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Περίληψη 
 

Ο σκοπός της παρούσας διατριβής ήταν η μελέτη και εφαρμογή υπολογιστικών  
μεθόδων για την επίλυση ΜΔΕ, οι οποίες προκύπτουν από 1D και 2D 

προβλήματα σε ετερογενή συστήματα. Οι διαφορικές εξισώσεις είναι μεγάλης 

σημασίας και μοντελοποιούν πολλά φυσικά και επιστημονικά προβλήματα. Μετά 

από μια ενδελεχή μελέτη των προηγούμενων εργασιών στον τομέα, δύο 

αλγόριθμοι επιλέχθηκαν για να υλοποιηθούν. Ο αλγόριθμος cyclic reduction και o 

αλγόριθμος block cyclic reduction υλοποιήθηκαν για την CPU και μεταφέρθηκαν 

σε GPU με  σκοπό να μελετηθεί η επίδοση τους. Ο κώδικας για την CPU 

υλοποιήθηκε σε C και Matlab. Ο κώδικας για την GPU υλοποιήθηκε σε NVIDIA 

CUDA. Λόγω αριθμητικής αστάθειας του Block Cyclic Reduction αλγορίθμου η 

παραλλαγή Buneman υλοποιήθηκε. Πραγματοποιήθηκαν εκτενή πειράματα και 

τα αποτελέσματά τους συγκρίθηκαν και μελετήθηκαν. Αποδείχθηκε ότι σε GPUs ο 

αλγόριθμος Buneman δείχνει μέχρι 25x speed-up συγκριτικά με την CPU και η 

cyclic reduction έως και 8x . Συμπερασματικά η GPU μπορεί να χρησιμοποιηθεί 

για να λύσει αποτελεσματικά, με ακρίβεια και σαφώς ταχύτερα  αυτά τα 

προβλήματα ειδικά σε δύο διαστάσεις καθώς το speed-up ήταν ιδιαίτερα 

αξιοσημείωτο και το υπολογιστικό φορτίο εξαιρετικά μεγάλο.  
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The purpose of this thesis was to study and implement computational methods for
solving PDEs arising from 1D and 2D problems in heterogeneous systems. Differential
equations are of high importance and model many physical and scientific problems.
After a thorough review of previous work on the field two algorithms were chosen
to be implemented. The cyclic reduction algorithm and the block cyclic reduction
algorithm were implemented for CPU and ported to GPU to study the performance.
The CPU code was implemented in C and Matlab. The GPU code was implemented
in NVIDIA CUDA. Due to numerically instability of Block Cyclic Reduction the
Buneman variant was implemented. Extensive experiments were performed and their
results were compared and studied. It was proved that in GPUs the Buneman al-
gorithm shows up to 25x speed-up in relation to CPU and cyclic reduction up to
8x. That concludes that GPU can be used to solve efficiently, accurately and clearly
faster these problems especially in two dimensions were the speed-up was particularly
remarkable and the computational load extremely large.
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Chapter 1

Introduction

Tridiagonal solvers are tools of high importance in wide range of engineering and

scientific applications. Some applications of tridiagonal solvers include computer

graphics, financial applications, fluid dynamics, Poisson solvers, preconditioner in

iterative solvers and cubic spline calculation. Recent technological evolution of GPUs

has lifted many scientific and engineering applications to a level that was only possible

with room-sized supercomputers in the past.

There are various methods solving tridiagonal systems such as Thomas algorithm,

cyclic reduction method, recursive doubling etc. Some of them exploit parallelism and

a lot of research has been made over the years in order to improve their performance.

This thesis is organized as follows. Chapter two provides an introduction to GPU

computing and all the necessary background information in NVIDIA’s CUDA pro-

gramming model. In Chapter three, a review of solving partial differential equation

on GPUs is presented. Specifically this Chapter gives a summary of the related work

that is done in the field of stencil computation and PDEs solving on GPUs. Chapter

four describes the implementations of the previous methods and optimizations. Two

methods were implemented and ported on GPU, cyclic reduction (CR) that solves

tridiagonal linear systems and block cyclic reduction (BCR) that solves block tridi-

agonal linear systems. In the last Chapter, performance comparison, results of the

experiments performed and the concluding remarks are demonstrated.
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Chapter 2

GPUs and Parallel Programming

Models

2.1 Graphics Processing Units (GPU) Computing

Conventional central processing units (CPU) are reaching the limits for how high the

clock frequencies can go. More and more cores are added on each CPU so as to achieve

higher computational throughput. However, physical limitations and limitations on

the circuit fabrication make more difficult the improvement of the clock speed of the

CPU.

Therefore, the CPU faces the problem of keeping its clock frequency growing and

have added more cores to counterbalance this. The other hardware part that is

used, the graphical processing units (GPUs), which have always been parallel hard-

ware made for real-time 3D renderings, have evolved into devices that may also be

programmed and used for general-purpose computing like scientific computations.

Specifically, GPUs can run many threads in parallel that fulfill high computation de-

mand and provide large memory bandwidth to serve parallel memory access requests.

Hence, parallel computing imported a new area called GPGPU, or General-Purpose

computation on GPU. The importance of GPGPU technology is to provide hetero-

geneous computations where applications use both the CPU and GPU. Simply, it

can increase the speed of applications with a large amount of data just by using the
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GPU as a co-processor to CPU to accelerate its general purpose computations that

were once only managed by the CPU alone. NVIDIA and ATI have been the main

GPU manufacturers with a long list of different models and features. Both of these

companies have been producing different platforms that can use parallel computing

architectures to utilize the GPU’s stream processors in order to gain more speed-up

for any computing process.

Nowadays, CPU systems are basically multi-core systems. They contain handful

of strong cores, each supporting approximately one hardware thread. In contrary,

GPU systems are called many-core systems containing many but ”lighter” threads.

There are two major differences between CPU and GPU threads. First, GPUs have

small caches but the context switching between threads is essentially fast so as to

overlap memory access latency with useful computations. And second, GPUs achieve

high performance when thousands of threads execute in parallel while CPUs need the

number of threads per core to be small.

Figure 2-1: GPU Architecture

As shown in Figure 2-1, GPU is presented as a set of multiprocessors. Each

multiprocessor has its own shared memory and registers. The processors connect

with DRAM via an interconnection Network.
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2.2 NVIDIA’s Kepler Architecture

In an attempt to interpret better the experimental results of this thesis, it seems

necessary to explain the GPU architecture (Kepler GK110 architecture) and especially

the GPU model (GTX Force 680) used for thesis’s needs.

NVIDIA’s Kepler architecture introduced to improve mainly 3D graphics quality

to gamers. Kepler builds on the foundation first established with NVIDIA’s Fermi

GPU architecture. This architecture demonstrates higher performance and better

efficiency in terms of power consumption compared to Fermi. Kepler provides over

1 TFlop of double precision throughput with greater than 80% DGEMM efficiency

versus 60 ‐ 65% on the prior Fermi architecture. The first product being introduced

based on Kepler architecture is the GeForce GTX 680.The design of this architec-

ture was basically focused on improving power efficiency, delivering up to 3x the

performance per watt of Fermi.

During the design of Kepler, a new Streaming Multiprocessor introduced, called

“SMX” one of the keys to GeForce GTX 680’s performance. To improve the power

efficiency, SMX runs at graphics clock rather than 2x graphics clock, using 1536

CUDA cores in GK104 and therefore the GeForce GTX 680 SMX provides 2x the

performance per watt of Fermi’s SM (GF110). This allows the GeForce GTX 680 to

deliver higher performance/watt when compared to GeForce GTX 580. The GeForce

GTX 680 GPU consists of four Graphics Processing Clusters (GPCs), eight next-

generation Streaming Multiprocessors (SMX), and four memory controllers.
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Figure 2-2: Kepler Architecture

GeForce GTX 680 contains four GPCs, delivering 32 pixels per clock. Each GPC

has a dedicated raster engine and two SMX units. With a total of eight SMX units,

the GeForce GTX 680 implementation has 1536 CUDA Cores. GeForce GTX 680’s

memory subsystem was also completely revamped, resulting in dramatically higher

memory clock speeds. GeForce GTX 680 operates at 6008MHz data rate, and for

each memory controller it provides 128KB L2 cache and eight Raster Operations

(ROP) units (each of the eight ROP units processes a single color sample). With four

memory controllers, a full GeForce GTX 680 GPU has 512KB L2 cache and 32 ROPs

(i.e., 32 color samples).

The SM is the heart of NVIDIA’s unified GPU architecture. Most of the key

hardware units for graphics processing reside in the SM. The SM’s CUDA cores per-

form pixel/vertex/geometry shading and physics/computing calculations. Texture

units perform texture filtering and load/store units fetch and save data to memory.

Special Function Units (SFUs) handle transcendental and graphics interpolation in-

structions. Finally, the Polymorph Engine handles vertex fetch, tessellation, viewport

transform, attribute setup, and stream output. Kepler GK110 supports the CUDA

Compute Capability 3.5.
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Each of the Kepler GK110 SMX units feature 192 single precision CUDA cores,

and each core has fully pipelined floating ‐ point and integer arithmetic logic units.

Kepler retains the full compliant for single and double precision arithmetic introduced

in Fermi, including the fused multiply - add (FMA) operation. The SMX schedules

threads in groups of 32 parallel threads called warps. Each SMX features four warp

schedulers and eight instruction dispatch units, allowing four warps to be issued and

executed concurrently. Kepler’s quad warp scheduler selects four warps, and two

independent instructions per warp can be dispatched in each cycle.

Figure 2-3: Warp Scheduler

To increase performance Kepler introduced a new shuffle instruction, which allows

threads within a warp to share data. In older architectures, sharing data between

threads within a warp required separate store and load operations to pass the data

through shared memory. With the Shuffle instruction, threads within a warp can

read values from other threads in a warp in just about any imaginable permutation.

Shuffle supports arbitrary indexed references.

For further performance improvement changes have been made in Kepler for the

atomic operations. These are executed individually from every thread and their execu-

tion cannot be interrupted. Atomic operations are widely used in parallel program-

ming in order to succeed synchronization between threads. Throughput of global

memory atomic operations on Kepler GK110 is substantially improved compared to
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the Fermi generation. Atomic operation throughput to a common global memory ad-

dress is improved by 9x to one operation per clock. Kepler GK110 also expands the

native support for 64‐bit atomic operations in global memory. Besides atomicAdd,

atomicCAS, and atomicExch, GK110 supports atomicMax, atomicMin, atomicAnd,

atomicOr and atomicXor [1].

Kepler keeps a similar memory hierarchy to Fermi. The Kepler architecture sup-

ports a unified memory request path for loads and stores, with an L1 cache per SMX

multiprocessor. Kepler GK110 also enables compiler directed use of an additional

new cache for read‐only data as shown in Figure. As in Fermi architecture, Kepler

GK110, each SMX of it has 64 KB of on‐chip memory that can be configured as 48

KB of shared memory with 16 KB of L1 cache, or as 16 KB of shared memory with 48

KB of L1 cache. In Kepler permits a 32KB/32KB split between shared memory and

L1 cache, something that offers extra flexibility. To support the increased throughput

of each SMX unit, the shared memory bandwidth for 64b and larger load operations

is also doubled compared to the Fermi SM, to 256B per core clock.

Figure 2-4: Kepler Memory Hierarchy

Besides L1 cache, an 48KB cache for data is added that is known to be read‐only

for the duration of the function. Another feature met in Kepler GK110 GPU is an

improved L2 cache where there are 1536KB of dedicated L2 cache memory, double

the amount of L2 available in the Fermi architecture. The L2 cache on Kepler offers
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up to 2x of the bandwidth per clock available in Fermi. Like Fermi, Kepler’s register

files, shared memories, L1 cache, L2 cache and DRAM memory are protected by a

Single‐Error Correct/Double‐Error Detect (SECDED) ECC code. In addition, the

Read‐Only Data Cache supports single - error correction through a parity check; in

the event of a parity error, the cache unit automatically invalidates the failed line,

forcing a read of the correct data from L2.

2.3 NVIDIA CUDA Programming Model

Compute Unified Device Architecture (CUDA) is a general purpose parallel comput-

ing platform and programming model introduced by NVIDIA. CUDA is mostly used

to increase the efficiency in the solution of large computational problems in relation

to CPU.

CUDA C is an extension of C. Actually CUDA can be considered as C with a few

keywords. The programmer defines functions, called kernels. Kernels are executed

N times concurrently by N different CUDA threads and have access only to GPU

memory. A kernel can be defined with the __global__ declaration specifier when

launched from CPU. A kernel may be launched from another kernel using the __de-

vice__ declaration specifier. The programmer is able to define the number of CUDA

threads that execute the kernel using the «<…»> execution configuration syntax.

Each thread that executes the kernel is assigned with a unique thread ID that can be

referred to via the threadIdx variable. Threads are managed in groups of 32, called

warps. Instructions are issued per warp. If an operand is not ready the warp will

stall. Computations can be performed in one, two and three-dimensions. For that

purpose, threadIdx is a 3-component vector (threadIdx.x, threadIdx.y, threadIdx.z).

This provides a natural way to invoke computation across the elements in a domain

such as a vector, matrix, or volume. The number of threads per block is limited, due

to limited memory resources of the processor core, on which all threads per block

within the block reside. In most cases the number of threads per block reflects the

problem geometry. On current GPUs, there are up to 1024 threads per block.
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Blocks do not migrate among processors, execute on one multiprocessor. Several

blocks can be executed concurrently on one multiprocessor. They are organized into

a one, two, or three-dimensional grid of thread blocks as illustrated in Figure 2-5.

The number of thread blocks in the grid usually results from the amount of data to

be processed to the number of threads per block.

Figure 2-5: Cuda Blocks

In correspondence with the threads in the blocks, each block within the grid can

be identified by a one, two, or three-dimensional index accessible within the kernel

through the built-in blockIdx variable. The dimension of the thread block can be

accessed within the kernel through the built-in blockDim variable.

Every thread has private local memory. Each thread block has shared memory

visible to all blocks’s threads and its has the same lifetime as the block. Shared mem-

ory is used by threads to contribute for shared data and synchronize their execution to

avoid simultaneous memory accesses. In particular, by calling the __syncthreads()

function threads can succeed synchronization. __syncthreads() is a barrier where all

threads in a block must wait before any is allowed to proceed. All threads have access

to the same global memory. The constant and texture memory spaces are two addi-

tional read-only memory spaces accessible by all threads. The global, constant, and

texture memory spaces are persistent across kernel launches by the same application

([2], [3], [4]).
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Figure 2-6: Cuda Grids

The CUDA programming model assumes a system composed of a host and a

device, each with their own separate memory. Serial code is executed in a host (CPU)

thread, while Parallel code is executed in many device (GPU) threads across multiple

processing elements. Device memory is typically allocated using cudaMalloc() and

related using cudaFree() while data transfer between host memory and device memory

are typically accomplished using cudaMemcpy().

Here are some examples of typical instructions:

Kernel definition example:

__global__ void k e rn e l ( i n t *a , i n t dimx , i n t dimy ){

i n t tx = block Idx . x * blockDim . x + threadIdx . x ;

i n t ty = block Idx . y * blockDim . y + threadIdx . y ;

i n t idx = ty *dimx + tx ;

a [ idx ] = a [ idx ]+1 ;

}

Kernel launch example:
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i n t *d_a = 0 ;

cudaMalloc ( ( vo id **)&d_a , num_bytes ) ;

dim3 gr id , b lock ;

b lock . x = 4 ;

b lock . y = 4 ;

g r i d . x = dimx / b lock . x ;

g r i d . y = dimy / b lock . y ;

ke rne l <<<gr id , block>>>( d_a , dimx , dimy ) ;
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Chapter 3

A Review of Solving Partial

Differential Equations (PDEs)

3.1 About PDEs

Partial differential equations (PDEs) are used to model many real world phenomena

such as wave propagation, fluid flow, heat flow and distribution, etc. A linear 2nd-

Order PDE of the general form is:

Auxx + 2Buxy + Cuyy +Dux + Euy + Fu+G = 0

where the coefficients A, B, C etc. may depend upon x and y.

If (A2 + B2 + C2) > 0 over a region of the x-y plane, the PDE is second-order

in that region. PDEs can be classified into elliptic, parabolic and hyperbolic equa-

tions. The classification is based in the discriminant B2–4AC as shown in Table 3.1.

Parabolic equations, with the thermal conductivity equation as the most characteris-

tic example, involve time dependency and describe diffusion. Hyperbolic equations,

with the wave equation as the most standard example, are time dependent and de-

scribe dissemination phenomena. Unlike the previous, elliptic equations describe the

static behavior of a magnitude in a particular area without time dependency. The

most characteristic elliptical equation is the Laplace equation. Parabolic and hyper-

bolic equations are usually defined as initial value problems and elliptic equations as

boundary value problems.
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Discriminant Type

B2–4AC < 0 Elliptic (e.g. Laplace Eq.)

B2–4AC = 0 Parabolic (e.g. Heat Eq.)

B2–4AC > 0 Hyperbolic (e.g. Wave Eq.)

Table 3.1: Classification of PDEs

Most frequently, PDEs are solved using Finite Difference (FD), Finite Element

Methods (FEM) and Finite Volume (FV) methods. The Finite Difference technique

is implemented and mathematically analyzed more easily than the other techniques,

since they formulated for structured meshes/grids. The least popular is the Finite

Volume approximation because it is only two decades scientists are working on them

but they are highly known further for high accuracy results in both structured and

unstructured meshes.

3.1.1 Finite Difference Methods for Solving Elliptic PDEs

There are three basic steps to solve a PDE numerically. The first step concerns

the discretization of the PDE domain into a grid of (evenly) spaced points (nodes)

and the restriction of the PDE equation on these nodes. The second step involves

the discretization of the partial derivatives and possibly its boundary conditions for

every grid node. For the 2-D simple PDE problem

uxx + uyy + u = f in Ω, u = g on ∂Ω

and if the (5 point-star) stencil for the discretization of the second derivative is used,

then the continuous equation becomes the following system of linear equations:

∂2u

∂2x
+

∂2u

∂2y
=

ui−1,j − 2ui,j + ui+1,j

∆x2
+

ui,j−1 − 2ui,j + ui,j+1

∆y2

The scheme used in this example is Finite Difference scheme, since it considers a

central node and four neighbors. If the accuracy of the results is of major importance,

then higher order Finite Difference schemes can be used. These equations involve

more than four neighbor nodes, e.g., the nine point scheme. The extension of this
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method in 3-D can be done easily, increasing the number of the nodes involved in the

equation. In this case the equations involve seven and twenty-seven neighbor nodes

for second or higher order accuracy, respectively.

The final step concerns the solution of the resulting linear system. The linear

algebra methods for the solution are divided in two basic categories, iterative (Jacobi,

Gauss-Seidel, SOR, Multigrid, etc) and direct methods (Gauss, Cholesky, Thomas,

FFT, etc).

3.1.2 Finite Difference Methods for Solving Parabolic PDE’s

The first step, as before concerns the discretization of the domain into grid of evenly

spaced points (nodes). The second step involves the expression of the derivatives in

terms of Finite Difference Approximations of O(h2) and O(∆t) [or O(∆t2) order ] :
∂2T
∂2x

, ∂
2T

∂2y
, ∂T

∂t
=⇒ FiniteDifferences

As a final step, remains the choice of h = ∆x = ∆y, and ∆t and use of the initial

and boundary conditions to solve the problem by systematically moving ahead in

time. For the time derivative referred above, explicit (Euler, Leapfrog, Runge-Kutta)

and implicit (Crank-Nicolson Method, ADI methods, etc.) schemes are used. Explicit

methods express all future values (t+∆t) in terms of current (t) and previous (t−∆t)

information, which are known. Implicit methods derive future values (t + ∆t) by

solving appropriate equations in terms of current (t) and sometimes previous (t−∆t)

information.

3.2 Stencil Computation

As shown above, Finite Difference methods are mainly used as the second step of the

PDE solution. These methods perform nearest neighbor computations called stencils.

In stencil computations, the solution of each point of the grid is updated depending

on a subset of its neighbors. In this way, the coefficients of the PDE are represented.

Excessive work is done in this field aiming to achieve efficiency, optimization and high

performance on GPUs.
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Brandvik and Pullan [5] present a generalized software framework named SBLOCK

for applications that use stencil computations to solve PDEs. They used the 3D heat

diffusion equation as a model problem to demonstrate their results. A second order

Finite Difference approximation scheme is used for the derivatives and the Jacobi

iterative method is used for the solution of the derived system of the linear equa-

tion. According to the authors their main contribution is the combination of the

automatic source code generation with a run-time library. The run-time library pro-

vides an API that is used by the application for different functions and is divided in

host library and device library. The application interacts with the run-time library

either through the host library or by making calls directly to the device library. This

host-device abstraction is useful since only a new device library has to be written

to support a new type of processor, the host library always remains the same. One

of the problems is the performance bottleneck caused by the transfer of the data

across the PCI-Express bus. This can be solved in different ways, depending on the

problem. If the boundary conditions can be expressed in the form of a SpMV, the

application can use SBLOCK’s SpMV library directly. Therefore no data will be

transferred across the PCI-E bus unless it needs information from another processor.

If the boundary conditions are expressed differently the application may request a

pointer to the array directly from the device library, and implement its own functions

in NVIDIA’s CUDA language to operate on this array. For the second component,

the source code generation, it is important to highlight that with this approach firstly

they achieved to enable multiple platforms using only a single, high-level definition

of the computations performed by the solver. Secondly, because of the abstract view

of the kernel implementation that the developer has, SBLOCK can use any optimiza-

tion strategy offering code readability. The optimization strategies which were used

by the framework were about achieving high performance using domain decomposi-

tion and multiple threads. Moreover to maximize the amount of reuse of data in the

on-chip memories, they used the ”cyclical queue” strategy [4]. The framework runs

in both multiprocessors and GPUs. For their experiments they used: Intel Core i7

920 (Nehalem), AMD Phenom II X4 940 and NVIDIA GTX 280. The kernels of the
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algorithm are split into two categories: stencil kernels and non-stencil kernels. After

studying the performance and the power efficiency of different important stencils, in

both single and double precision, they came to the conclusion that good performance

has been demonstrated for a range of stencil kernels with different stencil sizes and

arithmetic intensities. They also showed that there is a good scaling across a large

GPU cluster (good results up to 16 GPUs and scaling up to 64 GPUs).

Paulius in [6] describe a GPU parallelization of the 3D finite difference computa-

tion using CUDA. The main object of this paper is how the data access redundancy

evaluates implementation efficiency for both stencil-only computation and discretiza-

tion of the wave equation. In the implementation the goal was to reduce redundancy

(the ratio between number of elements accessed and number of elements processed)

by performing calculation from shared memory. In 2D computation, the 2D tile was

loaded in shared memory so as the output tile to be computed. In this paper they

presented an extension to 3D with two approaches, two pass and single pass. The

approach of the two pass traverses the input volume twice. The first pass concerns the

computation of the 2D stencil values while during the second pass, the partial results

from the first pass are combined. With this approach they referred that they had an

important improvement in redundancy over the naive approach which computes an or-

der k-stencil by re-fetching all input elements for every output value, and it becomes

better with the single-pass approach. Experiments were performed on stencil-only

computations and on finite difference of the wave equation. For the stencil-only com-

putation, all configurations were processed using 16 x 16 thread blocks operating 16

x 16 output tiles. The experiments concerned different volume dimensions in rela-

tion to order in space, where throughput evaluated as a metric. These experiments

showed that for fixed volume dimensions, throughput decrease with increased orders,

is largely due to higher read redundancy, with additional arithmetic being another

contributing factor. For the 3-D finite difference of the wave equation, two kernels

were implemented. For the first kernel utilizes 16 x 16 thread blocks and output tiles

with redundancy at order of 5. For the second kernel they utilized 32 x 16 thread

blocks, 32 x 32 output tiles and the redundancy was 4.5. GPU performance was
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roughly an order of magnitude higher than a single 4-core Harpertown Xeon, running

an optimized implementation of the same computation. It was also demonstrated a

multi-GPU implementation of the wave-equation finite difference. Performance re-

sults (using 16 x 16 tiles and thread blocks arranged as 16 x 16 threads) are shown

for up to 4 GPUs. It was showed an almost linear speed-up in two and four GPUs

except one case(544 × 544 × 400 does not scale linearly with 4 GPUs due to the fact

that each GPU computes only 100 slices which takes significantly less time than cor-

responding communication). They indicated that communication overhead is hidden

as long as the number of slices per GPU is 200 or greater.

Foster [7] in his paper proposed three main optimizations for solving 2D parabolic

PDEs using difference equations. The approach of the red-black array was used from

the representation of the grid. As first optimization, they focused on the separation

of the unified red-black array into a single red- array and a single black one. The

division was performed on the CPU and the separated arrays were passed to the

CUDA kernel. In this way they avoided divergence since the entire warp handled

either red or black points. With the second optimization strategy they aimed to

reduce the number of sequential memory accesses. For updating N points in the grid,

it was required 5 sequential memory accesses. To eliminate this extra latency, they

reduced the amount of work per thread block. The final optimization concerned the

shared memory. Because of the data utilization, they reduced redundant memory

reads through shared memory storing which was faster than accessing RAM. The

computer used for testing was Intel Core i7 920 at 2.67 GHz. The two graphics cards

used for GPU computing were an NVIDIA Tesla and an EVGA GeForce 480. The four

versions of the kernel tested were: CPU, GPU with no optimization, GPU-RB for the

first optimization and GPU-RBS for the remaining two optimizations. Throughput

was used as a metric with single floating point precision. First, the throughput of

the CPU implementation declined quickly in all tests from 500 to about 1500 points

per dimension and gradually tapered off more as the data set sizes continued to

increase. Over the same range of 500 to 1500 points per side, the throughput of

the GPU versions greatly increased in relation to the number of threads and the
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dimension of the problem. For both cards, the first strategy, with the division of the

unified array, showed an important speed-up over the basic GPU implementation,

while the GPU-RB version yielded speeds of around 50%. Finally they underlined

that how advantageous these strategies are, depends on the GPU architecture and

GPU hardware.

Schäfer and Fey [9] presented a number of different approaches to conduct stencil

computations on GPGPUs, based on a range of micro benchmarks. They choose the

Jacobi iteration as a standard benchmark because it has a low FLOP per byte ratio

and is the most common method. Their research is embedded into LibGeoDecomp (a

generic library which can automatically parallelize user supplied stencil codes). Ac-

cording to this paper the performance of a stencil code is a result of various things con-

sidered and explained in a specific section writing down how to achieve the GPGPU’s

maximum memory bandwidth, hide the several hundred cycles of memory latency and

saturate the arithmetic pipelines. In each sequential Jacobi iteration, each update

calculates a weighted average of the old cell with its neighbors in the six cardinal direc-

tions. The general approach was to break down the total volume into smaller chunks.

Each chunk was assigned to a CUDA thread block. The way the cells of a chunk are

distributed among the threads of a thread block depends on the algorithm. The au-

thors developed 3 approaches: the “naïve algorithm”, the “cached plane sweep” and

the “pipelined wavefront”. In the first algorithm all seven values for single cell update

are loaded directly from memory. Because of the cost of calculations which have to

be carried with this algorithm they suggested an improvement related to the number

of threads that update cells. In the “cached plane sweep” algorithm all threads of a

block were put on a 2D plane and this plane is swept through the chunk. They paid

attention on optimizations related to L1 cache reuse, so as the accesses to neighbor

values in the same plane to be mostly served from L1 cache and they stored cells, in

the direction of the moving plane, in registers. For the last algorithm, the “pipelined

wavefront”, they take advantage of the von Neumann neighborhood’s property, that

neighboring cells outside of the plane’s direction of travel have to be read only from

one layer. By this they managed to reduce planes to two. Their testbed consists of
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an NVIDIA GeForce GTX 480 consumer GPGPU and a Tesla C2050. All algorithms

were tested with a block size of 32 x 16 x 1 threads because they found out that was

the best geometry for their experiments. The “naïve” as well as the “cached plane

sweep” algorithm updated blocks of 32 x 16 x 8 cells, while the “pipelined wavefront”

algorithm turned out to run faster when updating 32x32x64 cells. They concluded

that the “pipelined wavefront” is the fastest algorithm on the Tesla card but only

for a specific size of models because shared memory is limited and as future work,

performance could be improved.

Playne and Hawick [10] in their paper presented two methods, for implementing

finite difference field-equation simulations on multiple GPUs. The main issue is the

reduction of communication of cell halos and the overlap communications with com-

putations. They noticed that even if finite difference methods are used more often,

first-order Euler time integration method or Runge-Kutta method are easiest. First,

they deal with the determination of the size of the equation memory halo and how

the equation can be split across multiple GPUs. More communication between cells

in each step is required for equations with a large memory halo. The field equation

used as example was the Cahn-Hilliard equation. They used the best implementation

for this equation and they tried to improve this simulation by spreading the compu-

tation across two GPUs. In their paper they describe in details the basic design of

the best implementation. In short texture memory is used for reading the value of

the cells and the surrounding neighbors from memory. This improved significantly

the performance of the simulation. For the field decomposition, the field was divided

in two halves and one half is loaded into memory on each GPU and with two sets of

bordering cells from the other half. The width of this model depends on the memory

halo of the model. The field should be split in the highest dimension so as the cells in

the borders to be in sequential addresses. The first method they present is the syn-

chronous memory copy. For this implementation they used the pThreads library to

manage the multi-threading on the CPU. The main problem was that while the CPU

threads exchanged data, the each GPU stopped and sit idle. For this reason they im-

plemented the second method, the asynchronous one. CUDA supports asynchronous
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host-device memory access and execution for GPUs. They used streams to split de-

vice execution so as to can take place at the same time with memory copies. This is

very useful for a GPU idle time reduction. The basic idea behind this implementa-

tion was to use asynchronous copies to exchange the border cell values between the

two threads while the GPU is still computing the simulation for the rest of the field.

One problem worth mentioning that they faced, was that for the GPU to copy data

from the device memory to the host, the host memory must be allocated by CUDA

to ensure that it is page locked. This problem resolved successfully using a flag that

tells the compiler to make the memory available to all CUDA contexts rather than

only the one used to declare it. The GPUs used for the simulations is one NVIDIA

GeForce GTX 295 which contains two GPUs. In most experiments the asynchronous

memory copy implementation was shown that provide the best performance. As the

field length and memory halo increasing in size the performance keep becoming bet-

ter. A certainly unexpected effect was the loss in performance seen when the field

lengths are not powers of two. As a conclusion, they underlined that the correct use

of asynchronous memory communication can provide almost linear speed-up over a

single-GPU implementation for larger system sizes.

3.3 Solvers for PDEs

After discretization, elliptic equations lead to algebraic equations. Most previous

works use implicit schemes to discretize the PDEs that lead to solving a sparse linear

system. Many numerical methods, such as Jacobi, Gauss–Seidel, conjugate gradient,

and multigrid, have been applied. Explicit methods are more expensive but as the

computing power is growing, there are a lot of works which use an explicit approach

and a responding PDE solver.

Daniel Egloff [11] [25] uses the parabolic convection diffusion equation du
dt

= L(t)∗

u(t, x) where, in case of a single risk factor, L is the differential operator, to present a

tridiagonal solver on GPUs using cyclic reduction .The purpose of this is to improve

the performance of finite difference PDE solvers on GPUs. The idea of cyclic reduction
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is to eliminate variables from adjacent equations and reduce the system recursively

until a single equation or a two-by two system remains. The parallel cyclic reduction

algorithm is a slight variation, which applies the reduction simultaneously to all n

equations. The storage requirements of the solver are three diagonal vectors l, d,

u for the system and a vector h for the right hand side, which also will hold the

result. The solver reuses l, d, u to store the recursively generated coefficients and

therefore no additional temporary storage is required. In this implementation each

thread processes one row of the matrix when the matrix is sized up to a maximum

512 (NVIDIA Tesla has at most 512 threads per block).When there is need for larger

matrices one thread processes multiple rows using the C++ preprocessor to roll out

a sufficiently large number of if-blocks and to have one group of temporary variables

for every if-block. The solver works best if all the vectors can be stored in shared

memory. The threads that do not fit in shared memory are stored in global memory.

First it was compared Gaussian elimination along the lines of Forsythe and Moler

and the serial version of the cyclic reduction algorithm against the SSE optimized

Intel MKL solver sgtsv and dgtsv in single and double precision. The benchmark is

executed on an Intel Core 2 Duo CPU T9600 at 2.8 GHz. All tests have been built

with full optimization turned on. It is interesting to note that the Forsythe-Moler

algorithm in double precision has approximately the same performance as dgtsv while

the serial CR underperforms with about double execution time. For single precision

MKL solver was executed in almost half time compared to serial CR , with serial

CR 2.06 times slower and Forsythe-Moler 1.43 times slower in the biggest problem.

Subsequently, GPU implementation was compared to CPU SSE MKL solver sgtsv

solving up to 12000 equations. A speed-up 13x was obtained. The author presents

various experiments measuring the effect of shared memory use, data size etc. It

is noted that these experiments were performed in an Intel Core 2 Quad CPU and

NVIDIA Tesla C1060 GPU.

Daniel Egloff [12] presents the implementation of efficient GPU solver with finite

difference schemes for two-factor models, with a focus on stochastic volatility models,

the Hundsdorfer – Verwer scheme and the Douglas scheme. The resulting partial dif-
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ferential equations of two state variables are solved with alternating direction implicit

(ADI) schemes. The applied methodology for the resolution of the problem is the fol-

lowing: the calculations are decomposed for every time step into multiple kernel calls.

The Douglas scheme requires three kernel calls per time step. The suggested imple-

mentation of the Douglas scheme exhibits parallelism at two different levels. The first

level is given by the sweeping over the slices in the two coordinate axes. The second

level is inside of the solution algorithm of each tridiagonal system. The implemen-

tation of the Hundsorfer–Verwer scheme is very similar but slightly more complex.

Benchmark of the GPU ADI solvers fulfilled for the two-dimensional Heston stochas-

tic volatility model against an optimized, fully multithreaded CPU implementation,

for which was used the Intel threading building block library (Intel TBB Team 2010).

On a recent C2050 Fermi GPU, a speed-up of more than a factor of 70 attained for

a sufficiently large problem size. The relative performance for the Douglas scheme in

single precision on an Intel dual core E5200 2.5 GHz with a GTX260 GPU goes as

follows: the GPU ADI solver runs about 40 times faster than the CPU single-core

version and 27 times faster than the optimized two-core version. On a Tesla C1060 or

GTX260, the GPU ADI solver can handle state grids of at most 1,004 points because

of shared memory and register limitations. The best speed-up is achieved when the

state grid size is near this limit. For small scale problems, the speed-up is not very

large, due to the cost of allocating device memory. If the problem size is growing, the

time required to allocate memory on the GPU becomes less dominant and the speed-

up increases significantly. The more accurate Hundsorfer–Verwer is about twice as

intensive as the Douglas scheme, which is confirmed by the measured times.

Won-Ki Jeong et al [13] in their paper describe a 3D, volumetric, seismic fault

detection system. The main contribution of their work was a novel 3D directional

anisotropic diffusion algorithm based on the orientation of the seismic strata. They

also implemented an application of techniques and technologies to seismic data inter-

pretation. In this paper, presented some previous work and was highlighted that their

approach is a fully 3D implementation. They summarize their fault detection method

on four steps. Step 1 concerns the structure tensor analysis. A structure tensor J is
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defined by a tensor of a n-dimensional vector x (J = x∇x). After the eigenanalysis of

J matrix, a new positive semi-definite matrix is resulted. Its eigenvalues and eigen-

vectors are found using any analytic method. During the second step, a directional

anisotropic diffusion is applied so as to remove noise. Specifically they modified the

coherence enhancing diffusion (∂I
∂t

= ∇ ∗ (D∇I)) and they employ the explicit Euler

integration scheme to solve it. Step 3 includes the computation of a fault-likelihood

volume. Finally in step 4 they proposed a hysteresis thresholding to keep only strong

features or features connected to features. For hysteresis thresholding, couldn’t be

used recursive functions as is typical in a conventional (CPU) implementation. How-

ever in their GPU implementation, an iterative method was used, checking if any

point is larger than either upper or lower threshold. They performed a system 20

times faster than the CPU implementation using a PC with a Pentium 4 3.6GHz

processor and an Nvidia 7800GTX graphics card, preserving accuracy of detection in

relation to the manually selected faults. It is also important to be underlined that

they used a set of 2D textures to represent a 3D volume on the GPU and 32 bit float-

ing point textures as intermediate buffers to prevent precision errors when solving the

nonlinear PDE system for the diffusion, obviously because rendering to a 3D texture

was not yet supported by many graphics cards.

Hee-Seok Kim et al [14] present the design and evaluation of a scalable tridiago-

nal solver targeted for GPU architectures. They proposed a hybrid method of tiled

parallel cyclic reduction (tiled PCR) and thread-level parallel Thomas algorithm (p-

Thomas). Algorithm transition from tiled PCR to p-Thomas is determined by input

system size and hardware capability in order to achieve optimal performance. The

proposed method is scalable as it can cope with various input system sizes by prop-

erly adjusting algorithm transition point. The tiled PCR is proposed as a variant of

incomplete PCR. Specifically in the tiled PCR algorithm, a large system can be di-

vided into multiple systems and instead of loading the whole system, a large system

is loaded chunk by chunk into a tile which is allocated in shared memory. After-

wards the p-Thomas algorithm solves these multiple independent systems. It is also

used a technique called buffered sliding window for using shared memory to process a
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tile efficiently. In particular, the contribution of tiled PCR was that it can minimize

global memory access, hide memory access latency due to independent tiling of a large

system, and provide desirable memory layout. They measured their implementation

with various combinations of different input sizes and number of input systems. The

proposed method on a NVidia GTX480 showed up to 8.3x and 49x speed-up over

multithreaded and sequential MKL implementations on a 3.33GHz Intel i7 975 in

double precision, respectively.

The cardiac monodomain model comprises a nonlinear system of partial differen-

tial equations and its numerical solution represents a very intensive computational

task due to the required fine spatial and temporal resolution. Oliveira et al [15] com-

pared three different implementations – CUDA, OpenCL and OpenGL, to a CPU

multicore implementation that uses OpenMP. The PDE solved is a reaction - dif-

fusion equation known as the monodomain equation. Essentially in every time step

there are two different problems to be solved. The first one is a nonlinear system of

ODEs and the second is a parabolic linear PDE. Regarding the PDE, they used the

finite element method for the spatial discretization and then the second order Crank-

Nikolson method. For the system of ODEs they used the explicit Euler method.

In this work only 2D regular square meshes were considered, resulting in diagonally

structured matrices with 9 diagonals. The compressed sparse row (CSR) format and

the diagonal (DIA) format were used to store the matrices. For the OpenGL imple-

mentation the machine of rendering graphics was used to perform general purpose

computations. They used the fragment processor and written the fragment shader

exploiting the textures. Details for the CUDA implementation are not given. For the

OpenCL implementation it is mentioned only that the CUDA solver was converted to

OpenCL. The GPU implementation of the time stepping of the ODEs uses one thread

to solve one ODE system, that is, each thread is associated with each node. Solving

the parabolic problem includes sparse matrix - vector multiplication and solving a

linear system. They used double precision arithmetic and compared the accuracy of

the results using relative root- mean square. Simulations were carried out on a quad-

core Intel Core i7 860 2.80GHz, 8GB of memory equipped with:(i) NVIDIA GeForce
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GTX 470 (ii) AMD Radeon 6850. Three different in-silico tissue preparations were

used in this work for the performance tests. For ODEs the OpenGL implementation

performed better than the other two, with or without optimizations. But on the

other hand CUDA implementation was the most effective between the GPU solvers.

Significant large speed-ups were observed from all three implementations in relation

to CPU OpenMP implementation for the ODE part. In the parabolic problem the

computational gain was significant lower and CUDA implementation outperformed

the other two. Although it is also highlighted that the OpenGL code is difficult to

be understood because of its complexity while OpenCL code can be run on different

accelerator devices.

Kruger and Westermann [16] implemented direct solvers for sparse matrices and

applied these solvers to multi-dimensional finite difference equations, i.e. the 2D wave

equation and the incompressible Navier-Stokes equations. In their paper, they de-

scribe the internal representation of matrices on graphics hardware. Each vector is

converted into a square 2D texture by the application program. Vectors are padded

with zero entries if they do not entirely fill the texture. Moreover the transpose

of a matrix is generated by simply ordering the diagonals in a different way. Off-

diagonals numbered i, which start at the i-th entry of the first row, now become

off-diagonals numbered N-i. Entries located in the former upper right part of the

matrix are swapped with those entries located in the lower left part. Subsequently,

they present basic algebraic operations on vectors and matrices based on this repre-

sentation, such as vector arithmetic, matrix-vector product and vector reduce. The

difference between sparse and full matrices just is demonstrated in that they rendered

every diagonal or column vector as a set of vertices instead of set of 2D textures. The

conjugate gradient (CG) method and a Gauss-Seidel solver were also implemented.

With these methods equations after discretization were solved. For all these imple-

mentations they used a PC running under Windows XP on a P4 2.8GHz processor

equipped with an ATI 9800 graphics card. On vectors and full matrices the imple-

mentation of standard arithmetic operations, was about 12-15 times faster compared

to an optimized software implementation on the same target architecture. A con-
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siderable speed-up was achieved by internally storing vectors and matrices as RGBA

textures. On average, the multiplication of two vectors of length 5122 took 0.2 ms.

Performance dropped down to 0.72 ms and 2.8 ms for vectors of length 10242 and

20482, respectively. Multiplication of a 40962 full matrix times a vector was car-

ried out in roughly 0.23 seconds. In contrast, the multiplication of a sparse banded

matrix of the same size, with 10 non-zero diagonals, took 0.72 ms. They faced prob-

lems with numerical accuracy but their performance was better compared to software

implementations of BLAS library.

Daisuke Sato et al [17] use GPUs to accelerate two simulations models of electrical

wave propagation in cardiac tissue, an anatomic rabbit ventricular model with ’fiber

rotation’ and the 2D homogeneous sheet. Each model was simulated using both the

GPUs and CPUs using single precision. The cardiac tissue was modeled using the

following PDE: ∂V
∂t

= −1/Cm+∇∗D∇V where V is the transmembrane voltage, I is

the total ionic current, Cm is the transmembrane capacitance, and D is the diffusion

tensor. This reaction diffusion equation solved with the forward Euler method, using

the technique of operator splitting. For each time step, the ODE part was solved

once and the PDE part was solved four times for the 2D simulation and six times

for the 3D simulation. The methodology followed was to split the program into

three parts, the ODE calculation, the PDE calculation, and the data transfer. They

measured separately the time elapsed to data transfer and then the time for PDE

and ODE calculation. The GPU simulation was performed with a single NVIDIA

Geforce 8800 GT and an NVIDIA Geforce 9800 GX2 with CUDA version 1.1. The

CPU simulation was performed with an 8-node high performance-computing cluster.

Each node has two dual-core 2.0 GHz AMD Opteron processors. For the cluster MPI

1.0 was used. The computational speed of 2D tissue simulations with a single GPU

was about 30 times faster than with a single Opteron processor. For the 3D model

the computational speed with a single GPU was 1.6 times slower than with a 32-

CPU Opteron cluster. Moreover GPUs cluster presented 2x speed-up compared to

CPUs cluster. In conclusion, it is important to be referred that the main bottleneck

of the computation is the PDE and ODE part for GPU and CPU accordingly.
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Mena and Rodriguez [18] present results obtained using HESIC, a novel electro-

physiology simulation software entirely developed in CUDA. The multi-scale nature

of the electrophysiology problem makes difficult its numerical solution because of the

millions degrees of freedom in models. These models have to be solved for thousand

time steps. The use of algorithms with higher level of parallelism in multi-core plat-

forms could be a solution. So they implemented implicit and explicit solvers in CUDA

for the monodomain model using operator splitting and the finite element method.

There are two parts of the parallel implementation. The one concern the solution of

the system of ODEs at each mesh point and the second part is the solution of the

linear system of equations associated with the parabolic PDE. All data is stored using

sparse matrix structures. For the PDE solver in GPU they used CUSP and Thrust

libraries, while matrices are stored in compressed sparse row sparse format and then

transformed to an efficient sparse matrix format when transferred in the GPU mem-

ory for computations. Performance results are compared with an explicit multi-CPU

based software. GPU simulations were run on a computer node with two Intel-Xeon

Quad-Core CPUs. The node is equipped with four Nvidia Tesla M2090 GPUs. All

simulations were run in a single GPU. A single GPU thread is about 478 slower than a

single CPU core. However, as they underlined, theoretically the speed-up could reach

the range of 180x for a model with more than 1 million nodes. Finally, compared to

related works, they conclude that their implementation guarantees both, the stability

of the ionic model and the stability of the PDE.

Li-Wen Chang et al [19] present a solver based on the SPIKE algorithm for parti-

tioning a large matrix into small independent matrices which can be solved in parallel

using a general 1-by-1 or 2-by-2 diagonal pivoting algorithm. There are two contri-

butions of this work. The first is that the proposed solver is the first numerically

stable tridiagonal solver for GPUs and also scalable to multiple GPUs and CPUs.

The second is the presentation of two optimizations: a high throughput data layout

transformation for memory efficiency and a dynamic tiling approach for reducing the

memory access footprint caused by branch divergence. The solver creates the parti-

tions of the input matrix and vector, as an input for the parallel solver step. The
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parallel partitioned solver for the collection of independent systems then computes

both the solutions to the partitions of the original system as well as the components

of the spike matrix S. Then a solver for the spike system is invoked, first solving

the reduced spike system, followed by the computation of all remaining values in the

solution X through backward substitution. Finally, the results from all the different

partitions are collected and merged into the expected output format and returned.

In the parallel partitioned system solver step, any solver can be used to solve the

independent systems. The authors in their experiments provided both their thread-

parallel diagonal pivoting solver and a parallel Thomas solver. For the data layout

transformation the strategy was in the partitioning step of the SPIKE algorithm,

to marshal the data such that Element K of Partition I is adjacent to Element K

from partitions I-1 and I+1. This strategy can guarantee better memory efficiency

in the kernel execution but pay the cost of data marshaling. For the data tiling the

idea followed was to use a dynamic tiling mechanism, which bounds the size of the

access footprint from the threads in a warp. The original while loop is dynamically

tiled to a few smaller while loops. Barrier synchronization is put between the smaller

while loops to force ”fast” threads to wait for ”slow” threads. The evaluation tests

performed in 16 types of nonsingular tridiagonal matrices of size 512. The machines

used are a single node of the NCSA GPU Accelerated Cluster (AC) with an Intel

Xeon X5680 CPU and 2 NVIDIA GTX480 GPUs and a NCSA GPU Forge cluster

with 2 AMD Opteron 6128 CPUs and 6 or 8 NVIDIA M2070 GPUs. The evaluation

of the performance of the GPU-based solver was compared against the results of CUS-

PARSE library on a GPU and MKL library on a CPU, on the AC machine. In the

case of a random matrix, the proposed method performs with comparable execution

time (less than 5% difference) to that of CUSPARSE, while in terms of precision; the

authors’ SPIKE diagonal pivoting has a much smaller error rate. Compared to MKL,

their method can get 3.20x and 12.61x speed-ups with and without considering data

transfer from GPU, respectively. The SPIKE-Thomas implementation, which is nu-

merically stable in many cases but cannot be guaranteed, outperforms CUSPARSE

by a factor of 1.72x, and compared to MKL, it shows 3.60x and 22.70x speed-ups
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with and without data transfer, respectively. For a strictly column diagonally dom-

inant matrix both CUSPARSE and the SPIKE-Thomas implementation are stable.

The SPIKE-diagonal pivoting shows 1.35x, 3.13x, 16.06x speed-ups over CUSPARSE,

MKL with and without considering data transfer for GPU, respectively. The scala-

bility evaluation performed in NCSA Forge on 1,2,4,8 and 16 GPUs. The results of 1,

2, and 4 GPUs use on single node, while the results of 8 and 16 GPUs are generated

on multiple nodes. In the first case a strong but not linear scaling was observed. In

the second case, the GPU-based solver achieved perfectly linear scalability when the

input begins already distributed among the various nodes. Finally, the library does

scale well when the matrix size increases.

Gaikwad and Toke [20] presented GPU based parallel implementations of Krylov

subspace based iterative solvers for solving several small sized systems arising from

this method. They selected Stabilized BiConjugate Gradient (BiCGStab) and Con-

jugate Gradient Squared (CGS) methods for the solutions of sparse linear systems

with unsymmetric coefficient matrices. They considered the phenomenon of the curse

of dimensionality so as to use sparse grid combination technique. In this solver the

goal was to solve problems with irregular sparsity. Their solver implementations

used CUBLAS Library mainly for vector-vector operations. CUBLAS does not pro-

vide sparse matrix storage structures, so they considered general storage formats

and which of them could be more suitable. They experimented with three libraries

(NVIDIA SpMV Library, IBM SpMV Library and CNC SpMV Library) to imple-

ment the linear solvers. For evaluating the GPU implementations of linear solvers

they chose Black-Scholes partial differential equation. The sparse grid combination

technique allowed them to solve for higher dimension by reducing the size of the prob-

lem. All sub-grids were solved sequentially a single GPU using BiCGStab and CGS

solvers. These solvers on CPU developed for double precision, while on GPU, due to

limitations of Tesla C870, the solvers were done with single precision arithmetic. In

their paper it was referred analytically, using tables, the performance for each exper-

iment. Experiments were performed on NVIDIA Tesla C870 and Intel Xeon E5420.

For small grids, both CPU and GPU implementations exhibit equivalent performance
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but GPU solvers achieve better speed-ups for the grids with large unknowns than for

the smaller grids. Their results pointed that the choice of sparse format is not only

important for scalability of iterative solvers to solve the sparse grids but the efficient

implementation and parameter tuning of matrix-vector kernels is also essential for

maximal performance on GPUs.

Glimberg et al [21] implemented the GPULab Library which is a GPU-based

Framework for PDE Solvers created by the Section of Scientific Computing in the

Department of Informatics and Mathematical Modeling of Technical University of

Denmark. They have decided to invest time now to develop a generic framework,

in order to easily solve a broad range of PDE problems in the future (Inspired by

the PETSc framework). Their key components for High performance PDE-solvers

are stencil based flexible order FD operations, iterative methods for solving large

systems of equations (mixed precision) and decomposition techniques. Currently,

they are working with the OceanWave3D model for coastal and offshore engineering.

In the future they want to solve large problems fast because currently they are limited

by the GPU memory .They want to be limited by the total number of GPUs. They

intent to solve on multiple GPUs, on multiple workstations.

Jeff Bolz et al [22] implemented two basic computation kernels on GPUs, a sparse

matrix conjugate gradient (CG) solver for unstructured grids using a mesh with 37k

vertices and a regular grid multigrid solver on a fluid-flow problem which requires a

Poisson solver with Neumann boundary conditions. Implementing a CG solver re-

quires a sparse matrix-vector multiply and vector inner-product. Each of the matrix

A and vector x are stored in textures requiring appropriate indirections. The sparse

matrix A is stored in two textures, one for the diagonal entries and one for the off-

diagonal, non-zero entries of A. They have implemented all of the components of a

general conjugate gradient solver, as well as the specific matrices for geometric flow,

including their recomputation for each smoothing step. Their optimizations focused

on the rectangles dimensions and layout. The tests were performed in NVIDIA’s

GeForce FX GPU’s. They implemented CPU versions of the matrix multiply kernels

using SSE, and tested them on a 3GHz Pentium 4. The GPU implementation achieved
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120 unstructured matrix multiplies per second whereas the CPU implementation can

only do 75 per second on the stated problem instance. For the multigrid solver for

discretization of elliptic PDEs over regular grids was considered the Helmholtz equa-

tion with Dirichlet and/or Neumann boundary conditions on the unit square. After

discretization remains to be solved a linear system. For the structured matrix multi-

ply, the GPU can do 1370 matrix multiplies per second whereas the CPU can do 750

per second. The tests have shown that both the CPU and GPU implementations are

bandwidth limited and that the multigrid solver has enormous performance potential,

and would be even more useful if it were applied to irregular grids.

Yao Zhang et al [24] study the performance of three parallel algorithms and their

hybrid variants for solving tridiagonal linear systems on a GPU: cyclic reduction (CR),

parallel cyclic reduction (PCR) and recursive doubling (RD). They found that CR

enjoys linear algorithm complexity but suffers from more algorithmic steps and bank

conflicts, while PCR and RD have fewer algorithmic steps but do more work each

step. To combine the benefits of the basic algorithms, they propose hybrid CR+PCR

and CR+RD algorithms. They decided to develop hybrid methods due to some

observations. First all three algorithms have fine-grained parallel structures which

are suitable for GPU programming. With respect to computational complexity, CR

is the best algorithm because it is O(n), while PCR and RD are O(nlog2n). However,

CR suffers from a lack of parallelism at the end of the forward reduction phase and at

the beginning of the backward substitution phase. On the other hand, although PCR

and RD have fewer algorithmic steps, they always have more parallelism through

all steps. The hybrid methods improve CR by switching to PCR or RD to reduce

inefficient steps when there is not enough parallelism to keep a GPU busy. The hybrid

algorithms first reduce the system to a certain size using the forward reduction phase

of CR, then solve the reduced (intermediate) system with the PCR/RD algorithm.

Finally, they substitute the solved unknowns back into the original systems using the

backward substitution phase of CR. For each system, the three diagonals and right-

hand side were loaded from global memory to shared memory, solve the system, and

store the solution back to global memory. Therefore global memory communication
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only occurs at the beginning and end of all algorithms. With the used hardware,

systems of more than 512 equations would exceed the size of shared memory. The

proposed solvers do support this case at a cost of roughly 3x performance degradation

by using global memory only. CR has the least work (shared memory accesses and

arithmetic operations) but the most steps, whereas PCR and RD have fewer steps

but more work. This motivates an approach that takes advantage of the best parts of

both: doing the least work when there is sufficient parallelism at least of warp size,

but then switching to performing fewer steps when there is not enough parallelism

to fill the machine. The switch is actually even more beneficial because there are

bank conflicts in the CR solver and shared memory access dominates the execution

time. Experiments performed in NVIDIA GTX 280 and Intel Core 2 Q9300. Hybrid

algorithms improved the performance of PCR, RD and CR by 21%, 31% and 61%

respectively. Their GPU solvers achieve up to a 28x speed-up over a sequential

LAPACK solver, and a 12x speed-up over a multi-threaded CPU solver.

Göddeke and Strzodka [23] in their paper present a new implementation of cyclic

reduction for the parallel solution of tridiagonal systems and employ this scheme as

a line relaxation smoother in their GPU-based multigrid solver. They also reevaluate

the mixed precision solvers, shown in their previous work, that run entirely on the

GPU. Among some previous works about parallel algorithms for the solution of tridi-

agonal equations systems, they pointed the work by Zhang et al [24]. The last one

conclude that cyclic reduction suffers from shared memory bank conflicts and poor

thread utilization in lower stages of the solution process, while parallel cyclic reduction

is not asymptotically optimal and recursive doubling is not optimal and additionally

exhibits numerical stability issues. Zhang et al [24] developed a hybrid combination

of cyclic reduction and parallel cyclic reduction to alleviate these deficiencies. On the

other hand, Göddeke and Strzodka implemented a cyclic reduction algorithm that

exhibits much better memory access patterns and reached the same performance as

their best hybrid algorithm. As a test problem they solved the Poisson problem on

isotropic and anisotropic domains with homogeneous Dirichlet boundary conditions.

After discretization on rectangular domains they obtained a linear system of equations
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(ALx = b, logical tensor product structure). To measure accuracy, they evaluated the

analytical Laplacian of the polynomial function u0(x, y) = x(a−x)y(b−y) at the grid

points and used the resulting coefficient vector as the right hand side of the linear sys-

tem. It is shown that attempting to solve the system in single precision failed, while

double precision sufficed to reduce the error according to finite element theory and to

guarantee the result accuracy. Nevertheless, single precision is 2.5 times faster. So

they used mixed precision solvers. As it is referred the mixed precision solver for a lin-

ear system Ax = b basically comprises the following steps: First, compute d = b−Ax

in double precision. Second, solve Ac = d approximately in single precision. Third,

update x = x + c in double precision. Finally check for convergence and iterate.

Subsequently, they analyzed some multigrid smoothers, the Jacobi, the Gauss-Seidel

and finally Thomas algorithm as a tridiagonal solver for CPU and Cyclic reduction

as a tridiagonal solver for GPU. The CR algorithm proceeds in two steps: a forward

reduction and backward substitution. The main problem of this algorithm is the bank

conflicts in the on-chip memory which reduce the internal bandwidth. Their solution

to this problem is to group the indices in each level of the reduction tree in two con-

tiguous arrays of odd and even indices. When they load the initial data into shared

memory they already separate even and odd indices. With an appropriate padding

between the arrays this is a bank conflict free read operation from global to shared

memory. The output of each forward update step writes again into separate even and

odd arrays. Moreover their implementation directly permutes the matrix bands after

the assembly, and stores both row- and column oriented coefficients. Consequently,

both sets of matrix bands are passed to the device. Their tests were performed on an

NVIDIA GeForce GTX 280 and Intel Core2Duo E6750 CPU. The Poisson problem

-Δu = f on a unit square domain = ([0, 1])2 with Dirichlet boundary conditions. The

GPU features 30 multiprocessors supports double precision. They used a multigrid

solver for their tests. A preconditioned conjugate gradient solver treated the coarse

grid problems. Its preconditioner was either Jacobi or ADI-TRIDI. The stopping

criterion for the solver was set to reduce the initial residual by eight digits. They per-

formed some accuracy studies about mixed and double precision and they showed the
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results analytically. Finally, they had speed-up measurements about the smoothers.

The speed-up factors are smaller in the fairer comparison of the two mixed precision

solvers, but still reach almost an order of magnitude, which clearly highlights the ad-

vantages of the GPU. At least a 70% speed-up is achieved on the device alone by the

mixed precision scheme, often reaching a factor of two. Different problems required

different smoothers for optimal performance.

3.4 Conclusions of Review

Studying all mentioned papers, we are able to make some conclusions. Matrices are

stored in compressed sparse row (CSR) and then transformed to an efficient sparse

matrix format when transferred in the GPU memory for computations. It is remark-

able that the majority of the results were compared to CUBLAS, CUSPARCE and

MKL libraries. In some cases it is noticed that GPU implementations were compared

to CPU parallel implementations written by the authors. About discretization, the

first step of solving PDEs, it is shown in the figure follows that the most popular

technique was the Finite Difference with the Finite Element to be second. A large

amount of research papers did not mention the technique that they followed.

Figure 3-1: Discretization Techniques
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Finally, an important conclusion about all the above papers concerns the methods

that were most implemented for solving linear systems. In the following table, it

is presented for each work the discretization method, the equation and the solver

that was implemented. Most popular methods are Parallel Cyclic Reduction (PCR),

Conjugate Gradient (CG) and Jacobi.
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# Discretization Method PDE equation Linear System Solver
5 Finite Difference 3D heat diffusion equation Jacobi
6 Finite Difference 2D/3D Wave equation -
7 Finite Difference 2D parabolic PDE -
8 - - -
9 ”naïve algorithm”,

”cached plane sweep”,
”pipelined wavefront”

- -

10 Finite Difference the Cahn-Hilliard equation -
11 Finite Difference the parabolic convection diffusion

equation
Parallel cyclic reduction

12 Finite Difference focus on stochastic volatility
models, the Hundsdorfer–Verwer
scheme and the Douglas scheme

ADI schemes

13 Eigenanalysis directional anisotropic diffusion
& coherence enhancing diffusion

Explicit Euler scheme and an it-
erative method(self implemented)

14 Not Mentioning - Hybrid tiled PCR & p-Thomas
15 Finite Element The cardiac monodomain model

(non linear ODE’s and parabolic
linear PDE’s)

2nd order Crank-Nikolson (PDE)
& explicit Euler (ODE)

16 Finite Difference the 2D wave equation & the in-
compressible Navier-Stokes equa-
tions

CG & Gauss-Seidel

17 operator splitting Reaction diffusion equation Forward Euler
18 Finite Element and

operator splitting
the monodomain model Implicit and explicit solvers

19 - - SPIKE algorithm ,parallel diago-
nal pivoting & p-Thomas

20 - Black-Scholes partial differential
equation

BiCGStab and CGS

21 Finite Difference OceanWave3D model Iterative methods
22 - Helmholtz equation with Dirich-

let and/or Neumann boundary
conditions on the unit square

CG and Multigrid solvers

23 Finite Element Poisson problem on isotropic and
anisotropic domains

Multigrid, Jacobi, Gauss-Seidel,
Thomas(CPU) and parallel
Cyclic Reduction(GPU)

24 - - CR,PCR,RD, Hybrid
CR+PCR,CR+RD

25 Finite Difference the parabolic convection diffusion
equation

Parallel cyclic reduction

Table 3.2: Conclusion Table
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Chapter 4

Implementation

4.1 Cyclic Reduction

Cyclic reduction (CR) is an algorithm introduced by G. H. Golub and R. W. Hoekney

[26] in the mid 1960s for solving tridiagonal linear systems related to the finite dif-

ference discretization of the Poisson equation over a rectangle. The basic idea of the

CR algorithm, also called odd-even reduction, is to repeatedly reduce the system to

half size until one equation is left and solve backwards to find all unknowns.

4.1.1 The algorithm

CR method only applies to matrices that can be represented as a (block) Toeplitz

matrix. Such problems often arise in implicit solutions for partial differential equa-

tions on a grid. For example, fast solvers for Poisson’s equation express the problem

as solving a tridiagonal matrix, discretising the solution on a regular grid. From 1D

Poisson’s equation arises a tridiagonal matrix system while from 2D Poisson’s equa-

tion arises a block tridiagonal system. In general large tridiagonal systems of linear

equations appear in many numerical analysis applications. A tri-diagonal matrix is

a matrix with values only in the sub-, main- and super-diagonal. For example, the

tridiagonal system:

ai ∗ xi−1 + bi ∗ xi + ci ∗ xi+1 = Fi , i = 1 : 1 : n
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Assume that n = 2p−1. The algorithm proceeds in two steps: a forward reduction

and a backward substitution. Each phase consists of (log2 n–1) steps, where n is the

system size. The first step in cyclic reduction is to combine linearly the equations in

order to eliminate the odd numbered unknowns (x1, x3, …, xn). Next the unknowns

are re-ordered and the process is continued until the system consists from one equa-

tion with one unknown. To do this the algorithm is based to triplets. In the above

example in order to eliminate x1 and x3,the first three equations of the system are

chosen and multiplied by the parameters α2, β2, γ2.

b1 ∗ x1 + c1 ∗ x2 = F1 ∗(α2)

a2 ∗ x1 + b2 ∗ x2 + c2 ∗ x3 = F2 ∗(β2)

a3 ∗ x2 + b3 ∗ x3 + c3 ∗ x4 = F3 ∗(γ2)

Subsequently the equations are summed and the resulted equation is produced.

Similarly, this elimination process proceeds for the next three equations, until only

one equation left. Using the back substitution the unknown x can be calculated from

the last one equation and all the others xi can be found from the previous steps .

The equations involved in all these stages are:

a′i = −ai−1 ∗ k1
b′i = bi − ci−1 ∗ k1 − ai+1 ∗ k2
c′i = −ci+1 ∗ k2
d′i = di − di−1 ∗ k1 − di+1 ∗ k2
where k1 =

ai
bi−1

, k2 =
ci

bi+1

xi =
d′i−a′i∗xi−1−c′i∗xi+1

b′i
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The described steps can be illustrated in Figure 4-1.

Figure 4-1: CR Method

4.1.2 Implementation Issues

As it was said a tridiagonal matrix has basically 3 diagonals, (super, main, sub). To

take advantage of this, only these three diagonals vectors plus one vector for the right

hand side of the system and one vector for the solution have to be stored. Vectors

a, b, c are used to hold the sub-diagonal, the main diagonal and the super-diagonal

respectively. Vector F holds the right hand side and U the solution vector. The code

implemented for all the steps of the algorithm is given below:
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Algorithm 1 Cyclic Reduction - Forward
1: function Forward Reduction

2: for(i = 0; i < log2(size+ 1)− 1; i++){

3: for(j = 2i+1 − 1; j < size; j = j + 2i+1){

4: offset = pow(2, i);

5: index1 = j − offset;

6: k1 = a[j]/b[index1];

7: k2 = c[j]/b[j];

8: b[j] = b[j]− c[j − offset] ∗ k1 − a[j + offset] ∗ k2;

9: F [j] = F [j]− F [j − offset] ∗ k1 − F [j + offset] ∗ k2;

10: a[j] = −a[j − offset] ∗ k1;

11: c[j] = −c[j + offset] ∗ k2;

12: }

13: }

14: end function

After the forward elimination the resulting system is one equation with one un-

known. Hereafter, it is trivial to deduce the middle unknown of the system.

Algorithm 2 Solve the middle equation
1: function Find middle

2: intindex = (size− 1)/2;

3: x[index] = F [index]/b[index];

4: end function

Afterwards, the algorithm backwards to calculate repeatedly the remaining un-

knowns. Substantially, the resulting solution is calculated by the following code:
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Algorithm 3 Cyclic Reduction - Backward
1: function Backward Substitution

2: for(i = log2(size+ 1)− 2; i >= 0; i−−){

3: for(j = 2i+1 − 1; j < size; j = j + 2i+1){

4: offset = 2i;

5: index1 = j − offset;

6: index2 = j + offset;

7: if(j! = index1)

8: x[index1] = (F [index1] − a[index1] ∗ x[index1 − offset] −

c[index1] ∗ x[index1 + offset])/b[index1];

9: if(j! = index2)

10: x[index2] = (F [index2] − a[index2] ∗ x[index2 − offset] −

c[index2] ∗ x[index2 + offset])/b[index2];

11: }

12: }

13: end function

The first attempt was to simply port the above algorithm on GPU. Initially three

kernels were obtained based on the three independent steps (Forward Reduction, Find

middle, Backward Substitution) shown above. At this point, data dependencies were

observed between iterations of the external loop both in Forward Reduction kernel

and in Backward Substitution kernel. Subsequently, the first Kernel for forward

elimination called in this way:

f o r ( i =0; i<log2 ( s i z e +1)−1; i++){

<Kernel forward launch>

}

Variable i holds the iteration of the loop and passes as parameter in the kernel,

which essentially settles on the termination condition.In a symmetric way the Back-

ward Substitution kernel is launched, but with the iterations in decreasing order. The

kernel Find middle is launched by one thread only, since is it actually one computa-
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tion. One essential optimization that was performed and increased significantly the

speed-up, as is will be shown in chapter five, is the dynamic calculation of the block

dimension.It was observed that according to the iterations of the external loop, the

number of the threads actually doing a job, was affected. So it was considered the

following function in order to modify the size of the block dynamically:

Algorithm 4 Block Dimension
1: function Calculate Block Dimension(size,block,grid)

2: if(size < 4){block− > x = 1; block− > y = 1;}

3: else if(size < 16){block− > x = 2; block− > y = 2;}

4: else if(size < 64){block− > x = 4; block− > y = 4;}

5: else if(size < 256){block− > x = 8; block− > y = 8;}

6: else {block− > x = 16; block− > y = 16;}

7: end function

In other words, the geometry changes while the size of the system is growing.

Likeness for the backward substitution step, the block dimension is determined.

Another optimization considered was padding. Padding is a technique often used

to avoid divergence between threads in a warp, caused mainly by branches. This

technique is implemented by increasing the allocated memory in order to eliminate

the branches. In this implementation, padding was used to remove the if - branches

in Backward Substitution kernel. These if - branches were present to preserve that

threads would not exceed the allocated memory size. The maximum offset that

threads could exceed was log2(size+1) . So the padded vectors was 2∗ log2(size+1)

bigger in order to cover both directions. Performance results are demonstrated in

Chapter 5.

In relation to memory transfers, before the kernels launches, all vectors except

vector U are transferred from host to device using continuous CudaMemcpy(). It was

preferred to initialize to zero the resulting vector U using CudaMemSet() instead of

copying it through CudaMemcpy() due to lower cost. Finally, the only vector which

is necessary to be copied back from the device to host is the solution vector U.
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4.2 Block Cyclic Reduction

The basic idea of the cyclic reduction method can be extended to block tridiagonal

systems. The idea of the block cyclic reduction (BCR) was first introduced by Gene

Golub to deal with the scalar tridiagonal systems that arise from the finite element

discretization of the Poisson equation in 2D. As in cyclic reduction, block cyclic

reduction is a two phase algorithm. It consists of forward reduction and backward

substitution. During each step of the reduction stage, are eliminated approximately

half the unknowns in the system. After O(log2(n+1)) reductions a 1x1 block system

is left. After solving this system, the previously eliminated unknowns are computed

by back substitution. While this formulation is numerically unstable, O. Buneman

suggested a stable variation. In this thesis, we consider the case of block cyclic

reduction, where the scalar elements of traditional cyclic reduction are replaced with

matrix tridiagonal and diagonal blocks.

4.2.1 The algorithm

The implemented algorithm solves systems of the following form: A ∗ U = F

where the A is a block tridiagonal matrix:



B T

T B T

T B T

...

...

T B T

B T


and B is a tridiagonal matrix. For example a typical tridiagonal matrix arising from

Poisson discretization is :
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the B Matrix 
−4 1

1 −4 −1

−1 −4


and T is either the Identical Matrix

1 0 0

0 1 0

0 0 1


or The -Identical Matrix 

−1 0 0

0 −1 0

0 0 −1



The concept of block cyclic reduction is to iteratively eliminate half of the un-

knowns until there is an only single block system which can be solved directly. So we

have for such as : 1 < j < 2jq − 1

TU2∗j−2 +BU2∗j−1 + TU2∗j = F2∗j−1

TU2∗j−1 +BU2∗j + TU2∗j+1 = F2∗j

TU2∗j +BU2∗j+1 + TU2∗j+2 = F2∗j+1

By multiplying the first and third equations by T and the second equation by –B,

and add the three equations, if TB = BT the odd unknowns U2∗j−1 are eliminated:

T 2U2∗j−2 + (2T 2 −B2)U2∗j + T 2U2∗j+2 = TF2∗j−1 −BF2∗j + TF2∗j+1

Then the same structure occurs for this new linear system with half of the un-

knowns. If this procedure continues for k steps until k = jq − 1 then remains only
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one block of equation remains in the system:

B(jq−1)U2jq−1 = F
(jq−1)

2jq−1

After solving the one block equation, by solving the corresponding linear system,

the backward substitution phase begins. Therefore after the computation of even

values during the forward step, the ”odd” values of the solution are now calculated

during the backward one.

4.2.2 Implementation Issues

Block Cyclic Reduction is not often implemented due to high storage demands of the

algorithm. In particular instead of elements, block of elements have to be stored. In

every calculation step of the forward reduction, matrices B and T are modified and

need to be stored in order to be used in the backward phase. There were to options to

deal with this demand.The one was to store all calculated matrices and the other to

re-compute them every time. In view of the fact that GPU is more efficient handling

large amount of computation and suffers from limited memory size the second option

was chosen.

The inverse of table B in every step it is computed as a function of the original

table B, an angle θ and a number α so as to avoid storing all the middle results

and changes on table B. Bellow is presented the formula for this computation where

Chebychev polynomials are used:

T (k) = T 2k

B(k) = −
∏2k

l=1(B − 2 ∗ cos(θkl) ∗ T )

[B(−1)](k) = −
∑2k

l=1 a(k∗l) ∗ [B − 2 ∗ cos(θk∗l) ∗ T ](−1)

θk∗l = (l − 1/2) ∗ π/2jq

αk∗l = (−1)l/2k ∗ sin(θk∗l)
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The pseudocode for the Buneman algorithm that was implemented goes as following:
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Algorithm 5 Block Cyclic Reduction - Buneman
1: function Buneman

2: q = blocksize, n = size, jq = log2(n+ 1);

3: P = zeros(n, q, jq), Q = zeros(n, q, jq);

4: U = zeros(n, q), F = ones(n, q);

5: For(j = 1 : 1 : 2jq − 1)

6: Q(j, :)(0) = F (j, :)(0);

7: P (j, :)(0) = 0;

8: End For

9: For(k = 1 : 1 : jq − 1)

10: For(j = 1 : 1 : 2jq−k − 1)

11: idx1 = 2k ∗ j;

12: idx2 = 2k−1;

13: P
(k+1)
idx1 = P

(k)
idx1 ∗ (T (k−1) ∗ P (k)

idx1−idx2 + P
(k)
idx1+idx2 −Q

(k)
idx1);

14: Q
(k+1)
idx1 = T (k−1) ∗ (Q(k)

idx1−idx2 +Q
(k)
idx1+idx2 − 2 ∗ T (k−1) ∗ P (k+1)

idx1 );

15: End For

16: End For

17: pointer = 2jq−2(jq−1)
;

18: Upointer = [B−1](jq−1) ∗Q(jq)
pointer +Q

(jq)
pointer;

19: For(k = jq − 1 : −1 : 1)

20: For(j = 2 : 1 : 2jq−k − 1)

21: pointer = 2k ∗ j − 2(k−1);

22: Upointer = [B−1](k−1) ∗ (Q(k)
pointer − T (k−1) ∗ (U2k∗j + U2k∗j−2k) + P

(k)
pointer;

23: End For

24: End For

25: j = 1

26: pointer = 2k − 2(k−1);

27: Upointer = [B−1](k−1) ∗ (Q(k)
pointer − T (k−1) ∗ U2k) + P

(k)
pointer;

28: j = 2jq−k;

29: pointer = 2jq − 2(k−1);

30: Upointer = [B−1](k−1) ∗ (Q(k)
pointer − T (k−1) ∗ U2jq−2k) + P

(k)
pointer;

31: end function 65
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For the serial version of the algorithm, Intel’s Math Kernel Library (MKL) was

used. MKL is a library of optimized math routines for science, engineering, and fi-

nancial applications. Core math functions include BLAS, LAPACK, ScaLAPACK,

sparse solvers, fast Fourier transforms, and vector math. For the serial code running

on CPU, we used LAPACK and BLAS routines for many math operations. Specifi-

cally, the routines which was used was for the following BLAS operations:

• Matrix-Matrix multiplication

• Matrix-Vector Multiplication

• Inverse Matrix

• Matrix addition

• Vector addition

• Scalar Matrix Multiplication

Accordingly for the code running on GPU we used the optimized routines from

cuBLAS an optimized BLAS library for NVIDIA based GPU cards and CULA an

optimized library that implements LAPACK routines for GPUs.

The first optimization performed was to restructure the code by merging math oper-

ations. In this way, routines of the above-mentioned libraries used optimally, taking

advantage of the kernels’ characteristic to increase performance as the amount of data

increases.

Another attempt to raise the efficiency of the algorithm was to avoid the inversion

of the matrix B, an in general very expensive operation. One way to achieve this is

the replacement of the inversion with a linear system solution. Particularly, in the

above pseudo-code in lines 18, 22, 27 and 30 where the calculation of the inverse of

matrix B occurs applied the below strategy:

B−1 ∗ b = x =⇒ B ∗ x = b
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For example in line 22 all the expression: (Q
(k)
pointer − T (k−1) ∗ (U2k∗j + U2k∗j−2k)

was considered as a b vector.This vector constituted the right hand side of the system

B ∗x = b where B the matrix defined above. By solving this system, a solution vector

x was computed. This vector x substituted all the expression:

[B−1](k−1) ∗ (Q(k)
pointer − T (k−1) ∗ (U2k∗j + U2k∗j−2k)

This method was applied in every appearance of B−1. The last optimization came of

the need to examine larger problems. Storage of Q and P matrices, that consist the

Buneman Series, are the most spatial expensive. A ”sliding window” technique was

used. Instead of transferring all the matrices P and Q on GPU, it is preferable to load

in each step two matrices to hold the current and the previous iteration. Although

a lot of space is now saved and larger problems can be executed, additional memory

transfers between host and device must be done.

As mentioned above the second version of Buneman implementation requires

memory transfers of the P and Q matrices between the host and the device. As an

extra optimization it is considered to use asynchronous copies for the memory trans-

fers in order to overlap the transfers with computations. Finally it was remarked that

the transfer cost of was significantly small to be overlapped and to contribute to the

improvement of speed-up.

Performance impact of all referred optimizations is demonstrated in Chapter 5.
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Chapter 5

Experimental Evaluation

5.1 Hardware and Metrics

The hardware used for the experiments is :

• Intel Xeon CPU W3550 @3.07 GHz with 8GB RAM and four cores

• NVIDIA GeForce GTX680 (which was analytically discussed in Chapter 2)

Time was measured using clock() function and is presented in seconds. All exper-

iments were performed with full optimizations turned on. CPU code was compiled

with Intel’s compiler (icc) and GPU code with nvcc.

5.2 Experiments

The performance results for each implementation, described in Chapter 4, are pre-

sented in the following tables . The execution time is the average of ten measurements

for each case. Furthermore, the speed-up between CPU and GPU is given.

The correctness of results was validated with relative MATLAB functions. The

results of the CPU have been identified with the results of the GPU.
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5.2.1 Single Precision Performance

Table 5.1: Cyclic Reduction (first version) execution time (SP)

Size CPU GPU

221 0.113 0.02

222 0.216 0.034

223 0.455 0.063

224 0.909 0.126

225 1.82 0.25

226 3.65 0.50

Figure 5-1: CPU-GPU Cyclic Reduction(SP)
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Table 5.2: Cyclic Reduction (first version) speed-up (SP)

size Speed-up

221 5.38

222 6.35

223 7.22

224 7.21

225 7.28

226 7.1

Figure 5-2: Speedup Cyclic Reduction(SP)

As can be observed from the above table the speed-up increases as the data set

increases. This is normal because GPU performs better when has more data to

process. It is worth mentioning that a decrease is observed from matrix size = 225

to 226. To be explained that measurements were made in relation to computation to

memory transfers ratio. It was observed that from a certain size memory transferring

consumes more time than the actual computation.
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Table 5.3: Cyclic Reduction (padding version) execution time (SP)

Size CPU GPU

221 0.108 0.021

222 0.214 0.035

223 0.456 0.066

224 0.877 0.115

225 1.769 0.251

226 3.546 0.509

Table 5.4: Cyclic Reduction (padding version) speed-up (SP)

size Speed-up

221 4.14

222 6.11

223 6.90

224 7.62

225 7.04

226 6.96

The padding technique did not increase the performance of the implementation.

That happened because there was no significant divergence in the code.

In the following tables it is presented the speed-up of the Buneman algorithm

for different geometries, where Q is the size of block and N the number of blocks.

In the first six tables, the size of block remains stable while the number of blocks is

increasing. As GPU(first) is mentioned the first implementation and as GPU(second)

the one with the sliding window optimization. GPU results were compared with

sequential CPU and multithreaded (4 threads) CPU.
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Table 5.5: Block Cyclic Reduction N=3

N Q CPU(parallel) CPU(seq) GPU(first) GPU(second)

3 127 0.000 0.000 0.005 0.004

3 255 0.005 0.000 0.020 0.020

3 511 0.027 0.060 0.062 0.062

3 1023 0.168 0.450 0.145 0.147

3 2047 1.058 3.160 0.403 0.403

3 4095 7.392 23.940 1.400 1.398

Table 5.6: Block Cyclic Reduction N=7

N Q CPU(parallel) CPU(seq) GPU(first) GPU(second)

7 127 0.002 0.000 0.010 0.007

7 255 0.015 0.020 0.043 0.040

7 511 0.075 0.170 0.170 0.168

7 1023 0.495 1.280 0.390 0.385

7 2047 3.030 9.260 1.050 1.085

7 4095 22.965 70.540 3.795 3.763

Table 5.7: Block Cyclic Reduction N=15

N Q CPU(parallel) CPU(seq) GPU(first) GPU(second)

15 127 0.007 0.010 0.020 0.018

15 255 0.035 0.060 0.087 0.085

15 511 0.175 0.410 0.385 0.390

15 1023 1.175 3.080 0.905 0.892

15 2047 7.698 22.800 2.432 2.425

15 4095 53.650 174.750 8.623 8.590
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Table 5.8: Block Cyclic Reduction N=31

N Q CPU(parallel) CPU(seq) GPU(first) GPU(second)

31 127 0.018 0.020 0.038 0.038

31 255 0.070 0.130 0.185 0.190

31 511 0.365 0.920 0.827 0.820

31 1023 2.392 6.870 1.913 1.910

31 2047 17.355 51.290 5.215 5.215

31 4095 117.445 394.260 18.135 18.083

Table 5.9: Block Cyclic Reduction N=63

N Q CPU(parallel) CPU(seq) GPU(first) GPU(second)

63 127 0.040 0.050 0.075 0.072

63 255 0.153 0.280 0.363 0.377

63 511 0.745 1.940 1.690 1.685

63 1023 5.017 14.660 3.973 3.983

63 2047 34.463 109.570 10.705 10.690

63 4095 249.585 844.420 36.375 36.393

Table 5.10: Block Cyclic Reduction N=127

N Q CPU(parallel) CPU(seq) GPU(first) GPU(second)

127 255 0.298 0.580 0.757 0.750

127 511 1.530 4.000 3.420 3.425

127 1023 10.340 30.280 7.925 8.038

127 2047 71.278 227.610 21.520 21.497

127 4095 514.878 1753.420 72.642 72.588
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Figure 5-3: Speedup Buneman(SP)

Table 5.11: Block Cyclic Reduction N=Q

N Q CPU(parallel) CPU(seq) GPU(first) GPU(second)

127 127 0.078 0.100 0.147 0.150

255 255 0.915 1.200 1.487 1.525

511 511 10.177 16.470 13.797 13.778

1023 1023 84.858 252.080 63.520 63.470

2047 2047 1175.078 3802.470 331.875 331.758

4095 4095 20203.910 58816.617 −− 2308.483
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Figure 5-4: Speedup Buneman N=Q (SP)

As can be observed a remarkable speed-up up to 25x can be achieved using GPU

instead of sequential CPU. It is worth to be mentioned that as the size increases the

speed-up increases but the rate of this growth decreases.The maximum speed-up is

achieved when we use the maximum Q size. This is normal because the GPU work

load depends on Q size since concerns the inner loop which actually runs on GPU.

76

Institutional Repository - Library & Information Centre - University of Thessaly
17/04/2024 20:05:20 EEST - 18.119.255.174



5.2.2 Double Precision Performance

Table 5.12: Cyclic Reduction (first version) execution time (DP)

Size CPU GPU

221 0.148 0.033

222 0.314 0.06

223 0.619 0.119

224 1.213 0.236

225 2.33 0.47

226 −− −−

Figure 5-5: CPU-GPU Cyclic Reduction(DP)
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Table 5.13: Cyclic Reduction (first version) speed-up (DP)

size Speed-up

221 4.48

222 5.23

223 5.2

224 5.13

225 4.95

226 −−

Figure 5-6: Speedup Cyclic Reduction(DP)
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Table 5.14: Cyclic Reduction (padding version) execution time (DP)

Size CPU GPU

221 0.156 0.03

222 0.28 0.06

223 0.594 0.118

224 1.09 0.237

225 2.187 0.463

226 −− −−

Table 5.15: Cyclic Reduction (padding version) speed-up (DP)

size Speed-up

221 5.2

222 4.66

223 5.03

224 4.59

225 4.72

226 −−
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Table 5.16: Block Cyclic Reduction N=3

N Q CPU(parallel) CPU(seq) GPU(first) GPU(second)

3 127 0.003 0.000 0.010 0.005

3 255 0.013 0.010 0.020 0.018

3 511 0.065 0.120 0.050 0.050

3 1023 0.328 0.820 0.145 0.168

3 2047 2.145 6.200 0.403 0.828

3 4095 17.363 47.700 1.400 4.365

Table 5.17: Block Cyclic Reduction N=7

N Q CPU(parallel) CPU(seq) GPU(first) GPU(second)

7 127 0.007 0.010 0.010 0.010

7 255 0.025 0.040 0.035 0.035

7 511 0.145 0.330 0.120 0.117

7 1023 0.948 2.400 0.425 0.422

7 2047 6.697 18.020 2.340 2.325

7 4095 51.395 140.080 10.857 10.825

Table 5.18: Block Cyclic Reduction N=15

N Q CPU(parallel) CPU(seq) GPU(first) GPU(second)

15 127 0.013 0.020 0.025 0.022

15 255 0.058 0.110 0.070 0.075

15 511 0.320 0.800 0.268 0.268

15 1023 2.272 5.870 0.993 0.985

15 2047 17.385 44.470 5.300 5.287

15 4095 126.210 347.420 25.312 25.383
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Table 5.19: Block Cyclic Reduction N=31

N Q CPU(parallel) CPU(seq) GPU(first) GPU(second)

31 127 0.025 0.040 0.040 0.045

31 255 0.115 0.240 0.152 0.150

31 511 0.685 1.760 0.568 0.568

31 1023 5.160 13.110 2.150 2.147

31 2047 32.672 99.650 10.867 10.852

31 4095 243.312 783.830 −− 54.682

Table 5.20: Block Cyclic Reduction N=63

N Q CPU(parallel) CPU(seq) GPU(first) GPU(second)

63 127 0.050 0.080 0.085 0.087

63 255 0.235 0.510 0.305 0.307

63 511 1.393 3.700 1.167 1.173

63 1023 10.582 27.990 4.503 4.468

63 2047 70.007 213.560 22.192 22.105

63 4095 611.175 1677.440 −− 112.907

Table 5.21: Block Cyclic Reduction N=127

N Q CPU(parallel) CPU(seq) GPU(first) GPU(second)

127 255 0.475 1.040 0.620 0.625

127 511 2.835 7.630 2.382 2.393

127 1023 21.898 58.090 8.893 8.875

127 2047 149.167 444.920 43.877 43.765

127 4095 1248.453 3493.550 −− 231.595
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Figure 5-7: Speedup Buneman(DP)

Table 5.22: Block Cyclic Reduction N=Q

N Q CPU(parallel) CPU(seq) GPU(first) GPU(second)

127 127 0.100 0.160 0.170 0.170

255 255 0.960 2.120 1.250 1.262

511 511 11.355 31.340 9.640 9.697

1023 1023 169.595 482.900 65.748 65.790

2047 2047 2314.488 7437.090 694.060 692.940

4095 4095 34977.285 117200.020 −− 7542.910
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Figure 5-8: Speedup Buneman N=Q (DP)

The same observations with the single precision apply here. In the case of cyclic

reduction algorithm the speed-up decrease starts in smaller size due to almost double

memory transfers. Likewise, padding does not effect performance. A smaller but

equally remarkable speed-up up to 15x was achieved in Block cyclic reduction when

ported to GPU. Again the memory transfers now are almost twice therefore consume

more significant portion of the total execution time.

5.2.3 Conclusions

Solving PDEs in one dimension and two dimensions demands intensive computation

load in both time and space. Due to wide appliance of PDEs in many scientific fields a

need for speeding the computation arised. The GPGPU wave came with the solution.

Particularly, after a deep search in the effort made in this area we conclude that cyclic

reduction algorithm was the most efficient to perform on GPUs. Also it is remarkable

that very few implementations of block cyclic reduction on GPUs exist and none in

our knowledge of Buneman variant.

83

Institutional Repository - Library & Information Centre - University of Thessaly
17/04/2024 20:05:20 EEST - 18.119.255.174



In cyclic reduction algorithm up to 8x speed-up was observed in single precision and

up to 5x in double precision. After a certain size speed-up started to decrease due to

large memory transfers. Padding technique was applied with no performance impact.

In Buneman algorithm up to 25x speed-up was observed in single precision and up

to 15x in double precision in single threaded CPU and up 8.5x to in single precision

and up to 5.5x in double precision in multi threaded CPU. Several optimizations were

applied. MKL and Lapack libraries were used for CPU programming and CUBlas

and CULapack were used for the GPU programming. In the CPU implementation

both sequential and multi- threaded versions were made. A sliding window technique

was used in order to increase the problem size. An attempt to overlap computations

with memory tranfers using streams was made with no performance impact.

In both algorithms single precision outperforms double precision since in the second

approximately twofold memory tranfers occurred.

Conclusively, it was proven that solving PDEs in both one and two dimensions on

GPUs can give significant performance in relation to CPU implementation.

5.2.4 Further Improvements

As referred in previous sections both algorithms were tested using the Poisson differ-

ential equation as a model. However, the implementations were implemented in a way

to be easily expanded in order to model several mathematical and physical problems.

As a case study we plan to apply the Buneman method to a reaction-diffusion PDE.

This PDE is considered as a common simplified model for studying the expansion of

gliomata in the human brain. This would lead to adapt time as a parameter in the

calculation process. Buneman algorithm will be called repeatably in a loop, which

will calculate the PDE’s coefficients in every time step.
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