

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

Μεταπτυχιακή Εργασία

Υπολογιστική μελέτη φαινομένων μεταφοράς διαμέσου σύνθετων πολυμερικών μεμβρανών

υπό

ΝΑΚΗ ΛΑΜΠΡΟΥ

Διπλωματούχου Μηχανικού Επιστήμης Υλικών, Πανεπιστημίου Ιωαννίνων, 2007

Υπεβλήθη για την εκπλήρωση μέρους των απαιτήσεων για την απόκτηση του Μεταπτυχιακού Διπλώματος Ειδίκευσης

ΒΟΛΟΣ 2010

© 2010 Νάκης Λάμπρος

Η έγκριση της μεταπτυχιακής εργασίας από το Τμήμα Μηχανολόγων Μηχανικών της Πολυτεχνικής Σχολής του Πανεπιστημίου Θεσσαλίας δεν υποδηλώνει αποδοχή των απόψεων του συγγραφέα (Ν. 5343/32 αρ. 202 παρ. 2).

Εγκρίθηκε από τα Μέλη της Τριμελούς Εξεταστικής Επιτροπής:

Πρώτος Εξεταστής	Δρ. Αθανάσιος Παπαθανασίου	
(Επιβλέπων)	Αναπληρωτής Καθηγητής, Τμήμα Μηχανολόγων Μηχανικών,	
	Πανεπιστήμιο Θεσσαλίας	
Δεύτερος Εξεταστής	Δρ. Παναγιώτης Τσιακάρας	
	Αναπληρωτής Καθηγητής, Τμήμα Μηχανολόγων Μηχανικών,	
	Πανεπιστήμιο Θεσσαλίας	
Τρίτος Εξεταστής	Δρ. Νικόλαος Πελεκάσης	
	Αναπληρωτής Καθηγητής, Τμήμα Μηχανολόγων Μηχανικών,	
	Πανεπιστήμιο Θεσσαλίας	

Ευχαριστίες

Η παρούσα μεταπτυχιακή διπλωματική εργασία, εκπονήθηκε στο Εργαστήριο Ρευστομηχανικής & Στροβιλομηχανών του τμήματος Μηχανολόγων Μηχανικών του Πανεπιστημίου Θεσσαλίας.

Με την περάτωση λοιπόν της παρούσας εργασίας, θα ήθελα να ευχαριστήσω θερμά τον επιβλέποντα καθηγητή κ. Αθανάσιο Παπαθανασίου για την υπόδειξη του θέματος, την στήριξη της προσπάθειάς μου, την επίβλεψη και την πολύτιμη βοήθεια του καθ' όλη τη διάρκεια υλοποίησης της διπλωματικής εργασίας. Θα ήθελα ακόμη να ευχαριστήσω τον αναπληρωτή καθηγητή του Τμήματος Μηχανολόγων Μηχανικών, κ. Παναγιώτη Τσιακάρα για τις πολύτιμες επιστημονικές συμβουλές που μου παρείχε καθ' όλη τη διάρκεια των Μεταπτυχιακών μου σπουδών καθώς και τα υπόλοιπα μέλη της συμβουλευτικής επιτροπής.

Ευχαριστώ επίσης τον Μεταδιδακτορικό ερευνητή του τμήματος Μηχανολόγων Μηχανικών, κ. Ιωάννη Σαρρή για την βοήθεια και τις συμβουλές που μου παρείχε κατά την διεξαγωγή των προσομοιώσεων της παρούσης, την μεταπτυχιακή φοιτήτρια του Τμήματος Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης του Πανεπιστημίου Θεσσαλίας και Διπλωματούχο Πολιτικό Μηχανικό κ. Αικατερίνη Γιαννούση για την πολύτιμη στήριξη και βοήθεια καθ' όλη την διάρκεια υλοποίησης της εργασίας, καθώς και όλα τα μέλη του Εργαστηρίου Ρευστομηχανικής & Στροβιλομηχανών του τμήματος Μηχανολόγων Μηχανικών για το ιδιαίτερα φιλικό κλίμα.

Τέλος δεν θα μπορούσα να μην ευχαριστήσω όλους αυτούς, που με την καθημερινή τους συμπαράσταση, την υπομονή τους και την θετική τους σκέψη συνέβαλαν σημαντικά στην εκπλήρωση του στόχου μου και ιδιαίτερα την οικογένεια μου που ήταν και είναι δίπλα μου σε κάθε προσπάθειά μου και στην οποία αφιερώνω την παρούσα εργασία.

Υπολογιστική μελέτη φαινομένων μεταφοράς μέσω σύνθετων πολυμερικών μεμβρανών

ΝΑΚΗΣ ΛΑΜΠΡΟΣ

Πανεπιστήμιο Θεσσαλίας, Τμήμα Μηχανολόγων Μηχανικών, 2010

Επιβλέπων Καθηγητής: Δρ. Αθανάσιος Παπαθανασίου, Αναπληρωτής Καθηγητής, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας

Περίληψη

Ένας σημαντικός τομέας της σύγχρονης έρευνας, με μεγάλη τεχνολογική και βιομηχανική σημασία, είναι ο σχεδιασμός νέων πολυμερικών προϊόντων με βέλτιστες ρεολογικές, μηχανικές και οπτικές ιδιότητες, μειωμένο κόστος παραγωγής, μέγιστη δυνατή διάρκεια χρήσης, και φιλικότητα προς το περιβάλλον. Για να αντιμετωπιστεί το πρόβλημα της δημιουργίας νέων πολυμερών με βέλτιστα χαρακτηριστικά θα πρέπει να συσχετιστούν η χημική σύσταση, η μοριακή αρχιτεκτονική και μορφολογία του υλικού (που περιλαμβάνονται στον ευρύτερο όρο «μικροδομή») με τις φυσικές ιδιότητες.

Η παρούσα διπλωματική εργασία παρουσιάζει μια άμεση αριθμητική προσέγγιση για την πρόβλεψη των φαινομένων μεταφοράς διαμέσου σύνθετων πολυμερικών μεμβρανών ενισχυμένων με platelets (φυλλίδια), μελετώντας ειδικότερα την μεταβολή του συντελεστή διάχυσης τους, ανάλογα με την συγκέντρωση, τις διαστάσεις και τον προσανατολισμό των φυλλιδίων στη μικροδομή της πολυμερικής μεμβράνης. Οι αριθμητικοί υπολογισμοί διεξάγονται σε δύο διαστάσεις (2D) για σύνθετες μεμβράνες που περιλαμβάνουν ευθυγραμμισμένα και τυχαία προσανατολισμένα φυλλίδια, χρησιμοποιώντας τη μέθοδο των συνοριακών στοιχείων σε ένα υπάρχον κώδικα προγραμματισμού FORTRAN.

Επιπλέον κάνοντας μια βιβλιογραφική ανασκόπηση και μελετώντας κάποια από τα θεωρητικά μοντέλα της υπάρχουσας βιβλιογραφίας τα οποία επιχειρούν να προβλέψουν τον συντελεστή διάχυσης των σύνθετων πολυμερικών μεμβρανών, επιχειρείται μια αξιολόγηση των αποτελεσμάτων καθώς και ένας σχολιασμός των προβλέψεών τους.

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

<u>Α. ΕΙΣΑΓΩΓΗ</u>				
<u>Β. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ</u>				
B1	•	ΠΟΛΥ	ИЕРН13	3
B2	2. ΣΥΝΘΕΤΑ ΥΛΙΚΑ		ΘΕΤΑ ΥΛΙΚΑ	
	B2	2.1.	Γενικά16)
	B2	2.2.	Σύνθετα Πολυμερή18	}
	B2	2.3.	Νανοσύνθετα Πολυμερή	
		B2.3.1	. Γενικά20)
		B2.3.2	. Εφαρμογές Νανοσύνθετων πολυμερικών υλικών20)
		B2.3.3	. Παγκόσμια αγορά Νανοσύνθετων υλικών - Οικονομικά	
			Στοιχεία2	8
B3	•	TEXN	ΟΛΟΓΙΑ ΜΕΜΒΡΑΝΩΝ30)
B4	•	ΦAIN	ΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΜΑΖΑΣ ΜΕΣΩ ΜΕΜΒΡΑΝΩΝ	
	B4	l.1.	Γενικά3	3
	B4	l.2.	Είδη Διάχυσης	7
	B4	4.3.	Μηχανισμοί Διάχυσης	7
	B4	I.4.	Διάχυση κατά Fick)
	B4	4.5.	Σύντομη περιγραφή μοντέλων διάχυσης	
		B4.5.1	. Μοντέλο Διάλυσης-Διάχυσης	
			(Solution-Diffusion Model)43	3
		B4.5.2	. Μέθοδος χρόνου διαπερατότητας (Time Lag Method)44	

B	4.6	Παράγοντας βελτίωσης των ιδιοτήτων μόνωσης της	
R5	ХАР	μεμβράνης(Barrier Improvement Factor – BIF) ΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΝ ΦΥΛΛΙΛΙΟΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ	45 ton
D 5.	ΣΥΝ	ΤΕΛΕΣΤΗ ΛΙΔΧΥΣΗΣ	1011
	2 11		
B	5.1.	Επίδραση του μήκους των φυλλιδίων	47
B	5.2.	Επίδραση του προσανατολισμού και της συγκέντρωσης των	,
		φυλλιδίων	48
B6.	ΟΡΙΣ	ΜΟΣ ΠΑΡΑΜΕΤΡΟΥ (χ)	49
B7.	ΥПΟ	ΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ – ΠΡΟΣΟΜΟΙΩΣΗ	51
<u>Г. В</u>	ΒΛΙΟ	ΓΡΑΦΙΚΗ ΑΝΑΣΚΟΠΗΣΗ ΚΑΙ ΣΧΟΛΙΑΣΜΟΣ	
Г1.	ΥΠA	ΑΡΧΟΥΣΕΣ ΘΕΩΡΗΤΙΚΕΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΕΣ	
	ME/	ΔΕΤΕΣ	53
<u>Δ. A</u>]	ΠΟΤΕ	ΛΕΣΜΑΤΑ	
Δ1.	ПАР	ΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ	
Δ	1.1.	Υπολογισμοί – Διάγραμμα ροής υπολογιστικών πειραμάτων	64
Δ	1.2.	Ορισμός παραμέτρων – Περιγραφή οριακών συνθηκών	67
Δ2.	ПАР	ΑΔΕΙΓΜΑΤΑ ΓΕΩΜΕΤΡΙΩΝ	71
Δ3.	ΕΠΙΔ	ΑΡΑΣΗ ΤΟΥ ΠΛΗΘΟΥΣ ΤΩΝ ΦΥΛΛΙΔΙΩΝ (Ν) ΣΤΟΝ	
	ΣΥΝ	ΤΕΛΕΣΤΗ BIF (BARRIER IMPROVEMENT FACTOR)	77
Δ4.	ANA	ΛΥΤΙΚΗ ΛΥΣΗ	79
Δ5.	ΑΣΥ	ΜΠΤΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΗΣ ΠΑΡΑΜΕΤΡΟΥ (χ)	85
Δ6.	ΣΥΜ	ΠΕΡΙΦΟΡΑ ΤΗΣ ΠΑΡΑΜΕΤΡΟΥ (χ) ΚΑΙ ΣΥΓΚΡΙΣΗ ΤΩΝ	J
	АПО	ΤΕΛΕΣΜΑΤΩΝ ΜΕ ΤΗΝ ΑΝΑΛΥΤΙΚΗ ΛΥΣΗ	87

Δ7.	. ΠΑΡΟΥΣΙΑΣΗ ΔΙΑΓΡΑΜΜΑΤΩΝ ΚΑΤΑΝΟΜΗΣ			
	ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΩΝ ΦΥΛΛΙΔΙΩΝ94			
Δ8.	ΜΕΤΑΒΟΛΗ ΤΗΣ ΣΥΓΚΕΝΤΡΩΣΗΣ ΣΤΟ ΕΣΩΤΕΡΙΚΟ ΤΗΣ			
	ΜΕΜΒΡΑΝΗΣ98			
<u>Ε. Σ</u>	ΥΜΠΕΡΑΣΜΑΤΑ			
E1.	ΓΕΝΙΚΑ100			
E2.	ΣΥΜΠΕΡΑΣΜΑΤΑ ΒΑΣΕΙ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΗΣ			
	ΠΑΡΟΥΣΑΣ ΕΡΓΑΣΙΑΣ101			
E3.	ΠΡΟΤΑΣΕΙΣ ΓΙΑ ΠΕΡΑΙΤΕΡΩ ΜΕΛΕΤΗ ΤΩΝ ΦΑΙΝΟΜΕΝΩΝ			
	ΜΕΤΑΦΟΡΑΣ ΜΕΣΩ ΣΥΝΘΕΤΩΝ ΜΕΜΒΡΑΝΩΝ103			
ΣΤ. ΠΡΟΣΑΡΤΗΜΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ				
ΣT1.	ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ104			
<u>Ζ. ΒΙΒΛΙΟΓΡΑΦΙΑ</u>				
Z.1- 4	ΔΙΑΔΙΚΤΥΑΚΟΙ ΤΟΠΟΙ (Δ)137			
(Σημειώνεται ότι οι διαδικτυακοί τόποι στο σύνολο του κειμένου της εργασίας αριθμούνται ως αναφορές με το νράμμα (Δ)).				
op 1 as any appropriate and an appropriate to Thattan (2).				

<u>Α. ΕΙΣΑΓΩΓΗ</u>

Συνηθίζεται η έκφραση «προηγμένη τεχνολογία» ή τεχνολογία αιχμής να αναφέρεται σε θέματα που αφορούν τον κλάδο της πληροφορικής και των ηλεκτρονικών υπολογιστών. Είναι όμως γεγονός, ότι η παραγωγή σχεδόν χημικά καθαρού απιονισμένου νερού, απαραίτητου για την παραγωγή πλακετών ηλεκτρονικών υπολογιστών και microchips, έγινε δυνατή μετά την εφαρμογή κατάλληλων συστημάτων αντίστροφης ώσμωσης κάνοντας χρήση νέων σύνθετων πολυμερικών μεμβρανών.

Πολυμερικές μεμβράνες από διάφορα υλικά με αξιόλογες ιδιότητες που εξυπηρετούν ένα ευρύτατο φάσμα εφαρμογών αναπτύχθηκαν και εμφανίσθηκαν από την βιομηχανία πολυμερών τις τελευταίες δεκαετίες. Πλησιάζοντας σε χαμηλότερες τάξεις μεγέθους, παρατηρούμε ότι οι νανοσύνθετες πολυμερικές μεμβράνες ανήκουν σε μια νέα κατηγορία σύνθετων υλικών που υπόσχονται πολλά ως υλικά με βελτιωμένες ιδιότητες για σχεδόν το σύνολο των βιομηχανικών εφαρμογών και κυρίως στην ιατρική, στη συσκευασία τροφίμων, στη βιομηχανικά παραγωγής ηλεκτρικής ενέργειας (π.χ φωτοβολταϊκά συστήματα και fuel cells), σε επικαλύψεις και διάφορους χημικούς διαχωρισμούς στοιχείων που μπορεί να απαιτούνται όπως η αφαλάτωση του νερού καθώς και πλήθος άλλων εφαρμογών. Σε πολλές εφαρμογές και εφόσον απαιτείται, είναι δυνατός ο έλεγχος της διαπερατότητας των μεμβρανών ή αλλιώς της εκλεκτικής τους διαπερατότητας.

Πολλές εφαρμογές συναντούμε στον τομέα της ιατρικής ή νανοϊατρικής (εφόσον αναφερόμαστε στην κλίμακα του νανομέτρου-nm (10⁻⁹ m)) και συγκεκριμένα στην εξωνεφρική κάθαρση όπου τα επιτέυγματα της νανοτεχνολογίας έχουν κάνει ήδη τη εμφάνιση τους στις πιο πρόσφατες ημιπερατές μεμβράνες των φίλτρων αιμοκάθαρσης. Έχουν εξελιχθεί υψηλής διαπερατότητας μεμβράνες από πολυσουλφόνη, στις οποίες η πορώδης υφή της εσωτερικής στοιβάδας ελέγχεται σε επίπεδο νανοκλίμακας. Έχουν επίσης αναπτυχθεί και δοκιμαστεί πόροι με εκλεκτική διαπερατότητα, γεγονός που καθιστά δυνατή την κατασκευή «έξυπνων» μεμβρανών και την ενσωμάτωση τους σε συνεχούς λειτουργίας, φορητό ή εμφυτεύσιμο σύστημα τεχνητού νεφρού [Δ2].

Σχήμα 1 Αναπαράσταση ημιπερατής μεμβράνης (με κίτρινο χρώμα) κατά τη διάρκεια της αιμοδιάλυσης. Κόκκινο = ερυθρά αιμοσφαίρια, μπλε = διαλυτικό υγρό [Δ1]

Νανοσύνθετες πολυμερικές μεμβράνες χρησιμοποιούνται επίσης σε εφαρμογές όπως η επεξεργασία αστικών αποβλήτων με στόχο την επαναχρησιμοποίηση τους, στη σύγχρονη τεχνολογία τροφίμων αυξάνοντας την ασφάλεια των καταναλωτών και διατηρώντας την ποιότητα των τροφίμων όπως φυσικά και σε πολλές άλλες εφαρμογές διαχωρισμού. Η χρήση αυτών των μεμβρανών βοηθά στην αντιμετώπιση πολλών σημαντικών προβλημάτων όπως η περιβαλλοντική ρύπανση και φυσικά η πολύ σημαντική έλλειψη πόσιμου νερού αφού αποτελεί γεγονός ότι το 97% του επίγειου νερού βρίσκεται στις θάλασσες και στους ωκεανούς με υψηλή περιεκτικότητα σε διαλελυμένα άλατα (περίπου 35.000 mg ανά λίτρο). Ο περιορισμός αυτός μπορεί να αναιρεθεί μόνο με την εφαρμογή διεργασιών διαχωρισμού με μεμβράνες, όπως η αντίστροφη ώσμωση και η αντίστροφη ηλεκτροδιάλυση, ή ακόμη και με μεθόδους θερμικής αφαλάτωσης [Δ1,Δ3].

Σχήμα 2 Αναπαράσταση αφαλάτωσης θαλασσινού νερού με αντίστροφη ώσμωση[Δ1]

Τα τελευταία χρόνια παρουσιάστηκε ένα αξιοσημείωτο ενδιαφέρον για σύνθετες μεμβράνες στις οποίες γίνεται χρήση ανόργανων ενισχυτικών μέσων σε μορφή πλάκας ή φυλλιδίου, για υψηλές τιμές του λόγου του μήκους του φυλλιδίου προς το πάχος του (aspect ratio). Αυτές οι περιπτώσεις ενίσχυσης περιλαμβάνουν φυλλίδια με διαστάσεις της τάξεως του μικρού (μm), από ανόργανα υλικά όπως η μίκα και πιο πρόσφατα σε διαστάσεις νανοκλίμακας, χρησιμοποιώντας ορυκτά αργίλου όπως ο Hectorite, Saponite και ο Montmorillonite [1].

Στο παρακάτω σχήμα 3 παρατηρούμε ένα σχετικό διάγραμμα μεταξύ του βαθμού διαπερατότητας των μεμβρανών και του μήκους των φύλλων για κάθε κατηγορία αργίλων. Όπως φαίνεται στο παρακάτω σχήμα 3, το μήκος των φύλλων αργίλου και ο βαθμός διαπερατότητας είναι αντιστρόφως ανάλογα μεγέθη αφού όσο αυξάνεται το μήκος των φύλλων ο βαθμός διαπερατότητας της μεμβράνης μειώνεται, και αντίστροφα. Αυτή η συμπεριφορά είναι αναμενόμενη εφόσον εμφανίζονται δυσκολίες στην τοποθέτησή των αργίλων με φύλλα μεγάλου μήκους στο εσωτερικό των μεμβρανών.

Σχήμα 3 Διάγραμμα βαθμού διαπερατότητας και μήκους αργίλων[2,3]

Έχει αποδειχθεί ότι τέτοιου είδους ενισχυτικά μέσα είναι πολύ αποτελεσματικά αφού έχουν τη δυνατότητα να αυξήσουν σημαντικά την διανυόμενη απόσταση που ακολουθούνε τα διαχεόμενα μόρια διαμέσου της μεμβράνης. Επιπλέον πολύ σημαντικό παράγοντα αποτελεί το γεγονός ότι η επίτευξη των επιθυμητών ιδιοτήτων μόνωσης, απαιτεί μικρά ποσοστά φόρτισης των ενισχυτικών μέσων και επομένως μικρό συνολικό κόστος.

Παρά το γεγονός ότι η ενίσχυση των μεμβρανών είναι μια γνωστή κατηγορία έρευνας, η εξάρτησή των ιδιοτήτων τους από παράγοντες μικροδομής όπως η κατανομή στο χώρο, η διασπορά μεγέθους και ο προσανατολισμός των ενισχυτικών μέσων στην πολυμερική μήτρα δεν είναι πολύ κατανοητά. Μέσα από ένα πλήθος ερευνών που πραγματοποιήθηκαν στον τομέα αυτό και προκειμένου να κατανοηθεί ακόμη περισσότερο το κομμάτι της εξάρτησης των φαινομένων μεταφοράς των σύνθετων μεμβρανών από παράγοντες της μικροδομής των ενισχυτικών μέσων προέκυψαν διάφορα αποτελέσματα τα οποία θα αναλύσουμε και θα σχολιάσουμε στη συνέχεια της παρούσας εργασίας.

Η μελέτη τέτοιων συστημάτων (μεγάλης γεωμετρικής πολυπλοκότητας) απαιτεί την αποδοχή ορισμένων υποθέσεων καθώς και ορισμένων παραδοχών προκειμένου να υλοποιηθεί. Παραδείγματος χάριν, για ένα διάλυμα που περιλαμβάνει φυλλίδια με τιμή aspect ratio (λόγος του μήκους προς το πάχος του φυλλιδίου ο οποίος στο εξής θα αναφέρεται με το γράμμα (α)) ίση με 100, θα πρέπει να έχει ένα ποσοστό φόρτισης μικρότερο του 0.01% έτσι ώστε να είναι αραιό και επομένως να μπορεί να προσεγγισθεί με αναλυτικές μεθόδους. Για ένα μη-αραιό διάλυμα η συγκέντρωση της διαχεόμενης ουσίας γύρω από κάθε φυλλίδιο διαταράσσεται λόγω της παρουσίας των γειτονικών φυλλιδίων, πράγμα το οποίο καθιστά την αριθμητική προσέγγισή τους μονόδρομο. Η συγκέντρωση και ποιο συγκεκριμένα το γινόμενο (αφ) (γινόμενο του λόγου aspect ratio επί του ποσοστού (%) φόρτισης των φυλλιδίων (φ)) είναι ένας σημαντικός παράγοντας που θα πρέπει να λαμβάνεται υπόψη κατά την ανάλυση τέτοιων συστημάτων [1].

Η παρούσα μεταπτυχιακή εργασία παρουσιάζει μια άμεση αριθμητική προσέγγιση για την πρόβλεψη των ιδιοτήτων μόνωσης και των φαινομένων μεταφοράς διαμέσου σύνθετων πολυμερικών μεμβρανών ενισχυμένων με φυλλίδια. Ειδικότερα μελετούμε την μεταβολή του συντελεστή διάχυσης τους, σαν συνάρτηση παραμέτρων όπως η συγκέντρωση, οι διαστάσεις και ο προσανατολισμός των φυλλιδίων. Οι αριθμητικοί υπολογισμοί διεξάγονται σε δύο διαστάσεις (2D) για τις σύνθετες μεμβράνες που περιλαμβάνουν προσανατολισμένα και τυχαίου προσανατολισμού φυλλίδια, χρησιμοποιώντας τη μέθοδο των συνοριακών στοιχείων σε ένα υπάρχον κώδικα προγραμματισμού FORTRAN.

Επιπλέον κάνοντας μια βιβλιογραφική ανασκόπηση και μελετώντας κάποια από τα θεωρητικά μοντέλα της υπάρχουσας βιβλιογραφίας τα οποία επιχειρούν να προβλέψουν τον συντελεστή διάχυσης των σύνθετων πολυμερικών μεμβρανών, επιχειρείται μια αξιολόγηση των αποτελεσμάτων καθώς και ένας σχολιασμός των προβλέψεών τους.

Β. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

В1. ПОЛУМЕРН

Τα πολυμερή είναι υλικά αποτελούμενα από μεγάλα μόρια (μακρομόρια) τα οποία δημιουργούνται από την επανάληψη δομικών μονάδων (μονομερή) τα οποία συνδέονται μεταξύ τους με ομοιοπολικούς χημικούς δεσμούς. Τα πολυμερή καλύπτουν ένα ευρύ φάσμα εφαρμογών και προέρχονται από οργανικές πρώτες ύλες, βασισμένες στο πετρέλαιο. Σε αυτή την κατηγορία των υλικών κατατάσσονται ο βακελίτης, το νεπρένιο, το νάιλον, το PVC, το πολυστυρένιο, το πολυακρυλονιτρίλιο κ.α.

Ετυμολογικά, η λέξη πολυμερή προέρχεται από τις ελληνικές λέξεις πολύ+μέρος, ο οποίος είναι ένας ορισμός που περιγράφει κατάλληλα τον τεράστιο αριθμό των μορίων που απαρτίζουν το μακρομόριο.

Τα πολυμερή παρασκευάζονται από τη συνένωση πολλών ίδιων μορίων, δηλαδή των μονομερών, με τις εξής διαδικασίες:

- Με την μέθοδο του πολυμερισμού
- Με την μέθοδο της πολυσυμπύκνωσης

<u>Πολυμερισμός</u>: Με τη μέθοδο αυτή παρασκευάζονται πολυμερή σώματα που έχουν την ίδια σύσταση με τα αρχικά μονομερή όπως π.χ ο πολυμερισμός του αιθυλενίου προς τον σχηματισμό του πολυαιθυλενίου:

$$\nu CH_2 = CH_2 \rightarrow (-CH_2 - CH_2 -)_{\nu}$$

Σε πολυμερισμό μπορούν να υποβληθούν ορισμένες κυκλικές ενώσεις. Κατά τον πολυμερισμό μπορούν να σχηματιστούν προϊόντα διπλάσιου, τριπλάσιου και γενικά πολλαπλάσιου μοριακού βάρους. Ο πολυμερισμός γίνεται με την επίδραση της θερμότητας (θερμικός) ή των ελεύθερων ριζών (ριζικός), ή των καταλυτών (καταλυτικός), ή της ακτινοβολίας (ραδιενεργός) κ.λπ. Σε πολυμερισμό υποβάλλεται το καθαρό μονομερές και τα διαλύματα ή τα γαλακτώματά του. Η ποιότητα και οι ιδιότητες των πολυμερών που παρασκευάζονται με πολυμερισμό επηρεάζονται από διαφόρους φυσικούς και χημικούς παράγοντες από τους οποίους σπουδαιότεροι είναι: οι ιδιότητες του μονομερούς, η

και η παρουσία προσμείξεων ή διεγερτών ή σταθεροποιητών. Ανάλογα με τις προσθήκες και τις συνθήκες διεργασίας παράγονται πολυμερή διαφορετικού μοριακού βάρους των οποίων οι ιδιότητες ποικίλλουν [4,5,Δ4].

Στις παρακάτω εικόνες φαίνεται σχηματικά η διαδικασία του πολυμερισμού:

Σχήμα 4 Πολυμερισμός 2-μέθυλο-προπανίου[4,6]

Στο σχήμα 4 βλέπουμε τον πολυμερισμό του μορίου του 2-μεθυλο-προπανίου προς τον σχηματισμό του πολυισοβουτυλενίου. Παρατηρούμε ότι ο διπλός δεσμός σπάει C=C και οι δύο ρίζες που προκύπτουν είναι για την ένωση των ανθράκων με απλό ομοιοπολικό δεσμό.

Πολυσυμπύκνωση: Με τη μέθοδο αυτή παράλληλα με το σχηματισμό μεγαλομοριακής ενώσεως αποχωρίζονται και μικρομοριακά προϊόντα, όπως το νερό, το υδροχλώριο, η αλκοόλη κ.λπ. Υπάρχουν δυο ειδών αντιδράσεις πολυσυμπύκνωσης. Η ομοπολυσυμπύκνωση, πού είναι διεργασία ανάμεσα σε ίδια μονομερή π.χ. αμινοξέα και η ετεροπολυσυμπύκνωση στην οποία παίρνουν μέρος συνήθως δύο διαφορετικά μονομερή π.χ. το δικαρβονικό οξύ και η διαμίνη. Οι κυριότεροι παράγοντες που επηρεάζουν την πορεία της πολυσυμπύκνωσης και καθορίζουν τις ιδιότητες των παραγόμενων προϊόντων είναι η θερμοκρασία της αντίδρασης, η δομή του αρχικού μονομερούς, τα είδη και οι ποσότητες των καταλυτών. Στη βιομηχανία με τη μέθοδο της πολυσυμπύκνωσης παρασκευάζονται συνθετικές ρητίνες, πολυαμίδια, πολυεστέρες κ.λπ. [8].

<u>Κατάταζη των πολυμερών:</u> Η κατάταξη των πολυμερών με κριτήριο την μηχανική τους απόκριση σε υψηλές θερμοκρασίες φαίνεται στο σχήμα 5.

Σχήμα 5 Κατάταξη πολυμερών βάσει των μηχανικών τους ιδιοτήτων σε υψηλές Θερμοκρασίες

Μία άλλη διάκριση των πολυμερών, μπορεί να γίνει με κριτήριο αν το μονομερές της μοριακής αλυσίδας είναι το ίδιο ή διαφορετικό. Έτσι διακρίνουμε τα homopolymer και τα copolymer (συμπολυμερή) ,αν έχουμε το ίδιο μονομερές ή διαφορετικό, αντίστοιχα. Στο παρακάτω σχήμα 6 διακρίνεται αυτή η κατάταξη.

Σχήμα 6 Κατάταξη πολυμερών βάσει των δομικών τους μονάδων (μονομερή)

Τα συμπολυμερή από την πλευρά τους, όπως είδαμε στο προηγούμενο σχήμα 6, διακρίνονται στις ομάδες random, graft και block ανάλογα με τον τρόπο εναλλαγής των δομικών στοιχείων επάνω στην πολυμερική αλυσίδα.

Στο παρακάτω σχήμα 7 φαίνονται οι διάφορες περιπτώσεις της δομής της μοριακής αλυσίδας για ένα συμπολυμερές.

Σχήμα 7 Δομή συμπολυμερών

<u>Β2. ΣΥΝΘΕΤΑ ΥΛΙΚΑ</u>

B2.1 Γενικά

Ως σύνθετο υλικό ορίζεται ο συνδυασμός δύο ή περισσοτέρων υλικών όπου το καθένα έχει διαφορετικές ιδιότητες. Σε αυτές τις περιπτώσεις λαμβάνουμε ένα εξαιρετικό συνδυασμό ιδιοτήτων με την ανάμειξη δύο ή περισσοτέρων υλικών. Αυτή η βελτιωμένη συμπεριφορά αναφέρεται σαν αρχή της συνδυασμένης δράσης.

Ο σύγχρονος όρος «σύνθετα υλικά» αναφέρεται σε υλικά που προκύπτουν τεχνητά και όχι φυσικά. Επιπλέον οι δύο φάσεις του σύνθετου υλικού πρέπει να είναι χημικά ανόμοιες και χωρισμένες με μια διακριτή διεπιφάνεια. Τα σύνθετα υλικά ταξινομούνται σε τρεις γενικές κατηγορίες (βλ. Σχήμα 8): (α) ενισχυμένα με σωματίδια, (β) ενισχυμένα με ίνες και (γ) δομικά σύνθετα. Κάθε κατηγορία έχει τουλάχιστον δύο υποδιαιρέσεις. Στην πρώτη περίπτωση η διεσπαρμένη φάση έχει ίδιες περίπου διαστάσεις σε όλες τις κατευθύνσεις. Στη δεύτερη περίπτωση, η διεσπαρμένη φάση έχει τη γεωμετρία φυλλιδίου (δηλ. μεγάλη αναλογία λόγου μήκους/πάχος). Στην τρίτη περίπτωση υπάρχει συνδυασμός σύνθετων και ομοιογενών υλικών. Με βάση αυτή την ταξινόμηση ακολουθεί η παρουσίαση των παρακάτω κατηγοριών των υλικών [10].

Σχήμα 8 Ταζινόμηση των διαφόρων τύπων σύνθετων υλικών [Δ6]

Τα περισσότερα σύνθετα υλικά αποτελούνται από δύο φάσεις: τη μήτρα, που είναι συνεχής και περιβάλλει την άλλη φάση, και τη διεσπαρμένη φάση. Η μήτρα των σύνθετων υλικών είναι ζωτικό κομμάτι της σύστασης αυτών. Ο ρόλος της μήτρας συνίσταται σε συγκράτηση των φυλλιδίων μεταξύ τους αλλά και άλλες σημαντικές ιδιότητες του συνθέτου και η επιλογή κατάλληλης μήτρας εξαρτάται από τη θερμοκρασία και το περιβάλλον χρήσης του υλικού [7]. Μία γενική οδηγία αναφορικά με τα θερμοκρασιακά όρια για κάθε ομάδα υλικών παρουσιάζεται στο παρακάτω σχήμα 9.

Σχήμα 9 Θερμοκρασιακά όρια χρήσης των υλικών [Δ5]

Η καλή συνάφεια μεταξύ της διεσπαρμένης φάσης και της μήτρας είναι πολύ σημαντική για την καλή λειτουργία του συνθέτου. Ως διεπιφάνεια ορίζεται η κοινή επιφάνεια μεταξύ των δύο συστατικών υλικών καθώς και η περιοχή στα σύνορα αυτής της επιφάνειας.

Από την άλλη πλευρά, η ενισχυτική φάση είναι η φάση που προσδίδει στο σύνθετο υλικό τις βελτιωμένες ιδιότητές του συγκριτικά με τις ιδιότητες της μήτρας. Όμως πέρα από την δομή και την επιφανειακή μορφολογία των σύνθετων υλικών με ενισχυτικά μέσα, υπάρχουν και οι μικροσκοπικοί παράγοντες που αφορούν τα ενισχυτικά αυτά μέσα και που επηρεάζουν τις τελικές ιδιότητες των συνθέτων όπως είναι η συγκέντρωση, το μέγεθος, το σχήμα, η κατανομή/ευθυγράμμιση, ο προσανατολισμός καθώς και το μήκος τους.

Σχήμα 10 Διάφορα γεωμετρικά χαρακτηριστικά που επηρεάζουν τις ιδιότητες σύνθετων υλικών: (α) συγκέντρωση, (β) μέγεθος, (γ) σχήμα, (δ) κατανομή, (ε) προσανατολισμός [Δ6]

Οι ιδιότητες του σύνθετου υλικού είναι συνάρτηση των ιδιοτήτων των δύο φάσεων, των σχετικών τους ποσοστών αναλογίας και της γεωμετρίας της διεσπαρμένης φάσης. Η τελευταία σημαίνει το σχήμα και το μέγεθος των διεσπαρμένων σωματιδίων, την κατανομή τους, και τον προσανατολισμό τους. Τα χαρακτηριστικά αυτά φαίνονται στο παραπάνω Σχήμα 10.

Στην παρούσα εργασία όπως έχει ήδη προαναφερθεί θα επικεντρωθούμε στην επιρροή που ασκεί ο προσανατολισμός των φυλλιδίων σε φαινόμενα μεταφοράς μάζας μέσω των πολυμερικών μεμβρανών και συγκεκριμένα στον συντελεστή διάχυσης.

Β2.2 Σύνθετα Πολυμερή

Τον όρο σύνθετα πολυμερή τον χρησιμοποιούμε για να περιγράψουμε τα πολυμερή που είναι ενισχυμένα με σωματίδια τα οποία συναντώνται σε διάφορες μορφές, όπως είναι τα φυλλίδια, τα σφαιρικά σωματίδια, οι ίνες και τα flakes. Στην παρούσα εργασία θα ασχοληθούμε με ενίσχυση τύπου φυλλιδίων σε πολυμερικές μεμβράνες. Ο προσανατολισμός της ενίσχυσης μπορεί να είναι συγκεκριμένος ή τυχαίος, οπότε και έχουμε τα aligned ή random συστήματα, αντίστοιχα. Στο σχήμα 11 φαίνονται οι διάφορες περιπτώσεις σύνθετων πολυμερών [9].

Σχήμα 11-β Flakes ορισμένου προσανατολισμού

Σχήμα 11-γ Ίνες μικρού μήκους και τυχαίου προσανατολισμού Σχήμα 11-δ Ίνες μεγάλου μήκους και συγκεκριμένου προσανατολισμού Σχήμα 11-ε Σφαιρικά σωματίδια

Στα προηγμένα σύνθετα υλικά, τα ενισχυτικά μέσα είναι κατασκευασμένα είτε από ανόργανα υλικά (γυαλί, άνθρακας, μέταλλα, κεραμικά) είτε από οργανικά υλικά (πολυμερή).

Στον παρακάτω πίνακα 1 παρουσιάζονται ορισμένες εφαρμογές αυτών των υλικών για διάφορους τομείς της βιομηχανίας παραγωγής προϊόντων.

BIOMHXANIA	ΕΦΑΡΜΟΓΗ
Αεροσκαφών	Πτερύγια, σκελετός αεροσκάφους, σύστημα
	προσγείωσης, πτερύγια ελικοπτέρων.
Αυτοκινήτων	Τμήματα σκελετού, προφυλακτήρες, πλαίσιο
	οργάνων, άξονες.
Ναυπηγική	Σκαριά πλοίων, κατάστρωμα, κατάρτια.
Χημική	Σωλήνες, δεξαμενές, δοχεία υψηλής πίεσης.
Οικιακού εξοπλισμού	Προκατασκευασμένες οικίες, καρέκλες,
	τραπέζια, σκάλες κτλ.
Ηλεκτρική	Διακόπτες, μονωτικά υλικά.
Αθλητικών ειδών	Καλάμια ψαρέματος, μπαστούνια golf,
	πισίνες, skis, βάρκες, ρακέτες τένις κτλ.

Η συνολική παγκόσμια αγορά των συνθέτων υλικών υπολογίστηκε το 1998 γύρω στα 25x10⁹ δολάρια και εκτιμάται ότι αυξάνεται περίπου κατά 5% κάθε χρόνο. Στην αγορά των συνθέτων δεσπόζουν πολυεστερικές μήτρες ενισχυμένες με γυαλί αλλά και θερμοσκληρυνόμενες ρητίνες που καταλαμβάνουν συνολικά το 90% της συνολικής παραγωγής [Δ21].

Οι τιμές που εμφανίζονται στο σχήμα 12 αντιπροσωπεύουν το σύνολο της παραγωγής και αφορούν τις Ηνωμένες Πολιτείες. Στο αντίστοιχο διάγραμμα που αντιπροσωπεύει την Ευρώπη, ο τομέας των μεταφορών συγκεντρώνει το μεγαλύτερο μέρος των εφαρμογών με σύνθετα υλικά περιλαμβάνοντας περίπου το 1/3 του συνόλου [50].

Σχήμα 12 Κατανομή των διαφόρων εφαρμογών των πολυμερικών συνθέτων υλικών στις ΗΠΑ [50]

B2.3 Νανοσύνθετα Πολυμερή

B2.3.1 Γενικά

Όπως έχει ήδη αναφερθεί σε αντίθεση με τα συμβατικά σύνθετα πολυμερούς μήτρας τα νανοσύνθετα ορίζονται ως τα σύνθετα υλικά στα οποία η διεσπαρμένη φάση, αποτελείται από εγκλείσματα με μέγεθος στην τάξη της νανοκλίμακας [10].

Η ανάπτυξη των νανοσύνθετων έχει ωθήσει εντυπωσιακά τη βελτίωση και τη διαφοροποίηση των ιδιοτήτων των συμβατικών πολυμερών, χωρίς αυτό να προϋποθέτει την αλλαγή της σύστασης και της διαδικασίας πολυμερισμού. Λόγω της εξαιρετικά μεγάλης ειδικής επιφάνειας των νανοεγκλεισμάτων η προσθήκη μόνο ενός μικρού ποσοστού τους είναι αρκετή για να προκληθούν σημαντικές αλλαγές στις φυσικές, χημικές, μηχανικές, ηλεκτρικές και των ιδιοτήτων μόνωσης του πολυμερούς, ιδίως στις περιπτώσεις όπου απαιτείται η χρήση εγκλεισμάτων με πολύ μεγάλο λόγο μήκους/διαμέτρου (α). Τέτοιες αλλαγές είναι συχνά επιθυμητές καθώς εξυπηρετούν πολλούς και ποικίλους σκοπούς [12].

B2.3.2 Εφαρμογές Νανοσύνθετων πολυμερικών υλικών

Η τεχνολογία των νανοσύνθετων η οποία προέρχεται από το πεδίο της μηχανικής των πλαστικών, έχει επεκτείνει τις εφαρμογές της σε ένα μεγάλο αριθμό βιομηχανικών και μη εφαρμογών προσφέροντας έτσι πολύ σημαντικές λύσεις και βοηθώντας στην επίλυση

χρόνιων και ουσιαστικών προβλημάτων, τα οποία αποτελούσαν εμπόδιο για την ανάπτυξη της τεχνολογίας.

Σχήμα 13 Πεδία εφαρμογών προηγμένων νανοσύνθετων υλικών [Δ7]

Τα νανοσύνθετα πολυμερικά υλικά βρίσκουν πληθώρα εφαρμογών στον τομέα της βιομηχανίας. Ορισμένα παραδείγματα εφαρμογών, είναι:

Εύκαμπτα Φωτοβολταϊκά Συστήματα

Ανάλογα με την τεχνολογία κατασκευής τους, τα φωτοβολταϊκά μπορούν να διακριθούν σε δύο διαφορετικές ομάδες. Η πρώτη ομάδα, η οποία χρησιμοποιείται συνήθως σε οικιακές εφαρμογές, χρησιμοποιεί την τεχνολογία "thin film", ενώ η δεύτερη ομάδα χρησιμοποιεί την τεχνολογία των λεπτών μεμβρανών [13]. Η τεχνολογία αυτή βρίσκεται ακόμη σε φάση ανάπτυξης, αφού με διάφορες μεθόδους επεξεργασίας και χρήση διαφορετικών υλικών αναμένεται αύξηση της απόδοσης, σταθεροποίηση των χαρακτηριστικών τους και αύξηση της διείσδυσης στην αγορά [Δ8].

Σχήμα 14 Εύκαμπτα ηλιακά panels αυζημένης ανθεκτικότητας [Δ9,Δ17]

Παραγωγή Πολυαμιδίων (Nylon) με Νανοσωλήνες άνθρακα (CNTs)

Ο εγκλεισμός αγώγιμων νανοσωματιδίων σε ένα πολυμερές μπορεί να χρησιμοποιηθεί, εκτός από τη βελτίωση των μηχανικών ιδιοτήτων και της θερμικής σταθερότητας του πολυμερούς, για να αξιοποιηθεί η αγωγιμότητα των εγκλεισμάτων σε διάφορες εφαρμογές. Οι ιδιότητες αυτών των υλικών εξαρτώνται έντονα από τη χωρική κατανομή των εγκλεισμάτων στη μήτρα [14].

Πιο συγκεκριμένα τα σύνθετα πολυμερικά υλικά με νανοσωλήνες άνθρακα (CNTs) παρουσιάζουν αυξημένο επιστημονικό και εμπορικό ενδιαφέρον, όπως παρατηρείται και από την πλούσια βιβλιογραφία. Έχει ερευνηθεί η σχέση μεταξύ των συνθηκών παρασκευής ενισχυμένων πολυμερών με νανοσωλήνες άνθρακα πολλαπλού τοιχώματος (MWCNTs) και των ιδιοτήτων τους, μηχανικών και ηλεκτρικών, καθώς επίσης και η συμπεριφορά κατά τον εφελκυσμό νανοσύνθετων υλικών με ευθυγραμμισμένους ή μη νανοσωλήνες. Ανάλογο ενδιαφέρον έχει παρουσιάσει η προσκόλληση νανοσωλήνων άνθρακα τόσο στο εσωτερικό όσο και στις επιφάνειες πολυμερικών υλικών. Η ομογενής διασπορά MWCNTs, για παράδειγμα, σε μήτρες πολυστυρενίου, με τη μέθοδο απλής διάλυσης - εξάτμισης, χωρίς να καταστρέφονται οι νανοσωλήνες, προκαλεί αύξηση του μέτρου ελαστικότητας και του σημείου θραύσης. Αντίστοιχα, έχει μελετηθεί η αποτελεσματική διασπορά CNTs σε πολυμερικές μήτρες πολυπροπυλενίου και πολυστυρενίου, με σκοπό την παραγωγή καινούριων υλικών υψηλής προστιθέμενης αξίας [16].

Νέα σύνθετα υλικά πολυανιλίκης και νανοσωλήνων άνθρακα έχουν παραχθεί με in situ πολυμερισμό. Κατά τη χρήση MWCNTs δεν παρατηρήθηκε αλλαγή στη δομή, αλλά αυξήθηκαν οι ηλεκτρικές ιδιότητες του τελικού υλικού. Χρησιμοποιώντας SWCNTs ευνοήθηκε ο σχηματισμός ανομοιογενών μιγμάτων. Νανοσωλήνες άνθρακα μονού και πολλαπλού τοιχώματος έχουν επίσης μελετηθεί ως ενισχυτικά με συμπολυμερές

πολυστυρενίου καθώς και με την πολυβινυλική αλκοόλη (PVA) μέσω αντιδράσεων εστεροποίησης. Σε άλλη μελέτη, MWCNTs ενσωματώθηκαν σε μήτρα πολυμερούς με in situ πολυμερισμό, ώστε να βελτιώσουν τη μεταφορά μηχανικού φορτίου μέσω χημικών δεσμών, οι οποίοι εντοπίστηκαν με υπέρυθρη και Raman φασματοσκοπία. Επιπλέον μέσω φασματοσκοπίας Raman έχει καθοριστεί ο βαθμός προσανατολισμού και πόλωσης των νανοσωλήνων [15].

Τα τελευταία χρόνια μεγάλο ενδιαφέρον προκάλεσε η ανάμιξη πολυαμιδίου-6 με μικρό ποσοστό MWCNTs, οι οποίοι είχαν προκατεργαστεί με πυκνό νιτρικό οξύ, για τη δημιουργία καρβοξυλομάδων και υδροξυλομάδων στην επιφάνεια των νανοσωλήνων. Οι μηχανικές δοκιμές έδειξαν ότι το μέτρο ελαστικότητας, η αντοχή σε εφελκυσμό και η σκληρότητα είχαν αυξηθεί θεαματικά σε σύγκριση με το καθαρό πολυαμίδιο [17].

Σχήμα 15 Μικροδομή νανοσωλήνων άνθρακα με αναδίπλωση πολυμερικών αλυσίδων [Δ11]

Παραγωγή Πολυαμιδίων (Nylon) με Νανοσωλήνες άνθρακα (CNTs) ανεπτυγμένους στην επιφάνεια φυλλόμορφων αργίλων

Μετά την πλούσια βιβλιογραφία και την ενασχόληση πολλών ερευνητικών ομάδων γύρω από την ενίσχυση των πολυμερών με νανοσωλήνες άνθρακα και με φυλλόμορφους αργίλους, η οποία επέφερε πολύ θετικά αποτελέσματα, μια νέα μέθοδος σύνθεσης νανοσωλήνων, ανεπτυγμένους στην επιφάνεια αργίλων έδειξε ότι θα μπορούσε να αποφέρει αρκετά καλύτερα αποτελέσματα αφού η χρήση αυτού του υλικού ως ενισχυτικό πολυμερών δρα αθροιστικά (άργιλο-νανοσωλήνες). Η σύνθεση αυτών των υλικών γίνεται με τη μέθοδο της χημικής εναπόθεσης ατμών χρησιμοποιώντας σαν καταλύτη οξείδια μετάλλων, Ni κ.α. [17]. Αναλυτικότερα, νέα σύνθετα υλικά νανοσωλήνων άνθρακα-αργίλου συντέθηκαν με καταλυτική εναπόθεση ακετυλενίου πάνω σε κέντρα σιδήρου-καταλύτη που εναποτέθηκαν στην επιφάνεια ενός είδους αργίλου, του μοντμοριλλονίτη, με ιοντοανταλλαγή δημιουργώντας έτσι ένα νέο νανοσύνθετο υλικό με βελτιωμένες ιδιότητες [17].

Σχήμα 16 Σχηματική απεικόνιση του νανοσύνθετου Clay-CNTs [17]

Υλικά συσκευασίας – συσκευασία τροφίμων

Τα σύγχρονα σύνθετα πολυμερή χρησιμοποιούνται πάνω από 50 χρόνια για τις καλές ιδιότητες μόνωσης που παρουσιάζουν. Η συντριπτική πλειοψηφία των εφαρμογών αφορούν την συσκευασία τροφίμων. Υπάρχει σε εξέλιξη μεγάλη έρευνα σε βιομηχανικό αλλά και σε εργαστηριακό επίπεδο ώστε να προσφέρει βελτιωμένα πολυμερή και μεθόδους παρασκευής τους.

Με την πάροδο των ετών όμως, η εφαρμογή της νανοτεχνολογίας στη συσκευασία τροφίμων αποτέλεσε και αποτελεί μια ακόμη σημαντική εξέλιξη που έχει ως κύριο σκοπό τον έλεγχο και την προστασία των τροφίμων. Η "ηλεκτρονική γλώσσα" όπως ονομάζεται, είναι ένας νέος τύπος συσκευασίας με ενσωματωμένους ειδικούς νανοαισθητήρες οι οποίοι ανιχνεύουν τους παθογόνους μικροοργανισμούς ή τις χημικές ουσίες που παράγονται καθώς το τρόφιμο αλλοιώνεται με αποτέλεσμα να παράγεται φθορισμός, χρώμα ή ακόμα να απελευθερώνονται συντηρητικές ουσίες (release on command). Οι μεγάλες βιομηχανίες τροφίμων (Nestle, Kraft, Heinz, Unilever) ήδη έχουν αρχίσει την ενημέρωση του κοινού για τις έξυπνες συσκευασίες (smart packaging), τα κατ' απαίτηση συντηρητικά (on demand preservatives) και τα διαδραστικά τρόφιμα (interactive food) με τα οποία οι καταναλωτές θα έχουν τη δυνατότητα να τα τροποποιούν ανάλογα με τις ανάγκες τους ή τις γευστικές τους προτιμήσεις [Δ 12].

Χρησιμοποιούνται ακόμη νανοαισθητήρες για τον έλεγχο θερμοκρασίας, υγρασίας, και χρόνου αλλά και φυλλίδια στις διαστάσεις του νανομέτρου (nm) ως υλικά βελτιωμένων μονωτικών ιδιοτήτων με σκοπό την παρεμπόδιση της καταστροφής και απορρόφησης του οξυγόνου, νανοστιβάδες ελαφρότερες, και θερμοανθεκτικές, ηλεκτροχημικοί νανοαισθητήρες για την ανίχνευση του αιθυλενίου καθώς και αντιμικροβιακές και αντιμυκητιακές επικαλύψεις επιφανειών με νανοσωματίδια από ασήμι, μαγνήσιο και ψευδάργυρο.

Στην παρακάτω εικόνα παρατηρούμε ορισμένες συσκευασίες τροφίμων, καθώς και την προσπάθεια της εταιρείας «nanonocor» να αντικαταστήσει την κλασσική γυάλινη φιάλη μπύρας με πλαστική φιάλη υψηλών μονωτικών ιδιοτήτων χωρίς όμως την αλλαγή του χρωματισμού της για κυρίως εμπορικούς λόγους.

Σχήμα 17 Υλικά συσκευασίας τροφίμων και φιαλών προσφέροντας αυζημένη προστασία και συντήρηση [Δ13,Δ14,Δ15]

• Παραγωγή ηλεκτρικής Ενέργειας - Κυψέλες καυσίμου (Fuel Cells)

Οι κυψέλες καυσίμου ορίζονται απλά ως συσκευές συνεχούς μετατροπής της χημικής ενέργειας ενός καυσίμου και ενός οξειδωτικού σε ηλεκτρική με ταυτόχρονη παραγωγή νερού και στις οποίες, ανάμεσα από τα δύο ηλεκτρόδια συναντούμε πολλές φορές, ανάλογα το είδος της κυψέλης καυσίμου, σύνθετες ή μη πολυμερικές μεμβράνες οι οποίες έχουν τον ρόλο του στερεού ηλεκτρολύτη. Ο κύριος λόγος για τον οποίο παρασκευάζονται νανοσύνθετες μεμβράνες με ανόργανα εγκλείσματα (άργιλοι) είναι η αξιοποίηση της φυλλοειδής μορφολογίας των ενισχυτικών αυτών μέσων με σκοπό να αυξηθεί η απόσταση που πρέπει να διανύσουν τα διαχεόμενα είδη διαμέσου του πολυμερούς στερεού ηλεκτρολύτη [18].

Στην παρακάτω εικόνα απεικονίζεται ένα κελί καυσίμου πολυμερικής μεμβράνης και η λειτουργία τού.

Σχήμα 18 Κελί καυσίμου πολυμερικής μεμβράνης [18]

Στο πλαίσιο της σύγκρισης των νανοσύνθετων πολυμερών με τα μικροσύνθετα τα πρώτα διαφοροποιούνται έναντι των δεύτερων σε τρεις βασικούς παράγοντες σύμφωνα με τους οποίους τα νανοσύνθετα ξεχωρίζουν, πρώτον για τις μικρές περιεκτικότητές τους σε νανοεγκλείσματα, δεύτερον για την τάξη μεγέθους των εγκλεισμάτων τους που κυμαίνεται στο εύρος της νανοκλίμακας και τρίτον για την εξαιρετικά μεγάλη ειδική επιφάνειά τους σε σχέση πάντα με τα μικροσύνθετα πολυμερή [19].

Για τα νανοσύνθετα υλικά τα οποία περιέχουν ως ενισχυτικό μέσο τον άργιλο, ανάλογα με το πόσο ισχυρές είναι οι διεπιφανειακές αλληλεπιδράσεις μεταξύ της μήτρας του πολυμερούς και των φύλλων αργίλου, διακρίνονται τρεις διαφορετικοί τύποι νανοσύνθετων υλικών, όπως φαίνεται στο Σχήμα 19, ενώ οι φυσικές ιδιότητες του κάθε συστήματος διαφέρουν σημαντικά [54].

Στο παρακάτω σχήμα 19 διακρίνουμε τους εξής τύπους νανοσύνθετων:

 Φάση διαχωρισμού (Phase-separated): το πολυμερές δεν είναι ικανό να διεισδύσει ανάμεσα στα φύλλα αργίλου, και οι ιδιότητες που παραμένουν στην ίδια κατηγορία με τα σύνθετα υλικά της τάξεως των μικρών.

- Παρένθετα (Intercalated): μια ενιαία πολυμερική αλυσίδα μπορεί να διεισδύσει μεταξύ των φύλλων αργίλου δημιουργώντας έτσι μια καλά οργανωμένη πολυστρωματική μορφολογία η οποία περιέχει εναλλασσόμενα στρώματα πολυμερούς και ανόργανων φύλλων. Οι ιδιότητες αυτών των νανοσύνθετων συνήθως ταιρίαζουν με εκείνες των κεραμικών υλικών.
- Πλήρη Διασπορά (Exfoliated): τα στρώματα των φύλλων αργίλου είναι πλήρως και ομοιόμορφα διεσπαρμένα στο εσωτερικό της μήτρας του πολυμερούς, δημιουργώντας έτσι την δομή που παρατηρείται στο παρακάτω σχήμα για αυτή την κατηγορία νανοσύνθετων υλικών [19].

Σχήμα 19 Μορφολογίες νανοσύνθετων πολυμερών διαφορετικών τύπων [19]

Όλες αυτές οι διαφορές στα χαρακτηριστικά των δύο παραπάνω κατηγοριών των σύνθετων έχουν σημαντική επίδραση στις τελικές ιδιότητες του πολυμερούς. Αναφορικά με τα παραπάνω τα κλασσικά σύνθετα συνήθως περιέχουν μεγάλες ποσότητες εγκλεισμάτων για παράδειγμα μεγαλύτερες του 20% κ.β. με αποτέλεσμα το υλικό που προκύπτει να είναι στην ουσία ένα μίγμα πολυμερούς με εγκλείσματα, το οποίο παρουσιάζει τελείως διαφορετικές ιδιότητες από αυτές του αρχικού πολυμερούς. Από την άλλη στην περίπτωση των νανοσύνθετων πολυμερών η ικανοποιητική περιεκτικότητα εγκλεισμάτων είναι μικρότερη από το 1% κ.β. έχοντας ως συνέπεια κάποιες από τις ενδογενείς ιδιότητες του πολυμερούς της μήτρα, όπως είναι η πυκνότητα, να παραμένουν ανεπηρέαστες ακόμα και μετά από την ανάμιξη των δύο φάσεων. Όσον αφορά το μέγεθος των εγκλεισμάτων των δύο τύπων συνθέτων η διαφορά τους, που εντοπίζεται στο μήκος κατά τρεις τάξεις μεγέθους, μπορεί να προκαλέσει πολύ μεγαλύτερη αλλοίωση των ιδιοτήτων του τελικού προϊόντος. Επίσης το μικρότερο μέγεθος των εγκλεισμάτων των νανοσυνθέτων έναντι των εγκλεισμάτων των μικροσυνθέτων έχει ως αποτέλεσμα πολύ μικρότερες αποστάσεις μεταξύ των γειτονικών εγκλεισμάτων, που σε περίπτωση εξαιρετικά καλής ομογενούς διασποράς τους στη μήτρα κυμαίνεται στην κλίμακα του νανομέτρου.

Τα νανοεγκλείσματα εκτός των άλλων χαρακτηρίζονται από μεγάλη ειδική επιφάνεια (large surface area), που συνδέεται άμεσα με το πολύ μικρό τους μέγεθος καθώς τα δύο αυτά μεγέθη είναι αντιστρόφως ανάλογα. Η τρεις τάξεις μεγέθους μεγαλύτερης ειδικής επιφάνειας, που παρουσιάζουν τα νανοεγκλείσματα έναντι των μικροεγκλεισμάτων ενισχύει τις αλληλεπιδράσεις μήτρας/εγκλεισμάτων επιτυγχάνοντας έτσι καλύτερη πρόσφυση και ως εκ τούτου μεγαλύτερη σταθερότητα στο μίγμα. Για παράδειγμα, σε αντίθεση με πολλά «κλασικά» εγκλείσματα κάποια από τα νανοεγκλείσματα συντίθενται από νανοπλακίδια πολύ-ηλεκτρολύτη, τα οποία αποσυντίθενται και διαχέονται κατά τη διαδικασία της σύνθεσης, επηρεάζοντας τη διηλεκτρική συμπεριφορά του παραγόμενου νανοσύνθετου. Το χαρακτηριστικό αυτό των νανοσύνθετων έχει δημιουργήσει νέες ευκαιρίες για τον σχεδιασμό ενός ολοκληρωτικά διαφορετικού «κόσμου» όσον αφορά στον τομέα των διηλεκτρικών [12].

Β2.3.3 Παγκόσμια αγορά Νανοσύνθετων υλικών - Οικονομικά Στοιχεία

Η ευελιξία που παρουσιάζουν τα νανοσύνθετα υλικά προέρχεται από τις φυσικές και χημικές αλληλεπιδράσεις, που συμβαίνουν μεταξύ μήτρας και εγκλεισμάτων λόγω, του ότι το μέγεθος των εγκλεισμάτων και οι μεταξύ τους αποστάσεις κυμαίνονται στην κλίμακα του νανομέτρου, με αποτέλεσμα την εμφάνιση ενδιάμεσων ή μεσοφασικών ιδιοτήτων, οι οποίες δεν ανήκουν ούτε στο ατομικό αλλά ούτε και στο μακροσκοπικό επίπεδο. Το ενδεχόμενο τα υλικά αυτά να είναι προικισμένα με απροσδόκητα άριστες ιδιότητες έχει προκαλέσει το ενδιαφέρον μηχανικών και επιστημόνων, οι οποίοι τα κατατάσσουν σε μια εμπορική κατηγορία τρισεκατομμυρίων δολαρίων στην παγκόσμια αγορά ακολουθώντας μια συνεχώς αυξανόμενη πορεία για τα επόμενα έτη [12]. Αυτή η συνεχώς αυξανόμενη πορεία των νανοσύνθετων υλικών στην παγκόσμια αγορά περιγράφεται από το παρακάτω διάγραμμα (σχήμα 20).

Nanocomposite Market

Σχήμα 20 Πορεία επενδύσεων της παγκόσμιας αγοράς νανοσύνθετων υλικών[Δ16]

Ο αριθμός των νέων εφαρμογών της νανοτεχνολογίας φαντάζει απεριόριστος. Η βιομηχανία της νανοτεχνολογίας είναι ήδη στο δρόμο για να προσφέρει τα αποτελέσματά της από τα εργαστήρια στην αγορά ενισχύοντας παράλληλα τη δυναμική της. Οι εφαρμογές της υπολογίζεται ότι θα αντιπροσωπεύσουν ένα αρκετά μεγάλο κομμάτι της βιομηχανίας μέχρι το 2015 και μάλιστα κατανεμημένες ανάλογα την κατηγορία εφαρμογών σύμφωνα με το παρακάτω διάγραμμα κατανομής:

Σχήμα 21 Κατανομή επενδύσεων υλικών νανοτεχνολογίας ανά κατηγορία εφαρμογών [Δ17]

Πρόσφατες επιστημονικές ανακαλύψεις και τεχνικές καινοτομίες στον τομέα των υλικών προάγουν τα νανοσύνθετα από την κατηγορία των «κλασσικών» πλαστικών ειδών σε υλικά «υψηλής» τεχνολογίας ("hi-tech") με εξαιρετικές ιδιότητες [12]. Ειδικότερα δε η είτε πειραματική, είτε υπολογιστική μελέτη νέων νανοσύνθετων πολυμερών μεμβρανών, αποτελεί ένα σημαντικό πεδίο έρευνας της σύγχρονης τεχνολογίας, εφόσον αυτά χρησιμοποιούνται σε πλήθος εφαρμογών και οι απαιτούμενες ιδιότητες, ποικίλλουν για κάθε μια απ' αυτές τις εφαρμογές.

Β3. ΤΕΧΝΟΛΟΓΙΑ ΜΕΜΒΡΑΝΩΝ

Η μεμβράνη είναι μια διαπερατή ή ημιπερατή φάση, η οποία συχνά αποτελείται από ένα λεπτό πολυμερές ή άλλης φύσης υλικό, που περιορίζει την κίνηση ορισμένων συστατικών. Σύμφωνα με τον κατά IUPAC ορισμό πρόκειται για μια δομή, με πολύ μεγάλες πλευρικές διαστάσεις σε σχέση με το πάχος της και μέσω της οποίας, υπό την επίδραση διαφόρων κινητήριων δυνάμεων, μπορεί να λάβει χώρα το φαινόμενο μεταφοράς μάζας [21].

Σχήμα 22 Αναπαράσταση μακροσκοπικού φαινομένου της μεταφοράς ενός διαχεόμενου μορίου μέσω μίας πολυμερικής μεμβράνης

Ένας πιο γενικός ορισμός είναι ο εξής: «Μεμβράνη καλείται μια φάση ή ομάδα φάσεων κειμένη μεταξύ δυο διαφορετικών φάσεων, η οποία είναι φυσικώς ή/και χημικώς διακριτή από αυτές και η οποία, λόγω των ιδιοτήτων της και της εφαρμοζόμενης δύναμης πεδίου, μπορεί να ελέγξει τη μεταφορά μάζας μεταξύ αυτών των δυο φάσεων» [22].

Πιο πρακτικά λοιπόν, είναι ένα υλικό διαμορφωμένο σαν λεπτό στρώμα ή στοιβάδα, που παρεμβάλλεται ανάμεσα σε δύο ρευστές φάσεις (μίγματα ή διαλύματα) και το οποίο είναι διαπερατό από τα συστατικά αυτών των δύο φάσεων. Όμως, επειδή κάθε συστατικό έχει διαφορετική δυνατότητα διέλευσης μέσω της μεμβράνης, μπορούμε να επιβάλλουμε, με τη βοήθεια κατάλληλης κινητήριας δύναμης (π.χ. πίεση, χημικό δυναμικό, συγκέντρωση) τη μετακίνηση υλικού από τη μία φάση προς την άλλη και σαν αποτέλεσμα να έχουμε διαφορετικές συστάσεις στην πλευρά προς την οποία γίνεται η κίνηση σε σχέση με την άλλη πλευρά. Δηλαδή, αυτή η επιπρόσθετη φάση συνιστά έναν φραγμό-μόνωση

Η μεμβράνη ελέγχει τους σχετικούς ρυθμούς μεταφοράς των συστατικών μέσω αυτής και χωρίζει την τροφοδοσία σε ένα ρεύμα εμπλουτισμένο σε συγκεκριμένα συστατικά και σε ένα ρεύμα χαμηλής συγκέντρωσης σε αυτά. Γι' αυτό, οι μεμβράνες χαρακτηρίζονται από μια εκλεκτικότητα ως προς τη διέλευση των μορίων και μπορούν να χρησιμεύσουν σε διεργασίες διαχωρισμού μιγμάτων ή διαλυμάτων στα συστατικά τους. Η κινητήρια δύναμη για διαχωρισμό αερίων και ατμών είναι η διαφορά μερικής πίεσης διαμέσου της μεμβράνης, ενώ για υγρά είναι η διαφορά συγκέντρωσης.

Οι μεμβράνες, ανάλογα με το υλικό από το οποίο είναι φτιαγμένες, διακρίνονται σε ανόργανες και πολυμερικές. Οι πρώτες συνήθως αποτελούνται από κεραμικά υλικά ή ζεόλιθους (στερεά σώματα με πόρους πολύ συγκεκριμένων διαστάσεων που συχνά αποκαλούνται «μοριακά κόσκινα»), αν και δε λείπουν και περιπτώσεις κατάλληλα παρασκευασμένων μεταλλικών μεμβρανών. Οι ανόργανες μεμβράνες είναι μικροπορώδεις, δηλαδή η εκλεκτικότητά τους οφείλεται στην ύπαρξη πόρων με πολύ μικρές διαστάσεις που επιτρέπουν τη διέλευση μόνο σε σωματίδια με μέγεθος κάτω από ορισμένες διαστάσεις (μικρομόρια, μακρομόρια, κολλοειδή σωμάτια, ανάλογα με το μέγεθος πόρων της κάθε μεμβράνης).

Ένα παράδειγμα πολυμερικών μεμβρανών είναι αυτό των μη-αγώγιμων πολυμερικών μεμβρανών. Ο Wang [23] και οι συνεργάτες του μελέτησαν τις ιδιότητες εκλεκτικής διαπερατότητας των μεμβρανών οξικής κυτταρίνης ως προς το μέγεθος των προς διάχυση μορίων. Οι μεμβράνες οξικής κυτταρίνης αποτίθενται στην επιφάνεια ηλεκτροδίων συνήθως με την τεχνική εναπόθεσης σταγόνας. Αρχικά το πορώδες της μεμβράνης επιτρέπει τη δίοδο μόνο σε πολύ μικρά μόρια, ενώ με ελεγχόμενη υδρόλυση του πολυμερούς σε διαλύματα βάσεων μπορεί να γίνει κατάλληλη διαμόρφωση του πορώδους, ώστε να επιτρέπεται η διέλευση και σε μεγαλύτερα μόρια [23].

Επίσης, οι διαστάσεις, το σχήμα, η ευκαμψία ή δυσκαμψία και η μάζα των μορίων που μπορούν να διέλθουν μέσα από τους πόρους επηρεάζουν και την ταχύτητα διέλευσης αντίστοιχου συστατικού μέσω της μεμβράνης. Οι ανόργανες μεμβράνες μπορούν να χρησιμοποιηθούν κυρίως στο διαχωρισμό αερίων μιγμάτων, και μάλιστα για συστατικά μικρού μοριακού βάρους, γιατί εκεί έχουμε μεγαλύτερους ρυθμούς διάχυσης αλλά και μεγαλύτερες διαφορές ως προς τη διαχυτότητα, πράγμα που καθιστά τη διεργασία πιο αποδοτική. Οι μεμβράνες αυτές πλεονεκτούν ως προς τη θερμική αντοχή και τη χημική σταθερότητα αλλά μειονεκτούν στο κόστος και στη μηχανική αντοχή.

Οι πολυμερικές μεμβράνες πλεονεκτούν εκεί όπου μειονεκτούν οι ανόργανες – και το αντίστροφο. Είναι κατάλληλες για διεργασίες που λαμβάνουν χώρα σε πιο ήπιες συνθήκες, ιδίως όσον αφορά τη θερμοκρασία που δε μπορεί να ανεβεί σε πολύ υψηλά επίπεδα χωρίς να αποσυντεθεί το πολυμερικό υλικό. Μολονότι είναι δυνατό να σχηματιστούν μεμβράνες με πόρους διαφόρων διαστάσεων, ιδιαίτερο ενδιαφέρον παρουσιάζουν οι λεγόμενες ασύμμετρες μη πορώδεις, πυκνές (dense) μεμβράνες. Ο χαρακτηρισμός τους ως ασύμμετρες οφείλεται στην ιδιόμορφη δομή τους από δύο στρώματα με διαφορετικά χαρακτηριστικά. Γενικότερα, οι πυκνές μη πορώδεις μεμβράνες, έχουν πολύ μικρότερο συντελεστή διαπερατότητας από τις μικροπορώδεις αλλά, λόγω του πολύ μικρού πάχους τους, ο ρυθμός διερχόμενης ποσότητας ανά μονάδα εγκάρσιας επιφάνειας μπορεί να είναι πολύ μεγάλος.

Εκτός από τις ασύμμετρες και τις ελαστομερείς μεμβράνες, υπάρχουν επίσης και μεμβράνες αποτελούμενες από άμορφα πολυμερή των οποίων η θερμοκρασία υαλώδους μετάπτωσης (T_g) είναι πάνω από τη θερμοκρασία περιβάλλοντος. Σε αυτά, η διαχυτότητα παίζει πρωτεύοντα ρόλο, ενώ στα ελαστομερή υλικά, η διαλυτότητα είναι εξ ίσου, αν όχι περισσότερο σημαντική. Η σχετική ακαμψία που χαρακτηρίζει τη δομή αυτών των άμορφων πολυμερών τα καθιστά παρόμοια από αυτή την άποψη με τις ανόργανες μεμβράνες, αν και από την άποψη των στατικών χαρακτηριστικών μοιάζουν με τις ελαστομερείς μεμβράνες βρίσκουν εφαρμογή περισσότερο σε διαχωρισμούς αερίων μιγμάτων, κυρίως χαμηλού μοριακού βάρους όπως π.χ. για το διαχωρισμό του ατμοσφαιρικού αέρα σε οζυγόνο και άζωτο. Τα ελαστομερή υλικά θα χρησιμεύσουν σε περιπτώσεις βαρύτερων συστατικών ή υγρών. Ωστόσο, η διάκριση δεν είναι απόλυτη και σημαντικό [24].

Σχήμα 23 Απεικόνιση διερχόμενων ειδών διαμέσου των πόρων σύνθετης
πολυμερικής μεμβράνης με εφαρμογή σε διαδικασίες αιμοδιάλυσης [Δ19]

Β4. ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΜΕΣΩ ΜΕΜΒΡΑΝΩΝ

B4.1. Γενικά

Υπάρχουν πολλές ιστορικές αναφορές σχετικά με την γέννηση της επιστήμης των μεμβρανών, άλλα όλες αναγνωρίζουν ότι ο Thomas Graham το 1829 ήταν ο πρώτος άνθρωπος που παρατήρησε φαινόμενα μεταφοράς αερίων. Ο Thomas Graham παρατήρησε ότι μια ξεφούσκωτη ουροδόχος κύστη γουρουνιού μπορούσε να διογκωθεί σε σημείο μέχρι να σκάσει εάν εκτίθονταν σε ατμόσφαιρα CO_2 . Πρότεινε τότε ότι το CO_2 διαλύονταν στην υγρή επιφάνεια της κύστης και εν συνεχεία εισέρχονταν στο εσωτερικό της μέσω τριχοειδών φαινομένων. Μετά από 37 χρόνια, το 1866 και μετά από πειράματα που αφορούσαν τον εμπλουτισμό του οξυγόνου με χρήση φυσικού ελαστικού, ο Thomas Graham πρότεινε ένα μηχανισμό διάχυσης τριών σταδίων που τον ονόμασε 'Κολλοειδής διάχυση'. Σήμερα το μοντέλο αυτό είναι γνωστότερο ως «Μοντέλο διάλυσης-διάχυσης» (solution-diffusion model). Πολύ γενικά ο μηχανισμός αυτός περιλαμβάνει την ρόφηση του διαχεόμενου μορίου στην μεμβράνη ακολουθούμενη από την διάχυση του μέσα στην μεμβράνη και εκρόφηση του από την άλλη πλευρά. Κατά την διάρκεια του σταδίου της διάχυσης ο Thomas Graham πρότεινε ότι το διαχεόμενο συστατικό συμπεριφέρεται σαν να ήταν υγρό. Όλα αυτά οδήγησαν στην ανάπτυξη του solution-diffusion model, το οποίο αποτελεί την βάση για την μοντελοποίηση των φαινομένων μεταφοράς μορίων μέσω πολλών υλικών [25,26].

Η μεταφορά αερίων μέσω υλικών με την επίδραση μιας βαθμίδας πιέσεως στα δύο άκρα του υλικού, μπορεί να λάβει χώρα με δύο βασικούς μηχανισμούς:

- διάχυση και ροή του αερίου στο bulk υλικό μέσω του μοντέλου διάλυσης-διάχυσης (solution-diffusion model) και
- ροή μέσω των ατελειών του υλικού (ανομοιογένειες, pinholes, πορώδη, μικροκανάλια, μικροραγίσματα και όρια κόκκων).

Συμπερασματικά, οι μηχανισμοί μεταφοράς αερίων μέσω πολυμερικών μεμβρανών απαιτούν για τον πλήρη καθορισμό τους, ολοκληρωμένο χαρακτηρισμό της μικροδομής και γνώση των ιδιοτήτων διαπερατότητας της ενιαίας δομής.

Πριν αναφερθούν με περισσότερες λεπτομέρειες στους μηχανισμούς, αναφέρονται παρακάτω κάποιες βασικές έννοιες. Οι ιδιότητες μιας μεμβράνης όσον αφορά την διαπερατότητα της από τα αέρια, χαρακτηρίζονται συνήθως: α) από τον ρυθμό διαπερατότητας του αερίου σε σταθερή κατάσταση (transmission rate) που ορίζεται ως ο όγκος του αερίου σε πρότυπες συνθήκες πίεσης και θερμοκρασίας που περνά από μια περιοχή της μεμβράνης σε ένα δευτερόλεπτο απο την διαφορά πίεσης στις δύο πλευρές της μεμβράνης και β) από την διαπερατότητα του αερίου στην σταθερή κατάσταση.

Η μέση διαπερατότητα επομένως μέσω ενός υλικού είναι η ροή σταθερής κατάστασης J προς την διαφορά πίεσης στα δύο άκρα. Σε περιπτώσεις ομογενών πολυμερικών μεμβρανών, όπως πολυμερικά φιλμ, και για αέρια που δεν αλληλεπιδρούν έντονα με το πολυμερές, όπως είναι το οξυγόνο, η διαπερατότητα είναι μια βασική ιδιότητα της μεμβράνης ανεξάρτητη του πάχους του πολυμερούς και ονομάζεται εσωτερική διαπερατότητα (intrinsic permeability) [25].

Γενικότερα η διαδικασία μεταφοράς αερίων και ατμών μέσω μεμβρανών ή υμενίων καλείται διαπερατότητα. Η κινούσα δύναμη είναι μια διαφοροποίηση στο χημικό δυναμικό. Σε πολλές περιπτώσεις είναι απλούστερο και εξίσου σωστό να χρησιμοποιήσουμε μια διαφοροποίηση στην συγκέντρωση ή στην πίεση. Αυτό είναι πολύ χρήσιμο στις μετρήσεις διαπερατότητας, οι οποίες αναπαριστούν την πραγματικότητα, εφαρμόζοντας μια διαφορά στις μερικές πιέσεις στις δύο πλευρές της μεμβράνης.

Σε διάφορες τεχνολογικές εφαρμογές υπάρχει πολύ συχνά ενδιαφέρον στο να υπολογιστεί ο συντελεστής διάχυσης ενός στοιχείου (π.χ ενός αερίου) μέσω πολυμερικής μεμβράνης υπό συνθήκες ισορροπίας. Το μέγεθος που χρησιμοποιείται πρακτικά για να χαρακτηρίσει ποσοτικά τα φαινόμενα μεταφοράς μάζας μίας πολυμερικής μεμβράνης είναι η διαπερατότητα *P* που ορίζεται ως:

$$P = \frac{(\pi \sigma \sigma \acute{o} \tau \eta \tau \alpha _ \alpha \varepsilon \rho \acute{o} \upsilon) \times (\pi \acute{a} \chi o \varsigma _ \mu \varepsilon \mu \beta \rho \acute{a} \upsilon \eta \varsigma)}{(\varepsilon \pi \iota \varphi \acute{a} \upsilon \varepsilon \iota \alpha) \times (\chi \rho \acute{o} \upsilon \sigma \varsigma) \times (\pi \tau \acute{\omega} \sigma \eta _ \pi \acute{\iota} \varepsilon \sigma \eta \varsigma)}$$
(B4.1)

όπου η παραπάνω σχέση ισχύει για την περίπτωση αερίου διεισδυτή που βρίσκεται υπό διαφορετικές μερικές πιέσεις στις δύο πλευρές της μεμβράνης. Η διαδικασία της μεταφοράς (ρόφηση- διάχυση- εκρόφηση) ενός αερίου σε πολυμερική μεμβράνη παρουσιάζεται στο παρακάτω σχήμα 24.

Σχήμα 24 Διαδικασία μεταφοράς (ρόφηση- διάχυση- εκρόφηση) ενός αερίου σε πολυμερική μεμβράνη [Δ19]

Η μεταφορά του αερίου αποτελείται από τα εξής στάδια:

- Ρόφηση του αερίου στην επιφάνεια της μεμβράνης
- Διάχυση του αερίου εντός της πολυμερικής μεμβράνης
- Εκρόφηση από την επιφάνεια της αντίθετης πλευράς της μεμβράνης

Το να προσομοιωθεί, ατομιστικά, το συνολικό φαινόμενο της ροής αερίου σε πολυμερική μεμβράνη είναι αδύνατο καθώς εμφανίζει πολύ αργή χρονική εξέλιξη σε σχέση με τους επιτεύξιμους χρόνους προσομοίωσης. Επίσης, η διαδικασία ρόφησης/ εκρόφησης απαιτεί πληροφορίες για την επιφάνεια του πολυμερούς που δεν είναι διαθέσιμες. Η διαλυτότητα (solubility) ενός αερίου –διεισδυτή σε ένα πολυμερές εξαρτάται από την φύση και την ένταση των αλληλεπιδράσεων πολυμερούς-διεισδυτή σε σχέση με τις αντίστοιχες πολυμερούς-πολυμερούς και διεισδυτή-διεισδυτή καθώς επίσης και από το πλήθος, το μέγεθος και την κατανομή των προσβάσιμων κοιλοτήτων που σχηματίζονται κατά μήκος των αλυσίδων και στις οποίες μπορεί να παραμείνει το αέριο μόριο.

Το μοντέλο διπλού μηχανισμού ρόφησης (dual-mode sorption model) είναι αυτό που δίνει μια ικανοποιητική περιγραφή για την εξάρτηση της διαλυτότητας από τη συγκέντρωση ή την πίεση σε ένα υαλώδες πολυμερές. Σύμφωνα με αυτό το μοντέλο, υπάρχουν δύο διακριτοί μοριακοί πληθυσμοί που αποτελούν το αέριο εντός του πολυμερούς: α) μόρια που είναι διαλελυμένα στο πολυμερές με την συνήθη διαδικασία κατά Henry και η συγκέντρωση τους C_D είναι γραμμικά ανάλογη της πίεσης και β) μόρια αερίου συγκέντρωσης C_H που είναι διαλελυμένα σε ένα περιορισμένο αριθμό από δεδομένες, προϋπάρχουσες κοιλότητες εντός της πολυμερικής μήτρας. Η συγκέντρωση C_D εξαρτάται από την πίεση p μέσω της σχέσης:

$$C_p = Hp \tag{B4.2}$$

όπου Η είναι η σταθερά Henry. Η συγκέντρωση C_H δίνεται από την σχέση:

$$C_H = C_{\infty} \frac{bp}{1+bp} \tag{B4.3}$$

δηλαδή σχέση τύπου Langmuir όπου C_{∞} η σταθερά κορεσμού και b η σταθερά συνάφειας.

Η ολική συγκέντρωση *C* του διαλελυμένου αερίου σε δεδομένη πίεση p δίνεται από το άθροισμα των εξισώσεων B4.2 και B4.3:

$$C = C_D + C_H = Hp + C_{\infty} \frac{bp}{1 + bp}$$
(B4.4)

Το μοντέλο διπλού μηχανισμού ρόφησης ισχύει για ένα μεγάλο πλήθος αερίων και πολυμερών, στην περίπτωση όμως μεγάλων μορίων σε υψηλές συγκεντρώσεις εισάγονται δομικές και δυναμικές αλλαγές στην πολυμερική μήτρα εξαιτίας της ύπαρξης του αερίου και θα πρέπει να χρησιμοποιηθούν διαφορετικά μοντέλα. Για τη ρόφηση αερίων σε ελαστικά πολυμερή έχει αποδειχτεί πειραματικά ότι μπορεί να αφαιρεθεί το κομμάτι κατά Langmuir της σχέσης (B4.4) και ο νόμος του Henry ισχύει ακόμα και για πιέσεις εκατοντάδων ατμοσφαιρών [27]. Η διαλυτότητα *S* σχετίζεται με την περίσσεια ελεύθερης ενέργειας ενός αερίου διαλελυμένου στο πολυμερές μέσω της ακόλουθης σχέσης:

$$S = \exp\left(\frac{-\Delta G}{k_B T}\right) \tag{B4.5}$$

Η διάχυση ενός αερίου διεισδυτή στην άμορφη πολυμερική μήτρα διέπεται από το μοριακό μέγεθος του διεισδυτή και τις αλληλεπιδράσεις του με το πολυμερές καθώς επίσης και από το σχήμα, μέγεθος, κατανομή και συνδετικότητα των διάσπαρτων τμημάτων του προσβάσιμου όγκου του συστήματος. Σε υψηλές θερμοκρασίες (αρκετά πάνω από την θερμοκρασία υαλώδους μετάπτωσης T_g (κάτω από την T_g το πολυμερές συμπεριφέρεται σαν γυαλί π.χ. είναι σκληρό και δύσκαμπτο)) η πολυμερική μήτρα εκτελεί τοπικές θερμικές κινήσεις που ανακατανέμουν τον προσβάσιμο όγκο και τη συνδετικότητα του δημιουργώντας ή/και καταργώντας ελεύθερες κοιλότητες. Σε αυτές τις θερμικές κινήσεις των πολυμερικών αλυσίδων συμπαρασύρεται το μόριο-δυεισδύτής και μεταβαίνει συχνά (σχετικά) σε νέες θέσεις. Συνεπώς, η διάχυση αποτελείται από ένα μεγάλο σύνολο μικρών, τοπικών και τυχαίων κινήσεων του μορίου. Στην περίπτωση χαμηλών θερμοκρασιών ο μηχανισμός διάχυσης σε υαλώδη πολυμερή είναι αρκετά πιο σύνθετος [28,29].

Σε αυτή την περίπτωση η πολυμερική μήτρα είναι λίγο εως πολύ καθηλωμένη και η κατανομή των ελεύθερων κοιλοτήτων της είναι μόνιμη. Το κύριο χαρακτηριστικό της διάχυσης στα υαλώδη πολυμερή είναι ότι το αέριο μόριο περνά τον περισσότερο χρόνο του εγκλωβισμένο σε μία συστάδα ελεύθερου όγκου και σπάνια μεταβαίνει σε μία γειτονική συστάδα μέσω ενός καναλιού που ανοίγει στιγμιαία λόγω θερμικών διαταραχών σε περιοχές χαμηλής πυκνότητας ή ενισχυμένης μοριακής κινητικότητας. Η διαχυτότητα στα υαλώδη πολυμερή είναι τάξεις μεγέθους μικρότερη από την αντίστοιχη τηγμάτων και εξαρτάται από το πλήθος, τη συνδετικότητα των κοιλοτήτων ελεύθερου όγκου καθώς επίσης και από την κατανομή σταθερών ρυθμών που καθορίζουν τις μεταβάσεις μεταξύ αυτών [25,27].
B4.2 Είδη Διάχυσης

Διάχυση ονομάζουμε τον μηχανισμό μεταφοράς μορίων (ομοίων ή διαφορετικών μεταξύ τους) στο εσωτερικό της μάζας ενός υλικού, λόγω της θερμικής διέγερσης τους. Αποτέλεσμα της διάχυσης είναι η ανάμιξη μορίων ομοίων ή διαφορετικών ουσιών μέσω της τυχαίας θερμικής κίνησης τους. Στη συνέχεια ακολουθεί μια σύντομη περιγραφή των ειδών διάχυσης [30].

 Αυτοδιάχυση (self-diffusion): Σύμφωνα με τον κατά IUAPAC ορισμό, ο συντελεστής αυτοδιάχυσης είναι ο συντελεστής διάχυσης (D_i^*) του ιοστού (i) αριθμού ειδών όταν το γημικό δυναμικό ισούται με μηδέν. Συνδέεται με τον συντελεστή διάχυσης (D_i) βάσει της σχέσης:

$$D_i^* = D_i \frac{\partial \ln c_i}{\partial \ln a_i}$$

, όπου α_i η ενεργότητα των ειδών στο διάλυμα και c_i η συγκέντρωση των ειδών (i).

• Διάχυση αντικατάστασης ή διάχυση κενών (substitutional diffusion): Αφορά τα κρυσταλλικά στερεά και είναι η μεταφορά ξένων ατόμων ή κενών (οπών) σε πλεγματικές θέσεις του μητρικού κρυσταλλικού πλέγματος. Στην περίπτωση αυτή, το μέγεθος ξένων και μητρικών ατόμων είναι περίπου ίδιο και ο μηχανισμός διευκολύνεται πολύ από την ύπαρξη κενών στο αρχικό πλέγμα. Γενικά, κατά την εξέλιξη της διάχυσης παρατηρείται ροή ατόμων και κενών.

• Διάχυση υποκατάστασης (interstitial diffusion): Είναι η μεταφορά ξένων ατόμων σε παραπλεγματικές θέσεις του μητρικού κρυσταλλικού πλέγματος.

Χαρακτηριστικά παραδείγματα των διαφόρων ειδών διάχυσης παρουσιάζονται στο Σχ. 25.

Σχήμα 25 Είδη διάχυσης σε κρυσταλλικά στερεά [Δ22]

B4.3 Μηχανισμοί Διάχυσης

Στη διάχυση αντικατάστασης (και συμπλήρωσης κενών) και στην αυτοδιάχυση, τα άτομα μπορούν να μετακινηθούν από τη μία θέση στην άλλη, αν η ενέργεια που

προέρχεται από τη θερμική διέργεσή τους υπερβεί την ενέργεια ενεργοποίησής τους q, βλ. Σχ 26. Η ύπαρξη κενών ή ατελειών πλέγματος με ταυτόχρονη αύξηση της θερμοκρασίας διευκολύνουν τη μετακίνηση αυτή.

Σχήμα 26 Μεταβολή της ενέργειας ταλάντωσης ατόμου [Δ22]

Η ενέργεια ενεργοποίησης στην αυτοδιάχυση και στη διάχυση αντικατάστασης ισούται με το άθροισμα της απαιτούμενης ενέργειας για τη δημιουργία κενού και της ενέργειας για τη μετακίνησή του. Αντίθετα, στη διάχυση υποκατάστασης, λαμβάνει χώρα μετακίνηση ξένων ατόμων μικρότερου μεγέθους από τα μητρικά άτομα από μία παραπλεγματική θέση σε άλλη χωρίς να σημειώνεται μόνιμη μετακίνηση ατόμων του μητρικού πλέγματος [31].

Συνεπώς, η απαιτούμενη ενέργεια ενεργοποίησης στη διάχυση υποκατάστασης είναι μικρότερη από εκείνη της διάχυσης αντικατάστασης ή συμπλήρωσης πλεγματικών κενών.

Χαρακτηριστικά παραδείγματα των διαφόρων μηχανισμών διάχυσης παρουσιάζονται στα Σχ. 27 και 28.

Σχήμα 27 Περιγραφή των μηχανισμών διάχυσης [Δ22]

Σχήμα 28 Παραδείγματα διαφόρων μηχανισμών διάχυσης [Δ22]

B4.4 Διάχυση κατά Fick

Το φαινόμενο αυτού του είδους διάχυσης περιγράφεται μαθηματικά από τους νόμους του Fick και για να συμβεί πρέπει να υφίσταται βάθμωση της συγκέντρωσης του διαχεομένου στοιχείου κατά τη διεύθυνση μεταφοράς μάζας, όπως φαίνεται στο παρακάτω σχήμα 29.

Σχήμα 29 Διάχυση και βάθμωση συγκέντρωσης διαχεόμενου στοιχείου [Δ22]

Ένας γενικός ορισμός για τους νόμους του Fick θα μπορούσε να είναι ότι ο $1^{o\varsigma}$ νόμος αναφέρεται σε διάχυση υπό συνθήκες συγκέντρωσης χρονικά σταθερές, ενώ ο $2^{o\varsigma}$ νόμος περιγράφει τη διάχυση υπό συνθήκες συγκέντρωσης χρονικά μεταβαλλόμενες.

Πρώτος νόμος του Fick (Σχ. 30): Η ταχύτητα διάχυσης μιας ουσίας (ή η ροή μάζας της ουσίας) μέσα από μια επιφάνεια είναι ανάλογη του εμβαδού της επιφάνειας, και της αρνητικής βαθμίδας της συγκέντρωσης σύμφωνα με την παρακάτω μαθηματική σχέση:

Μαθηματική έκφραση: $J = -D \cdot \frac{dC}{dx}$

όπου:

J: ροή μάζας ανά μονάδα επιφάνειας (σε kg/ sm²)

dC/dx: η βαθμίδα συγκέντρωσης της διαχεομένης ουσίας (σε $(kg/m^3)/m$)

D: ο συντελεστής διάχυσης ο οποίος εκφράζει την ικανότητα των ατόμων προς διάχυση (σε $m^2/s)$

Το αρνητικό πρόσημο δηλώνει ότι η διάχυση γίνεται αντίθετα στη βαθμίδα συγκέντρωσης, δηλ. από περιοχές μεγάλης προς περιοχές μικρής συγκέντρωσης της διαχεόμενης ουσίας, όπως φαίνεται στο Σχήμα 30.

Σχήμα 30 Πρώτος νόμος του Fick - βαθμίδα συγκέντρωσης και κατεύθυνση της διάχυσης [Δ23].

Δεύτερος Νόμος του Fick (Σχ. 31): Η χρονική μεταβολή της συγκέντρωσης, σε κάθε σημείο του διαλύματος, είναι ανάλογη της χωρικής μεταβολής της ροής μάζας (J) και δίδεται, υπό συνθήκες σταθερού συντελεστή διάχυσης, από την παρακάτω σχέση:

Μαθηματική έκφραση: $\frac{\partial C}{\partial t} = D \cdot \frac{\partial^2 C}{\partial x^2}$

όπου:

C: η συγκέντρωση διαχεομένων ατόμων (σε kg/m³)

x: η απόσταση (σε m)

t: ο χρόνος (σε sec)

D: ο συντελεστής διάχυσης (σε m^2/s)

Σχήμα 31 $2^{o_{\varsigma}}$ Νόμος του Fick [Δ22,Δ24]

Η μεταφορά μάζας κατά μήκος της μεμβράνης που ποσοτικοποιείται μέσω του μεγέθους της ροής (flux) *J*, περιγράφεται από τον συντελεστή διάχυσης (διαχυτότητα - diffusivity) *D*, και σύμφωνα με τον πρώτο νόμο του Fick όπως προαναφέρθηκε και διατυπώθηκε, ισχύει:

$$J = -D \cdot \frac{dC}{dx} \tag{B4.6}$$

ενώ σύμφωνα με τον δεύτερο νόμο κατά Fick ισχύει:

$$\frac{\partial C}{\partial t} = D \cdot \frac{\partial^2 C}{\partial x^2} \tag{B4.7}$$

Σε σταθερές συνθήκες (συνθήκες μόνιμης κατάστασης) η σχέση (B4.7) μπορεί να γραφεί ως:

$$\frac{d^2C}{dx^2} = 0 \qquad \to \qquad \frac{dC}{dx} = const. \tag{B4.8}$$

Συνδυάζοντας τις σχέσεις (Β4.6) και (Β4.8) προκύπτει:

$$J = -D \cdot \frac{dC}{dx} = -D \frac{\Delta C}{\Delta x} = -D \frac{C_{out} - C_{in}}{\ell}$$
(B4.9)

Θεωρώντας ότι από την εξίσωση (B4.4) μπορούμε να διατηρήσουμε ως καλή προσέγγιση (για χαμηλές συγκεντρώσεις και μικρά μόρια) μόνο το γραμμικό όρο(κατά Henry) του δεξιού μέρους, ισχύει:

$$C_{out} = Sp_{out} \qquad C_{in} = Sp_{in} \qquad (B4.10)$$

συνδυάζοντας τις (B4.9) και (B4.10):

$$J = DS \frac{p_{in} - p_{out}}{\ell}$$
(B4.11)

στην σχέση (B4.11) το γινόμενο της διαχυτότητας (D) επί την διαλυτότητα (S) ορίζει την διαπερατότητα (P) και ισχύουν οι σχέσεις:

$$J = P \cdot \frac{\Delta p}{\ell} \tag{B4.12}$$

Στην πραγματικότητα σε κάθε περίπτωση, η διαπερατότητα ελέγχεται από τα βήματα διάλυσης και διάχυσης. Ο συντελεστής διάχυσης, D, είναι ένα μέτρο της ταχύτητας κίνησης των διαχεόμενων μορίων στο πολυμερές ενώ ο συντελεστής διάλυσης, S, είναι μια ένδειξη του αριθμού των διεισδυθέντων μορίων που διαχέονται. Οι δυο συντελεστές μαζί περιγράφουν τον συντελεστή διείσδυσης, που κοινά καλείται, διαπερατότητα, P.

$$P = DS \tag{B4.13}$$

Καταλήγοντας, μπορεί να αποφευχθεί ο άμεσος υπολογισμός της διαπερατότητας από την σχέση (B4.1) και η διαπερατότητα μπορεί να περιγραφεί μέσω του μηχανισμού «ρόφησης – διάχυσης» χρησιμοποιώντας το αποτέλεσμα της σχέσης (B4.13).

Μια βασική κατανόηση του φαινομένου της διάχυσης μπορεί να βοηθήσει στη διάκριση των χαρακτηριστικών μόνωσης των πολυμερών. Ένα διαχεόμενο μόριο κινείται προς μια επιφάνεια φραγμού με μια πολυβηματική διαδικασία όπου αρχικά το μόριο έρχεται σε επαφή με την επιφάνεια του πολυμερούς. Στο πολυμερές το μόριο που διεισδύει διαχέεται τυχαία καθώς η δική του θερμική κινητική ενέργεια το διατηρεί σε κίνηση από κενό σε κενό, μεταξύ των μακρομοριακών αλυσίδων του πολυμερούς. Αυτή η τυχαία διάχυση έχει ως τελικό αποτέλεσμα την (μακροσκοπική) κίνηση της διαχεόμενης ουσίας προς την πλευρά του πολυμερούς που βρίσκεται σε επαφή με μια υψηλή συγκέντρωση της διαχεόμενης ουσίας προς την πλευρά που βρίσκεται σε επαφή με μια χαμηλή συγκέντρωση της διαχεόμενης ουσίας.

B4.5 Σύντομη περιγραφή μοντέλων Διάχυσης

B4.5.1 Μοντέλο Διάλυσης-Διάχυσης (Solution-Diffusion Model)

Το solution diffusion model είναι ευρέως αποδεκτό ως το πρωταρχικό μοντέλο για την περιγραφή φαινομένων μεταφοράς σε σχέση με την διαφοροποίηση του χημικού δυναμικού και αφορά διεργασίες όπως είναι η διάλυση, η αντίστροφη ώσμωση, η διαπερατότητα των αερίων κ.ά. Αυτοί οι διαφορετικοί τρόποι διάχυσης μπορούν να μετασχηματιστούν σε άλλους πιο πρακτικούς αλλάζοντας τα χημικά δυναμικά με μετρήσιμες δυνάμεις. Αυτό πετυχαίνεται χρησιμοποιώντας βασικές θερμοδυναμικές αρχές οι οποίες συσχετίζουν την διαφοροποίηση των χημικών δυναμικών με την πίεση, την θερμοκρασία, την συγκέντρωση και τις ηλεκτροκινητικές δυνάμεις. Επομένως στην περίπτωση της διαπερατότητας των αερίων, η διαφοροποίηση του χημικού δυναμικού μπορεί να συσχετιστεί με την διαφοροποίηση της συγκέντρωσης του αερίου μέσα στην μεμβράνη. Το μοντέλο αυτό υποθέτει ότι η πίεση μέσα στην μεμβράνη είναι ομοιόμορφη και η διαφοροποίηση του χημικού δυναμικού κατά μήκος της μεμβράνης μπορεί να εκφραστεί μόνο ως συνάρτηση της συγκέντρωσης. Όταν ικανοποιούνται αυτές οι συνθήκες τότε το Solution-Diffusion Model μπορεί να χρησιμοποιηθεί για να υπολογιστεί η ροή ενός αερίου μέσω μιας πυκνής (dense) μεμβράνης [27].

Η ροή μπορεί να οριστεί ως η ποσότητα του υλικού που περνάει από μια τομή της μεμβράνης σε ένα καθορισμένο χρονικό διάστημα. Όταν χρησιμοποιούνται τα χημικά δυναμικά και ο πρώτος νόμος του Fick για να περιγράψουν την διαπερατότητα των αερίων, εύκολα γίνεται κατανοητό ότι το σύστημα βρίσκεται σε ισορροπία. Η διαπερατότητα των αερίων μπορεί να απλοποιηθεί θεωρώντας μονοδιάστατη ροή. Η υπόθεση της μονοδιάστατης ροής ισχύει, διότι οι διαφοροποιήσεις στην διάχυση και στην συγκέντρωση προς τις άλλες κατευθύνσεις είναι αμελητέες [26].

Λόγω της ομοιομορφίας της επιφανειακής συγκέντρωσης, δεν υπάρχει διαφοροποίηση της στις άλλες κατευθύνσεις. Όταν χρησιμοποιηθούν όλες αυτές οι παραδοχές, τότε η περιγραφή του φαινομένου μεταφοράς ενός αερίου μπορεί να περιγραφεί με την παρακάτω εξίσωση:

$$J_i = -L\nabla\mu_i \cong -L_i \frac{\partial\mu_i}{\partial x}$$
(B4.14)

B4.5.2. Μέθοδος χρόνου διαπερατότητας (Time Lag Method)

Το time lag είναι ο χρόνος που απαιτείται για ένα αέριο προκειμένου να διαπεράσει μια μεμβράνη. Μπορεί να υπολογιστεί χρησιμοποιώντας διαφορικές ή ολοκληρωματικές τεχνικές που βασίζονται σε δεδομένα ρυθμών διαπερατότητας ή απορρόφησης. Σύμφωνα με την ολοκληρωματική τεχνική μετράται η συσσώρευση του αερίου σε ένα χώρο που προηγουμένως έχει εκκενωθεί σε συνάρτηση με τον χρόνο. Ο χώρος αυτός διαχωρίζεται από την πηγή του αερίου με μια μεμβράνη, η οποία προηγουμένως έχει υποστεί degassing (απομάκρυνση των αερίων που βρισκόταν στο εσωτερικό της). Ένα τυπικό παράδειγμα μιας πειραματικής μέτρησης για την διαπερατότητα ενός αερίου φαίνεται στο παρακάτω σχήμα 32.

Το Time Lag ορίζεται στο σημείο όπου η πίεση είναι ίση με μηδέν, στο σημείο δηλαδή όπου η προέκταση της ευθείας του γραμμικού κομματιού της γραφικής παράστασης συναντά τον άξονα χ του χρόνου (σημείο θ στο διάγραμμα). Η καμπύλη αναφοράς χωρίζεται σε δύο περιοχές, όπου η πρώτη αναφέρεται στην διάχυση σταθερής κατάστασης (steady-state diffusion) και το γραμμικό τμήμα είναι η καμπύλη αναφοράς της. Η δεύτερη περιοχή είναι η περιοχή μη σταθερής διάχυσης (unsteady-state diffusion) και αναφέρεται στην αρχική αύξηση της πίεσης [26,27,28].

Σχήμα 32 Σχηματική αναπαράσταση της διαδικασίας διείσδυσης ενός αερίου με χρήση της ολοκληρωματικής τεχνικής.

B4.6 Παράγοντας βελτίωσης των ιδιοτήτων μόνωσης της μεμβράνης (Barrier Improvement Factor – BIF)

Οσον αφορά το πολύ σημαντικό κομμάτι των σύνθετων μεμβρανών, το οποίο μελετούμε στην παρούσα εργασία, μπορούμε να πούμε πως σαν αποτέλεσμα της διασποράς φυλλιδίων στην πολυμερική μήτρα προκύπτουν υλικά με βελτιωμένες ιδιότητες μόνωσης αφού η ύπαρξη φυλλιδίων προκαλεί την αύξηση της απόστασης που διανύεται από τα διαχεόμενα είδη διαμέσου της μεμβράνης. Ο βαθμός αυτός δυσκολίας εξαρτάται από το ποσοστό φόρτισης των ενισχυτικών μέσων καθώς και από κάποια χαρακτηριστικά, όπως είναι το μέγεθος και ο προσανατολισμός τους στο εσωτερικό της μήτρας η επίδραση των οποίων περιγράφεται από τον συντελεστή βελτίωσης των μονωτικών ιδιοτήτων (Barrier Improvement Factor). Κατά συνέπεια ο συντελεστής αυτός χρησιμοποιείται για την ποσοτικοποίηση της επίδρασης των φυλλιδίων στις ιδιότητες μόνωσης των μεμβρανών. Στο παρακάτω σχήμα απεικονίζεται σχηματικά η αύξηση της απόστασης που διανύεια διανύουν τα διαχεόμενα μόρια μέσω του σύνθετου πολυμερούς. Η διέλευση των ειδών διαμέσου των φυλλιδίων δεν είναι δυνατή καθώς τα φυλλίδια είναι μη διαπερατά.

Σχήμα 33 Αύζηση της διανυόμενης απόστασης για τα διαχεόμενα είδη μέσω σύνθετης πολυμερικής μεμβράνης, ενισχυμένη με φυλλίδια - Μηχανισμός του συντελεστή BIF [48,Δ15]

Ο συντελεστής βελτίωσης των ιδιοτήτων μόνωσης (BIF), έχει χρησιμοποιηθεί σε πλήθος βιβλιογραφικών αναφορών με αντικείμενο την μελέτη της διαπερατότητας των αερίων διαμέσου σύνθετων ή απλών πολυμερικών υλικών καθώς και της βελτίωση των ιδιοτήτων μόνωσής τους. Ενδεικτικά παραθέτουμε στον παρακάτω πίνακα ορισμένες τιμές του BIF από την βιβλιογραφία για πολυμερή υλικά PET (πολυμεθακρυλικός μεθυλεστέρας) και για την διαπερατότητα αυτών από συγκεκριμένα αέρια:

Functional layer on PET 12 mm	Thickness [nm]	BIF ^a (H ₂)	BIF ^a (He)	BIF ^a (O ₂)	Stretch failure ^b [%]
Me	70	6	3	2	20
a-C:H	105	5	2	93	5
Me/Me-a-C:H	65	92	41	37	15
an		<i>c</i>			

^aBarrier improvement factor: Reduction of the permeability of the coated sample with respect to the untreated sample (PET 12 μ m), measured at 23 °C and 1 bar.

^bThe interferometric detection method was used to determine the stretch failure leading to the formation of micro cracks in the coating of the sample.

Πίνακας 2 Τιμές από βιβλιογραφία για τον συντελεστή BIF του PET από συγκεκριμένα αέρια – τα υλικά αυτά (PET) χρησιμοποιούνται κυρίως στη βιομηχανία εμφιάλωσης [53]

Η τελική μέτρηση η οποία μας δείχνει την αποτελεσματικότητα της μείωσης της διαπερατότητας μιας πολυμερικής μεμβράνης ισούται με την διαπερατότητα του αρχικού πολυμερούς προς την διαπερατότητα του σύνθετου πολυμερούς. Έτσι ο συντελεστής βελτίωσης των ιδιοτήτων μόνωσης, BIF ορίζεται ως $\frac{P_0}{P_f}$ και αποδεικνύεται ότι εκφράζεται

επίσης από τους λόγους $\frac{D_0}{D_f}$, $\frac{J_0}{J_f}$ δεδομένου ότι η διαλυτότητα S δεν αλλάζει και οι συνθήκες παραμένουν οι ίδιες κατά την διάρκεια της διάχυσης τόσο στο καθαρό πολυμερές, όσο στην σύνθετη μεμβράνη.

Για να διαφοροποιήσουμε την αρχική κατάσταση (καθαρό πολυμερές) από την σύνθετη μεμβράνη (πολυμερές παρουσία φυλλιδίων) χρησιμοποιούμε τον δείκτη (0) και (f) ,αντίστοιχα για κάθε μεμβράνη.

Ο ορισμός του BIF που χρησιμοποιούμε στη παρούσα εργασία είναι ο:

$$BIF = \frac{D_0}{D_f}, D_0 > D_f$$
 (Barrier Improvement Factor > 1)

Τέλος μπορούμε να πούμε πως μια επιπλέον χρησιμότητα του (BIF) είναι το ότι επιτρέπει την σύγκριση των αποτελεσμάτων βελτίωσης των ιδιοτήτων μόνωσης σύνθετων πολυμερικών μεμβρανών μεταξύ κατανομών τυχαίου προσανατολισμού φυλλιδίων και κατανομών με προσανατολισμένα φυλλίδια, μεταβάλλοντας όπως θα δούμε στη συνέχεια της παρούσας εργασίας σε κάθε υπολογιστικό πείραμα, ορισμένες παραμέτρους και χαρακτηριστικά αυτών των φυλλιδίων. Στη συνέχεια του παρόντος κεφαλαίου θα ορίσουμε την παράμετρο (χ) η οποία εξαρτάται άμεσα από τον συντελεστή BIF και για τις δύο προαναφερθείσες κατηγορίες κατανομών των φυλλιδίων.

Β5. ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΦΥΛΛΙΔΙΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΟΝ ΣΥΝΤΕΛΕΣΤΗ ΔΙΑΧΥΣΗΣ

Β5.1 Επίδραση του μήκους των φυλλιδίων

Ο βαθμός δυσκολίας της διευθέτησης των φυλλιδίων στο εσωτερικό του πολυμερούς, αυξάνεται με την αύξηση του μήκους αυτών, καθώς όπως θα δούμε στο κεφάλαιο παρουσίασης των αποτελεσμάτων (κεφ. Δ), ο διαθέσιμος χώρος είναι περιορισμένος και περιορίζεται ακόμη περισσότερο όταν μεγάλο μήκος φυλλιδίων συνδυαστεί με τον τυχαίο προσανατολισμό τους. Το πρόβλημα αυτό διακρίνεται χαρακτηριστικά στην §Δ2 όπου παρουσιάζονται αναλυτικά ορισμένα παραδείγματα γεωμετριών που μελετήσαμε στην παρούσα εργασία. Οι σύνθετες μεμβράνες διακρίνονται σε εκείνες που το μέγεθος (μήκος) των φυλλιδίων δεν διαφέρει, και σε εκείνες στις οποίες το μέγεθός τους ποικίλει. Στο παρακάτω σχήμα παρατηρούμε εικόνες που περιγράφουν τις δύο προαναφερθείσες κατηγορίες σύνθετων μεμβρανών.

Σχήμα 34 Γεωμετρίες κατανομής φυλλιδίων στο εσωτερικό πολυμερούς μεμβράνης, (α) διαφορετικού μεγέθους, (β) ομοίου μεγέθους.

Τέλος αναφέρουμε ότι στις περιοχές κοντά στα άκρα της μεμβράνης δεν υπάρχουν φυλλίδια. Σε αυτές τις περιοχές η διάχυση είναι αυξημένη λόγω της μη ύπαρξης εμποδίων και επομένως είναι λογικό να θεωρηθεί ότι ο συντελεστής BIF, υποβαθμίζεται συστηματικά όταν οι ροές σε αυτές τις περιοχές λαμβάνονται υπόψη για τον υπολογισμό του συνολικού ρυθμού διάχυσης. Για να μειώσουμε αυτή την επιρροή των ορίων, χρησιμοποιείται ένας σύνθετος όγκος ο οποίος διαχωρίζει το μοντέλο σε τρείς περιοχές ανάλυσης και το οποίο θα παρουσιάσουμε και θα αναλύσουμε περαιτέρω στο κεφάλαιο παρουσίασης των αποτελεσμάτων και συγκεκριμένα στην §Δ2.

Β5.2 Επίδραση του προσανατολισμού και της συγκέντρωσης των φυλλιδίων

Ο προσανατολισμός των φυλλιδίων σε μια πολυμερική μήτρα, η συγκέντρωσή τους, και η κατανομή τους παίζουν βασικό ρόλο στις ιδιότητες του σύνθετου υλικού. Σχετικά με τον προσανατολισμό υπάρχουν δύο ακραίες διατάξεις: (1) παράλληλη ευθυγράμμιση των φυλλιδίων με τον άξονα τους σε μία κατεύθυνση, και (2) τελείως τυχαία διευθέτηση. Τα συνεχή φυλλίδια είναι κανονικά ευθυγραμμισμένα (Σχήμα 35α), ενώ τα ασυνεχή μπορεί να είναι ευθυγραμμισμένα (Σχήμα 35β), τυχαίως προσανατολισμένα (Σχήμα 35γ) ή μερικώς προσανατολισμένα.

Σχήμα 35 Κατανομή των φυλλιδίων σε σύνθετο υλικό με πολυμερική μήτρα: (α) συνεχή και ευθυγραμμισμένα φυλλίδια, (β) ασυνεχή και ευθυγραμμισμένα φυλλίδια, (γ) ασυνεχή και τυχαία προσανατολισμένα φυλλίδια [Δ5]

Για υψηλά ποσοστά φόρτισης (φ>20%) τίθενται ορισμένα προβλήματα στην κατασκευή του σύνθετου, αφού τα φυλλίδια δεν μπορούν για γεωμετρικούς λόγους να καλυφθούν πλήρως από το υλικό της μήτρας. Πολλές φορές, για την καλύτερη ενίσχυση της μήτρας δεν χρησιμοποιείται ένας, μόνον, τύπος φυλλιδίων αλλά μίγμα δύο ή περισσότερων τύπων. Τα παραγόμενα ονομάζονται υβριδικά σύνθετα (hybrid composites).

Β6. ΟΡΙΣΜΟΣ ΠΑΡΑΜΕΤΡΟΥ (χ)

Στην παρούσα εργασία μελετάμε πως επηρεάζεται ο λόγος:

$$\chi = rac{BIF_{random} - 1}{BIF_{aligned} - 1}, \chi < 1$$

σε σχέση με το γινόμενο αφ.

Στην παραπάνω σχέση BIF_{random} είναι ο συντελεστής βελτίωσης των ιδιοτήτων μόνωσης για την σύνθετη μεμβράνη όπου τα φυλλίδια βρίσκονται σε τυχαίο προσανατολισμό, ενώ $BIF_{aligned}$ ο συντελεστής για την μεμβράνη όπου τα φυλλίδια είναι όλα παράλληλα μεταξύ τους και κάθετα στην διεύθυνση της ροής. Και στις δύο αυτές περιπτώσεις τα φυλλίδια είναι τοποθετημένα σε τυχαίες θέσεις στο εσωτερικό της πολυμερικής μήτρας.

Όπως παρατηρείται αναλυτικά στο προσάρτημα (ΣΤ) των αποτελεσμάτων, για κάθε αποτέλεσμα του συντελεστή BIF (5 τιμές BIF_{random} και 5 τιμές $BIF_{aligned}$ σε κάθε τιμή του γινομένου αφ), υπολογίσαμε την ανωτέρω παράμετρο (χ) και λάβαμε 5x5=25 τιμές για το σύνολο των πιθανών συνδυασμών.

Η παράμετρος (χ), όπως φαίνεται και από την μαθηματική διατύπωσή της, σχετίζεται άμεσα με τον συντελεστή βελτίωσης των ιδιοτήτων μόνωσης, (BIF) που προκαλείται από προσανατολισμό των φυλλιδίων. Η φυσική σημασία της παραμέτρου (χ) και ο λόγος για τον οποίο χρησιμοποιείται στην παρούσα εργασία είναι το ότι μας παρέχει την δυνατότητα ελέγχου του κατά πόσο η διαπερατότητα ενός συστήματος ατελώς προσανατολισμένων φυλλιδίων απέχει από το ιδανικό, δηλαδή το τελείως προσανατολισμένο σύστημα.

Έτσι βάσει αυτής της παραμέτρου (όπως θα δούμε στη συνέχεια της παρούσας εργασίας, στο κεφάλαιο παρουσίασης των αποτελεσμάτων και στα σχετικά διαγράμματα) γίνεται φανερό ότι καθώς αυξάνεται η συγκέντρωση των διαλυμάτων τα αποτελέσματά μας μεταβάλλονται δραστικά βάσει του μέσου όρου της παραμέτρου (χ).

Οι τιμές οι οποίες προέκυψαν από τους υπολογισμούς της παραμέτρου (χ) χρησιμοποιούνται στο κεφάλαιο παρουσίασης των αποτελεσμάτων, όπου με αυτές τις τιμές της (χ) και ορισμένες παραμέτρους που χρησιμοποιήσαμε ως δεδομένα κατά την εκτέλεση των υπολογιστικών μας πειραμάτων κατασκευάζονται διαγράμματα τα οποία μας βοηθούν στην καλύτερη κατανόηση των υπό μελέτη φαινομένων.

Τέλος αυτή η παράμετρος έχει αντίστοιχα χρησιμοποιηθεί και από άλλες μελέτες τις βιβλιογραφίας με παρόμοια μορφή μαθηματικής διατύπωσης. Ορισμένα παραδείγματα φαίνονται στον παρακάτω πίνακα 3, όπου P_0 , και P η διαπερατότητα των αρχικών πολυμερών και P_{random} και $P_{aligned}$ οι διαπερατότητες των σύνθετων υλικών για τυχαίου και μη τυχαίου προσανατολισμού κατανομές των ενισχυτικών μέσων:

Μοντέλο (Συγγραφείς)	Σχήμα φυλλιδίου	Παρόμοια Μαθηματική διατύπωση της παραμέτρου (χ)
Olga Guseva and Andrei Gusev[49]	Disk	$F = \frac{P - P_{random}}{P - P_{aligned}}$
Cussler [36]	Ribbon	$\chi = rac{P_0 - P_{random}}{P_0 - P_{aligned}}$

Πίνακας 3 Παραδείγματα παρόμοιων διατυπώσεων της παραμέτρου (χ) από την βιβλιογραφία (όπου P η διαπερατότητα της μεμβράνης (permeability))

Β7. ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ – ΠΡΟΣΟΜΟΙΩΣΗ

Μια σημαντική κατηγορία επιστημονικών εργαλείων για την ανάπτυξη της Τεχνολογίας είναι οι Ηλεκτρονικοί Υπολογιστές. Η ραγδαία ανάπτυξη των Ηλεκτρονικών Υπολογιστών και των υπολογιστικών δικτύων έχει καθοριστική επίπτωση στις επιστημονικές εξελίξεις στον τομέα των υλικών. Οι επιστήμονες των κλάδων αυτών αναδεικνύονται μεταξύ των πρωταγωνιστών σε διεθνές επίπεδο στην ανάπτυξη εργαλείων για νέες αρχιτεκτονικές συμπεριλαμβανομένων των δημοφιλών συσσωματωμάτων υπολογιστών (computer clusters) και των κατανεμημένων υπολογισμών [Δ20].

Η υπολογιστική επιστήμη των υλικών (computational materials science) είναι ένας σχετικά πρόσφατος κλάδος ο οποίος γίνεται όλο και πιο αποδεκτός σαν τρίτη μεθοδολογία έρευνας στην επιστήμη των υλικών, στο ρόλο ενός συνδετικού κρίκου μεταξύ θεωρητικής και πειραματικής προσέγγισης. Έχει σαν αντικείμενο τη μελέτη της δομής και των ιδιοτήτων των υλικών μέσω προσομοιώσεων με χρήση ηλεκτρονικών υπολογιστών με σκοπό την καλύτερη κατανόησή τους αλλά και το σχεδιασμό και πρόβλεψη των ιδιοτήτων και της συμπεριφοράς νέων υλικών που δεν υπάρχουν στη φύση. Η πολυπλοκότητα της μελέτης πολλών φαινομένων με αναλυτικό τρόπο καθιστά εξάλλου τη χρήση υπολογιστικών μεθόδων πολλές φορές ως τη μόνη οδό για την ανάδειξη των ποιοτικών και ποσοτικών χαρακτηριστικών τους.

Η μεγάλη πρόοδος που συντελείται στον τομέα της υπολογιστικής επιστήμης των υλικών σήμερα είναι άρρηκτα συνδεδεμένη με τη ραγδαία εξέλιξη των διαθέσιμων υπολογιστικών μέσων. Σήμερα είναι διαθέσιμες μια σειρά από τεχνικές μοντελοποίησης οι οποίες εφαρμόζονται για τη μελέτη μιας ευρείας γκάμας συστημάτων τόσο σε επίπεδο βασικής έρευνας αλλά και σε επίπεδο τεχνολογικών εφαρμογών [34].

Η έννοια των όρων 'μοντελοποίηση' (modeling) και 'προσομοίωση' (simulation) συχνά ορίζεται με μάλλον αυθαίρετο τρόπο ή οι δύο όροι χρησιμοποιούνται απλά σα συνώνυμα. Θα ήταν επομένως εύλογο σε αυτό το σημείο να αποσαφηνιστεί με όσο το δυνατόν αυστηρότερο τρόπο το νόημα τους. Ο όρος μοντελοποίηση καλύπτει δύο αρκετά διαφορετικές έννοιες, την κατασκευή και διατύπωση ενός θεωρητικού μοντέλου καθώς και την υπολογιστική μοντελοποίηση. Πιο συγκεκριμένα, για τη μελέτη ενός φαινομένου του πραγματικού κόσμου κατασκευάζεται ένα μοντέλο το οποίο περιγράφει το φαινόμενο ικανοποιητικά και με απλουστευμένο τρόπο. Στην περίπτωση της επιστήμης των υλικών ειδικότερα, αυτό το βήμα είναι επιβεβλημένο προκειμένου να μελετηθεί ένα υλικό λόγω της πληθώρας των μηχανισμών που καθορίζουν τις ιδιότητες του και ενεργούν ταυτόχρονα σε όλες τις κλίμακες. Αυτή η φαινομενολογική εικόνα τότε πρέπει να περιγραφεί με ένα

μαθηματικό μοντέλο. Ωστόσο, σπάνια το μοντέλο αυτό συμπίπτει με το αριθμητικό καθώς το πρώτο περιέχει συνήθως ένα σύνολο μαθηματικών εκφράσεων με μεγάλη δυσκολία στην αναλυτική επίλυση τους. Η επίλυση του μαθηματικού μοντέλου με αριθμητικές μεθόδους είναι αυτό που παραπάνω ονομάσαμε υπολογιστική μοντελοποίηση και αποτελεί στην ουσία αντικείμενο της προσομοίωσης.

Σκοπός λοιπόν της υπολογιστικής μηχανικής είναι το αν το μοντέλο προσομοίωσης το οποίο χρησιμοποιήθηκε περιγράφει ορθώς το πραγματικό σύστημα δίνει η σύγκριση των αποτελεσμάτων της προσομοίωσης με τα πραγματικά πειραματικά δεδομένα. Επιπλέον, σύγκριση των αποτελεσμάτων της προσομοίωσης με αυτά τα οποία προκύπτουν από προβλέψεις της θεωρίας αποτελεί έλεγχο της ορθότητας της δεύτερης. Εξάλλου, στα πλαίσια μιας προσομοίωσης ένα σύστημα μπορεί να μελετηθεί χωρίς κανένα πρόβλημα κάτω από εικονικές ακραίες συνθήκες πίεσης και θερμοκρασίας, κάτι το οποίο δε μπορεί να γίνει εύκολα πειραματικά.

Γ. ΒΙΒΛΙΟΓΡΑΦΙΚΗ ΑΝΑΣΚΟΠΗΣΗ ΚΑΙ ΣΧΟΛΙΑΣΜΟΣ

Γ1. ΥΠΑΡΧΟΥΣΕΣ ΘΕΩΡΗΤΙΚΕΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΕΣ ΜΕΛΕΤΕΣ

Πολλές προσπάθειες έγιναν στο παρελθόν με σκοπό την αριθμητική πρόβλεψη των ιδιοτήτων μόνωσης ενισχυμένων υλικών τα οποία παράγονται από την διασπορά μη διαπερατών ενισχυτικών μέσων σε πολυμερική μήτρα. Έτσι στα πλαίσια της βιβλιογραφικής ανασκόπησης μελετών και ερευνών ομοίου αντικειμένου με αυτό της παρούσας εργασίας, δημιουργήθηκε ο παρακάτω πίνακας 4 με σκοπό την συγκέντρωση των σημαντικότερων πληροφοριών που περιγράφουν αυτές τις μελέτες.

Μοντέλο (Συγγραφείς)	Σχήμα φυλλιδίου	Μαθηματική διατύπωση	Προσανα- τολισμός	Aspect ratio a	Γεωμετρία φυλλιδίου
Nielsen[37]	Ribbon	$\frac{D_0}{D_f}(1-\varphi) = 1 + \frac{\alpha\varphi}{2}$	₩	l/t	
Aris[38]	Ribbon	$\frac{D_0}{D_f} = 1 + \frac{a^2 \varphi^2}{4(1-\varphi)} + \frac{\alpha \varphi}{2\lambda} + \frac{2}{\pi} \frac{\alpha \varphi}{(1-\varphi)} \ln \left[\frac{\pi \alpha^2 \varphi}{4\lambda(1-\varphi)} \right]$		l/t	
Wakeham and Mason[39]	Ribbon	$\frac{D_0}{D_f} = 1 + \frac{a^2 \varphi^2}{4(1-\varphi)} + \frac{\alpha \varphi}{2\lambda} + 2(1-\varphi) \ln\left(\frac{1-\varphi}{2\lambda\varphi}\right)$		l/t	
Cussler (Regular array)[52]	Ribbon	$\frac{D_{0}}{D_{f}} = \frac{(1 - \varphi)}{(1 + \frac{\alpha^{2} \varphi^{2}}{4})}$		l/t	
Cussler (Random array)[36]	Ribbon	$\frac{D_{0}}{D_{f}} = \frac{(1 - \varphi)}{(1 + \frac{\alpha \varphi}{3})^{2}}$		l/t	
Falla[40]	Ribbon	$\frac{D_{0}}{D_{f}} = 1 + \frac{a^{2} \varphi^{2}}{\beta (1 - \varphi)}$		l/t	
Gusev and Lusti[45]	Disk	$\frac{D_{0}}{D_{f}} = \frac{(1 - \varphi)}{\exp\left[\left(\frac{\alpha \varphi}{3.47}\right)^{0.71}\right]}$		l/t	-

Institutional Repository - Library & Information Centre - University of Thessaly 28/07/2024 04:19:18 EEST - 13.58.148.134

Fredrickson and Bicerano[42]	Disk	$\begin{bmatrix} \frac{D_0}{D_f} = \frac{(1-\varphi)}{\left[4\frac{(1+x+0.1245x^2)}{(2+x)}\right]^2},\\ x = \frac{\pi\alpha\varphi}{\left[2\ln(\frac{a}{2})\right]} \end{bmatrix}$	l/t	Ē
Bharadwaj [43]	Disk	$\frac{D_0}{D_f} = \frac{(1 - \varphi)}{\left[1 + \alpha \varphi \frac{(2 S + 1)}{6}\right]},$ $S = \frac{(3 \cos^2 \theta - 1)}{2}$	l/t	Ē

Πίνακας 4 Πίνακας περιγραφής των μοντέλων – Βιβλιογραφική ανασκόπηση [35,36-44]

Τα θεωρητικά μοντέλα που επιλέχτηκαν για σύγκριση στην παρούσα εργασία είναι δύο διαστάσεων (2D), όπου τα φυλλίδια είναι παράλληλα αλλά και τυχαία διαταγμένα στην επιφάνεια της μεμβράνης ενώ η διάχυση είναι κάθετη σε αυτή.

Επίσης στην επιλογή των θεωρητικών μοντέλων με τα οποία γίνεται σύγκριση θέτουμε ως ελάχιστη προϋπόθεση ότι αυτά λαμβάνουν υπόψη το ποσοστό φόρτισης των φυλλιδίων καθώς και τον λόγο μήκους/διαμέτρου (aspect ratio).

Οι παρακάτω υποθέσεις είναι κοινές για όλα τα θεωρητικά μοντέλα, τα οποία θα αναλύσουμε στη συνέχεια του παρόντος κεφαλαίου:

- Η μήτρα είναι ομογενής, ισοτροπική και οι ιδιότητές της δεν επηρεάζονται από την παρουσία των ενισχυτικών φυλλιδίων.
- Η διάχυση λαμβάνει χώρα σε δύο διαστάσεις (2D) και σε αυτό το επίπεδο κάθε φυλλίδιο θεωρείται ως ένα ορθογώνιο παραλληλόγραμμο ενώ όλα τα φυλλίδια είναι κάθετα προσανατολισμένα στην κατεύθυνση της διάχυσης.
- Τα φυλλίδια είναι μη διαπερατά από τα διαχεόμενα είδη.

Σημειώνεται ότι μελέτες που περιγράφονται στον ανωτέρω Πίνακα 4 αλλά δεν αποδέχονται τις προαναφερθείσες υποθέσεις, δεν ληφθήκαν υπόψη.

Όπως προαναφέρθηκε τα θεωρητικά μοντέλα που επιλέχτηκαν για σύγκριση στην παρούσα εργασία είναι δύο διαστάσεων (2D), όπου τα φυλλίδια είναι παράλληλα ή μη διαταγμένα στην επιφάνεια της μεμβράνης ενώ η διάχυση είναι κάθετη σε αυτή.

Η βελτίωση των ιδιοτήτων μόνωσης των μεμβρανών στην κατεύθυνση της διάχυσης αποδίδεται σε δύο φαινόμενα:

- στην αύξηση της διανυόμενης απόστασης, την οποία ακολουθούνε τα διαχεόμενα μόρια και
- στην μείωση της περιοχής που διατίθεται για διάχυση.

Γι αυτόν τον λόγο ο συντελεστής BIF μπορεί να εκφραστεί ως εξής:

$$\frac{D_0}{D_f} = \left(\frac{A_0}{A_f}\right) \left(\frac{L'}{L}\right) \tag{\Gamma1.1}$$

Όπου:

- $A_0 = \pi \epsilon$ ριοχή διαθέσιμη για διάχυση στην αρχική μεμβράνη
- $A_f = \pi \epsilon \rho$ ιοχή διαθέσιμη για διάχυση στην ενισχυμένη μεμβράνη

L = πάχος μεμβράνης

L´ = η απόσταση που πρέπει να διανύσουν τα φυλλίδια για να διαπεράσουν την μεμβράνη

Ο παράγοντας αύξησης της απόστασης που διανύουν τα διαχεόμενα μόρια εκφράζεται από τον λόγο: L'/L.

Για μια μεμβράνη με ομοιόμορφη κατανομή φυλλιδίων ορθογώνιας διατομής όπως φαίνεται στο παρακάτω σχήμα, το μοντέλο Nielsen[37] για τον συντελεστή BIF γράφεται ως εξής:

$$\frac{D_0}{D_f} = \frac{1 + \left(\frac{a}{2}\right)\varphi}{1 - \varphi} \tag{\Gamma1.2}$$

Όπου:

 $\alpha = \lambda$ όγος μήκους/πάχος του φυλλιδίου

$$a = \frac{l}{t}$$

με l = το μέγεθος του φυλλιδίου (μήκος)

t = το πάχος του φυλλιδίου

kai ópou (f) to posostó (%) fórtishz twu fullidíwu

Σχήμα 36 Ευθυγραμμισμένα φυλλίδια σε περιοδική διάταζη: a) ομοιόμορφη κανονική διάταζη και b) ενδιάμεση δυσδιάστατη διάταζη. Τα όρια των στοιχείων ορίζονται από τις διακεκομμένες γραμμές [1]

Η εξίσωση (Γ1.2) προκύπτει από την εξίσωση

$$\overline{J} = \frac{1}{V} \int_{V} J(x) dV \tag{\Gamma1.3}$$

,με $\frac{A_f}{A_0} = 1 - \phi$ και L'/L = 1+ (l/2)(ϕ /t) ενώ ο συντελεστής αύξησης της απόστασης που

διανύουν τα διαχεόμενα μόρια καθορίζεται από έναν απλό υπολογισμό με τη βοήθεια του παραπάνω σχήματος 36. Το μέγεθος φ που διακρίνεται στην εξίσωση του συντελεστή αύξησης της απόστασης που διανύουν τα διαχεόμενα μόρια μπορεί να ερμηνευτεί ως η πιθανότητα για ένα διάλυμα να συναντήσει κάποιο φυλλίδιο ανά πάχος φυλλιδίου t, στην κατεύθυνση της διάχυσης που ακολουθεί. Η εξίσωση (Γ1.2) προβλέπει ότι ο συντελεστής BIF θα αυξάνεται γραμμικά με το γινόμενα αφ. Αυτό το μοντέλο χρησιμοποιείται πιο συχνά αλλά είναι εφαρμόσιμο μόνο για αραιά διαλύματα (i.e αφ<<1).

Χρησιμοποιώντας μια μέθοδο σύμμορφης απεικόνισης ο Aris[38] ανέπτυξε μια αναλυτική έκφραση του BIF σε μια δυσδιάστατη διάταξη εμποδίων, όπως φαίνονται στο σχήμα 36(b). Η αναλυτική έκφραση του BIF δίδεται από την σχέση:

$$\frac{D_0}{D_f} = 1 + \frac{a^2 \varphi^2}{4(1-\varphi)} + \frac{\alpha \varphi}{2\lambda} + \frac{2}{\pi} \frac{\alpha \varphi}{(1-\varphi)} \ln \left[\frac{\pi \alpha^2 \varphi}{4\lambda(1-\varphi)} \right]$$
(Γ1.4)

Όπου:

 $\lambda = \lambda$ όγος μήκους/διαμέτρου του διάκενου μεταξύ των φυλλιδίων (Σχήμα 36) $\lambda = 2s/t$ s = το διάκενο μεταξύ δύο φυλλιδίων και t = το πάχος φυλλιδίου Στο δεξί μέρος της εξίσωσης (Γ1.4) ο πρώτος όρος είναι ένα ασυμπτωτικό όριο όταν το $\phi \rightarrow 0$, ο δεύτερος όρος δηλώνει την αντίσταση στη διάχυση που οφείλεται στη αύξηση της απόστασης που διανύουν τα διαχεόμενα μόρια γύρω από τον όγκο των φυλλιδίων, ο τρίτος όρος δηλώνει την αντίσταση στη διάχυση μέσω του διάκενου που υπάρχει μεταξύ δύο γειτονικών φυλλιδίων μέσα στο ίδιο οριζόντιο επίπεδο και ο τέταρτος όρος οφείλεται στη συσσωμάτωση φυλλιδίων.

Για την ίδια γεωμετρία ένα ελαφρώς διαφορετικό μοντέλο των Wakeham και Mason [39] είναι το εξής:

$$\frac{D_0}{D_f} = 1 + \frac{a^2 \varphi^2}{4(1-\varphi)} + \frac{\alpha \varphi}{2\lambda} + 2(1-\varphi) \ln\left(\frac{1-\varphi}{2\lambda\varphi}\right)$$
(Γ1.5)

Η διαφορά των δύο αυτών μοντέλων βρίσκεται στον τέταρτο όρο της δεξιάς πλευράς της εξίσωσης. Πιο συγκεκριμένα στην εξίσωση (Γ1.4) ο τέταρτος όρος εξαρτάται από το (α) ενώ αντίθετα ο τέταρτος όρος της εξίσωσης (Γ1.5) είναι ανεξάρτητος αυτού του μεγέθους (α).

Ο Cussler [36] μελέτησε και κατάφερε να επεκτείνει τα αποτελέσματα του Aris λαμβάνοντας υπόψη ότι το όριο μιας μεμβράνης που περιλαμβάνει πολλά στρώματα ενισχυτικών φυλλιδίων, οδηγεί στην εξίσωση:

$$\frac{D_0}{D_f} = 1 + \frac{a^2 \varphi^2}{4(1-\varphi)} + \frac{\alpha \varphi}{2\lambda} \tag{\Gamma1.6}$$

Σε αυτή την έκφραση ο τέταρτος όρος της δεξιάς πλευράς των δύο προηγούμενων εξισώσεων (Γ1.4) και (Γ1.5), παραλείπεται. Ο Cussler υποστήριξε ότι ο όρος αυτός που παραλήφθηκε είναι σημαντικός και θα πρέπει να λαμβάνεται υπόψη μόνο στην είσοδο του άνω στρώματος, καθώς και στην έξοδο του κάτω στρώματος των φυλλιδίων, όπως αυτά ορίζονται στο ανωτέρω σχήμα 36.

Παρόλα αυτά η μελέτη του Falla [40] απέδειξε ότι η υπόθεση αυτή του Cussler δεν είναι πάντα ορθή, κι αυτό διότι ο δεύτερος όρος της εξίσωσης της δεξιάς πλευράς γίνεται καθοριστικός όταν 1/λ<<αφ. Η εξίσωση (Γ1.6) επεκτάθηκε από τον Falla [40] για την περίπτωση που τα φυλλίδια ομοιόμορφου μεγέθους τοποθετούνται τυχαία στο εσωτερικό της πολυμερικής μήτρας. Η σχετική έκφραση αυτού του μοντέλου είναι:

$$\frac{D_0}{D_f} = 1 + \frac{a^2 \varphi^2}{\beta(1-\varphi)} \tag{\Gamma1.7}$$

όπου το β είναι ένας γεωμετρικός συντελεστής.

Κάνοντας μια μικρή διευκρινιστική παρένθεση, οι τιμές του *αφ* οριοθετούν τις ακόλουθες περιπτώσεις:

- Ένα αραιό διάλυμα αντιστοιχεί σε αφ<0.1
- Ένα ημι-αραιό διάλυμα αντιστοιχεί σε 0.1≤αφ<1
- Ένα πυκνό διάλυμα αντιστοιχεί σε τιμές αφ≥1

,όπως περιγράφονται αναλυτικά στο παρακάτω διάγραμμα:

Σχήμα 37 Διάγραμμα χαρακτηρισμού διαλυμάτων [49]

Από το διάγραμμα αυτό γίνεται εμφανές ότι υπάρχει μία σημαντική δυσκολία πειραματικής προσέγγισης των αραιών συστημάτων, αφού όπως γίνεται αντιληπτό για μια τιμή του λόγου (α=100) η τιμή του ποσοστού φόρτισης των φυλλιδίων που αντιστοιχεί σε ένα αραιό διάλυμα είναι πολύ μικρή και συγκεκριμένα ίση με φ=0.0001. Το γεγονός αυτό αποτελεί έναν ακόμη λόγω για τον οποίο προτιμάται κυρίως η υπολογιστική μελέτη τέτοιων συστημάτων και φαινομένων.

Συνεχίζοντας την μελέτη των θεωρητικών μοντέλων της βιβλιογραφίας παρατηρούμε κάποιες πολύ σημαντικές διαφορές. Για την περίπτωση αραιού διαλύματος το μοντέλο των Wakeham και Mason [39] υπερεκτιμά την βελτίωση των ιδιοτήτων. Για την περιοχή του ημι-αραιού διαλύματος και πάνω το μοντέλο του Nielsen [37] προβλέπει μια γραμμική

αύξηση, τη στιγμή που τα υπόλοιπα μοντέλα προβλέπουν μια εκθετική αύξηση για το αφ. Η ασυμπτωτική αύξηση του BIF με τον όρο (αφ)² όταν το γινόμενο αφ είναι αφ>>1, έχει επιβεβαιωθεί από ένα σύνολο πειραματικών και θεωρητικών μελετών [1].

Το σχήμα 38 συγκρίνει τις προβλέψεις του μοντέλου του Nielsen's [37] (εξίσωση Γ1.2) και των άλλων μοντέλων (εξισώσεις Γ1.4-Γ1.7), τα οποία εκτιμούνται για φ=0.01 χρησιμοποιώντας δύο όρους αναλογιών (λ=1 και λ=10) καθώς και διάφορες τιμές aspect ratio (α). Το μέγεθος λ (λ=2s/t, όπου s η απόσταση μεταξύ δύο φυλλιδίων και t το πάχος του φυλλιδίου) παίζει πολύ σημαντικό ρόλο στις προβλέψεις, αφού όπως φαίνεται και στο παρακάτω διάγραμμα, μεγάλη τιμή του λ μας οδηγεί σε μικρό συντελεστή BIF.

Σχήμα 38 Σύγκριση προβλέψεων των θεωρητικών μοντέλων[1]

Ο Lape [41] ανέπτυξε ένα μοντέλο για μεμβράνες οι οποίες περιέχουν φυλλίδια ίδιου καθώς και διαφορετικού μήκους, τυχαία διατεταγμένα στο εσωτερικό τους, κάνοντας μια εκτίμηση παρόμοια αυτής του Nielsen [37]. Για φυλλίδια ομοίου μεγέθους ο συντελεστής BIF γράφεται:

$$\frac{D_0}{D_f} = \frac{\left(1 + \left(\frac{1}{3}\right)a\varphi\right)^2}{1 - \varphi} \tag{(\Gamma1.8)}$$

Προς διευκρίνιση της εξίσωσης (Γ1.1), διατυπώθηκε η εξίσωση (Γ1.8), βρίσκοντας ότι ο συντελεστής αύξησης της απόστασης που διανύουν τα διαχεόμενα μόρια είναι $1+\alpha\varphi/3$ και υποθέτοντας ότι $A_0/A_f = [1+\alpha\varphi/3]/(1-\varphi)$. Για την εύρεση αυτού του λόγου, η μέση απόσταση που διατρέχει το διάλυμα υπολογίζεται σύμφωνα με το $L' = L + {N}{d}$, όπου το ${N} = \varphi L/t$ είναι ο μέσος αριθμός των φυλλιδίων που συναντά το διάλυμα κατά μήκος της μεμβράνης και ${d}$ η μέση απόσταση που διανύεται από το διάλυμα για να περάσει γύρω από τον όγκο ενός φυλλιδίου. Η απόσταση ${d} = 1/3$ ορίστηκε χρησιμοποιώντας μια διαφορετική διαδικασία υπολογισμού μέσου όρου από αυτή της εξίσωσης (Γ1.4). Αναμφισβήτητα η εξίσωση (Γ1.1), και η εξίσωση (Γ1.8) βασίζονται στην παραδοχή ότι η πορεία της διαχεόμενης ουσίας διαμέσου της μεμβράνης διαμορφώνεται από ευθείες γραμμές.

Ο συντελεστής BIF για διαφορετικού μήκους φυλλίδια υπολογίζεται με παρόμοιο τρόπο.

Η έκφραση αυτού του συντελεστή για διακριτή κατανομή μήκους φυλλιδίων, γράφεται:

$$\frac{D_0}{D_f} = \frac{1}{1 - \varphi_{tot}} \left(1 + \frac{\varphi_{tot}}{3} \frac{\sum_i m_i {l_i}^2}{t \sum_i m_i l_i} \right)^2$$
(F1.9)

Ενώ για φυλλίδια με συνεχή κατανομή μήκους είναι:

$$\frac{D_0}{D_f} = \frac{1}{1 - \varphi_{tot}} \left(1 + \frac{\varphi_{tot}}{3} \frac{\int_{-1}^{\infty} l^2 g(l) dl}{t\bar{l}} \right)^2$$
(F1.10)

Στην εξίσωση (Γ1.9), ο δείκτης i χρησιμοποιείται για να δηλώσει διαφορετικές τάξεις μεγέθους, οι όροι m_i και l_i είναι αντίστοιχα ο αριθμός και το μέγεθος των φυλλιδίων στην ιοστή (i) τάξη μεγέθους, ενώ φ_{tot} είναι το συνολικό ποσοστό φόρτισης των φυλλιδίων στο πολυμερές. Στην εξίσωση (Γ1.10), το g(l) είναι η πιθανότητα κατανομής των μεγεθών και \overline{l} είναι το μέσο μέγεθος των φυλλιδίων, το οποίο καθορίζεται από το όριο $\int_0^{\infty} g(l) ldl$. Το πάχος των φυλλιδίων θεωρείται σταθερό.

Μπορεί επίσης να διαπιστωθεί ότι οι εξισώσεις (Γ1.9) και (Γ1.10) προκύπτουν αν αντικαταστήσουμε το α στην εξίσωση (Γ1.8) με μια μέση τιμή. Για παράδειγμα αν γίνει αυτό, οι εκφράσεις για διακριτές και συνεχείς κατανομές είναι $\bar{a} = \sum_i m_i l_i^2 / t \sum_i m_i l_i$ και $\bar{a} = \int_0^\infty l_i^2 g(l) dl / t \int_0^\infty g(l) l dl$ αντίστοιχα.

Για κανονική κατανομή του μεγέθους των φυλλιδίων, ισχύει:

$$g = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(l-\bar{l})^2}{2\sigma^2}}$$
(Г1.11)

Όπου:

 $\sigma = τυπική απόκλιση του μεγέθους του φυλλιδίου$

Ο λόγος των εξισώσεων (Γ1.8) και (Γ1.10) μπορεί να εκφραστεί ως εξής:

$$\frac{D_{f,mono}}{D_{f,poly}} = \left[\frac{1 + \left(\frac{\varphi_{tot}}{3}\right) \left(\frac{\left(\overline{l^2} + \sigma^2\right)}{t\overline{l}}\right)}{1 + \left(\frac{\varphi_{tot}}{3}\right) \left(\frac{\overline{l}}{t}\right)}\right]^2$$
(F1.12)

Από την εξίσωση (Γ1.12) συμπεραίνουμε ότι $\frac{D_{f,mono}}{D_{f,poly}} > 1$. Κατά συνέπεια

προβλέπεται ότι οι τιμές του συντελεστή διάχυσης D για ένα σύστημα πολυδιεσπαρμένων φυλλιδίων εμφανίζει μικρότερες τιμές συγκριτικά με τον συντελεστή διάχυσης D για ένα όμοιο σύστημα μονοδιεσπαρμένων φυλλιδίων αφού $D_{f,mono} > D_{f,poly}$.

Σύμφωνα με την εξίσωση (Γ1.12), ο συντελεστής διάχυσης μιας μεμβράνης ενισχυμένη με φυλλίδια ίδιου μεγέθους είναι πάντα υψηλότερος από τον συντελεστή διάχυσης για μεμβράνη με διαφορετικού μεγέθους φυλλίδια. Γι' αυτό το λόγο η βελτίωση των ιδιοτήτων μόνωσης της τελευταίας προβλέπεται να είναι μεγαλύτερη συγκριτικά με την περίπτωση των φυλλιδίων ίδιου μέσου μεγέθους. Αυτό το συμπέρασμα είναι προφανώς το άμεσο αποτέλεσμα της χρήσης μιας μέσης τιμής μεγέθους (α) στην εξίσωση (Γ1.8) [1].

Για τυχαία τοποθετημένα φυλλίδια, τα αριθμητικά αποτελέσματα της βιβλιογραφίας είναι σταθερά υψηλότερα από τις προβλέψεις της εξίσωσης (Γ1.8). Αυτό οφείλεται στο ότι η επιρροή των αλληλεπιδράσεων μεταξύ των φυλλιδίων στην πορεία της διάχυσης διαμέσου της μεμβράνης, είναι απλοποιημένη στο θεωρητικό μοντέλο [1]. Κατά την μελέτη της βιβλιογραφίας, καταλήξαμε στο συμπέρασμα ότι για τα συστήματα τυχαία τοποθετημένων και διαφορετικού μήκους φυλλίδια, επιβεβαιώνεται ότι είναι πιο αποτελεσματικά από τα τυχαία τοποθετημένων και ιδίου μήκους φυλλίδια και η αποτελεσματικότητα αυτή είναι πιο σαφής όταν υπάρχει μεγάλος βαθμός διασποράς. Καταλήγουμε επίσης στο συμπέρασμα ότι το μέσο μέγεθος θα πρέπει να χρησιμοποιείται για να καθορίσει το μέσο aspect ratio για ένα μοντέλο φυλλιδίων διαφορετικού μήκους [47].

Για το σύνολο των υπολογιστικών πειραμάτων και των κατανομών των φυλλιδίων, τα αριθμητικά αποτελέσματα της εργασίας [1], δείχνουν να συμφωνούν με το μοντέλο του Ari [38] το οποίο προτείνεται για μια γρήγορη εκτίμηση του λόγου D_0/D_f , καθώς και με τα δεδομένα της προσομοίωσης Monte Carlo στο [12] ενώ το μοντέλο πρόβλεψης των Wakeham και Mason [39] καθώς και εκείνο του Cusler [36] συστηματικά υποτιμούν τον συντελεστή BIF (D_0/D_f) υπο τους όρους που μελετήθηκαν. Η μελέτη [1] συμφωνεί με τα συμπεράσματα της μελέτης του Falla [40].

Ενδεικτικά παρατίθενται παρακάτω δύο συγκριτικά διαγράμματα ορισμένων θεωρητικών μοντέλων της βιβλιογραφίας για (α=100) (σχήμα 39) και για ποσοστό φόρτισης ενισχυτικών (φ=0.7) (σχήμα 40).

Σημειώνεται ότι οι μελέτες που δεν αποδέχονται τους όρους και τις υποθέσεις της παρούσας εργασίας όπως είναι και οι μελέτες των Fredrickson και Bicerano [42], Gusev και Lusti [45,46] και Bharadwaj [43] δεν ληφθήκαν υπόψη.

Σχήμα 39 Καμπύλες σύγκρισης προβλέψεων θεωρητικών μοντέλων βιβλιογραφίας συναρτήσει του ποσοστού φόρτισης και για α = 100 [47]

Σχήμα 40 Καμπύλες σύγκρισης προβλέψεων θεωρητικών μοντέλων βιβλιογραφίας συναρτήσει του (α) και για ποσοστό φόρτισης φ = 0.7% [47]

Δ. ΑΠΟΤΕΛΕΣΜΑΤΑ

Δ1. ΠΑΡΟΥΣΙΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Δ1.1. ΥΠΟΛΟΓΙΣΜΟΙ – ΔΙΑΓΡΑΜΜΑ ΡΟΗΣ ΥΠΟΛΟΓΙΣΤΙΚΩΝ

ΠΕΙΡΑΜΑΤΩΝ

Κατά την διεξαγωγή των υπολογιστικών πειραμάτων της παρούσας εργασίας, με σκοπό τον υπολογισμό του συντελεστή βελτίωσης των ιδιοτήτων μόνωσης των μεμβρανών – BIF και στη συνέχεια τον υπολογισμό της παραμέτρου (χ), την οποία περιγράψαμε αναλυτικά στην §B6, ακολουθήθηκε μια πορεία εκτέλεσης υπαρχόντων προγραμμάτων σε κώδικα FORTRAN η οποία περιγράφεται στο παρακάτω διάγραμμα ροής (σχήμα 41).

Στο διάγραμμα ροής απεικονίζονται οι βασικές λειτουργίες του συνόλου των προγραμμάτων που χρησιμοποιήθηκαν και των αρχείων των αποτελεσμάτων που ληφθήκαν με εξαίρεση την εξαγωγή ορισμένων δεδομένων όπως εκείνα τα οποία περιγράφουν την κατανομή του προσανατολισμού των φυλλιδίων (αρχείο *histogram.dat*) στο εσωτερικό της πολυμερικής μήτρας και τα οποία θα αποδώσουμε αναλυτικότερα στην §Δ8 του παρόντος κεφαλαίου για ένα αντιπροσωπευτικό δείγμα υπολογιστικών πειραμάτων.

Με την εισαγωγή δεδομένων, αρχικά κατασκευάζεται η γεωμετρία της διάταξης των φυλλιδίων στο εσωτερικό της πολυμερικής μήτρας, ενώ στη συνέχεια ανάλογα με την επιλογή της παραμέτρου "post processing code", υπάρχουν διάφορες επιλογές όπως ο υπολογισμός των ισοϋψών και ο υπολογισμός του BIF. Όπως παρατηρούμε και από το διάγραμμα, η εκτέλεση του προγράμματος "pre_fmm2d.f90" είναι απαραίτητη μετά από κάθε επιλογή υπολογισμού αφού κατά την εκτέλεση του δημιουργείται το υπολογιστικό πλέγμα. Επίσης απαραίτητη για την εξαγωγή των αποτελεσμάτων που αντιστοιχούν στις τιμές 1 και 2 του "post processing code", είναι η εκτέλεση των προγραμμάτων "contour.f90" και "post_fmm2d.f90" αντίστοιχα, όπως φαίνεται και στο παρακάτω διάγραμμα ροής των υπολογιστικών πειραμάτων.

Για κάθε περίπτωση διεξάγαμε έναν αριθμό διαφορετικών υπολογιστικών πειραμάτων, ίσο με πέντε (5) για προσανατολισμένες κατανομές και πέντε (5) για τυχαίου προσανατολισμού κατανομές. Το σύνολο των πειραμάτων που εκτελέστηκαν στα πλαίσια της παρούσας εργασίας αντιστοιχεί σε πεντακόσιες (500) περίπου επαναλήψεις εκτελέσεως των προγραμμάτων τα οποία αριθμούνται αναλυτικά στον παρακάτω Πίνακα 5. Η πορεία εκτέλεσης ενός υπολογιστικού πειράματος περιγράφεται στο κατωτέρω διάγραμμα ροής.

Σχήμα 41 Διάγραμμα ροής ενός υπολογιστικού πειράματος

Λόγος (α)	Γινόμενο (αφ)	Αριθμός προσομοιώσεων κατανομών τυχαίου προσαγιατολισμού	Αριθμός προσομοιώσεων προσανατολισμένων κατανομών	Σύνολο προσομοιώσεων για κάθε (αφ)
	$\alpha \omega = 0.01$	<u>5</u>	5	10
	$\alpha \phi = 0.1$	5	5	10
	αφ=0.16	5	5	10
α=25	αφ=0.3	5	5	10
	αφ=0.7	5	5	10
	αφ=1	5	5	10
	αφ=3	5	5	10
	αφ=0.01	5	5	10
	αφ=0.1	5	5	10
	αφ=0.16	5	5	10
	αφ=0.3	5	5	10
α=50	αφ=0.7	5	5	10
	αφ=1	5	5	10
	αφ=3	5	5	10
	αφ=5	5	5	10
	αφ=7	5	5	10
	αφ=0.01	5	5	10
<i>α</i> =100	αφ=0.1	5	5	10
	αφ=0.16	5	5	10
	αφ=0.3	5	5	10
	αφ=0.7	5	5	10
	αφ=1	5	5	10
	αφ=3	5	5	10
	αφ=5	5	5	10
	αφ=7	5	5	10
	αφ=0.01	5	5	10
	αφ=0.1	5	5	10
	αφ=0.16	5	5	10
	αφ=0.3	5	5	10
	αφ=0.7	5	5	10
α=150	αφ=1	5	5	10
	αφ=3	5	5	10
	αφ=5	5	5	10
	αφ=7	5	5	10
	αφ=9	5	5	10
	αφ=10	5	5	10
	αφ=0.01	5	5	10
	αφ=0.1	5	5	10
	αφ=0.16	5	5	10
	αφ=0.3	5	5	10
	αφ=0.7	5	5	10
α=200	αφ=1	5	5	10
	αφ=3	5	5	10
	αφ=5	5	5	10
	αφ=7	5	5	10
	αφ=9	5	5	10
	αφ=10	5	5	10
	≈ 500			

Πίνακας 5 Αναλυτική αρίθμηση του συνόλου των υπολογιστικών πειραμάτων

Στην παρούσα εργασία ακολουθήσαμε την διαδικασία εκτέλεσης των προγραμμάτων για τον υπολογισμό του συντελεστή BIF αλλάζοντας κάθε φορά ορισμένες παραμέτρους τις οποίες θα ορίσουμε στη συνέχεια του παρόντος κεφαλαίου.

Δ1.2. ΟΡΙΣΜΟΣ ΠΑΡΑΜΕΤΡΩΝ – ΠΕΡΙΓΡΑΦΗ ΟΡΙΑΚΩΝ ΣΥΝΘΗΚΩΝ

Ορισμός Παραμέτρων

Στον παρόν εδάφιο της εργασίας θα ορίσουμε τις παραμέτρους που χρησιμοποιήθηκαν ως δεδομένα (input-data) στις προσομοιώσεις που έγιναν με σκοπό τον υπολογισμό του συντελεστή βελτίωσης των ιδιοτήτων μόνωσης των μεμβρανών BIF:

Μεταβλητές Παράμετροι:

Παράμετρος α (aspect ratio): ορίζεται ο λόγος του μήκους προς το πάχος του φυλλιδίου $a = \frac{\ell}{t}$, όπου ℓ το μήκος κάθε φυλλιδίου και t το πάχος του.

Στη παρούσα εργασία, θεωρήσαμε ότι t=1. Το εύρος τιμών για την παράμετρο aspect ratio (α) ορίστηκε ως $25 \le \alpha \le 200$.

Παράμετρος φ (volume fraction) [ποσοστό(%) φόρτισης φυλλιδίων]

$$\frac{A_f}{A_0} = 1 - \phi$$

όπου A_f είναι η διαθέσιμη επιφάνεια για την διάχυση σε μεμβράνη παρουσία φυλλιδίων και A_0 είναι η διαθέσιμη επιφάνεια για διάχυση σε μεμβράνη χωρίς φυλλίδια. Το εύρος τιμών για την παράμετρο (φ) volume fraction ορίστηκε ως $10^{-5} \le \varphi \le 0.1$.

Παράμετρος δ

Η παράμετρος δ (δέλτα), καθορίζει μια περιοχή γύρω από κάθε φυλλίδιο έτσι ώστε να μην εμφανίζονται φαινόμενα επικάλυψης μεταξύ αυτών ή ακόμη και φαινόμενα πολύ μικρής αποστάσεως μεταξύ τους και συγκεκριμένα μικρότερες από δ-φορές το μήκος του πλησιέστερου οριακού στοιχείου.

Όπως παρατηρούμε στο παρακάτω σχήμα, αν θεωρήσουμε ως (Η) την απόσταση μεταξύ δύο φυλλιδίων, η παράμετρος δ προσδιορίζει την ελάχιστη επιτρεπτή απόσταση μεταξύ τους έτσι ώστε να ισχύει η συνθήκη Η>δt.

Στην παρούσα εργασία η τιμή που χρησιμοποιήσαμε για την παράμετρο δ και για αραιά διαλύματα, ήταν ίση με 10. Καθώς αυξάνεται η συγκέντρωση των φυλλιδίων η τιμή της παραμέτρου μειώνεται έως την τιμή δ=1 για πολύ πυκνά διαλύματα.

Σχήμα 42 Σχηματική απεικόνιση της παραμέτρου δ

Παράμετρος fiber orientation (προσανατολισμός φυλλιδίων)

Στην παράμετρο fiber orientation οι πιθανές τιμές ήταν οι 0 και 1, όπου η τιμή 1 αντιστοιχεί στην περίπτωση όπου τα φυλλίδια βρίσκονται σε τυχαίο προσανατολισμό στην μεμβράνη (σχήμα 43 (β)), ενώ 0 στην περίπτωση όπου τα φυλλίδια είναι παράλληλα μεταξύ τους και κάθετα στην διεύθυνση της μεταφοράς μάζας (σχήμα 43 (α)). Στο παρακάτω σχήμα απεικονίζονται παραδείγματα των δύο γεωμετριών.

Σχήμα 43 α) Προσανατολισμένη και β) τυχαίου προσανατολισμού κατανομή φυλλιδίων

Συντελεστής n_a

Ο συντελεστής n_a , εκφράζει την διακριτοποίηση στη διεύθυνση του πάχους των φυλλιδίων (βλ. Σχήμα 44) και για το σύνολο των υπολογιστικών πειραμάτων, θεωρήσαμε ότι η τιμή του ισούται με τη μονάδα $n_a = 1$.

Συντελεστές L, B και πλήθος φυλλιδίων Ν

Σε κάθε υπολογισμό ορίσαμε τον αριθμό των φυλλιδίων ίσο με N=1000. Η επιλογή αυτή αναλύεται στη συνέχεια (βλ. § Δ 3) του παρόντος κεφαλαίου.

Η πυκνότητα του υπολογιστικού πλέγματος προσδιορίζεται από τα παρακάτω μεγέθη L και B :

- Μέγεθος συνοριακού στοιχείου στο εξωτερικό όριο της γεωμετρίας, ως πολλαπλάσιο του πάχους: L = 40t
- Μέγεθος συνοριακού στοιχείου στο φυλλίδιο ω ς πολλαπλάσιο του πάχους B = 4t.

Για τη καλύτερη περιγραφή και παρουσίαση των σταθερών παραμέτρων δημιουργήθηκε το παρακάτω σχήμα 44 στο οποίο απεικονίζεται ένα παράδειγμα υπολογιστικού πλέγματος με τις τιμές των παραμέτρων αυτών.

Σχήμα 44 Παράδειγμα υπολογιστικού πλέγματος

Περιγραφή Οριακών συνθηκών

Για την περιγραφή των οριακών συνθηκών που χρησιμοποιήθηκαν στα υπολογιστικά πειράματα της παρούσας εργασίας, δημιουργήθηκε το παρακάτω σχήμα 45. Παρατηρούμε ότι καθώς λαμβάνει χώρα η διάχυση των μορίων, από την κάτω περιοχή (C=100) με κατεύθυνση προς την επάνω περιοχή (C=0) ακλουθώντας μια πορεία γύρω από τα μη διαπερατά φυλλίδια, δεν υπάρχουν απώλειες μάζας εκατέρωθεν της πολυμερικής μεμβράνης όπου ισχύει η οριακή συνθήκη dC/dx=0.

C=0

Σχήμα 45 (α) Οριακές συνθήκες – στο ανωτέρω σχήμα απεικονίζονται οι οριακές συνθήκες που χρησιμοποιήθηκαν στην παρούσα εργασία. Η σχέση dC/dx=0 χρησιμοποιείται για τον μηδενισμό πιθανών απωλειών μάζας εκατέρωθεν της μεμβράνης, (β) Κατεύθυνση της διάχυσης από την περιοχή υψηλής συγκέντρωσης (C=100) στην περιοχή χαμηλής συγκέντρωσης (C=0) διαμέσου της σύνθετης μεμβράνης και των μη διαπερατών φυλλιδίων.

Στην επιφάνεια κάθε φυλλιδίου είναι $\partial C / \partial n = 0$, όπου n είναι η διεύθυνση κάθετα στην επιφάνεια του φυλλιδίου. Αυτή η σχέση δηλώνει ότι τα φυλλίδια είναι μη διαπερατά από τα διαχεόμενα είδη όπως φαίνεται και στο παραπάνω σχήμα 45(β).

Η παρουσίαση των αποτελεσμάτων φαίνεται αναλυτικά σε μορφή πινάκων στο προσάρτημα (ΣΤ) το οποίο παρατίθεται στο τέλος της εργασίας.

Δ2. ΠΑΡΑΔΕΙΓΜΑΤΑ ΓΕΩΜΕΤΡΙΩΝ

Προκειμένου να παρουσιαστούν ορισμένα αντιπροσωπευτικά παραδείγματα γεωμετριών τα οποία δημιουργήθηκαν κατα την διεξαγωγή των υπολογιστικών πειραμάτων και τα οποία μας περιγράφουν την διάταξη των φυλλιδίων στο εσωτερικό της πολυμερικής μήτρας, επιλέχθησαν γεωμετρίες για αραιά, ημιαραιά και πυκνά διαλύματα, για τυχαίες και προσανατολισμένες κατανομές, με τις εξής παραμέτρους:

- $\alpha \phi = 0.01/1/3/5/10$
- Αριθμός φυλλιδίων N = 1000
- Aspect ratio $a = \frac{\ell}{t}$, $\alpha = 150$

Οι γεωμετρικές αυτές κατανομές παρουσιάζονται αναλυτικά στα παρακάτω διαγράμματα:

Σχήμα 46 Γεωμετρίες τυχαίας και προσανατολισμένης κατανομής φυλλιδίων για αφ=0.01

Σχήμα 47 Γεωμετρίες τυχαίας και προσανατολισμένης κατανομής φυλλιδίων για αφ=0.3

Σχήμα 48 Γεωμετρίες τυχαίας και προσανατολισμένης κατανομής φυλλιδίων για αφ=1

Σχήμα 49 Γεωμετρίες τυχαίας και προσανατολισμένης κατανομής φυλλιδίων για $a\phi=3$

Σχήμα 50 Γεωμετρίες τυχαίας και προσανατολισμένης κατανομής φυλλιδίων για αφ=5

Σχήμα 51 Γεωμετρίες τυχαίας και προσανατολισμένης κατανομής φυλλιδίων για αφ=10

Όπως προαναφέρθηκε στο θεωρητικό μέρος της εργασίας και συγκεκριμένα στην §B5.1, στις περιοχές κοντά στα άκρα της μεμβράνης δεν υπάρχουν φυλλίδια. Για τον λόγο αυτό η διάχυση στις περιοχές αυτές είναι αυξημένη, λόγω της μη ύπαρξης εμποδίων και επομένως είναι λογικό να θεωρηθεί ότι ο συνολικός συντελεστής BIF υποβαθμίζεται συστηματικά όταν οι ροές σε αυτές τις περιοχές λαμβάνονται υπόψη για τον υπολογισμό του συνολικού ρυθμού διάχυσης. Για να μειώσουμε αυτή την επιρροή των ορίων, χρησιμοποιείται ένας συνολικός όγκος ο οποίος διαχωρίζεται σε τρεις περιοχές από τις οποίες η μεσαία περιοχή ορίζεται ως η περιοχή του όγκου ανάλυσής μας. Έτσι τα αποτελέσματά μας δεν επηρεάζονται από τη μη κάλυψη των άκρων της μεμβράνης αφού αφορούν μόνο την μεσαία περιοχή (όγκος ανάλυσης). Στο παρακάτω σχήμα 52 (a,b) διακρίνονται τα όρια κάθε περιοχής.

Όπως παρατηρούμε και στις παραπάνω γεωμετρίες, όσο αυξάνεται η συγκέντρωση των φυλλιδίων στο εσωτερικό της πολυμερικής μήτρας, ειδικότερα για τις προσανατολισμένες κατανομές, εμφανίζεται εκατέρωθεν του όγκου ανάλυσής μας ένας κενός χώρος. Ο κενός αυτός χώρος οφείλεται στο ότι η κατανομή των φυλλιδίων στον διαθέσιμο χώρο του υπολογιστικού πλέγματος δεν μπορεί να καλύψει τις περιοχές αυτών των ορίων, καθώς σε περίπτωση που υπάρξει κάλυψη, δεν θα είναι δυνατή η επίλυση του αριθμητικού μας προβλήματος σε εκείνη την περιοχή. Για τις τυχαίου προσανατολισμού κατανομές παρατηρούμε πως η τοποθέτηση των φυλλιδίων κοντά σε εκείνη την περιοχή γίνεται κυρίως κάθετα αφού για αυτού του είδους τις κατανομές υπάρχει αυτή η δυνατότητα, με αποτέλεσμα να μην είναι ευδιάκριτος ο προαναφερόμενος κενός χώρος (βλ. Σχήμα 52 (c)).

Institutional Repository - Library & Information Centre - University of Thessaly 28/07/2024 04:19:18 EEST - 13.58.148.134

Σχήμα 52 Μοντέλα προσανατολισμένης κατανομής φυλλιδίων, (a) φυλλίδια ίδιου μεγέθους και (b) φυλλίδια διαφορετικού μεγέθους. Η μεσαία περιοχή ανάλυσης διαχωρίζεται από τις υπόλοιπες με διακεκομμένες γραμμές, ενώ η αρχή των συντεταγμένων τοποθετείται στην κάτω αριστερή γωνία της περιοχής ανάλυσης [1] και (c) τυχαία κατανομή φυλλιδίων χωρίς την εμφάνιση του κενού χώρου εκατέρωθεν του όγκου ανάλυσής μας.

Τέλος σημειώνεται ότι η ορθότητα των αποτελεσμάτων διαπιστώνεται και από την αναμενόμενη συμπεριφορά του διαγράμματος των τιμών BIF με το γινόμενο (αφ) το οποίο παρουσιάζεται αναλυτικά στην §Δ6.

Δ3. ΕΠΙΔΡΑΣΗ ΤΟΥ ΠΛΗΘΟΥΣ ΤΩΝ ΦΥΛΛΙΔΙΩΝ (Ν) ΣΤΟΝ ΣΥΝΤΕΛΕΣΤΗ BIF (BARRIER IMPROVEMENT FACTOR)

Για την ορθότερη επιλογή του πλήθους των φυλλιδίων το οποίο χρησιμοποιήσαμε στο σύνολο των υπολογιστικών πειραμάτων – προσομοιώσεων της παρούσας εργασίας, δημιουργήθηκαν τα παρακάτω διαγράμματα (σχήμα 53 και 54) για αραιά και πυκνά διαλύματα, καθώς και για προσανατολισμένες και τυχαίου προσανατολισμού κατανομές φυλλιδίων αντίστοιχα. Το ζητούμενο είναι να βεβαιωθούμε ότι το πλήθος των φυλλιδίων που χρησιμοποιήθηκε (N=1000), αντιστοιχεί σε συστήματα τα οποία μπορούν να θεωρηθούν αντιπροσωπευτικά όσον αφορά τον υπολογιζόμενο συντελεστή BIF. Αυτό επιτρέπει γενικεύσεις σχετικά με την επίδραση των παραμέτρων (α) και (φ) στον συντελεστή διάχυσης.

Σχήμα 53 Διάγραμμα πλήθους φυλλιδίων (Ν) και συντελεστή BIF για αραιό και προσανατολισμένο σύστημα κατανομής φυλλιδίων στην πολυμερική μήτρα. Κάθε σημείο αντιπροσωπεύει το αποτέλεσμα ενός υπολογιστικού πειράματος.

Για την δημιουργία των διαγραμμάτων αυτών διενεργήθηκαν υπολογιστικά πειράματα για ένα αντιπροσωπευτικό εύρος τιμών πλήθους φυλλιδίων (N) και συγκεκριμένα για τις τιμές N= 50/100/300/500/800/1000.

Όπως παρατηρούμε, καθώς αυξάνεται το πλήθος των φυλλιδίων, εμφανίζεται μια σχετική σταθεροποίηση του συντελεστή βελτίωσης των ιδιοτήτων μόνωσης (BIF) σε ένα περιορισμένο εύρος τιμών.

Όμοια παρατηρούμε την ίδια συμπεριφορά του συντελεστή BIF για το σύστημα πυκνής κατανομής φυλλιδίων, το οποίο περιγράφεται στο παρακάτω διάγραμμα.

Concentrated system -aq=5

Σχήμα 54 Διάγραμμα πλήθους φυλλιδίων (N) και συντελεστή BIF για πυκνό και τυχαίο σύστημα κατανομής φυλλιδίων στην πολυμερική μήτρα

Συνοψίζοντας λοιπόν τα αποτελέσματα των ανωτέρω διαγραμμάτων, παρατηρούμε πως για N>500 εμφανίζεται μια σχετική σταθερότητα του συντελεστή BIF (σε σχέση με το πλήθος N) για προσανατολισμένες αλλά και για τυχαίες κατανομές, καθώς επίσης και για αραιά και πυκνά διαλύματα.

Καταλήγουμε έτσι στο συμπέρασμα ότι η επιλογή N=1000 αποτελεί έναν αντιπροσωπευτικό αριθμό αφού μας εξασφαλίζει την ανεξαρτησία των αριθμητικών αποτελεσμάτων των υπολογιστικών μας πειραμάτων από το μέγεθος του κάθε δείγματος.

Δ4. ΑΝΑΛΥΤΙΚΗ ΛΥΣΗ (*)

Εξ ορισμού, σε ένα αραιό διάλυμα τα φυλλίδια είναι απομονωμένα και δεν αλληλεπιδρούν μεταξύ τους. Για παράδειγμα όπως φαίνεται παρακάτω, το αριστερό σχήμα μας δείχνει ένα αραιό διάλυμα τυχαία προσανατολισμένων φυλλιδίων με αφ=0.01 και α=100, ενώ το δεξιό σχήμα μας δείχνει ένα φυλλίδιο που λόγω της αραιότητας του διαλύματος φαίνεται απομονωμένο από τα υπόλοιπα. Στη συνέχεια θα περιγράψουμε αναλυτικά την ανάπτυξη ενός μαθηματικού μοντέλου για τον συντελεστή διάχυσης ενός τέτοιου αραιού συστήματος.

Σχήμα 55 – Α) Γεωμετρία που περιλαμβάνει φυλλίδια τυχαίας κατανομής και τυχαίου προσανατολισμού και Β) Φυλλίδιο απομονωμένο από τα υπόλοιπα γειτονικά φυλλίδια της γεωμετρίας

Έστω ότι κάθε ποσότητα που σχετίζεται με ένα μόνο φυλλίδιο περιγράφεται με p και με p_i η τιμή του p για το ιοστό φυλλίδιο. Ο μέσος όρος του p συμβολίζεται με $\langle p \rangle$ και ορίζεται από την σχέση:

$$\left\langle p\right\rangle = \frac{1}{N} \sum_{k=1}^{N} p_{i} \tag{\Delta4.1}$$

, όπου Ν το πλήθος των φυλλιδίων στο πολυμερές.

Παρατηρούμε ότι χρησιμοποιείται η ίδια αρχή με εκείνη ενός αριθμητικού μέσου όρου για τυχαίες περιπτώσεις. Το p μπορεί να είναι οποιαδήποτε φυσική ποσότητα. Αν το διάνυσμα προσανατολισμού αναχθεί στο p, τότε

$$p_i \rangle = 0 \tag{\Delta4.2}$$

An two anagoume ton suntelest ή διάχυσης D sto p, όμοι
α έχουμε

$$\left\langle D\right\rangle = \frac{1}{N} \sum_{k=1}^{N} D_{i} \tag{\Delta4.3}$$

(*) T.D. Papathanasiou, προσωπική επικοινωνία.

Σχήμα 56 – Ανάλυση του προσανατολισμού των φυλλιδίων

Έστω ένα σύστημα στο οποίο ο προσανατολισμός των φυλλιδίων είναι γωνίας θ όπως ορίζεται στο C και έστω D_{\perp} η διαχυτότητα όταν $\theta = 0^{\circ}$ και D_{\parallel} η διαχυτότητα όταν $\theta = 90^{\circ}$. Προφανώς D_{\perp} and D_{\parallel} είναι οι τιμές του τανυστή διάχυσης στις αρχικές διευθύνσεις (principal directions), ο οποίος είναι :

$$\mathbf{D} = \begin{bmatrix} D_{\perp} & 0\\ 0 & D_{\parallel} \end{bmatrix} \tag{\Delta4.4}$$

Σύμφωνα με το μοντέλο του Nielsen [37] ο δυσδιάστατος τανυστής της διάχυσης είναι:

$$\begin{bmatrix} D_{\parallel} & 0\\ 0 & D_{\perp} \end{bmatrix} = D_0 \begin{bmatrix} \frac{1-\varphi}{1+\frac{\varphi}{2\alpha}} & 0\\ 0 & \frac{1-\varphi}{1+\frac{\varphi}{2}\varphi} \end{bmatrix}$$
 ($\Delta 4.5$)

Όπου D_0 είναι ο συντελεστής διάχυσης του αρχικού πολυμερούς (χωρίς φυλλίδια).

Η επίδραση του προσανατολισμού των φυλλιδίων εκφράζεται από τον τανυστή περιστροφής (**Q**). Όταν το φυλλίδιο βρίσκεται προσανατολισμένο υπό γωνία θ (σχήμα 56), τότε ο τανυστής διαχυτότητας **D**' είναι **D**' = **QDQ**^T, όπου **Q** είναι ο τανυστής περιστροφής που δίνεται από την σχέση:

$$\mathbf{Q} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$
 (\Delta4.6)

Επομένως ο τανυστής διαχυτότητας ενός συστήματος στο οποίο τα φυλλίδια παρουσιάζουν απόκλιση (θ) είναι:

$$\begin{bmatrix} D_{xx} & D_{xy} \\ D_{yx} & D_{yy} \end{bmatrix} (\theta) = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} D_{\parallel} & 0 \\ 0 & D_{\perp} \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$
$$= \begin{pmatrix} D_{\parallel}\cos^{2}\theta + D_{\perp}\sin^{2}\theta & D_{\perp}\sin\theta\cos\theta - D_{\parallel}\sin\theta\cos\theta \\ D_{\perp}\sin\theta\cos\theta - D_{\parallel}\sin\theta\cos\theta & D_{\perp}\cos^{2}\theta + D_{\parallel}\sin^{2}\theta \end{pmatrix}$$
(\Delta4.7)

Αυτό που θέλουμε είναι να υπολογίσουμε τον μέσο όρο D_{yy} για ένα τυχαίου προσανατολισμού σύστημα, όπου όλοι οι προσανατολισμοί είναι εξίσου πιθανοί. Ο μέσος όρος D_{yy} υπολογίζεται από:

$$\begin{split} \left\langle D_{yy} \right\rangle &= \frac{1}{N} \sum_{k=1}^{N} D_{yy} \left(\theta \right) = \frac{1}{2\pi} \sum_{k=1}^{N} D_{yy} \left(\theta \right) \frac{2\pi}{N} = \frac{1}{2\pi} \sum_{k=1}^{N} D_{yy} \left(\theta \right) d\theta \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \left(D_{\perp} \cos^{2} \theta + D_{\parallel} \sin^{2} \theta \right) d\theta \\ &= \frac{1}{2\pi} \left\{ \int_{0}^{2\pi} \frac{D_{\perp}}{2} (\cos 2\theta + 1) d\theta + \int_{0}^{2\pi} \frac{D_{\parallel}}{2} (1 - \cos 2\theta) d\theta \right\} \\ &= \frac{1}{2} \left(D_{\perp} + D_{\parallel} \right) \\ &= \frac{1}{2} \left(\frac{1 - \phi}{1 + \frac{\alpha}{2}\phi} + \frac{1 - \phi}{1 + \frac{\phi}{2\alpha}} \right) D_{0} \\ &= -\frac{D_{0} (\phi - 1) (\phi \alpha^{2} + 4\alpha + \phi)}{2\alpha^{2} \phi + \alpha \phi^{2} + 4\alpha + 2\phi} \end{split}$$

Γενικότερα για ένα σύστημα με τυχαία κατανομή προσανατολισμού μεταξύ –ε και +ε ισχύει:

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \cdot \begin{pmatrix} D_{11} & 0 \\ 0 & D_{22} \end{pmatrix} \cdot \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$$

$$= \begin{pmatrix} D_{11}\cos(\theta)^2 + D_{22}\sin(\theta)^2 & D_{11}\cos(\theta)\sin(\theta) - D_{22}\cos(\theta)\sin(\theta) \\ D_{11}\cos(\theta)\sin(\theta) - D_{22}\cos(\theta)\sin(\theta) & D_{22}\cos(\theta)^2 + D_{11}\sin(\theta)^2 \end{pmatrix}$$

$$(\Delta 4.9)$$

Institutional Repository - Library & Information Centre - University of Thessaly 28/07/2024 04:19:18 EEST - 13.58.148.134

$$\int_{-\varepsilon}^{\varepsilon} \frac{1}{2\varepsilon} (\sin(\theta)^{2} \cdot D_{11} + \cos(\theta)^{2} \cdot D_{22}) d\theta =$$

$$= \frac{D_{11} \cdot \left(\frac{\varepsilon}{2} - \frac{\sin(2\varepsilon)}{4}\right)}{\varepsilon} + \frac{D_{22} \cdot \left(\frac{\varepsilon}{2} + \frac{\sin(2\varepsilon)}{4}\right)}{\varepsilon}$$

$$= \frac{\left(\frac{1-\varphi}{1+\frac{\varphi}{2\cdot\alpha}}\right) \lambda + \frac{1-\varphi}{1+\frac{\varphi}{2\cdot\alpha}} \varepsilon + \frac{1-\varphi}{1+\alpha\cdot\frac{\varphi}{2}} \lambda + \frac{1-\varphi}{1+\alpha\cdot\frac{\varphi}{2}} \varepsilon$$

$$D_{11} = \frac{1}{2} \frac{\left(\frac{1-\varphi}{1+\frac{\varphi}{2\cdot\alpha}}\right) \lambda}{\varepsilon}$$

$$(\Delta 4.10)$$

$$D_{YY} = \frac{(\varphi - 1)\left(\varphi \sin(2\varepsilon) + 8\alpha\varepsilon + 2\varepsilon\varphi + 2\alpha^2\varepsilon\varphi - \alpha^2\varphi \sin(2\varepsilon)\right)}{2\varepsilon\left(2\alpha^2\varphi + \alpha\varphi^2 + 4\alpha + 2\varphi\right)} \quad (\Delta 4.11)$$

,όπου η κατεύθυνση (11) αντιστοιχεί στην κατεύθυνση (x) ($\|$) και η κατεύθυνση (22) στην κατεύθυνση (y) (\perp) όπως φαίνεται στο σχήμα 56. Επομένως όπου D₁₁=D $_{\|}$ και D₂₂=D \perp . Βάσει των εξισώσεων:

$$D_{11} = \frac{1-\varphi}{1+\frac{\varphi}{2a}} \tag{\Delta4.12}$$

$$D_{22} = \frac{1 - \varphi}{1 + \alpha \frac{\varphi}{2}} \tag{\Delta4.13}$$

$$\chi = \frac{\frac{1}{D_{Y}} - 1}{\frac{1}{D_{22}} - 1}$$
($\Delta 4.14$)

,προκύπτει μια αναλυτική έκφραση για την παράμετρο (χ) (εξ. (Δ4.15)):

$$\chi = \frac{2F_1}{(\alpha + 2)F_2} \tag{\Delta4.15}$$

Όπου:

$$F_1 = 2\varepsilon - \sin(2\varepsilon) + \varphi \sin(2\varepsilon) + 2\alpha^2 \varepsilon + \alpha^2 \sin(2\varepsilon) + 8\alpha \varepsilon + 2\varepsilon \varphi + 2\alpha \varepsilon \varphi + 2\alpha^2 \varepsilon \varphi - \alpha^2 \varphi \sin(2\varepsilon)$$
 ($\Delta 4.16$)

και
$$F_2 = \varphi \sin(2\varepsilon) + 8\alpha\varepsilon + 2\varepsilon\varphi + 2\alpha^2 \varepsilon\varphi - \alpha^2 \varphi \sin(2\varepsilon)$$
 (Δ4.17)

Σε περίπτωση που ισχύει $\varepsilon = \frac{\pi}{2}$, τότε οι εξισώσεις (Δ4.16) και (Δ4.17) διαμορφώνονται ως εξής:

$$F_1 = \pi + 4\pi\alpha + \pi\varphi + \pi\alpha^2 + \pi\alpha^2\varphi + \pi\alpha\varphi \qquad (\Delta 4.18)$$

και

$$F_2 = \pi \rho \alpha^2 + 4\pi \alpha + \pi \rho \tag{\Delta4.19}$$

Προκύπτει έτσι η τελική αναλυτική λύση της παραμέτρου (χ) με μορφή της παρακάτω εξίσωσης (Δ4.20):

$$\chi = \frac{2(\pi + 4\pi\alpha + \pi\varphi + \pi\alpha^2 + \pi\alpha^2\varphi + \pi\alpha\varphi)}{(\alpha + 2)(\pi\varphi\alpha^2 + 4\pi\alpha + \pi\varphi)}$$
(Δ4.20)

Για την επιβεβαίωση της ασυμπτωτικής συμπεριφοράς της παραμέτρου (χ) βάσει της ανωτέρω αναλυτικής λύσης (εξίσωση Δ4.20) επιχειρήσαμε να εισάγουμε ορισμένες τιμές των παραμέτρων α και φ όπως αυτές περιγράφονται στον παρακάτω πίνακα 6 έτσι ώστε για τις τιμές αυτές να υπολογίσουμε τις τιμές τις παραμέτρου (χ).

Έτσι προέκυψαν τα αποτελέσματα:

volume	Aspect	Παράμετρος (γ)		
fraction (q)	ratio (a)	11. տիտեց (V)		
	25	0.53663		
	50	0.51823		
0.01	75	0.51181		
	100	0.50863		
	150	0.50536		
	200	0.50373		
	500	0.50075		

Πίνακας 6 – Τιμές της παραμέτρου (χ), βάσει της εξίσωσης Δ4.20

Σαν αποτέλεσμα των ανωτέρω δεδομένων και αποτελεσμάτων λάβαμε την παρακάτω γραφική απεικόνιση (σχήμα 57) στην οποία, όπως παρατηρούμε, επιβεβαιώνεται η ασυμπτωτική συμπεριφορά της παραμέτρου (χ) στην τιμή 0.5 όσο η τιμή του (α) αυξάνει.

Σχήμα 57 Ασυμπτωτική συμπεριφορά της παραμέτρου (χ) στο όριο a→∞ όπως προβλέπεται από την αναλυτική λύση (εξίσωση Δ4.20) για αραιά διαλύματα (αφ=0.01)

Στη συνέχεια του παρόντος κεφαλαίου θα εξετάσουμε την συμφωνία των αποτελεσμάτων των υπολογιστικών μας πειραμάτων με τις προβλέψεις αυτής της ασυμπτωτικής λύσης.

Δ5. ΑΣΥΜΠΤΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΗΣ ΠΑΡΑΜΕΤΡΟΥ (χ)

Στο παρόν εδάφιο της εργασίας μελετήσαμε την ασυμπτωτική συμπεριφορά που παρουσιάζει η παράμετρος (χ), καθώς αυξάνεται ο λόγος του μήκους προς το πάχος του φυλλιδίου - (α)

$$a=\frac{\ell}{t},$$

για ένα εύρος τιμών aspect ratio : 25/50/100/150/200 και για αραιό σύστημα κατανομής φυλλιδίων με αφ=0.01.

Σκοπός μας λοιπόν στο παρόν εδάφιο είναι να μελετήσουμε και να επιβεβαιώσουμε την συμφωνία των αριθμητικών αποτελεσμάτων, τα οποία προέκυψαν από ένα υποσύνολο υπολογιστικών πειραμάτων της παρούσας εργασίας, με την ασυμπτωτική συμπεριφορά της αναλυτικής λύσης όπως αυτή παρουσιάστηκε στην προηγούμενη παράγραφο §Δ4 του παρόντος κεφαλαίου.

Σαν αποτέλεσμα δημιουργήθηκε το παρακάτω διάγραμμα:

Σχήμα 58 Διάγραμμα ασυμπτωτικής συμπεριφοράς της παραμέτρου (χ) για αραιό διάλυμα (αφ=0.01), όπως προβλέπεται από την αναλυτική λύση της προηγούμενης παραγράφου. Κάθε σημείο αντιστοιχεί σε ένα υπολογιστικό πείραμα.

Από το ανωτέρω διάγραμμα παρατηρούμε ότι καθώς αυξάνεται η τιμή του (α), μετά την τιμή α=100, ο συντελεστής (χ), τείνει να σταθεροποιηθεί σε μια τιμή χ=0.5. Αυτό βρίσκεται σε συμφωνία με την αναμενόμενη ασυμπτωτική συμπεριφορά, όπως φαίνεται στην αναλυτική λύση της προηγούμενης παραγράφου §Δ4.

Δ6. ΣΥΜΠΕΡΙΦΟΡΑ ΤΗΣ ΠΑΡΑΜΕΤΡΟΥ (χ) ΚΑΙ ΣΥΓΚΡΙΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΜΕ ΤΗΝ ΑΝΑΛΥΤΙΚΗ ΛΥΣΗ

Με την ολοκλήρωση των υπολογιστικών πειραμάτων και προκειμένου να κατανοηθεί περαιτέρω η συμπεριφορά του συντελεστή βελτίωσης των ιδιοτήτων μόνωσης (BIF) των μεμβρανών για αραιά, ημιαραιά και πυκνά διαλύματα, δημιουργήθηκαν τα ακόλουθα διαγράμματα. Στο παρακάτω διάγραμμα (σχήμα 59) περιλαμβάνεται το σύνολο των αποτελεσμάτων των πειραμάτων, που διενεργήθηκαν στην παρούσα εργασία (~500 υπολογιστικά πειράματα) με σκοπό τον υπολογισμό της παραμέτρου (χ) αφού πρώτα υπολογίστηκαν οι τιμές του συντελεστή BIF για κάθε περίπτωση (βλ. Πίνακα 5). Πιο αναλυτικά, από τις συνολικά 10 επαναλήψεις προσανατολισμένων και τυχαία προσανατολισμένων κατανομών για κάθε τιμή του γινομένου (αφ), προέκυπταν εικοσιπέντε (25) τιμές της παραμέτρου (χ) από τις οποίες υπολογίσαμε κάθε φορά έναν μέσο όρο. Στο παρακάτω διάγραμμα παρουσιάζονται οι μέσοι όροι των τιμών της παραμέτρου (χ) για κάθε γινόμενο αφ και κάθε τιμή α, ενώ στα επόμενα διαγράμματα (σχήματα 61,62,63,64,65) παρουσιάζονται αναλυτικά όλες οι τιμές των παραμέτρων (χ), ξεχωριστά για κάθε μια περίπτωση.

Σημειώνεται ότι, ο οριζόντιος άξονας του γινομένου αφ παριστάνεται για κάθε διάγραμμα σε λογαριθμική κλίμακα.

Institutional Repository - Library & Information Centre - University of Thessaly 28/07/2024 04:19:18 EEST - 13.58.148.134

Όπως παρατηρούμε στο ανωτέρω διάγραμμα, είναι απόλυτα εμφανής η συμπεριφορά της παραμέτρου (χ) η οποία μειώνεται σταδιακά καθώς το γινόμενο του (α) επί του ποσοστού (%) φόρτισης (φ) αυξάνεται. Για την καλύτερη ερμηνεία και ανάλυση των αποτελεσμάτων χρησιμοποιήσαμε ένα γενικευμένο φαινομενολογικό μοντέλο το οποίο μπορείνα περιγράψει την συμπεριφορά των αποτελεσμάτων για τρεις διαφορετικές περιοχές που διακρίναμε, στο ανωτέρω διάγραμμα. Το μοντέλο αυτό έχει την παρακάτω μορφή:

$$\chi = \frac{A + \alpha \varphi}{B + (\alpha \varphi)^n} \tag{\Delta6.1}$$

, όπου (Α) και (Β) δύο σταθεροί αριθμοί.

Όπως παρατηρούμε, μπορούμε να διακρίνουμε τρεις (3) περιοχές όπως φαίνεται και στο παρακάτω διάγραμμα σε κάθε μια από τις οποίες η παράμετρος (χ) παρουσιάζει μια διαφορετική συμπεριφορά.

Σχήμα 60 Διάκριση του συνόλου των αριθμητικών αποτελεσμάτων όπως παρουσιάστηκαν στο προηγούμενο διάγραμμα (σχήμα 59) σε τρείς περιοχές, Περιοχή Ι, ΙΙ, και ΙΙΙ για αραιά, ημιαραιά και πυκνά διαλύματα αντίστοιχα Ι.

Περιοχή I – Plateau: Αρχικά διακρίνουμε την Περιοχή Ι όπου η τιμές της παραμέτρου (χ) ακολουθούν μια σταθερή πορεία για πολύ χαμηλές τιμές του γινομένου (αφ), (αραιά διαλύματα).

Έτσι από την εξίσωση ($\Delta 6.1$), αν υποθέσουμε ότι το $\alpha \phi \rightarrow 0$ τότε η εξίσωση θα πάρει την παρακάτω μορφή:

$$\chi = \frac{A + \alpha \varphi}{B + (\alpha \varphi)^n} \Longrightarrow \chi = \frac{A}{B}$$
 ($\Delta 6.2$)

,όπου η παράμετρος (χ) ισούται με ένα σταθερό αριθμό (A/B) ο οποίος περιγράφει την συμπεριφορά των αποτελεσμάτων στην Περιοχή Ι. Η περιοχή αυτή περιγράφει επίσης την ασυμπτωτική συμπεριφορά της παραμέτρου (χ), την οποία αναλύσαμε στα προηγούμενα εδάφια του παρόντος κεφαλαίου (§Δ5,§Δ4), αφού όπως παρατηρείται από το ανωτέρω διάγραμμα (Σχήμα 60) οι τιμές της παραμέτρου (χ) στην Περιοχή Ι κυμαίνονται κοντά στην τιμή 0.5.

- Περιοχή ΙΙ Transition: Η περιοχή αυτή όπως φαίνεται στο διάγραμμα (Σχήμα 60), περιγράφει την μεταβατική κατάσταση από τα αραιά στα πυκνά διαλύματα (Περιοχή I-Plateau → Περιοχή III Power law, αντίστοιχα). Η εξίσωση του γενικευμένου μοντέλου για την Περιοχή ΙΙ είναι η αρχική εξίσωση (Δ6.1).
- Περιοχή ΙΙΙ Power law: Στην περιοχή ΙΙΙ όπου πλέον έχουμε αρκετά υψηλές τιμές του γινομένου (αφ) και άρα διαλύματα υψηλών συγκεντρώσεων, παρατηρούμε μια δραστική μείωση των τιμών της παραμέτρου (χ), όταν το γινόμενο (αφ) αυξάνεται. Έτσι αν στην εξίσωση (Δ6.1) υποθέσουμε ότι το γινόμενο (αφ) είναι αφ→∞ τότε θα έχουμε σαν αποτέλεσμα την παρακάτω εξίσωση (Δ6.3):

$$\chi = \frac{A + \alpha \varphi}{B + (\alpha \varphi)^n} \Longrightarrow \chi = \frac{\alpha \varphi}{(\alpha \varphi)^n} \Longrightarrow \chi = (\alpha \varphi)^{1 - n}$$
($\Delta 6.3$)

, όπου το γινόμενο (nA) ένας σταθερός αριθμός.

Έτσι βάσει της ανωτέρω εξίσωσης (Δ6.3) επιβεβαιώνεται η αρνητική κλίση της πορείας που ακολουθούν τα αποτελέσματα στην Περιοχή ΙΙΙ – Power law.

Τα παρακάτω διαγράμματα (σχήματα 61,62,63,64,65), όπως προαναφέρθηκε, περιγράφουν ξεχωριστά για κάθε τιμή (α) μια πιο λεπτομερή εικόνα για την διακύμανση των τιμών της παραμέτρου (χ), η οποία προκύπτει από τον συνδυασμό των πέντε (5) επαναλήψεων για τυχαίου προσανατολισμού κατανομές και πέντε (5) επαναλήψεων για προσανατολισμένες κατανομές που διενεργήθηκαν στην παρούσα εργασία για κάθε υπολογιστικό πείραμα (25 συνδυασμοί, βλ. Προσάρτημα αποτελεσμάτων - ΣΤ).

Σχήμα 61 Λεπτομερής απεικόνιση αποτελεσμάτων της παραμέτρου (χ) για κάθε αφ με α=25 - κάθε σημείο αντιστοιχεί σε ένα αριθμητικό αποτέλεσμα υπολογιστικού πειράματος, επομένως σε κάθε τιμή (αφ) αντιστοιχούν 25 πειραματικά δεδομένα

Σχήμα 62 Λεπτομερής απεικόνιση αποτελεσμάτων της παραμέτρου (χ) για κάθε αφ με α=50 - κάθε σημείο αντιστοιχεί σε ένα αριθμητικό αποτέλεσμα υπολογιστικού πειράματος (σε κάθε τιμή (αφ) αντιστοιχούν 25 πειραματικά δεδομένα)

με α=100 - κάθε σημείο αντιστοιχεί σε ένα αριθμητικό αποτέλεσμα υπολογιστικού πειράματος (σε κάθε τιμή (αφ) αντιστοιχούν 25 πειραματικά δεδομένα)

Σχήμα 64 Λεπτομερής απεικόνιση αποτελεσμάτων της παραμέτρου (χ) για κάθε αφ με α=150 - κάθε σημείο αντιστοιχεί σε ένα αριθμητικό αποτέλεσμα υπολογιστικού πειράματος (σε κάθε τιμή (αφ) αντιστοιχούν 25 πειραματικά δεδομένα)

Σχήμα 65 Λεπτομερής απεικόνιση αποτελεσμάτων της παραμέτρου (χ) για κάθε αφ με α=200 - κάθε σημείο αντιστοιχεί σε ένα αριθμητικό αποτέλεσμα υπολογιστικού πειράματος (σε κάθε τιμή (αφ) αντιστοιχούν 25 πειραματικά δεδομένα)

Όπως παρατηρούμε για το σύνολο των ανωτέρω διαγραμμάτων, οι τιμές της παραμέτρου (χ) εμφανίζουν μια διακύμανση για κάθε τιμή του γινομένου (αφ) η οποία οφείλεται στο γεγονός ότι κάθε ένα αποτέλεσμα αντιστοιχεί σε μια διαφορετική γεωμετρία, έστω και αν οι σχετικές παράμετροι (α,φ,και N) είναι ίδιες. Παρατηρούμε επίσης πως αν επιχειρήσουμε μια σύγκριση μεταξύ αυτών των διαγραμμάτων, (σχήματα 61,62,63,64,65) θα διαπιστώσουμε για όλη την πορεία της καμπύλης των αποτελεσμάτων και για κάθε κατηγορία διαλύματος (αραιά, ημιαραιά και πυκνά), η διακύμανση των τιμών της παραμέτρου μειώνεται καθώς αυξάνεται η τιμή του (α). Τέλος επιβεβαιώνεται ξανά η ασυμπτωτική συμπεριφορά της παραμέτρου (χ) κοντά στην τιμή 0.5 για αφ \rightarrow 0.

Δ7. ΠΑΡΟΥΣΙΑΣΗ ΔΙΑΓΡΑΜΜΑΤΩΝ ΚΑΤΑΝΟΜΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΩΝ ΦΥΛΛΙΔΙΩΝ

Προκειμένου να παρουσιαστούν ορισμένα παραδείγματα κατανομών προσανατολισμού των φυλλιδίων στο εσωτερικό των μεμβρανών, τα οποία δημιουργήθηκαν κατά την διεξαγωγή των υπολογιστικών πειραμάτων, επιλέχθησαν κατανομές για αραιά, ημιαραιά και πυκνά διαλύματα, μόνο για τυχαίου προσανατολισμού κατανομές φυλλιδίων εφόσον για προσανατολισμένες κατανομές τα σχετικά διαγράμματα δεν μας δίνουν κάποια πληροφορία για τον προσανατολισμό.

Τα διαγράμματα που ακολουθούν αντιστοιχούν στις εξής παραμέτρους:

- $\alpha \phi = 0.01$
- Αριθμός φυλλιδίων N = 1000

• Aspect ratio
$$a = \frac{\ell}{t}$$
, $\alpha = 100$

Από τα διαγράμματα κατανομής προσανατολισμού λαμβάνουμε πληροφορίες για την κατανομή των φυλλιδίων ανάλογα με την γωνία προσανατολισμού τους (θ) στην πολυμερική μήτρα. Συγκεκριμένα το ύψος κάθε μπάρας (bar) των διαγραμμάτων κατανομής δηλώνει το ποσοστό (%) των φυλλιδίων με προσανατολισμό στο αντίστοιχο διάστημα (Δθ). Έτσι μπορούμε να υπολογίσουμε και το ακριβές πλήθος των φυλλιδίων

που τοποθετείται σε κάθε γωνία μεταξύ του διαστήματος $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

Όπως παρατηρούμε στα διαγράμματα κατανομής, οι τιμές του κάθετου άξονα (P) που λαμβάνουμε για κάθε Δθ μπορούν να μας δώσουν το ακριβές πλήθος των φυλλιδίων σύμφωνα με την σχέση:

$$P_i = \frac{N_i}{N} \tag{A7.1}$$

,όπου i ο αύξων αριθμός για κάθε (Δθ_i) και N_i ο ακριβής αριθμός των φυλλιδίων που θέλουμε να υπολογίσουμε για κάθε (Δθ_i) μεταξύ του διαστήματος $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$. Έτσι εφόσον το συνολικό πλήθος των φυλλιδίων είναι γνωστό (N=1000) και το ποσοστό (%) P_i λαμβάνεται από τα διαγράμματα κατανομής, μπορούμε από την ανωτέρω εξίσωση (Δ7.1) να υπολογίσουμε τον αριθμό των φυλλιδίων (N_i) για κάθε (Δθ).

Τα παραπάνω διαγράμματα δείχνουν ότι το κάθε ένα υπολογιστικό μοντέλο (γεωμετρία) δεν είναι τυχαίου προσανατολισμού με την μαθηματική έννοια του όρου - σε αυτή την περίπτωση θα έπρεπε τα ανωτέρω διαγράμματα να εμφανίζουν το ίδιο ποσοστό φυλλιδίων (P), για κάθε Δθ στο διάστημα από $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

Για αυτόν τον λόγο και με σκοπό την καλύτερη κατανόηση της κατανομής των φυλλιδίων στο εσωτερικό του πολυμερούς, επιχειρήσαμε την δημιουργία ενός διαγράμματος κατανομής προσανατολισμού το οποίο θα περιλαμβάνει τις κατανομές των

ανωτέρω διαγραμμάτων (σχήματα 66,67,68,69,70) σαν σύνολο για κάθε (Δθ). Έτσι στο παρακάτω διάγραμμα (Σχήμα 71) απεικονίζεται η συνολική κατανομή των φυλλιδίων για τις πέντε (5) προηγούμενες κατανομές τυχαίου προσανατολισμού μεταξύ του διαστήματος

$$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}.$$

Από το διάγραμμα αυτό (Σχήμα 71) και συγκριτικά με τις κατανομές προσανατολισμού των φυλλιδίων των προηγούμενων διαγραμμάτων (σχήματα 66,67,68,69,70), παρατηρούμε ότι η συνολική ποσοστιαία κατανομή των φυλλιδίων στο διάστημα μεταξύ του προαναφερθέντος εύρους γωνιών για κάθε (Δθ) κυμαίνεται σε ποσοστά (%) με μικρές διαφορές μεταξύ τους. Σαν αποτέλεσμα, το παρακάτω διάγραμμα μας οδηγεί στο συμπέρασμα ότι η κατανομή του προσανατολισμού των φυλλιδίων στο εσωτερικό του πολυμερούς είναι μια τυχαία κατανομή.

Σχήμα 71 – Συνολική κατανομή προσανατολισμού (πέντε (5) κατανομές φυλλιδίων)

Δ8. ΜΕΤΑΒΟΛΗ ΤΗΣ ΣΥΓΚΕΝΤΡΩΣΗΣ ΣΤΟ ΕΣΩΤΕΡΙΚΟ ΤΗΣ

ΜΕΜΒΡΑΝΗΣ

Όπως προαναφέρθηκε στην αρχή παρουσίασης των αποτελεσμάτων και παρατηρείται στο διάγραμμα ροής (Σχήμα 41, $\Delta 1.1$), οι υπολογισμοί και τα αποτελέσματα των προγραμμάτων που χρησιμοποιήθηκαν, μας δίνουν αρκετές πληροφορίες για την μικροδομή των μεμβρανών. Μία σημαντική κατηγορία υπολογισμών αφορά τον υπολογισμό της λύσης στο εσωτερικό της μεμβράνης και τον σχηματισμό ισοϋψών καμπυλών. Για τον λόγο αυτό και προκειμένου να παρατηρήσουμε την μεταβολή της συγκέντρωσης στο εσωτερικό της μεμβράνης, δημιουργήθηκαν τα παρακάτω διαγράμματα (Σχήμα 72 και 73).

Σχήμα 72 Ισοϋψείς καμπύλες σε μια επιλεγμένη περιοχή του υπολογιστικού πλέγματος με προσανατολισμένη κατανομή φυλλιδίων και απεικόνιση των τιμών της συγκέντρωσης. Δεδομένα: φ=0.01, a=100 και N=50.

Όπως παρατηρούμε στο παραπάνω σχήμα απεικονίζονται ευδιάκριτα οι ισοϋψείς καμπύλες μιας προσανατολισμένης κατανομής φυλλιδίων με αυξημένες τιμές συγκεντρώσεως στην κάτω περιοχή, οι οποίες μειώνονται σταδιακά καθώς ανεβαίνουμε προς την επάνω περιοχή. Όμοια και πιο ευδιάκριτα παρατηρούμε αυτές της μεταβολές της συγκέντρωσης και στα παρακάτω διαγράμματα (Σχήμα 73 και 74) και πιο συγκεκριμένα στο σχήμα 74, όπου η μεταβολή της συγκέντρωσης απεικονίζεται με γραμμική κλιμάκωση από την μπλε περιοχή (0) στην κόκκινη (100).

Σχήμα 73 Ισοϋψείς καμπύλες σε μια επιλεγμένη περιοχή του υπολογιστικού πλέγματος με τυχαία κατανομή φυλλιδίων και απεικόνιση των τιμών της συγκέντρωσης. Δεδομένα: φ=0.01, a = 5 και N=100.

Σχήμα 74 Ισοϋψείς καμπύλες πεδίου συγκέντρωσης για σύστημα τυχαία τοποθετημένων φυλλιδίων με φ= 0.01, α=100, και N=100. Η κλιμάκωση των χρωμάτων γίνεται γραμμικά από την μπλε περιοχή (0) στην κόκκινη (100) [1]

<u>Ε. ΣΥΜΠΕΡΑΣΜΑΤΑ</u>

Ε1. ΓΕΝΙΚΑ

Ο ενεργειακός τομέας, η ασφάλεια των υδάτων, η κλιματική αλλαγή και η ποιότητα των τροφίμων αποτελούν τα τελευταία χρόνια ορισμένους από τους πιο σημαντικούς επιστημονικούς τομείς οι οποίοι απαιτούν εξέλιξη και βελτίωση. Η τεχνολογία των μεμβρανών μπορεί να συνεισφέρει σε αυτή την κατεύθυνση προσφέροντας δύο σημαντικά πλεονεκτήματα όπως η χρήση μικρών ποσοτήτων ενέργειας και η σημαντική μείωση του κόστους με το τελευταίο να αποτελεί το κλειδί για την είσοδο νέων προϊόντων και νέων τεχνολογιών στη βιομηχανία. Η νανοτεχνολογία χρησιμοποιείται συχνά για την ανάπτυξη νέων σύνθετων πολυμερικών μεμβρανών με βελτιωμένες ιδιότητες μόνωσης, διατηρώντας παράλληλα τα επίπεδα παραγωγικότητας που έχουν ήδη επιτευχθεί στη βιομηχανία.

Αν και η βελτίωση των μονωτικών ιδιοτήτων των υλικών ίσως δεν είχε προσελκύσει τόσο πολύ την προσοχή της βιομηχανίας, τις τελευταίες δεκαετίες, όταν αυτή άρχισε να σχετίζεται κυρίως με την τεχνολογία συσκευασίας τροφίμων και πλήθος άλλων εφαρμογών κάνοντας χρήση σύνθετων πολυμερικών υλικών, εξελίχθηκε σε έναν σημαντικό ερευνητικό τομέα. Για παράδειγμα, η αύξηση της διάρκειας ζωής των τροφίμων μπορεί να επιτευχθεί σήμερα με χαμηλή θερμοκρασία αποθήκευσης, σε συνδυασμό με τις ιδιαίτερες συνθήκες συσκευασίας. Επομένως η ευρύτερη εφαρμογή των μεμβρανών με βελτιωμένες μονωτικές ιδιότητες στην βιομηχανία τροφίμων μπορεί να οδηγήσει σε επέκταση της διάρκειας ζωής των προϊόντων. Η επίτευξη του στόχου της μείωσης της μεταφοράς οζυγόνου μέσω συσκευασιών τροφίμων θα επιτρέψει την διεύρυνση των εφαρμογών των πολυμερικών μεμβρανών.

Έχοντας έτσι ένα σημαντικό κίνητρο για την εκπόνηση της παρούσας εργασίας, αρχικά, επιχειρήσαμε να παρουσιάσαμε κάποιες γενικές πληροφορίες για την σύνθεση και την τεχνολογία των μεμβρανών, την συνεχώς αναπτυσσόμενη τεχνολογία των νανοσύνθετων πολυμερικών μεμβρανών καθώς και την διάχυση των μορίων διαμέσου αυτών. Στη συνέχεια κάνοντας μια ανασκόπηση στην ήδη υπάρχουσα βιβλιογραφία περιγράψαμε ένα αριθμό από μελέτες πρόβλεψης του συντελεστή βελτίωσης ιδιοτήτων μόνωσης των μεμβρανών (Barrier Improvement factor).

Τέλος, χρησιμοποιώντας υπάρχοντες κώδικες προγραμματισμού FORTRAN επιχειρήσαμε μια άμεση αριθμητική προσέγγιση με την μέθοδο των συνοριακών στοιχείων (fast-multipole accelerated) και με την εκτέλεση ενός πλήθους υπολογιστικών πειραμάτων, λάβαμε κάποια σημαντικά αποτελέσματα για τον προαναφερόμενο συντελεστή BIF σαν συνάρτηση του γινομένου (αφ), τα οποία παρουσιάσαμε και αναλύσαμε στο (Δ) κεφάλαιο των αποτελεσμάτων.

Ε2. ΣΥΜΠΕΡΑΣΜΑΤΑ ΒΑΣΕΙ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΗΣ ΠΑΡΟΥΣΑΣ ΕΡΓΑΣΙΑΣ

Τα αποτελέσματα της παρούσας εργασίας μας οδήγησαν σε ορισμένα σημαντικά συμπεράσματα για τις μελέτες των φαινομένων μεταφοράς μάζας διαμέσου σύνθετων πολυμερικών μεμβρανών με χρήση ενισχυτικών φυλλιδίων.

Οι γεωμετρίες των συστημάτων προσανατολισμένων κατανομών έδειξαν θετικά αποτελέσματα βελτίωσης των ιδιοτήτων μόνωσης των μεμβρανών, ιδίως σε σύγκριση με τα συστήματα φυλλιδιών τυχαίου προσανατολισμού. Αυτό οφείλεται στο γεγονός ότι η προσανατολισμένη διάταξη των φυλλιδίων μεγιστοποιεί την απόσταση που διανύουν τα διαχεόμενα μόρια διαμέσου των σύνθετων μεμβρανών και εμποδίζει την παρουσία σύντομων διαδρομών. Αντίστοιχη βελτίωση παρατηρείται και για κατανομές τυχαίου προσανατολισμού φυλλιδίων αλλά με χαμηλότερες τιμές του συντελεστή BIF. Αυτό οφείλεται στο γεγονός ότι σε αυτές τις γεωμετρίες εμφανίζονται πιο συχνά σύντομες διαδρομές στη μικροδομή του πολυμερούς. Επίσης για τις κατανομές τυχαίου προσανατολισμού φυλλιδίων τα αποτελέσματα, μας έδειξαν την ύπαρξη δύο διαφορετικών τάσεων σχετικά με τον συντελεστή βελτίωσης των ιδιοτήτων μόνωσης των μεμβρανών ως συνάρτηση του γινομένου (αφ). Αυτές ήταν η εκθετική συμπεριφορά των αποτελεσμάτων για συστήματα υψηλής συγκέντρωσης φυλλιδίων με υψηλές τιμές (α) λόγω της αύξησης της απόστασης που διανύουν τα διαχεόμενα μόρια και η γραμμική συμπεριφορά για χαμηλότερες συγκεντρώσεις φυλλιδίων.

Ακόμη χρησιμοποιώντας την παράμετρο (χ) ως ένα μέτρο σύγκρισης των αποτελεσμάτων μας μεταξύ των δύο διαφορετικών κατανομών (ποροσανατολισμένων και τυχαίου προσανατολισμού) και στη συνέχεια τον μέσο όρο αυτών των παραμέτρων, παρατηρήσαμε ότι όσο αυξάνεται το γινόμενο αφ, δηλαδή για διαλύματα υψηλής συγκέντρωσης, οι τιμές του μέσου όρου της παραμέτρου (χ) μειωνόταν δραστικά.

Επίσης κατά την βιβλιογραφική ανασκόπηση του κεφαλαίου (Γ) παρατηρήσαμε ότι, τα αποτελέσματα των υπολογισμών της παρούσας εργασίας βρίσκονται σε συμφωνία με προηγούμενα αποτελέσματα ορισμένων παρόμοιων προσεγγίσεων και προβλέψεων και σε σύγκριση με αριθμητικές λύσεις για το πρόβλημα της διάχυσης σε όλο το εύρος τιμών του (α), του ποσοστού φόρτισης (φ) καθώς και για κάθε μορφολογία φυλλιδίων που αναφέρεται στη βιβλιογραφία. Η αριθμητική προσέγγιση της παρούσας εργασίας δείχνει ότι η μείωση της μεταφοράς μάζας διαμέσου σύνθετων πολυμερικών μεμβρανών που περιέχουν διεσπαρμένα φυλλίδια στο εσωτερικό τους, μεταβάλλεται ανάλογα τον προσανατολισμό τη μορφολογία και το ποσοστό φόρτισης των φυλλιδίων ενώ κατά την

101

βιβλιογραφική ανασκόπηση παρατηρήσαμε πως ένας σημαντικός αριθμός των μελετών για τις ιδιότητες μόνωσης αυτών των υλικών δεν λαμβάνει υπόψη τις διαφορές στη μικροδομή των φυλλιδίων και επομένως δεν είναι σε θέση να προβλέψουν αποτελεσματικά τις μεταβολές της ταχύτητας διάχυσης των μορίων.

Βάσει λοιπόν των αποτελεσμάτων των υπολογιστικών πειραμάτων και της ανάλυσή τους, καταλήγουμε στο συμπέρασμα ότι η παρούσα μελέτη και οι πληροφορίες που συλλέξαμε για την διάχυση των μορίων μέσω των νανοσύνθετων πολυμερικών μεμβρανών, σε συνδυασμό με το μειωμένο κόστος αν αυτή συγκριθεί με την κατηγορία των πειραματικών μελετών, αποτελούν ένα σημαντικό βήμα για την ένταξη αυτής της τεχνολογίας στην βιομηχανία και την επίλυση σημαντικών προβλημάτων που αντιμετωπίζονται σε ένα μεγάλο πλήθος εφαρμογών.

Τέλος συνοψίζοντας τα ανωτέρω μπορούμε να πούμε πως τα αριθμητικά αποτελέσματα της παρούσας εργασίας τα οποία προέρχονται από την επικράτηση της αύξησης της απόστασης που διανύουν τα διαχεόμενα μόρια διαμέσου των σύνθετων πολυμερικών μεμβρανών, επιτρέπουν την διεξαγωγή μιας χρήσιμης συζήτησης γύρω από θέματα ενίσχυσης των ιδιοτήτων μόνωσης.

Ε3. ΠΡΟΤΑΣΕΙΣ ΓΙΑ ΠΕΡΑΙΤΕΡΩ ΜΕΛΕΤΗ ΤΩΝ ΦΑΙΝΟΜΕΝΩΝ ΜΕΤΑΦΟΡΑΣ ΔΙΑΜΕΣΟΥ ΣΥΝΘΕΤΩΝ ΜΕΜΒΡΑΝΩΝ

Στο παρόν εδάφιο της εργασίας θεωρήσαμε ορθό, να αναφέρουμε ορισμένες προτάσεις για την περαιτέρω μελέτη του αντικειμένου της παρούσας εργασίας με σκοπό, την βελτίωση των αποτελεσμάτων αυτών των μελετών αλλά και την γενικότερη εμβάθυνση στη μελέτη φαινομένων μεταφοράς μέσω σύνθετων πολυμερικών μεμβρανών.

Αρχικά θα πρέπει να δοθεί έμφαση στο ότι, οι πραγματικές σύνθετες μεμβράνες σπάνια κατέχουν άριστες μικροδομές, όπως τέλεια τοποθετημένα φυλλίδια ή άλλα ενισχυτικά μέσα, άριστο περιβάλλον μεταξύ των διεπαφών των ενισχυτικών, πλήρη διασπορά αυτών στην πολυμερική μήτρα και άλλα χαρακτηριστικά. Κατά συνέπεια θα πρέπει να είμαστε προσεκτικοί όταν συγκρίνουμε πειραματικά δεδομένα με προβλέψεις θεωρητικών μοντέλων. Ο αυστηρός έλεγχος των υποθέσεων που πραγματοποιήσαμε για κάθε μοντέλο είναι δυνατό να μας αποκαλύψει τον λόγο της συμφωνίας ή μη μεταξύ των πειραματικών

Επιπρόσθετα, με την συνεχή πρόοδο των αριθμητικών τεχνικών, η άμεση αριθμητική προσομοίωση έχει το σημαντικό πλεονέκτημα του να μπορεί να ενσωματώσει στην ανάλυση λεπτομερείς πληροφορίες για την μικροδομή, καταλήγοντας έτσι σε μια ισχυρή ικανότητα πρόβλεψης.

Έτσι καταλήγουμε στο συμπέρασμα ότι μια πολύ σημαντική πρόταση βελτίωσης αυτής της κατηγορίας μελετών, θα μπορούσε να είναι η σύνταξη και δημιουργία ενός βελτιωμένου κώδικα εκτέλεσης προσομοιώσεων με δυνατότητα τρισδιάστατης απεικόνισης της μικροδομής των μεμβρανών και των ενισχυτικών μέσων, λεπτομερέστερη εισαγωγή δεδομένων, επιλογή τύπου ενισχυτικών μέσων, διόρθωση της εμφάνισης του κενού χώρου που περιγράψαμε στην §Δ2, καθώς επίσης και διεύρυνση του πλήθους, των τύπων και των κατηγοριών των υπολογιστικών αποτελεσμάτων.

Τέλος η αριθμητική προσομοίωση μπορεί να βελτιωθεί περαιτέρω λαμβάνοντας υπόψη τις επιρροές που προκαλούν οι υποθέσεις του προσανατολισμού και της διασποράς των ενισχυτικών μέσων. Έτσι θα μπορούσαμε να πούμε ότι η μελέτη του συντελεστή βελτίωσης των ιδιοτήτων μόνωσης σύνθετων πολυμερικών μεμβρανών ενισχυμένων με φυλλίδια συγκεκριμένου, και ορισμένου ως δεδομένο προσανατολισμό, θα αποτελούσε ένα πολύ σημαντικό βήμα για την εξέλιξη και περαιτέρω ανάλυση των φαινομένων μεταφοράς μάζας διαμέσου αυτών των υλικών.

ΣΤ. ΠΡΟΣΑΡΤΗΜΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

ΣΤ1. ΠΙΝΑΚΕΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

1 - RESULTS							
ao=0.01/0.1/0.16/0.3/0.7/1/3							
aq = 0.01 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.							
	aspect ratio = 25 $1000 flaboa$						
		5 17	andom - 5 a	ingned runs (DIF) for			
αφ=0.01	1	[1			I	
a-25		DIE		DIE	possible		
<u>u=25</u>	#0.0	DIF	a1 a	DIF	complitations	X	
	ra h	1,004900	al-a	1,009408	aa	0,523870	
	1a-0	1,004930		1,009478	aD	0,523317	
	ra-c	1,004900		1,009473	ac	0,523465	
	ra-d	1,005124	al-d	1,009480	ad	0,523207	
	ra-e	1,005020	al-e	1,009484	ae	0,522986	
					ba	0,523447	
					bb	0,522895	
					bc	0,523061	
					bd	0,522785	
					be	0,522564	
					са	0,517533	
					cb	0,516987	
					сс	0,517150	
					cd	0,516878	
					ce	0,516660	
					da	0,541191	
					db	0,540620	
					dc	0.540792	
					dd	0.540506	
					de	0.540278	
					ea	0 530207	
					eh	0 529648	
					0	0,529815	
					od	0,529536	
					eu	0,529330	
						0,525313	
					average value	0,320749	
0.1					standard deviation	0,008040492	
αφ=0.1							
		DIE		DIE	possible		
a=25		BIF	1	BIF	combinations	X	
	ra-a	1,0504//	al-a	1,09/533		0,51/538	
	ra-b	1,050/92	al-b	1,096809	ab	0,521408	
	ra-c	1,050954	al-c	1,096421	ac	0,523506	
	ra-d	1,050374	al-d	1,096761	ad	0,521667	
	ra-e	1,050216	al-e	1,097167	ae	0,519487	
					ba	0,520767	
					bb	0,524662	

					bc	0.526773
					bd	0,524922
					be	0.522729
					ca	0.522428
					ch	0.526335
					CC	0.528453
					cd	0.526596
					ce ce	0.524396
					da	0.516482
					db	0.520344
					dc	0.522438
					dd	0.520602
					de	0.518427
					ea	0.514862
					eb	0.518712
					ec	0.520799
			<u> </u>		ed	0.518969
						0 516801
			<u> </u>		average value	0.521604
					standard deviation	0.003467122
ao-0 16					stundur u uc viution	0,00010/122
αφ=0.10					nossible	
a=25		BIF		BIF	combinations	x
0. 20	ra-a	1.082393	al-a	1.157406	aa	0.523443
	ro h	1 0811/7	al-b	1.157812	ab	0.522096
	14-12		LLI L /			
	ra-c	1.082327	al-c	1,158525	ac	0,519748
	ra-c ra-d	1,081147 1,082327 1.079347	al-c al-d	1,158525 1,156650	ac ad	0,519748 0,525969
	ra-c ra-d ra-e	1,081147 1,082327 1,079347 1,083348	al-c al-d al-e	1,158525 1,156650 1,158411	ac ad ae	0,519748 0,525969 0,520122
	ra-c ra-d ra-e	1,081147 1,082327 1,079347 1,083348	al-c al-d al-e	1,158525 1,156650 1,158411	ac ad ae ba	0,519748 0,525969 0,520122 0,515527
	ra-c ra-d ra-e	1,081147 1,082327 1,079347 1,083348	al-c al-d al-e	1,158525 1,156650 1,158411	ac ad ae ba bb	0,522030 0,519748 0,525969 0,520122 0,515527 0,514200
	ra-c ra-d ra-e	1,081147 1,082327 1,079347 1,083348	al-c al-d al-e	1,158525 1,156650 1,158411	ac ad ae ba bb bb	0,519748 0,525969 0,520122 0,515527 0,514200 0,511888
	ra-c ra-d ra-e	1,081147 1,082327 1,079347 1,083348	al-c al-d al-e	1,158525 1,156650 1,158411	ac ad ad ae ba ba bb bb bc bc bd	0,519748 0,525969 0,520122 0,515527 0,514200 0,511888 0,518015
	ra-c ra-d ra-e	1,081147 1,082327 1,079347 1,083348	al-c al-d al-e	1,158525 1,156650 1,158411	ac ad ad ba ba bb bb bb bb bb bb bb bb bb bb bb	0,522030 0,519748 0,525969 0,520122 0,515527 0,514200 0,511888 0,518015 0,512256
	ra-c ra-d ra-e	1,081147 1,082327 1,079347 1,083348	al-c al-d al-e	1,158525 1,156650 1,158411	ac ad ad ae ba ba bb bb bc bc bd bd be ca	0,5122030 0,519748 0,525969 0,520122 0,515527 0,514200 0,511888 0,518015 0,512256 0,523023
	ra-c ra-d ra-e	1,081147 1,082327 1,079347 1,083348	al-c al-d al-e	1,158525 1,156650 1,158411	ac ac ad ae ba ba bb bb bc bc bd bd be ca ca cb	0,522030 0,519748 0,525969 0,520122 0,515527 0,514200 0,511888 0,518015 0,512256 0,523023 0,521678
	ra-c ra-d ra-e	1,081147 1,082327 1,079347 1,083348	al-c al-d al-e	1,158525 1,156650 1,158411	ac ac ad ae ba bb bb bb bb bb bb bc bd bd bc ca cb cc	0,522030 0,519748 0,525969 0,520122 0,515527 0,514200 0,511888 0,518015 0,512256 0,523023 0,521678 0,519331
		1,081147 1,082327 1,079347 1,083348	al-c al-d al-e	1,158525 1,156650 1,158411	ac ac ad ae ba bb bb bc bc bc bd bc bd bc cc cc cc cc cd	0,5122030 0,519748 0,525969 0,520122 0,515527 0,514200 0,511888 0,518015 0,512256 0,523023 0,521678 0,519331 0,525547
		1,081147 1,082327 1,079347 1,083348	al-c al-d al-e	1,158525 1,156650 1,158411	ac ac ad ad ba ba bb bb bb bb bb bb bc bb bb bc ca ca cb cc cc cd cc	0,5122030 0,519748 0,525969 0,520122 0,515527 0,514200 0,511888 0,518015 0,512256 0,523023 0,521678 0,519331 0,525547 0,519705
		1,081147 1,082327 1,079347 1,083348	al-c al-d al-e	1,158525 1,156650 1,158411	ac ac ad ae ba bb bc bd bc ca cb cc cd cc cd ce da	0,522030 0,519748 0,525969 0,520122 0,515527 0,514200 0,511888 0,518015 0,512256 0,523023 0,521678 0,519331 0,525547 0,519705 0,504091
		1,081147 1,082327 1,079347 1,083348		1,158525 1,156650 1,158411	ac ac ad ae ba bb bc bd bc bd ca cb cc cc cd cc da db	0,5122030 0,519748 0,525969 0,520122 0,515527 0,514200 0,511888 0,518015 0,512256 0,523023 0,521678 0,519331 0,525547 0,519705 0,504091 0,502794
		1,081147 1,082327 1,079347 1,083348	al-c al-d al-e	1,158525 1,156650 1,158411	ac ac ad ae ba bb bc bd bc bd bc ca cb cc cc cd ce da db dc	0,5125030 0,519748 0,525969 0,520122 0,515527 0,514200 0,511888 0,518015 0,512256 0,523023 0,521678 0,519331 0,525547 0,519705 0,504091 0,502794 0,500533
		1,081147 1,082327 1,079347 1,083348		1,158525 1,156650 1,158411	ac ac ad ae ba bb bc bd bc ca cb cc cc cc cd ce da db dc dd	0,522030 0,519748 0,525969 0,520122 0,515527 0,514200 0,511888 0,518015 0,512256 0,523023 0,521678 0,519331 0,525547 0,519705 0,504091 0,502794 0,500533 0,506524
		1,081147 1,082327 1,079347 1,083348		1,158525 1,156650 1,158411	ac ac ad ae ba bb bc bd bc bd bc ca cb cc cc cd cc da db dc dd dd dd dd dd	0,5122030 0,519748 0,525969 0,520122 0,515527 0,514200 0,511888 0,518015 0,512256 0,523023 0,521678 0,519331 0,525547 0,519705 0,504091 0,502794 0,500533 0,506524 0,500893
		1,081147 1,082327 1,079347 1,083348		1,158525 1,156650 1,158411	ac ac ad ae ba bb bc bd bc bd bc ca cb cc cc cd cc da db dc dd dc dd de ea	0,522030 0,519748 0,525969 0,520122 0,515527 0,514200 0,511888 0,518015 0,512256 0,523023 0,521678 0,519331 0,525547 0,519705 0,504091 0,502794 0,500533 0,506524 0,500893 0,529510
		1,081147 1,082327 1,079347 1,083348		1,158525 1,156650 1,158411	ac ac ad ae ba bb bc bd bc bd bc ca cb cc cc cd cc da db dc dd dc dd de ea eb	0,522530 0,519748 0,525969 0,520122 0,515527 0,514200 0,511888 0,518015 0,512256 0,523023 0,521678 0,519331 0,525547 0,519705 0,504091 0,502794 0,500533 0,506524 0,500893 0,529510 0,528147
		1,081147 1,082327 1,079347 1,083348		1,158525 1,156650 1,158411	ac ac ad ae ba bb bc bc bd bc ca cb cc cc cc cd cc da db dc dd dc de ea eb ec	0,522030 0,519748 0,525969 0,515527 0,514200 0,514200 0,514200 0,514200 0,514200 0,512256 0,523023 0,521678 0,519331 0,525547 0,519705 0,504091 0,502794 0,500533 0,529510 0,528147 0,525772
		1,081147 1,082327 1,079347 1,083348		1,158525 1,156650 1,158411	ac ac ad ae ba bb bc bd bc bd bc ca cb cc cc cc cd cc da db dc dd de ea eb ec ed	0,522030 0,519748 0,525969 0,515527 0,515527 0,514200 0,511888 0,518015 0,512256 0,523023 0,521678 0,519331 0,525547 0,519705 0,504091 0,502794 0,500533 0,506524 0,529510 0,528147 0,525772 0,532065
		1,081147 1,082327 1,079347 1,083348			ac ac ad ae ba bb bc bd bc bd bc ca cb cc cc cd cc cd ce da db dc dd de ea eb ec ed ee	0,522570 0,519748 0,525969 0,515527 0,514200 0,514200 0,511888 0,512256 0,512256 0,512256 0,512256 0,523023 0,521678 0,519331 0,525547 0,504091 0,502794 0,500533 0,506524 0,500893 0,529510 0,528147 0,525772 0,532065 0,526150
					ac ac ad ae ba bb bc ca cb cc cc cd cc da db dc dc de ea eb ec ed ee average value	0,522030 0,519748 0,525969 0,515527 0,514200 0,514200 0,514200 0,514200 0,511888 0,512256 0,523023 0,521678 0,519331 0,525547 0,519705 0,504091 0,502794 0,500533 0,506524 0,500893 0,52510 0,528147 0,525772 0,532065 0,526150 0,517961

ωψ-0.0					possible	
α=25		BIF		BIF	combinations	х
	ra-a	1,158169	al-a	1,305200	aa	0,518247
	ra-b	1,152190	al-b	1,304694	ab	0,519108
	ra-c	1,160058	al-c	1,304006	ac	0,520282
	ra-d	1,157446	al-d	1,302506	ad	0,522862
	ra-e	1,155810	al-e	1,306376	ae	0,516258
					ba	0,498657
					bb	0,499485
					bc	0,500615
					bd	0,503097
					be	0,496743
					са	0,524436
					cb	0,525307
					сс	0.526496
					cd	0.529107
					ce	0.522423
					da	0.515878
					db	0.516735
					dc	0.517904
					dd	0.520472
					de	0.513898
					ea	0.510518
					eb	0.511366
					ec	0.512523
					ed	0.515064
					ee	0.508558
					average value	0.514642
					standard deviation	0.008969156
αφ=0.7						- ,
					possible	
α=25		BIF		BIF	combinations	X
	ra-a	1,390146	al-a	1,775732	aa	0,502939
	ra-b	1,381121	al-b	1,773758	ab	0,504222
	ra-c	1,405935	al-c	1,772304	ac	0,505172
	ra-d	1,378239	al-d	1,768228	ad	0,507852
	ra-e	1,355603	al-e	1,772817	ae	0,504836
					ba	0,491305
					bb	0,492558
					bc	0,493486
					bd	0,496104
					be	0,493158
					ca	0,523293
					cb	0,524628
					сс	0,525616
					cd	0.528404
					ce	0.525267
					da	0.487590
					db	0.488834
	1					0.490754
					ac	0.489754

					de	0,489429
					ea	0,458410
					eb	0,459579
					ec	0,460444
					ed	0,462887
					ee	0,460139
					average value	0,494730
					standard deviation	0.021333837
αφ=1						,
					possible	
α=25		BIF		BIF	combinations	x
	ra-a	1,538993	al-a	2,134327	aa	0,475165
	ra-b	1,552378	al-b	2,141309	ab	0,472259
	ra-c	1,580847	al-c	2,149147	ac	0,469037
	ra-d	1,559455	al-d	2,128705	ad	0,477532
	ra-e	1,573920	al-e	2,155889	ae	0,466302
					ba	0,486965
					bb	0,483986
					bc	0,480685
					bd	0,489391
					be	0,477882
					ca	0,512063
					cb	0,508931
					сс	0,505459
					cd	0,514614
					ce	0,502511
					da	0,493204
					db	0,490187
					dc	0,486844
					dd	0,495661
					de	0,484004
					ea	0,505956
					eb	0,502861
					ec	0,499431
					ed	0,508477
					ee	0,496518
					average value	0,491437
					standard deviation	0,013779162
αφ=3	,		· · · · · ·			1
					possible	
α=25		BIF		BIF	combinations	X
	ra-a	2,990341	al-a	5,476769	aa	0,444593
	ra-b	3,822649	al-b	5,519226	ab	0,440416
	ra-c	3,467300	al-c	5,464021	ac	0,445863
	ra-d	2,895641	al-d	5,624018	ad	0,430435
	ra-e	2,955428	al-e	5,708986	ae	0,422669
					ba	0,630510
					bb	0,624587
					bc	0,632311
					DQ L.	0,010432
					De	0,599418
					ca	0,551134

					cb	0,545956
					сс	0,552708
					cd	0,533584
					ce	0,523956
					da	0,423440
					db	0,419461
					dc	0,424649
					dd	0,409955
					de	0,402558
					ea	0,436794
					eb	0,432691
					ec	0,438042
					ed	0,422885
					ee	0,415255
					average value	0,488572
					standard deviation	0.079893303
				2 - RESULTS		- ,
			0.01			
			aφ=0.01	1/0.1/0.16/0.3/0.7/1/3/5/	1	
			:	aspect ratio = 50		
				1000 flakes		
		5 r	andom - 5 s	aligned runs(RIF) for	each ao	
ao-0.01			unuoni e		cuch uy	
<i>u</i> φ=0.01					nossible	
a=50		BIF		BIF	combinations	x
	ra-a	1.004081	al-a	1.008688	88	0.469728
	ra-b	1.004294	al-b	1.008710	ab	0.468542
	ra-c	1.004382	al-c	1.008682	ac	0.470053
	ra-d	1.004512	al-d	1.008695	ad	0.469350
	ra-e	1.004328	al-e	1.008696	ae	0.469296
		-,			ha	0.494245
					bb	0.492997
					bc	0.494587
					bd	0.493847
					be	0.493790
					ca	0.504374
					cb	0.503100
					сс	0.504722
					cd	0.503968
					ce	0.503910
					da	0,519337
					db	0.518025
					dc	0.519696
					dd	0.518919
					de	0,518859
					ea	0,498158
	+ +				eb	0.496900
					ec	0,498503
					ed	0.497757
						0.497700
	+ +				averace value	0.517815
	+ +				standard deviation	0.016158151
			1	1		
					possible	
----------	------	----------	-------------	----------	--------------------	---------------
α=50		BIF		BIF	combinations	X
	ra-a	1,042316	al-a	1,087968	aa	0,481039
	ra-b	1,043603	al-b	1,087944	ab	0,481170
	ra-c	1,045914	al-c	1,087882	ac	0,481509
	ra-d	1,042524	al-d	1,088516	ad	0,478060
	ra-e	1,044283	al-e	1,088535	ae	0,477958
					ba	0,495669
					bb	0,495804
					bc	0,496154
					bd	0,492600
					be	0,492494
					са	0,521940
					cb	0,522082
					сс	0,522451
					cd	0,518708
					ce	0,518597
					da	0.483403
					db	0.483535
					dc	0 483876
					dd	0 480410
					de	0 480307
					uc	0 503399
					eh	0,503536
						0,503550
					ed	0,500282
						0,500282
					tt	0,00173
					standard doviation	0,475702
a.a_0 16					stanuaru ueviation	0,01491800
αφ=0.10					nossible	
a-50		BIE		RIF	combinations	v
u-30	ro o	1.060080	<u>al a</u>	1 1/2281		A 0.401007
	ra h	1,009969	al-a	1,142201	aa	0,491907
	1a-0	1,070505	al a	1,143574	ab	0,487477
	Ta-C	1,070030	al-c	1,142073		0,490348
	Ta-u	1,070987	al-u	1,142271	au	0,491941
	га-е	1,070970	al-e	1,1423/1	<u>ae</u>	0,491396
						0,494535
					DD	0,490082
	-				bc	0,493170
					bd	0,494570
					be	0,494223
					ca	0,496454
					cb	0,491983
					сс	0,495083
					cd	0,496489
					ce	0,496140
					da	0,498921
					db	0,494428
					dc	0,497543
					bb	0.498956

					de	0,498606
					ea	0,498802
					eb	0,494310
					ec	0,497424
					ed	0,498837
					ee	0,498486
					average value	0,494901
					standard deviation	0,003152563
αφ=0.3			1 1			
					possible	
α=50		BIF		BIF	combinations	X
	ra-a	1,135843	al-a	1,276044	aa	0,492106
	ra-b	1,134309	al-b	1,276159	ab	0,491901
	ra-c	1,133175	al-c	1,275330	ac	0,493382
	ra-d	1,135828	al-d	1,273572	ad	0,496553
	ra-e	1,134281	al-e	1,276489	ae	0,491314
					ba	0,486549
					bb	0,486347
					bc	0,487811
					bd	0,490946
					be	0,485766
					са	0,482441
					cb	0,482240
					сс	0,483692
					cd	0,486801
					се	0,481665
					da	0,492052
					db	0,491847
					dc	0,493328
					dd	0,496498
					de	0,491260
					ea	0,486448
					eb	0,486245
					ec	0,487709
					ed	0,490843
					ee	0,485665
					average value	0,488856
					standard deviation	0,004152902
αφ=0.7						
					possible	
α=50		BIF		BIF	combinations	X
	ra-a	1,311592	al-a	1,689766	aa	0,451736
	ra-b	1,311997	al-b	1,695020	ab	0,448321
	ra-c	1,353093	al-c	1,692916	ac	0,449682
	ra-d	1,358289	al-d	1,691395	ad	0,450671
	ra-e	1,337010	al-e	1,696492	ae	0,447373
					ba	0,452323
					bb	0,448904
					bc	0,450267
					bd	0,451257
					be	0,447955
					ca	0,511903

					cb	0.508033
-					сс	0.509575
					cd	0.510696
					Ce	0.506959
					da	0.519436
					db	0.515509
					dc	0.517074
					dd	0.518212
					de	0.514419
					69 69	0.488586
					eh	0.484893
					ec	0.486365
					ed	0.487435
					60	0.483868
					avorago valuo	0,483000
					standard deviation	0,482438
a.a_1					stanuaru ueviation	0,028333232
αφ=1	1		Γ	T	noggible	
a-50		BIF		BIF	possible	v
u-30	roo	1 403117	<u>al a</u>	2.034166	combinations	A 0.476826
	Id-a	1,493117	al-a	2,034100	aa	0,476844
	1a-0	1,310303		2,034120	au	0,470844
	ra d	1,470741	al-c	2,033037	ac	0,407393
		1,400313		2,019941	au	0,483470
	Ta-e	1,491930	al-e	2,020747	ae	0,480271
					Da bb	0,493440
					DD ba	0,493403
					DC bd	0,483084
					Da ba	0,500328
					De	0,497011
					Ca ob	0,402923
					CD	0,402943
					<u> </u>	0,455707
					cu	0,409381
					ce	0,400270
					da Jh	0,472374
					dD do	0,472392
						0,403029
					<u>da</u>	0,478902
					de	0,475702
					ea	0,475705
					eo	0,473722
					ec	0,400293
					ea	0,482338
					ee ovorogo volvo	0,479140
					average value	0,4/0391
					standard deviation	0,011259594
αφ=3						
a-20		BIE		BIE	possible	v
u=30	r 0 0	DIF 2 /50/65	o1 c	DIF // 707012		X 0 294201
	ra-a	2,437403		4,/7/013	aa ch	0,304291
	ra-D	2,/14828	al-0	4,823103	ab	0,381/43
	га-с	2,393302	al-c	4,/83961	ac	0,383098

	ra-d	2,567319	al-d	4,796711	ad	0,384402
	ra-e	2,665216	al-e	4,762130	ae	0,387936
					ba	0,451530
					bb	0,448536
					bc	0,453183
					bd	0,451661
					be	0,455813
					са	0,419584
					cb	0,416802
					сс	0,421120
					cd	0,419706
					ce	0,423564
					da	0,412690
					db	0,409953
					dc	0,414201
					dd	0,412810
					de	0,416604
					ea	0,438467
					eb	0,435560
					ec	0,440072
					ed	0,438594
					ee	0,442626
					average value	0,421886
					standard deviation	0,023182603
αφ=5						
					possible	
=0		DIE		DIE	1	
α=50		BIF	1	BIF	combinations	X
α=50	ra-a	BIF 3,316863	al-a	BIF 7,970510	combinations aa	x 0,332381
α=50	ra-a ra-b	BIF 3,316863 3,671954	al-a al-b	BIF 7,970510 8,446758	combinations aa ab	x 0,332381 0,311124
α=50	ra-a ra-b ra-c	BIF 3,316863 3,671954 3,633468 2,650847	al-a al-b al-c	BIF 7,970510 8,446758 8,092384 8,070027	combinations aa ab ac	x 0,332381 0,311124 0,326669
α=50	ra-a ra-b ra-c ra-d	BIF 3,316863 3,671954 3,633468 3,659847 2,257413	al-a al-b al-c al-d	BIF 7,970510 8,446758 8,092384 8,079027 8,213526	combinations aa ab ac ad ad	x 0,332381 0,311124 0,326669 0,327286
α=50	ra-a ra-b ra-c ra-d ra-e	BIF 3,316863 3,671954 3,633468 3,659847 3,357413	al-a al-b al-c al-d al-e	BIF 7,970510 8,446758 8,092384 8,079027 8,213526	combinations aa ab ac ad ad ae ba	x 0,332381 0,311124 0,326669 0,327286 0,321183 0,383223
α=50	ra-a ra-b ra-c ra-d ra-e	BIF 3,316863 3,671954 3,633468 3,659847 3,357413	al-a al-b al-c al-d al-e	BIF 7,970510 8,446758 8,092384 8,079027 8,213526	combinations aa ab ac ac ad ae ba ba	x 0,332381 0,311124 0,326669 0,327286 0,321183 0,383323 0,383323
α=50	ra-a ra-b ra-c ra-d ra-e	BIF 3,316863 3,671954 3,633468 3,659847 3,357413	al-a al-b al-c al-d al-e	BIF 7,970510 8,446758 8,092384 8,079027 8,213526	combinations aa ab ac ad ae ba bb	x 0,332381 0,311124 0,326669 0,327286 0,321183 0,383323 0,358808 0,376736
α=50	ra-a ra-b ra-c ra-d ra-e	BIF 3,316863 3,671954 3,633468 3,659847 3,357413	al-a al-b al-c al-d al-e	BIF 7,970510 8,446758 8,092384 8,079027 8,213526	combinations aa ab ac ad ae ba bb bc bd	x 0,332381 0,311124 0,326669 0,327286 0,321183 0,383323 0,383323 0,358808 0,376736
α=50	ra-a ra-b ra-c ra-d ra-e	BIF 3,316863 3,671954 3,633468 3,659847 3,357413	al-a al-b al-c al-d al-e	BIF 7,970510 8,446758 8,092384 8,079027 8,213526	combinations aa ab ac ad ae ba bb bc bd	x 0,332381 0,311124 0,326669 0,327286 0,321183 0,383323 0,358808 0,376736 0,377447 0,370409
α=50	ra-a ra-b ra-c ra-d ra-e	BIF 3,316863 3,671954 3,633468 3,659847 3,357413	al-a al-b al-c al-d al-e	BIF 7,970510 8,446758 8,092384 8,079027 8,213526	combinations aa ab ac ad ae ba bb bc bd bc bd	x 0,332381 0,311124 0,326669 0,327286 0,321183 0,383323 0,358808 0,376736 0,377447 0,370409 0,377801
α=50	ra-a ra-b ra-c ra-d ra-e	BIF 3,316863 3,671954 3,633468 3,659847 3,357413	al-a al-b al-c al-d al-e	BIF 7,970510 8,446758 8,092384 8,079027 8,213526	combinations aa ab ac ad ae ba bb bc bd bc bd ca ae	x 0,332381 0,311124 0,326669 0,327286 0,321183 0,383323 0,358808 0,376736 0,377447 0,370409 0,377801 0,353640
α=50	ra-a ra-b ra-c ra-d ra-e	BIF 3,316863 3,671954 3,633468 3,659847 3,357413	al-a al-b al-c al-d al-e	BIF 7,970510 8,446758 8,092384 8,079027 8,213526	combinations aa ab ac ad ac ba bb bb bc bd bc bd ca cb cc	x 0,332381 0,311124 0,326669 0,327286 0,321183 0,383323 0,358808 0,376736 0,377447 0,370409 0,377801 0,353640 0,371309
α=50	ra-a ra-b ra-c ra-d ra-e	BIF 3,316863 3,671954 3,633468 3,659847 3,357413	al-a al-b al-c al-d al-e	BIF 7,970510 8,446758 8,092384 8,079027 8,213526	combinations aa ab ac ad ae ba bb bc bd bc ca cb cb cc cb cc cb cc cd	x 0,332381 0,311124 0,326669 0,327286 0,321183 0,383323 0,358808 0,376736 0,377447 0,377447 0,377409 0,377801 0,353640 0,371309 0,372010
α=50	ra-a ra-b ra-c ra-d ra-e	BIF 3,316863 3,671954 3,633468 3,659847 3,357413	al-a al-b al-c al-d al-e	BIF 7,970510 8,446758 8,092384 8,079027 8,213526	combinations aa ab ac ad ae ba bb bc bd bc bd ca cb cc cb cc cc <th>x 0,332381 0,311124 0,326669 0,327286 0,321183 0,383323 0,358808 0,376736 0,377447 0,370409 0,377801 0,353640 0,371309 0,372010 0,365074</th>	x 0,332381 0,311124 0,326669 0,327286 0,321183 0,383323 0,358808 0,376736 0,377447 0,370409 0,377801 0,353640 0,371309 0,372010 0,365074
α=50	ra-a ra-b ra-c ra-d ra-e	BIF 3,316863 3,671954 3,633468 3,659847 3,357413	al-a al-b al-c al-d al-e	BIF 7,970510 8,446758 8,092384 8,079027 8,213526	combinationsaaabacadacadbabbbbbbbcbdbcbdbccacbcccccdceda	x 0,332381 0,311124 0,326669 0,327286 0,321183 0,383323 0,358808 0,376736 0,377447 0,370409 0,377801 0,353640 0,371309 0,372010 0,365074 0,381586
α=50	ra-a ra-b ra-c ra-d ra-e	BIF 3,316863 3,671954 3,633468 3,659847 3,357413	al-a al-b al-c al-d al-e	BIF 7,970510 8,446758 8,092384 8,079027 8,213526	combinations aa ab ac ad ac ad ba bb bc bd bc ca cb cc cc cc cc cc cd cc cd ce da db	x 0,332381 0,311124 0,326669 0,327286 0,327286 0,321183 0,383323 0,358808 0,376736 0,377447 0,370409 0,377801 0,353640 0,371309 0,372010 0,365074 0,381586 0,357182
α=50	ra-a ra-b ra-c ra-d ra-e	BIF 3,316863 3,671954 3,633468 3,659847 3,357413	al-a al-b al-c al-d al-e	BIF 7,970510 8,446758 8,092384 8,079027 8,213526	combinationsaaabacadacadacbabbbbbbbcbdbcbdbccacbcccccdccdadbdb	x 0,332381 0,311124 0,326669 0,327286 0,321183 0,383323 0,358808 0,376736 0,377447 0,370409 0,377801 0,353640 0,371309 0,372010 0,365074 0,381586 0,357182 0,375029
α=50	ra-a ra-b ra-c ra-d ra-e	BIF 3,316863 3,671954 3,633468 3,659847 3,357413	al-a al-b al-c al-d al-e	BIF 7,970510 8,446758 8,092384 8,079027 8,213526	combinationsaaabacadadacadbabbbbbcbdbcbdbccacbcccccdccdadbdbdcdd	x 0,332381 0,311124 0,326669 0,327286 0,327286 0,321183 0,383323 0,358808 0,376736 0,377447 0,370409 0,377801 0,353640 0,371309 0,372010 0,365074 0,381586 0,357182 0,375029 0,375736
α=50	ra-a ra-b ra-c ra-d ra-e	BIF 3,316863 3,671954 3,633468 3,659847 3,357413	al-a al-b al-c al-d al-e	BIF 7,970510 8,446758 8,092384 8,079027 8,213526	combinationsaaabacadacadbabbbbbcbdbcbdcacbcccccdccdadbdadbdadbdcdddddd	x 0,332381 0,311124 0,326669 0,327286 0,327286 0,321183 0,383323 0,358808 0,376736 0,377447 0,370409 0,377801 0,353640 0,377801 0,353640 0,371309 0,372010 0,365074 0,381586 0,375029 0,375736 0,368730
α=50	ra-a ra-b ra-c ra-d ra-e	BIF 3,316863 3,671954 3,633468 3,659847 3,357413	al-a al-b al-c al-d al-e	BIF 7,970510 8,446758 8,092384 8,079027 8,213526	combinationsaaabacadacadacadbabbbbbcbdbcbdbccacbcccccdccdadbdcdcdddeea	x 0,332381 0,311124 0,326669 0,327286 0,321183 0,383323 0,358808 0,376736 0,377447 0,370409 0,377801 0,377801 0,353640 0,371309 0,372010 0,365074 0,381586 0,357182 0,375736 0,368730 0,338198
α=50	ra-a ra-b ra-c ra-d ra-e	BIF 3,316863 3,671954 3,633468 3,659847 3,357413	al-a al-b al-c al-d al-e	BIF 7,970510 8,446758 8,092384 8,079027 8,213526	combinationsaaabacadacadaebabbbcbdbcbdbccacbcccccdccdadbdcdddeeaeb	x 0,332381 0,311124 0,326669 0,327286 0,327286 0,321183 0,383323 0,358808 0,376736 0,377447 0,370409 0,377801 0,353640 0,377801 0,353640 0,371309 0,372010 0,365074 0,381586 0,357182 0,375029 0,375736 0,368730 0,338198 0,316569
α=50	ra-a ra-b ra-c ra-d ra-e	BIF 3,316863 3,671954 3,633468 3,659847 3,357413	al-a al-b al-c al-d al-e	BIF 7,970510 8,446758 8,092384 8,079027 8,213526	combinationsaaabacadacadaebabbbbbcbdbcbdbccacbcccccdccdadbdbdadbdcdddeeaebec	x 0,332381 0,311124 0,326669 0,327286 0,327286 0,321183 0,383323 0,358808 0,376736 0,377447 0,370409 0,377801 0,353640 0,377801 0,353640 0,377801 0,353640 0,3772010 0,365074 0,381586 0,375029 0,375736 0,368730 0,338198 0,316569 0,332387
α=50	ra-a ra-b ra-c ra-d ra-e	BIF 3,316863 3,671954 3,633468 3,659847 3,357413	al-a al-b al-c al-d al-e	BIF 7,970510 8,446758 8,092384 8,079027 8,213526	combinationsaaabacadacadaebabbbbbcbdbcbdbccacbcccccdcedadbdcdcdddeeaebeced	x 0,332381 0,311124 0,326669 0,327286 0,327286 0,321183 0,383323 0,358808 0,376736 0,377447 0,370409 0,377801 0,377801 0,373640 0,377801 0,353640 0,377801 0,353640 0,377801 0,353640 0,377801 0,353640 0,377801 0,375029 0,375736 0,368730 0,368730 0,338198 0,316569 0,332387 0,333014

					average value	0,353217
					standard deviation	0,023290153
αφ=7				·		
					possible	
α=50		BIF		BIF	combinations	Х
	ra-a	5,058809	al-a	12,35160	aa	0,357554
	ra-b	4,199176	al-b	11,68021	ab	0,380031
	ra-c	4,583751	al-c	12,96525	ac	0,339216
	ra-d	4,491010	al-d	11,85532	ad	0,373900
	ra-e	5,933550	al-e	11,54561	ae	0,384881
					ba	0,281826
					bb	0,299542
					bc	0,267372
					bd	0,294710
					be	0,303366
					са	0,315704
					cb	0,335551
					сс	0,299513
					cd	0,330138
					се	0,339833
					da	0,307535
					db	0,326867
					dc	0,291762
					dd	0,321594
					de	0,331039
					ea	0,434613
					eb	0,461934
					ec	0,412323
					ed	0,454482
					ee	0,467830
					average value	0,348525
					standard deviation	0,057188349
				3 - RESULTS		
			0.01			
			aφ=0.01	/0.1/0.16/0.3/0.7/1/3/	15/7	
			as	spect ratio = 100		
				1000 flakes		
		5 -	andom - 5 o	ligned rung(RIF) fo	r each an	
0.04		51		inglica rans(DIF) io	σι τατιί αψ	
αφ=0.01				DIE		1
α=100	+			BIF	possible combinations	X
	ra-a	1,004301	al-a	1,008278	aa	0,519570
	ra-b	1,004112	al-b	1,008275	ab	0,519758
	ra-c	1,004088	al-c	1,008274	ac	0,519821
	ra-d	1,004359	al-d	1,008272	ad	0,519947
	ra-e	1,004225	al-e	1,008278	ae	0,519570
	───				ba	0,496738
	───				bb	0,496918
					bc	0,496978
					bd	0,497099
	┥──┤				be	0,496738
					ca	0,493839

					cb	0,494018
					сс	0,494078
					cd	0,494197
					ce	0,493839
					da	0,526576
					db	0,526767
					dc	0,526831
					dd	0,526958
					de	0,526576
					ea	0,510389
					eb	0,510574
					ec	0,510636
					ed	0,510759
					ee	0,510389
					average value	0,509583
					standard deviation	0,012668868
αφ=0.1						
α=100		BIF		BIF	possible combinations	X
	ra-a	1.042103	al-a	1.084683	aa	0.497184
	ra-b	1.043855	al-b	1.083546	ab	0.503950
	ra-c	1.042442	al-c	1.083889	ac	0.501889
	ra-d	1.042818	al-d	1.083743	ad	0.502764
	ra-e	1.041286	al-e	1.084239	ae	0.499804
		,		,	ba	0.517873
					bb	0.524920
					bc	0.522774
					bd	0,523686
					be	0.520602
					ca	0.501187
					cb	0,508008
					сс	0,505930
					cd	0,506813
					ce	0,503828
					da	0,505627
					db	0,512508
					dc	0,510413
					dd	0,511302
					de	0,508292
					ea	0,487536
					eb	0,494171
					ec	0,492150
					ed	0,493008
					ee	0,490106
					average value	0,505853
					standard deviation	0,010344952
αφ=0.16			1		1	
α=100		BIF		BIF	possible combinations	X
	ra-a	1,067990	al-a	1,136262	aa	0,498965
	ra-b	1,066224	al-b	1,136021	ab	0,499849
	ra-c	1,068528	al-c	1,135796	ac	0,500677
	ra-d	1,069395	al-d	1,137102	ad	0,495908
	ra-e	1,069881	al-e	1,136027	ae	0,499827

Image: Normal System Image: No						ba	0,486005
bc 0.487673 - bd 0.483027 - - be 0.483027 - - ca 0.502914 - - cb 0.502914 - - cc 0.50305 - - cc 0.50345 - - cc 0.50453 - - cc 0.503782 - - dd 0.50271 - - dd 0.50179 - - dd 0.50173 - - - dd 0.50175 - - - dd 0.51163 - - - dd 0.51163 - - - ec 0.513752 - - - ec 0.514031 - - - ec 0.514031 - - ec 0.514031 0.009491923						bb	0,486866
Image: standard deviation bd 0,483027 Image: standard deviation 0,486845 0,486845 Image: standard deviation 0,503805 0,503805 Image: standard deviation 0,503805 0,503805 Image: standard deviation 0,503805 0,503805 Image: standard deviation 0,50376 0,50376 Image: standard deviation 0,50176 0,50176 Image: standard deviation 0,50176 0,50176 Image: standard deviation 0,50176 0,513752 Image: standard deviation 0,513762 0,513762 Image: standard deviation 0,5009701 0,513762 Image: standard deviation 0,5009701 0,513762 Image: standard deviation 0,5009701 0,5002081 Image: standard deviation 0,5009701 0,5002081 Image: standard deviation 0,500375 aa 0,504398 Image: standard deviation 0,509371 0,498957 nac 0,498957 Image: standard deviation 0,50372 aa 0,50372 Image:						bc	0,487673
μ μ						bd	0,483027
Image: Constraint of the standard deviation Calibrian constraint of the standard deviation Calibrian constraint of the standard deviation Image: Constraint of the standard deviation Image: Constraint of the standard deviation Calibriant of the standard deviation Image: Constraint of the standard deviation Image: Constraint of the standard deviation Calibriant of the standard deviation Image: Constraint of the standard deviation Image: Constraint of the standard deviation Calibriant of the standard deviation Image: Constraint of the standard deviation Image: Constraint of the standard deviation Constraint of the standard deviation Image: Constraint of the standard deviation Image: Constraint of the standard deviation Constraint of the standard deviation Image: Constraint of the standard deviation Image: Constraint of the standard deviation Constraint of the standard deviation Image: Constraint of the standard deviation Image: Constraint of the standard deviation Constraint of the standard deviation Image: Constraint of the standard deviation Image: Constraint of the standard deviation Constraint of the standard deviation Image: Constraint of the standard deviation Image: Constraint of the standard deviation Constraint of the standard deviation Image: Constraint of the standard deviation <td< th=""><th></th><th></th><th></th><th></th><th></th><th>be</th><th>0,486845</th></td<>						be	0,486845
b cc 0.03805 - - - - 0,40439 - - - - 0,30382 - - - - - 0,30382 - - - - da 0,503782 - - - - da 0,50156 - - - - de 0,51024 - - - - ea 0,51372 - - - - ee 0,51372 aq=0.3 - - - average value 0,502081 ra- 1,13073 al-a 1,259305 aa 0,503498 ra- 1,120323 al-d 1,261407 ac 0,498						са	0,502914
Image: book of the sector of the s						cb	0,503805
Image: book of the sector of the s						сс	0,504639
Image: standard deviation Sec end of the sec of						cd	0,499832
Image: book of the sector of the s						се	0,503782
Image: standard deviation Image: standard deviation 0.511024 Image: standard deviation						da	0,509276
Image: book of the section o						db	0,510179
dd						dc	0,511024
Image: standard deviation Image: standard deviation Image: standard deviation Image: standard deviation Image: standard deviation Image: standard deviation Image: standard deviation Image: standard deviation Image: standard deviation Image: standard deviation Image:						dd	0,506156
ea 0.512843 eb 0.513752 ec 0.513752 ec 0.514603 ec 0.513752 ec 0.513752 ec 0.513752 ec 0.509701 ec 0.50081 average value 0.50281 σ=0.3 standard deviation 0.009491923 σ=0.4 1.130793 al-a 1.259305 aa 0.504398 ra-a 1.13020 al-b 1.261647 ac 0.499883 ra-d 1.130023 al-c 1.261647 ac 0.499883 ra-d 1.136023 al-c 1.261407 ac 0.499883 ra-d 1.136023 al-c 1.261407 ac 0.49884 bb 0.500342 0.498857 ra-d 1.124265 al-c 1.261407 ba 0.500342 ra-d 1.24265 al-c 1.261407 bd 0.498833 ra-d						de	0,510156
eb 0,513752 □ □ ec 0,514603 □ □ ec 0,513729 □ □ ec 0,513729 □ □ ec 0,502081 average value 0,009491923 aφ=0.3 standard deviation 0,009491923 aφ=0.4 □ standard deviation 0,009491923 aφ=100 BIF BIF possible combinations x a=100 BIF 1,259305 aa 0,504398 ra-b 1,130320 al-b 1,262133 ab 0,498957 ra-c 1,129363 al-c 1,261647 ac 0,4998957 ra-c 1,124265 al-e 1,261407 ae 0,500342 □ □ □ bb 0,502574 □ □ □ bc 0,498075 □ □ □ bc 0,498075 □ □ □ □ 0,502574						ea	0,512843
ec 0.514603 α α α 0.509701 α α α 0.509701 α α α α 0.502081 σ=100 BIF BIF possible combinations x σ=100 BIF BIF possible combinations x ra-a 1,130793 al-a 1,259305 aa 0,504398 ra-b 1,13020 al-b 1,26147 ac 0,498957 ra-c 1,129363 al-c 1,261647 ac 0,498983 ra-c 1,124265 al-e 1,261407 ac 0,503697 ra-e 1,124265 al-e 1,261407 ac 0,498953 ra-e 1,124265 al-e 1,261407 bb 0,498953 a bb 0,497152 bb 0,4989533 a bb 0,498533 a bc 0,498531						eb	0,513752
ed 0,509701 ee 0,513729 average value 0,502081 aq=0.3 standard deviation 0,009491923 aq=100 BIF BIF possible combinations x a=100 BIF BIF possible combinations x ra-a 1,130793 al-a 1,259305 aa 0,498957 ra-c 1,136023 al-c 1,261647 ae 0,50342 ra-e 1,124265 al-e 1,261407 ae 0,502574 a a bb 0,497152 bb 0,498175 a a a ab 0,501875 a a a ab 0,498533 a a a ab ab a <th></th> <th></th> <th></th> <th></th> <th></th> <th>ec</th> <th>0,514603</th>						ec	0,514603
ee 0,513729 average value 0,502081 average value 0,502081 aq=0.3 standard deviation 0,009491923 aq=100 BIF BIF possible combinations x a=100 BIF BIF possible combinations x a=100 BIF BIF possible combinations x a=101 ra-a 1,130793 al-a 1,259305 aa 0,504398 ra-b 1,130320 al-b 1,261477 ac 0,499857 ra-c 1,136023 al-d 1,259666 ad 0,502574 ra-e 1,124265 al-e 1,261407 ae 0,502574 a bb 0,498875 0,498833 0,498875 0,498875 a a bc 0,498833 0,501875 a a a ac 0,498833 a a ac ac 0,498844 a a ac ac						ed	0,509701
Image: standard deviation 0,002081 aq=0.3 standard deviation 0,009491923 aq=00 BIF possible combinations x a=100 BIF possible combinations x ra-a 1,130793 al-a 1,259305 aa 0,504398 ra-b 1,13020 al-b 1,262133 ab 0,498957 ra-c 1,129363 al-c 1,261647 ac 0,499833 ra-d 1,136023 al-d 1,259666 ad 0,503697 ra-d 1,136023 al-d 1,259666 ad 0,503574 mare 1,124265 al-e 1,261407 ae 0,503574 mare 1,124265 al-e 1,261407 ba 0,498076 mare 1,124265 al-e 1,261407 ba 0,498076 mare 1,124265 al-e 1,261407 ba 0,498076 mare 1,24265 al-e 1,261407 ba 0,498373 <th></th> <th></th> <th></th> <th></th> <th></th> <th>ee</th> <th>0,513729</th>						ee	0,513729
αφ=0.3 standard deviation 0,009491923 α=100 BIF Dossible combinations x ra-a 1,130793 al-a 1,259305 aa 0,504398 ra-b 1,130320 al-b 1,262133 ab 0,498957 ra-c 1,129363 al-c 1,261647 ac 0,499883 ra-d 1,136023 al-d 1,259666 ad 0,503697 ra-e 1,124265 al-e 1,261407 ae 0,503574 ra-e 1,124265 al-e 1,261407 ae 0,502574 matrix matrix 1,229666 ad 0,502574 matrix matrix matrix 0,498076 0,498076 matrix matrix matrix 0,502574 0,498076 matrix matrix matrix 0,502574 0,498076 matrix matrix matrix 0,502574 0,498076 matrix matrix matrix 0,504576 <td< th=""><th></th><th></th><th></th><th></th><th></th><th>average value</th><th>0,502081</th></td<>						average value	0,502081
aq=0.3 BIF BIF possible combinations x ra-a 1,130793 al-a 1,259305 aa 0,504398 ra-b 1,130320 al-b 1,262133 ab 0,498957 ra-c 1,129363 al-c 1,261647 ac 0,499883 ra-d 1,136023 al-d 1,259666 ad 0,503697 ra-e 1,124265 al-e 1,261407 ae 0,502574 - - - ba 0,502574 - - - ba 0,502574 - - - bb 0,4998076 - - - bb 0,498076 - - - bd 0,498075 - - - bd 0,498075 - - - bd 0,498076 - - - bd 0,498076 - - - - 0,498873 <th></th> <th></th> <th></th> <th></th> <th></th> <th>standard deviation</th> <th>0,009491923</th>						standard deviation	0,009491923
a=100 BIF BIF possible combinations x ra-a 1,130793 al-a 1,259305 aa 0,504398 ra-b 1,130320 al-b 1,261133 ab 0,498833 ra-c 1,129363 al-c 1,261647 ac 0,499883 ra-d 1,130023 al-d 1,259666 add 0,503697 ra-e 1,124265 al-e 1,261407 ac 0,498833 ra-e 1,124265 al-e 1,261407 ac 0,502574 bb 0,498176 bb 0,501875 0,498175 a - - bc 0,498175 a - - bd 0,501875 a - - bd 0,498533 a - - ca 0,498884 a - - ca 0,498884 a - - cc 0,494818 a - - <th>αφ=0.3</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	αφ=0.3						
ra-a1,130793al-a1,259305aa0,504398ra-b1,130320al-b1,262133ab0,498957ra-c1,129363al-c1,261647ac0,499883ra-d1,136023al-d1,259666ad0,503697ra-e1,124265al-e1,261407ae0,500342ra-e1,124265al-e1,261407ae0,500342ra-e1,124265al-e1,261407ae0,500342ra-e1,124265al-e1,261407ae0,500342ra-e1,124265al-e1,261407ae0,500342ra-e1,124265al-e1,261407ae0,500342ra-e1,124265al-e1,261407ae0,500342ra-e1,124265al-e1,261407ae0,500342ra-e1,124265al-e1,261407ae0,500342ra-e1,124265al-e1,261407ae0,500342ra-e1,124265al-e1,261407ae0,498076ra-e1,24265al-e1,261407ae0,498076ra-e1,24265al-e1,261407ae0,498353ra-e1,24265al-ecb0,498533ra-e1,24265accb0,498533ra-e1,24265accb0,498353ra-e1,24265acda0,52574ra-e1,24265acdb0,518908	α=100		BIF		BIF	possible combinations	X
ra-b1,130320al-b1,262133ab0,498957ra-c1,129363al-c1,261647ac0,499883ra-d1,136023al-d1,259666ad0,5003697ra-e1,124265al-e1,261407ae0,500342ra-e1,124265al-e1,261407ae0,500342ra-e1,124265al-e1,261407ae0,502574ra-e1,124265al-e1,261407ae0,502574ra-e1,124265al-e1,261407bb0,502574ra-e1,124265al-e1,261407ae0,502574ra-e1,124265al-e1,261407ae0,502574ra-e1,124265al-ebb0,497152ra-e1,124265al-ebc0,498076ra-e1,261407bc0,498076ra-e1,261407bc0,498076ra-e1,261407bc0,498076ra-e1,261407bc0,498076ra-e1,261407bd0,501875ra-e11cc0,498833ra-e11cc0,498833ra-e11cc0,4948190ra-e11cc0,4948172ra-e11dd0,518908ra-e11dd0,524568ra-e11dd0,523838ra-e11ec0,474053r		ra-a	1,130793	al-a	1,259305	aa	0,504398
ra-c1,129363al-c1,261647ac0,499883ra-d1,136023al-d1,259666ad0,503697ra-e1,124265al-e1,261407ae0,500342ba0,502574bb0,497152bb0,497152bc0,498076bc0,498533bd0,501875ca0,498884cb0,493501cb0,493501cc0,494418cd0,494512cd0,494518cd0,494518cd0,494518cd0,494518ce0,494518dd0,524568dd0,524568dd0,523838dd0,523838ea0,479233ee0,474053<		ra-b	1,130320	al-b	1,262133	ab	0,498957
ra-d 1,136023 al-d 1,259666 ad 0,503697 ra-e 1,124265 al-e 1,261407 ae 0,500342 Image: Constraint of the stress of		ra-c	1,129363	al-c	1,261647	ac	0,499883
ra-e 1,124265 al-e 1,261407 ae 0,500342 ba 0,502574 bb 0,497152 bc 0,497152 bc 0,498076 bc 0,498076 bd 0,501875 bd 0,501875 bd 0,501875 c ca 0,498533 be 0,498533 c ca 0,498533 ca 0,4985301 c ca 0,498533 ca 0,4985331 c ca 0,4985331 ca 0,4985331 c ca 0,4985331 ca 0,4985331 c ca 0,4985331 ca 0,498531 c ca ca 0,498531 d ca ca 0,498531 d ca ca 0,498531 d d da 0,524548 d d da 0,518908 d d da 0,518908 d		ra-d	1,136023	al-d	1,259666	ad	0,503697
ba 0,502574 bb 0,497152 bc 0,498076 bc 0,498076 bd 0,501875 be 0,498533 ca 0,498533 ca 0,498884 ca 0,4948190 cc 0,494118 cd 0,498190 ce 0,4948172 da 0,524568 da 0,518908 da 0,518908 da 0,518908 da 0,518908 da 0,523838 da 0,523838 da 0,523838 da 0,523838 da 0,523838 da 0,523838 da 0,474053 ee <th></th> <th>ra-e</th> <th>1,124265</th> <th>al-e</th> <th>1,261407</th> <th>ae</th> <th>0,500342</th>		ra-e	1,124265	al-e	1,261407	ae	0,500342
bb 0,497152 bc 0,498076 bd 0,501875 be 0,498533 ca 0,498884 cb 0,498884 cb 0,498884 cb 0,493501 cc 0,493501 cc 0,49418 cc 0,49418 cc 0,49418 cc 0,49418 cc 0,494872 cd 0,494872 dd 0,524568 db 0,518908 dc 0,518908 dd 0,518908 dd 0,523838 dd 0,523838 de 0,474053 ee 0,474053 ee 0,474053 ee 0,474934 ee 0,4749370 average value 0,014526709						ba	0,502574
bc 0,498076 bd 0,501875 be 0,498533 ca 0,49884 cb 0,49884 cb 0,49884 cb 0,49884 cc 0,49418 cc 0,49418 cd 0,498190 cc 0,494872 cd 0,498872 da 0,524568 db 0,518908 dc 0,518908 dd 0,523838 dd 0,523838 ea 0,479223 eb 0,474053 ec 0,474934 ed 0,478557 ed 0,478557 ee 0,475370 ee 0,479370 ee 0,479031 ee 0,4795370 eb 0,475370 ee 0,479001						bb	0,497152
bd 0,501875 be 0,498533 ca 0,498884 cb 0,498884 cb 0,498884 cc 0,49418 cc 0,49418 cc 0,49418 cc 0,49418 cc 0,494872 cd 0,494872 da 0,524568 db 0,518908 dc 0,518908 dd 0,523838 dd 0,523838 ea 0,479223 eb 0,474053 ec 0,474934 ee 0,475570 ee 0,475370 standard deviation 0,014526709						bc	0,498076
be 0,498533 ca 0,498884 cb 0,498884 cb 0,498801 cc 0,49418 cc 0,49418 cc 0,49418 cc 0,49418 cc 0,49418 cc 0,494872 da 0,524568 db 0,518908 dc 0,518908 dd 0,523838 dd 0,523838 ea 0,479223 ea 0,474053 ee 0,474934 ee 0,478557 ee 0,475370 ee 0,475370 ee 0,479001 standard deviation 0,014526709						bd	0,501875
ca 0,498884 cb 0,493501 cc 0,49418 cc 0,49418 cd 0,498190 cd 0,498190 ce 0,494872 da 0,524568 db 0,518908 dc 0,518908 dd 0,523838 dd 0,523838 de 0,520349 ea 0,474053 eb 0,474053 ec 0,474934 ed 0,478557 ee 0,475370 ee 0,475370 oth 1 standard deviation 0,014526709						be	0,498533
cb 0,493501 cc 0,49418 cc 0,49418 cd 0,498190 cd 0,498190 ce 0,494872 da 0,524568 db 0,518908 dc 0,518908 dd 0,523838 dd 0,523838 dd 0,520349 ea 0,479223 eb 0,474053 eb 0,474053 ec 0,474934 ee 0,47557 ee 0,475370 ee 0,475370 ee 0,479001 standard deviation 0,014526709						ca	0,498884
cc 0,494418 cd 0,494418 cd 0,498190 ce 0,494872 da 0,524568 db 0,518908 dc 0,518908 dc 0,518908 dd 0,523838 dd 0,523838 de 0,520349 ea 0,474053 eb 0,474053 ec 0,474053 ee 0,474344 ee 0,474357 ee 0,474370 ee 0,479201 ee 0,479370 ee 0,479370 ee 0,499001 standard deviation 0,014526709						cb	0,493501
cd 0,498190 ce 0,49872 da 0,524568 db 0,518908 dc 0,518908 dd 0,523838 dd 0,523838 de 0,520349 ea 0,479223 eb 0,474053 ec 0,474053 ee 0,475370 ee 0,475370 ee 0,47526709						cc	0,494418
ce 0,4948/2 da 0,524568 db 0,518908 dc 0,519872 dd 0,523838 de 0,520349 de 0,520349 ea 0,474023 eb 0,474053 ec 0,474053 ee 0,478557 ee 0,475370						cd	0,498190
da 0,524568 db 0,518908 dc 0,519872 dd 0,523838 de 0,523838 de 0,520349 ea 0,479223 eb 0,474053 ec 0,474053 ee 0,474057 ee 0,478557 ee 0,475370 ee 0,475370 ee 0,479001 old old old old old old						ce	0,494872
db 0,518908 dc 0,519872 dd 0,523838 dd 0,523838 de 0,520349 ea 0,479223 eb 0,474053 ec 0,474053 ed 0,478557 ee 0,475370 ee 0,475370 ee 0,479001 standard deviation 0,014526709				+		Ca	0,524568
dc 0,519872 dd 0,523838 de 0,520349 ea 0,479223 eb 0,474053 ec 0,474053 ed 0,478557 ee 0,475370 average value 0,499001 standard deviation 0,014526709				+		dD Ja	0,518908
dd 0,523838 de 0,520349 de 0,520349 ea 0,479223 eb 0,474053 ec 0,474053 ed 0,474053 ed 0,473934 ed 0,478557 ee 0,475370 average value 0,499001 standard deviation 0,014526709				+ +		0C	0,5198/2
de 0,320349 de 0,479223 ea 0,47923 eb 0,474053 ec 0,474934 ed 0,478557 ee 0,475370 ee 0,475370 other average value 0,499001 standard deviation 0,014526709				+ +			0,520340
ea 0,479225 eb 0,474053 ec 0,474934 ed 0,478557 ee 0,475370 ee 0,475370 average value 0,499001 standard deviation 0,014526709						ue	0,320349
ec 0,474033 ec 0,474934 ed 0,478557 ee 0,475370 ee 0,475370 average value 0,499001 standard deviation 0,014526709						ta	0,477053
ed 0,474934 ed 0,478557 ee 0,475370 ee 0,479001 standard deviation 0,014526709							0.474033
ee 0,478337 ee 0,475370 average value 0,499001 standard deviation 0,014526709						O	0.478557
average value 0,473370 average value 0,499001 standard deviation 0,014526709		+				<u></u>	0.475370
average value 0,499001 standard deviation 0,014526709		+				average value	0.499001
				+ +		standard deviation	0.014526709
		1		<u> </u>			3,011020109

αφ=0.7						
α=100		BIF		BIF	possible combinations	X
	ra-a	1,318109	al-a	1,640007	aa	0,497040
	ra-b	1,303583	al-b	1,641948	ab	0,495537
	ra-c	1,306913	al-c	1,651067	ac	0,488596
	ra-d	1,327728	al-d	1,640512	ad	0,496648
	ra-e	1,326011	al-e	1,645200	ae	0,493039
					ba	0,474343
					bb	0,472909
					bc	0,466285
					bd	0,473969
					be	0,470525
					са	0,479546
					cb	0.478096
					CC	0.471400
					cd	0.479168
					Ce	0.475687
					da	0 512069
					db	0.510521
					dc	0.503371
					dd	0,505571
					de	0.507948
					u	0,509387
					eh	0,507846
						0,500733
					ec	0,500733
					eu	0,505287
						0,303287
						0,491024
a.a_1					standard deviation	0,015500722
αψ=1		DIE		DIF	neggible combinations	
a=100	raa	DIF 1 462559	ala	<u>DIF</u> 1 953625		X 0.485053
	ra h	1,402339	al-a	1,955025	aa	0,483033
	18-0	1,434321		1,904214	aD	0,479720
	ra-c	1,488404	al-c	1,903510		0,479179
	ra-a	1,40/800	al-u	1,950500	ad	0,480048
	ra-e	1,40/810	ai-e	1,979815		0,472088
						0,476415
					bb	0,4/1183
					bc	0,470645
	┼──┼				bd	0,477981
	<u> </u>		├ ──── ├		be	0,463680
					ca	0,512155
	<u> </u>				cb	0,506531
			├ ─── ├		cc	0,505952
			├ ─── ├		cd	0,513839
	↓ ↓		ļ		ce	0,498466
	↓		ļ		da	0,490618
					db	0,485230
			ļ ļ.		dc	0,484677
					dd	0,492231
					de	0,477504

					ea	0,490566
					eb	0,485179
					ec	0,484625
					ed	0,492179
					ee	0,477453
					average value	0,486392
					standard deviation	0,012790617
αφ=3						
α=100		BIF		BIF	possible combinations	X
	ra-a	2,387562	al-a	4,586181	aa	0,386919
	ra-b	2,458292	al-b	4,464550	ab	0,400503
	ra-c	2,538673	al-c	4,618684	ac	0,383444
	ra-d	2,489413	al-d	4,576679	ad	0,387947
	ra-e	2,452734	al-e	4,436208	ae	0,403806
					ba	0,406642
					bb	0,420918
					bc	0,402990
					bd	0,407722
					be	0,424390
					са	0,429056
					cb	0,444119
					сс	0,425202
					cd	0,430196
					ce	0,447782
					da	0,415320
					db	0,429901
					dc	0,411590
					dd	0,416423
					de	0,433447
					ea	0,405092
					eb	0,419314
					ec	0,401454
					ed	0,406168
					ee	0,422772
					average value	0,414525
					standard deviation	0,0103/8300
$u\psi = 3$		BIE		BIE	nossible combinations	v
<u>u-100</u>	ra a	3 //7713		7 618612		A 0.360823
	ra-h	3 449270	al-a	7,010012	aaah	0 377493
	ra-c	3 336674	al-c	7 423307	40 90	0 381067
	ra-d	3 202129	al-d	7,423307	ac ad	0 374141
	ra-e	3 249982	al-e	7 575924		0 372223
	14.0	5,247702	ui e	1,575724	ha	0.370058
					bh	0 377733
					hc	0.381310
					bd	0,374379
					be	0,372460
					ca	0,353038
					cb	0,360361
					сс	0,363773
					cd	0,357161

					ce	0,355330		
					da	0,332718		
					db	0,339618		
					dc	0,342834		
					dd	0,336603		
					de	0,334878		
					ea	0,339948		
					eb	0,346998		
					ec	0,350284		
					ed	0,343917		
					ee	0,342155		
					average value	0,358012		
					standard deviation	0,015870718		
αφ=7								
α=100		BIF		BIF	possible combinations	Х		
	ra-a	3,578455	al-a	10,27840	aa	0,277899		
	ra-b	2,629559	al-b	10,96168	ab	0,258837		
	ra-c	3,635333	al-c	10,88595	ac	0,260820		
	ra-d	3,310126	al-d	10,39093	ad	0,274569		
	ra-e	3,341050	al-e	10,24002	ae	0,279053		
					ba	0,175629		
					bb	0,163583		
					bc	0,164836		
					bd	0,173525		
					be	0,176359		
					ca	0,284029		
					cb	0,264547		
					сс	0,266574		
					cd	0,280625		
					ce	0,285209		
					da	0,248979		
					db	0,231901		
					dc	0,233678		
					dd	0,245995		
					de	0,250013		
					ea	0,252312		
					eb	0,235006		
					ec	0,236806		
					ed	0,249288		
					ee	0,253360		
					average value	0,240937		
-					standard deviation	0,03833544		
				4 - RESULTS				
	aφ=0.01/0.1/0.16/0.3/0.7/1/3/5/7/9/10 aspect ratio = 150 1000 flakes							
0.01	5 ranuom - 5 angneu runs(Drr) for each aq							
αφ=0.01						Γ		
α=150				BIF	possible combinations	X		
	ra-a	1,004228	al-a	1,008176	aa	0,517123		

	ra-b	1,004150	al-b	1,008710	ab	0,485419
	ra-c	1,004178	al-c	1,008194	ac	0,515987
	ra-d	1,004296	al-d	1,008184	ad	0,516618
	ra-e	1,004211	al-e	1,008191	ae	0,516176
					ba	0,507583
					bb	0,476464
					bc	0,506468
					bd	0,507087
					be	0,506654
					са	0,511008
					cb	0,479679
					сс	0,509885
					cd	0,510508
					ce	0,510072
					da	0,525440
					db	0,493226
					dc	0,524286
					dd	0,524927
					de	0,524478
					ea	0,515044
					eb	0,483467
					ec	0,513913
					ed	0,514541
					ee	0,514101
					average value	0,502406
					standard deviation	0,013756525
αφ=0.1	1		1			
αφ=0.1 α=150		BIF		BIF	possible combinations	X
αφ=0.1 α=150	ra-a	BIF 1,040974	al-a	BIF 1,082906	possible combinations aa	x 0,494222
αφ=0.1 α=150	ra-a ra-b	BIF 1,040974 1,041899	al-a al-b	BIF 1,082906 1,082250	possible combinations aa ab	x 0,494222 0,498164
αφ=0.1 α=150	ra-a ra-b ra-c	BIF 1,040974 1,041899 1,041237	al-a al-b al-c	BIF 1,082906 1,082250 1,083216	possible combinations aa ab ac	x 0,494222 0,498164 0,492381
αφ=0.1 α=150	ra-a ra-b ra-c ra-d	BIF 1,040974 1,041899 1,041237 1,041616	al-a al-b al-c al-d	BIF 1,082906 1,082250 1,083216 1,083213	possible combinations aa ab ac ad	x 0,494222 0,498164 0,492381 0,492399
αφ=0.1 α=150	ra-a ra-b ra-c ra-d ra-e	BIF 1,040974 1,041899 1,041237 1,041616 1,043461	al-a al-b al-c al-d al-e	BIF 1,082906 1,082250 1,083216 1,083213 1,082497	possible combinations aa ab ac ad ae	x 0,494222 0,498164 0,492381 0,492399 0,496673
αφ=0.1 α=150	ra-a ra-b ra-c ra-d ra-e	BIF 1,040974 1,041899 1,041237 1,041616 1,043461	al-a al-b al-c al-d al-e	BIF 1,082906 1,082250 1,083216 1,083213 1,082497	possible combinations aa ab ac ad ac ad ae ba	x 0,494222 0,498164 0,492381 0,492399 0,496673 0,505380
<u>αφ=0.1</u> <u>α=150</u>	ra-a ra-b ra-c ra-d ra-e	BIF 1,040974 1,041899 1,041237 1,041616 1,043461	al-a al-b al-c al-d al-e	BIF 1,082906 1,082250 1,083216 1,083213 1,082497	possible combinations aa ab ac ad ad ae ba ba bb	x 0,494222 0,498164 0,492381 0,492399 0,496673 0,505380 0,509410
<u>αφ=0.1</u> <u>α=150</u>	ra-a ra-b ra-c ra-d ra-e	BIF 1,040974 1,041899 1,041237 1,041616 1,043461	al-a al-b al-c al-d al-e	BIF 1,082906 1,082250 1,083216 1,083213 1,082497	possible combinations aa ab ac ad ad ae ba ba bb bb	x 0,494222 0,498164 0,492381 0,492399 0,496673 0,505380 0,509410 0,503497
αφ=0.1 α=150	ra-a ra-b ra-c ra-d ra-e	BIF 1,040974 1,041899 1,041237 1,041616 1,043461	al-a al-b al-c al-d al-e	BIF 1,082906 1,082250 1,083216 1,083213 1,082497	possible combinations aa ab ac ad ad ae ba ba bb bb bb bb bb	x 0,494222 0,498164 0,492381 0,492399 0,496673 0,505380 0,509410 0,503497 0,503515
<u>αφ=0.1</u> <u>α=150</u>	ra-a ra-b ra-c ra-d ra-e	BIF 1,040974 1,041899 1,041237 1,041616 1,043461	al-a al-b al-c al-d al-e	BIF 1,082906 1,082250 1,083216 1,083213 1,082497	possible combinations aa ab ac ad ad ae ba ba bb bb bc bc bd bd be	x 0,494222 0,498164 0,492381 0,492399 0,496673 0,505380 0,509410 0,503497 0,503515 0,507885
<u>αφ=0.1</u> <u>α=150</u>	ra-a ra-b ra-c ra-d ra-e	BIF 1,040974 1,041899 1,041237 1,041616 1,043461	al-a al-b al-c al-d al-e	BIF 1,082906 1,082250 1,083216 1,083213 1,082497	possible combinations aa ab ac ad ad ae ba ba bb bb bb bb bb bb bb bb bb bb bb	x 0,494222 0,498164 0,492381 0,492399 0,496673 0,505380 0,509410 0,503497 0,503515 0,507885 0,497395
<u>αφ=0.1</u> <u>α=150</u>	ra-a ra-b ra-c ra-d ra-e	BIF 1,040974 1,041899 1,041237 1,041616 1,043461	al-a al-b al-c al-d al-e	BIF 1,082906 1,082250 1,083216 1,083213 1,082497	possible combinationsaaabacadadbabbbbbbbcbdbcbdbcbcbdbcbcbdbcba	x 0,494222 0,498164 0,492381 0,492399 0,496673 0,505380 0,509410 0,503497 0,503515 0,507885 0,497395 0,501362
<u>αφ=0.1</u> <u>α=150</u>	ra-a ra-b ra-c ra-d ra-e	BIF 1,040974 1,041899 1,041237 1,041616 1,043461	al-a al-b al-c al-d al-e	BIF 1,082906 1,082250 1,083216 1,083213 1,082497	possible combinations aa ab ac ad ae ba bb bc bd bc bd ca cb cb cc cb cc cc	x 0,494222 0,498164 0,492381 0,492399 0,496673 0,505380 0,509410 0,503497 0,503515 0,507885 0,497395 0,501362 0,495542
<u>αφ=0.1</u> <u>α=150</u>	ra-a ra-b ra-c ra-d ra-e	BIF 1,040974 1,041899 1,041237 1,041616 1,043461	al-a al-b al-c al-d al-e	BIF 1,082906 1,082250 1,083216 1,083213 1,082497	possible combinations aa ab ac ad ae ba bb bc bd bc bd ca cb cc cb cc cd	x 0,494222 0,498164 0,492381 0,492399 0,496673 0,505380 0,509410 0,503497 0,503515 0,507885 0,497395 0,501362 0,495542 0,495560 0,409861
<u>αφ=0.1</u> <u>α=150</u>	ra-a ra-b ra-c ra-d ra-e	BIF 1,040974 1,041899 1,041237 1,041616 1,043461	al-a al-b al-c al-d al-e	BIF 1,082906 1,082250 1,083216 1,083213 1,082497	possible combinationsaaabacacadaebabbbbbcbdbcbdcacbcccdce	x 0,494222 0,498164 0,492381 0,492399 0,496673 0,505380 0,509410 0,503497 0,503515 0,507885 0,497395 0,501362 0,495542 0,495560 0,499861 0,501066
<u>αφ=0.1</u> <u>α=150</u>	ra-a ra-b ra-c ra-d ra-e	BIF 1,040974 1,041899 1,041237 1,041616 1,043461	al-a al-b al-c al-d al-e	BIF 1,082906 1,082250 1,083216 1,083213 1,082497	possible combinations aa ab ab ac ac ad ad ac ad ba ba ba bb bb bc bc bc bd bd be ca ca cb cb cc cc cd cb cc da	x 0,494222 0,498164 0,492381 0,492399 0,496673 0,505380 0,509410 0,503497 0,503515 0,507885 0,497395 0,501362 0,495542 0,495560 0,499861 0,501966 0,505070
<u>αφ=0.1</u> <u>α=150</u>	ra-a ra-b ra-c ra-d ra-e	BIF 1,040974 1,041899 1,041237 1,041616 1,043461	al-a al-b al-c al-d al-e	BIF 1,082906 1,082250 1,083216 1,083213 1,082497	possible combinationsaaabacadacadaebabbbbbcbdbcbdbccacbcccdcedadb	x 0,494222 0,498164 0,492381 0,492399 0,496673 0,505380 0,509410 0,503497 0,503515 0,507885 0,497395 0,501362 0,495542 0,495560 0,499861 0,501966 0,505970 0,50006
<u>αφ=0.1</u> <u>α=150</u>	ra-a ra-b ra-c ra-d ra-e	BIF 1,040974 1,041899 1,041237 1,041616 1,043461	al-a al-b al-c al-d al-e	BIF 1,082906 1,082250 1,083216 1,083213 1,082497	possible combinations aa ab ac ac ad ae ba bb bb bc bd bc bd bc bd bc ca cb cc cd ce da db dc	x 0,494222 0,498164 0,492381 0,492399 0,496673 0,505380 0,509410 0,503497 0,503515 0,507885 0,497395 0,501362 0,495542 0,495542 0,495560 0,499861 0,501966 0,505970 0,500096
<u>αφ=0.1</u> <u>α=150</u>	ra-a ra-b ra-c ra-d ra-e	BIF 1,040974 1,041899 1,041237 1,041616 1,043461	al-a al-b al-c al-d al-e	BIF 1,082906 1,082250 1,083216 1,083213 1,082497	possible combinationsaaababacadacadaebabbbbbcbdbcbdbccacbcccdccdadbdbdcdd	x 0,494222 0,498164 0,492381 0,492399 0,496673 0,505380 0,509410 0,503497 0,503515 0,507885 0,497395 0,501362 0,495542 0,495560 0,495560 0,499861 0,501966 0,505970 0,500096 0,500114
<u>αφ=0.1</u> <u>α=150</u>	ra-a ra-b ra-c ra-d ra-e	BIF 1,040974 1,041899 1,041237 1,041616 1,043461	al-a al-b al-c al-d al-e	BIF 1,082906 1,082250 1,083216 1,083213 1,082497	possible combinationsaaababacadacadaebabbbbbcbdbcbdbccacbcccdccdadbdbdcddde	x 0,494222 0,498164 0,492381 0,492399 0,496673 0,505380 0,509410 0,503497 0,503515 0,507885 0,497395 0,501362 0,495542 0,495542 0,495560 0,499861 0,501966 0,505970 0,500096 0,500114 0,504455 0,524220
<u>αφ=0.1</u> <u>α=150</u>	ra-a ra-b ra-c ra-d ra-e	BIF 1,040974 1,041899 1,041237 1,041616 1,043461	al-a al-b al-c al-d al-e	BIF 1,082906 1,082250 1,083216 1,083213 1,082497	possible combinationsaaababacadacadaebabbbbbcbdbcbdbccacbcccdccdadbdcdddeeaabababbbbbbbbcbbbcbbbbbbcbcccb <t< th=""><th>x 0,494222 0,498164 0,492381 0,492399 0,496673 0,505380 0,509410 0,503497 0,503515 0,507885 0,497395 0,501362 0,495542 0,495542 0,495560 0,499861 0,501966 0,505970 0,50096 0,500114 0,504455 0,524220 0,528401</th></t<>	x 0,494222 0,498164 0,492381 0,492399 0,496673 0,505380 0,509410 0,503497 0,503515 0,507885 0,497395 0,501362 0,495542 0,495542 0,495560 0,499861 0,501966 0,505970 0,50096 0,500114 0,504455 0,524220 0,528401
<u>αφ=0.1</u> <u>α=150</u>	ra-a ra-b ra-c ra-d ra-e	BIF 1,040974 1,041899 1,041237 1,041616 1,043461	al-a al-b al-c al-d al-e	BIF 1,082906 1,082250 1,083216 1,083213 1,082497	possible combinationsaaababacadacadacbabbbbbbbcbdbcbdbcbdbcbdbccacbccccdadbdcdddeeaeb	x 0,494222 0,498164 0,492381 0,492399 0,496673 0,505380 0,509410 0,503497 0,503515 0,507885 0,497395 0,501362 0,495560 0,495560 0,495560 0,495560 0,501966 0,505970 0,50096 0,50096 0,500114 0,504455 0,524220 0,528401 0,522267
	ra-a ra-b ra-c ra-d ra-e	BIF 1,040974 1,041899 1,041237 1,041616 1,043461	al-a al-b al-c al-d al-e	BIF 1,082906 1,082250 1,083216 1,083213 1,082497	possible combinationsaaabacacadacadaebabbbbbcbdbcbdbccacbcccccdccdadbdcdddcdddeeaebecad	x 0,494222 0,498164 0,492381 0,492399 0,496673 0,505380 0,509410 0,503497 0,503515 0,507885 0,497395 0,501362 0,497395 0,501362 0,495560 0,495560 0,495560 0,495560 0,501966 0,505970 0,50096 0,50096 0,500114 0,5024220 0,524220 0,528401 0,522267 0,522386

					ee	0,526819
					average value	0,505194
					standard deviation	0,010781858
αφ=0.16						
α=150		BIF		BIF	possible combinations	X
	ra-a	1,064389	al-a	1,142281	aa	0,452548
	ra-b	1,073363	al-b	1,143574	ab	0,448473
	ra-c	1,071636	al-c	1,142675	ac	0,451298
	ra-d	1,075987	al-d	1,142271	ad	0,452580
	ra-e	1,073970	al-e	1,142771	ae	0,450995
					ba	0,515620
					bb	0,510977
					bc	0,514197
					bd	0,515657
					be	0,513851
					ca	0,503483
					cb	0,498948
					сс	0,502092
					cd	0,503518
					ce	0,501755
					da	0,534063
					db	0,529253
					dc	0,532588
					dd	0,534100
					de	0,532230
					ea	0,519887
					eb	0,515205
					ec	0,518451
					ed	0,519923
					ee	0,518102
					average value	0,503592
					standard deviation	0,02800977
αφ=0.3						
α=150			1	BIF	possible combinations	X
	ra-a	1,129383	al-a	1,253334	aa	0,510721
	ra-b	1,125526	al-b	1,254082	ab	0,509217
	ra-c	1,133007		1,257441		0,502573
	ra-a	1,128111	al-d	1,255213	ad	0,506961
	ra-e	1,125592	ai-e	1,256052	ae	0,505300
					Da bb	0,493490
						0,494057
						0,467391
						0,491848
						0,490230
					Ca ob	0,523020
						0,525401
					ct od	0,510050
						0.510/53
					UC	0,515455
					ua dh	0,505700
					do	0,004211
					uc	0,497032

					dd	0,501977
					de	0,500332
					ea	0,495757
					eb	0,494297
					ec	0,487848
					ed	0,492107
					ee	0,490494
					average value	0,502804
					standard deviation	0,011224746
αφ=0.7						
α=150		BIF		BIF	possible combinations	X
	ra-a	1,310004	al-a	1,638073	aa	0,485844
	ra-b	1,305352	al-b	1,632465	ab	0,490152
	ra-c	1,305412	al-c	1,645288	ac	0,480412
	ra-d	1,299676	al-d	1,640911	ad	0,483693
	ra-e	1,310783	al-e	1,642863	ae	0,482224
					ba	0,478553
					bb	0,482797
					bc	0,473203
					bd	0,476434
					be	0,474988
					ca	0,478647
					cb	0,482892
					cc	0,473296
					Cđ	0,476528
					<u> </u>	0,4/5081
						0,469658
					db	0,473822
						0,404407
					de	0,407378
						0,400158
					eh	0.491384
					ec	0.481619
					ed	0.484908
					ee	0,483436
					average value	0,478591
					standard deviation	0,007053739
αφ=1						
α=150		BIF		BIF	possible combinations	X
	ra-a	1,436471	al-a	1,949403	aa	0,459732
	ra-b	1,432327	al-b	1,951453	ab	0,458742
	ra-c	1,436471	al-c	1,946907	ac	0,460944
	ra-d	1,439485	al-d	1,960708	ad	0,454322
	ra-e	1,433852	al-e	1,932639	ae	0,467996
					ba	0,455367
					bb	0,454386
					bc	0,456568
					bd	0,450009
					be	0,463552
					ca	0,459732

			1		ch	0 458742
					<u>ده</u> ۲۵	0.460944
					ed	0.454322
					Ce Ce	0.467996
					da	0,467990
					db	0,461000
					do	0,401909
						0,404127
					da	0,457459
					de	0,4/122/
					ea	0,456973
					eb	0,455989
					ec	0,458178
					ed	0,451596
					ee	0,465187
					average value	0,459556
					standard deviation	0,005128146
αφ=3						
α=150		BIF		BIF	possible combinations	х
	ra-a	2,503260	al-a	4,392393	aa	0,443127
	ra-b	2,415434	al-b	4,495582	ab	0,430046
	ra-c	2,480266	al-c	4,299410	ac	0,455615
	ra-d	2,482148	al-d	4.439900	ad	0.437007
	ra-e	2.353329	al-e	4.444119	ae	0.436472
		7		7 -	ba	0.417238
					bb	0 404921
					bc	0.428996
					bd	0.411475
					he	0.410971
					69 69	0.436349
					ch	0.423468
					CD CD	0,423400
					ed and	0,440040
					<u> </u>	0,430322
					de	0,429793
					ua Jh	0,430905
					du	0,424006
						0,449216
					da	0,430870
					de	0,430342
					ea	0,398930
					eb	0,38/154
					ec	0,410173
					ed	0,393421
					ee	0,392939
					average value	0,423936
					standard deviation	0,018208178
αφ=5	[Г	1	1
α=150		BIF		BIF	possible combinations	X
	ra-a	3,086402	al-a	7,523843	aa	0,319812
	ra-b	3,114827	al-b	7,581617	ab	0,317004
	ra-c	3,094594	al-c	7,136128	ac	0,340019
	ra-d	3,463479	al-d	7,615202	ad	0,315395
	ra-e	3,267039	al-e	7,462795	ae	0,322833

					ba	0,324169
					bb	0,321323
					bc	0,344652
					bd	0.319692
					be	0.327231
					ca	0,321068
					cb	0.318249
					cc	0.341354
					cd	0.316633
					се	0,324100
					da	0,377612
					db	0,374297
					dc	0,401471
					dd	0.372397
					de	0,381179
					ea	0.347501
					eb	0,344450
					ec	0,369458
					ed	0,342701
					ee	0,350783
					average value	0,341415
					standard deviation	0,024328864
αφ=7			1	I		
α=150		BIF		BIF	possible combinations	x
	ra-a	3,141689	al-a	10,14016	aa	0,234316
	ra-b	3,496244	al-b	10,15235	ab	0,234004
	ra-c	3,984353	al-c	10,23182	ac	0,231990
	ra-d	3,775589	al-d	10,25971	ad	0,231291
	ra-e	3,352340	al-e	10,08880	ae	0,235640
					ba	0,273107
					bb	0,272744
					bc	0,270396
					bd	0,269581
					be	0,274651
					са	0,326510
					cb	0,326075
					сс	0,323268
					cd	0,322294
					се	0,328355
					da	0,303670
					db	0,303265
					dc	0,300655
					dd	0,299749
					de	0,305386
					ea	0,257363
					eb	0,257020
					ec	0,254808
					ed	0,254040
					ee	0,258817
					average value	0,277960
					standard deviation	0,032691884

αφ=9	r r					-
α=150		BIF		BIF	possible combinations	X
	ra-a	3,999368	al-a	13,05185	aa	0,248872
	ra-b	2,526113	al-b	12,60780	ab	0,258392
	ra-c	2,322762	al-c	13,05240	ac	0,248861
	ra-d	2,554725	al-d	13,10137	ad	0,247854
	ra-e	3,095191	al-e	13,12498	ae	0,247371
					ba	0,126629
					bb	0,131473
					bc	0,126623
					bd	0,126111
					be	0,125865
					са	0,109756
					cb	0,113955
					сс	0,109751
					cd	0,109307
					ce	0,109094
					da	0,129003
					db	0,133938
					dc	0,128997
					dd	0,128475
					de	0,128225
					ea	0,173848
					eb	0,180499
					ec	0,173840
					ed	0,173137
					ee	0,172800
					average value	0,158507
					standard deviation	0,050676334
αφ=10						
α=150		BIF		BIF	possible combinations	X
	ra-a	2,856972	al-a	14,61015	aa	0,136440
	ra-b	2,625801	al-b	14,79491	ab	0,134613
	ra-c	2,943004	al-c	13,99524	ac	0,142896
	ra-d	3,064771	al-d	14,34274	ad	0,139175
	ra-e	2,932090	al-e	13,93852	ae	0,143523
					ba	0,119455
					bb	0,117855
					bc	0,125107
					bd	0,121849
					be	0,125656
					ca	0,142761
					cb	0,140849
					сс	0,149517
					cd	0,145623
					ce	0,150172
					da	0,151708
					db	0,149676
					dc	0,158887
					dd	0,154749
					de	0,159583
					ea	0,141959

					eb	0.140058
					ec	0,148677
					ed	0.144805
					ee	0,149329
					average value	0,141397
					standard deviation	0.011481386
				5 - RESULTS		- 7
			aa-0.01/	0 1/0 16/0 3/0 7/1/3/5/7/	9/10	
			αψ-0.01/	ospost ratio - 200)/10	
				1000 fb = 200		
		_		1000 flakes	_	
		5 r	andom - 5	aligned runs(BIF) for	each aφ	
αφ=0.01	1		1			1
α=200		BIF		BIF	possible combinations	X
	ra-a	1,004220	al-a	1,008049	aa	0,524289
	ra-b	1,003968	al-b	1,008060	ab	0,523573
	ra-c	1,003993	al-c	1,008062	ac	0,523443
	ra-d	1,004090	al-d	1,008063	ad	0,523378
	ra-e	1,003932	al-e	1,008101	ae	0,520923
					ba	0,492980
					bb	0,492308
					bc	0,492186
					bd	0,492125
					be	0,489816
					ca	0,496086
					cb	0,495409
					сс	0,495287
					cd	0,495225
					ce	0,492902
					da	0,508138
					db	0,507444
					dc	0,507318
					dd	0,507255
					de	0,504876
					ea	0,488508
					eb	0,487841
					ec	0,487720
					ed	0,487660
					ee	0,485372
					average value	0,500885
0.1					standard deviation	0,012923913
αφ=0.1		DIE		DTD	•11 1• /•	
α=200			1		possible combinations	X
	ra-a	1,040296	al-a	1,081645	aa	0,493551
	ra-b	1,041977	al-b	1,081/21	ab	0,493092
	ra-c	1,040492		1,080997	ac	0,497500
	ra-d	1,040754	al-d	1,081/06	ad	0,493183
	ra-e	1,040248	ai-e	1,081937	ae	0,491/92
						0,514140
						0,513002
						0,518254
					bd	0,513/5/

					be	0,512308
					ca	0,495952
					cb	0,495491
					сс	0,499920
					cd	0,495582
					ce	0.494185
					da	0.499161
					db	0.498697
					dc	0,503154
					dd	0,498788
					de	0,497382
					ea	0,492963
					eb	0,492505
					ec	0,496907
					ed	0,492595
					ee	0,491207
					average value	0,499429
					standard deviation	0,00804969
αφ=0.16			1	•		
a=200		BIF		BIF	possible combinations	Х
	ra-a	1.065885	al-a	1.132438	aa	0.497478
	ra-b	1.066591	al-b	1.132122	ab	0.498668
	ra-c	1,062587	al-c	1,132137	ac	0,498611
	ra-d	1,066852	al-d	1,131728	ad	0,500159
	ra-e	1,063811	al-e	1,132116	ae	0,498691
		,		,	ba	0,502809
					bb	0,504011
					bc	0,503954
					bd	0,505519
					be	0,504034
					ca	0,472576
					cb	0,473706
					сс	0,473652
					cd	0,475123
					ce	0,473728
					da	0,504780
					db	0,505987
					dc	0,505929
					dd	0,507500
					de	0,506010
					ea	0,481818
					eb	0,482970
					ec	0,482915
					ed	0,484415
					ee	0,482992
					average value	0,493121
					standard deviation	0,012637907
αφ=0.3			1			
α=200		BIF		BIF	possible combinations	X
	ra-a	1,125990	al-a	1,253233	aa	0,497526
	ra-b	1,123982	al-b	1,256410	ab	0,491361
	ra-c	1,124897	al-c	1,255285	ac	0,493527

	ra-d	1,125049	al-d	1,253700	ad	0,496610
	ra-e	1,126722	al-e	1,253720	ae	0,496571
					ba	0,489597
					bb	0,483530
					bc	0,485661
					bd	0,488695
					be	0,488657
					са	0,493210
					cb	0,487099
					сс	0,489245
					cd	0,492302
					се	0,492263
					da	0,493810
					db	0,487692
					dc	0,489841
					dd	0,492901
					de	0,492862
					ea	0,500417
					eb	0,494216
					ec	0,496394
					ed	0,499495
					ee	0,499456
					average value	0,492518
					standard deviation	0,004366441
αφ=0.7						
α=200		BIF		BIF	possible combinations	x
	roo	1 206694	a1 a	1 ()(7(7		0 150056
	1a-a	1,290084	ai-a	1,020/0/	aa	0,473356
	ra-b	1,296684 1,320644	al-a al-b	1,627002	aa ab	0,473356 0,473179
	ra-b ra-c	1,296684 1,320644 1,302502	al-a al-b al-c	1,627002 1,633645	aa ab ac	0,473356 0,473179 0,468218
	ra-b ra-c ra-d	1,296684 1,320644 1,302502 1,317689	al-a al-b al-c al-d	1,626767 1,627002 1,633645 1,638734	aa ab ac ad	0,473356 0,473179 0,468218 0,464488
	ra-b ra-c ra-d ra-e	1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ac ad ae	0,473356 0,473179 0,468218 0,464488 0,469066
	ra-b ra-c ra-d ra-e	1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ac ad ad ae ba	0,473356 0,473179 0,468218 0,464488 0,469066 0,511584
	ra-a ra-b ra-c ra-d ra-e	1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ac ad ad ae ba ba bb	$\begin{array}{c} 0,473356\\ 0,473179\\ 0,468218\\ 0,464488\\ 0,469066\\ 0,511584\\ 0,511392\\ \end{array}$
	ra-c ra-d ra-e	1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ac ad ad ae ba ba bb bb	0,473356 0,473179 0,468218 0,464488 0,469066 0,511584 0,511392 0,506031
	ra-a ra-b ra-c ra-d ra-e	1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ac ad ad ae ba ba bb bb bb bb	0,473356 0,473179 0,468218 0,464488 0,469066 0,511584 0,511392 0,506031 0,501999
	ra-a ra-b ra-c ra-d ra-e	1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ac ad ad ae ba ba bb bb bb bb bb bb bb bb bb bb bb	0,473356 0,473179 0,468218 0,464488 0,469066 0,511584 0,511392 0,506031 0,501999 0,506947
	ra-a ra-b ra-c ra-d ra-e	1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ac ac ad ad ae ba ba bb bb bb bb bb bb bb bc bd bd be ca	0,473356 0,473179 0,468218 0,464488 0,469066 0,511584 0,511392 0,506031 0,501999 0,506947 0,482639
	ra-c ra-d ra-e	1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ab ac ad ad ad ba ba bb bb bb bb bb bb bb bb bb bb bb	0,473356 0,473179 0,468218 0,464488 0,469066 0,511584 0,511392 0,506031 0,501999 0,506947 0,482639 0,482458
	ra-a ra-b ra-c ra-d ra-e	1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ac ac ad ad ae ba ba bb bb bb bb bb bb bb bb cc a cb cc	0,473356 0,473179 0,468218 0,464488 0,469066 0,511584 0,511392 0,506031 0,501999 0,506947 0,482639 0,482458 0,477400
	ra-a ra-b ra-c ra-d ra-e	1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ac ad ad ad ba ba bb bb bb bb bb bb bb bb bb bb ca ca cb cb cc cc cd	0,473356 0,473179 0,468218 0,464488 0,469066 0,511584 0,511392 0,506031 0,501999 0,506947 0,482639 0,482458 0,477400 0,473596
	ra-a ra-b ra-c ra-d ra-e	1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ac ad ae ba bb bb bc bd bc ca cb cc cc cc cc cc cd cc cc cc	0,473356 0,473179 0,468218 0,464488 0,469066 0,511584 0,511392 0,506031 0,501999 0,506947 0,482639 0,482458 0,477400 0,473596 0,478264
	ra-a ra-b ra-c ra-d ra-e	1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ac ad ae ba bb bb bc bd bc bd ca cb cc cc cc cd ce da	$\begin{array}{c} 0,473356\\ 0,473179\\ 0,468218\\ 0,469066\\ 0,511584\\ 0,511392\\ 0,506031\\ 0,501999\\ 0,506947\\ 0,482639\\ 0,482458\\ 0,477400\\ 0,473596\\ 0,478264\\ 0,506869\\ 0,506670\\ \end{array}$
	ra-a ra-b ra-c ra-d ra-e	1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ab ac ad ad ad ba bb bb bb bb bb bb bb bb bb bb bb bb	0,473356 0,473179 0,468218 0,464488 0,469066 0,511584 0,511392 0,506031 0,501999 0,506947 0,482639 0,482458 0,477400 0,473596 0,478264 0,506869 0,506679 0,501267
		1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ac ad ae ba bb bb bb bc bd bc ca cb cc cc cd cb cc cd cb cc cd cb cc cd cb cc cd ca cda da db dc	0,473356 0,473179 0,468218 0,464488 0,469066 0,511584 0,511392 0,506031 0,501999 0,506947 0,482639 0,482458 0,477400 0,473596 0,473596 0,478264 0,506869 0,506679 0,501367 0,497373
	ra-a ra-b ra-c ra-d ra-e	1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ac ad ae ba bb bb bc bd bc ca cb cc cc cc cd cc da db db db db db db db dc dd	0,473356 0,473179 0,468218 0,464488 0,469066 0,511584 0,511392 0,506031 0,501999 0,506947 0,482639 0,482458 0,477400 0,473596 0,473596 0,478264 0,506869 0,506679 0,501367 0,497373 0,502275
		1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ac ad ae ba bb bb bb bc bc bc bc ca cb cc cd cc da db db db db db db db db dc dd ca	0,473356 0,473179 0,468218 0,469066 0,511584 0,511392 0,506031 0,501999 0,506947 0,482639 0,482458 0,477400 0,473596 0,478264 0,506869 0,506679 0,501367 0,497373 0,502275 0,495494
		1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ac ad ae ba bb bb bc bd bc bd ca cb cc cc cd cc da db dc dd dc dd de ea	0,473356 0,473179 0,468218 0,464488 0,469066 0,511584 0,511392 0,506031 0,501999 0,506947 0,482639 0,482458 0,477400 0,473596 0,473596 0,478264 0,506869 0,506679 0,501367 0,497373 0,502275 0,495494 0,495308
		1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ac ad ae ba bb bb bc bd bc ca cb cc cc cc cd cc cd cc da db dc dd dc dd ea ea ea ea	0,473356 0,473179 0,468218 0,464488 0,469066 0,511584 0,511392 0,506031 0,501999 0,506947 0,482639 0,482458 0,477400 0,473596 0,473596 0,477400 0,473596 0,477400 0,473596 0,506869 0,506679 0,506679 0,501367 0,497373 0,502275 0,495494 0,495308 0,490115
		1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ac ad ac ad ac ad ac ad ba bb bc bd bc bc bc bc bc ca cb cc cd cc da db dc dd de ea eb ec ad	0,473356 0,473179 0,468218 0,464488 0,469066 0,511584 0,511392 0,506031 0,501999 0,506947 0,482639 0,482458 0,477400 0,473596 0,478264 0,506869 0,506679 0,501367 0,497373 0,502275 0,495494 0,495308 0,490115 0,485210
		1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ac ad ae ba bb bb bb bc bd bc ca cb cc cc cc cc cc da db dc dd dc de ea eb ec ed	0,473356 0,473179 0,468218 0,464488 0,469066 0,511584 0,511392 0,506031 0,501999 0,506947 0,482639 0,482458 0,477400 0,473596 0,473596 0,477400 0,473596 0,477400 0,473596 0,477400 0,473596 0,477400 0,473596 0,477400 0,506869 0,506679 0,501367 0,497373 0,502275 0,495494 0,495308 0,490115 0,486210 0,491002
		1,296684 1,320644 1,302502 1,317689 1,310559	al-a al-b al-c al-d al-e	1,626767 1,627002 1,633645 1,638734 1,632500	aa ab ac ad ae ba bb bb bb bc bc bc bc ca cb cc cc cc cd cc da db dc db dc dd de ea eb ec ed ee ee	0,473356 0,473179 0,468218 0,464488 0,469066 0,511584 0,511392 0,506031 0,501999 0,506947 0,482639 0,482458 0,477400 0,473596 0,478264 0,506869 0,506679 0,506679 0,501367 0,497373 0,502275 0,495494 0,495308 0,490115 0,486210 0,490122

					standard deviation	0,014672734
$\alpha \varphi = 1$		DIF		DIF	nogeible combinations	
a=200	raa	DIF 1 424356		<u>DIF</u> 1.0/1052		X 0.450938
	ra h	1,424330	al-a	1,941032		0,450538
		1,428039		1,941907	ab	0,450529
	ra d	1,423269	al-C	1,937007		0,452885
		1,432334		1,942701	au	0,450612
	1a-c	1,448930	ai-c	1,923209		0,454852
						0,454430
					bo	0,456815
						0,450815
					ba	0,434017
						0,403002
						0,449804
					<u> </u>	0,449390
						0,431740
					<u> </u>	0,440979
					Ce	0,436436
					ua	0,439028
					dD	0,459211
						0,401012
						0,458/85
					de	0,468471
					ea	0,477058
					eb	0,476625
					ec	0,479117
					ed	0,476183
					ee	0,486236
					average value	0,460364
					standard deviation	0,010585622
$\alpha \phi = 3$		BIE		BIE	nossible combinations	v
u-200	ro o	2 153286	<u>al a</u>	<u> </u>		A 0.245221
	ra h	2,133280	al-a	4,339033	aa	0,343331
	1a-0	1.022000		4,293310		0,349978
	ra d	2 5 4 2 6 7 2		4,390104		0,340104
	ra e	2,343072	al-u	4,338230		0,343418
	14-0	2,309111	ai-c	4,452555		0,334040
					bh	0,303389
					bb	0,301/01
					bd	0,303896
					ba	0,303890
						0,270433
					- ta 	0.283103
			<u> </u>			0.205195
					od	0.277285
			-		CQ	0.270207
					da	0.462225
			<u> </u>		ua dh	0.468/15
			-		do	0.455336
						0.450665
					do do	0,437003
					ue	0,447113

					ea	0,416144
					eb	0,421744
					ec	0,409941
					ed	0,413839
					ee	0,402538
					average value	0,358873
					standard deviation	0,067892673
αφ=5						
α=200		BIF		BIF	possible combinations	Х
	ra-a	3,196890	al-a	7,135451	aa	0,358065
	ra-b	3,091932	al-b	7,040471	ab	0,363695
	ra-c	3,054451	al-c	7,165819	ac	0,356301
	ra-d	3,194633	al-d	7,255684	ad	0,351183
	ra-e	2,503352	al-e	7,014745	ae	0,365251
					ba	0,340958
					bb	0,346319
					bc	0,339279
					bd	0,334405
					be	0,347801
					ca	0,334849
					cb	0,340114
					сс	0,333200
					cd	0,328413
					ce	0,341569
					da	0,357697
					db	0,363322
					dc	0,355935
					dd	0,350822
					de	0,364875
					ea	0,245027
					eb	0,248880
					ec	0,243820
					ed	0,240318
					ee	0,249944
					average value	0,328082
					standard deviation	0,042508749
αφ=7	<u>г</u>		,			Γ
α=200		BIF		BIF	possible combinations	X
	ra-a	3,530546	al-a	10,42504	aa	0,268492
	ra-b	4,256051	al-b	9,892004	ab	0,284587
	ra-c	2,801605	al-c	10,01648	ac	0,280658
	ra-d	2,224282	al-d	9,899694	ad	0,284341
-	ra-e	3,439475	al-e	10,28429	ae	0,272562
-					ba	0,345468
					bb	0,366177
					bc	0,361122
					bd	0,365861
					be	0,350/05
					<u> </u>	0,191151
					CD	0,202010
	├				<u></u>	0,199812
					ca	0,202434

					ce	0,194049
					da	0,129897
					db	0,137683
					dc	0,135783
					dd	0,137565
					de	0,131866
					ea	0,258829
					eb	0,274345
					ec	0,270557
					ed	0,274108
					ee	0,262753
					average value	0,247337
					standard deviation	0,076066982
αφ=9						
α=200		BIF		BIF	possible combinations	X
	ra-a	2,284585	al-a	12,66593	aa	0,110114
	ra-b	3,543035	al-b	13,39808	ab	0,103612
	ra-c	2,253077	al-c	12,77467	ac	0,109097
	ra-d	1,684375	al-d	13,48254	ad	0,102911
	ra-e	2,842020	al-e	12,38160	ae	0,112865
					ba	0,217988
					bb	0,205115
					bc	0,215975
					bd	0,203727
					be	0,223434
					ca	0,107413
					cb	0,101070
					сс	0,106421
					cd	0,100386
					ce	0,110097
					da	0,058664
					db	0,055200
					dc	0,058123
					dd	0,054827
					de	0,060130
					ea	0,157897
					eb	0,148573
					ec	0,156439
					ea	0,14/568
					ee	0,101842
					average value	0,127380
aa_10					standard deviation	0,032933879
α_200		DIE		DIE	noggible combinations	- -
u=200	roc	DIF 1 760577	ol c	DIF 12 74060	possible combinations	X
	ra h	3 0/2300	ai-a al b	13,74900	aa	0.057062
	ra-0	2 83336/	al-c	14,40040	au	0.057446
	ra-d	2,033304	al-c al-d	14,57054	at od	0.056716
<u> </u>	ra-u	3 072956	al-u al-e	14 10070	au 90	0.0587/3
	140	5,012750	ui U	17,10072	ha ha	0 160193
					hh	0.151441
					bc	0,152457

		bd	0,150521
		be	0,155899
		са	0,143798
		cb	0,135942
		сс	0,136854
		cd	0,135116
		се	0,139943
		da	0,134259
		db	0,126924
		dc	0,127775
		dd	0,126153
		de	0,130660
		ea	0,162590
		eb	0,153707
		ec	0,154738
		ed	0,152773
		ee	0,158231
		average value	0,127212
		standard deviation	0,03613973

Ζ. ΒΙΒΛΙΟΓΡΑΦΙΑ

- «Barrier Properties of Flake-Filled Membranes: Review and Numerical Evaluation», Xiaoming Chen - Department of Chemical Engineering, University of South Carolina Columbia, SC 29208, USA, T.D. Papathanasiou - Department of Chemical Engineering, University of South Carolina Columbia, SC 29208, USA.
- Yano K, Usuki A, Okada A. Synthesis and properties of polyimide-clay hybrid films. Journal of Polymer Science and Polymer Chemistry. 1997, 35(11):2289-2294.
- 3. I. W. Hamley, Introduction to soft Materials, John Willey and Sons, New York, 2000.
- **4.** W.D. Callister, Jr. Materials Science and Engineering, An introduction 5th edition, John Willey and Sons, New York, 1999.
- 5. Σημειώσεις μαθήματος «Ρεολογία και μορφοποίηση πολυμερών υλικών», Pr Παπαθανασίου Αθ., τμήμα Μηχανολόγων Μηχανικών, ΠΘ.
- 6. Μ. Καμπούρη Κ. Δ. Παπασπυρίδη «Τεχνολογία Πολυμερών (Δομή Ιδιότητες Πολυμερών)», ΕΜΠ, Αθήνα 1999.
- 7. Κ. Παναγιώτου, Θεσσαλονίκη 2000, Επιστήμη και Τεχνολογία Πολυμερών.
- 8. Potschke, P. Fornes, T. D. Paul, D. R. Rheological behaviour of multiwall carbon nanotube / polycarbonate composites, Polymer 43 (2002) 11, 3247-3255.
- **9.** L. E. Nielsen, R. F. Lander, Mechanical properties of polymers and composites, 2nd edition, Marcell Dekkerv, 1994.
- 10. Γ. Παπανικολάου, Μουζάκης, Σύνθετα υλικά, εκδόσεις Κλειδάριθμος, 2007.
- 11. Matthews, L. και Rawlings, R.D. Composite Materials Engineering and Science.
- 12. Polymer Nanocopmposites as Dielectrics and Electrical Insulation-perspectives for Processing Technologies, Material Characterization and Future Applications. Tankara, T., Montanari, G.C. και Mulhaupt, R. IEEE Transactions on Dielectrics and Electrical Insulation, vol. 11, No. 5, 1070. 9878/04/ 2004 IEEE.
- 13. Antonio Luque, Steven Hegedus, Handbook of Photovoltaic Science and Engineering.
- 14. Koshio, A., Yudasaka, M. Zhang, M. Iijima S, A Simple Way to Chemically React Single-Wall Carbon Nanotubes with Organic Materials Using Ultrasonication Nano Lett. 2001, 1, 361-363.
- **15.** Shaffer, M. S. P.; Windle, A. H. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites Adv. Mater. 1999, 11, 937-941.
- 16. Alexander Star, Dr., J. Fraser Stoddart, Prof.^{*}, David Steuerman, Mike Diehl, Akram Boukai, Eric W. Wong, Dr., Xin Yang, Dr., Sung-Wook Chung, Hyeon Choi, Dr., James R. Heath, Prof. Preparation and Properties of Polymer-Wrapped Single-Walled

Carbon Nanotubes Department of Chemistry and Biochemistry University of California, Los Angeles 405 Hilgard Avenue, Los Angeles, CA, Angew and Chemie International Edition

- 17. Λ.Νάκης, Τ. Τσούφης, Δ. Γουρνής, Α. Λεκάτου και Μ. Α. Καρακασίδης, «Σύνθεση και χαρακτηρισμός νανοσύνθετων υλικών Nylon-6/10 με φυλλόμορφους αργίλους και νανοσωλήνες άνθρακα»
- **18.** Carrette, L., Friedrich, K.A., Stimming, U., "Fuel cells fundamentals and applications." Fuel Cells, 1 (2001) p.p. 5-39
- 19. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science & Engineering. 2000; 28(1-2):1-63
- **20.** Koros, W. J., Ma, Y. H., Simidzu, T. J. Memb. Sci. 1996, 120, 149. Παρατίθεται αυτούσιος ο ορισμός: «membrane: structure, having lateral dimensions much greater than its thickness, through which mass transfer may occur under a variety of driving forces».
- **21.** Diffusion of water in swollen poly(vinyl alcohol) membranes studied by molecular dynamics simulation F. Muller-Plathe, Acta Polymer. 45, 259 (1994).
- 22. (α) Bitter, J. G. A. Transport Mechanisms in Membrane Separation Processes, Plenum Press, New York, 1991 (β) Ho, W. S. W., Sirkar, K. K. Eds., Membrane Handbook, van Nostrand Reinhold, New York, 1992.Παρατίθεται αυτούσιος ο ορισμός: «A membrane is a phase or a group of phases that lies between two different phases, which is physically and/or chemically distinctive from both of them and which, due to its properties and the force field applied, is able to control the mass transport between these phases».
- 23. Σημειώσεις για το μάθημα «Εφαρμοσμένη Ηλεκτροχημεία: Ανάπτυξη Χημικών και Βιοχημικών Αισθητήρων» «ΑΜΠΕΡΟΜΕΤΡΙΚΟΙ ΑΙΣΘΗΤΗΡΕΣ» Μάμαντος Ι. Προδρομίδης Ιωάννινα, 2007.
- **24.** Scott, K., Hughes, R. Industrial Membrane Separation Technology, Chapman & Hall, (1996).
- **25.** D.N. Theodorou, Diffusion in Polymers, edited by P. Neogi (Marcel Dekker, New York, 1996).
- 26. 'Physical and gas permeation properties of a series of novel hybrid inorganicorganic composites based on a synthesized fluorinated polyimide' C. J. Cornelius, PhD. Thesis, Virginia (2000).

- 27. D. Hofmann, L. Fritz, J. Ulbrich, C. Schepers, M. Böhning, "Detailed-atomistic molecular modelling of small molecule diffusion and solution processes in polymeric membrane materials", Macromol. Theory Simul., 9 (2000) 293-327.
- **28.** J. G. Wijmans, R. W. Baker, The solution-diffusion model: a review, Journal of Membrane Science 107 (1995) 1-21.
- **29.** Hanika M, Langowski H-C, Moosheimer U, Peukert W. Inorganic layers on polymeric films—influence of defects and morphology on barrier properties. Chem Eng Technol 2003;26:605–14.
- **30.** W.F. Smith, Foundations of Materials Science and Engineering 3rd ed., McGraw-Hill (2004).
- **31.** Jean Philibert, One and a Half Century of Diffusion: Fick, Einstein, before and beyond, Diffusion Fundamentals 2, (2005).
- 32. ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ Μια ενοποιημένη προσέγγιση Robert S. Broadkey, Harry C. Hershey – (Τίτλος προτοτύπου Transport phenomena) – copyright A. TZIOLA E. (1990) – Μετάφραση Γ. Λ. Μπλέρης – Καθηγητής Α.Π.Θ. τόμος Α΄ - Β΄.
- 33. Hood Chatham, Surface and Coatings Technology 78 (1996) 1-9
- **34.** D. Raabe. Computational materials science: the simulation of materials microstructures and properties. Wiley-VCH, (1998).
- **35.** Goldberg HA, Feeney CA, Karim DP, Farrell M. Gas barrier properties of butyl rubber/vermiculite nanocomposite coatings, Rubber World 2002;226:1–17.
- **36.** Cussler, E.L., Hughes, S.E., Ward, W.J. and Aris, R. (1988). Barrier Membranes, Journal of Membrane Science, 38(2): 161–174.
- 37. Nielsen, L.E. (1967). Models for Permeability of Filled Polymer Systems, Journal of Macromolecular Science, A1(5): 929–942.
- **38.** Aris, R. (1986). On a Problem in Hindered Diffusion, Archives for Rational Mechanics and Analysis, 95(2): 83–91.
- **39.** Wakeham, W.A. and Mason, E.A. (1979). Diffusion through Multiperforate Laminae, Industrial and Engineering Chemistry Fundamentals, 18(4): 301–306.
- **40.** Falla, W.R., Mulski, M. and Cussler, E.L. (1996). Estimating Diffusion through Flakefilled Membranes, J. Membr. Sci., 119(1): 129–138.
- **41.** Lape, N.K., Nuxoll, E.E. and Cussler, E.L. (2004). Polydisperse Flakes in Barrier Films, Journal of Membrane Science, 236(1): 29–37.
- **42.** Fredrickson, H.G. and Bicerano, J. (1999). Barrier Properties of Oriented Disk Composites, J. Chem. Phys., 110(4): 2181–2188.

- **43.** Bharadwaj K. Modeling the Barrier Properties of Polymer-Layered Silicate Nanocomposites, Macromolecules 2001; 34:9189–92.
- 44. Polymer nanotechnology: Nanocomposites D.R. Paul a, L.M. Robeson Department of Chemical Engineering and Texas Materials Institute- University of Texas at Austin, Austin, TX 78712, United States Lehigh University, 1801 Mill Creek Road, Macungie, PA 18062, United States (2008).
- 45. Numerical simulation of the effects of volume fraction, aspect ratio and fibre length distribution on the elastic and thermoelastic properties of short fiber composites Hine PJ, Lusti HR, Gusev AA COMPOSITES SCIENCE AND TECHNOLOGY, 62 (10-11): 1445-1453 2002
- 46. Barrier properties of model epoxy nanocomposites Luyi Suna,b,W.-J. Booa, a. Clearfieldb, H.-J. Suea, H.Q. Phamca Polymer Technology Center, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA b. Department of Chemistry, Texas A&M University, College Station, TX 77842, USA c. Epoxy R&D, The Dow Chemical Company, Freeport, TX 77541, USA.
- **47.** G. Choudalakis *, A.D. Gotsis, Permeability of polymer/clay nanocomposites: A review Department of Sciences, Technical University of Crete, GR-73100, Hania, Greece.
- **48.** T. D. Papathanasiou, David C. Guell. Flow induced alignement in composite materials.
- 49. Finite element assessment of the potential of platelet filled polymers for membrane gas seperations – Olga Guseva, Materials Simulations GmbH – Zurich, Switzerland, Empa Swiss Federal Laboratories For Materials Testing and Research – Dubendorf, Switzerland - Andrei A. Gusev, Institute of polymers, Department of Materials, Zurich, Switzerland.
- **50.** Hamid, S, Amin, M.B., Maadhah, A.G 'Handbook of polymers degradation', 1st edition, Marcell Deeker, Inc., p575.
- 51. 'Determination of permeation parameters of experimental PET films coated with SiOx to ethyl acetate, oxygen and water vapour' Adamantiadi A, Badeka A, Kontominas MG., Laboratory of Food Chemistry and Technology, Department of Chemistry, University of Ioannina, Greece. (Abstract from Food Addit Contam. 2001 Nov, 18: 10046-54).
- **52.** E.L. Cussler, Diffusion: Mass Transfer in Fluid Systems, third Edition (Cambridge University Press, London, 1997).

- **53.** NANO-Textured Functional Layers for Sustainable Products Eva Maria Moser, Jacques Painot, Anne Dimitrov and Edmond Goy.
- 54. Hussain F., Hojjati M., Okamoto M., Gorga R.E. Polymer-matrix nanocomposites, processing, manufacturing and application: an overview. J. Comp. Mater. 40 (2006) 1511-1575.

Ζ.1 - ΔΙΑΔΙΚΤΥΑΚΟΙ ΤΟΠΟΙ (Δ):

(Σημειώνεται ότι οι διαδικτυακοί τόποι στο σύνολο του κειμένου της εργασίας αριθμούνται ως αναφορές με το γράμμα (Δ)).

- Δ1 <u>http://el.wikipedia.org/wiki/Ωσμωση</u>
- $\Delta 2 \underline{http://www.elliniki-ygeia.gr/deltia_typou/deltia_tupou_17_6_08_cosmos.php$
- $\Delta 3 \underline{http://www.tee.gr/online/epikaira/1999/2047/pg032.shtml}$
- $\Delta 4 \underline{http://www.teithes.com/forum/index.php?showtopic=2652}$
- $\Delta 5 \underline{http://courseware.mech.ntua.gr/ml00001/mathimata/C1_Sintheta_ilika.pdf$
- $\Delta 6 \underline{http://www.metal.ntua.gr/uploads/3456/383/Chap8gr.pdf}$
- $\Delta 7 \underline{http://www.chem.iastate.edu/faculty/Klaus_Schmidt-Rohr/nano.jpg}$
- Δ8 <u>http://www.eng.ucy.ac.cy/aprodromou/projects/nanosyn/download/NANOSYN</u> <u>news_1.pdf</u>
- $\Delta 9 http://img367.imageshack.us/i/rollablepowerfilmya8.jpg/$
- $\Delta 10 http://www.nanotech-now.com/$
- $\Delta 11 \text{ } \underline{http://pubs.acs.org/cen/nanotechnology/7842/7842nanotechnology.html}$
- $\Delta 12 \underline{http://www.nagref.gr/journals/ethg/images/35/eth35p10-13.pdf}$
- Δ13<u>http://media.photobucket.com/image/bear%20bottle/ozbevnet/Buderim%20ginger%20</u> beer/buderim-ginger-beer-bottle.jpg
- $\Delta 14$ <u>www.nanocor.com</u>
- $\Delta 15 \underline{http://www.nanocor.com/tech_papers/Antec-Nanocor-Tie\% 20Lan-5-07.pdf}$
- $\Delta 16 \text{ } \underline{http://www.naturalnano.com/presentations/InvestorPresentation.ppt}$
- Δ17<u>http://dml.chania.teicrete.gr/nano/FWTO%20APO%20HMERIDA/PROSKLHSH/Nan</u> oFulladio.pdf
- $\Delta 18 \text{ } \underline{http://www.gambroamericas.com/upload/Site_us/HD/Revaclear/membrane-lg3.jpg}$
- $\Delta 19 \underline{http://www.chemie.uniduesseldorf.de/Faecher/Organische_Chemie/OC2/staudt/ENGLIS}$

CH/forschung/pervaporation3-eng.jpg

- $\Delta 20 \text{ } \underline{http://www.uoi.gr/schools/chemistry/index.files/metaptyxiako/ypoltech.html}$
- $\Delta 21$ <u>http://www.Advancedcomposites.com</u>
- $\Delta 22 \text{ } \underline{http://courseware.mech.ntua.gr/ml00001/mathimata/E_Diaxisi.pdf}$
- $\Delta 23 \text{ } \underline{http://users.auth.gr/~paloura/DIAXYSH_all_2008.pdf}$
- $\Delta 24 \text{ } \underline{http://www.materials.uoc.gr/el/undergrad/courses/ETY340/notes/03_Diffusivity.pdf}$