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Mepirndn

H vegerddne vroroyiotfy (cloud computing) efvon éver véo avaBod-
wopévo Yovtého tne Texvoroyioc Twv TANPOQOpLOY Tou sugavicTnxe To
teheutala ypdvia xon €xel 10N aArdiel tov teyvoroyixé xbouo. Ilpoogpipe:
évo 6OVORO UTNEESUOY PEGW ToU BLaBiXTOoU YETCULOTOWDVTOS Uid OELpd Ao
xowbyenotoug ndpovs. To UoVTEAO TOAGYNONS TWY UTNEEGIOY TTOU THpé-
YEL 1) VEGEADDNG UTOROYLOTIXY axohoulel évo cUOTNU Ypwons LoVo TwY
nbpwv Tov ypnowonotinxay ano tov terdtn. O unnpeoies e vegeid-
B0UC LTOAOYLETUNC TAEEYOVTAL PEGK UTOAOYLIOTIXGY CUCTAUOTWY ToL oTtolo
ovopdlovion xévipa dedopévwv (data centers).

Avotuyde, o x€vtpa dedopévwv anaitoly ueydho ndoo evépyetag. Me-
ptée eyxotactdoeis ypeudlovion evépyelo exotd Gopéc napandve and Evo
Tumxd xuploxd cuyxpbtnue. ‘Evac guiixdc npoc 10 nepBdhiov xol oxo-
VORLXE OTOTEAEOUATIXNOS TROTIOC YOl VO TEPLOPLETEL TO AELTOURYIXG XOGTOS
evhe %EvTpou Bedopévwy elvan 1) EYXATACTUOT, OVOVEDCIIWY TNYOY EVEp-
vewg. Q01d00, 1 Topaye YY) NAEXTEMNC EVERYELNS MO T OVOVEWMOLIES
nnyéc evépyelog 6ev elvon vieteppiviotuen. Hlpoxewévou va elvan eyyunuévn
n otadepy, tpogodoctia pebuatoc yio 1o xévipo deboudvwy, ypnowonolel-
o enfone evépyeta and ouufotixd dixtuo nhexteuic evépyeias. AZ(lel va
onpewwdel Twe N nuh wloc govédog nhextpurc evépyelac Tou TROLpYETL
ané ovoavewon Tnyn evépyeloc elvon oyedév undév. Ernlone n nuh uloc
povédoc mou mpoépyeton and €vo cupPatxd Bixtuo nhexteixhc evépyelac
Sropéper ano tonolesio o tonodeoia xa elvon ypovid yetoBariduevr.

H Sunhopotied, Statpn nou xpatdte ot yéplo oog dlepeuvd To npbBAn-
po e efumnpétnone athoEwy Yt UTNEEsies vegeAdious UTohoYioTix\C
oe éva dixtuo amo xévipa dedopévwv tou Beloxovio oe Bugopetinée ye-
wypapés nepoyéc. M aitnon eSunnpetelton peow ulog euxovixhc unyo-
vhc (virtual machine). Kdde xévtpo dedopévev eivar ocuvdedeyévo ot éva
oupBotixd dixtuo nhextpuic evépyeloc xon eminhéov unootrnelleto ané plo
avavedoun Tyt evépyetac.

To npbPinuo avobeuxvicton péoo and €va cOGTNUO ATOTEAECUOTIXAS
yehone e evépyelos uetoll evée ypovind petooribuevou avd yovébo
nhextplehc evépyelas x6oToug ond Tov cuUUPaTING TéEOY O NAEXTEXNAC Evép-
YELOC O TOV ATEOBAENTO ol Ypovixd peToBahAduevo evepyeloxd egobiacud
ano plo avavedown tnyt evépyelac. O avuxeiuevinde oxonde elvor vo e-
Aayrotonomndel 1o oAb Aettoupyind ®6GTOC HOTAVEAWOTNS EVEpYELUS GO0V
aopd to duuyeipoth {cloud provider) xon va peiwloldv o nepBaihoviids
EMUTTOOEK Twv eTpépous duadxaoidv. o va emteuydel autde o otdyog
Vewpotye twe xée altnua apyixd AauBdveton xo tonodetelton oe plo xev-
tpeh ovpd. Kéie altnpa cuvdéeton ue éva altnuo eucovixic unyoavic tou
éyel wdnoleg avdyxes ond népoug ohhd xon ula ypovih tpolesplo tpy arno
v onole wpéne vo teavorountel. O Soyelptathc Tou SiXTO0U TwY XEVTELY
Bedopévwv Yo SnuLovpyhoet plo euovixy| Unyovh ge Tl ovdAOYES ANUTHCELS
nbpwv xou o Ty exteroel npw TV exvor) Tng yxpovuc tpodeoplog. H e-
xtéheon g oltnong eyyudtor ano évo cupPoiono (service level agreement)
nou yivetar avduess oTov aTOOPEVO YLo TNV UTNEEGia Xor Tov Tépoyo TN
vnnpeociog.

Hpotelveton évag ahydpiipoc tou alpver ooy dedopéva 10 %6610 avd,
povEdo pEOUUTOC GO TOV THEOYO TOU XOL TNV avoGTNTo Topayw YR evép-
YELOC OO TNV OVOVEDGLUY TNYNH evépyelac via éva ypowxd opllovta xo
anogoacilel yio x&de altnon. O npoovoagepléy arybpripoc cuyxplveton ye
évay * dninoto” ohybprlpo xon ge fvay ¢ anhoixd V.

Enclong, petatpénovys 1o npdPinuo Snuoupylog SovirGdy unyavoy
xon ovdieone toug ota xatdAAnia xévtpa bedopévwy o Tny edunnpétnon
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TV ATACERY Yo glor uTnpeaia vegeAddous utohoyio s o éva nedBinuo
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Abstract

Cloud computing is a new upgraded information technology (IT)
model which came up the last few years and has already changed the
technological world. It offers a set of services (software, application,
network, storage, infrastracture) over the internet by using a set of
shared resources. The pricing model of cloud computing services fol-
lows the pay-as-you-go model which means that customers pay only
for the resources they use. Cloud computing services are hosted in
computer systems which are called data centers.

Unfortunately, data centers require large amounts of energy. For
example, some facilities have power densities more than 100 times
that of a typical office building. An environmental friendly and cost
efficient way to reduce the operational costs of a data center is the
installation of renewable energy sources (RESs). However, the power
generation of RESs is not deterministic and time-variant. In order to
be guaranteed a stable power supply for the data center, power from
the power grid also used. It is worth mentioning that the price for
a unit of power is almost zero for a RES but not for the power grid
which price also changes by time.

This thesis explores the problem of virtual machine (VM) alloca-
tion over a network of cloud server facilities which are deployed in
different geographical areas. Itach cloud server facility is connected
to the conventional power grid network and in addition supported by
an attached renewable energy source. We address the problem of en-
ergy efficient task allocation in the system in the presence of a time
varying grid energy price and the unpredictability and time variation
of provisioned power by the RES. The objective is to reduce the total
cost of power consumption associated to the operator and to reduce
the environmental impact related to the processing of the tasks.

To achieve this goal we consider that all third-party VM requests
initially arrive in a central queue.Each task request is associated with a
VM request with some resource requirements and a deadline by which
it needs to be completed. The cloud provider has to create a VM
with the resource requirements specified at the request and execute
the VM before the deadline. The task execution is quaranted by a
service level agreement (SLA) between the client (i.e the task owner)
and the cloud provider.

We propose an online algorithm with given lookahead horizon, in
which the grid power prices and patterns of output power of the RESs
are known a priori and we compare it with a greedy online algorithm
and a naive algorithm. Also we transform the problem into a shortest-
path problem under the assumption that all the stochastic parameters
and the requests are known for a specific time horizon. Finally, we

111
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propose a simple pricing mechanism who determines the price of the
request execution.

Numerical results on real traces of cloud traffic and renewable
source generation patterns are encouraging in terms of the perfor-
mance of our techniques and motivate further research on the topic.
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1 Cloud Computing

1.1 Cloud Computing Basics

Cloud computing|4][17] is a way to provide services over the network to re-
mote customers. It might be deployed in an private, public or hybrid manner
and has the following essential characteristics: customers buy as many re-
sources as they want providing the illusion of infinite offer, whenever and for
as long as they need to. As a result, up and front hardware/software commit-
ment is eliminated and the ability to pay for use of computing resources on a
short-term basis is granted. Resources can be accessed through the network
from any computer, providing also geographical elasticity.

Automated
backups,
uptime, SLA,
Multi-tenant maintenance
solution 2 Automated
provided by upgrades
vendor

What is e

Cloud Computing

Elastic, pay Web and
as you go — mobile -
scale up or access from
down Modern web anywhere
based
integration

Figure 1: What is Cloud Computing.

The most popular types of these services are software (SaaS), platform
(PaaS), network (NaaS) or hardware (laaS) oriented. From the client’s point
of view, resources are utilized almost utterly because of the pay-as-you-go
model reducing the cost of managing hardware and software. Furthermore,
the fault tolerance problem does not exist any more (real hardware infras-
tructure is transparent). From the application’s point of view there is no
actual difference, although in reality applications run in virtual machines.
Virtual machines are running on the same physical machine reacting like
applications in conventional systems.
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% | X |29

SaaS |AAS

Software Piatform Infrastructure
as a Service as a Service as a Service
Email Application Development Caching
CRM Decision Support Legacy File
Collaborative Web Networking  Technical
ERP Streaming Security  Systerm Mgmt
CONSUME BUILDON IT MIGRATETO IT

Figure 2: Types of cloud computing services.

1.2 Pay-as-you-go model

The pay-as-you-go model offers the ability to cloud customers to pay only
for the resourses they use. While in the case of not using a cloud service,
the customer has to buy the maximum required resources he needs and as a
result pay more money.

Figure 3: Pay by use instead of provisioning for peak [26].
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Figure 4: Penalty for under-provisioning [26].

1.3 Virtualization

The basic concept that differentiates cloud computing from software ori-
ented architectures (SOA) is virtualization|16] and more specifically virtual
machines[15]. Virtualization is the creation of a virtual version of some-
thing, such as a hardware platform, operating system, a storage device or
network resources. A virtual machine (VM) is a software implementation of
a machine that executes programs like a physical machine. A system virtual
machine provides a complete system platform which supports the execution
of a complete operating system.

An essential characteristic of a virtual machine is that the software run-
ning inside is limited to the resources and abstractions provided by the vir-
tual machine it cannot break out of its virtual world. Classic benefits of
virtualization include improved utilization, manageability, and reliability of
systems. Benefits of virtualization have great appeal across a broad range of
both server and client systems, more specifically in isolation, consolidation
and migration. Isolation can improve overall system security and reliability,
consolidation separates individual workloads onto a single physical platform
and migration makes it possible to decouple the guest from the hardware on
which it is running,.

Two basic concepts in the cloud are the emulator and the hypervisor. An
emulator is hardware or software or both that duplicates (or emulates) the
functions of a first computer system in a different second computer system,
so that the behavior of the second system closely resembles the behavior of
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Figure 5: Example of virtualization.

Figure 6: types of virtualization

the first system and a hypervisor (also called a virtual machine manager ) is
a program that allows multiple operating systems to share a single hardware
host and controls and allocates host’s resources to virtual machines.

As mentioned before, virtualization offers the ability of migrating a virtual
machine from a physical machine to another, applications themselves and
their corresponding processes are not aware that a migration is occurring
because hypervisors allow migrating an OS as it continues to run. This is
termed hot or live migration|25] and opposed to cold or pure stop-and-copy
migration in which virtual machine halts, all memory pages copied to the
destination physical machine and then virtual machine continues executing.
Although live migration can take more time because some memory pages
could be sent more than once, it offers a high probability of zero virtual
machine downtime. Migration increases the system performance because
it offers the ability of load balancing and more general efficient resource
allocation technics and it helps cloud provider to manage his system (ie
shut down /update/upgrade /repair some physical machines without stopping
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Figure 7: Virtualization: before and after.

providing the service). Unfortunately, sometimes a virtual machine must be
halted to complete the migration. The time the virtual machine is halted
called downtime and this is the migration cost in the case of live migration.
On the other hand, in the case of cold migration, migration cost equals to
the time needed to send all the useful virtual machine’s memory pages plus
the time needed to halt and restart on the new physical machine, which is
ideally almost zero.

Workload isolation | Waorkload cansolidation
Appi  App Aoy || Appy || Appy | | Aop, Appy | | Appa
0s ‘ 08, 0S; 0s, 08, 0S4 0S;
— W ] i
T
Workload migration
App App
0s ‘ 0s
VMM | [V VMM ] [vim | |
AW, ] [hw,_ iy ] W, |

Figure 8: Benefits of virtualization.
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Figure 9: Virtual machine migration.

1.4 Cloud Providers

The cloud provider is a service provider that offers customers services avail-
able via a private (private cloud) or public network (cloud). Usually, he ex-
poses the required resources for the service via the Internet. Table 1 contains
some popular cloud service providers for the four most popular categories of

cloud services.

TAAS PAAS SAAS STORAGE
Amazon Amazon Abiquo 3X
AT&T Appistry AccelOps Amazon
BlueLock AppScale Akamai Asigra
CA CA AppDynamics Axcient
Cloudscaling | Engine Yard Apprenda Carbonite
Datapipe FlexiScale CloudOptix Caringo
ENKI Force.com Cloud9 Cleversafe
Enomaly gCloud3 CloudSwitch | Cloud Attached Storage
Eucalyptus | GigaSpaces CloudTran Doyenz
GoGrid Gizmox Cumulux eFolder
HP Google Eloqua EVault
Joyent GridGain | FinancialForce Intronis
Layered Tech | LongJump Intacct Mezeo
Logicworks Microsoft Marketo Nasuni
NaviSite OpenStack NetSuite Nirvanix
OpSource | OrangeScape Oracle Scality
Rackspace 0S33 Pardot StorSimple
Savvis OutSystems | Salesforce.com SugarSync
Terremark RightScale SAP Vembu
Verizon ThinkGrid

Table 1: Popular cloud service providers [5]
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Figure 10: A Google data center outside Atlanta, Ga.

2 Data Centers

2.1 Data Center Basics

A data center is a facility used to house computer systems and associated
components, such as network and storage systems. Data centers may be pri-
vate, where the entire facility is devoted to hosting applications belonging to
the facility owner, or shared, where the facility owner leases out portions of
the facility to different application providers. A shared data center may be
operated as one of three kinds of services, depending on the interface exposed
to the lessees: Infrastructure-as-a-Service (laaS) exposes the lowest-level in-
terface, and is essentially the leasing out of physical servers; Platform-as-a-
Service (PaaS) is one level higher, and leases out virtual CPUs and disks; and
finally, Software-as-a-Service (SaaS) leases out hosted software. Data centers
generally include redundant or backup power supplies, redundant data com-
munications connections, environmental controls and security devices. Large
data centers are industrial scale operations using as much electricity as a
small town.

e
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Figure 11: A central cooling plant in Googles Douglas County, Georgia, data
center.

2.2 Data Center Energy Consumption

Ideally, a data center should consume only as much energy as is needed to
process incoming requests. Every request require some amount of energy to
execute. In reality processing the request would additionally incur a number
of energy overheads: energy used by idling resources, by air conditioners that
cool the servers processing the request, and energy wasted in inefficient power
delivery to the servers, among other overheads. The amount of these over-
heads depends on the energy (in)efficiency of the data center. An ideal data
center would minimize these overheads. We enumerate two target properties
of a data center that capture this idea:

I. Power-proportionality: This property states that executing a given
job consumes a minimal amount of compute energy, irrespective of how
much time it takes energy consumed by I'T resources being proportional
to work done. This is possible only if base-line power consumption’' is
zero. In other words, idle resource power consumption must be zero.

Ipower consumed when no job is being executed
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2. Power Utilization Efficiency (PUE) Close To 1: This property
states that the energy consumed during job execution is within a small
margin of the amount of useful work done. In other words, the constant
of proportionality relating energy consumed to useful work done should
be close to 1. PUE is defined as the total energy consumed by the data
center, divided by the total energy consumed by the servers in the data
center. As energy consumed by a data center is divided between servers
(useful work) and the power, cooling, and networking infrastructure
that supports the correct functioning of servers (not useful work), PUE
can be much larger than 1.

Together, these properties assert that the power consumed by a data
center is a minimal function of its load. Data center power proportionality
requires power consumption to track load, and eliminates overheads from idle
resource power consumption. Low data center PUE ties power consumption
closely to useful work done and minimizes overheads from support equipment
power consumption. Thus, a data center that is power proportional and has
a PUE of 1 would consume only as much energy as the application logic
requires from the IT equipment.

The figure above compares an ideal power consumption curve, as de-
scribed in the previous section, with the prevalent reality. The differences
between these curves signal the presence of various inefficiencies in current
data center design and operation. We identify two problem areas:

1. Energy consumption by idle resources

2. Energy consumption by support equipment

2.2.1 Energy consumption by idle resources

The ideal data center consumes zero energy under zero load. The reality,
however, is that in inadequately managed facilities, servers consume almost
as much energy when idle or lightly loaded, as when heavily loaded. This is
the reason for the high offset in the power vs load curve of the average data
center (figure 12).

Many server components have the ability to operate in multiple power
modes, so that they can be manipulated to consume power proportional
to their load, or desired level of performance. However, there are several
challenges to this approach:

e Performance Tradeoff: Switching between power modes takes time and
can translate to degraded performance if load goes up unexpectedly.
Most services can tolerate very little, if any, performance degradation.
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Figure 12: Schematic Diagram Of Data Center Power Consumption As A
Function Of Load [27]

e Load Unpredictability: The load on a given server can be impacted by
a plethora of factors, including time of day, day of year, current world
affairs, geography, and flash crowds, among others, making it very hard
to predict accurately. Power managing servers without adequate fore-
knowledge of their anticipated load can lead to significant performance

degradation.

Short Idle Times

: Load spread can also vary continually, leading to

short idle times for most servers. This means that the time and energy
cost of switching them to lower power modes is often not worth the
potential energy saving from the switch.

There are two basic approaches on minimizing energy consumption by
idle resources in a data center. The first approach tries to reduce power con-
sumption by idle resources by finding ways to enable switching them to lower
power modes (or turning them off ). This approach relies on designing mech-
anisms that improve the predictability and length of resource idle periods,
to enable effective power-down. The second approach tries to eliminate (or
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Figure 13: Impact of p-state on Power Consumption [24|

reduce) the presence of idle resources at all, by provisioning fewer resources,
and over-subscribing them.

Examples of the first approach include disk power management solutions.
Dynamic voltage and frequency scaling (DVFS) is a mechanism that allows
CPU power to be manipulated to match its utilization. This is a useful tool,
but needs an effective management framework that can maximize its benefit,
by enabling sufficiently long idle CPU periods.

In recent years, x86 server processors have begun to incorporate the power
saving architectures that have been common in both desktop and laptop
computers. Enabling this feature can result in overall system power savings of
up to 20%. The power saving is achieved by reducing the frequency multiplier
(Frequency identier or FID) and the voltage (Voltage identier or VID) of the
CPU. The combination of a specic CPU frequency and voltage is known as a
performance state (p-state). Altering the p-state can reduce a servers power
consumption when at low utilization but can still provide the same peak level
of performance when required. The switch between p-states is dynamically
controlled by the operating system and occurs in micro-seconds, causing no
perceptible performance degradation

Resource over-subscription solutions typically employ a power-tracking
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and capping approach. Power-tracking, as the name implies, is a mechanism
to monitor power use, while power-capping prevents resources from exceed-
ing a given (tunable) power cap. These are essentially safety mechanisms
to enable resource oversubscription without the danger of overload and its
repercussions.

2.2.2 Energy consumption by support infrastructure

In addition to the servers and IT equipment that are doing directly useful
work, data centers contain a considerable amount of support infrastructure
like power distribution and cooling equipment, that enables the I'T equipment
to function correctly, but does not contribute directly to useful work done.
In the ideal data center, the energy consumption of the support equipment
should be a small fraction of the energy consumption of the I'T equipment.
In reality, however, support equipment consumes a comparable amount of
energy to the IT equipment. This leads to the steep slope of the power vs
load curve of the average data center (figure 12). Support infrastructure
performs the following functions:

e Cooling: Traditional data center cooling infrastructure consists of a
chiller unit to chill the coolant used (water or air) and fans to direct
cool air towards the servers and hot air away from the servers. These
are both intrinsically power-hungry processes.

e Power Delivery: Power is typically delivered to a data center as high
voltage AC power. After that it stepped down to lower voltage AC
power for distribution to racks for use by servers and other I'T equip-
ment. Inside this I'T equipment, power supplies convert the AC power
to the DC power needed for digital electronics. For every Watt of en-
ergy used to power servers, up to 0.9 W can be lost through this series
of power conversions. Additional power is needed to cool the conversion
equipment.

e Power Backup: In order to prevent outages, data centers use a backup
power supply that can kick in temporarily if the primary supply fails.
Traditionally, this backup takes the form of a central UPS. Power to
the facility flows through the UPS, charging it, and is then routed to
the racks. Significant power loss can result from this model, as the
average UPS has an efficiency of only about 92%.

Solutions have been proposed to address each of the power overheads
from support equipment. A highly effective solution to reduce cooling power
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overheads is free cooling, a system that uses ambient air for facility cooling,
thus obviating the need for power-hungry chillers. It has been shown that free
cooling can help bring data center PUE down to as low as 1.07 . However,
a severe limiting factor for this solution is the requirement that ambient
temperatures be suitable for use in facility cooling which does not hold for a
majority of extant data centers. Power delivery efficiency has been shown to
improve significantly by supplying the data center with DC power instead of
AC power. However, this shift also comes at a significant deployment cost.
Finally, it has been demonstrated that moving from a central UPS power
backup solution to a distributed model with each server backed up by its
own battery can eliminate the power loss through UPS inefficiencies. Finally,
another approach to reducing support infrastructure energy consumption is
to power them down when not needed.
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3 Renewable Energy Sources (RES)

3.1 Types of renewables used in data centers

There are many forms of on-site alternative power generation, but some are
more applicable to critical facilities than others. Here is a look at the pros
and cons of the most practical alternatives for a critical facility such as a
data center.

3.1.1 Solar Power

Currently, photovoltaic (PV) panels are the most commonly used source of
alternative power for buildings. However, they require a lot of roof or facade
space in order to provide enough power to supply even a portion of the full
demand of a data center.Moreover, solar power can only be tapped during
daylight hours. While it is possible to store solar energy in valve-regulated
lead-acid or wet-cell batteries for nighttime use, this is rarely practical. At
night, most facilities will still need to rely on the grid and also will need
to maintain a diesel-powered emergency generator. Most data center owners
that have PV systems use them to reduce a facilitys energy load and operating
cost. For example, PVs can be employed for peak shaving when the demand
and associated cost of electricity is the highest, during peak daylight hours.
In addition, if the data center generates more power than it consumes during
the day, the excess energy can be sold back to the grid to reduce electricity
bills. Also on the plus side, there is minimal upkeep on a solar power system
once the initial investment is made. The panels also shade the building,
decreasing the heat load. There is no noise generated with the use of solar
panels, which is a problem with generators and their corresponding noise
limitations at a property line.

Solar energy prediction is typically obtained with estimated weighted
moving average (EWMA) models, because of its relative consistency and pe-
riodic patterns. As long as the weather conditions remain consistent within a
period, the prediction is accurate, but becomes inaccurate, with mean error
over 20 percent, with frequent weather changes. Recent work utilizing small-
scale solar generation uses a weather-conditioned moving average (WCMA),
taking into account the mean value across days and a measured factor of so-
lar conditions in the present day relative to previous days. While this work
provides only a single future interval of prediction, it specifically addresses
inconsistent conditions, with a mean error of under 10 percent.
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3.1.2 Wind Power

Although it is not necessarily a reliable source of primary power, wind power
can help reduce energy costs by supplementing a main power source. More-
over, it has the lowest cost of renewable technologies. A 53-meter rotor
diameter is capable of producing 1 MW of power, and it takes up consider-
ably less property than a photovoltaic system of the same capacity. However,
wind turbines may not be permitted in some locations. In addition, the sys-
tem still requires supplemental energy storage or the ability of feeding to and
from the grid, as well as a back-up generator. Wind energy prediction can be
separated into two major areas: time-series analysis of power data and wind
speed prediction and conversion into power.
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4 Electricity Pricing

Electricity prices change by time and by location. The frequency of the
changes depend on the pricing policy of the power grid provider. The main
factors|9] which determine the electricity price are the power demand,the
power generation capabilities and the cost and the types [30] of the power
generation. Table 2 shows the electricity prices in some countries and the
date of the last modification. Electricity markets of some countries like US
and Canada change the electricity price frequently (in the order of hour) while
Greece changes the electricity price almost once in a year and Argentina has
the same electricity price since 2006. This is depicted by the second column
of the table, in which the countries with frequent flactuations in price has a
price spectrum (min price,max price).

Figures 14 and 15 show the power demand (MW) and the energy price
(canadian dollars/MWh)? on the Ontario, Canada [11].

Market Demand (MW) Pre-Dispatch Dispatch

19,100
17.740
16,380
15,020

13,660

12,300
: 3 & 9 12 15 18 21 2 & 9 12 15 1R 21 =2 5§ 12045 a3

Hour (EST)

Figure 14: Three-day (9-11 July) view of market demand in Ontario Canada.

2One canadia dollar equals to 0.73 euros or 0.96 US dollars
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Hourly Ontario Energy Price ($/MWh) Pre-Dispatch Dispatch
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Figure 15: Three-day (9-11 July) view of Energy price in Ontario Canada.
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Country /Territory | US cents/kWh As of
Argentina 5.75 2006
Australia 22-46.56 23/8/2012
Belgium 29.08 1/11/2011

Brazil 34.20 1/1/2011
Canada 6.3 - 11.8 1/11/2012
Chile 23.11 1/1/2011
Denmark 40.38 1/11/2011
Dubai 7.62 2011
Finland 20.65 1/11/2011
France 19.39 1/11/2011
Germany 31.41 31/5/2012
Hungary 23.44 1/11/2011
Hong Kong 12.02-24.00 1/4/ 2013
India 8 to 12 1/2/ 2013
Treland 28.36 1/11/ 2011
[srael 18 1/6/ 2013
Ttaly 28.39 1/11/ 2011
Japan 20-24 31/12/ 2009
Latvia 18.25 1/6/2012
Malaysia 7.09-14.76 1/4/2013
Mexico 19.28 22/8/ 2012
Netherlands 28.89 1/11/ 2011
New Zealand 19.15 19/4/2012
Portugal 25.25 1/11/2011
Russia 1.7-9.58 1/ 1/ 2012
Serbia 3.93-13.48 28/2/2013
Singapore 21.53 1/4/2013
Spain 22.73 1/7/2012
South Africa 8-16 5/11/2012
Sweden 27.10 1/11/2011
Taiwan 7-17 1/6/2012
Turkey 13.1 1/6/2011
United Kingdom 20.0 30/11/2012
United States 8-17 1/9/2012

Table 2: Current electricity prices of some countries|8|
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5 Service Level Agreements and Pricing Mech-
anisms in cloud computing

5.1 Pricing Mechanisms in cloud computing

One of the basic characteristics of cloud computing is the pay-per-use pricing
models (or pay-as-you-go as introduced in section 1.2). However, not all the
cloud providers follow the same pricing model. For example, some providers
will find that their brand and reputation will allow them to price based on
value delivered from their services, rather than purely based on hourly usage
rates.

In general, cloud providers are adopting a variety of pricing mechanisms,
including usage-based fixed pricing, usage-based dynamic pricing, subscription-
based pricing, reserved services contracts with a combination of usage-based
fixed pricing and up-front fees, and auction-based pricing.

According to [29] a representative set of pricing factors is the follow-
ing : {Service Instance Type, Unit price of usage, Total Usage, Reserva-
tion Period, Reservation Fee, Support Type, Support Charge, Total Outage,
Compensation }

There are two basic strategies for any pricing mechanism. One is primarily
based on how much a given service costs to cloud provider to deliver it and
the other is mostly determined by an estimation of current prices for cloud
services in your market. Both approaches have strengths and weaknesses.
The advantages of the cost-based approach are that it significantly reduces
the chances of setting prices too low to earn a profit and gives a precise control
over margins. On the other hand cloud provider may either left money on
the table or be not competitively viable.

Market-based pricing schemes focus less on what services cost to deliver
than on what cloud provider can realistically charge for them based on typi-
cal rates for similar offerings in the area. Of course, finding out what nearby
providers are charging for cloud services isnt always easy. However, some
firms post their rates online. Also valuable insights can be gained by par-
ticipating in peer groups and membership associations or simply by asking
potential customers about competing proposals.
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5.2 Service Level Agreements in cloud computing

A service level agreement (SLA) is a contract where a service is formally de-
fined [12]. This contract is conducted by two parts, the client and the service
provider. A typical SLA of a cloud provider has the following components:

e Service guarantee specifies the metrics which a provider strives to
meet over a service guarantee time period. Failure to achieve those
metrics will result in a service credit to the customer. Availability,
response time, disaster recovery and fault resolution time are examples
of service guarantees.

e Service guarantee time period describes the duration over which a
service guarantee should be met.

e Service guarantee granularity describes the resource scale on which
a provider specifies a service guarantee (i.e per service, per data center,
per instance, per transaction).

e Service guarantee exclusions are the instances that are excluded
from service guarantee metric calculations. These exclusions typically
include abuse of the system by a customer, or any downtime associated
with the scheduled maintenance.

e Service credit is the amount credited to the customer or applied to-
wards future payments if the service guarantee is not met. The amount
can be a complete or a partial credit of the customer payment for the
affected service.

e Service violation measurement and reporting describes how and
who measures and reports the violation of service guarantee, respec-
tively.

Figures 16 and 17 show a SLA comparison for some-well known cloud
services. CB is an abbreviation for customer bill.
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Amazon EC2 Azure Compute Rackspace Terremark Storm on De-
Cloud Servers vCloud Express || mand
Service Availability Availability Availability Availability Availability
guarantee
Service Data center Aggregate across || Per instance® Data center + || Perinstance®
granularity all roles management
guarantee stack
Infrastructure || Unclear if ex- || Included in ser- || Excluded from || Unclear if || Excluded from
scheduled cluded vice guarantee service guarantee || excluded service guaran-
maintenance tee
OS/software || N/A Excluded from || Excluded from || N/A Excluded from
patches  on service guarantee || service guarantee service guarans
compute 1f managed if managed tee if managed
instances
Service 365 days or since || Billing month Billing month Calendar month || Calendar month
guarantee last claim
time period
Service 10% of CB if < || 10% of CB if < || 5% of CB for ev- || §1 for 15 minute || 1000% for
credit 99.95% 99.95% 25% of || ery 30 minutes of || downtime up to || every hour of
CBif < 99% downtime up to || 50% of CB downtime up to
100% CB

Service Customer Customer Customer Customer Customer
violation
reporting
onus
Service N/A 5 days of incidemt || N/A N/A N/A
violation occurence
incident
reporting
Service vio- || within 30 busi- || within one billing || within 30 days of || within 30 daysof || within 5 days
lation claim || ness days of the || month downtime the last reported || of incident in
filing last reported inci- incident in claim || guestion

dent in claim
SLA publish || October 23, 2008 [ April 9.2010 June 23, 2009 August 31, 2009 || Unknown
date
Credit Yes No No Yes No
applied to-
wards future
payments
only

Figure 16: SLA comparison of some well-known IAAS (compute) cloud ser-
vices. *implied from SLA [23|
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Amazon S3 Azure Storage Rackspace  Cloud
Files

Service guarantee Completed  transac- || Completed trans- || Completed transac-
tions (with no error || actions (within || tions, availability
response) stipulated time)

Service  granularity || Per transaction Per transaction Per transaction, data

guarantee center

Service  guarantee || Billing month Billing month Per month

time period

Service credit 10% of CB if < || 10% of CB if < || 10% of CB if < 99%,
99.9%, 25% of CB if || 99.9%, 25% of CB if || 100% of CB if <
< 99% < 99% 96.5%

Service violation re- || Customer Customer Customer

porting onus

Service violation in- || N/A 5 days of incident oc- || N/A

cident reporting currence

Service violation || within 10 business || within one billing || within 30 days fol-

claim filing days following the || month lowing unavailability
month in which the
incident occurred

SLA publish date October 1, 2007 November 12, 2010 June 23, 2009

Credit applied || Yes No No

towards future pay-

ments only

Figure 17: SLA comparison of some well-known STAAS (storage) cloud ser-

vices (23]
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6 Problem Description

In this section, we provide an abstraction of the architecture of our system
and also write down the characteristics of our problem. Cloud computing sys-
tems facilitate flexible task execution by allocating resources (CPU, storage,
bandwidth, etc) on demand. The cloud provider is responsible for manag-
ing the infrastructure through efficient resource allocation and task request
scheduling for virtual machines. Depending on the knowledge of the cloud
provider about the parameters and the stochasticity of the system, schedul-
ing and allocation algorithms serve the service requests in such a way to
optimize an objective like the operational costs or the power consumption.

Nowadays, a big portion of the energy consumed by end-users is shifted to
the core network of the cloud server infrastructure. This fact motivates our
work in greening the cloud infrastructure by using renewable energy resources
(RESs) attached to the server facilities. In more detail, cloud server facilities
require high energy depending on the prevailing environmental conditions
and the dynamic load of tasks under execution. As a general observation
[33], a significant portion of the power consumption of legacy data centers
is associated with the cooling needs and losses of the power provisioning
equipment. The rest of the percentage above is described in a relationship
to the served traffic due to the existing power proportionality of CPU and
router devices [22].

An environmental friendly solution to meet the energy demands of the
cloud server facilities is the deployment of RESs. The RESs reduce the depen-
dence of the provisioned power from the main power grid and hence, if they
are appropriately exploited, they can lead to a significant cost reduction. The
main advantages of RESs are that they incorporate an initial capital expen-
diture for the purchase and deployment but they have very low operational
expenses (mainly maintenance) and thus in the long-run their provisioned
energy cost is very low. However, RESs have unpredictable behavior and
provide a time-varying output power that in some cases is insufficient to
support the operation of the cloud server facility, if the load in the latter is
high enough. In this case, the required power will have to be provided by
the main power grid in a price that also fluctuates with time.

We study the problem of optimal VM allocation in a set of cloud server
facilities. Our objective is to minimize the total cost paid by the cloud
provider to the main grid in order to support the system with the necessary
power to carry out VM execution. The set of VMs, under execution at a
particular server, form the server load and affect the power consumption of
the components of that server, and primarily that owing to the CPU utiliza-
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tion. Our system consists of a cloud provider who owns some geographically
distributed cloud server facilities and exposes this infrastructure to possible
customers who do not have the resources to execute their tasks. Whenever
a customer asks for some available resources, the cloud provider creates a
VM and selects one of his cloud server facilities to host it. All the requests
initially arrive at a central dispatcher (e.g., a web server) and each request
is determined by a number of floating-point operations (FLOPs) that have
to be executed before a deadline

For every task request cloud provider conduct a SLA with the respective
client (task request owner). That SLA looks like the one in table 3.

components value

Service guarantee Availability

Service guarantee time period Until the deadline
Service guarantee granularity Cloud server facility
Service guarantee exclusions -

Service credit 100% of customer bill
Service violation measurement and reporting | Cloud provider

Table 3: SLA of our architecture

The predefined SLA states that the cloud provider guarantees that the
service will be available until the imposed at the request deadline. At least
one cloud server facility would be available to execute the request and in the
case of not available cloud server facility the client will take her money back.
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Figure 18: Requests arrive at a central controller which allocates them to
cloud server facilities, each of which fulfills the energy demands from a RES
and the power grid.
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7 System Model

In this section, we describe in more detail the characteristics and the dynam-

ics of the system architecture.

Symbol | Meaning Unit

D The set of the cloud server facilities Natural Number

B; The total processing capacity of cloud | FLOPs/second
server facility ¢

F; The amount of FLOPs in the VM re- | FLOPs
quest 7

d; The deadline imposed in the VM re- | second
quest j

c; The processing capacity of VM request | FLOPs/second
J

a; The arrival time of VM request j second

T; The running time of VM request j second

h; The cloud server facility which executes | Natural Number
VM request j

R;(t) The power generation of the RES | Watt
plugged in cloud server facility 7

pi(t) The price of the power from the power | Euros
grid in cloud server facility ¢

Li(t) The load of the cloud server facility ¢ | FLOPs/second

PUFE; The Power Utilization Efficiency of the | real number > 1
cloud server facility ¢

) The duration of one time slot second

e; The execution cost of request j Euros

m; The money the cloud provider will be | Euros
paid for the execution of request j

Table 4: Notation Table

We consider a set D of D geographically distributed cloud server facilities
D = {1,...,D} and a set B of B resources, B = {1,...,B}. The set of
the resources may include processing capacity, storage, memory, bandwidth
etc. For example, a request for a database service like the Amazon relational
database service [1], needs processing capacity (expressed as Elastic Compute
Units), storage (GByte), memory (GByte) and 1/O capacity (request rate).

In this work, we concentrate on one type of resource, the processing ca-
pacity, for the reason that the CPU is the major component that consumes
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power, but our approach can be extended to include more resources. Assume
that B; is the processing capacity of cloud server facility ¢, in floating-point
operations per second (FLOPS) [10].

7.1 Service Requests

Each VM request j arrives at the central queue at time «; and is specified
by a number of (FLOPs) F; and a deadline d; by which the execution of the
VM should be finished. The cloud provider is responsible to create a VM
for that request and allocate it to a cloud server. The created VM will have
processing capacity ¢; (FLOPS) and will be hosted for a time 7;.

Cj = — (1)

Note that the unit of [} is floating-point operations (FLOPs), whereas
the unit of ¢; is floating-point operations per second (FLOPs/sec). The cloud
provider can either allocate a VM with low processing capacity yet enough
to finish the task before the deadline, or it can allocate a VM with a high
processing capacity to finish the task as soon as possible. This flexibility is
depicted in figure 19.

! RUNNING

T TIME (sec)
PALLILOPS
FLOPs
CcPU
Tj  RUNNING TIME (sec) F =97 ||aLocaren
CPU ALLOCATED (FLOPs/sec)
o FLOPs I(FLOPs/sec) G
i s F =qT; G Q4 g
] J J .
Qe—FF ! 1 d; t Q! dj t
A A A A V. A
VM REQUEST VM EXECUTION oE A\Q:'_I'NE VM REQUEST VM EXECUTION VM
ARRIVAL TIME START TIME ARRIVALTIME  START TIME DEADLINE

Figure 19: Two feasible realizations of processing capacity, running time and
start execution time of a VM request with a; = 0

A SLA like that on table 3 is conducted between the customer and the
cloud provider. Also cloud provider is paid m; euros for that execution.
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7.2 Model of Renewable Source Generation and Power
Consumption at the Servers

Each cloud server facility ¢ € D has a RES installed that produces a time-
varying power at time ¢, denoted by R;(t). The amount R;(t) can be known
only for a short time period. This knowledge is usually extracted from
weather forecast data. Each cloud server facility ¢ can draw its energy either
from the RES or from the main power grid. For the latter we assume a
time-varying price per unit of power at each time ¢, denoted by p;(t). Also,
each cloud server facility 7 has a load L;(t) at time ¢ that creates power needs
F(LiD)

where f;(-) is an one-to-one function that maps the load to power con-
sumption.

Current cloud server facilities consist of power-saving servers that in-
corporate frequency and voltage reduction in order to decrease the power
consumption [24]. The combination of a specific CPU frequency and voltage
is known as a performance state. The transition from one performance state
to another does not causes performance degradation since it occurs in micro-
seconds. These power-saving features adjust the power consumption of an
idle server to its actual load and characterize the relationship of the power
consumption and the load of a server, usually as a quadratic function (figure
13).

fi(Li(t)) = PUB; | Py, + o [Li(®)]*| ,a > 0 (2)

Figure 20 shows the power needs of some valid virtual machine allocations
of one request. The power consumption of the cloud server facility remains
stable over the virtual machine execution (blue squares). The power supply
from the renewable energy resource is depicted by the green curve. In the
case of zero load, cloud server facility consumes P,g. power while when it is
fully loaded it consumes Ppeqk.
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Figure 20: Valid virtual machine allocations of one request in an empty cloud
server facility.
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8 Problem Formulation and System Controls

In this section, we provide a mathematical formulation for the described
problem of the previous two sections 6 and 7

We are given a set of requests ) = {1,..., N} in a time horizon H and
for each request ;7 € )Y, the arrival time «;, the processing requirements
(FLOPs) F; and the deadline d;. We want to find the start execution time
s;j, the running time 7; and the processing capacity c; for each created VM.
The set of all the feasible solutions is:

Fij=A(s5,15,¢5) 1 a5 < 85 < dy — 75 and ¢57; = I} (3)

It is worth mentioning that once a VM starts its execution in a cloud server
facility, it is impossible to migrate to another cloud server facility or to fluc-
tuate its processing capacity.

8.1 Omne Cloud Server Facility

In the case of a single cloud server facility, the price of power grid per unit
of power is described by p(t) and the RES power generation by R(t). Also
the load is described by:

J:8;<t<s;+7;

and the total power consumption by f(L).
The optimal solution for every request in Y is given by:

i [0 ) - R a -

where ¢t equals ¢ if ¢ is greater than zero otherwise equals zero.

8.2 Multiple Cloud Server Facilities

In the case of more than one cloud server facility we have to introduce a binary
parameter x;; indicating the selection of the server facility ¢ to execute the
VM j,z=(xy:i=1,...,D,j=1,...,N). Since, each VM can be assigned
only in one cloud server facility, the assignment variable is described by the
following equation:

(6)

)1 if VM j assigned to cloud server facility i
Y10 otherwise.
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The load of every cloud facility ¢ is described by:
Li(t) = > T5C4 (7)
Jis;<t<s;+7; and x45=1
The optimal solution for every request in Y is given by:

min Z/ pi(t) [fi(Ls(t)) — Ri(0)]" dt (8)

(85,75 c] VEF;

subject to:

D

8.3 Alternative Formulation

Since the control variables of our problem are related to every request j € YV
it is worth providing an alternative formulation of the same problem which
shows directly the control variables. In more detail equation 10 is equivalent
to b and equation 11 is to 8 and 9.

8575
min__ Y / - @ [[F ) + o) = ROIT = [fL(#) — RO dt

55,T4,C5)EF; <
(85,75:¢5) T ey Vs

(10)

(11)

where h; is the cloud server facility that executes the VM of the request j.
The lagrangian function of 10 is:

85+T;
- ) / (L) +¢) = ROI — [F(L) — RO de (12)

JEY

F,
- Aoy —s5) — Aals; + 15— dj) — plmy — 6—7) (13)
v

In order to find the optimal values for s;,7; and ¢; we have to calculate
the partial derivative for every control variable.
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Math Reminder 1. Let f(x,t) be a function such that both f(x,t) and its
partial derivative f.(x,t) are continuous in t and x in some region of the
(x,t)-plane, including a(x) < t < b(x),x0 < x < xy. Also suppose that
the functions a(x) and b(x) are both continuous and both have continuous
derivatives for xo < x < xy. Then for xg < x < xy [7]:

b(x)
% < / . f<~%t>dt> = [, b)) (x) = f(x,a(x))d (x)

b(z)
+ / fo(z, t)dt
a(x)

and

% </&bf(x)dx> — ) (14)

Using 14 for s;:

854
g—;]j B % / p() [[f(L() +¢) — R — [f(L() — RO dt + M — X
9 (%517
o [ O T o) = B = (7)) -
0

Bs,; /jp(t) [[F(L@) +¢) = RO — [FL@) — RO dt + M — X

= plsj + 1) [[f(L(sj + 75) +¢) = R(s; + )] = [F(Ls; + 7)) = R(s; + )" ] =
plsi) [[F(L(si) + €)= R(sp)]" = [f(L(s;)) = R(s )] ] + M = Ao

In order to find the optimal value we set equal to zero the partial deriva-

tive % = 0 and we take:

ps; +75) [[f (Ls; +75) + ¢) = R(s; + )" — [f(L(s; + 7)) — R(s; + 7)) "]
— p(s;) [[J(L(s;) + ) — R(sp)]" — [ (L(s;)) — R(s)]"]
=X — M
Similarly, for 7;,

$;+T75
g—i = % / p() [[FL() + ) — ROIT = [f(L({) = RW]T] dt — Ao —
= p(s; +75) [[f(L(s; +75) + &) = R(s; + )" = [f(L(s; + 15)) — R(s; + 1)]"]
— Ay —
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In order to find the optimal value we set equal to zero the partial deriva-

97 — () and we take:

tive 8_7']

plsi+73) [[F(L(sj +75) +¢) = B(s; + )] = [f(L(sj +75)) — Rls; +75)]"]
= p(s;) [[F(L(s5) + ) = R(s)]" = [F(L(s3) — R(sp)]"]
= )\2 + u

For ¢; we use equation 1
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9 Offline Algorithm

In this section we try to find an offline algorithm to solve the virtual machine
allocation problem. More specifically, given the set:

y — {(a17F17d1)7 (a27F27d2)7 B (O[NyF]\UdN)} (15)

of all the request in a time horizon H, we try to find the start execution time
s;, the execution length 7;, the processing capacity c; and the cloud server
facility h; that will host the virtual machine of request j of every request

je.

9.1 Slotted Time

Since the predefined optimization problems in section 8 can not be solved in
continuous time we make the assumption the the system is slotted and that
every event occurs in a timestamp that is multiple of . In that case, we
should modify the predefined equations according to the following rule:

1 tp
/ (expression_of _t) dt — Z (expression_of _t) (16)
ta t=t,

9.2 One Cloud Server Facility

In the case of one cloud server facility we have to solve the following problem:

min / p(t) (£ (L(D) — REOJ* e (17)

8,7,C

subject to:

Lty= > ¢ (18)

J:8;<t<s;+7;
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9.2.1 Only One Request Example

H
Lm0 ) - RoIT 19)
d;
L [ e 1) - Rl d 0
L [ 1) - Rl )
85175

sy e 2 P01/ (es) = RO (22)

The execution time of the request could be any multiple of 4 in the fol-

lowing spectrum:
I s — v
Tje{gj,...,%} (23)

L(t) < B VYt ¢ [Sj, 8 -+ Tj] (24)

under the constraint:

Given the execution time we can calculate the processing capacity ¢; = %

M

and thereore we can determine the hosting cost for every possible s;, 7; and
¢;. In general:

o= k-0 (26)
c; € {g,...,min(B,g)} (27)

where k and &k are any possitive integers.
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The following picture shows a general case of one request with two possible
processing capacities but alot of starting execution times.

Figure 21: All possible executions of a vin with only two possible processing
capacities.

9.2.2 Four Requests example

Before we present an offline algorithm which determines all the control vari-
ables for every request, we show a small example of four requests and only
one cloud server facility. This example depicts the basic concepts needed to
understand the offline algorithm. In general, every request j can be served
by creating a virtual machine with a set of possible realizations as depicteded
in figure 19.

Under the assumption that the system is slotted, we can determine the
set of all the possible executions of request j, W; = {wy),wf), ...} with size
W;. The number of all the possible executions of all the requests is:

w=1[w; (28)
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And the set of all the possible executions is the cartesian product

w W1XW2X...XWN (29)

and can be illustrated by a tree like the one on figure 22. The red nodes
is Wi, the green is W, the blue is W5 and the yellow is W,.

[ ]

©0e e®
0000000
©EOEEEOOG

©e0CPCePCe ©00PPOO®
@EOOOPEG PEOEEOE®

PO EEPEE O EPEEO O OPEE O OEO E©POE ©
0000000 00000000

Figure 22: all possible executions of four requests with W, = 3, W, = 2, W,
4,V ;1 = ]
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Every possible execution w = (wy, ws, . .., wy) € W, where w; = (s;, 75, ¢;)
is the execution of job j jhas a cost equal to:

> p) [FLD) = R +oe[L(t) - B]' (30)

t=s1
subject to:

Lty=" > ¢ (31)

Ji8;<t<s;+7;
We assume that:

oo if L(t) > B

. (32)
0  otherwise.

oo [L(t) — BT = {

Practically, if in one execution the load of the cloud server facility exceeds
the processing capacity of the cloud server facility the cost of this execution
is infinity because it is impossible to happen.

9.2.3 Multiple cloud server facilities

In that case W; has multiple times, as many as the number of the cloud
server facilities, the same executions but for different cloud server facility. In
more detail, w; has one more entry which is the number of the cloud server
facility. i.e w; = (s, 7, ¢4, hj). Also the execution cost is:

D dy

ST n O L) — Rt + oo [L(t) — B (33)

=1 t=o

subject to:

Li(t) = Z Cilizp, (34)

J:8;<t<s;+7;

where

0 otherwise.

Lo, — {1 o= h, (35)

. (36)
0  otherwise.
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9.3 Transform the Offline problem to a Shortest Path
problem

If we add a dummy node in figure 22 which is connected to all the leaf
nodes, we are taking a directed graph whose every path from the root node
to the dummy node represents a possible execution. Having that in mind
we add the appropriate weights to every edge of the graph in such a way
to transform the offline problem proposed in section 9 into a shortest path
problem[13]. After that transformation we can use one of the well-known
algorithms (BellmanFord, Dijkstra, Gabow, etc) to solve the problem.

9.4 Edge Weights

Every edge from a node w;-m € W; to a node w;.lll € W;;1 must have weight

equal to the execution cost up to the node of w;l)rl minus the execution cost

up to the node of w;k). By doing that, we ensure that the total cost of any

path from the root to the dummy node is equal to the cost needed for the
execution of all the requests. The selected w;.l execution for the request j is
determined by the node on the path.

sl+7'1
+
Zglk — Z phlC [fhk Cl) Rh’f(t)} ’ (511677—{676]167}#16) — wlf (37)
t= s1

70, = ijh L) = R | =27 1<j< N (38)

zlts

AN — (39)

The number of all the edges is:

tree edges edges to S
f—/\ﬁ f—/\ﬁ

B ZHW+HW (10)

=1 j=1

and the number of all the nodes is:

vZﬁWj (41)

i=1 j=1
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Figure 23: The graph created by the tree of all possible executions of the
example in subsection 9.2.2

The number of the edges and the number of the nodes given by equations
40 and 41 can be reduced after a sorting of the set Y with respect to the
number of possible executions of every job j, W;. Figure 24 depicts that
reduction. The average complexity of a shorting algorithm [14] is O(NlogN),
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where N is the number of the requests.

Figure 24: The graph created by the tree of all possible executions of the
example in subsection 9.2.2 after the sorting by the number of all possible
executions
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9.5 Complexity

In order to determine the minimum cost of execution of all the requests in
Y we have to do the following steps:

1. V5 € Y find W,

2. sort Y with respect to W;

3. calculate W and create a graph similar to figure 24.

4. use equations 37-39 to assign the appropriate weight to every edge
5. use a shortest path algorithm to find the optimal w; Vj € Y

The last two steps are more complex and these are the processes who
determine the complexity of our solution since the first three require polyno-
mial time. Step 4 requires a traverse of the tree (graph without the zero-cost
edges to node S) created by step 3, this can be done by a Depth-first search
algorithm [6] (or Breadth-first algorithm [2]) with complexity O(F) while,
the sortest path algorithm requires O(V?) if we use a list and O(E + ViogV)
if we use a fibonacci heap.
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9.6 Pseudo-Code for general case

In this subsection we present the pseudo-code of the main functions of the
offline algorithm. Function 1 calculates the number of all the possible execu-
tions of a given request. Function 2 uses function 1 to create a vectror with
all the possible executions and function 3 calculates the size of WW. Function
5 produces a two-dimentional vector with all the possible executions. Func-
tion 6 is a recursive function which practically parses W and finds the cost
of every senario w € W. Pseudo-code 8 describes the offline algorithm and
functions 9 and 10 determine the minimum cost senario and the execution
of every request. Figure 25 shows how the deadline and the number of flops
affect the number of all the possible executions.

Algorithm 1 All possible executions of one VM request (find W)

1: function NUMBEROFREQUESTSP OSSIBLEEXECUTIONS(request j, D)
2: number_of _possible_executions < 0

3: for all d € D do

4: S < Qy

5: while s < d; do

6: e+ s+9

7: while ¢ < d; do

8: number_of _possible_executions + +
9: e<—e+9

10: end while

11: §4=s5+90

12: end while

13: end for

14: return number_of _possible_executions

15: end function

Algorithm 2 All possible executions

1: function ALLPOSSIBLEEXECUTIONS(Y, D)

2 for all r € YV do

3: Possible_executions|r] =NUMBEROFREQUESTSP OSSIBLEEXECUTIONS(r,D)
4: end for
5
6:

return Possible_execulions
end function
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Algorithm 3 Number of all the possible executions

1
2
3
4
5
6
7

: function NUMBEROFALLPOSSIBLEEXECUTIONS())
total_possible _executions = 1
for all r € YV do

: total_possible_executionsx = Possible_executions|r]
end for
return total_possible_executions

: end function

Algorithm 4 This function returns the start of request’s possible executions

n

vector total_possible_executions

1

2:

3
4:
5:
6
7

: function BEFOREREQUESTP OSSIBLEEXECUTIONS(request 7,))
before_req_possible_executions = 0
for allr € Y and r < j do

before_req_possible_executions+ = Possible_executions|r]
end for
return before_req_possible_executions
: end function

Algorithm 5 Save All Possible Executions (find (W, ..., Wx))

function SAVEALLPOSSIBLEEXECUTIONS(Y, D)
pos < 0
for all r € YV do
for all : € D do
S <y
while s < d; do
e s+0
while ¢ < d; do
total_possible_executions|pos||
total_possible_executions|pos||
total_possible_executions|pos||
total_possible_executions|pos||
e<e+o
pos < pos + 1
end while
§<5+0
end while
end for
end for
end function

Institutional Repository
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Algorithm 6 Find Minimum Cost senario

function MINCOSTSENARIO(request, senario, confs, temp_load, costs)
if senario = NUMBEROFALLPOSSIBLEEXECUTIONS()) then
FINDMINIMUM(costs)
else if request = N — 1 then
x <+ BEFOREREQUESTPOSSIBLEEXECUTIONS(request,))
x < x + confs|request]
<0
while ¢t < H do
s < total_possible_executions|x][1]
e < total_possible_executions|x]|2]
i < total_possible_executions|x][0]
¢ < total_possible_executions|z][3]
if t > s and ¢t < e then
temp_load[i][t|+ = ¢
end if
t<t+9o
end while
d<0
while d < D do
<0
while t < H do
costs[senario]+ = pa(t) [ fa(temp_load[i][t] — Ra(t)]"
t<t+9o
end while
d<d+1
end while
con [ slrequest| < con fs|request| + 1
[ + NUMBEROFREQUESTSPOSSIBLEEXECUTIONS(request, D)
con [ s|request| < con fs|request] mod [
MINCOSTSENARIO(0, senario + 1, con fs, temp_load , costs)
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Algorithm 7 Find Minimum Cost senario (Continue)
else

x <+ BEFOREREQUESTPOSSIBLEEXECUTIONS(request,))

x < x + confs|request]

<0

while ¢t < H do
s < total_possible_executions|x][1]
e < total_possible_executions|x]|2]
i < total_possible_executions|x][0]
¢ < total_possible_executions|z][3]
if t > s and ¢t < e then

temp_load[i][t|+ = ¢

end if
t<t+9o

end while

[ + NUMBEROFREQUESTSPOSSIBLEEXECUTIONS(request + 1, D)

if confs|request + 1] =1 then
con [ slrequest| < con fs|request| + 1
[ + NUMBEROFREQUESTSPOSSIBLEEXECUTIONS(request, D)
con [ s|request| < con fs|request] mod [

end if

MINCOSTSENARIO(request + 1, senario, conf s, temp_load, costs)

end if
end function
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Algorithm 8 Offline Algorithm

function OFFLINEALG(Y, D)
while r € YV do
confslr] + 0
end while
while d € D do
<0
while ¢t < H do
temp_load|d|[t] + O
end while
end while
I «+ NUMBEROFALLPOSSIBLEEXECUTIONS())
1+ 0
while © < I do
costsli] « 0
end while
MINCOSTSENARIO(0, 0, con fs, temp_load, costs)
end function

Algorithm 9 Find Minimum cost senario

function FINDMINIMUM (costs)
minCost < co
optsenario < 0
I «+ NUMBEROFALLPOSSIBLEEXECUTIONS())
1< 0
while 1 < I do
if costs|i| < minCost then
minCost < costsli]
optsenario <— i
end if
end while
end function
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Algorithm 10 Find Executions of Minimum Cost Senario
function FINDEXECS(optsenario, Y)
I «+ NUMBEROFALLPOSSIBLEEXECUTIONS())
while req € Y do
[ + NUMBEROFALLPOSSIBLEEXECUTIONSAFTER(req, V)

if [ # 1 then
wy,, = optsenariofl
else
[ =NUMBEROFREQUESTSPOSSIBLEEXECUTIONS(req, V)
Wy, = optsenario mod [
end if
end while

end function

Algorithm 11 Number of all the possible executions of requests after a given

request
1: function NUMBEROFALLPOSSIBLEEXECUTIONSAFTER(req, ))
2: next_possible_executions = 1

3 for all r € Y and r > req do

4 next_possible_executionsx = Possible_executions|r|
5: end for

6 return next_possible_executions

7: end function
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Figure 25: Number of possible executions vs the maximum flops and maxi-
mum deadline.
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10 Virtual Machine Allocation Algorithms

In this section, we propose an online algorithm that operates upon arrival of a
VM request and determines to which cloud server facility it will be allocated
given the knowledge of the RESs power production and price of grid power.

10.1 Online Algorithm with Lookahead Window T

In this section, we describe an algorithm that defines the time a new request
starts being served and the cloud server facility that executes the created VM.
Furthermore, our algorithm specifies the processing capacity of the VM and
the running time, given that the RES power supply and the power grid prices
are known for the next small lookahead horizon T" < H. This assumption
is valid because the RES power supply depends on the weather conditions
which can be assumed as known for a lookahead time horizon of some hours.
Also, the price of the power from the power grid does not change frequently
and the assumption of the apriori knowledge for the next few hours is valid.
The additional power needed to host VM j in a cloud server facility i, if
available resources exist, at time ¢ equals:

Cilt, ;) = (f(Li(t) + ¢5) — Ri(t)" = (J(Li(t)) — Ri(t)) " (42)

The additional power is zero if there is enough renewable capacity R;(t). The
additional cost of hosting VM j in a cloud server facility ¢ starting at time
s; while taking into account the price at 7 and the running time of the VM

_F o
Cj—T—j,IS.

8575 F;
i) = [ mC (13)
S]' 7

Given that the new VM j will be assigned to cloud server facility i,
the optimal time to start s}, the optimal running time 77 and the optimal

processing capacity ¢j are given from:

min = ¢ (8,75 44
o, i ¢ioil85,75) (44)

For t € [T, d;] we use estimated values of R;(t) and p;(t). Now using equation
(44) we produce a vector space (s}, 7, c}) for all the cloud server facilities
and select the cloud server facility with the minimum cost. Therefore the

minimum additional cost for hosting the VM j is: ¢j_- (s}, 7).
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10.2 Online Greedy Algorithm

An extreme case, is the case of no-knowledge about the stochastic parame-
ters of our system. An online greedy algorithm creates a VM to the cloud
server facility that offers the cheapest additional hosting cost by taking into
account only the instantaneous parameters. The new VM starts its execution
immediately and finishes on the deadline. Then the cloud server facility ¢*
that will host the VM determined at the request is:

L

o : NOAq, —L— 45
= arg min | pa(a;)Cala;, dj_aj) (45)

10.3 Online Random Algorithm

In order to assess the performance of our proposed algorithm we compare it
with a random algorithm which assigns every incoming request to a random
cloud server facility that has the resources to host it. This naive algorithm
is used as an upper bound benchmark in the performance of our algorithm.

*=U(1,D) (46)

where Uf(a, b) is the uniform distribution in [a, D]
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11 Numerical Results of Online Algorithms

In this section we present the performance of our allocation algorithms. For
this reason, we implement a simulator using Java.

11.1 Experiment One

In that experiment we use 10 geographically distributed cloud server facili-
ties with equal capacity. The duration of the experiment is two days. Each
cloud server facility is equipt by a solar panel whose peak power generation
1.2 times the maximum power consumption Ppe.e. The solar panel power
generation is gaussian shaped. The price of the power from the power grid is
selected by table 2. More specifically, we select the following ten locations:
australia, canada, hong kong, japan,south africa, Netherlands, Mexico, Den-
mark, Argentina, Dubai.

Figure 26 shows how the increase of the arrival rate affect the total cost
of execution. Furthermore, online algorithms with look-ahead window of 2
and 7 hours are more robust in that increase and this is shown by the smaller
increase rate in their curves. Also, online algorithm with look-ahead window
of 7 hours exploits better the knowledge of the stochastic parameters and
responds better in the arrival rate increase.

The number of flops and the deadline follow a uniform distribution whose
parameters do not change accross the experiment.

Cost vs arrival rate

T T T T T Po—

cost

10° m— rgndom

w— Jreedy
= 0nline w=2h

- == 0nline w=7h

01 0.‘1 5 0.2 : 0.‘25 03 0.‘35 0.4
arrival rate

Figure 26: Total cost vs arrival rate. For every value of the arrival rate we
conduct the same experiment 1000 times.
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Figure 27 shows how the increase of the maximum number of flops affect
the total cost of execution. Again, online algorithm with look-ahead window
of 7 hours exploits better the knowledge of the stochastic parameters and
responds better in the increase of the flops number.

Cost vs maximum number of flops
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Figure 27: Total cost vs arrival rate. For every value of the maximum flops
number we conduct the same experiment 1000 times.

11.2 Experiment Two

The setting of that experiment consists of 3 cloud server facilities with dif-
ferent processing capacity capabilities and different PUE. We assume that
the first cloud server facility is located in Ireland, the second in Spain and
the third in Austria. Each cloud server facility is plugged to a wind turbine
[19].[20] and [18]. Figure 28 shows the power generation of the three afore-
mentioned wind turbines. Figure 29 shows how the online algorithm is able
to execute more requests by selecting the appropriate cloud server facility
and shifting the virtual machine execution.
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Power generation from Wind Turbines in 3 geographically distributed cloud server facilities
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Figure 28: Power generation from wind turbines
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Figure 29: Drop probability increases as the arrival rate increases
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11.3 Experiment Three

In order to test our algorithm we use real data traces. In case of wind turbine
data we use [3] and for solar panels we use a Gaussian shape function with
peak at midday. The peak of the Gaussian shape function of every solar
RES is equal to 1.2 times the maximum power the cloud server which the
RES supports can consume. In this experiment we assume that the rate for
VM hosting dynamically changes per hour and we use as arrival rates the
following normalized values [31]:

A=1[0.60.520.40.280.20.170.16 0.175
0.230.320.45 0.6 0.64 0.69 0.72 0.75
0.78 0.8 0.83 0.9 0.97 0.94 0.82 0.71]

where every value is the average arrival rate during one hour. The first
value corresponds to 21.00 at night. The number of the flops and the deadline
of every arriving request follow a uniform distribution.

The price of electricity from the power grid is the same to every data
center and it is equal to 0.1265 euros per kWh. We create five geographically
distributed data centers with a capacity of 1000,1500,800,1200,500 processing
units respectively and we equip three of them with solar panels and two with
wind turbines. Every data center is located in a different time zone (UTC
0,UTC -7,UTC 3 ,UTC 5,UTC 12) and that means that the solar panels are
not at their peak at the same time.
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Figure 30: Total cost and drop probability vs maximum deadline.

Figure 30 shows how the deadline imposed in the request affects the
operational cost of the cloud server facility and the drop probability. The
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drop probability defines the case where the requested resources to one of
the cloud servers can not be served. Random and greedy algorithms do
not have the ability to postpone the hosting of the VM for the near future
and that increases the probability of being unable to host the VM, if the
deadline is too short. On the other hand the online algorithm utilizes the
system resources more effectively because it can start the hosting of a new
request after some resources will be released. This reduces the probability of
dropping the request.
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Figure 31: Total cost vs arrival rate multiplication factor.

In the same setting of five servers, in one day horizon, each arriving
request imposes a deadline with a maximum value of 4 hours and an average
number of 2000 flops. Figure 11.3 presents the average total cost of the cloud
facility as a function of the arrival rate, over 50 independent simulation runs.
The x-axis is the multiplier, by which we multiply A. Online algorithm with
lookahead window of 6 hours causes a reduction to power costs because it
exploits the RES in a better way since it controls both the start of the
execution of every job and its processing capacity.

Figure 32 depicts the reduction of the power cost as a function of the
lookahead window. Furthermore because of the geographical distribution of
the cloud servers, which results to the inability of providing a low cost service
at the same time, the power grid cost increases when both the number of
cloud facilities and the arrival rate multiplication factor are doubled.
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Figure 32: One day horizon. Cloud servers with equal capacity 5000
FLOPs/second, each arriving request imposes a deadline with a maximum
value of 20 hours

11.4 Experiment Four

The setting of that experiment consists of four cloud servers with equal ca-
pacity of 5000 flops/second which are located in different time-zones and are
supported by solar panels. Figure 11.4 depicts the power needs of every cloud
server facility for the two online algorithms (blue and black lines) and the
power generation of the renewable energy source which is plugged to every
cloud server facility (green line). We note that the online algorithm with
lookahead window of 6 hours selects the cloud server facility which offers less
cost that the one with lookahead window of 2 hours. The arrival rates are
15 times the vector A, the maximum deadline is 20 hours and the maximum
number of flops is 1000.
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