

«

&

»

,

•

2013

i

•

»

*

ii

iii

iv

μ

μ • μμ ,

, μμ μ

μ

•

(

μ

)

:

,

,

,

,

,

,

v

" ì ἐμ ῦ ὐ ὑ ĩ ὐ ἑ " (15, 5) " μ μ μ μ μ ." (A. Einstein, 24/01/1936)

			Ra	yleigh-Benard	μ
μ			μμ		
	μ	•	μ		
	μ	. μ	μμ		
				μ	
	μ	l		μ	
	μ		μ		
μ	μ		μ Arn	oldi	
μ	μ	μ			
μ				μ	
	μ Hartmann, H	ła, μ	domain de	ecomposition	
		μ		На	
μ	μ		μ	,	
μ	μ,				
	μ		μμ μ	μ	
μ	. μ	μ		μ,	
μ	μ	l ,			μ
	μ		•	μμ	μ
Grashof, Gr		μ На			μ
Gr~Ha ²		μ		μ Lorentz	•
		μ	μ,		
	1	μ	l	μ	
Hartmann, c _F	₋₁ +Ha ⁻¹ . µ		μ	Hartmann µ	l
	μ , $c_{\rm H}$ <-	<1, μ			
μ μ	Ha	artmann			
				μ	l
		μ			
μ	Hartmann.			μ	
	μ			μ	μ
,				Gr~Ha ²	μ
	,	u			μ
μ	μ μ	Hartmann			μ
					vii

μ	На				,						
μ	μ					μ					
	•					μ			μ	μ	
			μ		μ				μ		μ
μ								μ		μ	Gr
			μ	μ		μ				μ	
		μ							μ	μ	
		μ	l						(Ha) µ	l	
		μ						μ		μ	
	μ							μ		•	
	μ								μ		μ
						μ				B	urr &
Muller	(2002)										
μ			μ						μ	•	
				μ						μ	
			μ				μ			μ	μ
μ		μ	R	eyno	olds				μ		
	μ			•		μ		μ			
					μ	•			μ		
μ			μ		μ	Ar	noldi,		μμ		
					μ			μ		•	μ
							μ		μ	, μ	
			μ			μ	μ	μ.		μ	μ
						Goertler			μ		
											,
					μμ				μ	·	
	μμ μ		μμ	ı					μ		
	Ļ	ı			μ	μ			μ.	μ	
						, μ				μ	
μ		μ	μ			μ			μ		
μ							ł	J			
μ		•				μ		μ			

viii

	μ			μ		μ	Burr &	Muller (20)02)
μμ		μ	Gr		μ	μ.			
	,							μ μμ	
			μ				μ	μ	
		μ μ	h	ιμ			μ		
μ		Bu	r &	Muller	(2002),	μ		μ	
μ				μ			μμ	μ	
μ			μ		μ			se	emi-
implicit	μ	μ			,	μ	μμ		
		μ		μ	Adams	s-Bashfo	orth		
μμ					μ		μ (Crank-Nicol	lson
						μ	(spe	ctral) modes	S
						μ			
		μ				μ		μ	
	μ		,						
					μ	l	μ	μ	

μ μ.

ABSTRACT

Rayleigh-Bénard stability of a liquid metal layer of rectangular cross section is examined in the presence of a strong magnetic field that is aligned with the horizontal direction of the cross section. The latter is much longer than the vertical direction and the cross section assumes a large aspect ratio. The side walls are treated as highly conducting. Linear stability analysis is performed allowing for three dimensional instabilities that develop along the longitudinal direction. The finite element methodology is employed for the discretization of the stability analysis formulation while accounting for the electric conductivity of the box walls. The Arnoldi method provides the dominant eigenvalues and eigenvectors of the problem. In order to facilitate parallel implementation of the numerical solution at large Hartmann numbers, Ha, domain decomposition is employed along the horizontal direction of the cross section. As the Hartmann number increases a real eigenvalue emerges as the dominant unstable eigenmode, signifying the onset of thermal convection, whose major vorticity component in the core of the layer is aligned with the direction of the magnetic field. Its wavelength along the longitudinal direction of the layer is on the order of twice its height and decreases as Ha increases. The critical Grashof was obtained for large Ha and it was seen to scale like Ha² signifying the balance between buoyancy and Lorentz forces. For well conducting side walls, the nature of the emerging flow pattern is determined by the combined conductivity of Hartmann walls and Hartmann layers, c_H +Ha⁻¹. When poor conducting Hartmann walls are considered, $c_H \ll 1$, the critical eigensolution is characterized by well defined Hartmann and side layers. The side layers are characterized by fast fluid motion in the magnetic field direction as a result of the electromagnetic pumping in the vicinity of the Hartmann walls. Increasing the electric conductivity of the Hartmann walls was seen to delay the onset of thermal convection, while retaining the above scaling at criticality. Furthermore, for both conducting and insulating Hartmann walls and the entire range of Ha numbers that was examined, there was no tendency for a well defined quasi two dimensional structure to develop owing to the convective motion in the core. A connection is made between the above findings and previous experimental investigations indicating the onset of standing waves followed by travelling waves as Gr is further increased beyond its critical value. Asymptotic analysis of the dominant eigenmode performed at criticality confirms the above numerical findings while designates the onset of highly convective motion O(Ha) as the magnetic field increases. This motion is expected to play central role for the onset of secondary instabilities of hydrodynamic nature.

Three dimensional stability of two dimensional vortical flow of a liquid metal in a cavity of square cross section is examined in order to identify the nature of the emerged time-dependent instability reported by Burr & Muller (2002). Vortices are produced as a result of free convection and internal heating in the cavity in the presence of a magnetic field. The low magnetic Reynolds equations are employed for the base flow and stability formulation. The finite element methodology is used for discretizing the problem. Efficient calculation of the dominant eigenvalues is afforded by the Arnoldi method while neutral stability diagrams are constructed using continuation techniques. The number of vortices exhibited by the base flow switches from one to two as the internal heating crosses a threshold value. The dominant instability mechanism is the Goertler instability for the case of a single vortex and the elliptical instability in the case of two vortices. In the elliptic instability axial vorticity is symmetric, is characterized by two lobed structures aligned with one of the two principal directions of strain and the dominant eigenmode assumes the form of a travelling wave. The magnetic field opposes buoyancy, alters the direction of maximal strain by accentuating wall shear layers in comparison with the vortex pair in the core, and leads to smaller frequencies at criticality. The above flow configuration is assessed to play important role for the onset of travelling wave modes as indicated by experiments of Burr & Muller (2002) with a slight increase of Gr beyond the threshold value.

Finally, nonlinear analysis is carried out of the flow arrangement that was examined by Burr & Muller (2002), seeking a description of the nonlinear evolution of unstable modes beyond criticality, coupling finite element methodology with a spectral approach for the periodic direction of flow. The latter is determined by the configuration that emerges after the onset of the initial thermal instability. A semiimplicit time integration scheme is employed, with the nonlinear convective terms treated explicitly using second order Adams-Bashforth method and linear terms treated in an implicit manner using second order accurate Crank-Nicolson so that decoupling of the different spectral modes is possible while favoring parallel treatment of the solution process. Objective of this study is the investigation for the

xi

onset of saturation that corresponds to the initial thermal instability, identifying the kind of branch that causes as well as the effect on the heat transfer through the liquid metal layer.

${}^{1}_{1}H$	=								
${}^{2}_{1}H$	=								
${}_{2}^{3}He$	=		3/2						
4_2He	=	4/2							
	=	μ							
b	=		μ						
С	=	μ	μ	μ					
		μ		μ μ		μ 1/Pr			
С	=	μ					μ	μμ	
		μ			-	μ		μ	
c _H	=		μ		μ	Hartma	ann		
c _p	=	μ							
cs	=		μ			μ			
D	=						μμ		
		μ	μ	ı	μ	μ			μ
DFT	=	μ	μ	μ	Fourie	r			
d	=	μ						μ	
dS	=	μ						μ	
e	=	μ							

E	= μ	Ekman, =2	$k_0^2/(/2)$			
e_m^*	= μ	ι	μ	1 x m		
f	= residu	al m- µ			Arnoldi	
\vec{f}	= μ	Lorentz				
FDM	= μ	μ				
FEM	=μ	μ				
FFT	= 1	μ μ μ	Fourier			
FVM	= μ	μ				
\vec{g}	=	μ				
g _k	= μ mode	μ				Fourier
Gr	= μ	Grashof, Gr	$=\frac{g\mathrm{S}\Delta\mathrm{T}h^3}{\mathrm{E}^2}$			
Gr _{Cr}	= μ	μ	µ Grashof			
Gr _{Eff}	=	μ	µ Grashof, C	Gr _{Eff} =GrSF	P r	
Gr _{Eff,Cr}	= h	u µ	μ	μ Gi	rashof	
h	=					
a	= μ	Hartmann, H	$Ha = \sqrt{\frac{h^2 \dagger B_0^2}{\dots \pounds}}$			
j	=		μ			
J	=					
$\mathbf{J}_{\mathbf{i}}$	= μ μ				i	
J _x	=	Frechet				μχ

$\mathbf{J}_{\mathbf{x}}$	= x	μ
$\mathbf{J}_{\mathbf{y}}$	= y	μ
$\mathbf{J}_{\mathbf{z}}$	= z	μ
$J_{Hx} \\$	= x Hartmann	μ
$J_{\rm Hy}$	= y Hartmann	μ
J _{sy}	= μ	μ
k	= μ μ	
k	= Fourier mode	
k _{Cr}	= μ μ μ μ	
L	=	
L	= μ μ μ	μμ μμ
l	$=\mu$	
ñ	= μ	
n	= Z	
	= μ μ	
Р	=	
р	=	
p 0	=	
p ₁	= μ	

p_0	= μ
p _{St}	= μ
Pr	= μ Prandtl, Pr= /
q	$=$ μ μ μ
r	= (residual)
Ra	$=$ μ Rayleigh, Ra N Gr [†] Pr
Ra _{Cr}	$=$ μ μ μ Rayleigh
Re _m	$=\mu$ μ Reynolds, $\operatorname{Re}_m = uL/y$
S	$= \qquad \mu \qquad \qquad \mu \qquad , S = \frac{qL^2}{\Delta T \dots c_p \in}$
t	= μ
t	= μ μ
Av	$=\mu$ μ μ
b	= μ μ
$t_{\rm Co}$	$=$ μ μ
t _{St}	= μ μ
t	= μ μ
u	= x μ
u	$= x \qquad \mu \qquad \mu$
u	=
\vec{u}_0	=
U ₀	=

u ₀	=	х		μ		
u ₁	=	x		μ		μ
V	=					
v	=	У		μ		
	= y	I	μ	μ		
v ₀	=	у		μ		
\mathbf{v}_1	=	у		μ		μ
$V^{(k)}$	=			Krylov		
V _m	= μ	Arnoldi				
W	=	Z		μ		
W	= z	ł	μ	μ		
w ₀	=	Z		μ		
W ₁	=	Z		μ		μ
Wi	=					
	= stretched		μ		μ	μ
	Hartman	n				
Х	=					
X	=		μ			
\vec{x}	=	μ				

x ⁽⁰⁾	=				μ		μ	GM	IRES	
Xe	=		μ		μ	μ			μ	
\mathbf{x}_k	=	μ					μ	μ	μ	μ
x _{0j}	=									
x_{1j}	=	μ								
У	=									
У	=			μ						
Z	=									
Z	=		μ							
	μ									
	=	μ								
	=		μ							
	=	μ								
	_									
	_		μ							
	=		μ							
÷	=		μ							
+	= = =		μ							
+	_ _ _ _		μμ							

μ

Neumann

xviii

=

=

nu

	=]	Dirac-		
	= !	u		
t	=			
Z	=	μ		
	= μ			
	=	μ		
У	$=\mu$			
	= Hessenbe	erg	nμ	
h	=		μ	μ
	=	μ		
,	= μ	μ		
0	=	μ		
1	=	μ μ		
m	=		Krylov	
	$=\mu$ μ	μ		
Cr	= μ μ	μ μ	μ	
	= μ			
	= μ Ι	Fourier modes		
Ν	= μ μ μμ	μ		μ - μμ
j	=			
e	=			

xix

	=	μ	μ	μ	μ
	=				
	=	μ		μ	
	= μ				
i	=				
	= μ				
	=	μι	u		
	=		μ		
	=	μμ			
Ŵ	= μ		μ		μ Hartmann
S	= μ		μ		μ
0	=		μ		
1	=		μ	μ	
					_
i	= μ				Lagrange
ij	=				Lagrange
i	$=\mu$	μμ			Lagrange
ij	=	μμ			Lagrange
	=				
	=				
Š	= μ				
r	= μ	μμ		μ	μ

i	=	μ	μ		μ	μ
x	= x			μ		
yz	=				μ	, $h_{yz} \hat{0} \sqrt{h_y^2 < h_z^2}$
xy	=				μ	, $\check{S}_{xy} = \sqrt{\check{S}_x^2 + \check{S}_y^2}$
Z	= z			μ		

	μ						
	1	•••••	•••••		Error! Bo	ookmark not d	efined.
1.1		μ	μ	μ	Err	or! Bookmark no	t defined.
1.2		ł	1	μ		μ	
	μ		Rayleigh - Be	enard	,		
	μ μ	l	•••••				10
1.3		ł	1	μ		μ	
	μ				, μ		
	μ	μ	μ		μ	•••••	14
1.4		μ	•••••	••••••			
1.5	μ	μ	(FEM))			21
1.5.1			Lagrang	e	2 Erro	r! Bookmark not	defined.
1.5.2	μμ		Lagrange			••••••	25
1.6	μ	μ (Spectra	l Method)				
1.7	μ	••••••	•••••				26
	2			•••••		••••••	29
2.1		μ		μ	μ		
		Rayleigh - Benard	1	,	μ		
	μ	••••••	•••••				29
2.2	μμ		μ		μ	μ	
		Rayleigh - Benaro	1	,	μ		
	μ	••••••	•••••				
2.3			μ	μ	μ		
			, μ	μ		μμ	
		μ	•••••				
2.4	μμ		t	L	μ		
			, μ	μ		μμ	
		μ	•••••		Error	Bookmark not d	efined.0
	3		••••			•••••	42

3.1	μ			Galerkin					
3.1.1	μ		•••••	•••••			•••••		
3.1.2		μ		(weight	ed residu	ual)	•••••		
3.1.3		Gale	erkin	•••••			•••••	44	
3.2	μ		μμ	μ			Rayleigh		
	Benard µ	L	μ			,	μ		
	μ	••••••		•••••			•••••		
3.2.1		μ	μ-		μ	Arnold	i		
3.3	μ		μμ	μ					
		μ	μ			, μ			
	μ		μμ			μ	••• •••••		
3.3.1	GMR	ES		••••••			•••••	55	
3.3.2	GMRES µ pre	condition	er	••••••			•••••	57	
3.3.3				μ	μ				
	μ -			μ	GN	MRES	•••••	60	
3.4		μ	ւ μμ		μ				
	Rayleigh - Ber	nard	μ	μ			,		
	μ μ			•••••			••••••	63	
3.4.1				μ	••• •••••	6 Err	or! Bookmar	k not defined.	
3.4.2				μ	•••••••		••••••	68	
3.5		''ben	chmarks'	' <u></u>			•••••	70	
3.5.1	Benchmark			μ		μμ	μ		
			Rayleigh	- Benard	μ	μ			
	,		μ	μ		••• •••••		71	
3.5.2	Benchmark		μ	μμ		μ			
			μ	μ			,		
	μ μ			μμ			μ		
3.6	μμ		μ			Rayle	eigh - Benaro	1	
	μ	μ			,	μ			
	μ	••• ••••		•••••			••••••	79	
							x	xiii	

3.6.1			μ	μŀ	ouri	er	• ••••••	•••••	•••••		•••••	•••••		
3.6.1.1		I	µ t	ranspo	se FF	Т					•••••••••	•••••		
3.6.1.2		μμ	Fo	ourier .	••• •••••	•••••		•••••	•••••		•••••	•••••		
3.6.2		μ		μμ			••••••		•••••		••••••	•••••	•••••	
3.6.3		μ	μ	μμ	l						••••••	•••••	•••••	
3.6.4		μ			••••••	•••••			•••••		••••••	•••••	•••••	92
3.6.5									μ	••••••	••••••	•••••		
3.6.5.1					μ					Fourier	•••••	•••••		
3.6.5.2					μ		μ		μμ		•••••	•••••	•••••	
3.6.5.3									μ	•••••	•••••	•••••	•••••	
	4									••••••	•••••	•••••	•••••	104
4.1			μ					μμ		μ				
		Rayleig	gh - B	Benard		μ			μ			,		
		μ	μ						•••••		•••••	•••••		104
4.1.1		μ		μ		l	μ			На	•••••	•••••		
4.1.2		μ	h	ı						μ	На	•••••	•••••	115
4.2			μ					μμ		μ				
				μ			μ				, μ			
		μ				μ	μ				μ	•••••		135
4.2.1				μ					μ	S Ha	a=20	•••••		146
4.2.2							Н	[a=20	0	S=10 ⁵	••••••	•••••		150
	5									••••••	•••••	•••••	•••••	154
		•••••		•••••			•••••	•••••		•••••	•••••		•••••	162

		μ		
μ	1:			μ4
μ	2:	μ	μμ	ITER6
μ	3:			μ6
μ	4:	μ	μμ	μ μ
		μ	Helium	n Cooled Lead Lithium HCLL (Buhler et al. 2010)
μ	5: (a)	μ	μμ	μ
		, (b)		
	ĥ	l		(Gr=6000, S=10 ⁵ , Ha=20
	Pr=0	0.0321)		
μ	6:			quadratic Lagrange µ24
μ	7:			linear Lagrange µ25
μ	8a:	μ	μμ	μ
		μ		29
μ	8b:		μ	μ μ
		, X2	Ζ,	, yz, μ35
μ	9:	μ	μ	μ μ μμ,
		r	1	μμ
		μ		64
μ	10:	μ	μ	μμ μμ,
			n	μ μ
				XXV

Institutional Repository - Library & Information Centre - University of Thessaly 15/06/2024 04:55:41 EEST - 3.143.1.131

	μμ		μμ		
	μ		μ	μ	64
μ	11: µ	μμ		J	
	μμ	μ			
	μ	μμμ	ł	l	
	ScaLAPA	АСК			69
μ	12: µ	u		μ	
		μ	μμ	μ	
	μ	μ			
μ	13:	μ μ	Ha=0	μ	μ (a)
	60x30		(b) 80)x40	
					72
μ	14:		(a) µ	, (b) x	
		, (c) yz		Ha=100	μ
	110x55	. μ	(d,e)		μ
	μ	(b,c) µ		μμ .	μ
	(f,g)	yz			μ (c,e),
		,		μ Hartmann	74
μ	15: μ	μμ	μ	μ	Xin &
	Le Quere	e (2001)			
μ	16: щ	μ			
					xxvi

		μ	1	benchmark	X	μ			77
μ	17:		μ	μ				μ	
		μ	μ	(mode 4))		μ		
]	Ra=1400	000, Pr=	0.71	μ (ε	a) 20x20	(b) 40x4	0	
									79
μ	18:	h	ι μ			μ		Ļ	l
			(;	a) moo	de 1, Ra=	=2400000,]	Pr=0.71	(b)	μ
		μ,Ra	=140000	0, Pr=0.71	l	μ 40x40			79
μ	19:		μ	μ					
			μ	FFT 1	6μ	, m			
									84
μ	20:		μ		μ	μ			
		μμ							
		μμ	μ	μμ					87
μ	21:				μμ	Four	rier		
		μ			μ	μ	•••••		88
μ	22:			-spec	ctral		μ		
		μ	μ	μμ					91
μ	23:			μ	(partitio	ning)		μ,(a)	
			μ		, (b)	μ		Fourier .	97
μ	24:		μ (par	titioning)		μ			
•			*			-			xxvii

		μ					Fourier	r	100
μ	25:	μ				16	μ		
	4 H	Fourier m	nodes						100
μ	26:	μμ					μ		
			μ	μ	μμ		μ		
		μ	μ			••••••			103
μ	27:	μμ				(a)			
	μ	μ	μ	Hartma	nn	(b)		μ	
		μΗ	Hartmann	• •••••	•••••	•••••	•••••		117
μ	28:	μ			у			(a)	
	μ		μ	(b)	μ	Ha.		μ	
	y=0	0.5							120
μ	29:			μ	Х				
		μ	Ha.	I	μ		x=0.95	5	121
μ	30:		Х			На		, (a) Ha=25, (b)	
	Ha	=100, (c) Ha=200,	(d) Ha=	400.		Х		•••••
								μ Hartmann, (e)	
	На	=25, (f)	Ha=100, (g) Ha=2	00	(h)		Х	
		Ha=400)			•••••			124
μ	31:				μ		На		
			μ	$c_{\rm H} =$	0.0041	5, $c_S=4.4$	5, (a) Ha	a=25, (b) Ha=100,	

	(c) Ha=200	(d) Ha=400)			126
μ	32:	μ		μ	(a) µ	
	(J_x,J_y)	xy	z=0 (Ha=2	25) (b)	μ (J _y ,J _z)	
		μ Hartma	unn x=0 (H	a=800)		127
μ	33:	yz	(a)	xy	Ha=100,	
				μ	(a) Ha=25,	
	(b) Ha=50, ((c) Ha=100	(d) Ha=200			130
μ	34:		μ		μ	
	$c_{\rm H} = c_{\rm S} = 4.5$	На	, (a) Ha=	100, (b) Ha=4	00, (c) Ha=800	
	(d) Ha=2000)				133
μ	35:	X		μ	$c_H = c_S = 4.5$	
	На	, (a)	Ha=100, (b) Ha	=400, (c) Ha=	800 (d)	
	Ha=2000. (e	e)	X	Ha	a=2000	134
μ	36:	yz		xy		
	μ	$c_{\rm H} = c_{\rm S} = 4.5$	На	, (a) Ha=	100, (b) Ha=400),
	(c) Ha=800	(d) Ha=200	00			135
μ	37: (a)				(b)	
				μ		
	Gr=Gr _{Cr} =85	50000, S=0	На=20			137
μ	38:		Ha=	$s = 10^5 (a)$	a)	
		, (b)		μμ		
					XX	xix

	((c)			μ	• ••••	•••••			•••••	140
μ	39:	-		μ	Ha=0	S=10 ⁵	(a)				
				μ	μ	(b)					
			μ								141
μ	40:				Ha=	20 5	$S = 10^5$	(a)			
			, (b)			μ	μ				
	((c)			μ	• ••••					142
μ	41:	-		μ	Ha=20	S=10	⁵ (a)				
				μ	μ	(b)					
			μ								143
μ	42:		μμ		(a) I	Ha=0 ()	(b) H	[a=20		
	(()									144
μ	43:				H	[a=40	S =	10 ⁵ (a,	b)		
			(c)				μ		μ	(b)	
								μ	μ		
			μ	μ				μ			
		μ,			•••••					•••••	145
μ	44:				Ha	a=20, (a)) S=0	(b)	$S=10^5$.		147
μ	45:	-		μ		μ		μ	μ	μ	
		Ha=20), (a) S=0	(b) S=25000)					•••••	148

μ	46:	-		μ		Ha=20, 3	S=50000	μ	(a)	
		μ	μ	(b)		μ			14	48
μ	47:					Ha=20	S=5000	(a)		
		(b)			μ	μ			14	48
μ	48:					Ha=20) S=50	0000 (a)		
		, (b)				μ	μ	(c)		
				μ					14	49
μ	49:	μμ				=2, Ha=	=20.0, S=10) ⁵	1:	51
μ	50:	(a)					, (b)	-		
		μ			μ		μ	μ Ha	a=20.0	
		S=10 ⁵							1:	52
μ	51:	(a)					, (b)	-		
		μ		μ	μ		μ	μ		
		=7.86, Ha=	=20.0	$S=10^{5}$.					1:	53
μ	52:	(a)					, (b)	-		
		μ		μ	μ		μ	μ		
		=23.16, Ha	=20.0	S=10 ⁵					1:	53
μ	53:	(a)					, (b)	-		
•		μ		μ	μ		μ	μ		
		=20.8, Ha=	=20.0	$S=10^{5}$.					1:	53

1:	μ		• •		Erro	r! B	ookmar	k not d	lefined.
2:		μ	CPU		μ				
	μ			cluster			μ		
&	μ								68
3:			μ	Hopf	μ		(
	Ra)	μ	Pr=0).71	7 Erro	r! B	ookmar	k not d	efined.
4:	μ		μ	l	μ	μ	На		
	(a)	μ	μ	μ	Hartmann		(b)	μ	
	μ Har	tman	n						119

μ & μ

I.

1.1 μ μ μ

Τ μ • μ μ μ , μ μ • μ , μ μ μ μ μ • (D). μ μ . μ μ μ μ ,

μ μ,μμ (μ) .

μ **u** μ μ Faraday Ampere, μ μ Lorentz. μ μ

μ μμμ μ . , μ

μ-μ.

() μ μ μ |**u**x |. , μ μ

(**u**x), μ μ μ Ohm, μ .

() μ μ μ Ampere, μ μ

μ , μ μ μ μ

μ ' ' μμ μ μ .

.

() $\mu \mu$ $\mu \mu$ **J**, $\mu \mu$ μ Lorentz (1

μ & μ

μ) J x B					
	μ		•			
μ	μ	(,)		μ	•	
					μ	
	, ,	μμ	μ		(μ	())
μ	μ		μ	(μ ()).
	,		μ			
	1930. ,			μ	l	
μ	19	μ				
	,	μμ	μ	μ		
	Faraday (Ļ	ı		μ	μ
		μ	μ),	
		20				
		μ		μ		,
	μ.		1942	μ		μ
Alfven,	μ	μ			μ	μ
				,		
	μ					μ
μ	μ			,μ		
	Larmor 1919			μ		
	,		μ			
μ			1950			
μ	μ	•			μ	
			μ			
μ					μ	
			μ		19	60.
μ				μ	J. Hartma	ann,
	μ	1	918.	,		μ
μ	μ				μ	μ
		Ļ	ı Ha	artmann		
	μ	μ	Ήa	artmann	, μ	

,

μ & μ

μ • :) μ μ μ ,) μ μ μ μ μ μ) μ μ μ , μ μ μ μ μ μ . μ , μ μ • , μ μ μ , μ Lorentz μ μ • μ μ μ μ μ μ μ μ μ μ μ μ

, μ μ μ μ (+) μ μ

μ

:

 ${}^{1}_{1}H + {}^{1}_{1}H \longrightarrow {}^{2}_{1}H + \beta^{+} + \nu_{e}$ ${}^{2}_{1}H + {}^{1}_{1}H \longrightarrow {}^{3}_{2}He + \gamma$ ${}^{3}_{2}He + {}^{3}_{2}He \longrightarrow {}^{4}_{2}He + {}^{1}_{1}H + {}^{1}_{1}H$

4
μ	&	μ
---	---	---

					μ		
μ		μ					
	,		μμ	μμ	50%		
	,	94000 kWh	,				
	10	,000,000				μ	μ
	Ļ	ιμ			μ		
	μ,	μ			μ		
			μ	μ	μ		
					μ	Ļ	l
	μ	μ.	μ	μ			
	μ	μ					
		μ ΤΟΙ	KAMAK		μ		
μ			μ			•	
			•			μ	
Cadarache		2008			IT	ER.	
	μ	ι μ			μ		
		,					μ
μ	μ		•				

μ, , μ

μ & μ

μ	μ		,			μ				μ	ι μ			,	,	μ	
		μ				μ		,		μ	l				μ		
				μ	•							μ					
										μ			μ				
μ			μ								•						
	μ			μ		,				,							
													•				
					,	μ							μ				μ
μ			μ		,μ			μ								μ	
	•					μ										μ	
			ł	l					μ						μ	l	
											μ		h	ι			μ
					μ		μ		μ								

μ μ.

	μ	
*	μ	φ μ μ
μ		_
*		- μ
μ	μ	_
μ	μ	- μ
μ		— μ μ
*	μ μ	
*	μμ	💠 μμ μ
		*
*		
*		

μ & μ

*	μ	μ
		·

	1:	μ							
		μ							
μ			μ			μ	l		
			•	μ					
μ	μ							μ	
					μ	•		μ	Dual
Coolant	Lead Lithiu	um, DCLL,		μ	μ		μ		
	μ				μ	l	μ	, μ	μ
							(Buhler &	Norajiti	ra 2003,
Fidaros	et al. 2008).					μ			
μ				μ	Si	Cμ			μ
		μ	,			μ			
							μ		
μ								μ	
μ		μ							
μ	μ					μ	μ	Bu	ırr et al.
(2008),		μ		μ		μ	μ		

μ.

	μ	&	μ					
1.2			μ			μ		
μ		μ	بر	L	μ	L		
•		•	,		μ		μ	
			,		•		•	
	μ		(W:	aleffe 20	003 Ea	khardt	et al	2008)
		u		u u	005, L	.Kilul ut	и и	2000) uu
и.		u	u	P*			u	(coherent
structures)		<u> </u>	1.	u			1.	(
и и	. U	I		٣	u	u		
u r	u r		и			۳۰		
P.	u r		1.				,	
	r.							u
(Chandrase	ekhar, 196	1, Sommer	ia & M	loreau, 19	982).			μ,
× ·	,	μ		, ļ	J			• •
	ł	ı				μ.		
			μ					
μ				μ		,		
μμ μ		μ			μ			μ
μ		μ					μ	l
	μ	Hartma	ann (Ha	artmann	walls)			
μ		Lor	entz	μ		μ		
μ	μ		μ			μ	(side	walls)
			μ				μ	(Buhler,
1996, 1998).		μ						μ
μ						Ļ	ι	
(Potherat et al. 2	2000, 2005)).						
μ	,			μ		μ		
	μ			μ				
μ				μμ μ	μ			μ
						μ		

& μ

μ

μ, μμ Hartmann, Ha, μ μ

μ (Ting et al., 1991). μ μ μ , μ μ μ μ μ μ μ μ μ μ . , μ μ μ μ μ μ , μ μ , μ (first wall) μ μ μ μ μ μ , jets μ μ μ , (Burr et al., 2000). μ μ μ μ μ μ , μ , μ μ μ Reynolds μ μ μ , Ha, µ μ μ Sommeria & Moreau (1982). Rayleigh - Benard µ (Burr & Muller 2002) μ , μ μ μ •

, Ha, Grashof, Gr, μ μ μ Ha, 100<Ha<1000, μ •

μ μ μ μ 11

μ & μ

Gr μ μ . μ μ μ Gr μ μ μ Ha. μ , μ μ μ μ μ •

. μ μ μ μ μμ μ μ , μ μ μ μ μ μ μ μ μ μ μ μ μ

μ μ μ μ μ . μ μ μ . μ μ μ .

μ Gelfgat & Molokov (2011) μ

μ & μ

μ

ITER (Buhler & Norajitra 2003, Fidaros et al. 2008, Buhler & Mistrangelo 2010, Kharitsa et al. 2004). μ μ μ μ (Kharitsa et al. 2004, Burr & Muller 2002) μ Hartmann μ μ μ • μ μ (Buhler 1998) μ μ Hartmann μ $Gr \ll Ha^{5/2}$. μ Gr/Ha^{5/2}~0.5. μ μ μ μ μ μ μ , μ μ μ μ μ μ μ μ μ μ . Burr & Muller μ μ μ μ μ Gr, μ μ μ , μ μ μ . μ μ μ μ μ μ μ μ μ μ . μμ μ μ μ μ Grashof, Gr_{Cr}, Ha μ μ μ μ μ μ . , μ μ μ μ μ μ μ μ Hartmann μ μ Hartmann. μ μ μ μ 13

& μ μ μ μ μμ , μ μ μ • (Pierrehumbert 1986) (Gledzer & Ponomarev 1992). μ μ μ , μ (Tsai & Widnall 1976). μ μ , μ μ μ (Leweke & Williamson 1998, Bristol et al. 2004) μ μ μ μ μ Particle Image μ μ μ μ , Velocimetry (PIV) , μ μ μ μ , μ (Leweke & Williamson 1998). μ μ μ μ μ μ μ μ μ • , μ μ (Gledzer & Ponomarev 1992) μ μ μ μ μ μ μ . μ μ μ μ μ μ . μ, μ μ μ μ μ • , μ μ μ μ μ (Pierrehumbert μμ 1986) μ , μμ μ μ μ μ , μ μ μ , (Landman & Saffman 1987) μ μ μ μ

μ & μ

μ Ekman, μ μμ μ μ μ μ. , Ekman : =2 $k_0^2/(/2)$ μ μ μ μ μ μ $\ell = 2f / k_0$ μ μ , μ μμ , (Waleffe 1990), μ μ (Waleffe 1995) , μ μ μ μ μμ μ μ. μ μ μ μμ . μ μ μ μμ (Waleffe 1995) μ μ μ μ μ (Grossmann 2000). μ μ μ , μ μ μ Reynolds, $\operatorname{Re}_m = uL/y$, (y:) μ μ μ μ (Sommeria & μμ μ Moreau 1982). μ μ , , Navier-Stokes μ μ μ μ μ μ . μ μ μ , μ μ • μ μ , (Burr et al. 2000, μ μ Burr & Muller 2002) μ

& μ μ

μμ μ μ μ μ . , μ μ μ μ jets μ μ μ μ (Burr et al. 2000). μ μ μ μ μ (Buhler 1998). μ Η μμ μ (Ting et al. 1991) μ μ . Rayleigh - Benard (Burr & Muller μ μ 2002) μ μ , μ μ , Ha μ μ μ μ μ μ μ μ μ μ μ Ha, μ μ • μ μ , μ μ μ μ μ μ μ μ , μ μ μ μ μ μμ μμ . μ μ μ μ , μ μ μ μ μ μ Gr μ μ μ μ μ μ μ . (Gelfgat & Molokov 2011) μ μ •

(Burr et al. 2000, Burr & Muller

& μ μ

.

•

2002)		,		
	l	μμ		
				μμ
	μ	μ		μ,
μ		ITER	μ	μ
μ	μ	μ		
			μμ	
μ	μ	μ	μμ	

,

,

μ μ μ μ μ μ μμ Burr & Muller (2002). μ μ μ μ μ μ μ μ μ μ μ

μ μ μ μ • , μ μ μ μμ μ μ . μμ μ μ μ μ μ , , (Sommeria μ μ .

& Moreau 1982). μ μ μ μ μ μ μ μμ μ μ μ •

μ μ μ , (Buhler & Mistrangelo 2010), μ 4. .

μ μ μ 18

,

μ

μ

Burr & Muller (2002).

19

μ

μ	&	μ	
μ		μμ	μ
•			

1.4 μ

(Computational Fluid Dynamics, CFD) μ μ μ μ • μ μ . , μ μ μ μ • , CFD : (hardware), μ μ μ μ μ μ μ. μ μ μ , μ μ μ μ, μ • : μ (Navier - Stokes) μ μ (). Navier - Stokes μ μ μ μ :

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u} = -\nabla p + \notin \left(\nabla^2 \vec{u}\right)$$
(1.1)

 $\nabla \cdot \vec{u} = 0 \tag{1.2}$

	μ	&	μ				
		μ					
		,	μ		,		μ
	μ.				μ		μ
μ	,						
		μ	(
	μ).			μ			μ
μ	μ			μ	μμ	u (un	structured).
	μ		μ		FVM		
	FDM.						
		μ	Ļ	ı			μ
	(μ		μ)				μ
			μ				
μ	μ						
			μ				
			μ		h	ı	
	μ	μ					(biquadratic)
	Lagrange	e i(x,y)			μ		,
μ			μ	,			
μ	μμ	(bilinear)			L	agrange	i(x,y).
				μ			μ
μ			μ				μ
			,		μ		μ
μ			μ		μ	(we	eighted residual
formulation).				μ		μ	μ
						•	μ
Galerkin						μ	-
						μ	Petrov -
Galerkin.	μ		μ				μ
μ	FEM Novement		-			μ	
	neumann.		μ 				
μι	1 ° V 1V1.	,	μ				μ
M		•					

1.5.1 Lagrange

			μ		μ	μ	quadratic
Lagrange	μ		3	μ			μ
eμ	μ	μ	Xe	x_{e+1}		qua	dratic Lagrange
μ	l		μ				
		I	u 6:				

,

 $\Psi_{ij}(x, y) = \mathbb{E}_i(x)\mathbb{E}_j(y), \quad i = 1, 2, 3, \quad j = 1, 2, 3$

1.5.2 μμ Lagrange

$$\Psi_{ij}(x, y) = \mathbb{E}_i(x)\mathbb{E}_j(y), \quad i = 1, 2, \quad j = 1, 2$$

1.6 μ (Spectral Method)

μ μ μ Chebyshev. Fourier μ μ μ μ μ μ . μ μ • , (weighted μ μ residual approach) (μ μ μ μ μ collocation). μ μ μ μ μ μ μ μ μ . μ μ

μ . μ μ μ μ Canuto et al. (1988) Hussaini & Zang (1987).

1.7 μ

μ					:		2
	μ	μ		μ		μ	
		μ	(μ			μ
	$\vec{\nabla}\Theta$	$(//\vec{g})$		μ	(μ	
							26

	μ	&	μ				
	μ			$\vec{\nabla} \Theta \bot$	(\vec{g})		
uu i	u u				0 /		
μ				3		μ	
	μ		μ	μ	FEM	•	μ
μ	μ		μ			μ	
	μ						μ
				ļ	μ.	,	
		μ					
		μ					
(scalability)	μ					μμ	μμ.
μ (be	enchmark cas	es)			μ		μ
	μ	μ	μ				3.5
2.6	μ 	μ 		μ		,	
5.0,	μ	μ			μ μ	u II	μ
u	μ		μ U	uu	u	ې ۵	
۳۰ ,	μ		P	μ	بم بر	l pre-	μ
μ		domain	Fou	rier deco	mposition μ		·
μ					μ		
	μμ	μμ					
	4			μ	μ		μ
	μ						
μ	μμ			•	μ		μ
μ	μ		μ		μ		
					μ		μ
μ		•		,			μ
μ μ Cr			μ u		μ		μ μ
GI _{Cr}		μ	па				μ
	μ 11		μ	(Cu)	μ		(c_{α})
u	٣			(~n)		μ	(03)
μ	μ	μ		μμ			
•	•	•					

& μ μ μ μ Burr & Muller (2002). μ μ μ μ μ =1 =2 μ μ μ • 5 μμ μ μ μ μ / Ha, 100<Ha<2000. μ μ μ μ μ μ μ " " μ μ μ μ μ , μ μ μ μ μ μ μ Rayleigh-Benard μ μ μ • , μ μ μμ 3 μ μ μ μ μ μ μ μ Burr & Muller (2002).

μ μ μ μ (adaptive) FEM μ μ (Ainsworth & Oden 1992, 1993, Demkowicz 2007).

,

& μ μ

II.

μ

μ & μ	
$\vec{u}_0 = 0, \qquad T_0 = (T_t - T_b)y'/h + T_b = -2\Delta Ty'/h + T_b$ (2.1)	,)
v u	u.
u Boussinesa u	•
$ \sum_{n=0}^{\infty} \left[\frac{1}{n} \left(\frac{1}{n} + \frac{1}{n} \right) \right] = \sum_{n=0}^{\infty} \left[\frac{1}{n} \left(\frac{1}{n} + \frac{1}{n} \right) \right] $? ?)
$\rho = \rho_0 \left[1 - \rho \left(1 - I_{Av} \right) \right], I_{Av} = \left(I_b + I_t \right) / 2, \tag{4}$	2.2)
μ	
<<1,	
. μ μ	
:	
$\wp_0' = p_{St}' + p_0' = -\rho_0 g y' + p_0' \qquad p_0' = \left(\rho_0 g h\right) \beta \Delta T \left[\left(\frac{y'}{h}\right) - \left(\frac{y'}{h}\right)^2 \right] \tag{2}$	2.3)
μ μ	
Rayleigh - Benard, μ μ	
μ μ Gr μ	
$e s \Delta T h^3$	
μ , $Gr = \frac{GGEER}{\epsilon^2}$ μ	
μμ., μμμ	Gr,
Gr _{Cr} 865, μ	
μ	
. μ	
μ	
μ (Drazir	1 &
Reid 1981).	
μ μ Lorentz	
μ μμ μ	
μ μ	
μ., μμ μ	
μ, x, μ	
, $\vec{B} = B\vec{e}_x$. μ μ	
μ μ μ	μ
Burr & Muller (2002)	

Hartmann

μ

30

μ.

μ

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$
(2.6)

$$\frac{\mu}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = -\frac{\partial P}{\partial x} + Gr^{-1/2} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$
(2.7)

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = -\frac{\partial P}{\partial y} + Gr^{-1/2} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) + \Theta - \frac{Ha^2}{Gr^{1/2}} \left(v + \frac{dW}{dz} \right)$$
(2.8)

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = -\frac{\partial P}{\partial z} + Gr^{-1/2} \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) - \frac{Ha^2}{Gr^{1/2}} \left(w - \frac{\partial W}{\partial y} \right)$$
(2.9)

$$\frac{\partial \Theta}{\partial t} + u \frac{\partial \Theta}{\partial x} + v \frac{\partial \Theta}{\partial y} + w \frac{\partial \Theta}{\partial z} = \frac{1}{Gr^{1/2}} \Pr\left(\frac{\partial^2 \Theta}{\partial x^2} + \frac{\partial^2 \Theta}{\partial y^2} + \frac{\partial^2 \Theta}{\partial z^2}\right)$$
(2.10)

$$\frac{\partial^2 W}{\partial x^2} + \frac{\partial^2 W}{\partial y^2} + \frac{\partial^2 W}{\partial z^2} = \frac{\partial W}{\partial y} - \frac{\partial v}{\partial z}$$
(2.11)

(2.7-2.9) μ x,y,z ,

μ

μ

μ

μ

μ Lorentz

μ

μ

μ

,

.

μ

(2.6, 2.11)

•

(2.6-2.11)

(2.10)

μ

.

D	irichlet.			μ			μ,
(Neuma	nn),	μ	μ		
μ			μ	l.			
		μ		μ			
	μ	,	μ		μ	μ	μ
	μ			μ	μ	μμ	:
$\vec{u}(x=0) = \vec{u}(x)$	$\mathbf{x} = \mathbf{A} = \vec{\mathbf{u}} $	$\mathbf{y}=0\big)=\vec{\mathbf{u}}\left(\mathbf{y}\right)$	(=1)=0,				(2.12)
$\Theta(\mathbf{y}=0)=1,$	$\Theta(y=1) =$	$-1, \frac{\partial \Theta}{\partial x} \Big(x$	$=0)=\frac{\partial \Theta}{\partial x}$	$\frac{\partial}{\partial x}(x=A)$	= 0		(2.12)
		μ			μ	μ	
	μ			μ	(Walk	er 1981),	
$-\vec{j}\cdot\vec{n}=c_{H}\nabla_{s}^{2}\mathbb{W}-$	$\Rightarrow \frac{\partial W}{\partial x} (x = 0, y,$	$z) = -c_H \left(\frac{\partial^2 W}{\partial y^2}\right)$	$++\frac{\partial^2 W}{\partial z^2}\Big),$	$\frac{\partial W}{\partial x}(x=A,y)$	$(z, z) = c_H \left(\frac{\partial}{\partial z}\right)$	$\left(\frac{\partial^2 W}{\partial y^2} + \frac{\partial^2 W}{\partial z^2}\right) (2)$	
$-\vec{j}\cdot\vec{n}=c_{s}\nabla_{s}^{2}W-$	$\Rightarrow \frac{\partial W}{\partial y}(x, y = 0,$	$z) = -c_{S} \left(\frac{\partial^{2} W}{\partial x^{2}} \right)$	$+\frac{\partial^2 W}{\partial z^2}$	$\frac{\partial W}{\partial y}(x, y = 1)$	$(z,z) = c_s \left(\frac{\partial^2}{\partial z}\right)$	$\left(\frac{\partial^2 W}{\partial x^2} + \frac{\partial^2 W}{\partial z^2}\right) (2)$	13 ,)
n					μ	μ	
$ abla_{ m s}^2$			La	place			
μ.		μ	c _s c _i	ł	μ		
μ		μ	μ	l	μ	μ	
μ	μ.	S	Н		μ		
Hartmann			μ				
	μ		,			,	
	μ				: <i>c_H</i> =	$\frac{c_{st}t_{st}}{ch}, c_s$	$=\frac{c_{co}t_{co}}{ch}$
t_{St}, t_{Co}							
	μ		,	,		с,	c _{St} , c _{Co}
		μ		μ	,		
,							
	μ	μ				2.	13.
				μ			
	μ		•	μ			
-	,	μ		μ			
L	apiace.						22
							55

•

& μ μ

$$x N A/2: \quad \frac{\partial v}{\partial x} N \frac{\partial w}{\partial x} N \frac{\partial b}{\partial x} N \frac{\partial w}{\partial x} N 0, \quad u N 0$$

$$\mu$$
(2.15)

$$\mu \qquad \mu \qquad :$$

$$Gr = \frac{g S \Delta T h^{3}}{\epsilon^{2}}, \quad Ha = \sqrt{\frac{h^{2} \dagger B_{0}^{2}}{\ldots \epsilon}}, \quad Pr = \frac{\epsilon}{r}, \quad A = \frac{L}{h}, \quad c_{H} = \frac{c_{st} t_{st}}{ch}, \quad c_{s} = \frac{c_{co} t_{co}}{ch} \qquad (2.16)$$

$$= \frac{k}{(c_{p})} \qquad \mu \qquad \mu \qquad \mu \qquad \mu$$

$$\mu \qquad \dots \qquad \mu \qquad \mu \qquad \mu \qquad \mu$$

$$\mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu$$

$$\mu \qquad \mu \qquad \mu \qquad \mu$$
Burr & Muller (2002).

2.2 μμ μ μ Rayleigh - Benard μ μ μ

(2.17).

Hartmann μ μ • ,

$$\begin{split} \mu & : \\ \begin{cases} \vec{u} \\ p \\ \Theta \\ \phi \\ \end{cases} = \begin{cases} \vec{u}_{0} \\ p_{0} \\ \Theta_{0} \\ \phi_{0} \\ \end{cases} + \begin{cases} \vec{u}_{1}(x, y) \\ p_{1}(x, y) \\ \Theta_{1}(x, y) \\ \phi_{1}(x, y) \\ \phi_{1}(x, y) \\ \end{cases} e^{\omega t} e^{ikz}, \quad \vec{u} \equiv (u, v, w)$$
 (2.18)

μ

,

•

& μ μ

(2.6-

μ

37

,
$$\mu \quad \mu$$
 μ .
 $\check{S}u_1 = -\frac{\partial P_1}{\partial x} + Gr^{-1/2} \left(\frac{\partial^2 u_1}{\partial x^2} + \frac{\partial^2 u_1}{\partial y^2} - u_1 k^2 \right)$
(2.19)

$$\check{\mathsf{S}}v_1 = -\frac{\partial P_1}{\partial y} + Gr^{-1/2} \left(\frac{\partial^2 v_1}{\partial x^2} + \frac{\partial^2 v_1}{\partial y^2} - v_1 k^2 \right) + \Theta_1 - \frac{Ha^2}{Gr^{1/2}} \left(v_1 + ik \mathsf{W}_1 \right)$$
(2.20)

$$\tilde{S}w_{1} = -ikP_{1} + Gr^{-1/2} \left(\frac{\partial^{2}w_{1}}{\partial x^{2}} + \frac{\partial^{2}w_{1}}{\partial y^{2}} - w_{1}k^{2} \right) - \frac{Ha^{2}}{Gr^{1/2}} \left(w_{1} - \frac{\partial W_{1}}{\partial y} \right)$$
(2.21)

$$\tilde{S}\Theta_{1} + v_{1}\frac{\partial\Theta_{0}}{\partial y} = \tilde{S}\Theta_{1} - 2v_{1} = \frac{Gr^{-1/2}}{\Pr} \left(\frac{\partial^{2}\Theta_{1}}{\partial x^{2}} + \frac{\partial^{2}\Theta_{1}}{\partial y^{2}} - \Theta_{1}k^{2} \right)$$
(2.22)

$$\left(\frac{\partial^2 W_1}{\partial x^2} + \frac{\partial^2 W_1}{\partial y^2} - W_1 k^2\right) = \frac{\partial W_1}{\partial y} - ikv_1$$
(2.23)

$$\frac{\partial u_1}{\partial x} + \frac{\partial v_1}{\partial y} + ikw_1 = 0 \tag{2.24}$$

Institutional Repository - Library & Information Centre - University of Thessaly 15/06/2024 04:55:41 EEST - 3.143.1.131

μ

μ

	μ		μμ			
		μ		μ	,	
μ			μ			
μ						μ,
(.	μ 5a).	,			μ	
μ	μ			μ	μ	
μ	μ			μ		
,	•		μ	μ	μ	
	μ					
μ		μ	μ	Ļ	ι μ	
	μ		μ	,	μ	
μ		μ		. E	oussinesq	

		μ	&	Z	μ			
		μ		μ		μ		
μ					μ		μ	Gr.
	μμ						μ	
			μ				,	

μ

μ μ μ μ μ (Pb-17Li) μ μ μ . μ Pr=0.0321. μ μ μ μ μ μ S=10⁵ , μ μ μ μ • , μ μ μ , , μ Ha μ μ μ. μ

μμ μ μ .

2.4	μμ			μ		μ	
μ					,	μ	
μ		μ	μ			μ	

Η μ μμ μ μ μ a=0 μ μ μ Gr, Ha, Pr. μ

μ μ , (Pelekasis 2006). , Z μ μ μ Hopf μ • Gr μ μ Ha. μ

40

μ

μ

μ
$$\{\vec{u}_1(x, y), \Theta_1(x, y), P_1(x, y), W_1(x, y)\}e^{\dagger t + ikz}.$$
 μ

$$\dagger u_1 + \frac{\partial (u_0 u_1)}{\partial x} + v_0 \frac{\partial u_1}{\partial y} + v_1 \frac{\partial u_0}{\partial y} = -\frac{\partial P_1}{\partial x} + Gr^{-1/2} \left(\frac{\partial^2 u_1}{\partial x^2} + \frac{\partial^2 u_1}{\partial y^2} - u_1 k^2 \right)$$
(2.29)

$$\dagger v_1 + \frac{\partial(v_0 v_1)}{\partial y} + u_0 \frac{\partial v_1}{\partial x} + u_1 \frac{\partial v_0}{\partial x} = -\frac{\partial P_1}{\partial y} + Gr^{-1/2} \left(\frac{\partial^2 v_1}{\partial x^2} + \frac{\partial^2 v_1}{\partial y^2} - v_1 k^2 \right) + \Theta_1 - \frac{Ha^2}{Gr^{1/2}} \left(v_1 + ikw_1 \right) (2.30)$$

$$\dagger w_1 + u_0 \frac{\partial w_1}{\partial x} + v_0 \frac{\partial w_1}{\partial y} = -ikP_1 + Gr^{-1/2} \left(\frac{\partial^2 w_1}{\partial x^2} + \frac{\partial^2 w_1}{\partial y^2} - w_1 k^2 \right) - \frac{Ha^2}{Gr^{1/2}} \left(w_1 - \frac{\partial w_1}{\partial y} \right)$$
(2.31)

$$\dagger \Theta_{1} + u_{1} \frac{\partial \Theta_{0}}{\partial x} + u_{0} \frac{\partial \Theta_{1}}{\partial x} + v_{0} \frac{\partial \Theta_{1}}{\partial y} + v_{1} \frac{\partial \Theta_{0}}{\partial y} = \frac{Gr^{-1/2}}{\Pr} \left(\frac{\partial^{2} \Theta_{1}}{\partial x^{2}} + \frac{\partial^{2} \Theta_{1}}{\partial y^{2}} - \Theta_{1} k^{2} \right)$$
(2.32)

$$\left(\frac{\partial^2 W_1}{\partial x^2} + \frac{\partial^2 W_1}{\partial y^2} - W_1 k^2\right) = \frac{\partial W_1}{\partial y} - ikv_1$$
(2.33)

$$\frac{\partial u_1}{\partial x} + \frac{\partial v_1}{\partial x} + ikw_1 = 0$$
(2.34)

$$\mu \quad \mu \quad \mu \quad \mu \quad \mu \quad (2.25-2.27).$$

III.

:

μ	&	μ	
---	---	---	--

	,	1	J		h		
						μ (3	3.1-3.2)
μ :							
$u^h(x) = \sum_{j=1}^n u_j$	$N_{j}(x)$						(3.3)
u _j		μ	μ	,			
μ			j		μ	μ	
	ł	•		ł	ı	h _	= { j :
j=1,2,,n}		(3.3)				(3.1)	
μ		,					
μ		μ				n	
	μ		(3.3)		•	u ^h µ	
	(3.1)	,		μ	(3.3)	(3.1)	μ
	(residual)	:					
$r_{\Omega} = L(u^h) -$	f						(3.4)
				μ			
μ		μ			μ	μ	
		. μ		μ	μ		
			μ				
		,					:
$\int_{\Omega} (r_{\Omega})^2 d\Omega$							(3.5)
		FEM	μ		μ	•	
μ		,			μ		,
		,	:				
$\int_{\Omega} w_i r_{\Omega} d\Omega$							(3.6)
			$W = \{$	$\{\mathbf{w}_i : i=1\}$,2,,n}	μ	
	μ			μμ			j٠
3.1.3		Ga	alerkin				

μ	&	μ				
μ		μ				
		μ	μ			
μμ	,		μ	μ		
			μ		FEN	Ν
μ FDM	FVM.					
μ collocation				Dirac-	n	μ
:						
$w_i = u(x - x_i), i = 1, 2,, n$						(3.7)
	,				μ	μ
μμ				μ		FDM.
	,		μμ			μ
collocation,	μ			μ -		(step-
discontinuous) µ :						
$w_{i} = \begin{cases} 1, \ x_{i} \le x \le x_{i+1} \\ 0, \end{cases}$						(3.8)
μ				μ		
µ n				FVM,		μ
μ					μ	,
		μ				
					μ	
μ			μμ			, μ
	μ					,
:						
wi=Ni						(3.10)
Ημ ,				FEM,		μ
Galerkin. µ			μ			
μ					μ	
μ	•	,	μ			μ
			μ			
· μ,				۳ II	11	μ
٣٣		•	μ	٣	μ	

(Pelekasis 2006, Dimopoulos & Pelekasis 2012) :

$$\begin{bmatrix} u_{1} \\ v_{1} \\ W_{1} \\ \Theta_{1} \\ \varphi_{1} \end{bmatrix} (x, y) = \sum_{i=1}^{N} \begin{bmatrix} u_{i} \\ v_{i} \\ W_{i} \\ \Theta_{i} \\ \varphi_{i} \end{bmatrix} \Phi_{i}(x, y), \quad P_{i}(x, y) = \sum_{i=1}^{M} p_{i} \Psi_{i}(x, y); \quad (3.11)$$

$$\left[\iint \Psi_i \frac{\partial \Phi_j}{\partial x} dx dy \right] u_j + \left[\iint \Psi_i \frac{\partial \Phi_j}{\partial y} dx dy \right] v_j + \left[\iint i k \Psi_i \Phi_j dx dy \right] w_j = 0, i = 1, M$$
(3.12)

μ x, y, z

$$\sum_{j=1}^{N} \left[\breve{S} \iint \Phi_{i} \Phi_{j} dx dy \right] u_{j} = -\sum_{j=1}^{M} \left[\iint \frac{\partial \Phi_{i}}{\partial x} \Psi_{j} dx dy \right] P_{j}$$

$$-Gr^{-1/2} \left[\sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial x} \frac{\partial \Phi_{j}}{\partial x} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[k^{2} \iint \Phi_{i} \Phi_{j} dx dy \right] u_{j} \right]$$
(3.13)

μ

&

μ

$$\sum_{j=1}^{N} \left[\tilde{S} \iint \Phi_{i} \Phi_{j} dx dy \right] v_{j} = \sum_{j=1}^{M} \left[-\iint \Psi_{j} \frac{\partial \Phi_{i}}{\partial y} dx dy \right] P_{j}$$
$$-Gr^{-1/2} \left[\sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial x} \frac{\partial \Phi_{j}}{\partial x} dx dy \right] v_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] v_{j} + \sum_{j=1}^{N} \left[\iint \Phi_{i} \Phi_{j} dx dy \right] v_{j} + \sum_{j=1}^{N} \left[\iint \Phi_{i} \Phi_{j} dx dy \right] v_{j} \right] \quad (3.14)$$
$$+ \sum_{j=1}^{N} \left[\iint \Phi_{i} \Phi_{j} dx dy \right] \Theta_{j} - \frac{Ha^{2}}{Gr^{1/2}} \left[\sum_{j=1}^{N} \left[\iint \Phi_{i} \Phi_{j} dx dy \right] v_{j} + \sum_{j=1}^{N} \left[ik \iint \Phi_{i} \Phi_{j} dx dy \right] v_{j} \right]$$

$$\sum_{j=1}^{N} \left[\tilde{S} \iint \Phi_{i} \Phi_{j} dx dy \right] w_{j} = \sum_{j=1}^{M} \left[-ik \iint \Psi_{j} \Phi_{i} dx dy \right] P_{j}$$
$$-Gr^{-1/2} \left[\sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial x} \frac{\partial \Phi_{j}}{\partial x} dx dy \right] w_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] w_{j} + \sum_{j=1}^{N} \left[k^{2} \iint \Phi_{i} \Phi_{j} dx dy \right] w_{j} \right] \quad (3.15)$$
$$-\frac{Ha^{2}}{Gr^{1/2}} \left[\sum_{j=1}^{N} \left[\iint \Phi_{i} \Phi_{j} dx dy \right] w_{j} - \sum_{j=1}^{N} \left[\iint \Phi_{i} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] w_{j} \right]$$

$$\sum_{j=1}^{N} \left[\tilde{S} \iint \Phi_{i} \Phi_{j} dx dy \right] \Theta_{j} = -(Gr^{-1/2} / \Pr) \left[\sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial x} \frac{\partial \Phi_{j}}{\partial x} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[k^{2} \iint \Phi_{i} \Phi_{j} dx dy \right] \Theta_{j} \right]^{(3.16)}$$

$$-\int_{0}^{1} c_{H} \frac{\partial \Phi_{i}}{\partial y} \frac{\partial W}{\partial y} dy \Big|_{x=0} -\int_{0}^{1} c_{H} \frac{\partial \Phi_{i}}{\partial y} \frac{\partial W}{\partial y} dy \Big|_{x=A} -\int_{0}^{A} c_{S} \frac{\partial \Phi_{i}}{\partial x} \frac{\partial W}{\partial x} dx \Big|_{y=1} -\int_{0}^{A} c_{S} \frac{\partial \Phi_{i}}{\partial x} \frac{\partial W}{\partial x} dx \Big|_{y=0} + \Phi_{i} \left(c_{H} \frac{\partial W}{\partial y} (x=0, y=1) - c_{S} \frac{\partial W}{\partial x} (x=0, y=1) \right) - \Phi_{i} \left(c_{H} \frac{\partial W}{\partial y} (x=0, y=0) + c_{S} \frac{\partial W}{\partial x} (x=0, y=0) \right) + \Phi_{i} \left(-c_{H} \frac{\partial W}{\partial y} (x=A, y=0) + c_{S} \frac{\partial W}{\partial x} (x=A, y=0) \right) + \Phi_{i} \left(c_{H} \frac{\partial W}{\partial y} (x=A, y=1) + c_{S} \frac{\partial W}{\partial x} (x=A, y=1) \right) = \Phi_{i} \left(-c_{H} \frac{\partial W}{\partial y} (x=A, y=0) + c_{S} \frac{\partial W}{\partial x} (x=A, y=0) \right) + \Phi_{i} \left(-c_{H} \frac{\partial W}{\partial y} (x=A, y=0) + c_{S} \frac{\partial W}{\partial x} (x=A, y=0) \right) + \Phi_{i} \left(-c_{H} \frac{\partial W}{\partial y} (x=A, y=0) + c_{S} \frac{\partial W}{\partial x} (x=A, y=0) \right) = \Phi_{i} \left(-c_{H} \frac{\partial W}{\partial y} (x=A, y=0) + c_{S} \frac{\partial W}{\partial x} (x=A, y=0) \right) + \Phi_{i} \left(-c_{H} \frac{\partial W}{\partial y} (x=A, y=0) + c_{S} \frac{\partial W}{\partial x} (x=A, y=0) \right) = \Phi_{i} \left(-c_{H} \frac{\partial W}{\partial y} (x=A, y=0) + c_{S} \frac{\partial W}{\partial x} (x=A, y=0) \right) = \Phi_{i} \left(-c_{H} \frac{\partial W}{\partial y} (x=A, y=0) + c_{S} \frac{\partial W}{\partial x} (x=A, y=0) \right) + \Phi_{i} \left(-c_{H} \frac{\partial W}{\partial y} (x=A, y=0) + c_{S} \frac{\partial W}{\partial x} (x=A, y=0) \right) = \Phi_{i} \left(-c_{H} \frac{\partial W}{\partial y} (x=A, y=0) + c_{S} \frac{\partial W}{\partial x} (x=A, y=0) \right) = \Phi_{i} \left(-c_{H} \frac{\partial W}{\partial y} (x=A, y=0) + c_{S} \frac{\partial W}{\partial x} (x=A, y=0) \right) = \Phi_{i} \left(-c_{H} \frac{\partial W}{\partial y} (x=A, y=0) + c_{S} \frac{\partial W}{\partial x} (x=A, y=0) \right) = \Phi_{i} \left(-c_{H} \frac{\partial W}{\partial y} (x=A, y=0) + c_{S} \frac{\partial W}{\partial x} (x=A, y=0) \right) = \Phi_{i} \left(-c_{H} \frac{\partial W}{\partial y} (x=A, y=0) + c_{S} \frac{\partial W}{\partial x} (x=A, y=0) \right) = \Phi_{i} \left(-c_{H} \frac{\partial W}{\partial y} (x=A, y=0) + c_{S} \frac{\partial W}{\partial x} (x=A, y=0) \right)$$

μ

&

$$= \int \Phi_{i} \frac{\partial N}{\partial n} dS = -(c_{S} - c_{H}) \int \Phi_{i}^{k^{2}} W dS + \sum_{j=1}^{N} \left[\iint \Phi_{i} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] W_{j} - \sum_{j=1}^{N} \left[ik \iint \Phi_{i} \Phi_{j} dx dy \right] V_{j} + \sum_{j=1}^{N} \left[k^{2} \iint \Phi_{i} \frac{\partial \Phi_{j}}{\partial x} dx dy \right] W_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial x} \frac{\partial \Phi_{j}}{\partial x} dx dy \right] W_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] W_{j}, \quad i = 1, M$$

$$(3.17)$$

,

μ . (2.23) μ , , h(x,y). μ μ μ , Galerkin μ μ μ μ μ: $h(x, y) = \Phi_j(x, y),$ Lagrange. j μ μ μ , :

$$\begin{split} &\iint \Phi_{i} \nabla^{2} w dA = \iint k^{2} w \Phi_{i} dA + \iint \frac{\partial w}{\partial y} \Phi_{i} dA - \iint i k v \Phi_{i} dA \Rightarrow \\ &\iint \nabla \cdot (\Phi_{i} \nabla w) dA - \iint \nabla \Phi_{i} \cdot \nabla w dA = \iint k^{2} w \Phi_{i} dA + \iint \frac{\partial w}{\partial y} \Phi_{i} dA - \iint i k v \Phi_{i} dA \Rightarrow \\ &\int \Phi_{i} \frac{\partial w}{\partial n} dS = \iint \left[\frac{\partial \Phi_{i}}{\partial x} \frac{\partial w}{\partial x} + \frac{\partial \Phi_{i}}{\partial y} \frac{\partial w}{\partial y} + k^{2} w \Phi_{i} + \frac{\partial w}{\partial y} \Phi_{i} - i k v \Phi_{i} \right] dA \Rightarrow \\ &\int_{0}^{A} \Phi_{i} \frac{\partial w}{\partial x} dy \Big|_{x=1} - \int_{0}^{A} \Phi_{i} \frac{\partial w}{\partial x} dy \Big|_{x=0} + \int_{0}^{1} \Phi_{i} \frac{\partial w}{\partial y} dx \Big|_{y=A} - \int_{0}^{1} \Phi_{i} \frac{\partial w}{\partial y} dx \Big|_{y=0} = \\ &\iint \left[\frac{\partial \Phi_{i}}{\partial x} \frac{\partial w}{\partial x} + \frac{\partial \Phi_{i}}{\partial y} \frac{\partial w}{\partial y} + k^{2} w \Phi_{i} + \frac{\partial w}{\partial y} \Phi_{i} - i k v \Phi_{i} \right] dA \equiv I \Rightarrow \\ &I + \int_{0}^{A} c_{H} \Phi_{i} k^{2} w dy \Big|_{x=1} + \int_{0}^{A} c_{H} \Phi_{i} k^{2} w dy \Big|_{x=0} + \int_{0}^{1} c_{S} \Phi_{i} k^{2} w dx \Big|_{y=0} + \int_{0}^{1} c_{S} \Phi_{i} k^{2} w dx \Big|_{y=A} = \\ &+ \Phi_{i} c_{H} \frac{\partial w}{\partial y} \Big|_{0,x=1}^{A,x=1} + \Phi_{i} c_{H} \frac{\partial w}{\partial y} \Big|_{0,x=0}^{A,x=0} + \Phi_{i} c_{S} \frac{\partial w}{\partial x} \Big|_{0,y=0}^{1,y=0} + \Phi_{i} c_{S} \frac{\partial w}{\partial x} \Big|_{0,y=A} = \\ &- \int_{0}^{A} c_{H} \frac{\partial \Phi_{i}}{\partial y} \frac{\partial w}{\partial y} dy \Big|_{x=1} - \int_{0}^{A} c_{H} \frac{\partial \Phi_{i}}{\partial y} \frac{\partial w}{\partial y} dx \Big|_{x=0} = \\ &- \int_{0}^{A} c_{H} \frac{\partial \Phi_{i}}{\partial x} \frac{\partial w}{\partial x} dx \Big|_{y=A} - \int_{0}^{A} c_{S} \frac{\partial \Phi_{i}}{\partial x} \frac{\partial w}{\partial x} dx \Big|_{y=0} \Rightarrow \\ &I + \int_{0}^{A} c_{H} \left[\Phi_{i} k^{2} w + \frac{\partial \Phi_{i}}{\partial y} \frac{\partial w}{\partial y} \right] dy \Big|_{x=1} + \int_{0}^{A} c_{H} \left[\Phi_{i} k^{2} w + \frac{\partial \Phi_{i}}{\partial y} \frac{\partial w}{\partial y} \right] dy \Big|_{x=0} \\ &+ \int_{0}^{A} c_{H} \left[\Phi_{i} k^{2} w + \frac{\partial \Phi_{i}}{\partial x} \frac{\partial w}{\partial x} \right] dx \Big|_{y=A} + \int_{0}^{A} c_{S} \left[\Phi_{i} k^{2} w + \frac{\partial \Phi_{i}}{\partial x} \frac{\partial w}{\partial x} \right] dx \Big|_{y=0} = \\ &+ \Phi_{i} c_{H} \frac{\partial w}{\partial y} \Big|_{0,x=1}^{A,x=1} + \Phi_{i} c_{H} \frac{\partial w}{\partial y} \Big|_{0,x=0}^{A,x=0} + \Phi_{i} c_{S} \frac{\partial w}{\partial x} \Big|_{0,y=0}^{A,x=0} \\ &+ \Phi_{i} c_{H} \frac{\partial w}{\partial y} \Big|_{0,x=1}^{A,x=0} + \Phi_{i} c_{S} \frac{\partial w}{\partial x} \Big|_{0,y=0}^{A,x=0} + \Phi_{i} c_{S} \frac{\partial w}{\partial x} \Big|_{0,y=0}^{A,x=0} \\ &+ \Phi_{i} c_{H} \frac{\partial w}{\partial y} \Big|_{0,x=1}^{A,x=0} + \Phi_{i} c_{S} \frac{\partial w}{\partial x} \Big|_{0,y=0}^{A,x=0} + \Phi_{i} c_{S} \frac{\partial w}{\partial x} \Big|_{0,y=A} \\ &+ \Phi_{i} c_{H} \frac{\partial w}{\partial y} \Big|_{0,x=1}^{A,x=0} + \Phi_{i} c$$

μ μ μ μ μ μ Hartmann. μ μ μ μ x = A/2μμ μ μ x = A/2μ Х μ (3.17) • μμ μ , (mass matrix) μ μ ,

μ μ μ μ. μ μ μ , μ : μ $\check{\mathsf{S}}B_{ij}x_{1j} = J_{ij}(x_{0i};k,Gr,Ha,A,c_s,c_H)x_{1j}$ (3.20), J μ x_{0j}, x_{1j} , μ. μ μ μ • , μ μ μ μ μ μ . μ μ μ μ , μ μ μ , , μ μ, μ . μ μ μ μμ μ μ μ , μ μ μ μ . μ μ μ μ . μ μ μ μ

μ , μ μ μ μ Cayley (Cliffe et al. 1993):

$$J_{ij}x_j - \dagger B_{ij}x_j = \check{S}B_{ij}x_j - \dagger B_{ij}x_j \rightarrow (J_{ij} - \dagger B_{ij})x_j = (\check{S} - \dagger)B_{ij}x_j \rightarrow \frac{1}{\check{S} - \dagger}x_i = (J_{ij} - \dagger B_{ij})^{-1}B_{ij}x_j, \quad \ddagger = 1/(\check{S} - \dagger)$$
(3.21)

		,		μ				
	(3.20)	μ	μμ	L	μ	μ		,
	μ	μ	=1/(-)	μ			μ	
Arnoldi,		μ	μ			μ		
	μ	μ					μ	
	μ,				Hopf			
		μ			μ	,		μ
								49

μ	&	μ
---	---	---

μ	μ	μ
(Pelekasis 2006)		

3.2.1 μ μ - μ

Arnoldi

μ μ Arnoldi (Arnoldi 1951) μ μ Hessenberg, μ μ μ μ : μ ... a_{1,π} a_{1,1} a_{1,2} a_{1,3} a_{1,n-3} a_{1,n-2} a_{1,n-1} a2,2 a_{2,n} a_{2,1} a2,3 ... a_{2,n-3} a_{2,n-2} a_{2,n-1} 0 a3,2 a3,3 a_{3 ,n-3} a_{3,n-2} a_{3,n-1} a_{3,n} . . . 0 a_{4,n} 0 a4,3 a_{4,π-2} ... a4,n-3 a4,n-1 0 0 0 ÷ ÷ ÷ ÷ ۰. 0 0 0 0 a_{n-2,n-3} a_{n-2,n-2} an_2,n-1 an-2,n 0 0 0 0 0 a_{n-1,n-2} a_{n-1,n-1} an-1,n 0 0 0 0 0 0 a_{n,n} an,n-1 Arnoldi μ μ μ . μ μ μ μ Saad (Saad 1980) μ non-Hermitian. μ μ (Bai et al. 2000). μ Arnoldi µ μ n, μ n μ Hessenberg μ μ μ μ μ : AV = VH,Hessenberg nμ V V V μ v₁=Ve₁ μ μ μ μ. μ μ m μ μ V_{m} n x m µ Hessenberg m : $AV_m - V_m H_m$ m $= fe_m^*,$ residual μf 1 x n m-50

Arnoldi e_m^* μ μ 1 x m. μ Arnoldi μ μ μμ : : , μ μ m μ μv_1 . $AV_m - V_m H_m = fe_m^*$ $(V_m, H_m, f,)$ j=1,2,...,m-1 w=AVj Vj ($h_{1:j,j}$) W $h_{j+1,j} = \|w\|_2$ A $h_{j+1,j} = 0$, stop $v_{j+1} = w / h_{j+1,j}$ $f = Av_m$ V_m (f h_{1:m,m}) $S = \left\| f \right\|_2$ μ μ μ μ _m(A,v₁). T Krylov μ μ V_{m} Arnoldi. μ μ w=0 μ μ , residual m μ $K_j(A,v_1), j < m$ Arnoldi μ μ • μ μ • μ μ μ , , μ, μ μ μ μ μ μ μ. μ μ, μ μ μ Cayley , 0 μ μ

$$\left[\iint \Psi_i \frac{\partial \Phi_j}{\partial x} dx dy \right] u_j + \left[\iint \Psi_i \frac{\partial \Phi_j}{\partial y} dx dy \right] v_j + \left[\iint i k \Psi_i \Phi_j dx dy \right] w_j = 0, i = 1, M$$
(3.22)

$$\frac{\mu}{\sum_{j=1}^{N} \left[\int \int \Phi_{i} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \int \Phi_{i} \frac{\partial u_{0}}{\partial x} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \int \Phi_{i} \frac{\partial \Phi_{j}}{\partial x} u_{0} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \int \Phi_{i} \frac{\partial \Phi_{j}}{\partial y} \nabla_{0} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \int \Phi_{i} \frac{\partial u_{0}}{\partial y} \Phi_{j} dx dy \right] v_{j} = -\sum_{j=1}^{M} \left[\int \int \frac{\partial \Phi_{i}}{\partial x} \Psi_{j} dx dy \right] P_{j}$$

$$-Gr^{-1/2} \left[\sum_{j=1}^{N} \left[\int \int \frac{\partial \Phi_{j}}{\partial x} \frac{\partial \Phi_{j}}{\partial x} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \int \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \int \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \int \frac{\partial \Phi_{i}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \int \frac{\partial \Phi_{i}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \int \frac{\partial \Phi_{i}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \frac{\partial \Phi_{j}}{\partial y} \Phi_{j} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\int \frac{\partial \Phi_{j}}{\partial y}$$

$$\begin{split} &\sum_{j=1}^{N} \left[\uparrow \iint \Phi_{i} \Phi_{j} dx dy \right] v_{j} + \sum_{j=1}^{N} \left[\iint \Phi_{i} \Phi_{j} \frac{\partial v_{0}}{\partial y} dx dy \right] v_{j} + \sum_{j=1}^{N} \left[\iint \Phi_{i} \frac{\partial \Phi_{j}}{\partial y} v_{0} dx dy \right] v_{j} + \sum_{j=1}^{N} \left[\iint \Phi_{i} \Phi_{j} \frac{\partial v_{0}}{\partial x} dx dy \right] u_{j} = \sum_{j=1}^{M} \left[-\iint \Psi_{j} \frac{\partial \Phi_{i}}{\partial y} dx dy \right] P_{j} \\ &- Gr^{-1/2} \left[\sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{j}}{\partial x} \frac{\partial \Phi_{j}}{\partial x} dx dy \right] v_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] v_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] v_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] v_{j} + \sum_{j=1}^{N} \left[\iint \Phi_{i} \Phi_{j} dx dy \right] v_{j} + \sum_{j=1}^{N} \left[\iint \Phi_{i} \Phi_{j} dx dy \right] v_{j} + \sum_{j=1}^{N} \left[\iint \Phi_{i} \Phi_{j} dx dy \right] v_{j} + \sum_{j=1}^{N} \left[ik \iint \Phi_{i} \Phi_{j} dx dy \right] v_{j} \right] \end{split}$$

$$\sum_{j=1}^{N} \left[\uparrow \iint \Phi_{i} \Phi_{j} dx dy \right] w_{j} + \sum_{j=1}^{N} \left[\iint \Phi_{i} \frac{\partial \Phi_{j}}{\partial x} u_{0} dx dy \right] w_{j} + \sum_{j=1}^{N} \left[\iint \Phi_{i} \frac{\partial \Phi_{j}}{\partial y} v_{0} dx dy \right] w_{j} = \sum_{j=1}^{M} \left[-ik \iint \Psi_{j} \Phi_{i} dx dy \right] P_{j}$$

$$-Gr^{-1/2} \left[\sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial x} \frac{\partial \Phi_{j}}{\partial x} dx dy \right] w_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] w_{j} + \sum_{j=1}^{N} \left[\left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] w_{j} + \sum_{j=1}^{N} \left[\left[\iint \Phi_{i} \Phi_{j} dx dy \right] w_{j} \right] \right]$$

$$-\frac{Ha^{2}}{Gr^{1/2}} \left[\sum_{j=1}^{N} \left[\iint \Phi_{i} \Phi_{j} dx dy \right] w_{j} - \sum_{j=1}^{N} \left[\iint \Phi_{i} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] w_{j} \right]$$

$$(3.25)$$

$$\sum_{j=1}^{N} \left[\uparrow \iint \Phi_{i} \Phi_{j} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \Phi_{i} \Phi_{j} \frac{\partial \Theta_{0}}{\partial x} dx dy \right] u_{j} + \sum_{j=1}^{N} \left[\iint \Phi_{i} \frac{\partial \Phi_{j}}{\partial x} u_{0} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \Phi_{i} \Phi_{j} \frac{\partial \Theta_{0}}{\partial y} dx dy \right] V_{j} =$$

$$- \left(\frac{Gr^{-1/2}}{\Pr} \right) \left[\sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial x} \frac{\partial \Phi_{j}}{\partial x} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{j}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{j}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{j}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{j}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{j}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{j}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{j}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{j}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j} + \sum_{j=1}^{N} \left[\iint \frac{\partial \Phi_{j}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] \Theta_{j}$$

$$\int \Phi_{i} \frac{\partial \mathbf{W}}{\partial t} dS = 0 = -(c_{S} - c_{H}) \int \Phi_{i}^{k^{2}} \mathbf{W} S + \sum_{j \neq l}^{N} \left[\iint \Phi_{i} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] w_{j} - \sum_{j \neq l}^{N} \left[ik \iint \Phi_{i} \Phi_{j} dx dy \right] v_{j} + \sum_{j \neq l}^{N} \left[k^{2} \iint \Phi_{i} \frac{\partial \Phi_{j}}{\partial x} dx dy \right] w_{j} + \sum_{j \neq l}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial x} \frac{\partial \Phi_{j}}{\partial x} dx dy \right] w_{j} + \sum_{j \neq l}^{N} \left[\iint \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} dx dy \right] w_{j}, \quad i = 1, M$$

$$(3.27)$$

μ	&	μ
---	---	---

(3.22-3.27)					μ		μ	μ
$\int_{\Gamma} \Phi_i \frac{\partial q}{\partial n} d\Gamma ($	q={u,	,v,w, ,	,p},			μ		
	μ				$\partial q/\partial n$			
)					Dirichle	t	
	μ				μ			
				μ	•		μ	μ
μ		μ	μ	μ	μ	Cayle	ey (Cliffe o	et al. 1993)
					μ	Arno	oldi	μ
	μ	μ			μ,	μ		μ:
$Jx - sBx = \dagger Bx$	x - sBx - bar	$\rightarrow (J - s)$	B)x = (1	(-s)Bx	$x \rightarrow$			
$\ddagger x = \left(J - sB\right)^{-1}$	<i>Bx</i> , ‡ ≡	$\equiv \frac{1}{\dagger - s}$						(3.28)
	(.	3.28)		μ		(3.21).	S	μ
μ		μ			μμ		μ	μ
	Ļ	ı	Arnoldi	. μ				
			μ				J-sl	З,
μ						•	,	
μ		μ		,		μ	μ	l
	,						μμ	
				Pelekas	is (2006))		μ μ
	μ	(S=10	$)^{5})$					
	•					μ	μμ	
		μ				Ļ	ı	
							(2.1)
				μ		μ		
μμ .								
	,		μ	GN	ARES (G	eneral M	inimal Res	sidual),
		μ			,			Stokes
precondition	oner					μ		
μ	μ			μ				μ
Ha, Gr	μ	μk						

μ	&	μ
---	---	---

3.3.1 GMRES

μ μ x=b μ . , μ μ μ μ μ μ

$$\mu \quad i+1 \qquad \qquad \mu \quad :$$

$$Kx_{i+1} = Kx_i + b - \Lambda x_i - Kx_i \xrightarrow{r_i = b - Ax_i} Kx_{i+1} = Kx_i + r_i$$

$$\mu \quad \mu \qquad \qquad \mu$$
(Elman et al. 2005)
$$\mu$$

.

$$\mu$$
 (Linian et al. 2005). μ
 μ μ .

,
$$\mu$$
 μ
. Lanczos
 x_i μ $r^{(0)}, Ar^{(0)}, A^2r^{(0)}, ..., A^{i-1}r^{(0)}$ $r^{(0)}=b-Ax^{(0)}$
 μ .

•

,

Krylov i. , Lanczos μ μ μ μ μ . **GMRES** Krylov k μ $x^{(k)} \in x^{(0)} + K_k(A, r^{(0)}).$ μ μ k $V^{(k)} = \left\{ v^{(1)}, v^{(2)}, ..., v^{(k)} \right\} \mu$ $v^{(1)} = r^{(0)} / \|r^{(0)}\|.$ V_k Krylov $K_{k} \equiv span\{v^{(1)}, Av^{(1)}, ..., A^{k-1}v^{(1)}\} = K_{k}[A, r^{(0)}] \qquad \mu$ Arnoldi. μ upper- $H_k = [h_{ij}]$ $1 \le i, j \le k, h_{ij} = 0$ j < i - 1Hessenberg : $H_{\mu} = V_{\mu}^{T} A V_{\mu}$ $AV_{k} = V_{k}H_{k} + h_{k+1,k}[0,...,v^{(k+1)}] \to AV_{k} = V_{k+1}\tilde{H}_{k}, \qquad \tilde{H}_{k} = [h_{i,j}]_{1 \le i \le k+1, 1 \le j \le k}$ $v^{(1)} = r^{(0)} / \left\| r^{(0)} \right\|$ 0 μ μ , $v^{(k+1)}$, μ Krylov μ k۰ $v^{(k)}$ Gram-Schmidt (Elman et μ μ al. 2005). : $x^{(k)} = x^{(0)} + V_k y^{(k)} \rightarrow A x^{(k)} - b = A x^{(0)} - b + A V_k y^{(k)}$ $\mu \qquad \qquad \mu \quad y^{(k)}.$ H_k μ μ: $r^{(k)} = r^{(0)} - V_{k+1}\tilde{H}_k y^{(k)} = V_{k+1} \left(\left\| r^{(0)} \right\| e^{(1)} - \tilde{H}_k y^{(k)} \right), \quad e^{(1)} = \left(1, 0, ..., 0 \right)^T$ v^(k) $\|r^{(k)}\| \equiv S_k = \|S_0 e^{(1)} - \tilde{H}_k y^{(k)}\|, \|r^{(0)}\| \equiv S_0$ **v**^(k) μ $||r^{(k)}|| = ||b - Ax^{(k)}||^2$. μ ,μ μ H_k μ , μ μμ H_k , μ μ

& μ μ

m μ, m μ μ GMRES μ μ μ • (C 100.1 . 1000

$$\mu x^{(0)}$$

$$r^{(0)} = f - Ax^{(0)} v^{(1)} = \frac{r^{(0)}}{\|r^{(0)}\|}.$$

$$\mu v^{(k)}$$

•

•

$$\mu \qquad j=1,2,...,m$$

$$h_{i,j} = \left(Av^{(j)}, v^{(i)}\right), \qquad i=1,2,...,j$$

$$\widehat{v}^{(j+1)} = Av^{(j)} - \sum_{i=1}^{j} h_{i,j}v^{(i)}$$

$$h_{j+1,j} = \left\|\widehat{v}^{(j+1)}\right\|, \quad v^{(j+1)} = \frac{\widehat{v}_{j+1}}{h_{j+1,j}}$$

$$y^{(m)}$$
 μ $\|\mathbf{S} \mathbf{e}_1 - \tilde{H}_m \mathbf{y}\|$

$$\mu \qquad \left\| \mathsf{S} \, e_1 - \tilde{H}_m y \right\|, \quad y \in R^m.$$

 $x^{(m)} = x^{(0)} + V_m y^{(m)}$

$$S_k < \ddagger S_0, \quad t \Box \ 1, \quad \mu \quad \mu \ .$$

 $\mu \quad x^{(0)} = x^{(m)}, \quad v^{(1)} = \frac{r^{(m)}}{\|r^{(m)}\|} \qquad \mu$
 $\mu \ .$

3.3.2 GMRES µ preconditioner

•

,

preconditioning μ μμ μ μ μ μ . μ μ μμ μ μ μ, μ μ μ μ preconditioning preconditioner preconditioning μ μ μ μ x=b μ μ : μ μ $\left[M^{-1}A\right]x = M^{-1}b, \quad \left[AM^{-1}\right]\left[Mx\right] = b$ preconditioning. μ μ preconditioning μ μ . -1 μ μ , $V^{(k)} = \left\{ v^{(1)}, v^{(2)}, ..., v^{(k)} \right\},\$ (Elman et al. 2005). $K_{k} \equiv span\left\{r^{(0)}, AM^{-1}r^{(0)}, \left(AM^{-1}\right)^{2}r^{(0)}, \dots, \left(AM^{-1}\right)^{k-1}r^{(0)}\right\}$ Krylov k μ $x^{(k)} = x^{(0)} + M^{-1}V_k y^{(k)}.$ -1 μ -1 μ preconditioner Incomplete LU μ ⁻¹ μ L U. μ , $a_{ij} \mu i, j=1,...,n$ μ μ L ILU μ U R=LU-A , μ .

		μ	&		μ				
0	Ļ	ı IL	U					Gauss	
					μ				
μ			μ		μ	(Saad	1996) :		
1.	For	i=2,,n D	o:						
2.		For k=1,	,i-1 and	if (i,k) \$	∉PDo:				
3.		$a_{ik} = \frac{a_{ik}}{a_{kk}}$							
4.		For j=	=k+1,,	n and fo	or if (i,k))∉P Do:			
5.		$a_{ij} = a_{ij}$	$a_{ij} - a_{ik}c$	u_{kj}					
6.		End I	Do						
7.		End Do							
8.	End	Do							
$P \subset \left\{ \left(i, j\right)\right\}$	j) i≠.	μ $j, 1 \le i, j \le$	μ n	μ	μ			:	
							μi		μ
				μμ	L	U	i μμ	μ	
	μ		μμ			μ	μμ	L	U 1,,
i-1	μ								
					μ			•	
		Inco	omplete	LU				GMRI	ES
	μ	μ							
		Youcef S	Saad.				μ		
	μ	μ				μ	Kryl	ov	
GMF	RES			μ		Incomp	olete LU		•
	,								μ
a –	. –	, ,			μ	μ	, CS	RF (Com	pressed
Sparse R	Row F	format).	μ	μ	μ			μ	μ-
μ									•
	μ				μ				

μ-μ μ-,

	μ	&	μ			
μ					μ	
μ-μ			μ-μ	μ	•	
3.3.3				μ	μ	
	μ	_				μ
GMRES						
U	μ	μ	μ	μ		μ
٣			μ	h		
μ.				μ	μ	
	,					
	,		μμ			
u	u		_	μ		
r.	μ		,	μ	μk	μ
Gr µ	μH	Ia.				
						μ
μ	μ	μ		μμ	μ	Gr
u Gr	μ	μ На.	μ	μ		u Gr
μΟΙ		μ		μ		μ ΟΙ
μμ		μ		μ		
μ μ	(μ	μ	μ			
	μ	μμ		(Pelekasis 2	006)).	
μ	μ	μ				μμ
μ		μ		μ		,
μ		μ	GN GN	MRES.		
μ		μμ	μμ	μ		μ
		μ	l X	(in & 1	Le Quere	2001) :

 $\left(J - \dagger B\right)x = 0$

60

(3.29)

	μ	ĥ	ı	μ	k		μ			μ	,Gr,
μ		μ				μ		μ	ko	G	r _o .
			μ		μ	pa	rametric	contin	uation	μ	
		μ		μ			μ	ι			μ x
										μ	
							μμ				
μ	μ								μ	(3.2	29).
		μ									
				h	l			μ	l		
:											
$\mathbf{x}_{rj} + \mathbf{i}\mathbf{x}_{ij} =$	1+0i										(3.30)
	μ			μ		μ		(3.29)	(3.30)	
	μ					μ	Nev	vton-Rap	ohson (NR).	
	k	NR					μμ	ŀ	l		
$\int J_x - \dagger^k B$	$B B x^k$	$\left[\int \mathbf{u} x^k \right]$) [$(J_x -$	$-\dagger^{k}B$	(x^k)					
010	0]∫u† [∗]	$\int = \begin{cases} \\ \\ \\ \\ \\ \end{cases}$	x_{rj}^k -	$+ix_{ij}^{k}$	-1					(3.31)
			·			2		и			u
					. J.	x		F	rechet		J
		μx			μι	u† ^k =†	$^{k+1} - \dagger^{k}$.		$J_x - \uparrow^k$	В	
	nxn			Bx^k			μ		n,		
(eigenpair) $\{ u x^k \}$.ut}		μ				u			μ
	(·)		•							
B		μ			μ			μ		•	
D		μ				GI	MRES				
	μ Dre	econditi	۳ oner		μ	G		п			
u				,	u			٣	S	tokes	0 0
I		,		1					5		•
	,	μ	μ		μ		μ		I	μμ	μ
μ		-							μ		
x,y	,Z								(2.7-2	.10) :	

& μ μ

$$B\dot{x} = Jx = \left(\frac{C}{Gr^{0.5}}L + N\right)x$$
(3.32)
$$\mu \qquad L \qquad N \qquad \mu \mu$$

μμ μμμ C : i) μ μ μ , , ii) μ μ , 1/Pr

μ

semi-implicit μ μ μ:

.

μ

μμ

μ

μ

$$\frac{Bx^{n+1} - Bx^{n}}{\Delta t} = \frac{C}{Gr^{0.5}}Lx^{n+1} + Nx^{n} \Rightarrow$$

$$\left(B - \frac{\Delta tC}{Gr^{0.5}}L\right)x^{n+1} = (\Delta tN + B)x^{n} \Rightarrow$$

$$x^{n+1} = \left(B - \frac{C}{Gr^{0.5}}\Delta tL\right)^{-1}(\Delta tN + B)x^{n} \Rightarrow$$

$$x^{n+1} = \left(B - \frac{C}{Gr^{0.5}}\Delta tL\right)^{-1}\left(\Delta tN + B - \frac{C}{Gr^{0.5}}\Delta tL + \frac{C}{Gr^{0.5}}\Delta tL\right)x^{n} \Rightarrow$$

$$x^{n+1} = x^{n} + \left(B - \frac{C}{Gr^{0.5}}\Delta tL\right)^{-1}\left(\Delta tN + \frac{C}{Gr^{0.5}}\Delta tL\right)x^{n} \qquad (3.33)$$

$$\frac{x^{n+1} - x^{n}}{\Delta t} = \left(B - \frac{C}{Gr^{0.5}}\Delta tL\right)^{-1}\left(N + \frac{C}{Gr^{0.5}}L\right)x^{n}$$

μ μ μ

.

, preconditioner Stokes GMRES (Saad 2003), µ μ

$$\begin{bmatrix} \left(B - \frac{C}{Gr^{0.5}}\Delta tL\right)^{-1} & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} J_x - \dagger^k B & Bx^k\\ 0...1...0 & 0 \end{bmatrix} \begin{bmatrix} u x^k\\ u \dagger^k \end{bmatrix} = \begin{bmatrix} \left(J_x - \dagger^k B\right)x^k\\ x_{rj}^k + ix_{ij}^k - 1 \end{bmatrix}$$
(3.34)

t μ μ μ μ (Mamun & Tuckerman 1995). μ

62

:

μ

μ

μ

		,	S	Stokes µ		tes μ			preconditioner	
		μ	(3.31)							μ
		μ	GMRES.							μ
		μ			μ	μ		μ		
μ		Arnoldi			(3.31)	μ	μ	μ	•
						μμ		,		μ
	μ	,		μμ					μ	
	μ									

3.4		μ	μμ	μ
		Rayleigh - Benard	μ	μ
	,	μ	μ	

			μ	μ				
	MPI (Message Passing Interface)							
	ScaLAF	PACK (Scala	ole Linear Al	lgebra Package),	(Blackford	et al.		
1997).	,	μ		μ	μ			
	μ	μ μμ	(shared-men	nory computer)		μ		
μμ	μμ	(distributed	l-memory syste	em)				

•

							μ
μμ.			μ				
	μμ	μ	μμ,				OpenMP
(Multi-Pr	ocessing)						
		μ		μ	μμ	,	μ
	μ		μ	μ			
	μ					μ.	

μ μ μ.

(Pacheco 1996) PVM (Parallel Virtual Machine), (Geist et al. 1994).

	μ	&	μ				
μ	μμ		μ			μ	
μ	11					μ	
٣	μ		μ	μ		:	
μμ		(Incren	nental Pa	arallelizatio	<u>on)</u> :	μμ	
	μμ	μ	μ	μμ.		μ	
μ		·	μ	μμ	μ		
μμ	μ			μ μ	μ		μ
	μ_: μμ	μμ	μ	μ	и µ µ µ	L	
μμ		:	μ				
μ . (Chandra at al. 20	001)		μ	μ	nMD	2%	25%,
μ μ μ			μ	Ope			
	μ	μ		μ	:		
<u>Scalability</u> : μ ι	μ	μ	μ u	μμ			μ μ
. μμ μ	μ.						·

μ	Compiler :				μ	com	piler
μ							
:		μ	μ μ	μμ			μ
	μ		·		μ	μ,	μ
μμ	μμ.						
							μ
	μμ	μμ	μ				
scalability µ			μ		,		
μ	μ		μ	μ	(cluster)		
	μ	&	μ		ŀ	r	
	cluster	r	,	ŀ	IELIOS.		
3.4.1				μ			

			μ				μ			
		μ						Ļ	ι	
	μ	μ	μ			h	l			
	μ	10^{4}	μ		•	μ	μ			6
μ	Intel Pent	ium Quad – (Cores	μ	ιµ	L	μ			8 Gb.
				μ		μ	Gr _{Cr}		μ	μ
На					R	ayleigł	n-Benard			
μ			μ	μ	μ	μ		μ		
	μ					(scalał	oility)			
	μ μ		,						μ	CPU

•

μ

Mesh

μ

CPU in minutes

Mesh	На	Gr _{Cr}	processors	CPU in minut
40x20	0	41400	1	25
40x20	0	41400	2	16
40x20	0	41400	4	9
60x30	0	42900	1	68
60x30	0	42900	2	36
60x30	0	42900	4	20
60x30	100	53000	1	68
60x30	100	53000	4	20
80x40	100	53000	1	109
80x40	100	53000	4	30
140x70	100	53000	1	1854
140x70	100	53000	16	450
110x55	800	460000	1	732
110x55	800	460000	16	187
140x70	800	460000	1	1854
140x70	800	460000	16	450

μ

&

μ

Κατασκειή ιδιοδιανύσματος που αντιστοιχεί στην ασταθή ιδιοτιμή

μ μ .

3.5.1 Ben	chmark	μ	μμ
μ		Rayleigh - Benard	μ
μ		,	μ
μ			
		μ μ	
		μ	μ
μ μ	μ	μ	μ
μ		μ.	
	μμ	Ra	yleigh-Benard
		μ	μ
Ha=0.	•	Ц	
ц	benchmark	μ.	
μμ	Gr _{Cr} µ µ µ	ık. µPr	μ 0.02
	μμ	$(Na^{22}K^7)$	⁷⁸),
μ	μμ	Burr & Mulle	r (2002). O
μμ	μ		μz
		, На=0	μμ
Gr _{Cr} ≈42900	, μ μ	μμ	μ k=0
	10 µ	Х	
μ	μ	μ μ	_{Cr} ≈ /10.
μ	μ	=20	μ
	,	μ	μ
	μ	_{Cr} ≈2h. µ 13a,b	
μ	μ μ	μ	
	μ 60x30 80x40)	, .
μ	μμ	Gr _{Cr} µ	100.

&

μ

μ

.

μ μ			μ				х
$h_{yz} \ \hat{0} \ \sqrt{h_y^2 < h_z^2}$	μ			μ	a=100	0	
	μ		μ Η	artman	n		
c _H =0.00415	c _s =4.5,	,			μ		μμ
		Gr _{Cr} ≈	=53000, k _{C1}	≈3.			μ
	μ 110x55		Σ	к, у			
	μ						
		μμ μ	μ			μ	
	μ				μ	μ	
μ	μ	μ	μ		μ		,
							μ 14a
			μ			μ	l
μ.	, X-	-					
		,				μ	14b,c
	Х	yz	μ				
	μ	Hartma	nn,	μ			
Hartmann µ	μ μ	У					Х
	μ						
, i.	.e. _x	yz…	μ	ł	1		μ
μ	µ 60x30		μ	μ 14	0x70		
	х, у ,		,				
μ				μ		μ	
	, μ		μ			μ	
μ		μμ	μ		μ		
	μ	u 14d			v	V7	
μ	μ.	μιτο	i,C		Λ	уL	
μ 11				μ			•
μ	μ		u				
u 14b.c.	μu		r• Hartma	ann	,		
μ	X						
μ Hartn	nann (µ	14b,d),					

μ Hartmann.

)

μ

75

μ

Institutional Repository - Library & Information Centre - University of Thessaly 15/06/2024 04:55:41 EEST - 3.143.1.131

μ (

	μ	μ		μ					,						
μ		Arnoldi	μ									μ			
		μ	μ		(mod	de	4).				μ		μ		
				μ		μ							Hopf		
				(k=	=0)						μ				
	Ra	$=1.64 \times 10^{6}$					μμ			μ					
		μ													
		μ	μk		h	u	μ	2				μ	μ	,	
=2	/k,							μ			μ				
		•						μ		μ	μ		μ	μ	
		μ					μ		μ		μ				
						μ	•	μ							
	μ μ benchmark		μ							μ					
		μ					μ.								
		μμ					μ								
			μ									μ	μ		
		μ,							μ		μ		μ		
		(μ	16)									μ	Hopf		
							•				μ	μ			
	μ				μ		μ				μ	, (mode	s 1,		
2, 3)).	,		μ				u		μ	ŀ	u , (m	ode		
4),					μ			k 4. To				μμ			
	μ	μ				μ									

μ benchmark μ.

	mode 1	mode 2	mode 3
, (20x20)	1.38	1.16	1.61
, (40x40)	1.39	1.16	1.61
Xin & Le Quere, 41x41 collocation µ	1.414 84	1.192 73	1.621 84

3:			μ	Hopf	μ	(
Ra)	μ	Pr=0.71.				

(a) mode 1, Ra=2400000, Pr=0.71 (b) $\mu \mu$, Ra=1400000, Pr=0.71 μ 40x40 .

3.6 M	μμ		μ		
Rayleigh	- Benard	μ	μ		,
	μ	μ			
			,		
μμ	μ u.	,	μ U	u	μ Burr & Muller
		7	L.	•	79

Institutional Repository - Library & Information Centre - University of Thessaly 15/06/2024 04:55:41 EEST - 3.143.1.131

spectral modes z (Gottlieb & Orszag 1977, Patera 1984) μ μ μ μ μ (Orszag & Kells 1980). μμ μ (Orszag & Kells 1980) μ μ μ μ (Dimas & Triantafyllou 1994) μ (Snyder & Degrez 2002 & Vanden - Abeele et al. 2004). μ μ μ μ μ μ μ μ μ μ μ μμ μμ μ μ μ μ μ μ μ μ μ μ μ μ μ μ semi-implicit μ μ μ μ μ μμ μ Adams-Bashforth μ μμ Crank-Nicolson μ μ μ μ μ μ μ μ μ (Streamwise Upwinding Petrov Galerkin). μ μ μ Fourier modes μ μ mode, μ : () domain decomposition μμ μ , (Dimopoulos & Pelekasis μμ 2012) () Fourier decomposition Z x=b Fourier modes μ μ μ. μ μ μ μ μ μ μ μ

CPU,ScaLAPACKFFTE (Fast FourierTransform East).μMPIBLACSμμ

μ.

3.6.1 μ μ Fourier

Fourier (Discrete Fourier Transform μ μ μ DFT) μ μ μ . μ μ μ μ μ μμ μ , μ μ DFT μμ μ n μ μ . μ μ μ μ μ μ , μ μ μ . (n^2) μ Cooley & Tukey (1965) μ μ μ DFT $(nlog_2n)$ n- μ . DFT μ μ μ μ Fourier (Fast Fourier μ μ μ Transform - FFT). μ , FFT μ FFT μ μ μ μ . $= < [0], [1], ..., [n-1] > \mu$ DFT μ n. = < [0], [1], ..., [n-1] > ([i], Y[i])μ μ μ), $Y[i] = \sum_{k=0}^{n-1} X[k] \check{S}^{ki}, \ 0 \le i < n$ (3.35) $\check{S} = e^{2f\sqrt{-1}/n}.$ FFT μ μ twiddle factors.

83

(3.37)

DFT µ

 $Y[i] = \sum_{k=0}^{(n/2)-1} X[2k]_{00}^{ki} + \tilde{S}^{i} \sum_{k=0}^{(n/2)-1} X[2k+1]_{00}^{ki}$

n μ ,

point) DFTs .

(n/2-point) DFTs :

& μ μ

3.6.1.1 µ transpose FFT

& μ μ

μ FFT μ : μ binary exchange transpose. μ μ μμ μ , μ • FFT μ μμ FFTE (Takahashi 2000) μ μ μ μ μμ μ μ

ALLTOALL MPI (Vanden-Abeele et al.). μ transpose μ μ , μ. transpose μ μ μ

 \sqrt{n} μ μ $\sqrt{n}x\sqrt{n}$ μ n, μ ,μ $\sqrt{n}x\sqrt{n}$ FFT n μ n μ FFTs \sqrt{n} μ μ μ μ μμ FFTs \sqrt{n} μ μ , $\sqrt{n}x\sqrt{n}$ μ μ μ μ μ

 \sqrt{n} FFTs, μ μμ μ μ \sqrt{n} μ FFTs μμ μ μ transpose μ μ μ μ •

FFT, μ μ μμ $\sqrt{n}x\sqrt{n}$ • transpose FFT μ μ • FFT \sqrt{n} μ μμ . μ μ μμ μ μ ,

μμ μ . μ μ FFT \sqrt{n} μ μμ μ μ μ 1 3 μ μ μ •

μ

•

				μ				ĥ	12,	,		μ	
μ	ALLTOALL												
			μ	р		(1	р	< n))				
μ	$\mu \sqrt{n} / p$	μμ		,					μ	l			
μ		μ	1	3							\sqrt{n} /	' <i>p</i> FF	Ts
\sqrt{n} µ	• • •			μ					tı	ransj	pose	FFT	
	μ			μ			μ					μ	l
μ			μ 20			μ			μ			l	μ
	μμ								μ				
μμ	μ μ	μ		•								μ	
μ	X[0], X[4],	X[8],	X[12]			μ		μ			,		
	μ			μ			•						
μ	μ	X[4],	X[5],	X[6],	X[7]		μ		μ	μ			•
	μ				μμ				•				

3.6.1.2 μμ Fourier

μ

Fourier

& μ μ

spectral decomposition. , 0 μ μ decomposition μ • , μ _ FEM FDM. μ μ μ μ μ μ μ μ μ μ μ μ μ g_k μ μ μμ Fourier μ μ: $\hat{g}(-f) = \left[\hat{g}(f)\right]^*$ (3.38)μ μ μ. mode μ , /2+1Fourier, modes μμ (3.38). , Fourier 0 /2 μ μ μ μ , μ μ. μ.

k = 0+ real k = 1 $: \\ k = N/2 - 1$ -imaginary \rightarrow real + k = N/2 \rightarrow real $\rightarrow \hat{g}_k = [\hat{g}_{N-k}]^*$ $\begin{array}{c} k = N/2 + 1 \\ \vdots \\ k = N - 1 \end{array} \right\}$ Fourier μμ μ μ .

3.6.2 μ μμ

μ 21:

μ

μ	&	μ
---	---	---

 $\begin{array}{ccc} \mu & & & \\ \mu & \mu & \mu \\ \mu & Crank-Nicolson. & \mu & \mu \\ & \vdots & & \end{array}$

 $\frac{df}{dt} = \}f$ (3.39)

μ μ μ :

$$\frac{f^{n+1} - f^n}{\Delta t} = \frac{f^{n+1} + f^n}{2}$$
(3.40)

$$\begin{array}{cccc} n+1 & \mu & n \\ \mu & \mu & (3.40) & \mu & Crank-Nicolson \\ & & & & \mu & n+1/2 \end{array}$$

μ μ μ μ.

3.6.3 µ µ µµ

μ μ (3.39) Adams-Bashforth. μ μ : μ $\frac{f^{n+1} - f^n}{\Delta t} = \left\{ \left(\frac{3}{2} f^n - \frac{1}{2} f^{n-1}\right) \right\}$ (3.41) μ μ μ μ μ μ μ • μ μ μ μ μ • μ μμ μ μ • , μ μμ μ

89

Institutional Repository - Library & Information Centre - University of Thessaly 15/06/2024 04:55:41 EEST - 3.143.1.131

 $\mu \qquad (2.7-2.10):$ $\left(\hat{h}_{xk}\right)_{i}^{e} = \sum_{n=0}^{N-1} \int_{\Omega_{e}} \Phi_{i} \left(u_{n} \frac{\partial u_{n}}{\partial x} + v_{n} \frac{\partial u_{n}}{\partial y} + w_{n} \frac{\partial u_{n}}{\partial z}\right) Exp \left[-\frac{2f \, kn}{N} I\right] d\Omega_{e} \qquad (3.42)$

$$\left(\hat{h}_{yk}\right)_{i}^{e} = \sum_{n=0}^{N-1} \int_{\Omega_{e}} \Phi_{i} \left(u_{n} \frac{\partial v_{n}}{\partial x} + v_{n} \frac{\partial v_{n}}{\partial y} + w_{n} \frac{\partial v_{n}}{\partial z} \right) Exp \left[-\frac{2f \, kn}{N} I \right] d\Omega_{e}$$
(3.43)

$$\left(\hat{h}_{zk}\right)_{i}^{e} = \sum_{n=0}^{N-1} \int_{\Omega_{e}} \Phi_{i} \left(u_{n} \frac{\partial w_{n}}{\partial x} + v_{n} \frac{\partial w_{n}}{\partial y} + w_{n} \frac{\partial w_{n}}{\partial z} \right) Exp \left[-\frac{2f \, kn}{N} I \right] d\Omega_{e}$$
(3.44)

$$\left(\hat{h}_{\Theta k}\right)_{i}^{e} = \sum_{n=0}^{N-1} \int_{\Omega_{e}} \Phi_{i} \left(u_{n} \frac{\partial \Theta_{n}}{\partial x} + v_{n} \frac{\partial \Theta_{n}}{\partial y} + w_{n} \frac{\partial \Theta_{n}}{\partial z} \right) Exp \left[-\frac{2f \, kn}{N} I \right] d\Omega_{e}$$
(3.45)

Fourier . k, e, n μ k- Fourier mode, μ z, . $_{i}(x,y)$

spectral

,
$$\mu$$

Fourier μ Fourier modes.
 μ μ $(^2)$ μ μ .
, μ -spectral μ
Orszag (1969, 1971) Orszag & Kells (1980).
 μ μ μ Fourier μ
 μ μ μ μ μ

90

μ

$$\left(h_{xn}\right)_{i}^{e} = \int_{\Omega_{e}} \Phi_{i} \left(u_{n} \frac{\partial u_{n}}{\partial x} + v_{n} \frac{\partial u_{n}}{\partial y} + w_{n} \frac{\partial u_{n}}{\partial z}\right) d\Omega_{e}$$
(3.46)

$$\left(h_{yn}\right)_{i}^{e} = \int_{\Omega_{e}} \Phi_{i} \left(u_{n} \frac{\partial v_{n}}{\partial x} + v_{n} \frac{\partial v_{n}}{\partial y} + w_{n} \frac{\partial v_{n}}{\partial z}\right) d\Omega_{e}$$
(3.47)

$$\left(h_{zn}\right)_{i}^{e} = \int_{\Omega_{e}} \Phi_{i} \left(u_{n} \frac{\partial w_{n}}{\partial x} + v_{n} \frac{\partial w_{n}}{\partial y} + w_{n} \frac{\partial w_{n}}{\partial z}\right) d\Omega_{e}$$
(3.48)

$$(h_{\Theta n})_{i}^{e} = \int_{\Omega_{e}} \Phi_{i} \left(u_{n} \frac{\partial \Theta_{n}}{\partial x} + v_{n} \frac{\partial \Theta_{n}}{\partial y} + w_{n} \frac{\partial \Theta_{n}}{\partial z} \right) d\Omega_{e}$$

$$(\partial/\partial z)_{n} \qquad \mu$$

$$(3.49)$$

$$\left(\frac{\partial f_n}{\partial z}\right) = \frac{f_{right} - f_{left}}{2\Delta z}$$
(3.50)

$$z \qquad \mu \qquad \mu :$$

$$\Delta z = \frac{L}{N} \qquad (3.51)$$

modes.

 f_{left} :

 $\mathbf{f}_{\text{right}}$

$$f_{left} = f_{n-1}, f_{right} = f_{n+1}$$
(3.52)

$$\mu \qquad \mu \qquad \mu :$$

n=0 $\rightarrow f_{left} = f_{N-1}, f_{right} = f_1$ (3.53)

n=N-1.

n=0

$$n=N-1 \to f_{left} = f_{N-2}, f_{right} = f_0$$
 (3.54)

:

Fourier
$$(\hat{h}_{xk}, \hat{h}_{yk}, \hat{h}_{wk}, \hat{h}_{\Theta k})_i^{old}$$
 μ FFT

μ.

 $\begin{array}{ccc} \mu & FFTs & (n) & \mu \\ \mu & (\ \log_2 N) & \mu & \mu & . \end{array}$

3.6.4 μ

μ (2.6-2.11) μ u, v, w, , μ. р μ μ 12 μ μ μ μ μ μ μ μ μ μ . ,

μ

μ

,

$$\mu :$$

$$u \,\hat{q}_{k} = \hat{q}_{k}^{n+1} - \hat{q}_{k}^{n}$$

$$\hat{q}_{k} = \left\{ \hat{u}_{k}, \hat{v}_{k}, \hat{w}_{k}, \hat{\Theta}_{k}, \hat{w}_{k}, \hat{p}_{k} \right\}.$$

$$(3.55)$$

μ

μ

$$Au x = b \Rightarrow$$

$$A(\hat{q}_{k}^{n+1} - \hat{q}_{k}^{n}) = \left(D\Box\hat{q}_{k}^{n} + \frac{3}{2}C^{n} - \frac{1}{2}C^{n-1}\right) \Rightarrow$$

$$(\hat{q}_{k}^{n+1} - \hat{q}_{k}^{n}) = A^{-1}\left(D\Box\hat{q}_{k}^{n} + \frac{3}{2}C^{n} - \frac{1}{2}C^{n-1}\right)$$

$$D \qquad \mu \mu$$

$$\mu \mu \mu \mu \mu$$

$$\mu \mu \mu \mu$$

$$\mu \mu \mu \mu$$

$$\mu \mu \mu \mu$$

$$\mu \mu \mu \mu$$

$$\sum_{j=1}^{N} \int_{\Omega_{e}} \left(\Psi_{i} \frac{\partial \Phi_{j}}{\partial x} \mathbf{u} \hat{u}_{k,j} + \Psi_{i} \frac{\partial \Phi_{j}}{\partial y} \mathbf{u} \hat{v}_{k,j} + \left(\frac{2fk}{L}I\right) \Psi_{i} \Phi_{j} \mathbf{u} \hat{w}_{k,j} \right) d\Omega_{e} =$$

$$-\sum_{j=1}^{N} \int_{\Omega_{e}} \left(\Psi_{i} \frac{\partial \Phi_{j}}{\partial x} \hat{u}_{k,j}^{n} + \Psi_{i} \frac{\partial \Phi_{j}}{\partial y} \hat{v}_{k,j}^{n} + \left(\frac{2fk}{L}I\right) \Psi_{i} \Phi_{j} \hat{w}_{k,j}^{n} \right) d\Omega_{e}$$
(3.57)

& μ μ

$$\begin{split} &\left[\frac{1}{\Delta t}\sum_{j=1}^{N}\int_{\Omega_{e}}\Phi_{i}\Phi_{j}d\Omega_{e} + \frac{Gr^{-1/2}}{2}\left(\sum_{j=1}^{N}\int_{\Omega_{e}}\left(\frac{\partial\Phi_{i}}{\partial x}\frac{\partial\Phi_{j}}{\partial x} + \frac{\partial\Phi_{i}}{\partial y}\frac{\partial\Phi_{j}}{\partial y}\right)d\Omega_{e} + \left(\frac{2fk}{L}\right)^{2}\sum_{j=1}^{N}\int_{\Omega_{e}}\Phi_{i}\Phi_{j}d\Omega_{e}\right)\right]u\hat{u}_{k,j}(3.58) \\ &-\left[\frac{1}{2}\sum_{j=1}^{N}\int_{\Omega_{e}}\frac{\partial\Phi_{i}}{\partial x}\Psi_{j}d\Omega_{e}\right]u\hat{p}_{k,j} = \frac{3}{2}\left(\hat{h}_{,k}\right)_{i}^{n} - \frac{1}{2}\left(\hat{h}_{,k}\right)_{i}^{n-1} \\ &-\left[Gr^{-1/2}\left(\sum_{j=1}^{N}\int_{\Omega_{e}}\left(\frac{\partial\Phi_{i}}{\partial x}\frac{\partial\Phi_{j}}{\partial x} + \frac{\partial\Phi_{i}}{\partial y}\frac{\partial\Phi_{j}}{\partial y}\right)d\Omega_{e} + \left(\frac{2fk}{L}\right)^{2}\sum_{j=1}^{N}\int_{\Omega_{e}}\Phi_{i}\Phi_{j}d\Omega_{e}\right)\right]\hat{u}_{k,j}^{n} \\ &+\left[\sum_{j=1}^{N}\int_{\Omega_{e}}\frac{\partial\Phi_{i}}{\partial x}\Psi_{j}d\Omega_{e}\right]\hat{p}_{k,j}^{n} \end{split}$$

$$\begin{split} &\left[\frac{1}{\Delta t}\sum_{j=1}^{N}\int_{\Omega_{e}}\Phi_{i}\Phi_{j}d\Omega_{e} + \frac{Gr^{-1/2}}{2}\left(\sum_{j=1}^{N}\int_{\Omega_{e}}\left(\frac{\partial\Phi_{i}}{\partial x}\frac{\partial\Phi_{j}}{\partial x} + \frac{\partial\Phi_{i}}{\partial y}\frac{\partial\Phi_{j}}{\partial y}\right)d\Omega_{e} + \left(\frac{2fk}{L}\right)^{2}\sum_{j=1}^{N}\int_{\Omega_{e}}\Phi_{i}\Phi_{j}d\Omega_{e}\right)\right]u\hat{v}_{k,j} \\ &- \left[\frac{1}{2}\sum_{j=1}^{N}\int_{\Omega_{e}}\frac{\partial\Phi_{i}}{\partial y}\Psi_{j}d\Omega_{e}\right]u\hat{p}_{k,j} - \left[\frac{1}{2}\sum_{j=1}^{N}\int_{\Omega_{e}}\Phi_{i}\Phi_{j}d\Omega_{e}\right]u\hat{\Theta}_{k,j} + \left[\frac{1}{2}\frac{Ha^{2}}{Gr^{1/2}}\sum_{j=1}^{N}\int_{\Omega_{e}}\Phi_{i}\Phi_{j}d\Omega_{e}\right]u\hat{v}_{k,j} \\ &+ \left[\frac{1}{2}\frac{Ha^{2}}{Gr^{1/2}}\left(\frac{2fk}{L}I\right)\sum_{j=1}^{N}\int_{\Omega_{e}}\Phi_{i}\Phi_{j}d\Omega_{e}\right]u\hat{w}_{k,j} = \frac{3}{2}\left(\hat{h}_{jk}\right)_{i}^{n} - \frac{1}{2}\left(\hat{h}_{jk}\right)_{i}^{n-1} \\ &- \left[Gr^{-1/2}\left(\sum_{j=1}^{N}\int_{\Omega_{e}}\left(\frac{\partial\Phi_{i}}{\partial x}\frac{\partial\Phi_{j}}{\partial x} + \frac{\partial\Phi_{i}}{\partial y}\frac{\partial\Phi_{j}}{\partial y}\right)d\Omega_{e} + \left(\frac{2fk}{L}\right)^{2}\sum_{j=1}^{N}\int_{\Omega_{e}}\Phi_{i}\Phi_{j}d\Omega_{e}\right)\right]\hat{v}_{k,j}^{n} \\ &+ \left[\sum_{j=1}^{N}\int_{\Omega_{e}}\frac{\partial\Phi_{i}}{\partial y}\Psi_{j}d\Omega_{e}\right]\hat{p}_{k,j}^{n} + \left[\sum_{j=1}^{N}\int_{\Omega_{e}}\Phi_{i}\Phi_{j}d\Omega_{e}\right]\hat{\Theta}_{k,j}^{n} \right]$$
(3.59)

$$\begin{split} &\left[\frac{1}{\Delta t}\sum_{j=1}^{N}\int_{\Omega_{e}}\Phi_{i}\Phi_{j}d\Omega_{e} + \frac{Gr^{-1/2}}{2}\left(\sum_{j=1}^{N}\int_{\Omega_{e}}\left(\frac{\partial\Phi_{i}}{\partial x}\frac{\partial\Phi_{j}}{\partial x} + \frac{\partial\Phi_{i}}{\partial y}\frac{\partial\Phi_{j}}{\partial y}\right)d\Omega_{e} + \left(\frac{2fk}{L}\right)^{2}\sum_{j=1}^{N}\int_{\Omega_{e}}\Phi_{i}\Phi_{j}d\Omega_{e}\right)\right]u\hat{w}_{k,j} \\ &+ \left[\frac{1}{2}\left(\frac{2fk}{L}I\right)\sum_{j=1}^{N}\int_{\Omega_{e}}\Phi_{i}\Psi_{j}d\Omega_{e}\right]u\hat{p}_{k,j} + \left[\frac{1}{2}\frac{Ha^{2}}{Gr^{1/2}}\sum_{j=1}^{N}\int_{\Omega_{e}}\Phi_{i}\Phi_{j}d\Omega_{e}\right]u\hat{w}_{k,j} + \left[\frac{1}{2}\frac{Ha^{2}}{Gr^{1/2}}\sum_{j=1}^{N}\int_{\Omega_{e}}\Phi_{i}\frac{\partial\Phi_{j}}{\partial y}d\Omega_{e}\right]u\hat{w}_{k,j} \\ &= \frac{3}{2}\left(\hat{h}_{jk}\right)_{i}^{n} - \frac{1}{2}\left(\hat{h}_{jk}\right)_{i}^{n-1} \\ &- \left[Gr^{-1/2}\left(\sum_{j=1}^{N}\int_{\Omega_{e}}\left(\frac{\partial\Phi_{i}}{\partial x}\frac{\partial\Phi_{j}}{\partial x} + \frac{\partial\Phi_{i}}{\partial y}\frac{\partial\Phi_{j}}{\partial y}\right)d\Omega_{e} + \left(\frac{2fk}{L}\right)^{2}\sum_{j=1}^{N}\int_{\Omega_{e}}\Phi_{i}\Phi_{j}d\Omega_{e}\right)\right]\hat{w}_{k,j}^{n} \\ &- \left[\left(\frac{2fk}{L}I\right)\sum_{j=1}^{N}\int_{\Omega_{e}}\Phi_{i}\Psi_{j}d\Omega_{e}\right]\hat{p}_{k,j}^{n} \tag{3.60} \end{split}$$

μ &

$$\begin{split} &\left[\frac{1}{\Delta t}\sum_{j=1}^{N}\int_{\Omega_{e}}\Phi_{i}\Phi_{j}d\Omega_{e} + \frac{Gr^{-1/2}}{2\mathrm{Pr}}\left(\sum_{j=1}^{N}\int_{\Omega_{e}}\left(\frac{\partial\Phi_{i}}{\partial x}\frac{\partial\Phi_{j}}{\partial x} + \frac{\partial\Phi_{i}}{\partial y}\frac{\partial\Phi_{j}}{\partial y}\right)d\Omega_{e} + \left(\frac{2fk}{L}\right)^{2}\sum_{j=1}^{N}\int_{\Omega_{e}}\Phi_{i}\Phi_{j}d\Omega_{e}\right)\right]\mathsf{u}\hat{\Theta}_{k,j}(3.61) \\ &= \frac{3}{2}\left(\hat{h}_{\Theta k}\right)_{i}^{n} - \frac{1}{2}\left(\hat{h}_{\Theta k}\right)_{i}^{n-1} \\ &- \left[\frac{Gr^{-1/2}}{\mathrm{Pr}}\left(\sum_{j=1}^{N}\int_{\Omega_{e}}\left(\frac{\partial\Phi_{i}}{\partial x}\frac{\partial\Phi_{j}}{\partial x} + \frac{\partial\Phi_{i}}{\partial y}\frac{\partial\Phi_{j}}{\partial y}\right)d\Omega_{e} + \left(\frac{2fk}{L}\right)^{2}\sum_{j=1}^{N}\int_{\Omega_{e}}\Phi_{i}\Phi_{j}d\Omega_{e}\right)\right]\hat{\Theta}_{k,j}^{n} \end{split}$$

μ

$$\begin{split} &\sum_{e} \left[\int_{\Omega_{e}} \Phi_{i} \nabla_{xy}^{2} \hat{W}_{k} d\Omega_{e} \right] = \sum_{e} \left[\left(\frac{2f k}{L} \right)^{2} \int_{\Omega_{e}} \Phi_{i} \hat{W}_{k} d\Omega_{e} + \int_{\Omega_{e}} \frac{\partial \Phi_{i}}{\partial y} \hat{w}_{k} d\Omega_{e} - \int_{\Omega_{e}} \left(\frac{2f k}{L} I \right) \Phi_{i} \hat{v}_{k} d\Omega_{e} \right] \Rightarrow \\ &\sum_{e} \left[\int_{\Omega_{e}} \nabla_{xy} \Box \left(\Phi_{i} \nabla_{xy} \hat{W}_{k} \right) d\Omega_{e} \right] - \sum_{e} \left[\int_{\Omega_{e}} \nabla_{xy} \Phi_{i} \nabla_{xy} \Psi_{k} \partial\Omega_{e} \right] = \\ &\sum_{e} \left[\left(\frac{2f k}{L} \right)^{2} \int_{\Omega_{e}} \Phi_{i} \hat{W}_{k} d\Omega_{e} + \int_{\Omega_{e}} \frac{\partial \Phi_{i}}{\partial y} \hat{w}_{k} d\Omega_{e} - \int_{\Omega_{e}} \left(\frac{2f k}{L} I \right) \Phi_{i} \hat{v}_{k} d\Omega_{e} \right] \Rightarrow \end{split}$$

95

,

$$\begin{split} &\sum_{e} \int_{dS} \Phi_{i} \frac{\partial \hat{W}_{k}}{\partial n} dS = \sum_{e} \left[\int_{\Omega_{e}} \left(\frac{\partial \Phi_{i}}{\partial x} \frac{\partial \hat{W}_{k}}{\partial x} + \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \hat{W}_{k}}{\partial y} \right) d\Omega_{e} \right] + \\ &\sum_{e} \left[\left(\frac{2f k}{L} \right)^{2} \int_{\Omega_{e}} \Phi_{i} \hat{W}_{k} d\Omega_{e} + \int_{\Omega_{e}} \frac{\partial \Phi_{i}}{\partial y} \hat{W}_{k} d\Omega_{e} - \int_{\Omega_{e}} \left(\frac{2f k}{L} I \right) \Phi_{i} \hat{v}_{k} d\Omega_{e} \right] \Rightarrow \\ &\frac{1}{9} \Phi_{i} \frac{\partial \hat{W}_{k}}{\partial x} dy \Big|_{x=A} - \int_{0}^{1} \Phi_{i} \frac{\partial \Phi_{k}}{\partial x} dy \Big|_{x=0} + \int_{0}^{A} \Phi_{i} \frac{\partial \hat{W}_{k}}{\partial y} dx \Big|_{y=1} - \int_{0}^{A} \Phi_{i} \frac{\partial \Phi_{i}}{\partial y} dx \Big|_{y=0} = I \Rightarrow \\ &\left(\Phi_{i} c_{H} \frac{\partial \hat{W}_{k}}{\partial y} \Big|_{0,x=A}^{1-x=A} - \int_{0}^{1} c_{H} \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \hat{W}_{k}}{\partial y} dx \Big|_{y=A} \right) + \left(\Phi_{i} c_{H} \frac{\partial \hat{W}_{k}}{\partial y} \Big|_{0,x=0}^{1-x=0} - \int_{0}^{1} c_{H} \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \hat{W}_{k}}{\partial y} dx \Big|_{y=0} \right) \\ &+ \left(\Phi_{i} c_{S} \frac{\partial \hat{W}_{k}}{\partial x} \Big|_{0,y=1}^{1-y=1} - \int_{0}^{A} c_{S} \frac{\partial \Phi_{i}}{\partial x} \frac{\partial \hat{W}_{k}}{\partial y} dx \Big|_{y=1} \right) + \left(\Phi_{i} c_{S} \frac{\partial \hat{W}_{k}}{\partial x} dx \Big|_{y=0} - \int_{0}^{A} c_{S} \frac{\partial \Phi_{i}}{\partial x} \frac{\partial \hat{W}_{k}}{\partial x} dx \Big|_{y=0} \right) \\ &+ \left(\Phi_{i} c_{S} \frac{\partial \hat{W}_{k}}{\partial x} \Big|_{0,y=0}^{1-y=1} - \int_{0}^{A} c_{S} \frac{\partial \Phi_{i}}{\partial x} \frac{\partial \hat{W}_{k}}{\partial x} dx \Big|_{y=1} \right) + \left(\Phi_{i} c_{S} \frac{\partial \hat{W}_{k}}{\partial x} dx \Big|_{x=0} - \int_{0}^{A} c_{S} \frac{\partial \Phi_{i}}{\partial x} \frac{\partial \hat{W}_{k}}{\partial x} dx \Big|_{y=0} \right) \\ &+ \int_{0}^{A} \Phi_{i} c_{S} \left(\frac{2f k}{L} \right)^{2} \hat{W}_{k} dx \Big|_{y=1} + \int_{0}^{A} \Phi_{i} c_{S} \left(\frac{2f k}{L} \right)^{2} \hat{W}_{k} dx \Big|_{y=0} \Rightarrow \\ &\Phi_{i} c_{H} \frac{\partial \hat{W}_{k}}{\partial y} \Big|_{0,x=0}^{1-x=4} + \Phi_{i} c_{H} \frac{\partial \hat{W}_{k}}{\partial y} \Big|_{0,x=0}^{1-x=4} + \Phi_{i} c_{S} \frac{\partial \hat{W}_{k}}{\partial x} \Big|_{0,y=1}^{A-y=4} + \Phi_{i} c_{S} \frac{\partial \hat{W}_{k}}{\partial x} \Big|_{0,y=0} \Rightarrow \\ &\Phi_{i} c_{H} \frac{\partial \hat{W}_{k}}{\partial y} \Big|_{0,x=A}^{1-x=4} + \Phi_{i} c_{H} \frac{\partial \hat{W}_{k}}{\partial y} \Big|_{0,x=0}^{1-x=4} + \Phi_{i} c_{S} \frac{\partial \hat{W}_{k}}{\partial x} \Big|_{0,y=1}^{A-y=4} = \frac{\partial \hat{W}_{k}}{\partial x} \frac{\partial \hat{W}_{k}}{\partial y} \Big|_{0,x=0} = \\ &I + \int_{0}^{A} c_{H} \left[\Phi_{i} \left(\frac{2f k}{L} \right)^{2} \hat{W}_{k} + \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \hat{W}_{k}}{\partial y} \Big|_{0,x=0}^{A-y=4} + \int_{0}^{A} c_{S} \left[\Phi_{i} \left(\frac{2f k}{L} \right)^{2} \hat{W}_{k} + \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \hat{W}_{k}}{\partial y} \Big|_{x=0} \\ \\ &+ \int_{0}^{A} c_{S} \left[$$

(3.62) μ μ μ

Institutional Repository - Library & Information Centre - University of Thessaly 15/06/2024 04:55:41 EEST - 3.143.1.131

:

$$\begin{split} & \left[-\sum_{j=1}^{N} \int_{\Omega_{c}} \left(\frac{\partial \Phi_{j}}{\partial x} \frac{\partial \Phi_{j}}{\partial x} + \frac{\partial \Phi_{j}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} \right) d\Omega_{c} - \sum_{j=1}^{N} \left(\frac{2f k}{L} \right)^{2} \int_{\Omega_{c}} \Phi_{i} \Phi_{j} d\Omega_{c} \right] u\hat{w}_{k,j} + \\ & \left[\sum_{j=1}^{N} \int_{\Omega_{c}} \Phi_{i} \frac{\partial \Phi_{j}}{\partial y} d\Omega_{c} \right] u\hat{w}_{k,j} + \left[\left(\frac{2f k}{L} I \right) \sum_{j=1}^{N} \int_{\Omega_{c}} \Phi_{i} \Phi_{j} d\Omega_{c} \right] u\hat{v}_{k,j} + \\ & \sum_{j=1}^{N} \int_{0}^{1} c_{H} \left[\left(\frac{2f k}{L} \right)^{2} \Phi_{i} \Phi_{j} + \frac{\partial \Phi_{j}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} \right] dy \Big|_{z=4} u\hat{w}_{k,j} + \\ & \sum_{j=1}^{N} \int_{0}^{4} c_{S} \left[\left(\frac{2f k}{L} \right)^{2} \Phi_{i} \Phi_{j} + \frac{\partial \Phi_{j}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} \right] dy \Big|_{z=0} u\hat{w}_{k,j} + \\ & \sum_{j=1}^{N} \int_{0}^{4} c_{S} \left[\left(\frac{2f k}{L} \right)^{2} \Phi_{i} \Phi_{j} + \frac{\partial \Phi_{j}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} \right] dx \Big|_{y=0} u\hat{w}_{k,j} + \\ & \sum_{j=1}^{N} \int_{0}^{4} c_{S} \left[\left(\frac{2f k}{L} \right)^{2} \Phi_{i} \Phi_{j} + \frac{\partial \Phi_{j}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} \right] dx \Big|_{y=0} u\hat{w}_{k,j} - \\ & -c_{H} \Phi_{i} \frac{\partial \Phi_{j}}{\partial y} \Big|_{0,z=4}^{0,z=0} u\hat{w}_{k,j} - c_{S} \Phi_{i} \frac{\partial \Phi_{j}}{\partial x} \Big|_{0,y=1}^{4,z=1} u\hat{w}_{k,j} - c_{S} \Phi_{i} \frac{\partial \Phi_{j}}{\partial x} \Big|_{0,y=0}^{4,z=1} u\hat{w}_{k,j} - \\ & \left[\sum_{j=1}^{N} \int_{\Omega_{c}} \left(\frac{\partial \Phi_{i}}{\partial x} \frac{\partial \Phi_{j}}{\partial x} + \frac{\partial \Phi_{j}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} \right] d\Omega_{k} + \\ & \sum_{j=1}^{N} \int_{\Omega_{c}} \Phi_{i} \frac{\partial \Phi_{j}}{\partial y} \Big|_{0,z=4}^{2,z=0} u\hat{w}_{k,j} - \\ & \left[\left(\frac{2f k}{L} \right)^{2} \Phi_{i} \Phi_{j} + \frac{\partial \Phi_{j}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} \right] d\Omega_{k} + \\ & \sum_{j=1}^{N} \int_{\Omega_{c}} \Phi_{i} \frac{\partial \Phi_{j}}{\partial y} \Big|_{0,z=0}^{2,z=0} u\hat{w}_{k,j} - \\ & \left[\left(\frac{2f k}{L} \right)^{2} \Phi_{i} \Phi_{j} + \frac{\partial \Phi_{j}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} \right] d\Omega_{k} + \\ & \sum_{j=1}^{N} \int_{\Omega_{c}} \Phi_{i} \frac{\partial \Phi_{j}}{\partial y} \Big|_{0,z=0}^{2,z=0} u\hat{w}_{k,j} - \\ & \left[\sum_{j=1}^{N} \int_{\Omega_{c}} C_{i} \left(\frac{2f k}{L} \right)^{2} \Phi_{i} \Phi_{j} + \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} \right] dy \Big|_{z=0} \hat{w}_{k,j}^{2,z} \\ & - \\ & \sum_{j=1}^{N} \int_{\Omega_{c}} C_{i} \left(\frac{2f k}{L} \right)^{2} \Phi_{i} \Phi_{j} + \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} \right] dy \Big|_{z=0} \hat{w}_{k,j}^{2,z} \\ & - \\ & \sum_{j=1}^{N} \int_{\Omega_{c}} C_{i} \left(\frac{2f k}{L} \right)^{2} \Phi_{i} \Phi_{j} + \frac{\partial \Phi_{i}}{\partial y} \frac{\partial \Phi_{j}}{\partial y} \right] dx \Big|_{z=0} \hat{w}_{k,j}^{2,z} \\ & - \\ & \sum_{j=1}^{N} \int_{\Omega_{c}} C_{i} \left(\frac{2f k}{L} \right)$$

c _H , c _S			μ		μ	Hartmann
,					μ	(3.57-
3.61, 3.63)	μ	μ		μ		
μ.						
3.6.5				μ		

- 3.6.5 μ
- 3.6.5.1 μ Fourier
- Η Fourier mode μμ μ μμ μ. μ , μ μ μ. μ () μ μ μμ μ () Fourier mode node μ (partitioning) μ μ μ 23a. μ μ , , μ μ μ , μ (, threads.) μ μ μ , . , μ μ μ. μ μ , μ μ μ •

 $\begin{array}{cccc} \mu & 23 & : & & \mu & (partitioning) & & \mu & , (a) \\ \mu & & , (b) & \mu & Fourier. \end{array}$

		Fourier mo	de µ	μ
μ	μ	μ		
μ		Fo	ourier, µ 24.	
Fourier r	node µ	ti	hread '	
			μ	
			μ	

,

μμ

Fourier

mode.

μ

μ

Fourier.

	#1	#2	#3	#4
Mode 0	0	1	2	3
Mode 1	4	5	6	7
Mode 2	8	9	10	11
Mode 3	12	13	14	15

μ 25: μ

16 µ

4 Fourier modes.

	μ μ 16	μμ	μ	
μ	4 Fourier modes,	mode	4	,
				100

(μ 25), node. H μ 4 μ Ax=b, node, Fourier μ decomposition domain decomposition, μ μ 24. μ μ , μμ 10 μ μ, . , μμ , Fourier mode 2 μ mode. O μ b μμ μ (Dimopoulos & Pelekasis 2012) μ μ 8,9 11 mode, μ Ax=b μ Fourier mode 2. μ μμ mode μ μ (process grid) μ μ μ modes. μ μ μ μ μμ μ communicator, µ μ μ BLACS μ Fourier mode. μ μ μ μ scalability . CPU. μ μ μ μ μ . , μμ μ μ Fourier -spectral μ μμ μ μ μ . FFT. μ μ μ μ , μ Fourier modes µ μ μ μμ μ μ. μ 101

μ	μ	μ								
μμ	μι	J	•		μ		μ			
			μ		Ļ	l				
μ	μ						node			
		l	μ						μ	
	•	,	,	Ļ	l	/2+1	μμ		μ	
,		μ	Four	ier mod	es,		μ			
	μ	mode				μ				
μ				μ.						
	μ		μ	I	u	μμ				
μ	μμ			μ	Ļ	ı				
		μ			For	irier µ				
		μ							μ	
μ										
			μ	μ						
μ				μ					μ	
FDM.	,	μ								μ
μ μ	ı					μ		μ		
μ					μμ	μ	μμ			
	,		μ					th	read	
	μ					D		μ	,	
(3.56),						Ļ	ι	μ		-
μ.						μ			μ	
μ				μ		μ		μμ		
				μ		μ		μ		μ
		μ								
		(Dimopo	oulos &	Pelekas	sis 20	12).	μ			μ
		μμ	:							

μ &

FOURIER

IV.

Rayleigh - Benard μ μ , μ μ	μ igh -
, μ μ	μ igh -
	μ igh -
μ μ μ	igh -
Rayle	-8
Benard μ	
μ μ μ Ha. μ	
μ . μ , Gr_{Cr} μ	
Ηα μμ μ μ	
Hartmann	
. μ	
μ μ μ μ	
Burr & Muller (2002). , μ	
$\mu = 20 \ \mu \ h = 20 \text{ mm}$	ı
$Na^{22}K^{78}$ μ μ G	r, Ha
Pr. Pr μ 0.02, Gr	На
μ	μ
μ μμμ	
. μ μ μ Ηα μ	
100 1000 μ μ Gr _{Cr}	
μ μμ .	
μ μ μ	
μ μ . ,	
μ μ μ μ Hartmann	
μ μ $c_{\rm H}=0.00415$ $c_{\rm S}=4.5$.	
	11
	μ
u Hartmann	

μ μ μ μμ μ 110x55 μ μ μ х, у 160x80 μ μ • 20 & cluster μ μ μ μ • Gr=Gr_{Cr}, μ , μ μ μ μ μ ≈10⁻³ μ μ . , μ μ μ. μ μ μ μ μ , μ μ • μ, μ μ ,

μ.

4.1.1 μ μ μ Ηα

μ μ μ μ μ μ μ μ , Ha>>1. μ μ μ μ μ μ Burr & Muller (2002). μ μ μ , μ μ μ μ μ , μ μ μ Lorentz μ : μ $\mathbf{U}_{\mathbf{n}}^{2}$

μ μ, μ , :

$$W N w \frac{Ha^2}{Gr^{1/2}}, \quad \vec{J} N \vec{j} \frac{Ha^2}{Gr^{1/2}}$$
(4.2)

μμ μ μ μ μ μ μ μ μ (2.19-2.24)

μ μ :

$$0 = -\frac{\partial P_1}{\partial x} + \frac{1}{Ha^2} \left(\frac{\partial^2 U_1}{\partial x^2} + \frac{\partial^2 U_1}{\partial y^2} - U_1 k^2 \right)$$
(4.3)

$$0 = -\frac{\partial P_1}{\partial y} + \frac{1}{Ha^2} \left(\frac{\partial^2 V_1}{\partial x^2} + \frac{\partial^2 V_1}{\partial y^2} - V_1 k^2 \right) + T_1 - \left(V_1 + ik\Phi_1 \right)$$
(4.4)

$$0 = -ikP_1 + \frac{1}{Ha^2} \left(\frac{\partial^2 W_1}{\partial x^2} + \frac{\partial^2 W_1}{\partial y^2} - W_1 k^2 \right) - \left(W_1 - \frac{\partial \Phi_1}{\partial y} \right)$$
(4.5)

$$V_1 \frac{\partial T_0}{\partial y} = \frac{Ha^2 Gr^{-1}}{\Pr} \left(\frac{\partial^2 T_1}{\partial x^2} + \frac{\partial^2 T_1}{\partial y^2} - T_1 k^2 \right)$$
(4.6)

$$\vec{\nabla} \cdot \vec{J}_1 = 0 \rightarrow \left(\frac{\partial^2 \Phi_1}{\partial x^2} + \frac{\partial^2 \Phi_1}{\partial y^2} - \Phi_1 k^2\right) = \frac{\partial W_1}{\partial y} - ikV_1 = \Omega_{1x}, \qquad \vec{\Omega} = \vec{\nabla} \times \vec{U}$$
(4.7,)

$$\frac{\partial U_1}{\partial x} + \frac{\partial V_1}{\partial y} + ikW_1 = 0 \tag{4.8}$$

μ

(2.12μ 2.15). 1 μμ μ μ μ μ • μ μ μ μ , ,

$$\mu \mu . (1/Ha^2) \mu .$$

μ

(4.6).

μ

106

μ

,

μ

& μ μ $Gr_{Cr}Pr=Ra_{Cr}\sim Ha^2$ μ μ μ μ μ μ $U_0 \hat{0} \dots s gUT / \hat{9} \dagger B_0^2$: N $\hat{9}Gr / Ha^2$: $\hat{9} \in /h$: μ μ μ μ μ Ra_{Cr}~Ha² μ μ μ μ μ (Davoust et al. 1999). Ha μ Lorentz μ μ μ μ μ μ μ μμ μ μ y, z хμ μ μ μμ μ μ μ ĥ Buhler (1998), μ μ (4.3-4.5): μ $\vec{e}\,\hat{I} \quad \vec{e}P \,\mathbb{N}\,\frac{1}{Ha^2} \vec{e}^2 \vec{U} < T\vec{e}_y < \vec{J}\,\hat{I}\,\vec{e}_x \quad E \quad \frac{1}{Ha^2} \vec{e}^2 \vec{h} < \frac{\theta}{\theta x}\vec{J} > ikT\vec{e}_x < \frac{\theta T}{\theta x}\vec{e}_z \,\mathbb{N}\,0$ (4.9) $\vec{e}f \ \hat{0} \ \vec{e}_x \frac{\partial f}{\partial x} < \vec{e}_y \frac{\partial f}{\partial y} < ikf\vec{e}_z$ μ μμ Ha→∞ μ μ. μ μ Ohm μ μ μ : μμ μ $\frac{\vartheta^{2}W}{\vartheta x^{2}} N > ikT E \int_{A/2}^{x} \frac{\vartheta^{2}W}{\vartheta r^{2}} dr N ik \int_{x}^{A/2} T dr \bigotimes_{atx=A/2}^{s} \frac{\vartheta W}{\vartheta x} \bigg|_{x} N ik \int_{x}^{A/2} T dr E$ (4.10) $W|_{x} N W|_{0} < ik \int_{0}^{x} dp \int_{p}^{A/2} T dr$ (4.10)(4.7): μ

$h_x N \ddot{e}_o^2 \hat{W}$	$d < ik \int_{0}^{x} dp \int_{p}^{A/2} \ddot{e}^{2} T dr$	·Në₀²Ŵ <ik< th=""><th>$\int_{0}^{x} dp \int_{p}^{A/2} 9 > 2V dr,$</th><th></th><th>(4 11)</th></ik<>	$\int_{0}^{x} dp \int_{p}^{A/2} 9 > 2V dr,$		(4 11)
$\vec{\ddot{e}}_{o}f \hat{0} \vec{e}_{y} \frac{\theta}{\theta}$	$\frac{\mathrm{d}}{\mathrm{d}y} < \mathbf{\vec{e}}_{\mathrm{z}} \mathrm{i} \mathrm{k} \mathrm{f}, \mathbf{\ddot{e}}^{2} \mathrm{f} \ \mathbf{\hat{C}}$	$\frac{\partial^2 f}{\partial x^2} < \frac{\partial^2 f}{\partial y^2} >$	k ² f		(4.11)
Ŵ	μ		μ	μ Ha	artmann.
	,	X			
u			u		Hartmann
P.		u	. Ц		
ХЦ		r.		Ha	a→∞ x
			μ		μ
		у,	z μ , y, z		
	μμ μ	μ	μ	,	
		•	μ	•	μ
		u	(4.11)		μ
		Х			
μ		Н	lartmann		μ
μ		μ	yμ,	μ	
μ	Ι	Ha⁻¹.	,	μ	
V, W	μ (Η	a) (1)	U (1)	(Ha ⁻¹),	
	μ	μ	Hartmann,	μ	
	μ	Hartma	ann. ,		
	(4.7))	μ	Х	
	μ	Н	artmann, J _{Hx} = (1)	O(Ha ⁻¹)	
μμ	μ	μ,			
	У	, J _{Hy} ,	μ	(1)	
Hartmann.	μ,		μ Hartmann		μ
μ	μ μ			μ	
μ	, (.		(2.13 ,)). '		, μ
μ			Hartmann		
μ.	• •		μ Hartman	n	
		μ	μ		
					108

$$\begin{array}{cccc} & Hartmann & \mu \\ & \mu & x & : \\ \hline \frac{1}{Ha^{>2}} \frac{\partial^{2} W_{H}}{\partial X^{2}} < \frac{\partial^{2} W}{\partial x^{2}} \, N \, h_{Hx} < h_{x} \, & \text{ODE}^{>2} \\ \hline \frac{1}{Ha^{>2}} \frac{\partial^{2} W_{H}}{\partial X^{2}} \, N \, h_{Hx} \, N \, O(1), \quad X \, \hat{O} \, \frac{x}{Ha^{>1}} \\ \hline \frac{1}{Ha^{>2}} \frac{\partial^{2} W_{H}}{\partial X^{2}} \, N \, h_{Hx} \, N \, O(1), \quad X \, \hat{O} \, \frac{x}{Ha^{>1}} \\ \hline \hat{E} \, J_{Hx} \, N > \frac{\partial W_{H}}{\partial x} \, N > Ha \, \frac{\partial W_{H}}{\partial X} \, N \, O(Ha^{>1}) \\ \hline \frac{\partial J_{Hx}}{\partial x} \, N \, Ha \, \frac{\partial J_{Hx}}{\partial X} \, N > Ha^{2} \, \frac{\partial^{2} W_{H}}{\partial X^{2}} \, N > h_{Hx} \, N \, O(1) \\ & x \quad J_{Hx} & x \end{array}$$

$$x \qquad \mu$$
stretched
$$\mu \qquad \mu \qquad \mu \qquad Hartmann,$$

$$\mu \qquad \mu \qquad \mu \qquad \mu$$

$$\mu \qquad Hartmann. \qquad ,$$

$$(4.9) \qquad :$$

$$\frac{\partial^{2}h_{Hx}}{\partial X^{2}} < \frac{\partial J_{Hx}}{\partial x} < \frac{\partial J_{x}}{\partial x} > ikT \ N \ 0 \ \dot{E} \qquad \frac{\partial^{2}h_{Hx}}{\partial X^{2}} < \frac{\partial J_{Hx}}{\partial x} \ N \qquad \frac{\partial^{2}h_{Hx}}{\partial X^{2}} > h_{Hx} \ N \ 0 \qquad (4.13)$$

x ,
$$x^{+}$$
 Hx, μ Hartmann,
=0, Hx $X \rightarrow \infty$ x
 μ μ :

$$\begin{split} h_{Hx} N > h_{x} 9x N 0: e^{>x} \\ Ha \frac{\partial J_{Hx}}{\partial X} N > h_{Hx} \tilde{E} Ha J_{Hx} |_{XN0} N > \frac{\partial h_{Hx}}{\partial X} |_{XN0} \end{split} \tag{4.14} \\ \tilde{E} J_{Hx} |_{XN0} N > \frac{\partial W_{H}}{\partial x} |_{xN0} N > Ha^{>1} h_{x} |_{xN0} \\ \mu \mu \mu \mu Hartmann \\ \mu \end{split}$$

(2.13 ,):

U • • Ha μ (1) μ $1/(c_{\rm H} < {\rm Ha}^{>1})$. V, W μ μ μ Hartmann μ μ , μ . μ • Hartmann μ V Hartmann μ μ μ (Ha) μ μ μ μ Ha⁻¹. Hartmann μ , V μ 1/ c_H, Hartmann μ μ μ μ Ha μ μ . μ μ μ μ μ Х μ μ (4.17), μμ , μ μ μ Hartmann μ μ . μ (4.17)(1)μ μ μ μ . , μ μ μ Hartmann Х μ μ μ μ μ μμ μ Hartmann, μ μ c_{H} μ μ μ Hartmann, $c_H \approx 0$, μ μ μ μ . Hartmann μ μ μ Ha⁻¹. μ μ μ , X (Ha) μ Hartmann (Ha) , V μ 111

	μ.		Ļ	ı	μ	
(4.17)		μ μ	μ	Hartma	ann braking e	ffect µ
	Hartmann	Х			μ μ	
μ	μμ .	μ	,	μ	μ	
,					Х	
	,			,		
	μμ		μ	μ		
μ	,				Ra~Ha ² .	
μ						
μ						
	μ		μ		μ	Hartmann
	, μ		μ			
μ		jets				
		μ			μμ	μ
			μ	, J _x , J _{Hx} ∼(D(1),	
(.	4.15))		Hartmann	n (.	4.14)
		μ				μμ
μ	Hartmann		μ	μ	(Ha)	y, z
	μ					μ
	Hartma	ann.	μ		μμ	
	μ					(Ha).
	μ		μ		μ,	
μ						μ
	μ					
μ.	μ					• • •
	μ		Hartmann			μ
	X, Y, Z					μ
	-		Hart	mann		
		μ.	,		μ	Hartmann,
$c_{H} >> Ha^{-1}$,	y z			μ	(1)
					Hartmann	
μ Ο(1/c _H). x			μ	(1)	,
(.	(4.10)),	μ	μ	, O(H	a ⁻¹),	
		·	-			112

Institutional Repository - Library & Information Centre - University of Thessaly 15/06/2024 04:55:41 EEST - 3.143.1.131
Hartmann μ μ μ . , (1) μ μ μ μ μ μ . μ μ , (4.9) µ μμ μ Х (4.7) На→∞ μ : $\frac{1}{Ha^{2}u^{4}}\frac{\vartheta^{4}W_{s}}{\vartheta Y^{4}} < \frac{\vartheta^{2}W_{s}}{\vartheta x^{2}} N 0 \quad Y \hat{0} \frac{y}{u}$ (4.18) $, = a^{-1/2},$ μ μ μ μ μμ μ μ , S, , U=O(Ha) Hartmann. Х . μ μ μ $\partial P / \partial x N O Ha^{>1/2}$: μ (4.3) Х μ μ , (Ha^{1/2}), μ U μ μ μ μ μ μ , μ . (Buhler 1998) μ μ μ jets Hartmann μ μ μ. , μ μ μ μ μ μ μ Hartmann μ μ μ μ μ , μ μ μ μ μ (Walker 1981). μ

μ	Hartmann,	μ
---	-----------	---

 μ c_{H} .

4.1.2 μ μ μ Ηa

μ μ μ μ Grashof µ μ μ μ μ μ , Hartmann Hartmann μ μ μ μ μ Pr=0.02. 27a,b μ μ μ μ μ μ μ, c_H=0.00415, μ , c_H=4.5, μ Hartmann, , Gr Ha μ μ μ μ Gr~Ha² µ μ Ha, Lorentz μ μ μ μ μ μ μ μ . μ μ μ μμ μ μ x = A/2. μ μ , μμ . , 27a, μ μ μ Burr & Muller (2002), μ μ μ μ μ μ μ. μ Gr Ha. μ μ μ (Gr~Ha²) μ μ μ , Hartmann µ μ μ μ , $c_H = c_S = 4.5$, 27b. μ μ , Hartmann μ μ μ μ μ μ μ μ μ

		μ	&		μ						
	μ			μ			μ				
				μ							
μ			μ				μ				
		Hartmar	, nn, c _H +H	μ a ⁻¹ ,			μ		μ		
	Ha	rtmann.		,							
		μ	l	,		Ļ	ι	μ		Х	
					I	μ				μ	
							ł	μ	μ		
29a	b,	μ			μ	27a	Ó	$\widehat{G}r_{Cr} N 2Gr_{Cr}$			
	μ	μ	Gr		Bu	ırr & Mı	uller (200	02),			
Gr _{Cr}			μ	l		μ	μ	Hartma	nn		
	μ				•						
	μ				μ						
	μ							μ		,	
	μ		μ								
		Ha,		μ				μ			
			μ		$\mathbf{U}_0 \; N$	$U_0 N s g U T / 9 \dagger B_0^2 \vdots .$,					
		μ					μ		ū,₩	V,j	
								(4.2):			
ŪΝΗ	aū, W∣	N Haw,	J N Ha j						(4.	19)	

Muller, 2002).

		Ļ	ı	&	μ				
			μμ μ	μ	μ		x		
								μ	ιμ
		μ	μ	Ha	irtmann.				
				μ					
μ	μ	μ	μ	Ļ	ı Ha				
μ		μ	μ		μ	μ	μ		μ
						μ	μ		Burr & Muller
(2002)				μ	μ				
	ŀ	L	μ		На	,	μ		
							μ		
μ		μ	μ						
	μμ μ	ιµ	l	μμ	μ				
	μ			Ha.	μ	μ	μ		μ
					(Davidsor	n 2001)	,		
μ	μ	Gr _{Cr}		μ	μ		μ		μ Ha,
				R	ayleigh-E	Bénard		μ	,
				ĥ	u Ha	rtmann			

	H	IARTMANN			HARTMANN
На	Gr _{Cr}	k _{Cr}	На	Gr _{Cr}	k _{Cr}
0	42 900	0	0	42 900	0
100	53 000	2.7	100	56 000	3.0
200	75 000	3.1	200	90 000	3.4
400	155 000	3.3	400	210 000	4.0
600	290 000	3.4	600	375 000	5.0

	μ	&	μ			
800	460 000	4.0	80	0 620	000 0	5.0
1 000	680 000	4.3	1 00	00 93	000 0	5.0
			2 00	00 3 24	10 000	6.0
4 :	μ		μ	μ	μ Ha	a (a)
μμ	μ Hartmar	in (b)	μ	µ Har	tmann.	
	, μ					
	μ	μ	μ	Hartmann.	μ	28a,b
	μ		У			
	μμ	μ	,			μ
μ		μ]	Ha=100, (μ 28a),
μ		μ На	μ	μ,(μ 28b)	
μ		μ	μ	Н	artmann	Ha≥25.
На	, Ha>1	00,				
μ				μ	Hartmann	
μ		μ			•	,
(Ha) µ						
μ			μ			
	μ,		μ	μ	Hartmanr	n braking
effect	μ			μ		
			μ			
	μμ μ			μ	μ	,
(.	(4.17)).		,	Ha	μ	400
μ		μ	Hartmann	ı		
		μ	FEM	μ	ι,(μ28	ßb).
	μ		μ			μ
Hartmann bra	king effect		μ	μ		μ
			,(μ 27	7a). ,		
	μ		Gr~H	la ²		μ
Ha µ .	μ		μ	μ		

V

 μ 29 : μ x μ Ha. μ x =0.95.

μ Ha=400				μ	
μμ	, x=10,				,
	,	У	Z		

μ.μ μ Hartmann x μ μμ ,

 μ . μ μ Hartmann μ 30e,f,g

μ Hartmann. μ μ Hartmann μ, μ

μ 30h μ x Ha=400, μ Gr μμ. μ μ μ

121

•

ÿ,

		μ	Hartmann, (e) Ha=25, (f) Ha=100,	(g)
Ha=200	(h)	Х	Ha=400.	

	μ			μμ	, μ			
			ł	l		,		
	μ		μ	Ha	artmann	1.	,	
			μ			Ha.	μ	31a,b,c,d
	μ	μ						μ,
μ		μ				μ	,	
		μ				Hartman	n	
		μ						
						μ		μ
Hartmann,	μ			μ			На	
	μ	μ		(4.16).				
	(Ha))		μ				
	Hartmann		μ	μ		μ	l	μ
			μ		μ			,
	(Ha	a)		μ	, J _y	J _z ,		
	μ J _x	μ	(1), (.			(4.10)).		
μ			Hartmar	ın		μ	μ	Lorentz,

$\vec{J} \hat{I} \vec{B} N J_z \vec{e}_z \hat{I} \vec{e}_y$,						,
V,		μ	Hartma	nn µ		
	μ		(Dav	vidsor	n 2001).	,
μ 32a,b					μ	μ
(xy	z=0)		μΗ	artma	nn (yz	x=0).
μ 32a	μμ				μ	
			μ		μ	
Hartma	nn				Ha=2	5,
				μ	μ	Hartmann,
(. μ	28b).	μ		μ		, μ
	ł	μ μ			Hartmann	μ,
= (Ha ⁻¹),			μ			
, $J_{_{\mathrm{Hx}}} N D$	$W_{\rm H}$ / θ x N Ha	${\sf DW}_{ m H}/{\sf DX}$	N O(1),			μ
μ		μ				Hartmann,
$\partial J_x / \partial x N O(Ha)$,	μ				μ	
y , ĐJ _v	/ Ðy N O9Ha					
, ,					Ш	
u	, Hartmanr	1			p.	u 32a.
μ			,			ļ. 2,
·			μ		xy	. µ 32b
μ μ			·	μ	•	μ Hartmann
		μ	Ļ	1	μ	·
μ	μ	,				
]	Ha=80	00	μ
μ μ	k _{cr} =4			μ	μ	$\ell \operatorname{N} 2f / \operatorname{k} \tilde{0} 1.6$.
μ	μ				,	μ J _y
Jz	μ					μ
Hartmann					μ	μ
	μ		,			
	μ	μ	μ			Hartmann

•

μ μ Hartmann μ μμ μ , $h_{yz} \hat{0} \sqrt{h_y^2 < h_z^2}$, μ μ μ μ µ 33a . , yz Ha=100. μ Hartmann μ μ , $\partial V_H / \partial x = O(Ha^2)$, μ 33b,c,d,e μ Hartmann. μ μ Hartmann μ Hartmann μ . Hartmann μ μ μ μ μ _{yz}~O(Ha). Hartmann $O(Ha^2)$ yz μ μ μ , 25 Ha 200. 33b,c,d,e μ μ μ Ha , μ μ μ . μ μ μ μ ${\rm D}V_{\rm H}$ μ. μ , Ðy ÐU Hartmann Ðx Z $\partial P / \partial x N O 91$; μ μ Х $\partial P / \partial x << 1$. μ , μ у ,

μ μ μ , μ μ , Hartmann μ μ μ μ • μ μ μ μ , μ μ y-Hartmann. μ μ μ μ μ μ μ Hartmann. μ μ μ μ μ • 34a,b,c,d μ μ Ha μ μ μ μ Hartmann μ μ Х μ . 35a,b,c,d (1) μ μ μ μ х Hartmann μ μ Ha 35a,b,c,d μ μ • μ μμ μ, μ μ μ Х μ μ μ • μ 35e μ μ μ 30h, µ μ μ μ μ . 33, 34 μ Х μ μ μ Hartmann. μ Х yz , μ μ , μ yz μ Ha 36a,b,c,d μ Hartmann μ μ Hartmann O(Ha⁻¹) μ •

 μ 36 : _{yz} xy μ c_H=c_S=4.5 Ha , (a) Ha=100, (b) Ha=400, (c) Ha=800 (d) Ha=2000.

μ μ μ μ μ μ μ • μ μ μ Lorentz : μ μ $\vec{j} \times \vec{B} = (\vec{u} \times \vec{B}) \times \vec{B} = -v\vec{e}_y$ (4.20)μ μ μ μ μ μ 40x40 μ 60x60 μ (Pbμ. μ 17Li) μ μ μ Pr=0.0321. μ μ μ μ μμ μ . μ • μ μ μ μ μ μ μ μ , μ k=10, Ha=0 Gr=50000. μ μ $\check{\mathbf{S}} \equiv \vec{\nabla} \times \vec{u}, \ \check{\mathbf{S}}_{xy} = \sqrt{\check{\mathbf{S}}_x^2 + \check{\mathbf{S}}_y^2}$ μ х, у μ μ μ Goertler . μ μ μμ μ μ μ , (in & Le Quere 2001). "benchmark" μ μ Hartmann μ Lorentz 37a). μ , (μ Ha μ μ μ μ Hartmann. μ μ , S, μ μ μ Goertler Hartmann Gr μ μ μ μ μ μ , 136

0.6

x

(b)

x

Ha , μ μ μ μ μ У , μ μ μ • μ μ . Goertler μ , μ μ μ μ μ μ μμ μ . μ μ μ Ha, μ μ μ = /(/2), μ μ μ /2 μ μ μ μ μ • μ μ , μ μ μ (Landman & Saffman 1987). , $\check{S} = \partial v / \partial x - \partial u / \partial y$, μ μ μ Ekman, μ μ μ μ , $\ddagger = \left(\partial u_i / \partial x_j + \partial u_j / \partial x_i \right) / 2,$, μ μ μ μ μ , (Le Dizes & Verga 2002). H μ μ μ • S μ μ , μ μ ,

μ		μ						Goertler.
	μ		μ					
					μ	38b,c		
		μ		μ	μ			
(µ 38a)	μ	μ	μG	'n			μ
	μ				μ	μ		
			μμ	μ				S 1500.
μ	μ	μ	μ					
		μ		μμ	(G	ledzer &]	Ponon	narev 1992),
	,				μ			()
μ	(μ	μ			(μ	μ
	μ)	()μ				(
	μ		μ).					
		μμ ,		μ				
				п				ш
	,	μ	μ	μ				μ
u		r u			(Le	eweke & V	Willia	mson 1998).
μ	μ	P.		μ	(—-		k 2,	
·	μ	≈ H≈2	b, b	·			μ	
	H	μ					μ.	μ
		μ					μ	μ
	μ	(Leweke	e & Willia	mson 199	8),			μ
			μ		μ			,
		μ	μ		μ	(μ	38a,b).
				μ	μ	μ	(1	Landman &
Saffman	1987, Wal	leffe 1995)			μ	μ	μ	
	Crow	45°.				μ		
	μ	μ	μ	μ			μ	μ
								Crow.
	μ				μ			,
		μ	38b.	μ			μ	
		μ						,
								139

38c,

μ.

μ

,

,

Ha=40.

Landman & Saffman (1987) μ 5000 < S \leq 10⁵ μ Ha=0 0 \leq Ha < 40 μ S=10⁵.

S=10⁵ (a, b) Ha=40 μ 43: (c) μ (b) μ . μμ μ μ μ μ • , (S=10⁵, Ha=40) (S=5000, Ha=0) "μ " μμ μ , (. μ 45), μ μ , μ μ μ μ μ μ μ μ $5000 < S \le 10^5$ μ μ μ μ μ μ μ $/ H = 2f / k \rightarrow k = 7 \approx H = 2H / 2 = 2\ell ,$ ℓ μ • μ μ μ μ μ Landman & Saffman (1987), 0< <0.8. μ μμ 0.5 μ μ . $S=10^5$, μ Ha μ μ μ. , , μ μ i $\Omega = \sqrt{\left(\tilde{S}/2\right)^2 - v^2}$ μ μ μ μ μ μ , ,μ μ μ • μ μ

145

.

μ	&	μ
---	---	---

4.2.1			Ļ	l				μ	S		Ha=2	0
	μ			μ								μ
	Ļ	ι		μ			μ	μ	μ			
μ			μ			μ		S,			μ	
										μ		
		μ			μ			,	μ			
				μ	•				·			
	μ,			μ		μ	μ	, μ		μ		
							μ		μ			,
μ				μ								
			μ	l			μ			μ	Pr.	
				, 0		μl	Pr=0.0	0321	S 15	00		
	μ	μ							•			
μ			μ			μ						
				μ μ	L						μ	На
Gr.	μ		μ	S				μ 15	00			
Goertler	•										,	
						,	μ		μ	μ	μμ	1 L
μ					μ				•		S 15	00
								C	105	0 (μ	l 4 4)
μ 			μ	•				5,	10	0, (μ	44),
μ					μ	μ			μ	μ		
				μ	μ		•					
		ц	μ			μ						μ
μ	S=0	μ	μı	u				Goertle	r			·
μ	, (µ	45a)	,						S		μ	
•	· · ·	μ	μ	μ							μ	
μ		μ	μ	·			μμ	ι			•	x, y
-	μ	(μ 45	ib).			S		Ļ	ı 25	5000	2
μ		μ	μ	, (μ	46a)	,				Ļ	ι
												146

μ 44:

Ha=20, (a) S=0 (b) S=25000.

4.2.2	Ha=20	$S = 10^{5}$

μ				ł	u		
μ	μ	μ		μ			
	,	Ļ	l		μ		μ.
	μ						μ
			μ	μ	(Ying	& Tillack	x 1991).
				μ	μ		
μ		μ		μ	μ	μ	
μ	μμ			μ			.μ,
	μ			μ	μ	μ	
μ		μ	μ	μ			
,			μμ	μ		μ	
						μ	
. μ			μ		μ		
μ	μ						
					μ		
	μ	μ.					
μ	Ying	g & Tillack	(1991)		μ		
7 μ							•
μ		μ	μ	Ļ	J		
		μ			,		
				μ	•	Ļ	l
	μ		μ		μ	Ļ	ı
μ		μ			μ	μ	
(Proceedings	of the USSF	R/US Excha	ange II.5 1	989).			
		μ	μ	μ			
				μ	μ		
Ļ	ι μ	,	μ		,		,
μ		μ				μ.	
μ			,	μ	μ	J	
			Ļ	l		μ	μ

 $S = 10^5$. μ Ha=20.0 μ μ μ

μμ μ

50a, 51a, 52a 53a.

,

μ

Ha=20.0 S= 10^5 .

V.

μ μ μ μ Rayleigh-Benard μ μ , FEM μ μ , Arnoldi μ μ μ μ . μ μμ μμ μ μ . μ μ , , x=A/2, μ μμ μ μ μ μ μ μ μ μ • μ μ , Ha→∞ μ μ μ μ μ μ μ μ Gr Ha μ μ μ μ μ Burr & Muller (2002) μ μ μ μ μ Hartmann μ μ μ μ . Gr Ha , : Gr~ Ha^2 , μ μ Lorentz μ μ μ . Burr & Muller (2002) μ μ μ μ

(Davoust et al. 1999) μ μ μ μ μ . μ μ μ μ μ μ μ μ μ • μ μ μ .

		μ						μ
μ			μ					
	μμ	μ					μ	
			μ	Ha				, μ
μ						μ		
,				μ			μ	
				μ		μ		
μ	, ($(c_{\rm S}=4.5),$				·		μ
Hartmann µ	l			μ	,	(c _H =0	.00415),	·
μ,	(c _H =4.5).		μ	•	μ		μ	
Hartmann, c _H	$_{\rm H}+{\rm Ha}^{-1},$	ļ	J		•	μ	•	
μ.	. ,	L	l	X		·		μ
·		u .				u		u.
u]	Hartmann	•				u	Hart	' mann braking
effect.						1		
	u.			u	Hartm	ann		
u	р. , Ц			1.	ц			
بم ا	Hartmann				P.			и (1)
P	На			,				F (-)
		Gree		п		,	Ha^2	
Н	r r Iartmann			٣				Ш
1	11				Ha (,	μ μ 36	۳ (1 38 4 37 4
	μ			μ	11u, (•	Hartmar	
На	2000)				Н¢	rtmann	μ μ
Πα	2000				μ			μ
						μ	μ	
		μ,			μ			
	μ	μ			Uor	tmonn		•
	-0.00415			μ	1141	unann		Uartmonn
μ μ , (C	H = 0.00413,			Uort	μ	μ		
		(1)	[a ⁻¹)	nart	$Ha^{-1/2}$			μ
, Houture are r		(H	ia)	(па)			
nartmann	,		,			μ		
μ	μ	•					μ	μ
								155

μ μ Х-, μ μ μ μ , Ha μ μ Hartmann μ μ μ Hartmann. μ μ Hartmann μ μ , μ μ μ , , V~O(Ha), . Hartmann μ μ μ μ μ. μ μ μ μ μ μ μ . μ Hartmann (Walker 1981), μ 34a μ ху μ . z=0 μ Ha=25, Hartmann μ • , μ μ , Ha≥400. μ μ , $\partial V / \partial y$, μ Hartmann , $\partial U / \partial x$, μ μ μ μ μ Hartmann Хμ " " μ μ , μ μ Lorentz Hartmann. μ jets , (Buhler 1998), μ μ μ μ 156

& μ μ

μ μ μ μ μ μ μμ μ • , jets μ , Hartmann μ , μ μ • μ μ μ μμ μ μμ μ , , μ μ • μ μ Hartmann μ μ μ μ μ μ , μ μ μ . μ μ μ, μ μ μ μ μ μ , (4.3-4.5)μ μ Gr~Ha², O(1/Ha²). μ , μ μ μ μ , $\vec{u}_0 N O$. ,μ μ μ Hartmann μ μ μ μ V W μ (Ha). μ μ μ , $91/Ha^2$; VĐV / Đy μ y- μ (1). μ μ μ μ μ

157

•

,

,

μ μ μ • Dimopoulos & Pelekasis (2012) , μ μ , μ μ , μ μ μ μ • (Tsai & μ μ μ Windnall 1976, Fukumoto & Hirota 2008) μ Ha , μ μ μ • , μ , μ μ , μ μ μ μ μ μ μ μ μ . μ μ μ μ . μ μ μ μ , μ μ (Fauve μ μ et al. 1981), µ μ μ μ μ μ μ μ μ μ μ μ μ μ , , (Henkes & Le Quere μ μ 1996). Gr μ μ μ μ μ μ 158

 10^{7} 10⁸ μ μ Dimopoulos & μ μ Pelekasis (2012) Ha=0 μ μ $Gr_{Eff,Cr} = \ PrSGr_{Cr} = \ 0.0321 \ x \ 10^5 \ x \ 600 \ \ 2 \ x \ 10^6,$ Gr μ μ . μ μ μ μ μ μ μ μ μ μ Burr & Muller (2002) Gr. μ μ μ, μ μ μ μ μ . . μ μ μ μ μ μ μ ITER. μ μ , , Rayleigh-Benard μ μ Lorentz μ μ μ μ μ . μ μ μ μ μ μ μ, μ . _x=O(Ha), Hartmann μ μ μ μ μ μ μ μ . μ μ μ μ, μ μ μ μ μ μ. , , μ μ μ , μ μ μ μ μ μ μ .

,		Gr	Η	la	μ	ι					
μ		μ									μ
μ μ								μ		μ	На
μ			μ		μ	l	μ				,
	μ			μ							,
	Gr						μ				
μ											,
(Kharitsa et al. 2	2004),	μ						Gr~ŀ	Ha ²	μ	
											μ
	μ				μ		μ	а	Gr,		
μ		μ						,			
Gr~Ha ^{5/2} (Kharit	sa et al. 20	004).					μ				
μ Ha	Gr µ				μ				,		
			μ	,				μ	μ		μ
μ											
	,							FEM			μ
μ	μ	μF	Fourie	er spe	ctral mo	odes			μ		
μ				μ	μμ		μ		μ		
μ				μ		μμ					
μ	ι μμ								μ	μ	
μ									•		μ
benc	chmark		μ		μ						
μ			μ							μ	
μ	μμ				μ		μ				
μ	μ			,					μ		Burr
& Muller (2002)											
								μ			
hp-refinement				FEM	1	μ					
	μ			l	μ						
μ	μ			, (A	inswort	h & (Oden	1992,	1993	, Der	nkowicz
2007), μ					I	FEM	•		μ		
μ						μ		μ			
μ			μ				μ			μ	
											160

μ & μ

	μ	, (Pele	kasis &	Dim	iopoulos, Ai	nnex	15, 20	12, Ep	iskop	u 2013).
			μ			μ	μ		hp-re	finement
	μ							μ		μ
				μ	μ					
	μ	spectral	modes.	Η	μ	μ			μ	
		μ				Har	tmann			
					μ				μ	
	(Bul	nler 1998)	μ		μ		μ		μ	(Czarny
&	Huysmans	2008).					μ			
	μ									
	μ						μ			
				μ	Hartmann.					

- μ & μ
- Ainsworth M. and Oden J. T., "A procedure for a posteriori error estimation for h-p finite element methods", Comp. Meth. Appl. Mech. & Engin. 101, 73 (1992).
- Ainsworth M. and Oden J. T., "A unified approach to a posteriori error estimation using element residual methods", Numer. Math. 65, 23 (1993).
- **3.** Arnoldi W.E., "The Principle of Minimized Iterations in the Solution of the Matrix Eigenvalue Problem", Quart. Appl. Math. **9**, 17, (1951).
- 4. Bai Z., Demmel J., Dongarra J., Ruhe A. and Van der Vorst H., "Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide", Society for Industrial and Applied Mathematics, Philadelphia, PA., (2000).
- Blackford L. S., Choi J., Cleary A., D'Azevedo E., Demmel J., Dhlllon I., Dongarra J., Hammarling S., Henry G., Petitet A., Stanley K., Walker D. and Whaley R. C. "ScaLAPACK users guide", SIAM Philadelphia, (1997).
- Bristol R. L., Ortega J. M., Marcus P.S. and Savas O., "On cooperative instabilities of parallel vortex pairs", J. Fluid Mech. 517, 331, (2004).
- Buhler L., "Instabilities in quasi-two dimensional magnetohydrodynamic flows", J. Fluid Mech. 326, 125, (1996).
- Buhler L., "Laminar buoyant magnetohydrodynamic flow in vertical rectangular ducts", Phys. Fluids 10, 223, (1998).
- **9.** Buhler L. and Norajitra B., "Magnetohydrodynamic flow in the dual coolant blanket", Technical Report KfK **6802**, Kernforschungszentrum Karlsruhe, (2003).

- Buhler L. and Mistrangelo C., "MHD Mock-Up Experiments for Studying Pressure Distribution in a Helium-Cooled Liquid-Metal Blanket", IEEE Tran. Pl. Sci. 38, 254, (2010).
- Burr U., Barleon L., Muller U. and Tsinober A., "Turbulent transport of momentum and heat in magnetohydrodynamic rectangular duct flow with strong side wall jets", J. Fluid Mech. 406, 247, (2000).
- **12.** Burr U. and Muller U., "Rayleigh Bénard convection in liquid metallayers under the influence of a horizontal magnetic field", J. Fluid Mech. **453**, 345, (2002).
- **13.** Canuto C., Hussaini M. Y., Quarteroni A. and Zang, T. A., "Spectral Methods in Fluid Dynamics", Springer Verlag, Berlin, (1988).
- **14.** Chandra R., Dagum L., Kohr D., Maydan D., McDonald J. and Menon, R., "Parallel Programming in OpenMP", Morgan Kaufmann, San Francisco, (2001).
- **15.** Chandrasekhar S., "Hydrodynamic and hydromagnetic stability", Oxford Clarendon Press, OxfordUK, (1961).
- 16. Cliffe K. A., Garratt T. J. and Spence A., "Eigenvalues of the discretized Navier-Stokes equation with application to the detection of Hopf bifurcations", Adv. Comput. Mathematics 1, 337, (1993).
- Cooley J. W. and Tukey, J. W., "An Algorithm for the Machine Calculation of Complex Fourier Series", Math. of Computation 19, 297, (1965).
- 18. Crow SC., "Stability theory for a pair of trailing vortices", AIAA J. 8, 2172, (1970).

- **19.** Czarny O. and Huysmans G., "Bezier surfaces and finite elements for MHD simulations", Journal of Computational Physics **227**, 7423, (2008).
- **20.** Davidson, P. A., "An introduction to Magnetohydrodynamics", Cambridge University Press, Cambridge UK, (2001).
- Davoust L., Cowley M. D., Moreau R. and Bolcato R., "Buoyancy-driven convection with a uniform magnetic field: Part 2. Experimental investigation", J. Fluid Mech. 400, 59, (1999).
- **22.** Degrez G. and Snyder D. O., "LES investigation of coherent structrures in boundary layers and wakes. Volume III: Development of a parallel unstructured grid LES code", von Karman Inst. for Fluid Dynamics, (2002).
- **23.** Demkowicz L., "Computing with hp-Adaptive finite elements. Vol 1: One and two-dimensional elliptic and Maxwell problems", Chapman & Hall/CRC, (2007).
- 24. Dick E., "Introduction to finite element techniques in CFD. In VKI Lecture Series: Introduction to Computational Fluid Dynamics", von Karman Institute, Belgium, (1993).
- 25. Dick E., "Introduction to finite volume techniques in CFD. In VKI Lecture Series: Introduction to Computational Fluid Dynamics", von Karman Institute, Belgium, (1993).
- **26.** Dimas A. A. and Triantafyllou G. S., "Nonlinear interaction of shear flow with a free surface", J. of Fluid Mech. **260**, 211, (1994).
- **27.** Dimopoulos D. and Pelekasis N., "Three dimensional stability of free convection vortices in the presence of a magnetic field", Fluid Dyn. Res. **44**, 031405, (2012).

- **28.** Dimopoulos D. and Pelekasis N., "3D Stability analysis of Rayleigh Benard convection of a liquid metal layer in the presence of a magnetic field Effect of wall electric conductivity", under review, (2013).
- **29.** Drazin P. G. and Reid W.H., "Hydrodynamic Stability", Cambridge University Press, (1981).
- 30. Eckhardt B., Faisst H., Schmiegel A. and Schneider T. M., "Dynamical systems and the transition to turbulence in linearly stable shear flows", Phil. Trans. R. Soc. A 366, 1297, (2008).
- **31.** Elman H., Silvester D. and Wathen A., "Finite Elements and Fast Iterative Solvers", Oxford Science Publications, Oxford, (2005).
- **32.** Episkopou P., "Finite Element Methodology with Adaptive Mesh Refinement for ODEs with Boundary Layers", Dipl. Thesis, Univ. of Thessaly, (2013).
- 33. Hammerlin G., "Ueber das Eigenwertproblem der dreidimensionalen Instabilitaet laminarer Grenzschichten an konkaven Waenden", J. Rat. Mech. Anal. 4, 279, (1955).
- Henkes R. and Le Quere P., "Three-dimensional transition of natural-convection flows", J. Fluid Mechanics 319, 281, (1996).
- **35.** Hirsch C., "Numerical Computation of Internal and External Flows", volume 1, Wiley, New York, (1988).
- **36.** Hussaini M. Y. and Zang T. A., "Spectral methods in fluid dynamics", Annual Review of Fluid Mechanics **19**, 339, (1987).

- μ & μ
- **37.** Fauve S., Laroche C. and Libchaber A., "Effect of a horizontal magnetic field on convective instabilities in mercury", J. Physique-Lettres **42**, L455-L457, (1981).
- **38.** Fidaros D. K., Sarris I. E., Kakarantzas S. C. and Vlachos N. S., "Estimation of the MHD effects on the flow of Pb-17Li under magnetic fields produced by the demo machine in the proposed ENEA design for the DCLL blanket", Final Report prepared for ENEA. Under contract number FPN FUS STG Nr. 23110, (2008).
- **39.** Fletcher C. A. J., Glowinski R., and Holt M., "Computational Techniques for Fluid Dynamics: Fundamental and General Techniques", volume 1, Springer, New York, (1991).
- **40.** Fukumoto Y. and Hirota M., "Elliptical instability of a vortex tube and drift current induced by it", Phys. Scr. T. **132**, 014041, (2008).
- **41.** Geist A., Beguielin A., Dongarra J., Jiang W., Mancheck R. and Sunderam V., "PVM: Parallel Virtual Machine: A User's Guide and Tutorial for Networked Parallel Computing", MIT Press, Cambridge, (1994).
- 42. Gelfgat A. Y. and Tanasawa I., "Numerical Analysis of oscillatory instability of buoyancy convection with the Galerkin spectral method", Num. Heat Transfer 25, 627, (1994).
- **43.** Gelfgat A. Y. and Molokov S., "Quasi two dimensional convection in a three dimensional laterally heated box in a strong magnetic field normal to main circulation", Phys. Fluids **23**, 034101, (2011).
- **44.** Gledzer EB, Ponomarev VM., "Instability of bounded flows with elliptical streamlines", J. Fluid Mech. **240**, 1, (1992).

- **45.** Goertler H., "Ueber eine dreidimensionale Instabilitaet laminarer Grenzschichten an konkaven Waenden", Nachr. Ges. Wiss. Goetingen **2**, 1, (1940).
- 46. Gresho P. M. and Sani R. L., "Incompressible Flow and the Finite Element Method: Advenction - Diffusion and Isothermal Laminar Flow", Wiley, New York, (2000).
- 47. Grossmann S., "The onset of shear-flow turbulence", Rev. Mod. Phys. 72, 603, (2000).
- 48. Kakarantzas S. C., Grecos A. P., Vlachos N. S., Sarris I. E, Knaepen B. and Carati D., "Direct numerical simulation of a heat removal configuration for fusion blankets", Energy Conversion and Management 48, 2775, (2007).
- **49.** Kakarantzas S. C., Sarris I. E, Grecos A. P. and Vlachos N. S., "Magnetohydrodynamic natural convection in a vertical cylindrical cavity with sinusoidal upper wall temperature", Int. J. of Heat and Mass Transfer **52**, 250, (2009).
- **50.** Kakarantzas S. C., Sarris I. E. and Vlachos N. S., "Natural convection of liquid metal in a vertical annulus with lateral and volumetric heating in the presence of a horizontal magnetic field", Int. J. of Heat and Mass Transfer **54**, 3347, (2011).
- **51.** Kharitsa A., Molokov A., Aleksandrova A. and Buhler L. "Buoyant convection in the HCLL blanket in a strong, uniform magnetic field", Technical Report KfK**6959**, Kernforschungszentrum Karlsruhe, (2004).
- **52.** Landau L. D. and Lifshitz E. M., "Fluid mechanics", Butterworth-Heinemann, second edition, (1987).

- **53.** Landman M. J., Saffman P. G., "The three dimensional instability of strained vortices in a viscous fluid", Phys. Fluids **30**, 2339, (1987).
- Le Dizes S. and Verga A., "Viscous interactions of two co-rotating vortices before merging", J. Fluid Mech. 467, 389, (2002).
- 55. Leweke T, Williamson C. H. K., "Cooperative elliptic instability of a vortex pair",J. Fluid Mech. 360, 85, (1998).
- **56.** Mamun C. K. and Tuckerman L. S., "Asymmetry and Hopf bifurcation in spherical Couette flow", Physics of Fluids **7**, 80, (1995).
- 57. Meksyn D., "Stability of viscous flow over concave cylindrical surfaces", Proc. Roy. Soc. 203, 253, (1950).
- 58. Molokov S. and Buhler L., "Three dimensional buoyant convection in a rectangular box with thin conducting walls in a strong horizontal magnetic field", FZKA 6817, (2003).
- Orszag S. A., "Numerical methods for the simulation of turbulence", Physics of Fluids 12, 250, (1969).
- 60. Orszag S. A., "Numerical simulation of incompressible flows within simple boundaries: I. Galerkin (spectral) representations", St. in Appl. Math. 50, 293, (1971).
- Orszag S. A., "On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components", J. of the Atmospheric Sciences 28, 1074, (1971).

- **62.** Orszag S. A. and Kells L. C., "Transition to turbulence in plane Poiseuille and plane Couette flow", J. of Fluid Mech. **96**, 159, (1980).
- **63.** Ortega J. M., Bristol R. L. and Savas E. O., "Experimental study of the instability of unequal strength counter-rotating vortex pairs", J. Fluid Mech. **474**, 35, (2003).
- **64.** Pacheco P., "Parallel Programming with MPI", Morgan Kaufmann, San Francisco, (1996).
- **65.** Patera A. T., "A spectral element method for fluid dynamics: laminar flow in a channel expansion", J. of Comp. Physics **54**, 468, (1984).
- **66.** Pelekasis N., "Linear Stability Analysis and dynamic simulations of free convection in a differentially heated cavity in the presence of a horizontal magnetic field and a uniform heat source", Phys. Fluids **18**, 034101, (2006).
- **67.** Pelekasis N. and Dimopoulos D., "Finite Element Methodology with Adaptive Mesh Refinement for ODEs with Boundary Layers", Annex 15, Association Euratom Hellenic Republic, (2012).
- **68.** Pierrehumbert R. T., "Universal short-wave instability of two-dimensional eddies in an inviscid fluid", Phys. Rev. Lett. **57**, 2157, (1986).
- 69. Planas R., Badia S. and Codina R., "Approximation of the inductionless MHD problem using a stabilized finite element method", J. Comp. Phys. 230, 2977, (2011).
- **70.** Pothérat ., Sommeria J. and Moreau R., "An effective two-dimensional model for MHD flows with transverse magnetic field", J. Fluid Mech. **424**, 75, (2000).

- 71. Pothérat ., Sommeria J. and Moreau R., "Numerical simulations of an effective two-dimensional model for flows with a transverse magnetic field", J. Fluid Mech. 534, 115, (2005).
- 72. Proceedings of the USSR/US Exchange II.5, "Workshop on Comparison of Liquid Metal Blanket Approaches and Experiments", Nov. (1989).
- 73. Reddy J. N., "An introduction to the finite element method", New York: McGraw-Hill, (1993).
- 74. Reid W. H. and Harris D. L., "Some further results on the Bénard problem", Physics of Fluids 1, 102, (1958).
- 75. Saad Y., "Variations of Arnoldi's Method for Computing Eigenelements of Large Unsymmetric Matrices", Linear Algebra Appl. 34, 269, (1980).
- 76. Saad Y. and Schultz M. H., "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems", SIAM J. Sci. Stat. Comput. 7, 856, (1986).
- 77. Saad Y., "Iterative Methods for Sparse Linear Systems", PWS, (1996).
- **78.** Saad Y., "Iterative methods for sparse linear systems", 2nd Ed. SIAM Philadelphia PA, USA, (2003).
- 79. Sarris I. E., Lekakis I. and Vlachos N. S., "Natural convection in a 2D enclosure with sinusoidal upper wall temperature", Num. Heat Transfer Part: A 42, 513, (2002).

- μ & μ
- **80.** Sarris I. E., Lekakis I. and Vlachos N. S., "Natural convection in rectangulare tanks heated locally from below", Int. J. Heat Mass Transfer **47**, 3549, (2004).
- 81. Sarris I. E., Kakarantzas S. C., Grecos A. P. and Vlachos N. S., "MHD natural convection in a laterally and volumetrically heated square cavity", Int. J. Heat Mass Transfer 48, 34, (2005).
- 82. Sarris, I. E., Zikos G. K., Grecos A. P. and Vlachos N. S., "On the limits of validity of the low magnetic Reynolds number approximation in MHD natural-convection heat transfer", Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology 50, 157, (2006).
- **83.** Sarris I. E., Kassinos S., Knaepen B. and Carati D., "Large-eddy simulations of the turbulent Hartmann flow close to the transitional regime", Center for Turbulent Research Proceedings of the Summer Program, 387, (2006).
- 84. Sarris I. E., Detandt Y., Toniolo C., Vire A., Kinet M., Carati D., Degrez G. and Knaepen B., "Direct numerical simulations of the turbulent Hartmann flow in cylindrical ducts", Adv. in Turb. XI 117, 748, (2007).
- 85. Sarris I. E., Grigoriadis D. G. E. and Vlachos N. S., "Laminar free convection in a square enclosure driven by the Lorentz force", Numerical Heat Transfer, Part A 58, 923, (2010).
- 86. Sarris I. E., Iatridis A. I., Dritselis C. D. and Vlachos N. S., "Magnetic field effect on the cooling of a low-Pr fluid in a vertical cylinder", Phys. of Fluids 22, 017101, (2010).

- 87. Snyder D. O. and Degrez G., "Large eddy simulation with complex 2d geometries using a parallel finite-element/spectral algorithm", Int. J. Numer. Meth. Fluids 41, 1119, (2002).
- **88.** Sommeria J. and Moreau R. "Why, how and when MHD turbulence becomes two-dimensional", J. Fluid Mech. **118**, 507, (1982).
- 89. Takahashi D., "A Fast Fourier Transform Package", Univ. of Tsukuba, (2000).
- **90.** Ting A. L., Walker J. S., Reed C. B. and Picologlou B. F., "Linear stability analysis for high-velocity boundary layers in liquid-metal magnetohydrodynamic flows", Int. J. Eng. Sci. **29**, 939, (1991).
- **91.** Tsai C. and Widnall S. E., "The stability of short-waves on a straight vortex filament in a weak externally imposed strain field", J. Fluid Mech. **73**, 721, (1976).
- 92. Vanden-Abeele D., Degrez G. and Snyder D. O., "Parallel turbulent flow computations using a hybrid spectral/finite-element method on Beowulf clusters", ULB, Internal Report, (2004).
- 93. Waleffe F., "Homotopy and exact coherent structures in plane shear flows", Phys. Fluids 15, 1517, (2003).
- 94. Waleffe F., "Transition in shear flows. Nonlinear normality versus non-normal linearity", Phys. Fluids 7, 3060, (1995).
- **95.** Waleffe F., "On the three-dimensional instability of strained vortices", Phys. Fluids **2**, 76, (1990).

- μ & μ
- **96.** Walker J. S., "Magnetohydrodynamic flows in rectangular ducts with thin conducting walls-Part I", J. de Mecanique **20**, 79, (1981).
- **97.** Witting H., "Ueber den Einfluss der Stromlinienkruemmung auf die Stabilitaet laminarer Stroemungen", Arch. Rat. Mech. Anal. **2**, 243, (1958).
- 98. Xin S. and Le Quere P., "Linear stability analysis of natural convection flows in a differentially heated square cavity with conducting horizontal walls", Phys.Fluids 13, 2529, (2001).
- **99.** Ying A. Y. and Tillack M. S., "MHD heat transfer in elongated rectangular ducts for liquid metal blankets", Fusion Tech. **19**, 990, (1991).

100.	μ	••	μ	μ				μ		μ
				μ		",			,	
		, (2010).								
101.	μ	••				FFT	μ			
			μμ	μ	μ	μμ",	μ			,
	, (20	004).								
102.		•••			μ		μ			
	μ				",		,	•		,
(2	2007).									

	μ	&	μ		
	<u>B</u>				
μμ_	:	μ	μ		
_μ_μ	:	04/08/1985	i		
	<u>:</u>		А,	, 38	3834, ,
:		(+30)24210)-74317, (+30))6938451116	
<u>- mail</u> :		dimopoulo	s@uth.gr		
	:	μ			
2008-2013:		. u	u		. u
		,	, .		, ,
2008-2010:			μ	, μμ	
		,	μ	,	, .
2003-2008:		μ	Ш	, μμ	
		,	μ	,	, .
/					
/		66			
F	:			μ	
	μ".			٣	
E :	• •				
Χμ	: Associa	tion Euratom	-Hellenic Rep	ublic	
\triangleright	:	" μ	μ		μ
μ		μ	".		
E :					
Χ μ	: Associa	tion Euratom	-Hellenic Rep	ublic	
μ	:	"	μ		
,	μ				μ".
E :					

			_						
		,	μ					2008- μ	
							/	07/2006-08/2006	5
	()							
\triangleright	μ			μ	μ		: Bifurcation	ons and Instabilities	3
	in fluid dynamic	cs (2011)							
\triangleright	μ			μ					
	μ	(2004,	2005, 2	2007)					
\triangleright	μ					μ			
	μ	(2004,	2010)						

μ

&

μ

- D. Dimopoulos and N. Pelekasis, "3D Stability analysis of Rayleigh Benard convection of a liquid metal layer in the presence of a magnetic field - Effect of wall electric conductivity", submitted to Fluid Dyn. Res.
- D. Dimopoulos and N. Pelekasis, "Three dimensional stability of free convection vortices in the presence of a magnetic field", Fluid Dyn. Res., 44, 031405, (2012).
- D. Dimopoulos and N. Pelekasis, "Magnetic field effects on three dimensional stability of natural convection flows in differentially heated cavities", 23rd International Congress of Theoretical & Applied Mechanics, Beijing, China (2012).
- D. Dimopoulos and N. Pelekasis, "Magnetic field effects on three dimensional stability of natural convection flows in differentially heated cavities", 4th

International Symposium Bifurcations and Instabilities in Fluid Dynamics, Barcelona, Spain (2011).

- D. Dimopoulos and N. Pelekasis, "Magnetic field effects on three dimensional stability of natural convection flows in differentially heated cavities", 2nd Workshop on Numerical Simulations of MHD flows, Karlsruhe, Germany (2010).
- D. Dimopoulos and N. Pelekasis, "Magnetic field effects on three dimensional stability of natural convection flows in differentially heated cavities", 8th Euromech Fluid Mechanics Conference, Bad Reichenhall, Germany (2010).
- N. Pelekasis and D. Dimopoulos, "Magnetic field effects on three dimensional stability of natural convection flows in differentially heated cavities", 3rd International Symposium Bifurcations and Instabilities in fluid dynamics, Nottingham, England (2009).
- N. Pelekasis and D. Dimopoulos, "Magnetic field effects on three dimensional stability of natural convection flows in differentially heated cavities", 7th Euromech Fluid Mechanics Conference, Manchester, England (2008).

D. Dimopoulos and N. Pelekasis, "Magnetic field effects on three dimensional stability of natural convection flows in differentially heated cavities", 8th National Conference ROI, Volos, Greece (2012).

- D. Dimopoulos and N. Pelekasis, "Magnetic field effects on three dimensional stability of natural convection flows in differentially heated cavities", 10th School on Fusion Physics and Technology, Volos, Greece (2011).
- D. Dimopoulos and N. Pelekasis, "Magnetic field effects on three dimensional stability of natural convection flows in differentially heated cavities", 9th School on Fusion Physics and Technology, Volos, Greece (2010).
- D. Dimopoulos and N. Pelekasis, "Magnetic field effects on 3D stability of natural convection flows in differentially heated cavities", 7th National Conference ROI, Thessaloniki, Greece (2010).

- D. Dimopoulos and N. Pelekasis, "Magnetic field effects on three dimensional stability of natural convection flows in differentially heated cavities", 8th School on Fusion Physics and Technology, Volos, Greece (2009).
- D. Dimopoulos and N. Pelekasis, "Free Convection in liquid metal layers under the influence of a strong magnetic field", 6th National Conference ROI, ozani, Greece (2008).
- D. Dimopoulos and N. Pelekasis, "Free Convection in liquid metal layers under the influence of a strong magnetic field", 7th School on Fusion Physics and Technology, Volos, Greece (2008).
- D. Dimopoulos and N. Pelekasis, "Stability analysis of MHD flows", ANNEX, Team UTH, Association Euratom-Hellenic Republic, Volos, Greece (2012).
- D. Dimopoulos and N. Pelekasis, "Stability analysis of MHD flows", ANNEX, Team UTH, Association Euratom-Hellenic Republic, Volos, Greece (2011).
- D. Dimopoulos and N. Pelekasis, "Stability analysis of MHD flows", ANNEX, Team UTH, Association Euratom-Hellenic Republic, Volos, Greece (2010).
- D. Dimopoulos and N. A. Pelekasis, "Stability analysis of MHD flows", ANNEX, Team UTH, Association Euratom-Hellenic Republic, Volos, Greece (2009).
- D. Dimopoulos and N. Pelekasis, "Stability analysis of MHD flows", ANNEX, Team UTH, Association Euratom-Hellenic Republic, Volos, Greece (2008).