place in three stages. During the
initial stage the mandrels move outwards radially until there is a first contact with
the plate’s interior edge. This distance is denoted as &, . Then the mandrels continue

to move radially for an additional displacement &, until they are all in contact with

the pipe. During the second stage mainly bending of the steel plate takes place so
that the plate accommodate itself around the mandrels, so that not much
permanent strain is induced. The Expansion phase is completed with the application
of an additional radial displacement u of the mandrels. At that stage, the force

Expansion

on the mandrels required for further displacement increases fast. The basic
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parameter examined in our analysis is the additional expansion value u at the

Expansion
final (third) stage of the forming process. Particularly, in the present case different
expansion values u are examined ranging from zero to 15 mm, beyond which

Expansion
severe plastic deformations of the pipe takes place. Therefore the following
expression is valid for the total mandrel displacementu, :

uTot = 50 + 51 + uExpans,ion (41)

The ovalization parameter A, is defined at the end of the expansion stage as a
measure of the initial pipe geometric imperfection:

A _ID-Dy|
0

D, +D,

where D, and D,are values for the horizontal and vertical outer diameters

(4.2)

correspondingly, measured at the end of the O-phase right after the unloading of the
pipe. These two diameters are different since the pipe is not in a perfect cyclic
shape.

In addition, the mean thickness of the pipe t  is defined using the finite element

results at three different characteristic locations:

t, =—t1+t§+t3 (4.3)
In the above expression t; is the pipe thickness on the top part of the pipe cross-
section (near the weld), t, is the pipe thickness on the middle height of the pipe
cross-section and t, is the pipe thickness on its lower part, as shown in Fig. 4.8. To

quantify variations of thickness around the pipe cross-section, a non dimensional
imperfection parameter AT is introduced, which expresses the mean variation of
the circumferential pipe- wall thickness:

AT — tmac = trin (4.4)

where t__ refers to the maximum value and t;, refers to the minimum value of the

pipe- wall thickness derived from t;, t,, t,. Finally the UOE process induced
permanent strain ¢ is defined as follows:

g =—E_0 (4.6)

where C_. and C, are respectively the mid surface circumference after the
Expansion and after the O-ing phase respectively.
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Figure 4.8: Part of the pipe ring where t,t, and t; are defined.

The UOE process simulation is examined using both the isotropic and kinematic
(linear and nonlinear) hardening rules. The two hardening rules are associated with
different values for the parameters introduced and their variation. For the isotropic
hardening rule the parameters &y and &; are equal to 2.05 mm and 6 mm
respectively, while for the linear kinematic hardening rule the parameters are equal
to 0 mm and 5.86 mm respectively. When the nonlinear kinematic hardening rule is
adopted the corresponding values are close to 2.5 mm and 6 mm respectively for all
the parameter sets used.

In Fig. 4.9 the effect of the additional expansion ug,..,, to the final circular

cross-section is presented. It is observed that as the value of u grows, the final

Expansion
pipes have less ovalization initial imperfections. The results presented in Fig. 4.10
show the influence of the expansion phase on the circumferential pipe-wall
thickness variation AT. In Fig. 4.11 the relation between the u value and the

Expansion
permanent induced strain is depicted. In those three figures the predictions of the
nonlinear kinematic hardening rule adopting the NLKH2 parameter set are presented
along with the predictions of the isotropic and linear kinematic hardening rule. In
general, all the hardening rules show the same trend of the predicted behavior but
they predict different values for each parameter examined.
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Fig. 4.10 shows that there is a significant change in the AT thickness parameter
after the expansion value of 4 mm. This is due to the decrease of the pipe wall
thickness near the welding area (C.P.1). From the three graphs above it is concluded
that there is an optimum value for the expansion value during the last step of the
forming process, for which there is an optimum combination of minimum ovalization
of the cross-section and minimum variation of the pipe-wall thickness. For the
specific geometry under examination for both the isotropic hardening rule and the
kinematic hardening rule, this u value is approximately in the range of 3.5-4

Expansion
mm. For the nonlinear kinematic hardening rule, the corresponding optimum
u value is slightly less in the range of 3-3.5 mm.

Expansion

Finally, it is also noted that by using numerical simulation it is possible to
determine the residual stresses after the end of the process in each point of the pipe
with significant precision. The stress distribution is dependent on the hardening rule
used as well.

4.3.2 Mechanical behavior during the UOE process and external
pressure application

During the forming process the material experiences deformations far in the
plastic range. The magnitudes of plastic deformations as well as the resulting
stresses are the key feature for the collapse pressure resistance of the pipe. In the
following paragraphs the UOE process resulting stress — strain path will be discussed
in detail for each forming step. Three check points (C.P.) are introduced in the areas
where the maximum stresses are expected to occur (Fig. 4.12). At each C.P. both the
internal and external side of the plate is examined. The numerical simulation of the
UOE process is presented in Fig. 4.14.
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C.P1

B2

Figure 4.12: The Check Points on the half pipe section

During the Crimping phase of the UOE process, all the plastic deformation is
located near the edges as expected (C.P.1). The material undergoes plastic
deformations until the desired curvature of the plate is achieved. The rest part of
the plate remains in a low stress state (Fig. 4.14(a)).

The U-ing phase stresses the areas located near C.P.2 and C.P.3. In particular, near
the C.P.3 the material is highly stressed beyond the elastic limit when the U-punch
moves downwards at the beginning of the phase. The area near the C.P.2 also
experiences stresses in a lower degree. The parts of the plate away from C.P.2, C.P.3
remain nearly unaffected. The U-ing phase is completed with the horizontal
movement of the rollers. This step actuates the areas near the C.P.2, while the areas
near the C.P.1 and C. P.3 remain in the same stress state as before (Fig.4.14(b)).

The O-ing phase results in a major change of the plate shape. The locus of the
maximum stresses that develop in the plate moves gradually from the vicinity of the
C.P.3 towards the C.P.2 and near the C.P.1 at the end of the phase. This phase is
crucial for the stress state of the material located near C.P.1 and C.P.2 (Fig. 4.14(c)).

The final phase of the UOE process is the Expansion phase. Up to this point, the
most stressed areas of the pipe are near the C.P.1 and C.P.3. Due to the expansion,
all the compressive stresses that have developed in the inner part of the pipe
throughout the forming history are relieved while in the exterior part of the pipe,
which is already in tension, additional tensile stresses are developed. Depending on
the Ug.0n Value, the influence of this phase on the residual stress field of the pipe

at the end of the UOE process can be the determining parameter for the pipe
resistance against external pressure (Fig. 4.14(d). This issue will be discussed in the
following.
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Figure 4.13: The numerical simulation of the UOE process.
(a) Crimping phase, (b) U-ing phase
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(d)

(e)
Figure 4.14 (continued): The numerical simulation of the UOE process.
(c) O-ing phase, (d) Welding, (e) Expansion phase
The residual stress/ residual strain field at the end of the UOE process is the
starting point for the stress — strain field that will result from the application of the
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external pressure. At the end of the pipe manufacturing process the material in the
C.P.1 area is more plastified from the initial crimping phase. In the other parts of the
pipe, the distribution of the plasticity is almost uniform and it is located at the
interior and exterior part of the pipe as expected. The application of the external
pressure results in the simultaneous increment of the stresses in all three check
points as the pipe transforms from its circular shape to a (O) shape. In Figures 4.15,
4.16, 4.17 the total stress — strain path prediction resulting from the Isotropic and
the Kinematic hardening model is presented. In these graphs both the exterior and
the interior part of the plate at each check point are examined. All graphs refer to an
expansion value u of 0.1 mm (u, =8.3mm). In Fig. 4.16 and Fig. 4.17 the

corresponding part of the stress — strain curve for the C.P.2 and C.P.3 for each UOE
phase is presented.

Expansion
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Figure 4.15: The stress strain path for the C.P.1: (a) outer surface, (b) inner surface.
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Figure 4.16: The stress strain path for the C.P.2: (a) outer surface, (b) inner surface.
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4.17: The stress strain path for the C.P.3: (a) outer surface, (b) inner surface.
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For comparison reasons, in Fig. 4.15, 4.16, 4.17 the results of the same problem
with the adoption of the Kinematic hardening rule are also depicted along the results
of the Isotropic hardening rule. The two different hardening rules predict different
stress-strain paths especially when reverse loading takes place. In such cases, the
Isotropic hardening rule over-predicts the yield initiation. The point predicted has
the same stress value as the corresponding point having the maximum stress value
in the monotonic branch of the curve. On the contrary, the residual stresses and
strains affect the predictions of the Kinematic hardening rule. Therefore, according
to this rule in the case of reverse loading the vyielding starts earlier. The most
vulnerable area of the steel pipe seem to be the area in the vicinity of the C.P.2
where reverse loading appears and the loading continues far towards the opposite
direction during the external pressure application phase.

4.3.3 The effect of the UOE process on the collapse pressure

The first main effect of the UOE process on the collapse pressure of the pipe is the
resulting ovalization of the pipe cross — section. The geometry imperfection of the
finished pipe is the governing parameter for a wide range of expansion values. As it
has been already discussed, the UOE process also introduces residual stresses and
plastic strains distributed along the circumference in a non uniform way. It has been
demonstrated that during the U-ing and O-ing steps of the UOE process, the
maximum stresses appear. Depending on the expansion value, the Expansion step
reliefs a part of the induced stresses. The residual stress distribution after this step is
the second major parameter affecting the collapse of the pipe under external
pressure. In Fig. 4.20 and Fig. 4.21 the maximum collapse pressure (Pmax) and the
resulting ovalization parameter versus the average circumferential permanent stain
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(ee) are depicted respectively. In Fig. 4.22 the shape change of the pipe under
external pressure is presented.

The Pmax - €€ curves presented in Fig. 4.20 can be separated in three parts. The
first part extends to values of €¢ up to 0.1 %. In this part, the maximum collapse
pressure is very sensitive to the variation of the expansion value. The initial ovality of
the pipe resulting from the manufacturing process acquires its highest values in this
part as well (Fig. 4.21) and governs the behavior of the pipe. As the total mandrel
displacement value increases from 0 mm (UO case) to 11.5 mm, the initial ovality is
recovered quickly and this results to the ascending branch of the curve. The
hardening rules used in the process simulation predict similar P,ax values for a given
expansion value but different induced permanent strains on the pipe. It is obvious
though that the parameter sets NLKH1 and NLKH2 give very conservative predictions
far from the range of the predicted P« values given by the rest hardening rules. On
the contrary, parameter set NLKH3 of the Armstrong — Frederick model predicts Ppax
values close to the values predicted by the Kinematic hardening rule.

The second part of the curve extends to values of €¢ up to 0.4 %. This part of the
curve is characterized by an almost constant value of P, regardless the expansion
value and the induced strain. In addition, at this part of the curve the ovality
variation is minimized (Fig. 4.20, 4.21). This observation leads to the conclusion that
the geometric ovalization parameter is mainly affecting the final behavior of the
pipe. The hardening rules adopted for the analysis capture this constant behavior
providing though different P,.x values. Moreover, the Isotropic hardening rule
results to an ascending branch after the value of g; = 0.27 %, which contradicts the
predictions of the Kinematic hardening rule as well as the predictions given by
Herynk et al. (2007). The parameter sets NLKH1 and NLKH2 of the Armstrong —
Frederick model predict almost constant but very conservative Py values, while the
set NLKH3 predictions are very close to the predictions given by Herynk et al. (2007).
At this range of induced strains, it can be stated that the hardening rules adopted
define the accuracy of the Pn., value prediction.
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Figure 4.20: Collapse pressure — permanent strain curve: (a) The predictions of the Isotropic
and Kinematic hardening rules, (b) The predictions of the Armstrong — Frederick model

The importance of the accurate description of the material behavior results also
from the third part of the graph. There, the ovalization parameter is reaching its
minimum value and therefore the hardening rule adopted should be the only
parameter affecting the total behavior. After the value of € equals to 0.3% a
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descending branch starts according to Herynk et al. (2007). According to this
analysis, a further increase of the induced strain has as a consequence the
degradation of the compressive material properties affecting also the Pn.y value.
Moreover, it was observed by Herynk et al. (2007) that the material acquires a
reduced elastic modulus during the reverse loading (Fig. 4.6). None of the hardening
rules used for the present study can predict such a behavior. The parameter set
NLKH 1 of the Armstrong — Frederick model predictions are still at the same level,
while the predictions of the parameter set NLKH2 show some instability. This is due
to the different collapse modes it predicts. Finally, the predictions of the parameter
set NLKH3 follow the predictions of the Kinematic hardening rule resulting in an
ascending branch as well.
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Figure 4.21: Ovalization parameter — permanent strain curve. (a) The predictions of the Isotropic
and Kinematic hardening rules, (b) The predictions of the Armstrong — Frederick model
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The reason for this difference in the predicted behavior is the incapability of the
described hardening rules to take into account the Bauschinger effect and estimate
the exact size of the yield surface at the same time. The Kinematic hardening rule
provides safer estimations of the P, value due to constant size of the yield surface
adoption it is based on, while the model with the lIsotropic hardening rule
overestimates the Pnay values by over predicting the size of the yield surface. The
Armstrong — Frederick model exhibits different behavior depending on the
parameter set it is based on. Nevertheless, the parameter set NLKH 3 seems suitable
for good predictions of the collapse pressure for permanent induced strains up to 0.4
%.

Figure 4.22: The shape change of the pipe under external pressure.
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5. Summary - Conclusions

In the present work the Armstrong — Frederick (A-F) cyclic plasticity model is
examined. The presentation of the model starts with a discussion of cyclic plasticity
fundamentals in Chapter 1. The main characteristics of each plasticity model are
presented. The hardening modulus and the way it is defined is the feature that leads
to the categorization of the presented plasticity models to “coupled” and
“uncoupled”. In “coupled” models the hardening modulus is defined through the
consistency conditions, while in “uncoupled” models the hardening modulus is
defined by a separate expression.

Before discussing the formulation of the A-F mode in Chapter 2, the plasticity
model that adopts the von Mises description of the yield surface and the linear
kinematic hardening rule is presented. The basic assumptions of the model and the
model numerical implementation are discussed in detail. The introduction of the
nonlinear kinematic hardening rule to the aforementioned plasticity model
differentiates the equation formulation and constitutes the basis of the A-F model.
The constitutive equations of the general formulation of the A-F model and their
numerical implementation for plane-strain and plane-stress conditions are
presented.

The model prediction capabilities are examined through cyclic loading examples.
A thorough examination of the effect each model parameter has is presented. The A-
F model provides better predictions compared to the linear kinematic hardening rule
as far as the Bauschinger effect is concerned. Moreover, the cyclic
hardening/softening of the material can be simulated through the isotropic
hardening part of the model. Finally, the ratcheting phenomenon with varying
evolution rate can be described effectively.

In Chapter 3 the behavior of pipes subjected to cyclic bending is examined. Cyclic
bending is also combined with internal/external pressure. Generally, it is proved that
the cyclic bending behavior of a pipe can be simulated with an acceptable accuracy
using the A-F model.

The cyclic bending of internally pressurized pipes is examined through
verification of the experimental results reported by Rahman et a. (2008). Two
different finite element models (“slice” model, 3D model) are developed to simulate
the described experiment. It is shown that the A-F model predictions are quite close
to experimental measurements regardless the model adopted for the simulation.
Additionally, when the 3D model is used, local instability effects can be also
captured.

The pipe is made of the steel alloy 4130, whose material properties are derived
through one-element cyclic material testing. This test is simulated using the linear
kinematic hardening model and variations of the A-F model. When the A-F model is
used, the steel alloy 4130 stable cyclic stress-strain curve is simulated with an
increased accuracy compared to experimental measurements. Moreover, in the
same chapter, uniaxial ratcheting experimental results are compared with numerical
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simulations where the A-F model is used. It is shown that the isotropic hardening
part of the model can improve the ratcheting predictions.

The cyclic bending of externally pressurized pipes is also discussed in Chapter 3.
The simulations are conducted as curvature-controlled and moment-controlled
problems using the “slice” model with the material parameters of steel alloy 4130. In
the curvature-controlled simulations the “slice” finite element model adopting the A-
F model predicts a rapid degradation of the pipe’s bending capacity, which is not
compatible with similar experimental observations.

Finally, the pure cyclic bending of pipes is also examined through curvature-
controlled and moment-controlled simulations. The “slice” finite element model
adopting the A-F model is employed and different loading ratios are examined. The
degradation of the pipe’s bending capacity as well as the ovalization evolution as the
number of cycles increases can be captured by the A-F model. Moreover, in the case
of unsymmetric moment-controlled simulations, the curvature evolution can be also
predicted verifying in a qualitative way similar experimental measurements.

In Chapter 4 of the present study the UOE pipe forming process has been
modeled with the use of robust computational tools. The study is aimed at the
computation of the residual stresses and the initial imperfections of the formed pipe
and afterwards the pipe’s capacity against external pressure application. The
geometrical characteristics of the pipe examined are reported in the work of Herynk
et al. (2007). The material characteristics necessary for the numerical simulation are
derived by simulating a uniaxial stress-strain curve reported in the same study. The
von Mises plasticity model adopting the isotropic and linear kinematic hardening
rule is employed along with the A-F model. The simulation with the A-F model can
capture the Bauschinger effect significantly better compared to the simulation
results of the rest plasticity models examined. At the end of the manufacturing
process the residual stresses and initial imperfections of the pipe have been
computed.

After the simulation of the manufacturing process, the pipe’s external pressure
capacity was calculated. It was observed that expansion of the pipe’s cross-section
leads to minimization of pipe out-of-roundness and improves the pressure capacity
of the pipe; yet, large expansion values though lead to undesired pipe-wall thickness
variations. The isotropic and kinematic hardening models can capture the general
trend of pipe’s behavior. Even if they provide different pressure capacity values, they
are in good accordance with the predictions of the more elaborate model used by
Herynk et al. (2007). The A-F model behavior is highly affected by the material
parameters. Generally, it captures accurately enough the Bauschinger effect and
predicts reasonable collapse pressure values.

It is believed that a more sophisticated material modeling possibly based on the
“Bounding Surface” concept is necessary in order to make more accurate predictions
of the maximum collapse pressure P This model should be able to describe the
actual material behavior under cyclic loading in the plastic range in an effective and
robust way. Moreover, the Bauschinger effect as well as the exact size of the yield
surface should be effectively predicted. Finally, a carefully designed set of
experiments on material level as well as on full pipe scale level would help the
calibration of all the adopted plasticity models and will provide essential information
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about the actual behavior of such pipes. Nevertheless, the present simulation offers
a powerful yet inexpensive tool for the UOE-manufactured pipe pressure capacity
prediction which can be used for optimizing UOE manufacturing process.
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