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Detecting Influential Spreaders in Complex, Dynamic 
Networks 

Abstract 

The identification of entities in complex networks with the ability 

to spread a message quickly among the rest of the nodes exploiting their 

topological position offers significant opportunities for combating 

cyberattacks. Developing techniques for fast detection of such entities 

can help a computer network operator to undertake early action for 

preventing extended damage in computers in cases of virus spreading, or 

help the state authorities for setting under surveillance these ‘critical’ 

humans in cases of terrorist networks. This article focuses on the use of 

graph-theoretic concepts for accurate identification of such capable 

spreaders in complex networks. 

 

 

“A hybrid of node degree and k-shell index is more effective at 
identifying influential spreaders and has less computational 
overhead than either of these traditional measures.” 

 

With the unprecedented growth during the past decade of different types 

of social and enterprise networks, alongside naturally occurring 

networks in human communities, society is on the verge of becoming 

“fully networked.”  

Recent advances in information and communications technologies, 

coupled with the ability to create and store a vast amount of data on 

various aspects of human behavior, have made it possible to analyze 

complex networks. Studies range from purely graph-theoretic aspects 

(size and strength of communities, robustness to attacks, growth models, 

node connectivity, and so on), to more social-theoretic aspects (for 

example, homophily and rumor spreading). This research has given rise 

to computational social science [1], a new field that leverages the ability 

to collect and analyze data to reveal hidden patterns in individual and 
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group activities. 

Insights into complex networks’ structural and topological 

properties have informed work in numerous areas including search 

engine technology [2] the development of ad hoc network protocols [3] 

and detecting and containing disease outbreaks [4]. Security researchers 

have likewise used complex network analysis to study terrorist networks 

[5], virus propagation over computer networks, and resistance to 

cyberattacks. Such analyses typically apply graph theory and involve 

centrality measures, shortest-path algorithms, degree distributions, and 

so on. 

Here, we focus on the problem of influential spreaders—nodes in 

complex networks that can spread a message rapidly among other nodes. 

Early detection of such entities can help security technologists prevent 

extended damage to networks against malware or, in the case of terrorist 

networks, identify the most important malefactors. 

To identify influential spreaders, researchers traditionally have 

relied on the k-shell index [6], a degree-based measure of a node’s 

“coreness.” However, the significant computational overhead of this 

index makes it inappropriate for analyzing dynamic networks.  

We propose an alternative measure, the μ-power community index, 

that is an amalgam of coreness and betweenness centrality; μ-PCI is 

calculated in a completely localized manner and thus suitable for any 

kind of network irrespective of its size or dynamicity [3]. An 

experimental evaluation of the two values, along with a baseline 

measure based solely on node degree, demonstrates μ-PCI’s superiority 

in detecting influential spreaders.  

Motivation 

Consider an example in which an attacker installs a virus on a host 

mobile device with the intention of exploiting the host’s connections to 

spread the malware and ultimately infect as many other devices as 

possible. Assume that all devices comprise a single network with 

common administration. Upon detecting the malware, the administrator 

immediately takes action to limit its propagation. Possible measures 
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include installing more effective antivirus software to selected devices, 

shutting these devices down, or disconnecting them from the rest of the 

network.  

Two well-known cases of malware that exploit mobile devices’ 

network connections are the Cabir and Commwarrior-A worms. The 

former spreads through Bluetooth connections to other Bluetooth-

enabled devices that it can find. The latter was the first worm to 

propagate via the Multimedia Messaging Service; it searches through a 

user’s local address book for phone numbers and sends MMS messages 

containing infected files to other users. 

Obviously, if the infected devices in our scenario are influential 

spreaders, they will impact a large part of the network. This leads to 

several questions: How fast will the virus spread? Is the infection rate 

different in different network topologies? Does the percentage of 

infected nodes in the network depend on the node(s) where the infection 

originated? Do multiple infection starting points produce a substantially 

broader infection area? If so, what does this depend on? Which nodes 

should the administrator disconnect to stop the propagation? 

Researchers who have investigated such questions found that not 

all nodes in a complex network have the same potential to propagate a 

message efficiently [6,7]. Explanations for this behavior range from a 

network’s topological characteristics at global scale—for example, 

power-law degree connectivity—to individual nodes’ connectivity 

patterns.  

Identifying Influential Spreaders 

Most studies of influential spreaders have focused on their linkage 

with other nodes. The problem has not been described formally but is 

similar to two others: detecting a network’s central nodes and selecting 

the set of nodes that maximize the spread of infection. 

Identifying the central nodes in a complex network usually relies 

on graph-theoretic concepts of betweenness centrality. Such measures 

are generally based on a node’s degree or on its geodesic distance to 

other nodes. The former category includes degree centrality, spectral 
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centrality, and coreness, whereas the latter includes closeness, shortest-

path, and bridging centrality. Degree-based centrality measures consider 

a node prominent if its connections make it visible to the network’s 

other nodes. Intuitively, a node is prominent if it is adjacent to many 

other prominent nodes. The latter family of centrality measures exploits 

the shortest path between nodes. 

The spread maximization problem has been proved to be NP-hard 

in threshold networks [8], and researchers have proposed several greedy 

algorithms to solve it—for example, there are simple and efficient 

algorithms that adopt the voter model. 

Recent studies of social networks have considered other node 

features besides connectivity such as age, gender, and marital status 

[9,10]. Another feature is trustworthiness, which can affect a decision to 

follow a link to malware. Examples of malware that exploited trust to 

spread across a social network include the Skype and Koobface worms. 

Balancing Betweenness and Coreness 

Maksim Kitsak and his colleagues found that the degree of a node 

is not a good indicator of its ability to spread a message to a sufficiently 

large part of the network and that measures based on betweenness 

centrality are distorted by the degree-1 node, which increases the 

centrality index of the sole node connected to them [6].  

Our own research found that exploiting betweenness centrality has 

several disadvantages for disseminating messages in wireless ad hoc 

networks.
3
 Relying on a degree-1 node results in overestimating the 

spreading capabilities of a node connected to it. Moreover, based on a 

detailed investigation of the spreading capabilities of high-degree nodes 

in various complex networks, we found that high-degree nodes are 

indeed often good spreaders. 

Kitsak’s team argued that the node’s position in a k-shell 

decomposition of the network’s graph is a better way of quantifying 

influential spreaders, and went on to verify this hypothesis in the context 

of disease propagation [6]. However, subsequent research proved that a 

node’s spreading capabilities in the context of rumor spreading do not 
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depend on its k-core index [11].  

As the “K-Shell Decomposition” sidebar explains, this approach 

has two other major shortcomings. First, it has significant computational 

overhead, rendering it unsuitable for dynamic networks. Second, it is 

impossible to guarantee a monotonic relationship between the k-shell 

index and a node’s spreading capability, which causes major problems 

when there are not enough resources to expend on node vaccination.  

We have developed a method that quantifies spreading capabilities 

in a completely localized manner, making it suitable for any kind of 

network irrespective of size or dynamicity [3]. This metric, μ-PCI, 

balances the principles of betweenness centrality—it considers nodes 

that lie on many communicating paths between pairs of nodes—and the 

transitive network density implied by the coreness measure. The metric 

is computed as follows: the μ-PCI of a node v is equal to k, such that 

there are up to μ × k nodes in the μ-hop neighborhood of v with degree 

greater than or equal to k, and the rest of the nodes in that neighborhood 

have a degree less than or equal to k. The goal is to detect nodes located 

in dense areas of the network and thus likely influential spreaders. 

 

 

Performance Evaluation 

 

To evaluate our technique’s accuracy, we compared it to k-shell 

decomposition and a baseline measure based solely on the node degree 

on a large number of complex networks. Here, we present the most 

significant findings from two well-known networks, ca-CondMat and 

ca-AstroPh—collaboration networks from the e-print arXiv covering 

condensed matter physics and astrophysics, respectively—from the 

Stanford Network Analysis Platform (http://snap.stanford.edu/data).  
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Table 1. Complex network attributes. 

Network Type No. of nodes No. of links Infection 

probability 

(%) 

ca-CondMat Sparse 23,133  186,936 8 

ca-AstroPh Dense 18,772 396,160 4 

Wiki-Vote Dense 7,115 103,689 4 

Soc-

Slashdot0811 

Dense 77,360 905,468 4 

Soc-

Slashdot0922 

Dense 82,168 948,464 4 

Soc-Epinions Sparse 78,879 500,837 1,5 

Email-Enron Sparse 36,962 367,662 4 

Cit-HepTh Sparse 27,770 352,807 4 

Ca-Astroph Sparse 18,772 396,160 4 

Ca-CondMAt Sparse 23,133 186,936 4 

Loc-Βowalla Sparse 196,591 950,327 4 

Loc-Brightkite Sparse 58,228 214,078 4 

 

 

 

 

 

We used the susceptible-infected-recovered model for an infection 

originating from both a single spreader and multiple spreaders to 
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investigate the spreading process, as detailed in the “Infection Origins” 

sidebar. SIR models three possible states:  

 the susceptible state S, in which the S nodes are vulnerable to 

infection; 

 the infected state I, in which the I nodes try to infect their 

susceptible neighbors and succeed with probability λ; and  

 the recovered state R, in which nodes have recovered from 

infection and cannot be reinfected.  

We used relatively small values of λ to highlight the role of 

influential spreaders.  

We compared μ-PCI, k-shell decomposition, and the node degree 

method. For μ-PCI, we present only results for μ = 1. We obtained 

analogous results for μ = 2, but the method’s performance deteriorates 

substantially for μ > 2. We use km, ks, and k to represent the 1-PCI, k-

shell index, and node degree values, respectively. 

Similar to Kitsak and his colleagues [6], we used the average size of the 

network’s infected area as a performance measure. To quantify inf(s), 

the influence of a single spreader s, we computed the average size of the 

network infected with the (km, k) pair values. We averaged the extent of 

the infected network over all spreaders as follows: 

 

 

 
 

 

where Pkm,k is the set of all Nkm,k spreaders with the same (km, k). We 

repeated the same process for k-shell decomposition.  

To obtain statistically unbiased results, we repeated the computation 

1,000 times for each vertex of a graph for the single- and multiple-origin 

scenarios. 
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We found that 1-PCI exhibits steady and reliable behavior, 

overcoming the disadvantages of high-degree spreaders and of k-shell 

decomposition. Choosing high 1-PCI nodes maximizes spreading 

influence, whereas selecting the high-degree nodes or a random node 

from the core shell either results in poor spreading or does not maximize 

influence. 

Single original spreader 

 

Our first experiment examined the three methods’ ability to select 

the most influential spreaders for a single-origin process. 

Figures in set A shows all nodes’ spreading capabilities and how 

they are depicted by their respective measure. For example in the ca-

CondMat network the 1-PCI method results in a more monotonic 

distribution than k-shell decomposition, providing a clearer ranking of 

spreading capabilities. It converges to an approximately straight line, 

where maximum influence lies, more steeply than the k-shell method in 

all the studied cases. Choosing a spreader with, say, 1-PCI > 23, will 

yield the maximum influence, whereas choosing one from the core or 

from the high shells might not be optimal because in some cases nodes 

within the same shell have different spreading capabilities. There are 

nodes with high k-shell indices, some of which infect a large portion of 

the network, as well as nodes with the same k-shell index (16) that infect 

a significantly smaller part of the network. On the other hand, only 

nodes with very small 1-PCI exhibit such behavior. 

 

Figures in set B depicts how nodes of the network are illustrated 

according to their 1-PCIs and k-shell indices versus the respective 

node’s degree. In particular, the plots depict the average size of the 

infected population INFkm,k for all spreaders with (1-PCI,degree) pair 

values. The k-shell index clearly fails to fulfill monotonicity in many 

cases. Also, 1-PCI has a better correlation with node degree.  
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This experiment confirmed the conclusion of Kitsak’s team that 

measures such as node degree cannot accurately predict a network’s 

most influential spreaders [6].
 
For a fixed degree equal to k, there is a 

wide spectrum of INFkm,k values, making the degree measure an 

ineffective solution, especially in cases where the objective is to select a 

very small number of spreaders. This occurs because a high-degree node 

might be located in a sparse neighborhood. 

The k-shell index depends less on node degree when moving to 

higher shells, but the best spreaders are often scattered across numerous 

shells, thus violating monotonicity. Most nodes for example in the Ca-

Astroph nework have a k-shell index equal to 48, which is particularly 

high; their spreading capability is similar to that of nodes with a k-shell 

value less than 30.  

For a fixed 1-PCI, the infection percentage is approximately the 

same and independent of node degree, making high 1-PCI nodes the best 

choice in single-origin spreading processes. The 1-PCI measure groups 

spreaders according to their spreading capabilities: lower 1-PCI values 

correspond to poor spreaders, whereas high values indicate the most 

influential ones.  

As a node’s1-PCI increases, its spreading influence also appears to 

increase. Consider, for example, the results obtained from the ca-

AstroPh network shown in Figure B. Moving to higher shells—starting 

at, say ks > 34—spreading influence seems to constantly increase. 

However, this increase stops at ks = 48, where the infection decreases 

drastically. The 1-PCI analysis does not elicit such behavior, especially 

when close to maximum influence. As 1-PCI values increase, influence 

also continuously increases until maximum infection is reached. 
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Table 2. Number of influential spreaders that can maximize infection in three networks. 

Network Size (nodes) Density 

(edges) 

Infected area 

(%) 

No. of 

influential 

spreaders 

soc-Slashdoc0811 77,360 905,468 16.5 1,788 

ca-CondMat 23,133 186,936 1.9 127 

ca-AstroPh 18,772 396,160 26.5 477 

 

 

We computed the number of influential spreaders that can achieve 

the maximum infection (with 1 percent deviation) for the two networks 

described here along with the soc-Slashdoc0811 network. As Table 2 

shows, network size and topology impact the number of influential 

spreaders. We observed no increasing or decreasing relation between the 

number of influential spreaders and network size—the key factor is the 

pattern of node connections. 

 

Multiple original spreaders 

 

Our second experiment examined the three methods’ ability to 

select the most influential spreaders for a multiple-origin process. To 

maximize the infected area, the original spreaders were not linked. If 

selected spreaders were connected, the infected region would be smaller 

due to the overlap of neighboring spreaders’ “influence regions” [6].
 

 

K-Shell Decomposition 

K-shell decomposition of a network graph is performed iteratively. 

The first step involves removing all degree-1 nodes, along with their 
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link, and indexing these as k = 1. In the resulting graph, all nodes of 

degree 1 are also considered to have k = 1 and are again pruned. The 

process is repeated until there are no nodes of degree 1. Similarly, all 

nodes with i or fewer connections are iteratively removed; these nodes 

are indexed as k = i. 

The k-shell method has two significant disadvantages for defining 

influential spreaders. First, although k-shell decomposition is an easy 

task from an algorithmic perspective, the measure itself is not localized; 

hence, determining the k-shell index requires both global knowledge of 

the network topology and multiple iterations. Although a recent attempt 

to implement k-shell decomposition in a distributed manner achieved an 

80 percent reduction in execution time, the researchers offered no 

alternative to the algorithm’s iterative nature [1]. Thus, this solution 

cannot be applied in contexts with real-time requirements, such as 

security applications. 

Second, k-shell decomposition frequently fails to establish a 

monotonic relation between k and the total infection area, which could 

have severe implications. An administrator who has limited time (m 

actions) or resources to shut down some uninfected machines would 

prefer to select those with the maximal spreading capabilities. If there 

were a strictly monotonic relation between k and the total infection area, 

the administrator would choose m nodes among those with the maximal 

k-shell indices. Unfortunately, in many cases k-shell decomposition 

provides no such guarantees; quite often nodes with maximum k do not 

offer high enough spreading capabilities. Hence, a desirable property is 

for a measure to violate monotonicity as rarely as possible. 

Infection Origins 

Our performance evaluation considered infections originating with 

both a single spreader and multiple spreaders. 

 

Single original spreader 
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All nodes are initially at the susceptible (S) state, except for one 

node, which is in the infected (I) state. The infected node tries to infect 

its susceptible neighbors with probability of success λ, and then changes 

to the recovered (R) state. All nodes in state I try to infect their 

susceptible neighbors, and the process repeats until there is no node in 

the I state. 
 

Multiple original spreaders 

 

The number of initially infected nodes ranges from 0.5 to 4 percent 

of the network’s total size. 

μ-PCI and node degree methods. The malicious set of spreaders 

is empty in the first phase. We introduce the spreader with the highest 

value of each method to its respective set; we then select the spreader 

with the next highest value, which is not connected to the previous set. 

The process repeats until the initial infection percentage of the network 

is satisfied.  

K-shell decomposition. Because all spreaders in each shell are 

treated evenly, we start by introducing a randomly selected node to the 

set. We randomly select the next spreader from the remaining nodes of 

the core shell that are not directly connected to the previous set, and 

continue this process iteratively. If the initial infection percentage cannot 

be met from the core shell, we repeat the process on the shell 

immediately above it, and so on. 
 
 

Experimental Results 

 

Set A:  How the total infection of a network is illustrated through 1-pci 

and k-shell decomposition  
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    1, Email communication network from Enron 

 
 
           
 

 
     2, Email communication network from Enron 
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         3, Who-trusts-whom network of Epinions.com 

 
               
 
 
 
 
 
 

 
 4, Who-trusts-whom network of Epinions.com 
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 5, Slashdot social network from February 2009 

                
 
 
 
 
 
 
 

 
        6, Slashdot social network from February 2009 
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7, Wikipedia who-votes-on-whom network      

    
 
 
 

 
  8, Wikipedia who-votes-on-whom network 
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9, Slashdot social network from November 2008 

               

 

 

 
10, Slashdot social network from November 2008 
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11, Gowalla location based online social network 

       

 

 

 

 
12, Gowalla location based online social network 
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      13, Arxiv High Energy Physics paper citation network 

 

      

 

 

 
    14, Arxiv High Energy Physics paper citation network 

Institutional Repository - Library & Information Centre - University of Thessaly
23/09/2024 16:20:13 EEST - 3.137.181.106



 

23 

 

 

   

 
    15, Collaboration network of Arxiv Condensed Matter 

 

      

 

 
  16, Collaboration network of Arxiv Condensed Matter 
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           17, Collaboration network of Arxiv Astro Physics 

 

      

 

 
18, Collaboration network of Arxiv Astro Physics 
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    19, Brightkite location based online social network  

  

 

 
       20, Brightkite location based online social network 
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Set A: In all the above cases the x-axis corresponds to the 

respective measure, either 1-pci or k-shell index, and y-axis shows the 

total infection achieved by each spreader as a percentage of the total size 

of the network. In all cases 1-pci seems to converge to the single line 

where the maximum influence lies, steeper than the k-shell 

decomposition. It is clear that choosing a spreader above some 1-pci 

value will result to the most influential spreaders in all studied cases, 

whereas simply choosing from the high shells may not result in 

maximum influence. In the case of 1-pci all poor spreaders seem to 

gather at the low values, and as our measure increases we get more 

influential spreaders. For the k-shell in some cases poor spreaders are 

even indexed as high shell nodes, which is a non desired outcome since 

it violates the desired monotonicity. Another shortcoming of k-shell, and 

maybe its major disadvantage, is that it treats all the nodes in a single 

shell as equals. However in the case of seeking the most influential 

spreaders our work shows that nodes within then same shell aren’t equal 

spreaders. Our findings show that in some cases there is a deviation from 

1-8 percent for nodes in the same shell thus resulting in more thick 

vertical columns as illustrated in all the above figures. In many cases if 

we wanted to use the most influential nodes we would have to use 

numerous shells and even use spreaders from shells not indexed among 

the high ones. As conclusion we would say that 1-pci is the a better 

solution for choosing the most influential spreaders than the k-shell 

decomposition, and also the closest one to the desired monotonic 

relationship.  

 

 

SET B: Degree Vs K-Shell  &&  Degree Vs 1-PCI. 
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     21, Brightkite location based online social network 

   
    22, Brightkite location based online social network 
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  23, Collaboration network of Arxiv Astro Physics 

 

 

 

 

 

 
   24, Collaboration network of Arxiv Astro Physics 
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 25, Collaboration network of Arxiv Condensed Matter 

 

 

 

 
26, Collaboration network of Arxiv Condensed Matter 
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         Figure 27, Arxiv High Energy Physics paper citation network 

 

 

 

 
           Figure 28, Arxiv High Energy Physics paper citation network 
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 Figure 29, Email communication network from Enron 

 

 

 

 
      Figure 30, Email communication network from Enron 
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  Figure 31, Gowalla location based online social network 

 

 

 

 

 
                  Figure 32, Gowalla location based online social network 
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  Figure 33, Slashdot social network from November 2008 

 

 

 

 
              Figure 34, Slashdot social network from November 2008 
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             Figure 35, Who-trusts-whom network of Epinions.com 

 

 

 

 
           Figure 36, Who-trusts-whom network of Epinions.com 
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Figure 37, Slashdot social network from February 2009 

 

 

 
Figure 38, Slashdot social network from February 2009 
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Figure 39, Wikipedia who-votes-on-whom network 

 

 

 

 
  Figure 40, Wikipedia who-votes-on-whom network 

 

 

SET 2 shows the spreading capability of every node for the above 
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networks according to their 1-PCI values and k-shell numbers versus the 

degree of the respective node. In particular, the plots  depict the average 

size of the infected population INFkm,k for all spreaders with (1-

PCI,degree) pair values. 

 

  

Figure C: shows all nodes’ spreading capability in the ca-AstroPh network 

according to their degree, 1-PCI, and k-shell index. The x-axis indicates the 

percentage of initially infected nodes, with λ at 2 percent. The results were similar 

for other networks. 

 

 

Figure C. Spreading capability of nodes in the ca-AstroPh network 

with multiple original spreaders according to node degree, 1-PCI, and k-

shell index. The k-shell index is the least effective measure. Node degree 

is the most effective measure, closely followed by 1-PCI, but the 

discrepancy between these values quickly diminishes as the number of 

multiple original spreaders grows.  Although high 1-PCI nodes are the 

most influential spreaders in a single-origin process, all three measures 

are comparable in this case. The k-shell index is the least effective 
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measure. Node degree is the most effective, closely followed by 1-PCI, 

but the discrepancy between these values quickly diminishes as the 

number of multiple original spreaders grows. 

 

 

Conclusion 

Discovering the most influential spreaders is the key to 

immunizing complex, dynamic networks against cyberattacks and 

thereby limiting infection. Overall, μ-PCI, which can be considered a 

hybrid of node degree and k-shell index, is more effective at identifying 

influential spreaders and has less computational overhead than either of 

these traditional measures. Further work could include the use of 

control-theoretic techniques to improve results. 
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