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Περίληψη
Η νεφελώδης υπολογιστική (cloud computing) είναι ένα νέο αναβαθ­

μισμένο μοντέλο της τεχνολογίας των πληροφοριών που εμφανίστηκε τα 
τελευταία χρόνια και έχει ήδη αλλάξει τον τεχνολογικό κόσμο. Προσφέρει 
ένα σύνολο υπηρεσιών μέσω του διαδικτύου χρησιμοποιώντας μια σειρά απο 
κοινόχρηστους πόρους. Το μοντέλο τιμολόγησης των υπηρεσιών που παρέ­
χει η νεφελώδης υπολογιστική ακολουθεί ένα σύστημα χρέωσης μόνο των 
πόρων που χρησιμοποιήθηκαν απο τον πελάτη. Οι υπηρεσίες της νεφελώ­
δους υπολογιστικής παρέχονται μέσω υπολογιστικών συστήματων τα οποία 
ονομάζονται κέντρα δεδομένων (data centers).

Δυστυχώς, τα κέντρα δεδομένων απαιτούν μεγάλα πόσα ενέργειας. Με­
ρικές εγκαταστάσεις χρειάζονται ενέργεια εκατό φορές παραπάνω από ένα 
τυπικό κτιριακό συγκρότημα. Ένας φιλικός προς το περιβάλλον και οικο­
νομικά αποτελεσματικός τρόπος για να περιοριστεί το λειτουργικό κόστος 
ενός κέντρου δεδομένων είναι η εγκατάσταση ανανεώσιμων πηγών ενέρ­
γειας. Ωστόσο, η παραγωγή ηλεκτρικής ενέργειας απο τις ανανεώσιμες 
πηγές ενέργειας δεν είναι ντετερμινιστική. Προκειμένου να είναι εγγυημένη 
η σταθερή τροφοδοσία ρεύματος για το κέντρο δεδομένων, χρησιμοποιεί­
ται επίσης ενέργεια από συμβατικό δίκτυο ηλεκτρικής ενέργειας. Αξίζει να 
σημειωθεί πως η τιμή μίας μονάδας ηλεκτρικής ενέργειας που προέρχεται 
από ανανεώσιμη πηγή ενέργειας είναι σχεδόν μηδέν. Επίσης η τιμή μίας 
μονάδας που προέρχεται από ένα συμβατικό δίκτυο ηλεκτρικής ενέργειας 
διαφέρει απο τοποθεσία σε τοποθεσία και είναι χρονικά μεταβαλλόμενη.

Η διπλωματική διατριβή που κρατάτε στα χέρια σας διερευνά το πρόβλη­
μα της εξυπηρέτησης αιτήσεων για υπηρεσίες νεφελώδους υπολογιστικής 
σε ένα δίκτυο απο κέντρα δεδομένων που βρίσκονται σε διαφορετικές γε­
ωγραφικές περιοχές. Μια αίτηση εξυπηρετείται μεσω μίας εικονικής μηχα­
νής (virtual machine). Κάθε κέντρο δεδομένων είναι συνδεδεμένο σε ένα 
συμβατικό δίκτυο ηλεκτρικής ενέργειας και επιπλέον υποστηρίζεται από μία 
ανανεώσιμη πηγή ενέργειας.

Το πρόβλημα αναδεικνυεται μέσα από ένα σύστημα αποτελεσματικής 
χρήσης της ενέργειας μεταξύ ενός χρονικά μεταβαλλόμενου ανά μονάδα 
ηλεκτρικής ενέργειας κόστους από τον συμβατικό πάροχο ηλεκτρικής ενέρ­
γειας και τον απρόβλεπτο και χρονικά μεταβαλλόμενο ενεργειακό εφοδιασμό 
απο μία ανανεώσιμη πηγή ενέργειας. Ο αντικειμενικός σκοπός είναι να ε­
λαχιστοποιηθεί το ολικό λειτουργικό κόστος κατανάλωσης ενέργειας όσον 
αφορά το διαχειριστή (cloud provider) και να μειωθούν οι περιβαλλοντικές 
επιπτώσεις των επιμέρους διαδικασιών. Για να επιτευχθεί αυτός ο στόχος 
θεωρούμε πως κάθε αίτημα αρχικά λαμβάνεται και τοποθετείται σε μία κεν­
τρική ουρά. Κάθε αίτημα συνδέεται με ένα αίτημα εικονικής μηχανής που 
έχει κάποιες ανάγκες από πόρους αλλά και μία χρονική προθεσμία πριν απο 
την οποία πρέπει να ικανοποιηθεί. Ο διαχειριστής του δικτύου των κέντρων 
δεδομένων θα δημιουργήσει μία εικονική μηχανή με τις ανάλογες απαιτήσεις 
πόρων και θα την εκτελέσει πριν την εκπνοή της χρονικής προθεσμίας. Η ε­
κτέλεση της αίτησης εγγυάται απο ένα συμβόλαιο (service level agreement) 
που γίνεται ανάμεσα στον αιτουμενο για την υπηρεσία και τον πάροχο της 
υπηρεσίας.

Προτείνεται ένας αλγόριθμος που παίρνει σαν δεδομένα το κόστος ανά 
μονάδα ρεύματος απο τον πάροχο του και την ικανότητα παραγωγής ενέρ­
γειας απο την ανανεώσιμη πηγή ενέργειας για ένα χρονικό ορίζοντα και 
αποφασίζει για κάθε αίτηση. Ο προαναφερθέν αλγόριθμος συγκρίνεται με 
έναν “ άπληστο” αλγόριθμο και με έναν “ απλοϊκό ” .

Επείσης, μετατρέπουμε το πρόβλημα δημιουργίας εικονικών μηχανών 
και ανάθεσης τους στα κατάλληλα κέντρα δεδομένων για την εξυπηρέτηση
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των αιτήσεων για μια υπηρεσία νεφελώδους υπολογιστικής σε ένα πρόβλημα 
εύρεσης συντομότερου μονοπατιού σε ένα γράφο. Επιπλέον, παραθέτουμε 
έναν απλό μηχανισμό τιμολόγησης κάθε αιτήματος. Τέλος, χρησιμοποιούμε 
πραγματικά δεδομένα αιτήσεων σε συστήματα νεφελώδους υπολογιστικής 
και παραγωγής ενέργειας απο ανανεώσιμες πήγες σαν είσοδο στα αριθμητικά 
πειράματα μας.
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A b strac t

Cloud computing is a new upgraded information technology (IT) 
model which came up the last few years and has already changed the 
technological world. It offers a set of services (software, application, 
network, storage, infrastracture) over the internet by using a set of 
shared resources. The pricing model of cloud computing services fol­
lows the pay-as-you-go model which means that customers pay only 
for the resources they use. Cloud computing services are hosted in 
computer systems which are called data centers.

Unfortunately, data centers require large amounts of energy. For 
example, some facilities have power densities more than 100 times 
that of a typical office building. An environmental friendly and cost 
efficient way to reduce the operational costs of a data center is the 
installation of renewable energy sources (RESs). However, the power 
generation of RESs is not deterministic and time-variant. In order to 
be guaranteed a stable power supply for the data center, power from 
the power grid also used. It is worth mentioning that the price for 
a unit of power is almost zero for a RES but not for the power grid 
which price also changes by time.

This thesis explores the problem of virtual machine (VM) alloca­
tion over a network of cloud server facilities which are deployed in 
different geographical areas. Each cloud server facility is connected 
to the conventional power grid network and in addition supported by 
an attached renewable energy source. We address the problem of en­
ergy efficient task allocation in the system in the presence of a time 
varying grid energy price and the unpredictability and time variation 
of provisioned power by the RES. The objective is to reduce the total 
cost of power consumption associated to the operator and to reduce 
the environmental impact related to the processing of the tasks.

To achieve this goal we consider that all third-party VM requests 
initially arrive in a central queue.Each task request is associated with a 
VM request with some resource requirements and a deadline by which 
it needs to be completed. The cloud provider has to create a VM 
with the resource requirements specified at the request and execute 
the VM before the deadline. The task execution is quaranted by a 
service level agreement (SLA) between the client (i.e the task owner) 
and the cloud provider.

We propose an online algorithm with given lookahead horizon, in 
which the grid power prices and patterns of output power of the RESs 
are known a priori and we compare it with a greedy online algorithm 
and a naive algorithm. Also we transform the problem into a shortest- 
path problem under the assumption that all the stochastic parameters 
and the requests are known for a specific time horizon. Finally, we
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propose a simple pricing mechanism who determines the price of the 
request execution.

Numerical results on real traces of cloud traffic and renewable 
source generation patterns are encouraging in terms of the perfor­
mance of our techniques and motivate further research on the topic.
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1 Cloud Com puting

1.1 Cloud Com puting B asics
Cloud computing[4][17] is a way to provide services over the network to re­
mote customers. It might be deployed in an private, public or hybrid manner 
and has the following essential characteristics: customers buy as many re­
sources as they want providing the illusion of infinite offer, whenever and for 
as long as they need to. As a result, up and front hardware/software commit­
ment is eliminated and the ability to pay for use of computing resources on a 
short-term basis is granted. Resources can be accessed through the network 
from any computer, providing also geographical elasticity.

Figure 1: What is Cloud Computing.

The most popular types of these services are software (SaaS), platform 
(PaaS), network (NaaS) or hardware (IaaS) oriented. From the client's point 
of view, resources are utilized almost utterly because of the pay-as-you-go 
model reducing the cost of managing hardware and software. Furthermore, 
the fault tolerance problem does not exist any more (real hardware infras­
tructure is transparent). From the application's point of view there is no 
actual difference, although in reality applications run in virtual machines. 
Virtual machines are running on the same physical machine reacting like 
applications in conventional systems.

1
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Figure 2: Types of cloud computing services.

1.2 Pay-as-you-go model
The pay-as-you-go model offers the ability to cloud customers to pay only 
for the resourses they use. While in the case of not using a cloud service, 
the customer has to buy the maximum required resources he needs and as a 
result pay more money.

Figure 3: Pay by use instead of provisioning for peak [26].
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Figure 4: Penalty for under-provisioning [26].

1.3 V irtualization
The basic concept that differentiates cloud computing from software ori­
ented architectures (SOA) is virtualization[16] and more specifically virtual 
machines[15]. Virtualization is the creation of a virtual version of some­
thing, such as a hardware platform, operating system, a storage device or 
network resources. A virtual machine (VM) is a software implementation of 
a machine that executes programs like a physical machine. A system virtual 
machine provides a complete system platform which supports the execution 
of a complete operating system.

An essential characteristic of a virtual machine is that the software run­
ning inside is limited to the resources and abstractions provided by the vir­
tual machine it cannot break out of its virtual world. Classic benefits of 
virtualization include improved utilization, manageability, and reliability of 
systems. Benefits of virtualization have great appeal across a broad range of 
both server and client systems, more specifically in isolation, consolidation 
and migration. Isolation can improve overall system security and reliability, 
consolidation separates individual workloads onto a single physical platform 
and migration makes it possible to decouple the guest from the hardware on 
which it is running.

Two basic concepts in the cloud are the emulator and the hypervisor. An 
emulator is hardware or software or both that duplicates (or emulates) the 
functions of a first computer system in a different second computer system, 
so that the behavior of the second system closely resembles the behavior of

3
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Figure 6: types of virtualization

the first system and a hypervisor (also called a virtual machine manager ) is 
a program that allows multiple operating systems to share a single hardware 
host and controls and allocates host's resources to virtual machines.

As mentioned before, virtualization offers the ability of migrating a virtual 
machine from a physical machine to another, applications themselves and 
their corresponding processes are not aware that a migration is occurring 
because hypervisors allow migrating an OS as it continues to run. This is 
termed hot or live migration[25] and opposed to cold or pure stop-and-copy 
migration in which virtual machine halts, all memory pages copied to the 
destination physical machine and then virtual machine continues executing. 
Although live migration can take more time because some memory pages 
could be sent more than once, it offers a high probability of zero virtual 
machine downtime. Migration increases the system performance because 
it offers the ability of load balancing and more general efficient resource 
allocation technics and it helps cloud provider to manage his system (ie 
shut down/update/upgrade/repair some physical machines without stopping

4
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Figure 7: Virtualization: before and after.

providing the service). Unfortunately, sometimes a virtual machine must be 
halted to complete the migration. The time the virtual machine is halted 
called downtime and this is the migration cost in the case of live migration. 
On the other hand, in the case of cold migration, migration cost equals to 
the time needed to send all the useful virtual machine's memory pages plus 
the time needed to halt and restart on the new physical machine, which is 
ideally almost zero.

Figure 8: Benefits of virtualization.

5
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Figure 9: Virtual machine migration.

1.4 Cloud Providers
The cloud provider is a service provider that offers customers services avail­
able via a private (private cloud) or public network (cloud). Usually, he ex­
poses the required resources for the service via the Internet. Table 1 contains 
some popular cloud service providers for the four most popular categories of 
cloud services.

IAAS PAAS SAAS STORAGE
Amazon Amazon Abiquo 3X
AT&T Appistry AccelOps Amazon

BlueLock AppScale Akamai Asigra
CA CA AppDynamics Axcient

Cloudscaling Engine Yard Apprenda Carbonite
Datapipe FlexiScale CloudOptix Caringo

ENKI Force.com Cloud9 Cleversafe
Enomaly gCloud3 CloudSwitch Cloud Attached Storage

Eucalyptus GigaSpaces CloudTran Doyenz
GoGrid Gizmox Cumulux eFolder

HP Google Eloqua EVault
Joyent GridGain FinancialForce Intronis

Layered Tech LongJump Intacct Mezeo
Logicworks Microsoft Marketo Nasuni

NaviSite OpenStack NetSuite Nirvanix
OpSource OrangeScape Oracle Scality
Rackspace OS33 Pardot StorSimple

Savvis OutSystems Salesforce.com SugarSync
Terremark

Verizon
RightScale
ThinkGrid

SAP Vembu

Table 1: Popular cloud service providers [5]

6
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Figure 10: A Google data center outside Atlanta, Ga.

2 D ata  Centers

2.1 D ata  Center B asics
A data center is a facility used to house computer systems and associated 
components, such as network and storage systems. Data centers may be pri­
vate, where the entire facility is devoted to hosting applications belonging to 
the facility owner, or shared, where the facility owner leases out portions of 
the facility to different application providers. A shared data center may be 
operated as one of three kinds of services, depending on the interface exposed 
to the lessees: Infrastructure-as-a-Service (IaaS) exposes the lowest-level in­
terface, and is essentially the leasing out of physical servers; Platform-as-a- 
Service (PaaS) is one level higher, and leases out virtual CPUs and disks; and 
finally, Software-as-a-Service (SaaS) leases out hosted software. Data centers 
generally include redundant or backup power supplies, redundant data com­
munications connections, environmental controls and security devices. Large 
data centers are industrial scale operations using as much electricity as a 
small town.

7
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Figure 11: A central cooling plant in Googles Douglas County, Georgia, data 
center.

2.2 D ata  Center Energy Consum ption
Ideally, a data center should consume only as much energy as is needed to 
process incoming requests. Every request require some amount of energy to 
execute. In reality processing the request would additionally incur a number 
of energy overheads: energy used by idling resources, by air conditioners that 
cool the servers processing the request, and energy wasted in inefficient power 
delivery to the servers, among other overheads. The amount of these over­
heads depends on the energy (in)efficiency of the data center. An ideal data 
center would minimize these overheads. We enumerate two target properties 
of a data center that capture this idea:

1. Pow er-proportionality: This property states that executing a given 
job consumes a minimal amount of compute energy, irrespective of how 
much time it takes energy consumed by IT resources being proportional 
to work done. This is possible only if base-line power consumption1 is 
zero. In other words, idle resource power consumption must be zero.

1power consumed when no job is being executed
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2. Power U tilization Efficiency (PU E) Close To 1 : This property 
states that the energy consumed during job execution is within a small 
margin of the amount of useful work done. In other words, the constant 
of proportionality relating energy consumed to useful work done should 
be close to 1. PUE is defined as the total energy consumed by the data 
center, divided by the total energy consumed by the servers in the data 
center. As energy consumed by a data center is divided between servers 
(useful work) and the power, cooling, and networking infrastructure 
that supports the correct functioning of servers (not useful work), PUE 
can be much larger than 1.

Together, these properties assert that the power consumed by a data 
center is a minimal function of its load. Data center power proportionality 
requires power consumption to track load, and eliminates overheads from idle 
resource power consumption. Low data center PUE ties power consumption 
closely to useful work done and minimizes overheads from support equipment 
power consumption. Thus, a data center that is power proportional and has 
a PUE of 1 would consume only as much energy as the application logic 
requires from the IT equipment.

The figure above compares an ideal power consumption curve, as de­
scribed in the previous section, with the prevalent reality. The differences 
between these curves signal the presence of various inefficiencies in current 
data center design and operation. We identify two problem areas:

1. Energy consumption by idle resources

2. Energy consumption by support equipment

2.2.1 Energy consum ption by idle resources

The ideal data center consumes zero energy under zero load. The reality, 
however, is that in inadequately managed facilities, servers consume almost 
as much energy when idle or lightly loaded, as when heavily loaded. This is 
the reason for the high offset in the power vs load curve of the average data 
center (figure 12).

Many server components have the ability to operate in multiple power 
modes, so that they can be manipulated to consume power proportional 
to their load, or desired level of performance. However, there are several 
challenges to this approach:

• Performance Tradeoff: Switching between power modes takes time and 
can translate to degraded performance if load goes up unexpectedly. 
Most services can tolerate very little, if any, performance degradation.
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Figure 12: Schematic Diagram Of Data Center Power Consumption As A 
Function Of Load [27]

• Load Unpredictability: The load on a given server can be impacted by 
a plethora of factors, including time of day, day of year, current world 
affairs, geography, and flash crowds, among others, making it very hard 
to predict accurately. Power managing servers without adequate fore­
knowledge of their anticipated load can lead to significant performance 
degradation.

• Short Idle Times: Load spread can also vary continually, leading to 
short idle times for most servers. This means that the time and energy 
cost of switching them to lower power modes is often not worth the 
potential energy saving from the switch.

There are two basic approaches on minimizing energy consumption by 
idle resources in a data center. The first approach tries to reduce power con­
sumption by idle resources by finding ways to enable switching them to lower 
power modes (or turning them off). This approach relies on designing mech­
anisms that improve the predictability and length of resource idle periods, 
to enable effective power-down. The second approach tries to eliminate (or
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Figure 13: Impact of p-state on Power Consumption [24]

reduce) the presence of idle resources at all, by provisioning fewer resources, 
and over-subscribing them.

Examples of the first approach include disk power management solutions. 
Dynamic voltage and frequency scaling (DVFS) is a mechanism that allows 
CPU power to be manipulated to match its utilization. This is a useful tool, 
but needs an effective management framework that can maximize its benefit, 
by enabling sufficiently long idle CPU periods.

In recent years, x86 server processors have begun to incorporate the power 
saving architectures that have been common in both desktop and laptop 
computers. Enabling this feature can result in overall system power savings of 
up to 20%. The power saving is achieved by reducing the frequency multiplier 
(Frequency identier or FID) and the voltage (Voltage identier or VID) of the 
CPU. The combination of a specic CPU frequency and voltage is known as a 
performance state (p-state). Altering the p-state can reduce a servers power 
consumption when at low utilization but can still provide the same peak level 
of performance when required. The switch between p-states is dynamically 
controlled by the operating system and occurs in micro-seconds, causing no 
perceptible performance degradation

Resource over-subscription solutions typically employ a power-tracking
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and capping approach. Power-tracking, as the name implies, is a mechanism 
to monitor power use, while power-capping prevents resources from exceed­
ing a given (tunable) power cap. These are essentially safety mechanisms 
to enable resource oversubscription without the danger of overload and its 
repercussions.

2.2.2 Energy consum ption by support in frastruc tu re

In addition to the servers and IT equipment that are doing directly useful 
work, data centers contain a considerable amount of support infrastructure 
like power distribution and cooling equipment, that enables the IT equipment 
to function correctly, but does not contribute directly to useful work done. 
In the ideal data center, the energy consumption of the support equipment 
should be a small fraction of the energy consumption of the IT equipment. 
In reality, however, support equipment consumes a comparable amount of 
energy to the IT equipment. This leads to the steep slope of the power vs 
load curve of the average data center (figure 12). Support infrastructure 
performs the following functions:

• Cooling: Traditional data center cooling infrastructure consists of a 
chiller unit to chill the coolant used (water or air) and fans to direct 
cool air towards the servers and hot air away from the servers. These 
are both intrinsically power-hungry processes.

• Power Delivery: Power is typically delivered to a data center as high 
voltage AC power. After that it stepped down to lower voltage AC 
power for distribution to racks for use by servers and other IT equip­
ment. Inside this IT equipment, power supplies convert the AC power 
to the DC power needed for digital electronics. For every Watt of en­
ergy used to power servers, up to 0.9 W can be lost through this series 
of power conversions. Additional power is needed to cool the conversion 
equipment.

• Power Backup: In order to prevent outages, data centers use a backup 
power supply that can kick in temporarily if the primary supply fails. 
Traditionally, this backup takes the form of a central UPS. Power to 
the facility flows through the UPS, charging it, and is then routed to 
the racks. Significant power loss can result from this model, as the 
average UPS has an efficiency of only about 92%.

Solutions have been proposed to address each of the power overheads 
from support equipment. A highly effective solution to reduce cooling power
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overheads is free cooling, a system that uses ambient air for facility cooling, 
thus obviating the need for power-hungry chillers. It has been shown that free 
cooling can help bring data center PUE down to as low as 1.07 . However, 
a severe limiting factor for this solution is the requirement that ambient 
temperatures be suitable for use in facility cooling which does not hold for a 
majority of extant data centers. Power delivery efficiency has been shown to 
improve significantly by supplying the data center with DC power instead of 
AC power. However, this shift also comes at a significant deployment cost. 
Finally, it has been demonstrated that moving from a central UPS power 
backup solution to a distributed model with each server backed up by its 
own battery can eliminate the power loss through UPS inefficiencies. Finally, 
another approach to reducing support infrastructure energy consumption is 
to power them down when not needed.
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3 Renewable Energy Sources (R E S)

3.1 Types of renewables used in d ata  centers
There are many forms of on-site alternative power generation, but some are 
more applicable to critical facilities than others. Here is a look at the pros 
and cons of the most practical alternatives for a critical facility such as a 
data center.

3.1.1 Solar Power

Currently, photovoltaic (PV) panels are the most commonly used source of 
alternative power for buildings. However, they require a lot of roof or facade 
space in order to provide enough power to supply even a portion of the full 
demand of a data center.Moreover, solar power can only be tapped during 
daylight hours. While it is possible to store solar energy in valve-regulated 
lead-acid or wet-cell batteries for nighttime use, this is rarely practical. At 
night, most facilities will still need to rely on the grid and also will need 
to maintain a diesel-powered emergency generator. Most data center owners 
that have PV systems use them to reduce a facilitys energy load and operating 
cost. For example, PVs can be employed for peak shaving when the demand 
and associated cost of electricity is the highest, during peak daylight hours. 
In addition, if the data center generates more power than it consumes during 
the day, the excess energy can be sold back to the grid to reduce electricity 
bills. Also on the plus side, there is minimal upkeep on a solar power system 
once the initial investment is made. The panels also shade the building, 
decreasing the heat load. There is no noise generated with the use of solar 
panels, which is a problem with generators and their corresponding noise 
limitations at a property line.

Solar energy prediction is typically obtained with estimated weighted 
moving average (EWMA) models, because of its relative consistency and pe­
riodic patterns. As long as the weather conditions remain consistent within a 
period, the prediction is accurate, but becomes inaccurate, with mean error 
over 20 percent, with frequent weather changes. Recent work utilizing small- 
scale solar generation uses a weather-conditioned moving average (WCMA), 
taking into account the mean value across days and a measured factor of so­
lar conditions in the present day relative to previous days. While this work 
provides only a single future interval of prediction, it specifically addresses 
inconsistent conditions, with a mean error of under 10 percent.
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3.1.2 W ind Power

Although it is not necessarily a reliable source of primary power, wind power 
can help reduce energy costs by supplementing a main power source. More­
over, it has the lowest cost of renewable technologies. A 53-meter rotor 
diameter is capable of producing 1 MW of power, and it takes up consider­
ably less property than a photovoltaic system of the same capacity. However, 
wind turbines may not be permitted in some locations. In addition, the sys­
tem still requires supplemental energy storage or the ability of feeding to and 
from the grid, as well as a back-up generator.Wind energy prediction can be 
separated into two major areas: time-series analysis of power data and wind 
speed prediction and conversion into power.
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4 Electricity Pricing

Electricity prices change by time and by location. The frequency of the 
changes depend on the pricing policy of the power grid provider. The main 
factors[9] which determine the electricity price are the power demand,the 
power generation capabilities and the cost and the types [30] of the power 
generation. Table 2 shows the electricity prices in some countries and the 
date of the last modification. Electricity markets of some countries like US 
and Canada change the electricity price frequently (in the order of hour) while 
Greece changes the electricity price almost once in a year and Argentina has 
the same electricity price since 2006. This is depicted by the second column 
of the table, in which the countries with frequent flactuations in price has a 
price spectrum (min price,max price).

Figures 14 and 15 show the power demand (MW) and the energy price 
(canadian dollars/MWh)2 on the Ontario, Canada [11].

Figure 14: Three-day (9-11 July) view of market demand in Ontario Canada.

2One canadia dollar equals to 0.73 euros or 0.96 US dollars
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Country/Territory US cents/kWh As of
Argentina 5.75 2006
Australia 22-46.56 23/8/2012
Belgium 29.08 1/11/2011
Brazil 34.20 1/1/2011

Canada 6.3 - 11.8 1/11/2012
Chile 23.11 1/1/2011

Denmark 40.38 1/11/2011
Dubai 7.62 2011

Finland 20.65 1/11/2011
France 19.39 1/11/2011

Germany 31.41 31/5/2012
Hungary 23.44 1/11/2011

Hong Kong 12.02-24.00 1/4/ 2013
India 8 to 12 1/2/ 2013

Ireland 28.36 1/11/ 2011
Israel 18 1/6/ 2013
Italy 28.39 1/11/ 2011

Japan 20-24 31/12/ 2009
Latvia 18.25 1/6/2012

Malaysia 7.09-14.76 1/4/2013
Mexico 19.28 22/8/ 2012

Netherlands 28.89 1/11/ 2011
New Zealand 19.15 19/4/2012

Portugal 25.25 1/11/2011
Russia 1.7-9.58 1 /  1/ 2012
Serbia 3.93-13.48 28/2/2013

Singapore 21.53 1/4/2013
Spain 22.73 1/7/2012

South Africa 8-16 5/11/2012
Sweden 27.10 1/11/2011
Taiwan 7-17 1/6/2012
Turkey 13.1 1/6/2011

United Kingdom 20.0 30/11/2012
United States 8-17 1/9/2012

Table 2: Current electricity prices of some countries[8]
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5 Service Level Agreem ents and Pricing Mech­
anism s in cloud com puting

5.1 Pricing M echanism s in cloud com puting
One of the basic characteristics of cloud computing is the pay-per-use pricing 
models (or pay-as-you-go as introduced in section 1.2). However, not all the 
cloud providers follow the same pricing model. For example, some providers 
will find that their brand and reputation will allow them to price based on 
value delivered from their services, rather than purely based on hourly usage 
rates.

In general, cloud providers are adopting a variety of pricing mechanisms, 
including usage-based fixed pricing, usage-based dynamic pricing, subscription- 
based pricing, reserved services contracts with a combination of usage-based 
fixed pricing and up-front fees, and auction-based pricing.

According to [29] a representative set of pricing factors is the follow­
ing : {Service Instance Type, Unit price of usage, Total Usage, Reserva­
tion Period, Reservation Fee, Support Type, Support Charge, Total Outage, 
Compensation}

There are two basic strategies for any pricing mechanism. One is primarily 
based on how much a given service costs to cloud provider to deliver it and 
the other is mostly determined by an estimation of current prices for cloud 
services in your market. Both approaches have strengths and weaknesses. 
The advantages of the cost-based approach are that it significantly reduces 
the chances of setting prices too low to earn a profit and gives a precise control 
over margins. On the other hand cloud provider may either left money on 
the table or be not competitively viable.

Market-based pricing schemes focus less on what services cost to deliver 
than on what cloud provider can realistically charge for them based on typi­
cal rates for similar offerings in the area. Of course, finding out what nearby 
providers are charging for cloud services isnt always easy. However, some 
firms post their rates online. Also valuable insights can be gained by par­
ticipating in peer groups and membership associations or simply by asking 
potential customers about competing proposals.
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5.2 Service Level Agreem ents in cloud com puting
A service level agreement (SLA) is a contract where a service is formally de­
fined [12]. This contract is conducted by two parts, the client and the service 
provider. A typical SLA of a cloud provider has the following components:

• Service guarantee specifies the metrics which a provider strives to 
meet over a service guarantee time period. Failure to achieve those 
metrics will result in a service credit to the customer. Availability, 
response time, disaster recovery and fault resolution time are examples 
of service guarantees.

• Service guarantee  tim e period  describes the duration over which a 
service guarantee should be met.

• Service guarantee g ranularity  describes the resource scale on which 
a provider specifies a service guarantee (i.e per service, per data center, 
per instance, per transaction).

• Service guarantee exclusions are the instances that are excluded 
from service guarantee metric calculations. These exclusions typically 
include abuse of the system by a customer, or any downtime associated 
with the scheduled maintenance.

• Service credit is the amount credited to the customer or applied to­
wards future payments if the service guarantee is not met. The amount 
can be a complete or a partial credit of the customer payment for the 
affected service.

• Service violation m easurem ent and reporting  describes how and 
who measures and reports the violation of service guarantee, respec­
tively.

Figures 16 and 17 show a SLA comparison for some-well known cloud 
services. CB is an abbreviation for customer bill.
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Figure 16: SLA comparison of some well-known IAAS (compute) cloud ser­
vices. * implied from SLA [23]
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Figure 17: SLA comparison of some well-known STAAS (storage) cloud ser­
vices [23]
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6 Problem  Description

In this section, we provide an abstraction of the architecture of our system 
and also write down the characteristics of our problem. Cloud computing sys­
tems facilitate flexible task execution by allocating resources (CPU, storage, 
bandwidth, etc) on demand. The cloud provider is responsible for manag­
ing the infrastructure through efficient resource allocation and task request 
scheduling for virtual machines. Depending on the knowledge of the cloud 
provider about the parameters and the stochasticity of the system, schedul­
ing and allocation algorithms serve the service requests in such a way to 
optimize an objective like the operational costs or the power consumption.

Nowadays, a big portion of the energy consumed by end-users is shifted to 
the core network of the cloud server infrastructure. This fact motivates our 
work in greening the cloud infrastructure by using renewable energy resources 
(RESs) attached to the server facilities. In more detail, cloud server facilities 
require high energy depending on the prevailing environmental conditions 
and the dynamic load of tasks under execution. As a general observation 
[33], a significant portion of the power consumption of legacy data centers 
is associated with the cooling needs and losses of the power provisioning 
equipment. The rest of the percentage above is described in a relationship 
to the served traffic due to the existing power proportionality of CPU and 
router devices [22].

An environmental friendly solution to meet the energy demands of the 
cloud server facilities is the deployment of RESs. The RESs reduce the depen­
dence of the provisioned power from the main power grid and hence, if they 
are appropriately exploited, they can lead to a significant cost reduction. The 
main advantages of RESs are that they incorporate an initial capital expen­
diture for the purchase and deployment but they have very low operational 
expenses (mainly maintenance) and thus in the long-run their provisioned 
energy cost is very low. However, RESs have unpredictable behavior and 
provide a time-varying output power that in some cases is insufficient to 
support the operation of the cloud server facility, if the load in the latter is 
high enough. In this case, the required power will have to be provided by 
the main power grid in a price that also fluctuates with time.

We study the problem of optimal VM allocation in a set of cloud server 
facilities. Our objective is to minimize the total cost paid by the cloud 
provider to the main grid in order to support the system with the necessary 
power to carry out VM execution. The set of VMs, under execution at a 
particular server, form the server load and affect the power consumption of 
the components of that server, and primarily that owing to the CPU utiliza­
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tion. Our system consists of a cloud provider who owns some geographically 
distributed cloud server facilities and exposes this infrastructure to possible 
customers who do not have the resources to execute their tasks. Whenever 
a customer asks for some available resources, the cloud provider creates a 
VM and selects one of his cloud server facilities to host it. All the requests 
initially arrive at a central dispatcher (e.g., a web server) and each request 
is determined by a number of floating-point operations (FLOPs) that have 
to be executed before a deadline

For every task request cloud provider conduct a SLA with the respective 
client (task request owner). That SLA looks like the one in table 3.

components value
Service guarantee Availability
Service guarantee time period Until the deadline
Service guarantee granularity Cloud server facility
Service guarantee exclusions -
Service credit 100% of customer bill
Service violation measurement and reporting Cloud provider

Table 3: SLA of our architecture

The predefined SLA states that the cloud provider guarantees that the 
service will be available until the imposed at the request deadline. At least 
one cloud server facility would be available to execute the request and in the 
case of not available cloud server facility the client will take her money back.
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Figure 18: Requests arrive at a central controller which allocates them to 
cloud server facilities, each of which fulfills the energy demands from a RES 
and the power grid.
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7 System  M odel

In this section, we describe in more detail the characteristics and the dynam­
ics of the system architecture.

Symbol Meaning Unit
D The set of the cloud server facilities Natural Number
Bi The total processing capacity of cloud 

server facility i
FLOPs/second

Fj The amount of FLOPs in the VM re­
quest j

FLOPs

dj The deadline imposed in the VM re­
quest j

second

cj The processing capacity of VM request 
j
The arrival time of VM request j

FLOPs/second

aj second
Tj The running time of VM request j second
hj The cloud server facility which executes 

VM request j
Natural Number

Ri(t) The power generation of the RES 
plugged in cloud server facility i

Watt

Pi(t) The price of the power from the power 
grid in cloud server facility i

Euros

Li(t) The load of the cloud server facility i FLOPs/second
PUEi The Power Utilization Efficiency of the 

cloud server facility i
real number > 1

δ The duration of one time slot second
ej The execution cost of request j Euros
mj The money the cloud provider will be 

paid for the execution of request j
Euros

Table 4: Notation Table

We consider a set D of D geographically distributed cloud server facilities 
D =  {1, . . . ,  D} and a set B of B  resources, B =  {1, . . . ,  B }. The set of 
the resources may include processing capacity, storage, memory, bandwidth 
etc. For example, a request for a database service like the Amazon relational 
database service [1], needs processing capacity (expressed as Elastic Compute 
Units), storage (GByte), memory (GByte) and I/O capacity (request rate).

In this work, we concentrate on one type of resource, the processing ca­
pacity, for the reason that the CPU is the major component that consumes
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power, but our approach can be extended to include more resources. Assume 
that Bi is the processing capacity of cloud server facility i, in floating-point 
operations per second (FLOPS) [10].

7.1 Service R equests
Each VM request j  arrives at the central queue at time a j and is specified 
by a number of (FLOPs) Fj and a deadline dj by which the execution of the 
VM should be finished. The cloud provider is responsible to create a VM 
for that request and allocate it to a cloud server. The created VM will have 
processing capacity Cj (FLOPS) and will be hosted for a time Tj.

—.
Cj =  (1)Tj

Note that the unit of —j is floating-point operations (FLOPs), whereas 
the unit of Cj is floating-point operations per second (FLOPs/sec). The cloud 
provider can either allocate a VM with low processing capacity yet enough 
to finish the task before the deadline, or it can allocate a VM with a high 
processing capacity to finish the task as soon as possible. This flexibility is 
depicted in figure 19.

RUNNING TIME (sec)

VM REQUEST 
ARRIVAL TIME

*
VM EXECUTION 

START TIME

*  
VM !

DEADLINE

Ί .  TIME (sec)

ACPU ALLOCATED
FLOPS (FLOPs/sec)

a i  Si F; =  Ci T j q  , a j  s':
0 <  J - > i i l d j ____4. n <  J >

VM REQUEST VM EXtCUTION 
ARRIVAL TIME START TIME

Figure 19: Two feasible realizations of processing capacity, running time and 
start execution time of a VM request with a j =  0

A SLA like that on table 3 is conducted between the customer and the 
cloud provider. Also cloud provider is paid m j euros for that execution.
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7.2 M odel of Renewable Source G eneration and Power 
Consum ption at the Servers

Each cloud server facility i E D  has a RES installed that produces a time- 
varying power at time t, denoted by Rj(i). The amount Ri(t) can be known 
only for a short time period. This knowledge is usually extracted from 
weather forecast data. Each cloud server facility i can draw its energy either 
from the RES or from the main power grid. For the latter we assume a 
time-varying price per unit of power at each time t, denoted by pi(t). Also, 
each cloud server facility i has a load L i (t) at time t that creates power needs 
f i(Li(t))

where f i (·) is an one-to-one function that maps the load to power con­
sumption.

Current cloud server facilities consist of power-saving servers that in­
corporate frequency and voltage reduction in order to decrease the power 
consumption [24]. The combination of a specific CPU frequency and voltage 
is known as a performance state. The transition from one performance state 
to another does not causes performance degradation since it occurs in micro­
seconds. These power-saving features adjust the power consumption of an 
idle server to its actual load and characterize the relationship of the power 
consumption and the load of a server, usually as a quadratic function (figure 
13).

f i(Li(t)) PUEi PP1  + α [Li(t)]2 a >  0 (2)

Figure 20 shows the power needs of some valid virtual machine allocations 
of one request. The power consumption of the cloud server facility remains 
stable over the virtual machine execution (blue squares). The power supply 
from the renewable energy resource is depicted by the green curve. In the 
case of zero load, cloud server facility consumes Pidle power while when it is 
fully loaded it consumes Ppeak.
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Figure 20: Valid virtual machine allocations of one request in an empty cloud 
server facility.
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8 Problem  Formulation and System  Controls

In this section, we provide a mathematical formulation for the described 
problem of the previous two sections 6 and 7

We are given a set of requests Y =  {1, . . . ,  N } in a time horizon H and 
for each request j  E Y, the arrival time a j , the processing requirements 
(FLOPs) Fj and the deadline d j. We want to find the start execution time 
Sj, the running time Tj and the processing capacity Cj for each created VM. 
The set of all the feasible solutions is:

F j =  {(sj , Tj , cj ) : a j — sj — dj — Tj  and cj Tj  =  Fj } (3)

It is worth mentioning that once a VM starts its execution in a cloud server 
facility, it is impossible to migrate to another cloud server facility or to fluc­
tuate its processing capacity.

8.1 One Cloud Server Facility
In the case of a single cloud server facility, the price of power grid per unit 
of power is described by p(t) and the RES power generation by R(t). Also 
the load is described by:

L(t) =  Σ cj
j:sj <t<sj +Tj

and the total power consumption by f  (L).
The optimal solution for every request in Y is given by:

min
(sj ,Tj ,cj

H

0
P(t) [f  (L(t)) -  R(t)]+ dt

where q+ equals q if q is greater than zero otherwise equals zero.

(4)

(5)

8.2 M ultiple Cloud Server Facilities
In the case of more than one cloud server facility we have to introduce a binary 
parameter X j indicating the selection of the server facility i to execute the 
VM j , x =  (x j : i =  1, . . . ,  D, j  =  1, . . . ,  N ). Since, each VM can be assigned 
only in one cloud server facility, the assignment variable is described by the 
following equation:

x ij
1 if VM j  assigned to cloud server facility i 
0 otherwise.

(6)
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The load of every cloud facility i is described by:

L i(t) y ' Xij Cj
j:sj <t<sj +t, and Xij = 1

The optimal solution for every request in Y is given by:

D , H
min / Pi(t) [/i(Li(t)) -  Ri(t)] + dt

,Tj ,Cj )CF-· '«X

subject to:

(Sj ,Tj ,Cj )eFj . -i ,7 0 X i=1

D
xij =  1 Vj

(7)

(8) 

(9)

8 .3  A l t e r n a t i v e  F o r m u la t io n

Since the control variables of our problem are related to every request j  E Y 
it is worth providing an alternative formulation of the same problem which 
shows directly the control variables. In more detail equation 10 is equivalent 
to 5 and equation 11 is to 8 and 9.

min
(sj ,Tj ,cj )eFj

r sj +Tj
Σ  p (t) [[ / (L(t)+ c) -  R(t)]+
jey J sj

[ / (L(t)) -  R(t)]+] dt

(10)

min
(sj ,Tj ,cj )eFj hj e{1,...,D}

Σ
jey

sj +Tj
Phj(t)

j
[fhj (Lh, (t ) + c) Rh, (t)] +

[fhj (Lhj (t)) -  Rhj (t)] + dt

(11)

where hj is the cloud server facility that executes the VM of the request j . 
The lagrangian function of 10 is:

r s,+t,
J = Έ  p(t) [[/(L(t) + C) -  R(t)]+ -  [ / (L(t)) -  R(t)]+] dt (12)

jey Jsj
F-

-  λ ι (aj  -  sj ) -  λ2(sj + Tj -  dj ) -  μ (τ  -  - j ) (13)
cj

In order to find the optimal values for Sj, Tj and Cj we have to calculate 
the partial derivative for every control variable.
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M ath  R em inder 1. Let f  (x ,t) be a function such that both f  (x ,t) and its 
partial derivative f x(x ,t) are continuous in t and x in some region of the 
(x,t)-plane, including a(x) <  t < b(x),x0 < x < xi. Also suppose that 
the functions a(x) and b(x) are both continuous and both have continuous 
derivatives fo r x0 < x < x 1 . Then fo r x0 < x < x1 [7]:

d
dx

and

r-b(x)
I f  (x , t )d t
a(x)

f  (x,b(x))b (x) — f  (x,a(x))a (x)

+
r-b(x)
I fx (x ,t)d t
a(x)

dbt)(fa f(x )d x )  =  f(b) (14)

Using 14 for Sj: 

dJ d (' sj +Ti
07- =  ~ds-j P(t) f  (L(t) +  C) — R (t)+  — [f (L(t)) — R (t)+ ] dt +  λ ι — λ

d [■ sj +T
= ds~ J 0 p(t) [[f (L(t) + c) — R(t)]+ — [f  (L(t)) — R(t)]+] dt—
d Γ sj

p(t) [if (L (t) +  c) — R(t)]+ — I f  (L(t)) — R(t)]+] dt +  λ ι — λ 2

=  P(Sj + Tj) [[f (L (sj + Tj) + c) — R(.Sj +  Tj)]+ — i f (L (.Sj + Tj)) — R(.Sj + τ ,)]+] —
p(Sj) [if (L(Sj) +  c) — R (sj)]+ — I f  (L(Sj)) — R(Sj)]+] + λι — λ2

In order to find the optimal value we set equal to zero the partial deriva­
tive =  0 and we take:9si

p(s, + Tj ) [Lf (L (-sj  + Tj ) + c) -  R(s, + Tj )]+ -  [f (L(s, + Tj )) -  R(sj  + Tj )]+]
— P(Sj) [[f(L(Sj) + c) — R(Sj)]+ — [f(L(Sj)) — R(Sj)]+]
=  λ2 — λ1

Similarly, for Tj,

3J_
dTj

d r-s.i +Ti
I  p(t) [ i f  (L (t) + c) — R(t)]+ — [f (L(t)) — R(t)]+ dt — λ2 — μ

j s

p (sj  + Tj ) [[f (L(sj  + Tj ) + c) — R(sj  + Tj )]+ — [f (L(sj  + Tj )) — R(sj  + Tj )]+]
λ2 — μ
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In order to find the optimal value we set equal to zero the partial deriva­
tive 4^ =  0 and we take:9T

P(sj  + j  [[/( i(s , + Tj) + c) -  R(sj + Tj)|+ -  [/ {U s j + Tj)) -  R(sj + Tj)]+] 
-  P(sj) [[/(L (s j) + c) -  R(Sj)]+ -  [ / (L (s j)) -  R (sj)]+]
=  Λ2 + μ

For Cj we use equation 1
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9 Offline Algorithm

In this section we try to find an offline algorithm to solve the virtual machine 
allocation problem. More specifically, given the set:

y  — {(«1, F l, ^  (α2, F2,d2 ), . . . , (aN, FN, dN)} (15)

of all the request in a time horizon H , we try to find the start execution time 
Sj, the execution length Tj, the processing capacity Cj and the cloud server 
facility hj that will host the virtual machine of request j  of every request
j  e y .

9.1 Slotted  Tim e
Since the predefined optimization problems in section 8 can not be solved in 
continuous time we make the assumption the the system is slotted and that 
every event occurs in a timestamp that is multiple of δ. In that case, we 
should modify the predefined equations according to the following rule:

rh
(expression-of Λ ) dt 

Jta

tb
(expression-of Λ )

t=ta
(16)

9.2 One Cloud Server Facility
In the case of one cloud server facility we have to solve the following problem:

r H
min /  P(t) [ / (L(t)) -  R(t)]+ dt (17)S,T .cJ 0

subject to:

L(t) — Σ  cj (18)
j:sj <t<sj +Tj
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9.2.1 Only One R equest Exam ple

rH
min / p it) [f (Cj) -  R(t)] dt

(■si ,Ti ,ci )^Fi J ο
ndi

p(t) [f (cj ) -  R(t)]+ dt

min
(si ,Ti ,ci GF Jaj

r si +Ti
min

(si ,Ti ,ci )eFi Jsj 
sj+Tj

min ^  p (t) [f (cj ) -  R(t)]
(si>Ti>ciGF

P(t) [f (cj ) -  R(t)]+ dt

+

(19)

(20) 

(21)

(22)

The execution time of the request could be any multiple of δ in the fol­
lowing spectrum:

Tj G B ’
under the constraint:

dj  aj
δ (23)

L(t) < B Vt G [sj, Sj + Tj] (24)

Given the execution time we can calculate the processing capacity Cj =  y1 
and thereore we can determine the hosting cost for every possible s j, Tj and 
Cj. In general:

Sj =  k · δ (25)
Tj =  k · δ (26)

F F
(27)cj  G { —,.. T . >min(B, )}

where k and k' are any possitive integers.
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The following picture shows a general case of one request with two possible 
processing capacities but alot of starting execution times.

Figure 21: All possible executions of a vm with only two possible processing 
capacities.

9.2.2 Four R equests exam ple

Before we present an offline algorithm which determines all the control vari­
ables for every request, we show a small example of four requests and only 
one cloud server facility. This example depicts the basic concepts needed to 
understand the offline algorithm. In general, every request j  can be served 
by creating a virtual machine with a set of possible realizations as depicteded 
in figure 19.

Under the assumption that the system is slotted, we can determine the 
set of all the possible executions of request j , Wj =  {w(1), wj2), ...} with size 
W j. The number of all the possible executions of all the requests is:

N
W  = Π  Wj (28)

j=1
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And the set of all the possible executions is the cartesian product

W =  W i x W 2 x . . .  x W n (29)

and can be illustrated by a tree like the one on figure 22. The red nodes 
is W1; the green is W2, the blue is W 3 and the yellow is W4.

© C D ·®
Q ® · ®  
© ® · ©  
®  ® · ®  
© ® · ®  
® @ · ®  
®  © · ®  
©  © · ©

@ ® · ®  
© © · ©  
©  © · ©  
©  ® · ®  
© © · ©  
© © · ©  
©  © · ©  
•  © · ©

© © ·®  
@ ® · ®  
©  ® · ®
©  © · ©  
@ © · ®  
® © · ®  
©  © · ©

„ ®  © · ©

Figure 22: all possible executions of four requests with W1 =  3, W2 =  2, W3 = 
4, W4 =  1
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Every possible execution w =  (w1 ,w2, . . . ,  wN) E W , where Wj =  (Sj, Tj, Cj) 
is the execution of job j  ,has a cost equal to:

y > ( t )  [f (H(t)) -  R(t)]+ + to [H(t) -  B ]+ (30)
t=Sl

subject to:

H(t) =  Σ  cj (31)
j:sj <t<Sj +Tj

We assume that:

Γ7-/3 π1+ [ to if H(t) > B
to [H(t) -  B]+ =  l  n . (32)

0 otherwise.

Practically, if in one execution the load of the cloud server facility exceeds 
the processing capacity of the cloud server facility the cost of this execution 
is infinity because it is impossible to happen.

9.2.3 M ultiple cloud server facilities

In that case Wj has multiple times, as many as the number of the cloud 
server facilities, the same executions but for different cloud server facility. In 
more detail, wj has one more entry which is the number of the cloud server 
facility. i.e wj =  (sj, Tj, cj ,h j). Also the execution cost is:

where

D dN
£  £  Pi(t) [f i (Hi (t)) -  Ri (t)}+ +  to [Hi(t) -  Bi]+
i= 1 t=ai

subject to:

Hi(t) Cj 1i=hj
j : Sj <t<Sj +Tj

1i=hj
1 if i =  hj 
0 otherwise.

^  [Hi (t) -  Bi} +
to if Hi(t) > Bi 
0 otherwise.

(33)

(34)

(35)

(36)
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9.3 Transform  the Offline problem  to a  Shortest Path  
problem

If we add a dummy node in figure 22 which is connected to all the leaf 
nodes, we are taking a directed graph whose every path from the root node 
to the dummy node represents a possible execution. Having that in mind 
we add the appropriate weights to every edge of the graph in such a way 
to transform the offline problem proposed in section 9 into a shortest path 
problem[13]. After that transformation we can use one of the well-known 
algorithms (BellmanFord, Dijkstra, Gabow, etc) to solve the problem.

9.4 Edge W eights

Every edge from a node wjk) € Wj to a node G Wj+i must have weight 
equal to the execution cost up to the node of wj++1 minus the execution cost
up to the node of wjk). By doing that, we ensure that the total cost of any 
path from the root to the dummy node is equal to the cost needed for the 
execution of all the requests. The selected wjl) execution for the request j  is 
determined by the node on the path.

z(1)zR^k
sf+rf1_ 1 i- η +

Phf (t) fhf (c1 ) — Rhf (t) , (s1 , T 1 , C1, h1) =  W1
t=sk
(  D dj

/ j )  _  I '"l-^kΆ  =  I Σ  Σ ^ (ί) [fi(Li(t)) -  Ri (t)]+ I -  z(j 1) 1 < j  < N
\ i=1 t=sf

T T = 0

(37)

(38)

(39)

The number of all the edges is:

tree edges edges to S
N Ί  '  '

j
E  = Σ  n wj + Π W

i=1 j=1 j=1

and the number of all the nodes is:

N i

v  = Σ  Π » ί
i=1 j=1

(40)

(41)
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Figure 23: The graph created by the tree of all possible executions of the 
example in subsection 9.2.2

The number of the edges and the number of the nodes given by equations 
40 and 41 can be reduced after a sorting of the set Y with respect to the 
number of possible executions of every job j , Wj. Figure 24 depicts that 
reduction. The average complexity of a shorting algorithm [14] is O(NlogN ),
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where N is the number of the requests.

Figure 24: The graph created by the tree of all possible executions of the 
example in subsection 9.2.2 after the sorting by the number of all possible 
executions

41

Institutional Repository - Library & Information Centre - University of Thessaly
23/05/2024 21:25:12 EEST - 3.137.170.63



9.5 Com plexity
In order to determine the minimum cost of execution of all the requests in 
Y we have to do the following steps:

1. Vj G Y find W j

2. sort Y with respect to Wj

3. calculate W and create a graph similar to figure 24.

4. use equations 37-39 to assign the appropriate weight to every edge

5. use a shortest path algorithm to find the optimal w* Vj G Y

The last two steps are more complex and these are the processes who 
determine the complexity of our solution since the first three require polyno­
mial time. Step 4 requires a traverse of the tree (graph without the zero-cost 
edges to node S) created by step 3, this can be done by a Depth-first search 
algorithm [6] (or Breadth-first algorithm [2]) with complexity O (E ) while, 
the sortest path algorithm requires O (V2) if we use a list and O(E  + VlogV ) 
if we use a fibonacci heap.
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9.6 Pseudo-Code for general case
In this subsection we present the pseudo-code of the main functions of the 
offline algorithm. Function 1 calculates the number of all the possible execu­
tions of a given request. Function 2 uses function 1 to create a vectror with 
all the possible executions and function 3 calculates the size of W . Function 
5 produces a two-dimentional vector with all the possible executions. Func­
tion 6 is a recursive function which practically parses W and finds the cost 
of every senario w E W . Pseudo-code 8 describes the offline algorithm and 
functions 9 and 10 determine the minimum cost senario and the execution 
of every request. Figure 25 shows how the deadline and the number of flops 
affect the number of all the possible executions.

A lgorithm  1 All possible executions of one VM request (find Wj)
1: function NUMBER0FREQUESTSP0SSIBLEEXECUTI0NS(request j , D)
2: number-of -possible-executions — 0
3: for all d E D  do
4: s —— aj
5: while s < dj do
6: e — s + δ
7: while e < dj do
8: number-of -possible-executions + +
9: e — e + δ

10: end while
11: s — s + δ
12: end while
13: end for
14: re tu rn  number-of-possible-executions
15: end function

A lgorithm  2 All possible executions 
1: function AllP ossibleExecutions(Y, D)
2: for all r E Y do
3: Possible-executions [r ] =NuMBER0FREQUESTSP0SSIBLEExECUTI0NS(r,D)
4: end for
5: re tu rn  Possible-executions
6: end function
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A lgorithm  3 Number of all the possible executions 
1: function NumberOfA llP ossibleExecutions(Y)
2: total-possible-executions =  1
3: for all r E Y do
4: total-possible-executions * =  Possible-executions [r ]
5: end for
6: re tu rn  total-possible-executions
7 : end function

A lgorithm  4 This function returns the start of request’s possible executions 
in vector total-possible-executions 

1: function BEFORER,EQUESTPOSSIBLEEXECUTIONS(request j  ,Y)
2: before-req-possible-executions =  0
3: for all r Y and r < j  do
4: before-req-possible-executions + =  Possible-executions [r ]
5: end for
6: re tu rn  before-req-possiblecxecutions
7: end function

A lgorithm  5 Save All Possible Executions (find (Wi , . . . ,  WN)) 
function SaveA llP ossibleExecutions(Y, D) 

pos — 0
for all r E Y  do 

for all i E D  do
S —— Qj
while s < dj do 

e — s + δ 
while e < dj do

total-possible-executions [pos][0] =  i 
total-possible-executions [pos][1] =  s 
total-possible-executions [pos][2] =  e 
total-possible-executions [pos][3] =  ^  
e — e + δ 
pos — pos + 1 

end while 
s — s + δ 

end while 
end for 

end for 
end function
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function M in C ostSenario  (request, senario, confs, temp-load, costs) 
if senario =  NumberOfA llP ossibleExecutions(Y) then  

F indMinimum (costs) 
else if request =  N  — 1 then

X ^  BEFoREREQUESTPoSSIBLEEXECUTioNS(request,Y) 
x ^  x + conf s[request] 
t ^  0
while t < H  do

s ^  total-possible-executions [x][1] 
e ^  total-possible-executions [x][2] 
i ^  total-possible-executions [x][0] 
c ^  total-possible-executions [x][3] 
if t > s and t < e then  

temp-load [i][t]+ =  c 
end if 
t < t + δ 

end while 
d ^  0
while d < D  do

t ^  0
while t < H  do

costs[senario] +  =  pd(t) [fd(temp-load[i][t] — Rd(t))]+ 
t < t + δ

end while
d < d + 1

end while
conf s[request] ^  confs[request] + 1
l ^  NUMBEROFREqUESTSPoSSIBLEEXECUTioNS(request, D) 
conf s[request] ^  confs[request] mod l 
MinCostSenario(0, senario + 1, confs, tempJoad,costs)

A lg o r ith m  6 Find Minimum Cost senario
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A lgorithm  7 Find Minimum Cost senario (Continue) 
else

X ^  BEFOREREQUESTPOSSIBLEEXECUTIONS(request,Y) 
x ^  x + confs [request] 
t ^  0
while t < H  do

s ^  total-possible-executions [x][1] 
e ^  total-possible-executions [x][2] 
i ^  total-possible-executions [x][0] 
c ^  total-possible-executions [x][3] 
if t > s and t < e then  

temp-load [i][t]+ =  c 
end if 
t < t + δ 

end while
l ^  NUMBEROFREQUESTSPOSSIBLEEXECUTIONS(request + 1, D) 
if conf s[request + 1] =  l then

confs[request] ^  conf s[request] + 1
l ^  NUMBEROFREQUESTSPOSSIBLEEXECUTIONS(request, D) 
confs[request] ^  conf s[request] mod l

end if
MINCosτSENARIO(request + 1, senario, confs, tempJoad, costs)

end if
end function
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A lgorithm  8 Offline Algorithm 
function OFFLINEALG(Y, D) 

while r e Y do 
confs[r] ^  0 

end while 
while d e D  do 

t ^  0
while t < H  do

temp-load [d][t] ^  0
end while 

end while
I  ^  NumberOfAllP ossibleExecutions(Y) 
i ^  0
while i < I  do

costs[i] ^  0
end while
MinCostSenario(0, 0, confs, temp-load, costs)

end function

A lgorithm  9 Find Minimum cost senario 
function FlNDMlNlMUM(costs) 

minCost ^  
optsenario ^  0
I  ^  NumberOfAllP ossibleExecutions(Y) 
i ^  0
while i < I  do

if costs[i] < minCost then  
minCost ^  costs[i] 
optsenario ^  i

end if 
end while 

end function
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A lgorithm  10 Find Executions of Minimum Cost Senario 
function FlNdExECS(optsenario, Y)

I  ^  NumberOfAllP ossibleExecutions(Y)
while req G Y do

l ^  NUMBEROFALLPOSSIBLEExECUTIONSAFTER(req, Y) 
if l =  1 then

w*eq =  optsenario/l
else

l ^ NUMBEROFREQUESTSPOSSIBLEExECUTIONS(req, Y) 
w*eq =  optsenario mod l

end if 
end while 

end function

A lgorithm  11 Number of all the possible executions of requests after a given 
request

1: function NUMBEROFALLPOSSIBLEExECUTIONSAFTER(req, Y)
2: next-possible-executions =  1
3: for all r G Y and r > req do
4: next-possible-executions * =  Possible-executions [r ]
5: end for
6: re tu rn  next-possible-executions
7: end function
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Figure 25: Number of possible executions vs the maximum flops and maxi­
mum deadline.
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10 V irtual Machine Allocation Algorithm s

In this section, we propose an online algorithm that operates upon arrival of a 
VM request and determines to which cloud server facility it will be allocated 
given the knowledge of the RESs power production and price of grid power.

10.1 Online A lgorithm  with Lookahead Window T
In this section, we describe an algorithm that defines the time a new request 
starts being served and the cloud server facility that executes the created VM. 
Furthermore, our algorithm specifies the processing capacity of the VM and 
the running time, given that the RES power supply and the power grid prices 
are known for the next small lookahead horizon T < H . This assumption 
is valid because the RES power supply depends on the weather conditions 
which can be assumed as known for a lookahead time horizon of some hours. 
Also, the price of the power from the power grid does not change frequently 
and the assumption of the apriori knowledge for the next few hours is valid. 
The additional power needed to host VM j  in a cloud server facility i, if 
available resources exist, at time t equals:

Ci(t,cj ) =  ( / (Li(t ) + Cj) -  Ri(t))+ -  ( / (L*(t )) -  Ri(t))\+ (42)

The additional power is zero if there is enough renewable capacity Ri(t). The 
additional cost of hosting VM j  in a cloud server facility i starting at time 
Sj while taking into account the price at i and the running time of the VM

FCj =  —, is:j Tj ’

f s3 +Tj p.
C j^ i(s j, τ .) =  P i(t)C i(t,— )dt (43)

J sj Tj

Given that the new VM j  will be assigned to cloud server facility i , 
the optimal time to start s*, the optimal running time τ* and the optimal 
processing capacity c* are given from:

min cj ^ i (sj  ,Tj ) (44)
(sj ,Tj ,cj )^Fj

For t E [T, d j] we use estimated values of Ri(t) and pi(t). Now using equation 
(44) we produce a vector space (s*,T*, c*) for all the cloud server facilities 
and select the cloud server facility with the minimum cost. Therefore the 
minimum additional cost for hosting the VM j  is: cj^ i*(s*,T*).
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10.2 Online G reedy Algorithm
An extreme case, is the case of no-knowledge about the stochastic parame­
ters of our system. An online greedy algorithm creates a VM to the cloud 
server facility that offers the cheapest additional hosting cost by taking into 
account only the instantaneous parameters. The new VM starts its execution 
immediately and finishes on the deadline. Then the cloud server facility i* 
that will host the VM determined at the request is:

i* =  arg min 
i=[l...D]

10.3 Online Random  Algorithm
In order to assess the performance of our proposed algorithm we compare it 
with a random algorithm which assigns every incoming request to a random 
cloud server facility that has the resources to host it. This naive algorithm 
is used as an upper bound benchmark in the performance of our algorithm.

i* =  U (1, D) (46)

where U(a,b) is the uniform distribution in [a,b]

F-
Pd(aj )Cd(aj, - —-—

dj — ajj
(45))
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11 Num erical R esults of Online Algorithm s

In this section we present the performance of our allocation algorithms. For 
this reason, we implement a simulator using Java.

11.1 Experim ent One
In that experiment we use 10 geographically distributed cloud server facili­
ties with equal capacity. The duration of the experiment is two days. Each 
cloud server facility is equipt by a solar panel whose peak power generation 
1.2 times the maximum power consumption Ppeak. The solar panel power 
generation is gaussian shaped. The price of the power from the power grid is 
selected by table 2. More specifically, we select the following ten locations: 
australia, canada, hong kong, japan,south africa, Netherlands, Mexico, Den­
mark, Argentina, Dubai.

Figure 26 shows how the increase of the arrival rate affect the total cost 
of execution. Furthermore, online algorithms with look-ahead window of 2 
and 7 hours are more robust in that increase and this is shown by the smaller 
increase rate in their curves. Also, online algorithm with look-ahead window 
of 7 hours exploits better the knowledge of the stochastic parameters and 
responds better in the arrival rate increase.

The number of flops and the deadline follow a uniform distribution whose 
parameters do not change accross the experiment.

Cost vs arrival rate

Figure 26: Total cost vs arrival rate. For every value of the arrival rate we 
conduct the same experiment 1000 times.

52

Institutional Repository - Library & Information Centre - University of Thessaly
23/05/2024 21:25:12 EEST - 3.137.170.63



Figure 27 shows how the increase of the maximum number of flops affect 
the total cost of execution. Again, online algorithm with look-ahead window 
of 7 hours exploits better the knowledge of the stochastic parameters and 
responds better in the increase of the flops number.

Cost vs maximum number of flops

Figure 27: Total cost vs arrival rate. For every value of the maximum flops 
number we conduct the same experiment 1000 times.

1 1 .2  E x p e r i m e n t  T w o

The setting of that experiment consists of 3 cloud server facilities with dif­
ferent processing capacity capabilities and different PUE. We assume that 
the first cloud server facility is located in Ireland, the second in Spain and 
the third in Austria. Each cloud server facility is plugged to a wind turbine 
[19],[20] and [18]. Figure 28 shows the power generation of the three afore­
mentioned wind turbines. Figure 29 shows how the online algorithm is able 
to execute more requests by selecting the appropriate cloud server facility 
and shifting the virtual machine execution.
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Power generation from Wind Turbines in 3 geographically distributed cloud server facilities
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Figure 28: Power generation from wind turbines

Drop probability vs arrival rate

Figure 29: Drop probability increases as the arrival rate increases
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1 1 .3  E x p e r i m e n t  T h r e e

In order to test our algorithm we use real data traces. In case of wind turbine 
data we use [3] and for solar panels we use a Gaussian shape function with 
peak at midday. The peak of the Gaussian shape function of every solar 
RES is equal to 1.2 times the maximum power the cloud server which the 
RES supports can consume. In this experiment we assume that the rate for 
VM hosting dynamically changes per hour and we use as arrival rates the 
following normalized values [31]:

λ =  [0.6 0.52 0.4 0.28 0.2 0.17 0.16 0.175 
0.23 0.32 0.45 0.6 0.64 0.69 0.72 0.75 
0.78 0.8 0.83 0.9 0.97 0.94 0.82 0.71]

where every value is the average arrival rate during one hour. The first 
value corresponds to 21.00 at night. The number of the flops and the deadline 
of every arriving request follow a uniform distribution.

The price of electricity from the power grid is the same to every data 
center and it is equal to 0.1265 euros per kWh. We create five geographically 
distributed data centers with a capacity of 1000,1500,800,1200,500 processing 
units respectively and we equip three of them with solar panels and two with 
wind turbines. Every data center is located in a different time zone (UTC 
0,UTC -7,UTC 3 ,UTC 5,UTC 12) and that means that the solar panels are 
not at their peak at the same time.
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Figure 30: Total cost and drop probability vs maximum deadline.

Figure 30 shows how the deadline imposed in the request affects the 
operational cost of the cloud server facility and the drop probability. The
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drop probability defines the case where the requested resources to one of 
the cloud servers can not be served. Random and greedy algorithms do 
not have the ability to postpone the hosting of the VM for the near future 
and that increases the probability of being unable to host the VM, if the 
deadline is too short. On the other hand the online algorithm utilizes the 
system resources more effectively because it can start the hosting of a new 
request after some resources will be released. This reduces the probability of 
dropping the request.

CD
5
o
Q.

T J
D)
δ
COOO
0 5

-I—'
o

random 
online greedy 
online (T = 6 hours)

i 'B ----- ____________________ -

4 6

arrival rate multiplication factor

80

60

40

20

20

Figure 31: Total cost vs arrival rate multiplication factor.

In the same setting of five servers, in one day horizon, each arriving 
request imposes a deadline with a maximum value of 4 hours and an average 
number of 2000 flops. Figure 11.3 presents the average total cost of the cloud 
facility as a function of the arrival rate, over 50 independent simulation runs. 
The x-axis is the multiplier, by which we multiply λ. Online algorithm with 
lookahead window of 6 hours causes a reduction to power costs because it 
exploits the RES in a better way since it controls both the start of the 
execution of every job and its processing capacity.

Figure 32 depicts the reduction of the power cost as a function of the 
lookahead window. Furthermore because of the geographical distribution of 
the cloud servers, which results to the inability of providing a low cost service 
at the same time, the power grid cost increases when both the number of 
cloud facilities and the arrival rate multiplication factor are doubled.
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Figure 32: One day horizon. Cloud servers with equal capacity 5000
FLOPs/second, each arriving request imposes a deadline with a maximum 
value of 20 hours

1 1 .4  E x p e r i m e n t  F o u r

The setting of that experiment consists of four cloud servers with equal ca­
pacity of 5000 flops/second which are located in different time-zones and are 
supported by solar panels. Figure 11.4 depicts the power needs of every cloud 
server facility for the two online algorithms (blue and black lines) and the 
power generation of the renewable energy source which is plugged to every 
cloud server facility (green line). We note that the online algorithm with 
lookahead window of 6 hours selects the cloud server facility which offers less 
cost that the one with lookahead window of 2 hours. The arrival rates are 
15 times the vector λ, the maximum deadline is 20 hours and the maximum 
number of flops is 1000.
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Figure 33: Power consumption and RES power supply (kW) during one day 
for 4 cloud facilities.

1 1 .5  E x p e r i m e n t  F iv e

In this experiment we depict the impact of the power consumption when the 
cloud server facility is idle (i.e of equation 2 ). We assume five georgaphi- 
cally distributed cloud server facilities (australia,canada,hong kong,japan,south 
africa) with different price per power unit for the power from the power grid 
and also power supply from renewable energy sources. Figure 34 shows how 
the power consumption of the idle resources increases the cost.
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Figure 34: Total cost vs power consumption when the cloud server facility 
is idle. For every value of the arrival rate we conduct the same experiment 
1000 times.
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12 Pricing Algorithm s

The previous sections are devoted to algorithms that minimize the cost of 
providing cloud computing service by a cloud provider. In that section we 
provide a pricing strategy for the cloud provider. More specifically, for every 
request j ,  cloud provider after the hosting decitions about the start execution 
time Sj, the running/hosting time Tj, the processing capacity Cj and the 
cloud server facility hj that will host the virtual machine which executes the 
request takes one more decition which is the price m j the client will pay for 
that request.

Cloud providers want to sell their services at high prices for maximising 
their benefit. However, clients have possibility of election, and will choose 
the cheapest provider for the same service. The freedom of election of the 
client depends on the status of the demand for that cloud service. Cloud 
providers can raise their prices when the demand is high, and they must 
decrease prices when the demand is lower than the offer [37].

Given the fact that the client selected a specific cloud provider, the price 
he will pay for his request should be as little as possible since we assume that 
the client made a reasonable choice. On the other hand cloud provider could 
not charge for a request less money than the execution cost of that request.

The execution cost ej of a specific request is:

"Sj +Tj
ej = Phj (i ) [fhj (Lh.(i ) + cj ) -  Rhj (i )] + -  [fhj (Lh. (i )) -  Rhj (i )]1 + di

.
(47)

In the case of an underloaded cloud server facility with enough power 
generation from the RES, ej could be close to zero. Nonetheless mj should 
be greater than zero.

A realistic strategy is to define a minimum price mmin which would be 
applied if ej < mmin and a minimum revenue mr in the case of ej > mmin 
such that:

mj =  ej + mr (48)

Factors like the popularity, the market share and the financial status of 
the cloud provider determine mmin and mr.

If we assume that the client will pay for the execution after its end or at 
its deadline, then m j can be calculated easily. Otherwise, cloud provider has 
to propose the value of mj without knowing the exact value of ej because he 
is unaware of the stochastic parameters of the system. A simple algorithm
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who solves this problem is a learning algorithm who adjusts the parameters 
mr and mmax in such a way to achive an average value of and mr in a 
long term.
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13 R elated Work
There has been a lot of work on VM allocation in cloud computing environ­
ments. However, only our work deals with the problem of VM allocation 
under a deadline constraint in a cloud computing environment with unpre­
dictable power supply from RESs in such a way to minimize the total cost of 
the power supply from the power grid. Additionally, most of the work done 
in the area of VM allocation assumes distinct VM configurations.

The authors of [38] propose one preemptive and one non-preemptive 
throughput optimal scheduling algorithm. There are specific VM configu­
rations. Requests for these configurations arrive at a central scheduler and 
are queued there. The scheduler dispatches a request to a server when the 
server has enough resources to host the requested VM. The work of [40] pro­
posed a two time scale algorithm for power cost reduction in geographically 
distributed data centers. The control variables are the rooting distribution, 
the number of the servers that would be turned on in order to process the 
queued jobs and the processing rate for all the active servers in the cluster.

A different work is [32] which takes the challenge to reduce the electric 
bill of commercial web search engines operating on data centers that are 
geographically far apart. To achieve that, the authors propose a technique 
based on the observation that energy prices and query workloads show high 
spatiotemporal variation. The authors of [39] characterize the variation due 
to fluctuating electricity prices and argue that existing distributed systems 
should be able to exploit this variation for significant economic gains. An­
other idea to reduce power cost is to use RESs because of their low cost. 
The authors of [21] propose the adoption of accurate solar and wind energy 
predictors more efficient than state-of-the-art time series models.

In addition, the authors of [36] and [35] evaluate the impact of geograph­
ical load balancing, the optimal mix of RESs and the role of storage in order 
to investigate the feasibility of powering internet-scale systems using entirely 
renewable energy. Furthermore, the authors of [34] model the energy flows 
in a data center and optimize its holistic operation. They design an IT work­
load manager that schedules IT workload and allocates IT resources within 
a data center according to time varying power supply and cooling efficiency 
using RESs and IT demand predictions
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14 Conclusion

We propose an online allocation algorithm with a lookahead window between 
which the RES capabilities and the price of the power drawn from the power 
grid are known. We compare that algorithm with a naive algorithm and 
a greedy online algorithm and we show that it has better performance in 
terms of total cost of the grid power and utilization of the system resources. 
Furthermore, we design a slotted offline algorithm who is aware of the power 
grid prices, the renewable power generation and the request arrivals for a 
given time horizon. That algorithm analyzes all the valid possible senaria 
of execution for the given set of requests and finds the execution with the 
minimum cost.
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