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ABSTRACT

Computational Study of Liquid Film Flows
along Flat and Undulated Substrates

by

Phuc-Khanh Nguyen

Chairman: Prof. Vasilis Bontozoglou

This work presents a computational study of the gravity-driven liquid film flowing

along either a flat wall, or a wall with periodic corrugations. The Galerkin Finite

Element Method (FEM) briefly described in Chapter 2 is used to solve the two di-

mensional Navier-Stokes equations with appropriate boundary conditions. For the

film flow on a flat wall, the properties of the extreme solitary wave, fully developed

and stationary in the co-moving frame, are derived in terms of the flow rate and liquid

properties in Chapter 3. Emphasis is placed on high Reynolds numbers, where inertia

has a strong influence (drag-inertia regime), and where the predictions of simplified

model diverge impressively. Moreover, these solitary waves are found to interact with

each other and to form bound-states separated by intrinsically defined separation

distances, documented in Chapter 4. Time-dependent computations show that, at

short intrinsic separations, a continuous oscillation around the mean separation takes

place.

Next, the steady solutions of inertial film flows along strongly corrugated sub-

strates are systematically computed to describe the coupling of free surface defor-

mation and recirculation eddy around the bottom trough, in three regimes of sub-

critical, resonance, and supercritical flow. Finally the numerical methodology for a

time-dependent computation and its linearised version are developed in Chapter 6.

Time-dependent direct numerical simulation (DNS) results predict a stabilising effect

of corrugations on the liquid film flow. They further demonstrate that, above the

critical threshold, energy-transfer takes place from long-wave to short-wave modes,

and thus the classical long-wave instability is delayed and a short-wave appears first.
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PERILHYH

Upologistik  Melèth thc Ro c UgroÔ Umèna
se EpÐpeda   Diamorfwmèna Upostr¸mata

tou

Phuc-Khanh Nguyen

Epiblèpwn: Kajhght c BasÐlhc Mpontìzoglou

Sthn paroÔsa ergasÐa, exet�zetai upologistik� h barutik  ro  ugroÔ umèna p�nw

se epÐpedo   se periodik� diamorfwmèno upìstrwma. Sto kef�laio 2 parousi�zetai

sunoptik� h mèjodoc Galerkin peperasmènwn stoiqeÐwn, h opoÐa qrhsimopoieÐtai gia

thn epÐlush twn didi�statwn exis¸sewn Navier-Stokes me tic kat�llhlec sunoriakèc

sunj kec. Sto kef�laio 3 melet�tai h ro  se epÐpedo upìstrwma, kai eidikìtera up-

ologÐzontai oi idiìthtec twn pl rwc aneptugmènwn monaqik¸n kum�twn. 'Emfash dÐne-

tai se uyhloÔc arijmoÔc Reynolds, ìpou h adr�neia èqei isqur  epÐdrash (drag-inertia

regime), kai ìpou oi problèyeic twn aplopoihmènwn montèlwn apoklÐnoun metaxÔ touc

entupwsiak�. Sth sunèqeia, exet�zetai sto kef�laio 4 h allhlepÐdrash twn monaqik¸n

kum�twn, kai apodeiknÔetai ìti diadoqik� kÔmata sqhmatÐzoun suzeugmènec du�dec kai

tri�dec (bound states), ìpou oi korufèc apèqoun metaxÔ touc kajorismènec apost�-

seic. Qrono-exart¸menoi upologismoÐ apodeiknÔoun ìti, gia kontinèc apost�seic twn

koruf¸n, lamb�nei q¸ra suneq c tal�ntwsh gÔrw apì th mèsh tim .

Sto kef�laio 5 exet�zetai susthmatik� h mìnimh ro  ugroÔ umèna p�nw se periodikì

upìstrwma me èntonh diamìrfwsh, kai perigr�fetai h sÔzeuxh thc eleÔjerhc epif�neiac

kai thc dÐnhc anakukloforÐac ston pujmèna thc diamìrfwshc sthn upokrÐsimh perioq ,

thn perioq  suntonismoÔ kai thn uperkrÐsimh. Tèloc, sto kef�laio 6 anaptÔssetai h

upologistik  mèjodoc upologismoÔ qrono-metaballìmenwn ro¸n, kaj¸c kai h eidik 

ekdoq  thc pou afor� grammik  ro  (mikrèc apoklÐseic apì thn mìnimh kat�stash). Oi

akribeÐc upologismoÐ (DNS) problèpoun th stajeropoÐhsh thc ro c ugroÔ umèna lìgw

twn periodik¸n diamorf¸sewn. Epiplèon, apodeiknÔoun ìti, pèra apì tic krÐsimec sun-

j kec, gÐnetai metafor� enèrgeiac apì ta meg�la m kh kÔmatoc proc m kh sthn perioq 

thc diamìrfwshc. Me ton trìpo autì, anab�lletai h emf�nish thc klassik c ast�jeiac

meg�lou m kouc, kai oi pr¸tec astajeÐc diataraqèc eÐnai peperasmènou m kouc kÔmatoc.
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NOMENCLATURE

Roman Letters

C Continuity equation, page 17

K Kinematic equation, page 17

M Momentum conservation equation, page 17

J Jacobian, page 107

T Stress tensor of liquid, non-dimensionlised, page 17

g Unit vector in the direction of the gravity, non-dimensionlised, page 17

n Normal unit vector on the free surface, pointing outward from the fluid,

page 19

Q Unknown variable vector, page 106

U Velocity vector, non-dimensionlised, page 17

U i Velocity vector of liquid at node i, page 20

X i Cartesian coordinate vector of node i in physical domain, page 20

A Corrugation steepness, page 101

a Dimensional wall amplitude, page 69

C Phase speed, nondimensionalised, page 32

c Phase speed, in dimensional value, page 7

D Position of mesh refinement, page 35

EI Eddy intensity, page 71

ES Eddy size, page 71

g Gravitational acceleration, page 5

gx Component of the gravitational acceleration projected in the x direction,

page 5

gy Component of the gravitational acceleration projected in the y direction,

page 5

H Height of the free surface, non-dimensionlised, page 17

h Height of the free surface, in dimensional value, page 5

Hi Height of free surface at node i, page 20
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hN Mean film thickness based on the steady flow Nusselt solution, in dimen-
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hS Film thickness at the flat substrate far from the main hump, page 32

K Curvature of free surface, page 19

L Length of physical domain, page 35

lc Capillary length of liquid, page 19

L12 Separation distance between the first and the second solitary pulse, page 61

L23 Separation distance between the second and the third solitary pulse,

page 61

lν Viscous length of liquid, page 19

P Hydrostatic pressure of liquid, non-dimensionlised, page 17

p Hydrostatic pressure of liquid, in dimensional value, page 5

Pi Hydrostatic pressure of liquid at node i, page 20

Pam Ambient pressure of the supposedly uniform gas phase above the film

flow, non-dimensionalised, page 19

q Flow rate per spanwise unit, page 32

r Ratio of flow rate along the actual corrugated wall to the hypothetical

flat wall, page 82

RC Residual by the Galerkin FEM of the continuity equation, page 22

RK Residual by the Galerkin FEM of the kinematic equation, page 22

RM Residual by the Galerkin FEM of the momentum equation, page 22

S Surface of liquid domain, page 22

T Time, non-dimensionlised, page 17

tS Characteristic time scale, page 52

U Liquid velocity in X direction, non-dimensionlised, page 17

u Liquid velocity in the x direction, in dimensional value, page 5

uN Mean film velocity based on the steady flow Nusselt solution, in dimen-

sional value, page 7

uS Mean film velocity at the flat substrate far from the main hump, page 32

V Liquid velocity in Y direction, non-dimensionlised, page 17

V Volume of liquid domain, page 22

v Liquid velocity in the y direction, in dimensional value, page 5

Greek Letters
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β Relative amplitude of the free surface deformation, page 71

η Global coordinate in the crosswise direction of computational domain,

page 20

ξ Global coordinate in the streamwise direction of computational domain,

page 20

δ Dimensionless film thickness, page 70

η Elementwise coordinate in crosswise direction of the computational do-

main, page 20

λ Dimensional wavelength of the corrugated wall, page 69

λc Ratio of the corrugation wavelength with respect to the capillary length,

page 102

µ Dynamic viscosity of liquid, page 5

ν Kinematic viscosity of liquid, in dimensional value, page 7

Φ Superficial phase shift, page 71

ϕi Biquadratic basis function at node i, page 20

ψi Bilinear basis function at node i, page 20

ρ Density of liquid, page 5

σ Surface tension of liquid, page 5

ξ Dimensionless wall amplitude, page 70

ξ Elementwise coordinate in streamwise direction of the computational do-

main, page 20

ζ Steepness of wall corrugation, page 70

Subscripts

C Continuity equation, page 22

i i-th node, page 20

K Kinematic equation, page 22

M Momentum equation, page 22

N Based on the Nusselt solution, page 7

S Flat substrate far from the main hump, page 32

x, y Directions of Cartesian coordinate, page 5
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n n-th time step, page 106

Mathematical Symbols

¯ Steady quantities of the base flow, page 107
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∂ Partial derivative, page 17

˜ Perturbed quantities of the flow, page 107

∇ ( ∂
∂x
, ∂
∂y
), Gradient operator (Nabla operator), page 17

Nondimensional Numbers

δ Reduced Reynolds number, page 33

η Viscous dispersive number, page 33

κ Shkadov scaling factor, page 55

ζ Scaled inclination angle, page 33

Bo Bond number, page 13

Bo−1 Inverse Bond number, page 70

Ca Capillary number, page 19

Fr Froude number, page 41

k Wave number, page 9

Ka Kapitza number, page 8

Recr Critical Reynolds number, page 8

Note: Only the most important symbols are listed above. The symbols are defined

the first time they are used. Symbols are also subject to alteration on occasion.
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CHAPTER I

Introduction

1.1 Description of the Project in the Dissertation

1.1.1 Scope and Aims of the Dissertation

This dissertation presents a two-dimensional computational work by the integra-

tion of the Navier-Stokes equation system using the Galerkin Finite Element Method

to study a gravity-driven liquid film flowing along either flat substrate, or sinusoidal

topography. It deals with the Newtonian liquid characterized by its kinematic vis-

cosity, surface tension, and density, on the condition of isothermal flow, no heat and

mass transfer. The base substrate is a kind of no slip and no penetration.

The whole investigation in this dissertation can be divided into four particular

studies. The first work is for falling film flows down a flat wall, provides an under-

standing of the extreme solitary wave and its properties in terms of flow inertia and

liquid properties. Also dealing with the same flow, the second work is to investigate

the bound-state formation of solitary waves down falling liquid films and documents

the intrinsic bound-state separation distances between solitary pulses. Moving on

to the inertial film flow along corrugated substrates, the third study systematically

delineates the deformation of steady free surface under the imposition of wall corru-

gation. Parameters varied are the geometric characteristics of the wall (amplitude

and length), the capillary lengthscale of the liquid, and the mean film thickness. Re-

sults focus on the effect of inertia on free surface deformation and on the creation

of recirculation eddies. The last study deals with the development of computational

methodology for the time dependent Navier-Stokes equation system, and its linearised

version, as well as the numerical study of the stabilising effect of wall corrugation on

film flows, and its physical mechanism.
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1.1.2 Novelties of the Dissertation

In the four above mentioned topics, the novelties of this dissertation are reported

as new ideas, new numerical aspects applied in the topics studied, new numerical

predictions of physics of flow presented, as well as thoughts and discussions. In

particular, the first work deals with the solitary waves, being stationary in the co-

moving frame and in its extreme limit where a large computational domain and a

mesh refinement near solitary hump is used. The properties of solitary waves such as

phase speed and wave height do not monotonically vary in terms of flow rate, and do

depend on liquid properties. These numerical results resolve a controversy between

different models of low dimensionality, which provide widely conflicting predictions.

The novelty in the second topic is the bound state formation of solitary waves on

falling liquid films. Intrinsic bound-state separations are found and documented by

the computation from an initial guess composed of two or three assembled solitary

waves separated at desired distances. These initial guesses are fed into numerical

code to converge to different bound-state structures of solitary pulses travelling at

the same speed and being stationary in a co-moving frame. The separation distances

in the three pulses system may deviate significantly from the two pulse system due

to the contribution of the third pulse, especially in an asymmetric system of several

waves. The study confirms the validity of the weak interaction theory and helps to

explain the statistically wide distribution of separation distances in a train of solitary

waves.

When wall topography interacts with inertial film flows, it imposes a non-trivial

deformation on the free surface coupled with eddy separation around the wall trough.

In the third work, we concentrate on the steady solutions of inertial film flows along

periodic corrugations, and extensively describes the subcritical and supercritical flow

behaviours represented by the free surface deformation and eddy separation. The

resonance of free surface with wall corrugation is universally detected in some para-

metric diagrams. The appearance and suppression of coupled eddy separation is also

documented for an applicable manipulation of eddy. A properly tailored surface of

an object is conjectured to face less resistance while moving in liquid. Moreover,

the computation reproduces successfully the hydraulic jump, bulge hump, standing

wave of free surface for flow along corrugated wall at low inclination angle and large

wavelength of corrugation.

The last work develops time-dependent computational methods for the full Navier-

Stokes equation system and its linearised version. They are exploited to investigate

the stabilizing effect by corrugation and the short-wave mode primary instability

2
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by direct numerical simulation (DNS). Flow on the tested wall corrugation is found

stable at much larger Reynolds number at which the one on planar wall must be

unstable. This confirms the stabilizing effect of this particular corrugation. Above the

critical threshold, the evolution of long-wave mode into short-wave mode due to the

modulation of periodic corrugations is numerically observed. Hence new mechanism

of instability which is a short-wave mode is predicted due to the effect of corrugation

to film flows. This preliminary numerical result supports the experimental observation

of an enhanced stabilization by wall corrugation in the range of parameters studied.

1.1.3 Scientific Interest, Industrial Application, and Motivations of the

Project

The dynamics and stability of thin liquid films have fascinated scientists over many

decades. The observations of regular wave patterns in film flows down a windowpane

or along guttering, the patterning of dewetting droplets, and the fingering of viscous

flows down a slope are all examples that are familiar in daily life. Thin film flows occur

over a wide range of length scales and are central to numerous areas of engineering,

geophysics, and biophysics. These include nanofluidics and microfluidics, coating

flows, flows in heat and mass transfer equipment, intensive processing, lava flows,

dynamics of continental ice sheets, tear-film rupture, and surfactant replacement

therapy.

These flows have attracted considerable attention in the literature, which have re-

sulted in many significant developments in experimental, analytical, and numerical re-

search in this area. These include advances in understanding dewetting, thermocapillary-

and surfactant-driven films, falling films, films flowing over structured, compliant, and

rapidly rotating substrates, evaporating films as well as those manipulated via use

of electric fields to produce nanoscale patterns. A brief review of some experimental

and theoretical results are referred to the monographs by Alekseenko et al. (1985),

Chang (1994), Oron et al. (1997), Craster and Matar (2009), and Kalliadasis et al.

(2012) for a more detailed information of the relevant literature and results.

Concentrating on gravity-driven free surface flow, wave evolution on an inclined

or vertical falling film is especially an open-flow hydrodynamic instability, which has

attracted an extensive study since the pioneering work of Kapitza and his son (Kapitza

and Kapitza, 1965). Interfacial waves on film flows has been known on one side to

enhance heat and mass transfer rates in process equipment such as condensers, falling

film evaporators, absorption columns, and two-phase flow reactors, and on the other

side, they degrade the quality of film in coating processes.
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Specifically, this dissertation deals with the gravity-driven film flows and is mo-

tivated by different topical studies. First, due to the largely different and even con-

tradictory prediction reported by several low-dimensional models (Ruyer-Quil and

Manneville, 2005) about the properties of the extreme solitary wave, the full Navier-

Stokes equation computation is carried out on the extreme solitary wave down falling

liquid films with twofold purpose: i) presenting a DNS prediction of extreme soli-

tary waves and ii) offering the DNS data for validation of results given by different

low-dimensional models.

Second, based on the experimental (Vlachogiannis and Bontozoglou, 2001) and

numerical (Malamataris et al., 2002a) evidence about possible solitary wave interac-

tions, another work adhering also to falling liquid films is to prove the existence of

solitary wave bound states. Here the stationary separation distance between solitary

pulses in two-pulse system is rigorously computed. Moreover, the simulation of low-

dimensional model (Pradas et al., 2011a) has shown a wide distribution of separation

distance in a train of waves. An extension with a three-pulse system is necessary

to see the effect of additional pulses which indeed modify the intrinsic separation

distances in two-pulse system. Dynamic simulations document various types of pulse

interactions: monotonic attraction or repulsion, decaying oscillation, self-sustained

oscillation. Especially, the explosive repulsion of pulses at very close separation re-

veals that there is a minimum separation in a train of many solitary pulses.

Taking into account undulated substrates, the third work aimed at providing a

systematic description and insight of the flow behaviour in a broad range of pa-

rameters. It recovers the asymptotic results from the Stokes flow and several other

information of the flow at finite inertia, which is fragmentarily reported in previous

experimental, analytical and numerical literature. Essentially it unifies the physics

into distinguished regimes of subcritical, resonance, and supercritical flow.

Noting that experiments and numerics merely report about a delay of instability

by wall corrugation. Physical understanding of the new mechanism of stabilization

imposed by the wall corrugation on film flow suggests a separate study focused on evo-

lution of perturbation. Computational method is developed to solve the full Navier-

Stokes equations for time dependent simulation. Evolution of full flow is subtracted

from the base flow to extract the information of perturbation. This study confirms

that the base flow along corrugation can be stable at higher Reynolds number than

in planar case. Beyond the critical threshold, it is observed that perturbation evolves

from long wave to short wave mode. Therefore, wall corrugation imposes a wave

modulation and creates a short-wave mode primary instability of film flow.

4

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:51:43 EEST - 18.219.33.223



1.2 Background Information on Liquid Film Flow

1.2.1 Theoretical Formulation

The two-dimensional governing equations for a gravity-driven flow, as sketched in

Fig. 1.1, of a Newtonian incompressible liquid with density ρ, dynamic viscosity µ,

and surface tension σ are expressed in dimensional form from the universal laws of

continuity in Eq. (1.1), momentum conservation in Eqs. (1.2),(1.3), and are coupled

with the kinematic evolution in Eq. (1.4) of free surface as following,

∂u

∂x
+
∂v

∂y
= 0, (1.1)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
+ ρ gx, (1.2)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
+ ρ gy, (1.3)

∂h

∂t
+ u

∂h

∂x
− v = 0. (1.4)

where gx and gy are two components of the gravitational acceleration g projected

respectively on x and y directions, gx = g sinα and gy = −g cosα.
The Navier-Stokes equation is a second-order differential equation for the velocity

with respect to the spatial coordinates. To compute a solution, one scalar boundary

condition is required for each component of the velocity or traction over each bound-

ary. Over an impermeable solid surface, the no-slip and no-penetration boundary

conditions are required. Over a free surface, the normal component of the traction

is required to be equal to the ambient pressure increased or decreased by an amount

that is equal to the product of the surface tension and the curvature of free surface,

and the tangential component be equal to the Marangoni traction due to spatial vari-

ations in surface tension along the free surface. Finally, a periodic boundary condition

is imposed for the inflow and outflow of the computational domain. These boundary

conditions will be specified in more detail in the respective studies.

1.2.2 Nusselt Solution of the Steady Film Flow down an Inclined Planar

Wall

Consider the flow of a film of thickness h down a plane wall that is inclined by the

angle α with respect the horizontal, as illustrated in Fig. 1.1. The no-slip boundary

5
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h
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Figure 1.1: Sketch of a steady gravity-driven film flow down an inclined wall

condition requires that the velocity vanishes at the plane located at y = 0; the free

surface condition requires that the shear stress vanishes at the free surface located

at y = h. Under the assumption of unidirectional flow, the motion of the fluid is

governed by the simplified equations of motion, Eqs. (1.5) and (1.6), by discarding

terms that are identically equal to zero as follows,

0 = −∂p
∂x

+ µ
d2u

dy2
+ ρgx, (1.5)

0 = −∂p
∂y

+ ρgy, (1.6)

subject to the aforementioned boundary and free-surface conditions expressed by

u = 0 at y = 0, (1.7)

du

dy
= 0 at y = h. (1.8)

The pressure distribution is given by integrating the equation Eq. (1.6) with respect

to y, with no pressure gradient in x direction, yielding

p(y) = P0 + ρ gy y,

where gy = −g cosα. Setting the pressure at the free surface equal to the ambient

atmospheric pressure, Patm = P0 + ρ gy h or P0 = Patm − ρ gy h, leads to

p(y) = Patm + ρ g cosα (h− y). (1.9)
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Integrating twice the second-order linear ordinary differential equation (1.5) with

respect to y, then applying the boundary conditions (1.7) and (1.8), it gives the so-

called Nusselt velocity of semi-parabolic profile and its maximum value on the free

surface as

u(y) =
ρ g sinα

2µ
y(2h− y), (1.10)

umax = u(h) =
ρ g sinα

2µ
h2. (1.11)

The flow rate per unit width is obtained by integrating the velocity across the film,

q =

h∫
0

u(y) dy =
g sinα ρh3

3µ
. (1.12)

Given the flow rate q and the kinematic viscosity of the liquid ν = µ/ρ, the mean

film thickness, hN , of a wavy film flow is calculated based on the Nusselt solution as

follows,

hN =

(
3 qν

g sinα

)1/3

. (1.13)

Also defining the mean film velocity of the Nusselt solution, uN , by q = hN uN gives

uN =
h2N g sinα

3ν
=

2

3
umax. (1.14)

The existence of an explicit relation (1.12) between flow rate and depth suggests

that any gradual or long-wave disturbance from the uniform state would be propa-

gated downstream with a (dimensional) velocity c = dq/dh,

c =
h2 g sinα

ν
= 3uN = 2umax. (1.15)

This simple result provides an interesting check on low-dimensional model analysis

as well as a confirmation for the DNS result on solitary wave in Chapter III that very

long waves developed near the critical threshold propagate with a phase velocity equal

to three times of the mean velocity.
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Figure 1.2: Schematic of the growth rate λr as a function of streamwise wave number
k, and the neutral curve for the neutral wave number k0 as a function of
Reynolds number Re. The critical Reynolds number for the long wave is
Recr =

5
6
cotα. The bifurcation of the stationary periodic wave family is

also indicated, cf. the review by Chang (1994).

1.2.3 Linear Stability Analysis

Early literature on linear instability, beginning with the classical long-wave results

by Benjamin (1957) and Yih (1963), address the convective instability by tackling the

full Orr-Sommerfeld equation derived from the the linearised Navier-Stokes equation

system. Benjamin (1957), by using the Orr-Sommerfeld equation which is accurate

for infinitesimal amplitude disturbance on film flows down the vertical plane, gave

the correct critical Reynolds number for long wave instability,

Recr =
5

6
cotα. (1.16)

That means instability of very long waves on the vertical film flow occurs beyond

Recr = 0, or in other words for all finite Reynolds number. In an analogue of Squire’s

theorem, the two-dimensional disturbances of the form f(y) = exp(i k x+λt) are found

to be more unstable than three-dimensional disturbances. From the review by Chang

(1994), the growth rate λr shown in Figure 1.2, is a parabolic one that encompasses the

range k ∈ (0, k0) with k0 the neutral wave number. The domain of linearly unstable

modes in the case of a vertical plane is 0 < k < k0, with k0 =
√

6Re/(5Ka) where Ka

is the Kapitza number defined later in Eq. (2.10). Using the IBL model by Shkadov

(1967) with the scaled Reynolds number defined as δ = Re11/9Ka−1/35−13−7/9 (Note

that δ by Skadov has a coefficient 45 times smaller than the one, given in Chapter III,

8

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:51:43 EEST - 18.219.33.223



derived from the WRIBL method (Ruyer-Quil and Manneville, 1998, 2000)), Chang

showed that in the limit of low flow rate (δ → 0), the neutral wave number k0

approaches
√
18δ. Destabilization of long waves is due to gravity-driven inertia and

stabilization of short waves is due to capillary effects. In the same limit of low δ, the

fastest growing mode is km = k0/
√
2 =

√
9δ. Also at low δ, the normalized phase

velocity C = −λi/k is exactly 3 for all wave numbers k, e.g. all Fourier modes travel

at three times the average velocity.

For linear disturbances of wave number k = 2π/L where L is scaled with viscous

length lν , another earlier work by Gjevik (1970) on the Orr-Sommerfeld equation gave

the neutral curve and the curve of maximum rate of amplification. These results for

short wave disturbance manifest a dependence on the liquid properties (involving the

Kapitza number Ka) and can be written,

Recr =
5

6
(cotα+Kak2), (1.17)

Remax =
5

6
(cotα+ 2Kak2). (1.18)

By the need to study efficiently the flow evolution far beyond the critical threshold,

several low-dimensional models were developed. One of the most popular models is

Benney equation (Benney , 1966), which was found to display unphysical solutions

that grow indefinitely in time (Pumir et al., 1983; Rosenau et al., 1992; Oron and

Gottlieb, 2002; Scheid et al., 2005; Gottlieb and Oron, 2004). An alternative model is

a set of two evolution equations derived by Shkadov (1967) using the IBL approach

which overestimates the critical threshold by a factor 1/6,

Recr = cotα. (1.19)

To overcome many drawbacks, a new approach was introduced by Ruyer-Quil and

Manneville (Ruyer-Quil and Manneville, 1998, 2000) extending the boundary-layer

theory developed by Shkadov, for both first- and second-order approximations to

the NS equations, classified as a weighted-residual integral boundary-layer (WRIBL)

theory. In Chapter III, we will confirm the complete second-order four-equation model

as the most accurate model for a broad range of Kapitza number (Ka ∼ 100−10000)

and large range of reduced Reynolds number (δ ∼ 0 − 10). The WRIBL technique

corrected the inability of the Shkadov model equations to match the linear stability

threshold of the system and was found to yield bounded solutions for a larger range
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Figure 1.3: Sketch of the four region evolution of the naturally excited film flow.

of Reynolds number than in the case of the Benney equation. More recently, Oron

and Heining (2008) recovered the same formulation (1.17) for any disturbance of

wave number k = 2π/L, using the WRIBL technique that is credited to Ruyer-Quil

and Manneville (Ruyer-Quil and Manneville, 1998, 2000), which offers the critical

threshold for all long and short wave instability.

1.2.4 Nonlinear Evolution of Film Flows

Wave evolution by natural excitation for Reynolds number well beyond the crit-

ical threshold, where the instability consists of long interfacial waves dominated by

gravity-capillary effects, is shown in the schematic Figure 1.3, see the review by Chang

(1994). Four distinct wave regions have been observed.

- Region I: Infinitesimal disturbances at the inlet are amplified downstream, due

to convective and not absolute instability, to form a monochromatic wave at the end

of the region. If the initial disturbance is sufficiently monochromatic in frequency,

the emerging wave inherits the forcing frequency. If the disturbance has a wide band

of frequency, as is true with natural noise, a highly selective linear filtering process in

region I yields a unique monochromatic wave field for all wideband disturbances.

- Region II: The exponential growth is arrested by weakly nonlinear effects as the

amplitude of the monochromatic wave saturates to a finite value depending on the

wave number, Re, and Ka. Neighbouring waves coalesce at intermittent locations

due to a subharmonic instability (Prokopiou et al., 1991) or a long-wave modulation

which appears characteristic of sideband instability.

- Region III: Due to the coalescence, radiation and interaction of waves (Mala-

mataris et al., 2002a), the pulse waves grow in wavelength, amplitude, and speed

and evolve into characteristic spatially localized teardrop humps. These humps have

steep fronts which are relaxed by a series of front-running ripples. The whole structure
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Re = 52. With the exception of the first panel on the left, the inlet flow
rate is periodically forced at the frequencies indicated in the upper right
corner of each panel (in Hz). The white arrows indicate the appearance
of double-peaked waves, from Nosoko and Miyara (2004).

in combination is called solitary wave or solitary pulse. In Chapter 3, the extreme

solitary wave is shown to grow monotonically exponentially at downwind side, and

to decay oscillatorily and exponentially at upwind side, and to leave a nearly flat

liquid substrate far from the main hump between the solitary wave. Interaction of

solitary waves leads eventually to the train of fully developed solitary waves, where

their shape, phase speed, and wave height are nearly identical in the bound state

formation (Nguyen et al., 2012) at downstream.

- Region IV: At high enough Re, inertia effect causes a transverse variation, which

begins to develop on the wave crests of the solitary humps. The dynamics of the

transverse variation is nonstationary and these transverse variations grow to such

amplitude (not in height but in the direction parallel to the wall) that adjacent crests

merge at various points and pinch off.

For a forcing disturbance of frequency f to inlet flow rate, two cases can be dis-

tinguished dependent on the frequency f .

- A low-frequency finite-amplitude disturbance emerges into the region III of soli-

tary waves right after bypassing the region I of infinitesimal one, as shown in panel b

of Figure 1.4.

- However, a high forcing frequency is observed to produce train of monochromatic

waves of the same frequency dominant in the extended region II. In region III, due to
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Figure 1.5: Phase speed C and maximum height H versus Reynolds number by dif-
ferent low-dimensional models, from Chang et al. (2002).

the close distance between solitary pulses, there are complex dynamical interactions

of attractive, repulsive, and oscillatory separation distance, coupling with the mass

exchange between solitary waves as described by Nguyen et al. (2012) as well as their

coalescence and radiation by Malamataris et al. (2002a).

The above evolution of film flow on a planar wall attracted several studies to

develop different low-dimensional models with different number of degree of freedom

and order of accuracy. Although their descriptions on the film flow predict quite

similar behaviour at the beginning of supercritical stage, the numerical results on the

fully developed solitary wave deviate significantly from each other.

As Figure 1.5 depicts the numerical prediction of solitary wave properties (the

phase speed and wave height) in terms of Reynolds number, results given by different

low-dimensional models are very divergent. Moreover, the latter don’t recognize the

diffusive effect of viscosity and the characteristics of wave were incorrectly described

to be independent on liquid properties. Based on the full statement of Navier-Stokes

equation system, one of my topical study focuses on the fully developed solitary wave

in the region III, to predict rigorously the stationary properties of extreme solitary

wave in Chapter III, therein, making a conclusion on the complete four-equation

model by Ruyer-Quil and Manneville (2000) as the most accurate. Next working still

on the solitary waves, their bound state formation in a two pulse, then a three pulse

system is investigated in Chapter IV, which explains the relative regularity of a train

of solitary waves as well as the wide distribution of pulse separation distance in a

multiple solitary pulse system.
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Figure 1.6: Amplitude b/a of the free surface as a function of the film thickness β/λ,
for inclination angle α = 45◦, Bo = ∞, and different wave amplitudes: △,
a/λ = 0.01; ⃝, 0.10; �, 0.20. Dashed line shows predictions of asymptotic
theory for small a/λ and a/w by Wang (1981), from Pozrikidis (1988).

1.2.5 Corrugated Walls

There are several studies on the steady solutions of film flow along undulated

substrate. The early numerical computation by Pozrikidis (1988) was carried out

for Stokes flow (Reynolds number Re → 0) (Physically it means a flow of very vis-

cous liquid). Two cases of liquid film flowing along undulated wall were studied in

comparison with asymptotic analysis by Wang (1981).

For a wall of amplitude a being very small compared both to its wavelength λ

and the film thickness at the crest w, the flow tends to follow closely the wall profile.

That assumption facilitates an asymptotic analysis (Wang , 1981). A good agreement

between the results given by numerical method and asymptotic analysis was found

as shown in Figure 1.6. Starting with a maximum deformation of nearly b/a = 1 (b

is the amplitude of free surface deformation and a the wall amplitude) at very small

flow rate, the free surface gain smoothness with the film thickness. In three cases of

wall amplitude, due to assumption of large wavelength compared to capillary effect

(or Bo = ∞), this flow is actually interpreted as being totally in the supercritical

regime (defined in Chapter V). Therefore, the free surface deformation decreases with

flow rate whose inertial effect tends to straighten free surface.

However, when the capillary force is dominant in accordance with a small Bond
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Figure 1.7: Effect of Bond number on the amplitude b/a of the free surface as a
function of the film thickness β/λ, for inclination angle α = 45◦, a/λ =
0.2, and: �, Bo = ∞; ⃝, 0.5; △, 0.2. Dashed line shows predictions
of asymptotic theory for small a/λ and large β/λ by Wang (1981), from
Pozrikidis (1988).

number, the capillarity tends to be against the free surface deformation at low flow

rate, where flow is in the subcritical regime as defined in Chapter V. The numerical

results shown in Figure 1.7 for small Bond number are not in agreement with asymp-

totic analysis. In fact, the flow should exhibit a resonance of free surface deformation

due to the interaction with the corrugated wall when both capillary and inertia ef-

fect interplays as high enough flow rate. We can find that the linear resonance was

more appropriately predicted by Bontozoglou and Papapolymerou (1997) using the

extended Orr-Sommerfeld equation and analytically analysed by Wierschem et al.

(2008) under the assumption of infinitesimal corrugation amplitude.

Therefore at finite Reynolds number, the flow is quite different from Stokes flow.

The free surface deformation is not monotonic and exhibits a maximum with respect

to Reynolds number (hence flow rate). Looking at Figure 1.8, the free surface in-

creasingly deforms with the flow rate, then reaches a maximum when both capillary

and inertial effects have the same magnitude and hence allow a largest deformation.

To higher Reynolds number, inertia takes over other forces and hence the flow seems

to be able to bridge the gap between two consecutive crests without following closely

the bottom wall. Other later studies working on periodic corrugation whose wave-

length is comparable to the capillary length of liquid also describes a pronounced
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Figure 1.8: The resonance curve for different film thicknesses, from Wierschem et al.
(2008).

resonance at intermediate flow rate. In particular, a nonlinear resonance was nu-

merically studied for strongly undulated wall by Heining et al. (2009), and therein

analytically approached provided that the film thickness is very thin compared to

other characteristic lengths. It was also numerically found based on the full Navier-

Stokes computation with the free outflow boundary condition by Malamataris and

Bontozoglou (1999) for the S and C-shaped corrugation.

Moreover, the complex matrix of parameters makes the steady flow along undu-

lated wall exhibit several physical phenomena. One is the coupling of free surface

and the eddy separation in the bottom of wall. Eddy separation was experimentally

investigated by Wierschem and Aksel (2004b) to delineate the influence of inertia on

its size. For corrugation wall of large wavelength, the experiment by Wierschem and

Aksel (2004a) well documented other interesting free surface deformation such as hy-

draulic jump, bulge, and fingering phenomena. For a thick-film flow, the competing

geometric and inertial effects to the local flow structure was solved semianalytically

for Stokes flow and numerically for inertial one. It suggests the possibility to manip-

ulate the appearance and disappearance of the eddy separation in the bottom wall,

which was recently studied thoroughly by computation and experiment of Wierschem

et al. (2010). As these numerous works show fragmentary information on the topic,

the study in Chapter V aims at providing a more comprehensive, broad range para-

metric description with physical explanation and insight. The work also attempts

to relate the experimental data, the analytical approach with numerical predictions,

and to unify several same physical observations at different parameters into some

parametric maps (Nguyen and Bontozoglou, 2011).

Regarding the flow instability, corrugation wall is proved to impose a stabiliz-
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ing effect on the free surface under some specific conditions. Several works based

on the low-dimensional models was carried out to describe the instability of flow by

D’Alessio et al. (2009), flow evolution by Oron and Heining (2008), the long-wave

disturbance on free surface of liquid film flowing along corrugation of the short wave-

length by Davalos-Orozco (2007). The substantially important work based on the full

Navier-Stokes equations was done by Trifonov (2007) who parametrically documented

the instability of vertical liquid film along corrugation and also found the region of

stabilizing effect of wall amplitude. However, the physical mechanism behind the

stabilizing effect is still unknown and can be a topical discussion in Chapter VI.

16

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:51:43 EEST - 18.219.33.223



CHAPTER II

Computational Methodology: Finite Element

Method

2.1 Theoretical Formulation

This study deals with two-dimensional, laminar, incompressible thin film flow of

Newtonian liquids either along a flat wall (Chapter III and IV) or periodic corruga-

tions (Chapter V and VI), driven down by the gravity. It works on isothermal case

and there is no mass and heat exchange across the wall and free surface boundaries of

physical domain. The problem is modelled as two-dimensional in a Cartesian coordi-

nate system, with the x-axis pointing in the mean flow direction and the y-axis across

the film. The respective dimensional velocity components are u and v. The liquid is

characterized by the density ρ, the dynamic viscosity µ, and the surface tension σ.

The primitive flow input is the mean-time volumetric flow rate q per unit spanwise

and the location of the free surface is described as y = h(x, t). The governing equa-

tions that express the principles of mass and momentum conservation augmented by

the kinematic condition of no mass penetration are non-dimensionalised as follows,

C :=∇ · U = 0, (2.1)

M :=
∂U

∂T
+ U · ∇U −∇ · T − 3

Re sinα
g = 0, (2.2)

K :=
∂H

∂T
+ U

∂H

∂X
− V = 0. (2.3)

Here, capital letters indicate dimensionless variables. U = [U, V ]T is the velocity

vector in the laboratory frame, P is the pressure, and g the unit vector in the direction

of the gravity g = [sinα, − cosα]T , with α the mean inclination angle of the mean
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wall to the horizontal plane, and T is the time.

In Eq. (2.2), T is the stress tensor that a constitutive equation relates the stress

tensor to the deformation of the Newtonian liquids in the flow field as,

τij = −pδij + µ(
∂ui
∂xj

+
∂uj
∂xi

), (2.4)

where ui,j = (u, v) and xi,j = (x, y), or in an explicit and dimensionless form,

T = −PI + 1

Re

[
2UX UY + VX

UY + VX 2VY

]
(2.5)

where the dimensionless parameter, Re, is the Reynolds number (the ratio of inertial

to viscous forces) as follows

Re =
ρ q

µ
=
ρūh̄

µ
, (2.6)

where ū and h̄ are characteristic velocity and length of the problem, and ρ and ν are

the density and viscosity of the liquid.

The governing equations are solved along with appropriate boundary conditions.

The boundaries are divided into artificial and natural. Natural boundaries can be

solid wall or free surfaces, as shown in Fig. 2.1.

inflow

outflow

Solid wall

Free surface

Y

X g

Figure 2.1: Illustration for a prototype of isothermal film flows down an inclined wavy
wall.

Along these boundaries, the boundary conditions are imposed by known exchange

rates or boundary variable values. At solid walls, there is no mass penetration, no
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slip, and no heat exchange.

U = V = 0. (2.7)

Along the free surface, the shear stress is balanced by the capillary pressure due to

the action of the surface tension and the supposedly uniform ambient gas pressure.

n · T = nCaK + nPam (2.8)

In Eq. (2.8), K = ∇ · n is the curvature of the free surface and Ca = σū/µ

the capillary number. If the pressure at one point in the liquid is set as the datum

pressure, there is a pressure jump, ∆P between the datum pressure and the uniformed

gas pressure. The relation can be rewritten as follows,

n · T = ∆P n+ 31/3KaRe−5/3K n. (2.9)

n is the outward unit normal vector of the free surface, and K =
H ′′

(1 +H ′2)3/2
the

curvature of the free surface.

The Kapitza number, Ka depends only on liquid properties for a fixed inclination

and appears in Eq. (2.9),

Ka = (
lc
lv
)2. (2.10)

The dimensional lengths entering into the above expression are: viscous length, lv =

(ν2/(g sinα))1/3, capillary length, lc = (σ/(ρg sinα))1/2.

The periodic boundary condition is applied for the inflow and outflow in most stud-

ied problems. It is physically valid for the steady flow case as well as the stationary-

in-comoving frame problem. Thus, it offers an efficient computation without losing

physical information. For the unsteady flow along corrugation, we focus only on per-

turbation evolving from the base flow near the critical threshold, so this condition

remains applicable.

2.2 Numerical Method

The governing equations are partial non-linear differential equations that cannot

be solved analytically. A numerical solution must be sought if physical predictions

are desired. The Galerkin weighted residual Finite Element Method is used, following
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the work by Malamataris (1991). This technique requires a mapping of the physical

domain (X,Y ) into a square-shaped computational domain (ξ,η) by the following

isoparametric transformation, where Y =W (X) is the wall profile,

X = L ξ; Y = (H(X,T )−W (X))η +W (X). (2.11)

The global coordinates of a computational domain, ξ and η in a bold font, vary in

the range [0, 1]. The FEM implementation requires an elementwise application of the

governing laws as well as their weak formulations. The computational domain is then

divided into rectangular finite elements with frozen or unchanged nodal coordinates

(ξi,ηi) in order to take the Gaussian quadrature on each element. As a result of the

mapping, the physical space is correspondingly discretized into quadrilateral finite

elements, as shown in Fig. 2.2 with often movable nodal coordinate (Xi, Yi). The

Velocity and 

pressure nodes

Velocity nodes

Figure 2.2: A finite element with the attached nodal unknowns.

flow field variables consisting of velocities U = (U, V ), pressure P , free surface height

H, and coordinates X = (X, Y ) are interpolated from nodal unknowns and nodal

coordinates using the Galerkin basis functions,

U =
∑
i=1,9

U i ϕ
i(ξ, η), P =

∑
i=1,4

Pi ψ
i(ξ, η),

H =
∑
i=1,3

Hi ϕ
i(ξ, η = 1), X =

∑
i=1,9

X i ϕ
i(ξ, η). (2.12)

Here, ξ and η in a normal font are the elementwise coordinates, varying in the

range [−1; 1], of a specified finite element in the computational domain. The Galerkin

basis functions used in the above formulation are ϕi(ξ, η) (i = 1, 9) known bi-

quadratic, ψi(ξ, η) (i = 1, 4) known bi-linear, and ϕi(ξ, η = 1) (i = 1, 3) known

quadratic bases over a prototype element shown in Fig. 2.3. All elements of the com-

putational domain are transformed into the standard biquadratic element of Fig. 2.3

by means of the isoparametric transformation. The pressure appearing in the stress

tensor of Eq. (2.2) is expanded with bi-linear basis functions to conform with the

viscous components of total stress, since the velocity is expanded with bi-quadratic
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basis functions, otherwise spurious pressure may appear (Olson, 1977; Sani et al.,

1980).

x x x

x x

x xx

x

1
,

1

3
,

2 9
,

4

7
,

3

2

6

8

5

4

(-1,1)

(-1,-1)

(1,1)

(1,-1)

Figure 2.3: Standard finite element with biquadratic, ϕi, and bilinear, ψi basis
functions and Gauss integration points (0, 0), (0,±0.77), (±0.77, 0),
(±0.77,±0.77), (∓0.77,±0.77).

Biquadratic basis functions are:

ϕ1 =
1

4
ξ(ξ − 1)η(η − 1) ϕ2 =

1

2
ξ(ξ − 1)(1− η2)

ϕ3 =
1

4
ξ(ξ − 1)η(η + 1) ϕ4 =

1

2
(1− ξ2)(1− η2)

ϕ5 = (1− ξ2)(1− η2) ϕ6 =
1

2
(1− ξ2)η(η + 1)

ϕ7 =
1

4
ξ(ξ + 1)η(η − 1) ϕ8 =

1

2
ξ(ξ + 1)(1− η2)

ϕ9 =
1

4
ξ(ξ + 1)η(η + 1)

Bilinear basis functions are

ψ4 =
1

4
(1− ξ)(1− η) ψ3 =

1

4
(1− ξ)(1 + η)

ψ2 =
1

4
(1 + ξ)(1− η) ψ1 =

1

4
(1 + ξ)(1 + η)

The expansions by the Eqs. (2.12) are introduced into the governing equations

and the resulting errors of interpolation is forced orthogonal to all basis functions

(Strang and Fix , 1973), which is equivalent to minimizing that error to zero:
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RC :=

∫∫
V

Cψi(ξ, η) dV = 0, (2.13)

RM :=

∫∫
V

Mϕi(ξ, η) dV = 0, (2.14)

RK :=

∫
S

Kϕi(ξ, η = 1) dS = 0. (2.15)

The resulting weighted residual, RM , over the volume V of the computational

domain are developed further by the divergence theorem, which decreases the order

of differentiation and projects the natural boundary conditions along the boundaries

of the domain according to:

∇ · (ϕiT ) = ϕi(∇ · T ) + T · ∇ϕi (2.16)∫∫
V

∇ · T ϕi dV =

∫
S

n · Tϕi dS −
∫∫
V

T · ∇ϕi dV. (2.17)

Here S is the boundary of the domain of volume V and n the outward unit normal

vector along S. The final form of the weighted residual, Eq. (2.14) becomes,

RM =

∫∫
V

[(
∂U

∂T
+ U · ∇U − 3

Re sinα
g

)
ϕi + T · ∇ϕi

]
dV +

∫
S

ϕiT · n dS. (2.18)

The superscript i denotes the i-th node of the computational domain in Fig. 2.3

over which ϕi = 1. Thus the i-th residual equation corresponds to the i-th node where

the unknown variables have values Ui, Vi, Pi, Hi. The latter are determined by solv-

ing the algebraic system of equations resulting from the discretisation of Eqs. (2.13),

(2.15) and (2.18). The discretising technique is employed by the Galerkin FEM in

space and by the Crank-Nicolson scheme marching in time. The values of the un-

known variables elsewhere are computed by means of Equations (2.12). Essential

boundary conditions are applied by replacing the entire governing equations along

the appropriate boundary nodes with the corresponding known values of the flow

variables. Natural boundary conditions are applied by substituting the surface inte-

gral of Equation (2.18) with the appropriate known natural conditions. For confined

flow, the equations (2.13) and (2.18) are integrated numerically by the nine-point

Gaussian quadrature. A system of algebraic equations is obtained, which is solved
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with the Newton-Raphson iteration, and frontal technique (Hood , 1976), yielding

simultaneously unknown flow variables at the nodal positions of the computation

domain and elsewhere by mean of Equations (2.12). For free surface problems, the

kinematic condition, Equation (2.3), is added to the governing equations in order

to calculate the free surface, H, which is expanded in terms of the quadratic basis

functions, ϕ(ξ, η = 1). Thus, the system of residual equations, Eqs. (2.13), (2.15),

and (2.18), resulting respectively from the governing equations Eqs. (2.1), (2.3), and

(2.2), is simultaneously solved for the set of unknown variables (velocity U , pressure

P , and free surface height H).
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CHAPTER III

Extreme Solitary Wave

The material presented in this chapter is a part of collaborative work with the

Fluides, Automatique et Systemes Thermiques (FAST) lab, Centre National de la

Recherche Scientifique, in the University of Pierre and Marie Curie, in Orsay, France.

This chapter is an extended version of a manuscript in preparation entitled Extreme

Solitary Waves down Falling Film Flow by P.-K. Nguyen, S. Chakraborty, C. Ruyer-

Quil and V. Bontozoglou. My specific contribution to this work is to compute the true

solitary waves on a sufficiently large domain length, based on DNS using the clustering

grid and to confirm that the complete second-order model is the most accurate one as

derived by Ruyer-Quil & Manneville (Ruyer-Quil and Manneville, 2000, 2002, 2005).

To this aim, I specifically developed a numerical code for the Navier-Stokes equations

to capture the solitary wave being stationary in the co-moving frame.

3.1 Introduction

Wave evolution on an inclined or vertical falling film is an open-flow hydrody-

namic instability, which has attracted extensive study since the pioneering work of

Kapitza and his son (Kapitza and Kapitza, 1965). Interfacial waves on film flows has

been known on one side to enhance heat and mass transfer rates in process equipment

such as condensers, falling film evaporators, absorption columns, and two-phase flow

reactors, and on the other side, they degrade the quality of film in coating processes.

A brief review of some experimental and theoretical results are referred to the mono-

graphs by Alekseenko et al. (1985), Chang (1994), Craster and Matar (2009), and

Kalliadasis et al. (2012) for a more detailed information of the relevant literature and

results.

Much of the information available for the problem is based on experiments. From

experimental observations, waves emerge first as short periodic, near sinusoidal waves
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in the inception region (near the inlet) and evolve into long solitary type waves, which

are often preceded by one or more small capillary waves (or ripples). These solitary

waves might break up into spatially and temporally irregular three-dimensional waves

further downstream. A technique introduced in the pioneering work of Kapitza and

Kapitza (1965) and subsequently adopted by many investigators (Alekseenko et al.,

1985; Liu and Gollub, 1994; Tihon et al., 2006; Vlachogiannis et al., 2010; Leon-

tidis et al., 2010) is to facilitate observations of wave development by applying a

constant-frequency disturbance at the inlet. In this way regular waves are produced,

whose form depends to a large extent on the frequency of the forcing. These studies

have demonstrated that high-frequency disturbances initially lead to saturated peri-

odic waves, whereas low-frequency disturbances evolve directly into regularly-spaced

solitary waves. The latter are characterized by large humps with steep wave fronts

and gently sloping tails, preceded by front-running ripples (else called bow waves or

precursor waves).

Other investigations have focused on film waves that occur naturally, triggered

by random noise (Tailby and Portalski , 1962; Jones and Whitaker , 1966; Takahama

and Kato, 1980; Brauner and Maron, 1982; Tihon et al., 2006; Vlachogiannis et al.,

2010). In that case, the small-amplitude waves at the inception region generally

correspond to the linearly most unstable mode, and initially evolve into a multi-

frequency, complex pattern. It has been demonstrated (Liu and Gollub, 1994; Tihon

et al., 2006) that, farther downstream, the film flows produced by either regular high-

frequency forcing or by natural noise are eventually dominated by a small number

of irregularly spaced solitary humps, which emerge through phenomena of period-

doubling and wave merging. The correlation of the celerity and the amplitude of

solitary waves is documented in a recent experiment on vertical falling film covering a

large range of fluid properties Ka and flow ratesWe by Meza and Balakotaiah (2008)

Extensive theoretical efforts at the problem of film flow have centred on perturba-

tion expansions in a small parameter proportional to the thickness-over-wavelength ra-

tio (accompanied by various order-of-magnitude assumptions for the pertinent dimen-

sionless numbers Re and We). Although natural wave structures resemble the three-

dimensional waves with pronounced transverse variations, the waves travel down-

stream at a relatively constant speed without changing their shapes, suggesting that

a local two-dimensional model is sufficient for describing these naturally occurring

wave profiles. The purpose of these models is to obtain a simplified low-dimensional

description of the film in terms of the streamwise coordinate (x) and time (t). They

can be a single evolution equation (Benney , 1966; Chang , 1994) for the local film
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thickness h(x, t) or a pair of evolution equations for the local film thickness h(x, t)

and the local flow rate q(x, t) (Mei , 1966; Shkadov , 1967; Pumir et al., 1983; Nakaya,

1989; Joo et al., 1991; Chang et al., 1993; Lee and Mei , 1996; Kliakhandler et al.,

2001; Ruyer-Quil and Manneville, 1998, 2000, 2005; Scheid et al., 2006; Kalliadasis

et al., 2012) or a three-equation set based on a cubic stream function for the local film

thickness h(x, t), the local flow rate q(x, t) and the local pressure p(x, t) (Nguyen and

Balakotaiah, 2000) and even up to a set of four equations (Ruyer-Quil and Manneville,

2002).

Benney (1966) was credited for using the perturbation method to derive the first

simplified model for describing the instantaneous amplitude of surface waves on liquid

films. The model is commonly known as the long wave (LW) equation in the literature,

written as follows,

∂th+
1

3
∂xh

(
h3 +

2

5
δh6∂xh− ζh3∂xh+ ∂xxxh

)
= 0, (3.1)

which describes the evolution of film thickness. Here, δ is the reduced Reynolds

number, ζ is the reduced slope. Unfortunately, it is valid only close to the instability

threshold and fails to reproduce the behaviour of the film at a close distance from the

critical threshold.

A weakly nonlinear truncation of the LW equation gives the Kuramoto-Sivashinsky

(KS) equation. Numerical studies of the KS equation by Sivashinsky and Michelson

(1980) showed that solitary waves generated in a bounded domain with periodic

boundary conditions travel at the same speed as predicted from the linear theory.

Long wave type equations were also derived and analysed by Frenkel (1992, 1993)

for flows on cylindrical wires. Shkadov (1967, 1968) used the integral boundary layer

(IBL) method with a self-similar velocity profile assumption to derive a two-equation

model for describing the dynamics of large-amplitude waves.

∂th+ ∂xq = 0, (3.2)

δ∂tq = h− 3
q

h2
− δ

{
12

5

q

h
∂xq −

6

5

q2

h2
∂xh

}
− ζh∂xh+ h∂xxxh. (3.3)

However, it was shown later that the Shkadov model does not predict the correct Hopf

bifurcation (instability threshold), a necessary condition for predicting periodic waves

in a moving frame of reference. Alekseenko et al. (1985) measured the local velocity

components inside the waves and found that they are not self-similar but are close to

parabolic. They also measured the wave growth rates, velocities, and amplitudes near
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inception. Trifonov and Tsvelodub (1991) analyzed the Shkadov model and resolved

the problem associated with it by using periodic boundary conditions. Although

their numerical simulations showed reasonable agreement with experimental data

(near the inception region) at low to moderate Reynolds numbers, the assumption

of periodic boundary conditions was questionable. Applying the dynamic singularity

theory, Chang (Chang , 1994; Chang et al., 1998) derived quantitative correlations

between the solitary wave amplitude, velocity, and wavelength and showed that the

single frequency waves first appearing on the smooth film evolve into doubly periodic

waves, which may then become chaotic just before the solitary wave limit is reached.

His work concentrated on the LW and the KS equation and was limited to small

Reynolds numbers and high Kapitza (Weber) numbers for which the wave amplitude

is very small. Further efforts to enrich the structure of the wave evolution process by

retaining higher-order viscous terms and/or adding a third dimension did not result

in significant improvement over simpler models (Prokopiou et al., 1991; Chang et al.,

1993). Using the boundary collocation method, Yu et al. (1991) analysed two models,

namely the boundary layer(BL) model and the second-order boundary layer (SBL)

model, which were capable of describing the dynamics of large-amplitude waves at

high Reynolds numbers. Both models compared well with the linear stability results

of the OS equation. The SBL model also included a pressure variation across the

film and higher-order viscous terms, which were essential in predicting accurate wall

shear stress. In the travelling coordinate, numerical integration of the BL and SBL

models predicted large-amplitude waves with peak to substrate ratios of 3 to 4 and

agreed well with experimental data. Although the numerical computations using

these models were much simpler than the full Navier-Stokes equations, they were still

too complicated for general analytical studies. The resulting approximate evolution

equations for the film thickness admit stationary travelling solutions. They have been

analysed by modern bifurcation theory and have also been numerically scrutinized to

yield a rich variety of solutions, including limit cycles, homoclinic orbits, and chaotic

attractors (Chen and Chang , 1986; Prokopiou et al., 1991; Demekhin et al., 1991;

Trifonov and Tsvelodub, 1991; Tsvelodub and Trifonov , 1989, 1992; Yu et al., 1991).

Especially, along the line with the need for a low-dimensional but accurate model,

Ruyer-Quil and Manneville (Ruyer-Quil and Manneville, 1998, 2000, 2002, 2005)

have derived systematically several low-dimensional models based on the residual

method of weighting on polynomial expansion. Their different models were gradually

improved by including high-order viscous terms and by regularization. The simplified

second-order model by Ruyer-Quil and Manneville (2000), coupling with Eq. (3.2),
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is as follows,

δ∂tq =
5

6
h− 5

2

q

h2
− δ

{
17

7

q

h
∂xq −

9

7

q2

h2
∂xh

}
+

5

6
h∂xxxh− 5

6
ζh∂xh

+ η

[
4
q

h2
(∂xh)

2 − 9

2h
∂xh∂xq − 6

q

h
∂xxh+

9

2
∂xxq

]
. (3.4)

The terms within the square brackets are generated by the second-order contributions

in the momentum equation and the tangential stress boundary condition. For a sake

of easy tackling, this is a simplified version of a more important work. The latter

has derived the four-equation model which can take into account all characteristics

of the full N.-S equations by resorting to a high-order polynomial expansion and

adding two independent local degrees of freedom to describe the evolution of finite

amplitude waves for a realistic range of parameters. The model is written in vector

form, coupling with Eq. (3.2) as follows,

δ

{
∂tA+

(
q∂xh

h2
Mh +

∂xq

h
Mq

)
A+

q

h
MA∂xA+ Fr−2h∂xhVb

}
= h (1 + ∂xxxh)Vb − h−2MwA, (3.5)

where A = (q, s1, s2) is the amplitude vector and Mh, Mq, MA, Mw, and Vb are

defined by,

Mh =


−6
5

12
5

126
65

3
35

−108
55

5022
5005

0 4
11

−18
11

 Mq =


12
5

−12
5

171
65

−1
35

103
55

−9657
5005

0 2
33

19
11



MA =


0 −12

5
−1017
455

0 39
55

−10557
10010

0 6
55

288
385

 Mw =


81
28

33 3069
28

3
10

126
5

126
5

13
140

39
5

11817
140

Vb =


27
8

1
10

13
420

 (3.6)

Dealing with the full-second order four-equation model is quite complicated. Ruyer-

Quil and Manneville (2002) later used the Padé approximation technique to regularize

the full model to obtain a regularized two-equation model, coupled with Eq. (3.2) as
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follows,

δ∂tq =δ

[
9

7

q2

h2
∂xh− 17

7
∂xq

]
+

{
5

6
h− 5

2

q

h2
+ η

[
4
q

h2
(∂xh)

2 − 9

2h
∂xh∂xq − 6

q

h
∂xxh+

9

2
∂xxq

]
−5

6
ζh∂xh+

5

6
h∂xxxh

}[
1− δ

70
q∂xh

]−1

. (3.7)

This set of equations is consistent at O(ϵ2) and differs from the simplified model (3.4)

through the addition of the Padé like factor
[
1− δ

70
q∂xh

]−1
.

Computational attempts on the film flow problem through direct computation

based on the full Navier-Stokes equations are not too many. One attractive approach

is the numerical integration of the time-dependent equations as an initial-value prob-

lem, because it captures the nonlinear, spatial evolution of a convective instability and

is thus more amenable to a direct comparison with experiments. The only numerical

study that has adopted such an approach is the extensive simulation by Ramaswamy

et al. (1996) These authors have presented temporal stability results that identify

a transition regime characterized by quasiperiodic (instead of fully developed) wave-

forms, and have also computed the spatiotemporal evolution of inlet disturbances and

compared their predicted free-surface profiles with the data of Liu and Gollub (1994)

An extension of the above study is by Malamataris et al. (2002b) for the study of

solitary wave interaction using free outflow boundary condition (Malamataris and Pa-

panastasiou, 1991; Malamataris and Bontozoglou, 1999; Malamataris , 1991) in order

to ensure smooth exiting of nonlinear waves from the computational domain.

Due to a time consuming computation of unsteady computation, an alternative

DNS can be used with the application of the periodic boundary conditions at the

inlet and outlet of the flow field to capture the fully developed stationary wave. The

pioneering work by Bach and Villadsen (1984) was followed by few contributions,

(Kheshgi and Scriven, 1987; Ho and Patera, 1990; Northey et al., 1990; Salamon

et al., 1994), which obtained good agreement with data of fully developed nonlinear

waveforms. This formulation overcomes the problem of the outflow boundary con-

dition but excludes by definition nonstationary dynamics and aperiodic phenomena

such as chaotic waves. On the contrary, periodic and fully developed solitary waves

are recovered. Thus, the above studies permit comparisons with stationary solutions,

derived from the aforementioned simplified forms of the Navier-Stokes equation based

on long-wave expansion. However, characteristics of travelling wave was studied in
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part for short waves and at small Reynolds number, and information about solitary

wave in the true solitary limit is not yet documented by DNS.

Regarding to the true solitary wave, although most low-dimensional models pre-

dict similar behaviours close to the threshold (onset of drag-gravity regime), they

exhibit differences from each other at intermediate and higher value of Reynolds

number (which is scaled with Kapitza number to give the reduced Reynolds number

δ), i.e. when the inertia becomes significant in the transition region and the drag-

inertia regime, see Figure 3.1. Hence, a crucial test of such models consists in the

1.2

1.6

2.0

2.4

2.8

0 1 2 3 4 5

(a) (b)

c

δ

1

2

3

4

0 1 2 3 4 5

hm

δ

Figure 3.1: Phase speed c and wave height hm as functions of the reduced Reynolds
number δ of the solitary wave, given by different low-dimensional models,
from Ruyer-Quil and Manneville (2005).

correct predictions of the properties (shape, wave speed and wave height) of solitary

wave as a function of the distance from the instability threshold. For that, our di-

rect numerical simulation (DNS) work is done based on the integration of the full

two-dimensional Navier-Stokes equation by the Finite Element Method with the ap-

plication of the periodic boundary condition at the inlet and the outlet. The bottom

line is the use of a large enough length of computational domain in order that all the

solitary waves approach asymptotically to the true solitary limit. It serves two-fold,

first, offering numerical predictions of the extreme solitary wave properties, then us-

ing these data to validate the different low-dimensional models. Among them, the

four-equation model (Ruyer-Quil and Manneville, 2002) is proved to have an excel-

lent agreement to the DNS results and to be considered the most accurate model for

further theoretical and applied study perspectives.

The chapter is organized as follows: Problem formulation and finite-element im-
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plementation are outlined in Sec. 3.2. In Sec. 3.3, the fully-developed solitary wave

is studied and its properties are characterized in terms of different parameters. Com-

parisons with the different low-dimensional models are made, which prove as the best

model to the complete second-order four-equation by Ruyer-Quil and Manneville. Fi-

nally, the key properties of extreme solitary wave are summarized in the concluding

section 3.4.

3.2 Problem Formulation and Computational Methodology

3.2.1 Governing Equations and the Finite Element Method

This study deals with liquid films flowing along an infinite planar wall, inclined

at an angle α with the horizontal plane, which is, in most part of this study, set to 90

degree (Fig. 4.1), except otherwise mentioned. The flow is free of shear force at the

gas-liquid interface. The solitary wave is further assumed to be fully developed and

hence move at constant speed and have a fixed shape. In this stationary state, the

solitary wave can be considered, in the the co-moving reference frame, to move on a

base substrate which is undisturbed far away from main hump. If the solitary wave

hump is fixed at the middle point of a sufficiently large domain of length L, the liquid

substrates near inflow, and outflow regions are practically undisturbed or resemble a

flat Nusselt flow so that the periodic boundary can be applied for these two ends.

X,U

Y,V

g

Figure 3.2: The configuration of vertically falling liquid films

The problem is modelled as two-dimensional in a Cartesian coordinate system,

with the x-axis pointing in the mean flow direction and the y-axis across the film. The

respective dimensional velocity components are u and v. The liquid is incompressible

and Newtonian, with density ρ, dynamic viscosity µ, and surface tension σ. The
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primitive flow input is the volumetric flow rate q and the location of the free surface

is described at stationary state as y = h(x).

The full Navier-Stokes equations governing the two-dimensional flow are non-

dimensionalised using as characteristic scales the film thickness and the mean velocity

hS =
( 3µq

ρg sinα

)1/3
and uS =

gh2Sρ sinα

3µ
(3.8)

of the undisturbed substrate far away from the main hump transporting the flow

rate q along a planar wall. The resulting equations are formulated at stationary state

by the transformation X → X − C T as follows, with capital letters indicating the

respective dimensionless variables:

C :=∇ · U = 0, (3.9)

M :=− C
∂U

∂X
+ U · ∇U +∇P − 1

Re
∇2U − 3

Re sinα
g = 0, (3.10)

coupled with the kinematic equation for free surface evolution

K :=− C
∂H

∂X
+ U

∂H

∂X
− V = 0, (3.11)

where the velocity vector is U = [U, V ]T , and time derivative term is replaced by

spatial derivative one due to the coordinate transformation,
∂

∂T
= −C ∂

∂X
. Moreover,

we impose the no-slip and no-penetration boundary conditions at the wall,

U = V = 0, (3.12)

and the dynamics boundary conditions at the free surface,

n · T = ∆P n+ 31/3KaRe−5/3K n. (3.13)

In Eq. (3.13), T is the stress tensor, n is the normal vector on the free surface andK =
H ′′

(1 +H ′2)3/2
the surface curvature. We have 6 variables: two velocity components U

and V, pressure P, free surface height H, pressure jump at a reference point in the

liquid to the supposedly uniform gas pressure ∆P , and phase speed C. But so far

there are only four equations: one from Eq. (3.9), two from Eqs. (3.10), and one from

Eq. (3.11). Two additional equations need to be established from imposing the phase
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of a steadily travelling wave by

a) pinning the maximum height of solitary wave in the middle of domain (this is to

avoid a degeneracy) without loss of generality,

H ′(x = L/2) = 0, (3.14)

b) and setting the thickness of undisturbed substrate far away from the main hump

H(x = 0) = 1 (3.15)

The dimensionless parameters arising in the governing equations (3.10) are the

Reynolds number

Re =
ρ q

µ
=
ρuShS
µ

, (3.16)

and the inclination angle, α of the planar wall to the horizontal plane, shown in

the unit vector in the gravity direction g = [sinα, − cosα]T . The Kapitza number

depending only on liquid properties, appears in Eq. (3.13),

Ka = (
lc
lv
)2. (3.17)

The dimensional lengths entering into the above expressions are: viscous length,

lv = (ν2/(g sinα))1/3, capillary length, lc = (σ/(ρg sinα))1/2, and thickness of the

undisturbed substrate, hS, which is far away from main hump, and used as a charac-

teristic scale length.

Alternatively, three other dimensionless parameters, a reduced Reynolds number

δ, a viscous dispersion number η, and a scaled inclination ζ) are often used in the

low-dimensional model analysis (Ruyer-Quil and Manneville, 1998, 2000, 2002) or the

falling film studies (Kalliadasis et al., 2012; Ruyer-Quil and Manneville, 2005; Scheid

et al., 2006) and related to the three conventional parameters as follows.

δ =(3Re)11/9Ka−1/3 =
h
11/3
s

l3ν l
2/3
c

, (3.18)

η =(3Re)4/9Ka−2/3, (3.19)

ζ =cotα(3Re)2/9Ka−1/3. (3.20)

In order to make a comparison of solitary wave properties given by the low-
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dimensional models and DNS computation, only two parameters δ and Ka are needed

as control data to represent respectively the significance of the inertial effect and the

liquid properties.

Using the Galerkin finite element method on a structured mesh, the system of

governing equations is integrally weighted, particularly with bi-linear Ψi(ξ, η) (i = 1,

4), bi-quadratic Φi(ξ, η) (i = 1, 9), and quadratic basic functions Φi(ξ, η = 1) (i = 1,

3) to produce respectively the residuals of the continuity equation, of the momentum

equations, and of the kinematic equation,∫∫
V

CΨi(ξ, η) dV = 0,

∫∫
V

MΦi(ξ, η) dV = 0,

∫
S

KΦi(ξ, η = 1) dS = 0.

where ξ and η are elementwise coordinates in each element of the computational

domain. The flow field variables consiting of velocities U and V , pressure P , and

free surface height H are also interpolated from nodal unknowns using these basic

functions.

U =
∑
i=1,9

U iΦ
i(ξ, η),

P =
∑
i=1,4

PiΨ
i(ξ, η),

H =
∑
i=1,3

Hi Φ
i(ξ, η = 1).

The elementwise integration results in a discretised system of algebraic equations,

which is solved by the Newton-Raphson iterative scheme, using a frontal technique.

The solitary wave resulting from the solution of the above system is typically

characterized by:

(a) Wave height, H, which is measured at the peak of solitary wave, and scaled

with the thickness of the undisturbed substrate (with X dependence, the same letter

denotes the free surface height.)

H =
h

hS
,
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(b) Phase speed, C, which is a constant value of the stationary solitary wave in

the co-moving frame, and scaled with the three times of the mean velocity of the

undisturbed substrate.

C =
c

3uS
.

3.2.2 Mesh Clustering

Following the exponential mesh clustering technique given in the book of Hoffman

and Chiang (2000), the meshing of the 2D film flow domain is refined in the vicinity

of the main hump of solitary wave in the streamwise direction, see Figure 3.3. The

X

Y

780 800 820 840 860 880
0

0.5

1

1.5

2

2.5

Figure 3.3: Refinement of mesh around the main hump and relaxing in the flat sub-
strates (which is beyond the viewing window).

clustering technique in the interior of the domain is required. In particular, the mesh

is clustered around the main hump and capillary ripples, and relaxed in the nearly

flat substrate far away from the main hump. The following transformations are used

X = L

{
1 +

sinh[β(ξ − A)]

sinh(βA)

}
, (3.21)

Y = H(X) η, (3.22)

where

A =
1

2β
ln

[
1 + (eβ − 1)(D/L)

1 + (e−β − 1)(D/L)

]
. (3.23)

35

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:51:43 EEST - 18.219.33.223



In the equation (3.21), β is the clustering parameter in the range of 0 < β < ∞,

and L the length of physical domain. Physical coordinate Y is scaled with the free

surface height H(X) in Eq. (3.22). In Eq. (3.23), D is the X coordinate where

clustering is desired, in this case, it is the streamwise location of the maximum height

which is pinned in the middle of domain, D = L/2. The isoparametric mapping

from the physical domain to the rectangular computational domain is done by the

transformations (3.21) and (3.22) where ξ and η (the same notation used also for

the elemenwise coordinates in each element of computational domain) are the two

coordinates of the computational domain in the range 0 < ξ < 1, 0 < η < 1 and with

constant stepsizes ∆ξ and ∆η. In order to capture the solitary wave’s properties in

asymptotic limit, the domain length should be larger than thousand times of Nusselt

flat substrate thickness. In this study, the domain length L = 3000 is sufficient to

cover a wide parametric range up to either a large flow rate δ = 20 or to a very

low viscous liquid of Ka = 104. Accordingly, the parameter β is defined such that

the minimum space step ∆Xmin should be much smaller than the scaled capillary

length, i.e. Nc ∆Xmin ≤ lc/hs, where a large factor Nc = 512 is empirically chosen.

Very small Nc may cause an overshoot or undershoot of solitary wave or a failure of

numerical convergence due to low meshing resolution. On the contrary, very large Nc

may cause too many elements clustering around the main hump and too few in other

parts. To begin, the solitary wave is first computed at a small δ with highly clustering

mesh intended for following computations at higher δ. By parametric continuation,

this mesh is fixed to compute waves at different parameters. It is not necessary to

regenerate the mesh in each computing process, otherwise, the interpolation of nodal

unknowns is needed and may cause significant deviation from the previous result and

interrupt the continuation process.

3.3 Numerical Results

3.3.1 Extreme Solitary Wave Profile and Characteristics

In Fig. 3.4, the free surface profile shows an exponential growth upstream and

oscillatory decay downstream of the main hump in the form of preceding ripples.

Hence at a large distance, substrate of the film flow is nearly flat on both sides

upstream and downstream. The main hump amplitude is determined in terms of

parameters δ, Ka, α, and saturated on a large-length domain, L, of one single wave,

see Fig. 3.5. From numerical experience, the dimensional domain length l should

be hundreds to thousands times larger than (respectively proportional to the order
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Figure 3.4: Free surface profile of extreme solitary wave and its exponential represen-
tation at δ = 4, Ka = 3400, α = 90◦, and computational domain length
L = 3000, in which the nearly flat substrate far from the main hump is
out of window.

magnitude of Kapitza number, Ka ∼ 100 ÷ 104) the substrate thickness hs, in order

that solitary wave properties converge asymptotically to true solitary limit. However,

the number of elements in the computational domain can be necessarily small by the

use of a clustering mesh around the main hump and the ripples, and a relaxed mesh in

the nearly flat substrate part of the solitary wave. The clustering mesh is very useful

to capture either a steep front of a solitary wave’s hump at small Kapitza number or

an increasing number of tightly paced ripples in the drag-inertia regime (at medium

to large reduced Reynolds number). Especially, clustering grid effectively helps to

resolve a zone of a very tall hump preceded by dense ripples at large Ka in order to

avoid a numerical overshoot or undershoot of solitary wave’s peak. It is also noted

that no solution can be provided when approaching to the limiting condition where

a parameter set of both small Kapitza and large reduced Reynolds number leads to

extremely steep front of solitary wave.

3.3.2 Drag-Gravity, Transition, and Drag-Inertia Regimes

3.3.2.1 Effect of Flow Inertia

In Fig .3.6, it is observed that both the phase velocity and the wave height exhibit

inflection points in the transition region, then maxima at intermediate values of δ,
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Figure 3.5: The convergence of extreme solitary wave properties in terms of domain
length at δ = 10, Ka = 104, and α = 90◦.

and finally a drop to a plateau at high enough δ. These are unique characteristics

of the full second-order model by Ruyer-Quil and Manneville (2002), whereas all

other models predict either a monotonic increase or a monotonic, asymptotic limit.

In particular, simulations and the above second-order model agree quantitatively in

the drag-gravity regime and the transition region to the drag-inertia regime, but

only qualitatively in the drag-inertia regime. The behaviour deep in the drag-inertia

regime is found to depend on Ka, which in the present simulations is varied in the

range 200-10000. With increasing Ka, the maxima that occur at intermediate δ

become steeper. However, whereas the high-δ limit of the phase velocity appears

almost unaffected, that of the wave height increases roughly linearly with Ka, which

underlines the stabilizing effect of viscous diffusion at low Kapitza numbers. It is

observed that the maximum height does not necessarily occur at the same condition

for the maximum phase speed. The latter is also found to drop to asymptotic value

C = 2.56 in high δ limit. The phase plot shows the linear dependence of phase speed

to the low-to-intermediate range of wave height. Then, the phase H-C curves make

similar-tie profile in the drag-inertia regime where phase speed is independent of Ka

and the dimensionless wave height continuously drops down a gentle slope.
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3.3.2.2 Effect of Viscosity in the Drag-Gravity, and the Drag-Inertia

Regime

From Fig. 3.7, at high δ value in the drag-inertia regime, phase speed is almost

unaffected by Kapitza number, but the wave height increases roughly linearly with

Ka which underlines the stabilising effect of viscous diffusion at low Ka.

On the contrary, in the drag-gravity regime, when the inertia is less important and

surface tension assumes a prominent role, it is observed that the wave height (and

also the phase speed) decreases with Kapitza number dictating a stabilizing effect of

surface tension.

3.3.2.3 Flow Reversal

Flow reversal is studied for vertically falling film flow, as typically shown in Fig. 3.8

in the laboratory frame, where dashed lines (in the upper panel) demarcate the bound-

aries (zero velocity) of the downward and upward flow zones. It should be clearly

specified that the upward flow is not a recirculating one because there is no close

streamline. The mechanism for this phenomenon can be explained by observing a

velocity field of a typical flow reversal zone between the hump and the first ripple

(on the lower panel). On the downwind side of the main hump or ripples, the ve-

locity vectors point downward and to the wall (U > 0, V < 0), but on the upwind

side, they gradually turn away from the wall (U > 0, V > 0), with a wall-parallel

direction at the peak of hump or ripples. In a high inertia flow, the U component

on the upper part of the hump or ripples can exceed the phase speed C, which re-

sults in adverse gradient of pressure at capillary dimples. From Fig. 3.8, for example,

the velocity (U = 8.634650) at the peak of the hump is larger than the phase speed

(3C = 7.694349, the factor 3 is needed by rescaling with us). However, the velocity

U is only a local value and varies along the free surface. In particular, the liquid flow

increases speed in downwind side and decreases speed in upwind side of the hump or

ripples. It slows down to zero speed until a flow reversal occurs. In the flow reversal

zone which takes place around capillary dimples, the local U component varies either

increasingly or decreasingly by magnitude but take a reverse direction. The physical

mechanism inside the flow is similar to the one on the free surface but with lower

magnitude in approaching to the solid wall. It is observed that in high inertia flow

there is no recirculation in the main hump or in the crest of ripples but rather several

flow reversal zones immediately in front of the high and fast hump and ripples.

At very low inertia with the wave height being very small, there is no flow reversal.
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However, its occurrence is not trivial because it is afterwards suppressed further in

the higher inertia regime. A parametric map of flow reversal occurrence is shown in

Fig. 3.9, where the flow reversal takes place in the zone between the two curves: one

for the onset and the other for the suppression of flow reversal. An example for the

aqueous glycerol solution with Ka = 193 shows the flow reversal emerges at δ = 1.5,

then survives in the higher range of inertia, and finally is suppressed beyond δ = 9.55.

It is observed that the appearance of flow reversal does not depend on liquids and

emerges always at the same δ = 1.5 but its survival and suppression delays to higher

inertia for lower viscosity liquid (with larger Ka∗). For water Ka∗ = 3400, the

suppression of flow reversal does not happen in the window of inertia up to δ = 20.

The last important remark is that the onset of flow reversal at δ = 1.5 is a demarcation

between the drag-gravity regime with low wave height and small phase speed to the

drag-inertia regime with much larger pertinent characteristics.

3.3.3 Comparison with Results of Low-Dimensional Models

In Fig. 3.10 the numerical predictions of the simplified model are compared with

the DNS results. The comparison is not satisfactory. In particular, it is noted that the

simplified model predicts the same dependence of phase speed, C, and wave height,

H, on δ, irrespective of the change of liquid properties as expressed by Ka. Fig. 3.11

compares DNS to the predictions of the regularized model. Though the latter exhibits

some variation in C and H with Ka, the agreement is still unsatisfactory. Finally,

the predictions given by the complete second-order model of the four-equation set are

presented in Fig. 3.12, and show a very satisfactory agreement with the DNS results

for a large range of liquids, even though some differences may arise as expected for

extremely high Ka = 10000.

3.3.4 Effect of Froude Number to Solitary Wave Properties

Now, extreme solitary wave is studied for film flow not only along vertical wall

but also along inclined wall. According to Ruyer-Quil’s definition (Kalliadasis et al.,

2012), the exchanging effect of inertia and gravity is expressed in a dimensionless

number, Froude number Fr, which compares the speed of “kinematic wave” due to

the advection, 3us , and the speed of “gravity waves”,
√
ghs cosα as follows,

1

Fr2
=

cotα

3Re
=

√
ghs cosα

(3us)2
=
ζ

δ
(3.24)
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It is reminded that this definition is different from the conventional one (Fr−2 =

3/(Re sinα)) for seeking a relationship to the critical threshold of long wave instabil-

ity, Rec =
5
6
cotα. That means a critical Froude number is Fr−2

c = 0.4. If the value of

Fr−2 varies in the unstable range from zero for vertical wall to the critical threshold,

Fr−2 = 0 ÷ 0.4, the solitary wave properties can be shown for the aqueous glycerol

solution with Ka∗ = Ka (sinα)1/3 = 193 in Fig. 3.13 where Ka∗ = σ
ρ g1/3ν4/3

depend-

ing only on liquid properties. It is observed that for the same δ, the phase speed and

wave height gets smaller when approaching the instability threshold or the critical

Froude number. The DNS result also confirms the linear stability theory that there

is no more wave for the Fr−2
c ≥ 0.4. At the other end of the range, these properties

attain the largest values for flow along vertical wall, Fr−2 = 0. Again, it is observed

that the results given by the complete second order model are in excellent agreement

with the DNS results, see Fig. 3.13. In particular, it is observed that the maximum

value of C and H, which is attained at large δ between 3 and 5, is the strongest for

the vertical flow, but does not appear at small inclinations or low Fr−2. Moreover

the wave height of solitary wave is observed to be independent of liquid properties

up to a distance from the critical threshold Fr−2 = 0.4, but to vary with Ka in the

range of small Fr−2, as shown in Fig. 3.14 for two liquids: aqueous glycerol, and pure

water Ka∗ = 3400 when all other physical parameters δ and Fr are kept the same.

On the other hand, the C curves appear to be insensitive to liquid properties, and

linearly proportional to the departure of Fr−2 from the criticality.

Noting the high δ limit of the same Fr curve, the phase speed appears to approach

asymptotic value irrespective of flow rate whereas the wave height shows a slight

dependence on the δ. The wave height gets maximum in the transition regime and

drops slightly at higher δ due to scaling with the increasing substrate thickness.

3.4 Conclusions

Derivation of simplified models, based on long-wave expansions, for the descrip-

tion of liquid film flow has a long history marked by classical results such as the one-

equation model of Benney and the two-equation model of Shkadov. A crucial test

of such models is the correct prediction of the properties (shape, maximum height,

phase velocity) of solitary waves as a function of the distance from the instability

threshold. The latter is usually quantified in terms of the reduced Reynolds number,

δ = (3Re)11/9Ka−1/3, where the Reynolds number is defined in terms of the undis-

turbed film thickness and mean velocity, Re = ushs/ν, and the Kapitza number,
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Ka = σ/(ρν4/3(g sinα)1/3, contains only physical properties and compares capillary

and viscous diffusive effects. Considering a vertical wall and assuming negligible

streamwise viscous diffusion effects, i.e. large Kapitza numbers, δ is the only inde-

pendent parameter of the rescaled equations. It is recalled that, though most models

predict similar behaviour close to the threshold (onset of drag-gravity regime), they

exhibit large differences from each other at intermediate and large values of δ, i.e.

when inertia becomes significant (transition region and drag-inertia regime). Thus,

rigorous simulations emerge as the only means to resolve this issue. The present work

computes accurately the properties of stationary, traveling wave by solving the Navier-

Stokes equation by a finite-element technique, implemented with periodic boundary

conditions and strong mesh refinement in the vicinity of the solitary wave. Solitary-

like waves are derived by considering a long enough computational domain. However,

it is shown that lengths of the order of 103 times the film thickness are necessary for

the properties of the wave to converge asymptotically to the true solitary limit with

accuracy less than 10−3. Both the phase velocity and the wave height exhibit inflec-

tion points in the transition region, then maxima at intermediate values of δ, and

finally a drop to a plateau at high enough δ. These are unique characteristics of the

complete second-order model by Ruyer-Quil and Manneville, whereas all other models

predict either a monotonic increase or a monotonic, asymptotic limit. In particular,

simulations and the above second-order model agree quantitatively in the drag-gravity

regime and the transition region to the drag-inertia regime, but only qualitatively in

the drag-inertia regime. The behaviour deep in the drag-inertia regime is found to

depend on Ka, which in the present simulations is varied in the range 200-10000.

With increasing Ka, the maxima that occur at intermediate δ become steeper. How-

ever, whereas the high-δ limit of the phase velocity appears almost unaffected, that of

the wave height increases roughly linearly with Ka, which underlines the stabilizing

effect of viscous diffusion at low Kapitza numbers.
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Figure 3.6: The extreme solitary wave’s properties in terms of the δ for different
liquid properties Ka = 193 (aqueous glycerol solution), Ka = 3400 (pure
water), and Ka = 10000 (liquid nitrogen) flowing along a vertical wall
α = 90◦. The third plot shows the phase space of C and H.
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Figure 3.7: The extreme solitary wave’s properties in terms of the Ka for flows in

the drag-gravity regime, δ = 1, and the drag-inertia regime, δ = 8 along
a vertical wall α = 90◦.
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the boundaries of flow reversal zone (in dashed lines), and the lower one
depicts the velocity field (in vector) of one reversal zone in reference with
the vector of the phase speed.
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Figure 3.9: A parametric map of the flow reversal down a vertical wall.
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Figure 3.10: Comparison of numerical predictions by DNS with simplified model. The
phase speed C and the amplitude H of the single hump solitary waves
are shown as functions of the reduced Reynolds number δ where thick-
solid, thick-dashed, thick-dotted lines correspond to the result from DNS
and solid, dashed, dotted lines correspond to the result of the model
for different Kapitza numbers, Ka = 193 (aqueous glycerol solution),
Ka = 3400 (water), Ka = 10000 (liquid nitrogen) respectively.
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Figure 3.11: Comparison of numerical predictions by DNS with regularized model.
The phase speed C and the amplitude H of the single hump solitary
waves are shown as functions of the reduced Reynolds number δ where
thick-solid, thick-dashed, thick-dotted lines correspond to the result from
DNS and solid, dashed, dotted lines correspond to the result of the model
for different Kapitza numbers, Ka = 193 (aqueous glycerol solution),
Ka = 3400 (water), Ka = 10000 (liquid nitrogen) respectively.
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Figure 3.12: Comparison of numerical predictions by DNS with full second order
model, where thick solid, thick dashed, thick dotted lines corresponds to
the result from DNS and solid, dashed, dotted lines corresponds to the
result of the four-equation model (Full second order model) for differ-
ent Kapitza numbers Ka = 193 (aqueous glycerol solution), Ka = 3400
(water), Ka = 10000 (liquid nitrogen) respectively.
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Figure 3.13: Comparison of numerical predictions by DNS with full second order
model, where thick solid, thick dashed, thick dotted, thick dash-dotted
lines corresponds to the result from DNS, and solid, dashed, dotted,
dash-dotted lines corresponds to the result of the four-equation model
(Full second order model) for different inverse square Froude numbers
Fr−2 = 0; 0.1; 0.2; and 0.3 respectively, and for the same liquid with
Ka∗ = 193.
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Figure 3.14: The extreme solitary wave’s properties in terms of Fr−2 in the drag-
inertia regime, δ = 10 for different liquids.
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CHAPTER IV

Solitary Wave Interaction - Bound State

Formation

The material presented in this chapter is a part of the collaborative work with

the Department of Chemical Engineering in the Imperial College in London, UK.

This chapter is an extended version of a manuscript in preparation entitled Bound

State Formation in Falling Liquid Film by Phuc-Khanh Nguyen, Marc Pradas, Ser-

afim Kalliadasis and Vasilis Bontozoglou. My specific contribution to this work is

to compute the bound state system of two and three solitary waves on a sufficiently

large domain length, based on DNS and offer a confirmation by the DNS results to

the theoretical and numerical solutions given by the low-dimensional model (Pradas

et al., 2011a). To this aim, I specifically use a joining technique rather than the naive

superposition of waves to construct a more appropriate initial guess, which is fed into

the numerical code based on the stationary-in-co-moving frame Navier-Stokes equa-

tions to compute the separation distance of solitary waves in a two and three wave

systems.

4.1 Introduction

Falling liquid films can be encountered in many multiphase industrial applications,

specially because wave formation on free surfaces has a strong affect on e.g. heat and

mass transfer or the quality of coating processes. Falling liquid films have also been

extensively studied theoretically. A falling film is an open-flow, long-wave hydrody-

namic instability, exhibiting a rich spatio-temporal dynamics and a wide spectrum

of wave forms and interactions, starting from nearly harmonic waves upstream to

complex spatio-temporal highly nonlinear wave patterns downstream. Reviews of the

dynamics of a falling film are given, amongst others, in Chang (1994); Chang and

48

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:51:43 EEST - 18.219.33.223



Demekhin (2002); Kalliadasis and Thiele (2007); Kalliadasis et al. (2012).

For low-to-moderate Reynolds numbers (the Reynolds number is typically defined

as the ratio of flow rate per unit span to kinematic viscosity), the flow evolves pri-

marily in the streamwise direction as it is stable to spanwise modulations (Demekhin

et al., 2007). That has been observed in many experimental studies (Argyriadi et al.,

2004; Liu and Gollub, 1993; Liu et al., 1993; Vlachogiannis and Bontozoglou, 2001)

and theoretical works (Chang et al., 1995, 2002). The film free surface appears to be

randomly covered by localized coherent structures, each of which resembling infinite-

domain solitary pulses. These pulses are a consequence of a secondary modulation

instability of the primary wave field. They consist of a nonlinear hump preceded by

damping ripples and can even appear at sufficiently small Reynolds numbers.

The organization of the free surface of falling liquid films into trains of coherent

structures, has been numerically investigated by time-dependent finite-element simu-

lations of the Navier-Stokes equations with free-surface boundary conditions (Mala-

mataris et al., 2002b), and analytically scrutinized in a recent coherent-structure

theory based on weak interaction (Pradas et al., 2011a), by appropriately extending

previous works on coherent-structure interaction of model equation such as the gen-

eralized Kuramoto-Sivashinsky (gKS) equation (Duprat et al., 2009; Tseluiko et al.,

2010a,b). As far as the falling film problem is concerned, the study by Pradas et al.

(2011a) was based on a low-dimensional model for the flow containing terms up to sec-

ond order in the long-wave expansion parameter (Ruyer-Quil and Manneville, 2000),

and including the second-order viscous effects originating from the streamwise vis-

cous diffusion and the tangential stress balance. These terms have been ignored in

previous pulse interaction theories for film flows (Chang and Demekhin, 2002; Chang

et al., 1995). They prove to have a dispersive effect on the phase speed, the wave

height, and the shape of the capillary ripples in front of a solitary hump.

The coherent-structure theory in Pradas et al. (2011a) showed that the interaction

between solitary pulses may give rise to the formation of bound states consisting of

two or more pulses separated by well-defined distances and travelling at the same

velocity. The dynamics around such bound states is actually very rich since different

behaviours, such as repulsion, attraction or self-sustained oscillations may emerge

depending on the separation length between pulses (Pradas et al., 2011b).

The present work aims to validate the results by Pradas et al. (2011a) study ob-

tained from a low-dimensional model, through direct numerical simulation (DNS)

of the full two-dimensional (2D) Navier-Stokes equations and associated boundary

conditions. It confirms the results obtained in Pradas et al. (2011a) on bound-state
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Figure 4.1: Bound-state formation in vertically falling liquid films.

formation on a two-pulse system, and provides further insight concerning the oscilla-

tory interaction. Moreover, a detailed numerical study of bound states on a system

composed of three pulses is presented, thus offering insight into the interpretation of

the wideband spectrum of separation distances predicted by dynamic simulations of

the low-dimensional model used in Pradas et al. (2011a) and involving many pulses.

Section 4.2 presents the Galerkin Finite Element Method and the technique to

numerically construct initial guesses. The numerical results on stationary and non-

stationary doublets, as well as stationary triplet interactions, are outlined in Sec. 4.3.

Finally, it closes with conclusions in Sec. 4.4.

4.2 Computational Method

4.2.1 Governing Equations and Numerical Methods

This study consider 2D solitary pulses in liquid films flowing down along an infi-

nite, vertical and planar wall (see Fig. 4.1). The liquid is incompressible and Newto-

nian, with density ρ, dynamic viscosity µ, and surface tension σ. The free surface is

taken as shear-free, i.e. the dynamic effect of a superposed gas phase is negligible.

The problem is formulated as two-dimensional in a Cartesian coordinate system,

with the x-axis pointing towards the mean flow direction and the y-axis across the

film. A moving frame (t, x, y) with the velocity c of a solitary pulse is introduced to

transform the laboratory frame (τ, ξ, η) coordinates as t = τ , x = ξ − c τ , and y = η,
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so that:

∂

∂τ
=

∂

∂t

∂t

∂τ
+

∂

∂x

∂x

∂τ
=

∂

∂t
− c

∂

∂x
,

∂

∂ξ
=

∂

∂x

∂x

∂ξ
=

∂

∂x
,

∂

∂η
=

∂

∂y

∂y

∂η
=

∂

∂y
.

Although velocity vector and pressure are determined each at moving coordinates

(t, x, y), these flow field variables are still referred to the laboratory frame. The

primitive flow input is the volumetric flow rate per unit span, q, and the location of

the free surface in the moving frame is denoted as y = h(x, t).

The Navier-Stokes equations governing the 2D flow are non-dimensionalized using

as characteristic scales the film thickness and the mean velocity of the undisturbed

substrate far away from the main hump transporting the flow rate q along a planar

wall,

hS =

(
3µq

ρg sinα

)1/3

, uS =
gh2Sρ sinα

3µ
, (4.1)

respectively. g is gravity and α is the wall inclination angle which for simplicity is

set to α = 90◦. The resulting stationary differential equations are formulated in the

moving frame as follows:

C :=∇ · U = 0, (4.2)

M :=− C
∂U

∂X
+ U · ∇U +∇P − 1

Re
∇2U − 3

Re sinα
g = 0, (4.3)

where capital letters indicate dimensionless variables; U = [U, V ]T is the velocity

vector in the laboratory frame, P is the pressure, C is the dimensionless speed, and

the scaled gravity vector is given as g = [sinα, − cosα]T = [1, 0]T . The above

equations are coupled to the kinematic equation for free surface evolution:

K := −C∂H
∂X

+ U
∂H

∂X
− V = 0. (4.4)

Non-stationary states are also studied in the moving frame by using the unsteady
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form of Eqs. (4.3) and (4.4):

M :=
∂U

∂T
− C

∂U

∂X
+ U · ∇U +∇P − 1

Re
∇2U − 3

Re sinα
g = 0, (4.5)

K :=
∂H

∂T
− C

∂H

∂X
+ U

∂H

∂X
− V = 0, (4.6)

where we have used ts = hs/us as the characteristic time scale. Furthermore, we

impose the no-slip and no-penetration boundary conditions on the wall,

U = V = 0, (4.7)

and the dynamic boundary condition at the free surface,

n · T = ∆P n+ 31/3KaRe−5/3K n, (4.8)

where T is the stress tensor, n is the outward unit vector normal to the free surface

and K =
H ′′

(1 +H ′2)3/2
is the surface curvature. The dimensionless parameters Re

and Ka appearing in Eqs. (4.5) and (4.8) correspond to the Reynolds and Kapitsa

numbers, respectively, and will be defined and discussed in Sec. 4.2.3.

The case of a single travelling pulse serves as a basis for all subsequent investi-

gations. Its computation involves six field variables: the two velocity components U

and V , pressure P , free surface height H, pressure jump ∆P of a reference point in

the liquid to the (uniform) gas pressure, and phase speed C. So far, we have four

equations: one from (4.2), two from (4.3), and one from (4.4). The two additional

equations needed to close the system are provided by (a) pinning the maximum of

the hump at the middle of the flow domain (this eliminates a degeneracy without loss

of generality),

H ′(x = L/2) = 0, (4.9)

and, (b) fixing the thickness of the undisturbed substrate far away from the main

hump

H(x = 0) = 1. (4.10)

By using the Galerkin finite element method on a structured mesh, the system of gov-

erning equations is integrally weighted with bi-linear Ψi(ξ, η) (i = 1, 3), bi-quadratic

Φi(ξ, η) (i = 1, 9), and quadratic basis functions Φi(ξ, η = 1) (i = 1, 3), to produce,
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respectively, the residuals of the continuity, momentum, and kinematic equation:∫∫
V

MΦi(ξ, η) dV = 0, (4.11)

∫∫
V

CΨi(ξ, η) dV = 0, (4.12)

∫
S

KΦi(ξ, η = 1) dS = 0. (4.13)

The flow field variables consisting of velocities U and V , pressure P , and free surface

height H are also interpolated from nodal unknowns using the above bases:

U =
∑
i=1,9

U iΦ
i(ξ, η),

P =
∑
i=1,4

Pi Ψ
i(ξ, η),

H =
∑
i=1,3

HiΦ
i(ξ, η = 1).

The elementwise integration of Eqs. (4.11), (4.12), and (4.13) is made by the nine,

four, and three-point Gaussian quadratures, respectively. The time integration in

unsteady computations is based on a Crank-Nicolson scheme. The resulting system

of algebraic equations is solved by a Newton-Raphson iterative algorithm, coupled

with a frontal technique.

4.2.2 Constructing Initial Guesses for Two-Pulse and Three-Pulse Struc-

tures

To obtain converged solutions to the different bound-state doublets, an appropri-

ate initial condition needs to be devised. This is illustrated for the case of doublets.

First, a single-pulse solution is obtained on a periodic domain of length LD, which

is sufficiently long to approach the infinite domain solitary-wave solution properties.

Two such pulses are then assembled one next to the other along the streamwise di-

rection, to set up a two-pulse structure. This initial structure, which in general is not

a solution to the equations, is parametrized by the separation distance between the

two humps. The structure is subsequently modified by removing a certain number of

columns of elements in the film region joining the two pulses. Although the joining

zone is no more continuous, this initial condition works very well: by fixing the lo-
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cation of one pulse [using Eq. (4.9)], and letting the other pulse relax to adjust to a

new position, all the stable and unstable bound states predicted by weak interaction

theory Pradas et al. (2011a) are recovered.

This technique is particularly efficient to successfully construct initial guesses of

bound states with very closely-spaced pulses where use of a naive superposition of the

two single-pulse solutions would lead to unacceptably high film thickness between the

pulses. It is also important to remark that the success on using such a technique is

based on the exponentially fast decay of both the front and back tails of the solitary

pulses, as it is confirmed in Figs. 4.2 and 4.3, which is in turn also responsible for the

very accurate computation of single-pulse properties based on a long but finite flow

domain with periodic boundary conditions. Likewise, the construction of an initial

guess for a bound-state triplet is a straightforward extension of the above technique

by joining a numerically converged doublet with a single pulse or vice versa. The

location of the single pulse is then fixed while the other two are left to relax to

equilibrium positions. It should be noted however, that convergence to bound-states

is numerically more tedious for triplets than for doublets.

4.2.3 Parameters and Characteristic Properties

The dimensionless parameters arising in the governing equation (4.3) are the

Reynolds number, defined as the ratio of the mean flow rate per unit span to the

kinematic viscosity,

Re =
ρ q

µ
=
ρuShS
µ

, (4.14)

and the Kapitsa number appearing in Eq. (4.8) which depends only on the liquid

properties as:

Ka =

(
lc
lv

)2

, (4.15)

involving the viscous length, lv = (ν2/(g sinα))1/3, and the capillary length, lc =

(σ/(ρg sinα))1/2.

Alternatively, three other dimensionless parameters, a reduced Reynolds number

δ, a viscous dispersion number η, and a scaled inclination ζ are used often in falling

film studies (Kalliadasis et al., 2012; Ruyer-Quil and Manneville, 2000), and are
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related to the above conventional parameters as follows:

δ =(3Re)11/9Ka−1/3 =
h
11/3
s

l3ν l
2/3
c

, (4.16)

η =(3Re)4/9Ka−2/3, (4.17)

ζ = cotα(3Re)2/9Ka−1/3. (4.18)

To make a comparison between the results given by the low-dimensional models and

the Navier-Stokes computations for α = 90◦, only two parameters are varied inde-

pendently, namely δ and Ka. Moreover, for solitary pulses in particular, the Shkadov

scaling is appropriate, and it involves the compression factor κ = η−1/2 followed by

the transformation X → Xκ−1, T → Tκ−1. The principal characteristics of a solitary

pulse are: (a) wave height, H, which is measured at the peak of solitary wave and

scaled with the thickness of the undisturbed substrate as:

H =
h

hS
;

(b) phase speed, C, of the steady travelling pulses, scaled as:

C =
c

3uS
;

and (c) separation between pulses, LS, nondimensionalized with flat substrate thick-

ness LS = l/hS, and followed by a stretching via the Shkadov factor κ as:

L =
l

hSκ
.

4.3 Numerical Results

4.3.1 Steady Doublets

Water is used as working liquid throughout the whole study with kinematic vis-

cosity ν = 10−6 m2/s, density ρ = 1000 kg/m3, and surface tension σ = 72.01 mN/m,

giving a Kapitza number of Ka = 3364. At first, the bound-state formation of two-

pulses structure is studied by considering two cases of flow rates that correspond to

the values δ = 0.98 and δ = 1.82. Other parameters such as Re, η, and κ are also

calculated for reference. The computation of a single pulse yields the phase speed,

C, and the wave height, H, shown in Table 4.1. These pulses are used to construct
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initial guesses.

δ Re η κ C H
0.98 3 0.0118 9.1932 1.1595 1.2040
1.82 5 0.0148 8.2146 2.3999 2.9280

Table 4.1: Parameters and characteristics of the single solitary pulse in two study
cases with water as working liquid.

The equilibrium separations between both pulses in bound-state doublets are

shown in Table 4.2, and an example of a doublet profile for the low flow rate case,

δ = 0.98, is provided in Fig. 4.2. Note that there is a tolerance of L less than 0.05 due

to mesh resolution with ∆X = 0.0296 and ∆X = 0.0420 respectively for two cases

δ = 0.98 and δ = 1.82.

LS l [mm] L L 1 Stability 1

135.29 13.12 14.72 13.9 stable
156.79 15.21 17.06 17.3 unstable
190.54 18.48 20.73 20.7 stable
220.76 21.41 24.01 24.1 unstable
252.33 24.48 27.45 27.5 stable
283.37 27.49 30.82 30.9 unstable
314.67 30.52 34.23 34.3 stable
345.97 33.56 37.63 37.7 unstable
377.28 36.60 41.04 41.1 stable
408.31 39.61 44.41 44.5 unstable

Table 4.2: Bound-state separation lengths for δ = 0.98. The dimensional separation
distances l are obtained by rescaling with the substrate thickness hS =
0.097 mm, and L = LS/κ is obtained after Shkadov scaling. 1 The results
presented in the fourth and fifth columns correspond to the analytical
findings in Pradas et al. (2011a).

As the flow rate is increased, the amplitude of the solitary wave becomes larger

and the wave steeper, and both the frequency and amplitude of the front-running

capillary ripples increase (see Fig. 4.3). As a result, the number of bound states

observed at moderate distances also increases. Indeed, Table 4.3 shows a range of

consecutive stationary separations with shorter increment as compared to the low

flow rate case.

Remarkably, for both low and high flow rate cases (Table 4.2 and 4.3, respec-

tively) there is an excellent agreement between the computed bound states at in-

termediate and large separation distances and the analytical predictions based on a

56

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:51:43 EEST - 18.219.33.223



−50 0 50

1

1.2

H

−50 0 50
−20

−10

0

Streamwise position, X

lo
g(

|H
−

1|
)

Figure 4.2: Free-surface profile and exponential representation of doublets for δ =
0.98 for the bound-state separation L = 20.73.
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Figure 4.3: Free-surface profile and exponential representation of doublets for δ =
1.82 for the bound-state separation L = 22.97.

low-dimensional model under the assumption of well-separated pulses (weak interac-

tion) (Pradas et al., 2011a). As expected, however, a deviation between theory and

DNS appears for the shortest separation distances, where strong interactions between

pulses start to play a prominent role.

4.3.2 Unsteady Doublets

Unsteady doublets are studied by setting δ = 1.82 and Ka = 3364, and by

choosing three different initial separation lengths (see Table 4.4).

Following Pradas et al. (2011a), the bound states given in Tables 4.2 and 4.3 have

been classified alternatively as nominally stable and nominally unstable, according to

57

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:51:43 EEST - 18.219.33.223



Ls l [mm] L L 1 Stability 1

156.23 17.97 19.02 18.81 stable
161.06 18.52 19.61 19.84 unstable
172.09 19.79 20.95 20.89 stable
178.99 20.58 21.79 21.93 unstable
188.65 21.69 22.97 22.98 stable
196.58 22.61 23.93 24.01 unstable
205.89 23.68 25.06 25.06 stable
213.83 24.59 26.03 26.09 unstable
222.79 25.62 27.12 27.14 stable
231.41 26.61 28.17 28.17 unstable
240.04 27.60 29.22 29.21 stable
248.66 28.60 30.27 30.25 unstable
257.28 29.59 31.32 31.29 stable
265.90 30.58 32.37 32.33 unstable
274.52 31.57 33.42 33.37 stable
283.15 32.56 34.47 34.41 unstable
291.77 33.55 35.52 35.45 stable
300.39 34.54 36.57 36.49 unstable
309.01 35.54 37.62 37.53 stable
317.63 36.53 38.67 38.56 unstable

Table 4.3: Bound-state separation lengths for δ = 1.82. The dimensional separation
distances l are obtained by rescaling with the substrate thickness hS =
0.115 mm, and L = LS/κ is obtained after Shkadov scaling. 1 The results
presented in the fourth and fifth columns correspond to the analytical
findings in Pradas et al. (2011a).

the competition between weak attractive and repulsive forces when slightly displaced

from equilibrium. Although it is expected that unstable states would not survive

in time-dependent computations (pulses would shift towards stable positions), our

computational results show that the actual behaviour is more complex and in fact

intriguing. It is observed that stationary bound states emerge from time-dependent

computations only when the initial pulse separation length is sufficiently large. An

example is shown in Fig. 4.4, where initial distances of L = 37.95 and L = 37.28

approach monotonically the stable bound state L = 37.62. This weakly coupled

pulse system may be viewed as an overdamped oscillator, where any deviation from

equilibrium will be damped in time.

On the other hand, when both pulses are initially placed closely enough, the

structure may exhibit an oscillatory behaviour around its steady separation with a

pronounced and non-decaying amplitude. An example is provided in Fig. 4.5, where
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Case study Attraction Repulsion Oscillation
Initial separation 37.95 37.28 25.06
Mean separation 37.62 37.62 27.12
Main frequency 0 0 0.082

Separation amplitude 0 0 0.75
Vertical amplitude of leading pulse 0 0 0.015
Vertical amplitude of trailing pulse 0 0 0.013

Table 4.4: Table of initial guesses and the dynamic properties of the doublet.
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Figure 4.4: Monotonic attraction between two pulses when they are initially separated
with L = 37.95, and monotonic repulsion when L = 37.28. The dashed
dotted line shows the stable steady doublet separations, and the dotted
lines unstable doublet positions.

the simulation is initially fed with a nominally stable separation solution, L = 25.06.

The long-time behaviour consists of an oscillatory variation with the mean pulse

separation around the value L = 27.12, which is similar to the steady separation

L = 27.12 of a nominally stable bound state and it is in excellent agreement with the

analytical prediction of L = 27.14 (Pradas et al., 2011a).

It is important to note that such an oscillatory behaviour is clearly harmonic with

a well-defined frequency F , in this case of F = 0.0082, demonstrating a periodic

attracting-repelling alternation under the gravity forcing. This behaviour is coupled

to the mass exchange between pulses: the growing pulse accelerates and the shrinking

pulse decelerates, and their overshoot leads to an oscillation. The maximum and

the minimum of the pulse-to-pulse separation is apparently confined between two

neighbouring unstable separations.

The complex nature of pulse-to-pulse interactions is reflected in Table 4.5. First,

it is noted that different initial separation lengths ranging between L = 22 and L = 28

lead to the same oscillatory behaviour with mean separation around L = 27.20 (see

also Fig. 4.6 for the separation time evolution when initially is L = 22.97). This

means that the stable bound states, which were found at distances below L ∼ 28
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Figure 4.5: The dynamic oscillation of the separation length (top) and the pulse
heights, H1 and H2, (bottom) of the unsteady doublet with mean sep-
aration L = 27.12. The initial solution is a nominally stable separation
length with L = 25.06.

when computing steady solutions, turn out to be unstable when we consider time-

dependent computations. Therefore, any initial separation length chosen in the range

of L ∼ [22, 28] is attracted towards the oscillatory state.

On the other hand, it is also observed that both the amplitude and frequency

of the final oscillatory state are independent of the initial condition, in particular,

starting with either an initial separation of L = 27.63, which is slightly perturbed

from the nominally stable state located around 27.12, or a strongly perturbed initial

separation of L = 22.97, leads to a similar frequency and amplitude (cf. Table 4.5).

Initial L Mean L Main frequency Amplitude
22.97 27.33 0.0085 0.75
25.06 27.12 0.0082 0.75
26.79 27.32 0.0085 0.74
27.63 27.33 0.0081 0.67

Table 4.5: Different initial conditions and dynamic properties of the doublet separa-
tion for δ = 1.82.

Now, it can be expected that an evolutionary combination of a self-sustained os-

cillatory behaviour and a monotonically varying one may manifest for an initial sep-

aration distance in between. As an evidence, in Fig. 4.6, the initial separation length
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L = 28.17 exhibits a decaying oscillation behaviour with an exponentially decreasing

amplitude. Therefore it makes a smooth transition from a range of self-sustained

oscillatory behaviour into a monotonically varying one. This figure also shows once

again the two large initial separations exhibit either monotonic attraction (36.44) or

monotonic repulsion (L = 36.69) away from the unstable state toward stable states.

This DNS information confirms the weak interaction theory about the bound-state

instability in the range of large separation. Finally, it is also observed that for even

smaller initial separation lengths (L < 22, see Fig. 4.6), there is an initial strong re-

pulsive interaction that brings both pulses to rapidly repel each other. After a short

attraction, the interactive process exhibits a quick monotonic growth, then a slight

correction of separation until the pulses get locked into a stable bound state located

at much larger distances. From a physical point of view, this behaviour may be quali-

tatively explained by considering that, at short separations, pulse interactions do not

only occur via the tails (weak theory), but also between the main humps and capillary

ripples, giving rise to a more complex interaction. So far, the oscillatory solutions

found around the stable bound state L = 27.12 demarcate the transition from, on one

hand a monotonic approach to stable equilibrium at much larger separations, and on

the other hand, strong repulsive growth at much shorter separations. In this sense,

such oscillatory states may be viewed as metastable states, that could tentatively be

attributed to a narrow strange attractor of film flow dynamics.

4.3.3 Steady Triplets

The final question intended to address is the effect caused by the presence of a

third pulse in the binary system studied in the previous sections. As starting point,

and for the sake of simplicity, it is focused on the formation of stationary triplets.

The numerical results for δ = 0.98 and Ka = 3364 are given in Table 4.6 in terms

of the separation length between the first and second pulses, L12, and between the

second and third, L23. The equilibrium doublet separations are also provided for

reference along the left column and the bottom row of the table.

The question of whether the existence of a third pulse modifies the previously

computed equilibrium distance of doublet bound states is addressed more conveniently

in Fig. 4.7. Grid lines mark pulse separation of nominally stable (dot-dashed) and

nominally unstable (dotted) doublets bound states, and solid circles correspond to the

separations L12 and L23 of the triplets. Points along the diagonal indicate that, if the

leading and trailing pulses are placed symmetrically with respect to the middle one,

the equilibrium separation distances are similar to those obtained in a binary system.
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Figure 4.6: Time evolution of separation lengths for five different initial conditions:
L = 19.61 (explosive repulsion), 26.03 (self-sustained oscillation), 28.17
(decaying oscillation), 36.44 (monotonic attraction) and L = 36.69
(monotonic repulsion).

However, when the leading and trailing pulses are placed asymmetrically (points off

the diagonal), the pair of pulses with the shortest separation length equilibrates with

the remaining pulse at separation lengths that may deviate considerably from the

binary system, especially at short distances (see points located around L23 = 15 and

L12 > 20). It is also important to note that these results depend on whether the

pair with shortest distance is located in front or behind the remaining pulse. This

is consistent with the numerical observations by Pradas et al. (2011a) using random

initial conditions, the statistical analysis of which indicates that pulse separation may

exhibit a broad distribution around specific mean distances.

4.4 Conclusion

It has been shown via DNS that the interaction between solitary pulses may give

rise to the formation of bound states consisting of two or more pulses separated

by well-defined distances and travelling at the same velocity. Two-pulse systems

are studied first: stationary solutions of the governing equations are sought and

the resulting equilibrium pulse separation lengths compare favourably to theoretical

predictions at large-to-intermediate separations. The approach to these solutions from

62

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:51:43 EEST - 18.219.33.223



15 20 25 30 35
14

16

18

20

22

24

26

28

30

32

34

L
12

L 23

Figure 4.7: Map of the separation distances in a triplet for the same set of param-
eters in Table 4.6. The pairs (L12, L23) are depicted by the solid circle
markers, whereas the dotted and dot-dashed lines show respectively the
unstable and stable separations in a doublets, indicating deviation from
the triplet’s separations.
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34.23;
27.45

24.01 14.72;
23.57

17.03;
23.92

20.73;
23.98

23.98;
24.01

27.42;
24.01

30.82;
24.01

34.17;
24.01

20.73 14.72;
21.11

17.03;
20.76

20.73;
20.73

24.01;
20.73

27.39;
20.73

30.94;
20.73

33.96;
20.73

17.06 14.72;
17.06

17.06;
17.03

20.70;
17.06

24.07;
17.06

27.04;
17.06

31.59;
17.06

32.90;
17.06

14.72 14.72;
14.78

17.14;
14.63

20.52;
14.63

24.96;
14.63

25.91;
14.63

31.30;
14.95

32.27;
14.95

L12;
L23

14.72 17.06 20.73 24.01 27.45 30.82 34.23

Table 4.6: Pairs of (L12;L23) of the triplet bound-state formation for δ = 0.98, Ka =
3364. The left column and the bottom row depict doublet separations for
reference.

appropriately perturbed initial conditions is shown by time-dependent computations

to be monotonic and straightforward.

When two pulses are closely spaced, strong interactions between the two start

to be relevant and the theoretical predictions based on weak interaction become less

accurate. In addition, time-dependent simulations indicate that different initial con-

ditions lead to an oscillatory dynamics with well-defined frequency and non-decaying

amplitude. When the pulses are placed at very short separation lengths, strong repul-

sive interactions induce a rapid and monotonic growth of the pulse separation until

a stable bound state is reached.

Stationary bound states consisting of three pulses were computed next, and pulse

distances were compared to those obtained in the binary system. Deviations grow with

the asymmetry in pulse location, indicating that multi-pulse systems are expected to

exhibit broad distributions around the mean pulse separation distances.
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CHAPTER V

Steady Flows along Periodic Corrugations

The material presented in this chapter is a part of collaborative work under the

guidance of my advisor, Prof. Bontozoglou. This chapter is an extended version of a

paper entitled Steady Solutions of Inertial Film Flows along Strongly Undulated Sub-

strates by P.-K. Nguyen and V. Bontozoglou, published in Physics of Fluids in 2011

(Nguyen and Bontozoglou, 2011). My specific contribution to this work is to compute

extensively the properties of the film flows covering a large range of geometric and

physical parameters. To this aim, I specifically create a parametric map to describe

uniformly the physics behaviour of film flows under seemingly different conditions of

flow rate, liquid properties or corrugated geometry.

5.1 Introduction

The effect of a wall with topography on gravity-driven, liquid film flow was first

examined in the late ’70s early ’80s (Tougou, 1978; Wang , 1981), and has attracted

since then a continuously growing interest. Applied motivation is related to the use

of corrugated surfaces in industrial process equipment with the aim to increase heat

and mass transfer rates (deSantos et al., 1991; Webb, 1994; Valluri et al., 2005), and

also to the need of coating surfaces with topographical features (Kalliadasis et al.,

2000; Tseluiko et al., 2008; Luo et al., 2008). With respect to the latter, we note

recent indications that a corrugated wall may extend the stable film flow to higher

Re (Wierschem et al., 2005; Argyriadi et al., 2006; Trifonov , 2007), which have led to

the suggestion (Davalos-Orozco, 2007) that a properly tailored wall could potentially

increase the efficiency and through-put of coating processes.

More specifically, the modifications imposed on film flow by a periodic wall appear

to be nontrivial in many respects, and thus their study attracts significant fundamen-

tal interest as well. The problem was first considered in the asymptotic limit of
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infinitesimal wall amplitude and creeping flow. The steady flow was shown (Wang ,

1981) to replicate the period of the wall, with the deformation of the free surface

varying in phase from that of the wall and decreasing monotonically in amplitude

with the liquid film thickness.

Keeping the assumptions of infinitesimal wall amplitude and steady flow, but

extending the analysis to finite Re, it was found (Bontozoglou and Papapolymerou,

1997) that the ratio of the free-surface to wall deformation (amplification) depends

non-monotonically on Re, and under certain conditions exhibits the characteristics of

a weak resonant interaction (linear resonance). More specifically, for wall wavelengths

in the capillary to capillary-gravity range, a critical Re corresponding to maximum

amplification was predicted, and the flow structure differed qualitatively between Re

in the subcritical and the supercritical regime. Experimental evidence in favor of this

prediction was provided later (Vlachogiannis and Bontozoglou, 2002; Wierschem and

Aksel , 2004a), and the resonant interaction was explained recently (Wierschem et al.,

2008; Demekhin et al., 2008) as a result of phase-locking between the undulated wall

and capillary waves travelling against the flow.

A complementary aspect addressed in the literature is the effect of corrugations

of finite amplitude, again in the limit of creeping flow (Pozrikidis , 1988; Zhao and

Cerro, 1992; Shetty and Cerro, 1993; Malamataris and Bontozoglou, 1999). The

formation of separation eddies at the wall troughs was predicted, and their role in the

structure of the flow was investigated. More recently, a systematic delineation of the

effect of liquid film thickness, inclination angle and wall waviness on the occurrence

of these kinematic eddies over sinusoidal walls was accomplished (Wierschem et al.,

2003). In particular, the existence of a minimum dimensionless film thickness for the

appearance of the eddy was observed, with the value of the minimum approaching

zero as the waviness of the wall increases or the inclination angle decreases.

Unlike the above well-studied cases of infinitesimal wall amplitudes at arbitrary

Re and of strongly corrugated walls at small Re, the information on the interaction

of a steep wavy wall with a film at finite Re appears fragmentary, and a complete

understanding of the flow is still lacking. The main new difficulty lies in the cou-

pling between the deformation of the free surface and the separated flow structures

close to the wall. Asymptotic analyses have predicted the first non-linear interactions

(Davalos-Orozco, 2007; Oron and Heining , 2008; Heining et al., 2009; D’Alessio et al.,

2009), but in most cases (with a notable exception (Hacker and Uecker , 2009)) the

results are not valid beyond flow separation. Computational and experimental evi-

dence (Negny et al., 2001a,b) indicates that flow separation can occur not only at the
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trough, but also at the flattest part of a corrugated substrate. An interesting limit

has been identified for very thick films (Wierschem and Aksel , 2004b; Scholle et al.,

2008), where surface deformation has a diminishing influence on the characteristics

of the eddy.

Computational studies (Trifonov , 1998; Bontozoglou, 2000) have predicted that

the separation eddy contracts, or even disappears, when the parametric conditions of

linear resonance are approached. Very recently (Wierschem et al., 2010), this predic-

tion was systematically confirmed by a combination of experiments and simulations.

Thus, the change in the nature of the flow when crossing linear resonance justifies

differentiation between a subcritical and a supercritical regime.

The goal of this chapter is to provide systematic computational predictions in

a wide parametric range of inertia and capillary forces, with particular emphasis

to the case of steeply corrugated walls and relatively thin liquid films, i.e. when

the free surface and the internal flow structures are strongly coupled. Only two-

dimensional, steady solutions are considered, though it is noted that some results for

three-dimensional, steady flows (two-dimensional topography) are already available

in the literature (Luo and Pozrikidis , 2006; Veremieiev et al., 2010).

Though the present study is limited to steady flows, we want to comment briefly

on the related stability problem. It is known that, beyond a, small, critical value of the

Reynolds number, film flow becomes convectively unstable to travelling disturbances.

We argue, however, that the results of the present steady calculation, which extend

to Re much higher than the critical, are important for a number of reasons, beyond

their evident utility as a starting point for a stability analysis. In particular, film flows

are convectively unstable and thus the steady solution always re-establishes between

successive disturbances. In this sense, the computed profiles are the equivalent of

steady, Nusselt flow that governs the substrate between waves in film flow along a flat

wall. Further than that, there is experimental evidence (Argyriadi et al., 2006) that

the steady flow characteristics (spatially periodic deformation of the free surface with

the wavelength of the wall and specific amplitude and phase) are always superposed

on the travelling waves. An example similar to the data discussed in the above work

is depicted in Fig. 5.1. More specifically, the profile of a travelling wave is shown for

five time instants, separated from each other by 0.1s.

The outline of the chapter is the following: Sect. 5.2 describes the computational

methodology, Sect. 5.3 describes the characteristics of the subcritical and supercritical

separation, provides complete flow regime maps and documents the branch discon-

nection at high corrugation steepness. Finally, some concluding remarks are offered.
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Figure 5.1: Streamwise free-surface profile at five consecutive instants for α = 5.4o

and Re = 113. The time interval between profile is ∆t = 0.1s. Four
upper profiles are consecutively shifted upward 0.5 for the sake of clarity.
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Figure 5.2: The configuration of film flow along sinusoidal corrugated wall

5.2 Governing Equations and Computational Methods

The film flow considered, occurs along a sinusoidally corrugated wall of wavelength

λ and amplitude a, inclined at an angle α with the horizontal plane (Fig. 5.2).

The problem is modelled as two-dimensional in a Cartesian coordinate system, with

the x-axis pointing in the mean flow direction and the y-axis across the film. The

respective dimensional velocity components are u and v. The liquid is incompressible

and Newtonian, with density ρ, dynamic viscosity µ and surface tension σ. The

primitive flow input is the volumetric flow rate q and the location of the free surface

is described at steady state as y = h(x).

The full Navier-Stokes equations governing the two-dimensional flow are non-

dimensionalized using as characteristic scales the mean film thickness and the mean

velocity

hN =
( 3µq

ρg sinα

)1/3
and uN =

gh2Nρ sinα

3µ
(5.1)

of the known steady Nusselt solution transporting the same flow rate along a flat

wall. The resulting equations are formulated at steady state as follows, with capital

letters indicating the respective dimensionless variables:{
∇ · U = 0

U · ∇U = −∇P + 1
Re
∇2U + 3

Re
g

(5.2)

where the velocity vector is U = [U, V ]T .

Moreover, we impose the no-slip and no-penetration boundary conditions at the

wall,

U = V = 0, (5.3a)
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with wall bottom profile

Y = ξ cos(δX) (5.3b)

and the kinematic and the dynamics boundary conditions at the free surface,

UHX = V, (5.4a)

n · T =
(3Bo−1

δ2Re

)
Kn. (5.4b)

In Eq. (5.4), T is the stress tensor, n is the normal vector on the free surface and

K =
H ′′

(1 +H ′2)3/2
the surface curvature.

The dimensionless parameters in the governing equations (5.2) are the Reynolds

number

Re =
ρuNhN
µ

(5.5)

and the scaled gravity vector g = [1, − cotα]T . Three other dimensionless parame-

ters, appear in Eqs. (5.3) and (5.4), namely the dimensionless wall amplitude,

ξ =
a

hN
, (5.6)

the dimensionless film thickness (or, equivalently, the dimensionless wall wavelength),

δ =
2πhN
λ

, (5.7)

and the inverse Bond number,

Bo−1 =
4π2σ

ρgλ2 sinα
. (5.8)

The latter may also be considered as the squared ratio of the capillary length lc =√
σ/(ρg sinα) over the wall wavelength. An additional important parameter is the

steepness of the wall corrugations,

ζ =
2πa

λ
= ξδ. (5.9)

The system of governing equations and boundary conditions is discretised using the

Galerkin finite element method on a structured meshing. The velocities U and V

are interpolated by bi-quadratic basis functions, the pressure P by bi-linear basis

functions and the surface height H by quadratic basis functions. The discretised
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system of algebraic equations is solved by the Newton-Raphson iterative scheme,

using a frontal technique.

The steady flows sketched in Fig. 5.3 resulting from the solution of the above

system are typically characterized by: (a) The relative amplitude of the free surface

H

Ymin

Figure 5.3: Characterization of steady solution of liquid film flow along a periodic
wall.

deformation (amplification), β, which is a ratio of the peak-to-peak amplitude of the

free surface to the wall amplitude,

β =
Hmax −Hmin

2ξ
=

∆H

2ξ
(5.10)

(b) the superficial phase shift, Φ, which is measured in terms of the distance in the

x-direction between the locations of minimum height on free surface and on the wall

(the latter at x = λ/2)

Φ = 360o
(
xHmin

λ
− 1

2

)
(5.11)

and (c) the intensity, EI , and size, ES, of the separation eddy, in case such an eddy

exists. The eddy intensity

EI =
|Ψmin|
q

(5.12)

is defined in terms of the absolute value of the stream function minimum, Ψmin,

which occurs at the core of the eddy. The eddy size

ES =
(YSeparatrix − YWall)x=λ/2

ξ
=

∆Y

ξ
(5.13)

is defined as the distance in the y-direction from the bottom of the trough to the

intersection with the separatrix. For the sake of clarity, flow structure plots (depicting

equally spaced streamline contours) are sometimes drawn in x-y coordinates scaled

with the wall wavelength.
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5.3 Results

5.3.1 Background Information from the Linear Limit

We use representative results from the well-studied (Wierschem et al., 2008) lin-

ear limit (ζ ≡ 2πa/λ ≪ 1 and ξ ≡ a/hN ≪ 1), in order to introduce the role of the

dimensionless numbers of the problem. More specifically, Fig. 5.4a shows the ratio of
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Figure 5.4: The ratio of the free surface amplitude to the wall amplitude as a function
of Re for (a) various Bo−1=0.1; 5; 50; and 100 at α=45◦, ζ=0.1, δ=1, and
(b) for various δ=0.1; 0.5; 1.0; 1.5; and 2.0 at α=45◦, ζ =0.015, Bo−1=50.

free surface to wall amplitude (amplification) as a function of Re for various values

of the inverse Bond number, Bo−1, and in Fig. 5.4b for various values of the dimen-

sionless film thickness, δ. From Fig. 5.4a we observe that capillary forces have a dual,

and superficially contradictory, effect. At zero Re, increasing Bo−1 results in smaller

amplification, i.e. a less deformed free surface. This is intuitively expected, given

that surface tension resists surface deformation. However, strong capillary forces also

intensify the wall-free surface resonance. As a result, the peak in amplification grows
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of Re for (a) various Bo−1 at α=45◦, ζ=0.1, δ=1, and (b) for various δ
at α=45◦, ζ=0.015, Bo−1=50.
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with increasing Bo−1, and simultaneously moves to higher Reres. Therefore, strong

capillary forces resist free surface deformation at small Re, but trigger extensive de-

formation at high enough Re.

From Fig. 5.4b it is observed that free surface amplification is maximum at δ ∼
O(1). For lower δ values, the surface deformation remains significant (approaching the

value one as δ → 0) but loses in sharpness, whereas for higher δ values the resonance

remains sharp but decreases in size. This is the typical behaviour when capillary

forces are strong (Bo−1 ∼ O(101−102)). In the regime of weak or negligible capillary

forces (Bo−1 ≤ O(100)), the free surface deformation only decreases monotonically

with increasing film thickness.

The phase difference between the undulations of the free surface and the wall is

depicted in Fig. 5.5a and b for parametric conditions corresponding respectively to

Fig. 5.4a and b. At high Bo−1 (50 and 100), two limits are identified: at low Re the

phase of the free surface precedes that of the wall, whereas at high Re it lags behind.

The rapid variation in phase lag occurs around Reres, and we may thus identify a

subcritical and a supercritical flow regime. For low Bo−1 (0.1 and 5), capillary effects

are small and the supercritical flow regime extends in the whole range of Re.

Based on the insight gained from the linear limit, we summarize the physical

significance of the dimensionless variables of the problem as follows: The Reynolds

number, Re, defines the subcritical and the supercritical regimes, separated by the

value, Reres, where the free surface exhibits maximum amplification in the linear

limit. The classification into subcritical and supercritical flow is very convenient in

the analysis of the non-linear problem as well, and will be adhered to in the rest of

the paper. In particular, it unifies the observed behaviour under apparently different

values of the pertinent parameters.

The inverse Bond number, Bo−1, is mainly affected by the wavelength of the

corrugations, and defines the capillary and the gravity regimes. The wall-free surface

resonance is strong in the former but becomes gradually negligible in the latter. The

dimensionless film thickness, δ, has a damping effect, and thus governs the extent to

which the flow disturbance due to the wall is conveyed to the free surface. The mean

inclination angle, α, determines the component of gravity normal to the wall, and thus

the stabilizing effect of the gravity force. With the exception of the last subsection,

where predictions are compared to independent data, all the present simulations are

performed at an intermediate inclination α = 45o.

Finally, the wall steepness, ζ, whose effect constitutes the main theme of the

present work, determines the extent of deviation from linear behaviour. We will see
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Figure 5.6: The contour plots of streamlines for ξ=1, δ=2π/10, α=45o, Bo−1=50 and
increasing Re.

that, as the wall becomes steeper, the flow separates both in the subcritical and

in the supercritical regime. If δ is not very large, the internal flow generated from

the separation eddies interacts in a non-trivial way with the free surface, and vari-

ables δ, Re and Bo−1 combine to determine the intensity of free surface deformation.

The above form a complex parametric matrix for the problem, whose effect will be

attempted to be delineated by appropriate flow regime maps. For very steep wall

corrugations, the steady computations will be shown to reach singular limits. The

relation of these computational limitations to actual physical singularities, such as

hydraulic jumps (shocks), and to the transition from steady to oscillatory behaviours

will be questioned by comparisons with independent data.

5.3.2 Subcritical Flow Separation

Inertially-induced separation may take place at relatively small Re ∼ O(100−101)

if the change in flow cross-section is steep enough to create a significant adverse

pressure gradient. The most straight-forward case is when the free surface is prac-

tically flat, a condition that is satisfied when capillary forces are strong enough,

and the deformation triggered by the wall-free surface resonance is postponed to

much higher Re. Then, separation takes place at the inflow to the corrugation

trough, as in the classical problem of a diverging channel. The situation is of

course reversed at the outflow from the trough, and the flow re-attaches. Exam-

ples of this process are shown in the streamline plots of Fig. 5.6, which correspond
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Figure 5.7: The contour plots of streamlines for ξ=1, δ=2π/10, α=45o, Bo−1=5 and
increasing Re.

to ξ = 1, δ = 2π/10, α = 45o, Bo−1 = 50 and increasing Re. The separatrix of

the inertial eddy is at an angle to the mean wall inclination, as has been observed

in experiments (Wierschem et al., 2005). With increasing Re, the separation eddy

grows in size and covers most of the corrugation trough.

It is important to note that the above parametric evolution with Re is totally

insensitive to further increase in Bo−1, i.e. separation occurs at the exact same value

of Re. This observation confirms that under the present conditions capillary forces

have no other dynamic role apart from keeping the interface flat. On the contrary,

when moving to low Bo−1, the resonant interaction occurs at low enough Re to have

a dynamic effect. Though it is now very weak, it deforms the free surface so that

the flow is assisted to remain attached. An example is provided in Fig. 5.7, which

corresponds to the same conditions as in Fig. 5.6, except for Bo−1 = 5. It is observed

that, not only the onset of separation is delayed, but its subsequent evolution is also

suppressed.

The effect on flow separation of the wall steepness, ζ, is presented in Fig. 5.8,
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Figure 5.8: The parametric regime, in Reynolds number and wall steepness space,
where eddies appear for δ=1, Bo−1=15 and α=45o.

which corresponds to δ = 1 and Bo−1 = 15. Separation occurs on the right side

of the curves, which represent events of onset and ending of steady eddies triggered

by parametric variation of Re. The onset of a subcritical eddy is denoted by the

continuous line and its disappearance by the dashed line. Finally, the dashed-dotted

line indicates the onset of supercritical separation, to be discussed in the next section.

Concentrating on the subcritical curves, we note that, with increasing ζ the onset

of separation moves to lower Re, and eventually occurs at Re = 0 for ζ ≥ 1.3.

Separation in the limit Re → 0 corresponds to a geometrically induced eddy, which

has been systematically documented by Wierschem et al. (2003). Also, referring to

a recent discussion by Scholle et al. (2008), it is observed that there exists a synergy

between geometric and inertial effects. When the wall is too steep for the film of

given thickness to be accommodated through its trough, separation occurs at Re = 0.

When it is barely smooth enough, separation takes place at a small but finite Re.

With decreasing steepness, subcritical separation occurs at progressively higher Re,

and does not take place at all below a minimum value that in the example of Fig. 5.8

is ζmin ≈ 0.36.

The effect of dimensionless film thickness, δ is presented in a series of streamline

plots in Fig. 5.9, which corresponds to ζ = 2π/5, Bo−1 = 5, α = 45 and Re =

10. Strong inertial separation occurs at small film thickness, but diminishes and

almost disappears as δ grows. However, as the mean film thickness exceeds the

wall amplitude, a separated region re-establishes, and its size appears independent of

further increase in δ. The eddies may be characterized quantitatively by their size,
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Figure 5.10: The effect of film thickness on the size and intensity of the subcritical
eddy for ζ=2π/5, Bo−1=5 and α=45o.

ES and intensity, EI . Fig. 5.10 shows the relevant results for the previous conditions,

but now for three values of Re. It is observed that, in the limit of very thick films,

the characteristics of separation become independent of Re, and approach those of

creeping flow. This behaviour was explained by Scholle et al. (2008), who showed that

the flow close to the wall is governed by a local Re, based on the corrugation height,

which may be much lower than the global Re calculated from the film thickness.

On the contrary, for thin enough films a strong inertial separation takes place. It is

interesting to observe that the extent of inertial separation varies inversely with the

film thickness, whereas geometric separation is proportional to it. For example, at

Re = 4 and with increasing film thickness from very small values, one observes from

Fig. 5.10 a dominant inertial eddy gradually shrinking in size, then a film with no

separation, then a film with geometrically induced separation.

According to the above, the value of the dimensionless film thickness (which may

be envisioned to vary by changing the kinematic viscosity while retaining the same

Re) results in a significant difference of the flow between the two extremes of very

thin and very thick films. Insight implies that a thin, low viscosity film has a better

ability to bridge the distance between successive corrugations, thus resulting in a

large separation eddy. This is a typically subcritical characteristic. At the other end,

very thick films are characterized by a local interaction between the wall and the
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flow, which results in a geometrically induced separation eddy, though the flow may

be formally supercritical for high enough δ.

5.3.3 Supercritical Flow Separation

In the limit of supercritical Re, well beyond the resonance regime, the deformation

of the free surface diminishes once again. However, this behaviour is not related to

capillary forces, whose role is now insignificant, but to the inertia of the liquid, which is

sufficient to bridge the gap between successive crests of the wall corrugation. Typical

flow structures are provided by the streamline plots in Fig. 5.11, which correspond

to Re = 300, ζ = 2π/10, Bo−1 = 5, α = 45o and increasing film thickness. It is

observed that for δ ≥ 1 the open streamlines are practically straight, and thus the

flow resembles an undisturbed film flowing above the crests and the separation eddy.

Returning to Fig. 5.8, we confirm the expected effect of wall steepness, i.e. for

a constant film thickness, the steeper the wall the smaller the Re value at which

supercritical separation occurs. However, the effect of film thickness, δ is not so

trivial. This is manifested by Fig. 5.12, which shows the size of the eddy as a function

of δ. For a constant Re, the eddy attains maximum size at δ ∼ O(1), but decreases

gradually for δ ≫ 1. Furthermore, the eddy shrinks fast and disappears altogether in

the opposite limit δ → 0. This behaviour is contrasted to the subcritical separation

(see Fig. 5.10), where δ ≫ 1 results in locally creeping flow and a geometrically

separated eddy and δ → 0 results in a large, inertial separation.

The explanation for the above behaviour is as follows: For δ ≫ 1 the proportional

change in flow cross-section becomes gradually smaller, and thus the separation is

progressively less drastic and the eddy shrinks. At the other end, δ → 0 with ζ =

constant results in ξ ≫ 1, i.e. a film much thinner than the wall amplitude. This thin

film readily deforms to follow the shape of the wall, because capillary forces are now

insignificant. Therefore, the difference in the subcritical and supercritical separation

(as shown respectively in Figs. 5.10 and 5.12) is mainly attributed to the variation in

the significance of capillary forces.

For the parametric range where the eddy covers most of the corrugation trough,

we define an effective film thickness, heff (measured from the top of the corrugation

crests up to the nearly flat free surface), and compare the actual liquid flow rate on

the corrugated wall to the flow rate of a Nusselt film of thickness heff . Accordingly,
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Figure 5.11: The flow structure in supercritical regime with increasing dimensionless
film thickness for Re=300, ζ=2π/10, Bo−1=5 and α=45o.
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Figure 5.12: The effect of film thickness on the size and intensity of the supercritical
eddy for ζ=2π/5, Bo−1=5, Re=80 and α=45o.

the flow rates along the actual, corrugated and the hypothetical flat wall are

qcor =
g sinαh3N

3ν
and qflat =

g sinαh3eff
3ν

Their ratio, which is an implicit function of the dimensionless film thickness, is cal-

culated as

r(δ) =
qcor
qflat

= (
hN
heff

)3 = (
1

Heff

)3 (5.14)

where Heff is the effective film thickness scaled by hN .

The flow rate ratio, r is computed in Fig. 5.13 as a function of δ for ζ = 2π/10 and

α = 45o. It is shown to attain values significantly higher than one when the eddies

are large and cover most of the corrugation trough. Therefore, these eddies may be

viewed as rollers that reduce viscous friction and allow higher flow rates at the same

film thickness. An example of wall characteristics and fluid properties that would

result in the dimensionless film thickness range depicted in Fig. 5.13, while remaining

in the separated, supercritical regime, is provided by Table 5.1.

Based on the above, it is concluded that, under proper conditions, the liquid film

flows faster on a sinusoidally corrugated than on a plane wall. This result provides

motivation to study the related, but different, problem of an object sliding along a
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Figure 5.13: (a) The ratio of the actual flow rate along a corrugated wall to the
hypothetical flow rate of a Nusselt film, with thickness equal to the
distance from the crest to the flat free surface, for ζ=2π/10, Bo−1=3.21
and α=45o. (b) The respective eddy size.

liquid layer. More specifically, it would be of interest to question whether an object

with undulated, rather than smooth, surface of contact with the liquid could possibly

face less resistance to flow.

5.3.4 Flow Transition and Flow-Regime Maps

Approaching the condition of linear resonance is accompanied by an impressive

modification in the structure of the flow. More specifically, the liquid film follows much

more faithfully the shape of the wall and the separated regions shrink drastically and,

if the wall is not very steep, disappear altogether. The suppression of the separation

eddy in a window of Re has been conclusively demonstrated very recently (Wierschem

et al., 2010) by a combination of experiment and numerics. Therefore, we defer any

further discussion of this phenomenon, and concentrate on the transition from the

subcritical to the supercritical regime and on the parametric dependence of flow

structure on the main dimensionless variables.

The typical variation in flow structure when moving from subcritical to supercriti-

cal conditions by increasing Re at constant δ is depicted in Fig. 5.14. This parametric

evolution may be conceptually paralleled to a ballistics problem: Each corrugation
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Figure 5.14: Parametric evolution of the flow structure as function of Re, for Bo−1=5,
δ=2π/10, ξ=1 and α=45o. The subcritical regime at Re=10, 15 and 25,
the resonance regime at Re=35 and 50 and the supercritical regime at
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λ(m) a(m) ν(m2/s) ρ(g/mm3) σ(N/m)
0.01 0.001 1.08× 10−5 1.1538 0.065

hN(m) δ Re
0.0011 0.691150 26.3
0.0025 1.570796 309.3

Table 5.1: Characteristics of wall corrugation and of liquid properties, water-glycerol
solution 60% at 20oC, used in Fig. 5.13 as well as the range of values of δ
and Re dependant on mean film thickness hN .

cycle of the wall is viewed to consist of two sub-sections: one steeper, and one less

steep than the mean inclination. The former may be perceived as an accelerator of

the liquid and the latter as an ejection platform. If the liquid inertia is small, the jet

will land in the upstream part of the next corrugation length, and will create there

a local minimum in film thickness (Fig. 5.14, Re = 10, 15 and 25). Therefore, if a

separation eddy forms, it will occur downstream of the film thickness minimum.

With increasing inertia, the landing point gradually reaches the trough of the

next corrugation. Then, the liquid follows the shape of the wall, and separation

diminishes or disappears altogether (Fig. 5.14, Re = 35 and 50). Further increase in

inertia moves the landing point to the downstream side of the next corrugation, and

as a result the separation eddy forms upstream of this point (Fig. 5.14, Re = 80, 110

and 180). When inertia is sufficient to cover the distance from one crest to the next,

then flow separation extends over most of the trough and the streamlines above the

separation eddy become practically straight.

The parametric dependence of the flow structure on the main system properties

is summarized conveniently in the flow regime maps of Fig. 5.15a, b and 5.16a, b.

Fig. 5.15a shows the values of Re and Bo−1 where the subcritical and supercritical

eddies exist. Parameters ζ and δ are constant and are both equal to 2π/10. These

values result in a well-defined zone with no eddy around the resonance conditions. It

is readily observed that, at the relatively small δ considered, subcritical separation

dominates the capillary regime (high Bo−1) and supercritical separation dominates

the gravity regime (low Bo−1).

By increasing the constant parameter values to ζ = δ = 2π/5, the corrugations

become too steep and the resonance only shrinks (but does not totally eliminate) the

separation eddy. The parametric region without eddies now reduces to the lower-left

corner of the map, and a magnified view of this region is shown in Fig. 5.15b. As

expected, with the increase in corrugation steepness, the onset of the supercritical

eddy moves to much lower Re. It is also noted that, for Bo−1 > 20 the subcritical
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eddy exists even at Re = 0. Thus, geometric separation is facilitated at high Bo−1,

as is anticipated from the effect of capillary forces in the subcritical regime.

Fig. 5.16a shows the values of Re and δ where the subcritical and supercritical

eddies exist. The parameters now held constant are ζ = 2π/10 and Bo−1 = 5. It is

readily observed that, at this relatively low Bo−1, subcritical separation is dominant

at low δ and supercritical at high δ. It is also noted that, above δ = 1.96 the

minimum Re for the onset of the supercritical eddy gradually increases once again.

The latter observation is in line with the gradual shrinkage of the supercritical eddy

as δ increases, noted in the previous section.

By increasing the dimensionless wall steepness to ζ = 2π/5, the approach to

resonance leads in shrinkage, but not total elimination, of the separation eddy. This

behaviour is manifested in Fig. 5.16b, which shows that the parametric region without

eddies is limited to small Re and small-to-intermediate δ.

5.3.5 Branch Disconnection at Very Steep Wall Corrugations

An effect of increasing wall steepness, which has already been discussed in the

literature (Heining et al., 2009), is the occurrence of bistability at high Bo−1. Then,

the relatively steep resonance curve of free surface amplification versus Re bends

towards the supercritical regime. As a result, there is a range of Re, where multiple

steady solutions co-exist.

Here, we report on another effect of steep corrugations, which occurs at low Bo−1,

i.e. when the linear resonance curve is blunt and exhibits a weak peak. Representative

computational predictions with increasing wall steepness are shown in Fig. 5.17 for

Bo−1 = 5 and δ = 2π/10. They indicate that beyond ξ = 1.6 the resonance curve

breaks into two disconnected branches, a subcritical and a supercritical one. The end

of each branch marks a failure of the computer code to converge to a steady solution.

It is interesting to note that the two branches cross, an indication that exchange of

stability takes place.

Some characteristics of the two branches for ξ = 2, namely the relative amplitude

and phase shift of the free surface, and the intensity of the wall eddy, are shown in

Fig. 5.18. We note that there is a discontinuous jump in all characteristics, i.e. the

two branches are genuinely different. In particular, the wall eddy disappears totally

in the supercritical branch but persists in the subcritical one.

In Fig. 5.19 are shown the first three harmonics of the free surface deformation.

It is evident that the subcritical solution is relatively more deformed at small length-

scales. Fig. 5.20 shows the streamlines of the limiting solutions of the two branches.

88

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:51:43 EEST - 18.219.33.223



0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

Reynolds number, Re

R
el

at
iv

e 
am

pl
itu

de
, β

 

 
ξ=1.0
   1.3
   1.6
   2.0

Figure 5.17: The disconnection of subcritical and supercritical branches with multi-
ple solutions in the mid range of Re for increasing wall amplitude with
δ=2π/10, Bo−1=5, α=45o.
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Figure 5.21: Comparison of data by Wierschem et al. (2003) (open symbols) to com-
putational predictions (filled symbols) for the distance of the separatrix
and the core of the eddy from the center of the trough. Creeping flow
along a sinusoidal wall with wavelength 20 mm and amplitude 9 mm, at
inclination 45o. .

It is interesting to observe that the subcritical solution features extensive capillary

deformation on the upstream side of the free surface. It is also characterized by two

separation eddies, one on the wall and another one on the downstream side of the free

surface. On the contrary, the supercritical solution is almost in perfect phase with

the wall and only exhibits a slight downstream bulge.

5.3.6 Comparison with Experiments

This concluding section serves to validate the accuracy of the computations by

quantitative comparison with independent data taken at steady conditions. It also

attempts to relate singular limits of the steady computations to experimentally ob-

served hydraulic jumps (shocks) and recursive behaviours. To this end, we will exploit

published data by the Aksel group (Wierschem et al., 2003; Wierschem and Aksel ,

2004a).

First, we consider the characteristics of the separation eddy under creeping flow

conditions along a sinusoidal wall with wavelength 20 mm and amplitude 9 mm,

inclined at 45o. Fig. 5.21 compares data by Wierschem et al. (2003) (their Fig. 10)

to our computations. The predicted vertical distance of the separatrix and the core

of the eddy to the bottom of the trough is in very good agreement with the data over

the entire range of measured film thickness.
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Figure 5.22: Comparison of data by Wierschem and Aksel (2004a) (symbols) to com-
putational predictions (lines) of the first three harmonics of steady sur-
face deformation over a range of Re. Flow along a wall with wavelength
300 mm and amplitude 15 mm, at inclination 15.1o..

The effect of wall steepness on geometric separation under creeping flow is also

very well predicted. More specifically, Wierschem et al. (2003) have shown (their

Fig. 8) that at a waviness equal to 0.1 (equivalent to ζ = 2π/10) there is no eddy as

Re ∼ 0, no matter how thick the film is. This is in line with our results depicted in

Fig. 5.16a. On the contrary, a wall of waviness equal to 0.2 (ζ = 2π/5), is observed

to develop a separation eddy at a critical film thickness/wavelength equal to 0.34.

This is again in quantitative agreement with our results, shown in Fig. 5.16b, which

indicate that the critical dimensionless film thickness for the occurrence of separation

at zero Re is δ = 2π×0.34.

Next, we move to finite Re, and consider the characteristics of the free surface.

Wierschem and Aksel (2004a) report the first three harmonics of the steady surface

deformation over a wide range of Re, for flow along a wall with wavelength 300

mm and amplitude 15 mm. In Fig. 5.22 we reproduce their data together with our

predictions. Rather satisfactory agreement is noted for the second and third harmonic,

and also for the first harmonic up to Re = 30. Given the rather small ratio of channel

width to wavelength (170/300), it is conjectured that the deviation at high Re is

caused by finite-width effects. The observation that the disagreement appears in the

first harmonic further supports this conjecture.

It is also confirmed that all the steady flow structures documented by Wierschem

and Aksel (2004a) (their Fig. 11) appear as predictions of the present code. In
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Figure 5.23: The flow structures at low inverse Bond number are shown as examples
at fixed inclination angle α=9.9o, fixed wall amplitude/wavelength =
0.015/0.298 and Bo−1=0.005531. Different flow structures obtained by
changing viscosity and mean film thickness are standing wave (upper
plot) with Re = 41.28, δ=0.309548, ξ=1.020408; hump (middle plot)
with Re=40.02, δ=0.246375, ξ=1.282051; and hydraulic jump (lower
plot) with Re=17.5, δ=0.246375, ξ=1.282051.

particular, the first streamline plot in Fig. 5.23 shows a supercritical standing wave

with a slight downstream bulge. With decreasing dimensionless film thickness, the

bulge moves upstream and turns into a pronounced hump (second plot), which is

accompanied by a recirculation region.

Finally, approaching the relevant experimental conditions, the computational steady

solution steepens in the sense of a hydraulic jump, develops computational instabilities

and eventually ceases to exist (third streamline plot in Fig. 5.23). It may reasonably

be conjectured that the failure to converge to a steady solution is associated with

the experimental observation of recursive build-up and degeneration of the hydraulic

jump into three-dimensional structures (surface rollers, fingering).

5.4 Concluding Remarks

Steady flow of a liquid film along sinusoidal, steeply corrugated walls is investi-

gated computationally by finite-element simulation of the 2D Navier-Stokes equations.

The interaction of flow structures resulting from the shape of the wall and from the

deformation of the free surface is parameterized by the Reynolds number, Re, the in-

verse Bond number, Bo−1, the dimensionless wall steepness, ζ, and the dimensionless
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film thickness, δ, and is studied for a typical inclination angle α = 45o.

The overall behaviour is efficiently classified into a subcritical and a supercritical

regime. The boundary is demarcated by the value, Reres, where the wall corruga-

tions are at resonance with capillary-gravity waves travelling against the flow and

the free surface exhibits maximum deformation. The value of the inverse Bond num-

ber (mainly affected by the wall wavelength) defines the capillary and the gravity

regimes. The capillary regime is characterized by a resistance to the deformation of

the free surface at low Re, but also by strong wall-free surface resonance, and thus a

significant deformation of the free surface at higher Re. On the contrary, the gravity

regime is characterized by a relatively small deformation of the free surface and weak

variation with Re.

As is intuitively expected, steeper walls trigger earlier flow separation at the

trough, both in the subcritical and the supercritical regime. However, the separation

characteristics in the two regimes vary significantly because capillary forces dominate

over inertia forces in the former and vice-versa in the latter. More specifically, in the

subcritical regime, the resistance to free surface deformation results in a pronounced

separation eddy for very thin films and in the approach to a creeping flow eddy for

very thick films. On the contrary, in the supercritical regime, separation disappears

for very thin films (because the flow readily deforms to follow the wall) and gradually

shrinks for very thick films (because the change in flow cross-section becomes less

drastic).

At very high values of wall steepness, the solution breaks into two, intersecting

branches. It is conjectured that this topological change of the solution is associated

with recursive behaviours that have been documented from independent experiments.

Also, computational predictions in the appropriate parametric range agree with ob-

servations of steady flow, and failure of the code to converge appears relevant to the

experimentally recorded formation of shocks.
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CHAPTER VI

Unsteady Flow along Periodic Corrugations

6.1 Introduction

Liquid film flow along corrugated substrates can be encountered in nature and in

several industrial applications. It occurs in a variety of scales ranging from environ-

mental flows (Balmforth and Liu, 2004), mesoscale flows in two-phase heat exchangers

(Webb, 1994), in mass transfer equipment (deSantos et al., 1991; Valluri et al., 2005;

Helbig et al., 2009), or in coating processes (Quere, 1999; Weinstein and Ruschak ,

2004), to biomedical flows (Bull and Grotberg , 2003). More information can be ex-

tensively found in the reviews by Oron et al. (1997); Chang et al. (2002); Craster

and Matar (2009). Wall corrugation induces a rich physical behaviour in liquid film

flow and makes it particularly more interesting (Wierschem and Aksel , 2004a). First

studies on the problem dated back since late 70s early 80s (Tougou, 1978; Wang ,

1981).

Different research approaches with relevant assumptions have been carried out.

Initial theoretical works simplified the problem to a special case of creeping flow for

asymptotic analysis (Wang , 1981) and numerics on Stokes-flow (Pozrikidis , 1988;

Shetty and Cerro, 1993). They studied a steady deformation of free surface of liquid

film flow along sinusoidal wall. On the other hand, the assumption of infinitesimal

amplitude of wall corrugation makes the problem analytically more tractable at finite

inertia. However, the imposition of even small wall amplitude on the deformation

of free surface flow is non-trivial. It is observed that there is a linear resonance of

a flow in finite range of Reynolds number (Bontozoglou and Papapolymerou, 1997;

Trifonov , 1999; Luo and Pozrikidis , 2006; Wierschem et al., 2008). Another assump-

tion is of very small film thickness, so the effect of finite-steepness corrugation can

be questioned. Again, it corroborates the nonlinear resonance between free surface
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deformation and wall corrugation in an appropriate range of parameters (Heining

et al., 2009).

Other topographical walls were also questioned. Periodic orthogonal wall was

studied to depict its effect on free surface morphology and vortical structure of steady

flow (Argyriadi et al., 2006; Pak and Hu, 2011). Another aspect of substrate with

topographical feature, such as single step-in or step-out, was studied to provide more

specific physical understanding relevant to defect or intentional design of industrial

equipments (Kalliadasis and Homsy , 2001; Gaskell et al., 2004; Bontozoglou and Ser-

ifi , 2008).

In order to work on flow instability, most studies approached to film flow along

wall corrugation traditionally with low-dimensional models by assuming very small

amplitude of corrugation or very thin mean film thickness. These publications fol-

lowed the classical long-wave expansion originated from the one for planar wall (Ben-

jamin, 1957; Yih, 1963) and implicitly excluded the possible effect of short wave.

However, they could provide specific pieces of information on corrugated-wall film

flow. Davalos-Orozco (2007) employed the long-wave equation of Benney type and

introduced a local perturbation of air pressure on free surface. He found that per-

turbation can be dampened and disappears with a proper wavelength of corrugation.

Dynamics of flow on periodic wall by Oron and Heining (2008) based on the first-

order WRIBL-type (Weighted Residual Integral Boundary Layer) set of equations

presented periodic flow beyond a critical threshold, then travelling wave, and ending

up in unstationary state. He predicted that the effect of corrugation on flow extends

the critical Reynolds number to higher value than on planar wall. D’Alessio et al.

(2009) derived a second-order model and stated that corrugation reduces stability of

flow at large Weber number and with thick film flow. This instability is monotonic

and increases with corrugation amplitude. The onset of instability is of short wave-

length which approaches to the one of high-amplitude corrugation. Heining and Aksel

(2009) predicted that corrugation can cause either instability or stability depending

on surface tension or corrugation wavelength.

Another effective approach to instability is to use a curvilinear coordinate sys-

tem following wall corrugation. It satisfactorily captures recirculation eddies around

bottom trough. Wierschem and Aksel (2003) studied corrugation of very large wave-

length and showed that the delay of critical threshold to higher value than in that of

flat wall occurs at low inclination angle. On the contrary, larger inclination resulted

in lower critical one. Hacker and Uecker (2009) derived a WRIBL type model. It

interestingly predicted that corrugation does not have monotonic effect but can cause
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opposite ones either stability or instability. By the same method, Nguyen and Plourde

(2011) studied the behaviour of free surface in terms of inclination angle, quantified by

the area ratio of free surface to the corrugation bottom. The instability of corrugated-

wall film flow was additionally questioned by considering the addition of surfactant

(Pozrikidis , 2003) or the application of electric field (Tseluiko et al., 2008, 2009). By

using different low-dimension models bound with constraint assumptions, conclusions

on flow instability are quantitatively incomparable and often contradictory to each

other, not to mention due to different range of geometric and physical parameters. It

is also emphasized that these models by their nature encounter difficulties in reflecting

rigorously the physics of flow structure due to the fact that their ad-hoc assumption

of velocity profile always misses the information on recirculation eddies around the

trough (Wierschem et al., 2003; Wierschem and Aksel , 2004a,b; Scholle et al., 2004;

Wierschem et al., 2010; Nguyen and Bontozoglou, 2011). Typically, Trifonov (1999)

carried out the first theoretical study on instability of corrugated-wall film-flow, us-

ing the long-wave IBL (Integral Boundary Layer) equations derived from the ad-hoc

parabolic profile of crosswise velocity and apparently missed the short-wave mode.

Also for the first time, a paper by Trifonov (2007) on corrugated-wall film-flow

was unique by using the full Navier-Stokes equations. He rigorously employed the

Floquet theory for the instability analysis of steady flow. He stated that a vertical

flow can be stabilized by corrugation wall at a large Reynolds under any disturbance

wavelength. His data showed that using wall corrugation appropriately matching with

liquid properties, flow can be stable under conditions that make it unstable along flat

wall. Therefore, a well tailored wall can delay significantly the critical threshold. On

the other hand, corrugation can cause instability and reduce the critical threshold

of even short-wave disturbance. Despite of his robust data by the full governing

equations and systematically parametric study, the physical mechanism enhancing

the stabilization of flow by corrugation wall was not yet explained as well as the

dynamic evolution of long or short wave disturbance not yet understood.

On the experimental side, there are few data on film flow along corrugation. Vla-

chogiannis and Bontozoglou (2002) observed inertia flow along periodic orthogonal

wall (with rectangular step-in and step-out). Flow stabilization is showed to be sig-

nificantly enhanced by a corrugation wavelength 12mm, being in the effective acting

of surface tension. It increases with inclination angle from 1− 8◦. Making a similar

conclusion but with a periodic sinusoidal wall of large wavelength (300mm), Wier-

schem et al. (2005) dictated that the flow is merely stabilized by the corrugation.

Earlier theoretical studies mostly either neglected short-wave periodic forcing of
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the wall in their long-wave expansion or did not discuss the modulation of free surface

wave by the corrugation. This work is developed both for time-dependent problem

and for stability analysis to solve the remaining unanswered questions. I will carry

out study on the evolution of free surface and flow structure by DNS. It aims at

providing a physical understanding of stabilization effect by corrugation on film flow.

Preliminary results are necessarily shown to describe dynamical evolution of free

surface wave disturbance. The latter manifests interesting behaviour due to additional

interaction of wall corrugation to flow, which activates energy transfer from long-

wave to short-wave mode. The chapter outline is as follows: Sect. 6.2 describes

the computational methodology for the time dependent nonlinear problem, Sect. 6.3

develops the computational methodology for the linearized problem, Set. 6.4 present

DNS results and discussion about the stabilizing effect by corrugation and the short-

wave mode primary instability; and finally some concluding remarks are drawn in

Sec. 6.5.

6.2 Formulation of the Problem and Computational Method-

ology

6.2.1 Time Dependent Formulation

The gravity-driven liquid film flows are considered along a periodic substrate which

comprises of a number kc of bottom corrugations of wavelength λ and amplitude a,

inclined at an angle α with the horizontal plane (Fig. 6.1). The problem is modelled

inflow

outflow

Solid wall

Free surface

Y

X g

Figure 6.1: The configuration of film flow along sinusoidal corrugated wall.

as two-dimensional in a Cartesian coordinate system, with the x-axis pointing in

the mean flow direction and the y-axis across the film. The respective dimensional

velocity components are u and v. The liquid is incompressible and Newtonian, with
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density ρ, dynamic viscosity µ or kinematic viscosity ν = µ/ρ, and surface tension σ.

The evolution of the free surface in time t is described as y = h(x, t).

The full Navier-Stokes equations governing the two-dimensional flow are non-

dimensionalized using as characteristic scales the mean film thickness and the mean

velocity,

hN =

(
3 ν q

g sinα

)1/3

, (6.1)

uN =
h2N g sinα

3 ν
, (6.2)

of the uniform Nusselt solution transporting the same mean flow rate q, where g is

the gravity. Specifically, the dimensional variables are scaled as follows:

X = x/hN ; Y = y/hN ; H = h/hN ;

U = u/uN ; V = v/uN ; P = p/(ρ u2N); T = t/(hN/uN).

The resulting continuity and momentum equations are formulated as follows, with

capital letters indicating the respective dimensionless variables:

C := ∇ · U = 0, (6.3)

M :=
∂U

∂T
+ U · ∇U +∇P − 1

Re
∇2U − 3

Re sinα
g = 0. (6.4)

Beside the unknowns to be solved in a confined problem which are the two velocity

components, U(X,T ) = [U, V ]T , and the pressure P (X,T ), this free surface problem

requires to determine the free surface height H(X,T ) by imposing the kinematic

equation, describing its evolution,

HT + UHX − V = 0.

By the parametric mapping in Eq. (2.11), the derivative term HX can be rewritten

as
∂H

∂X
=
Hξ

Xξ

, where ξ is the coordinate along the free surface described by η = 1.

Noting that the bold font of ξ and η denote the global coordinates of computational

domain. So the kinematic equation can be rewritten as,

K := HT Xξ + UHξ − V Xξ = 0, (6.5)

The boundary condition prescribing the flow along the wall is the no-slip and
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no-penetration boundary conditions,

U = V = 0. (6.6)

The computational domain is studied for a liquid film flowing along multiple periodic

corrugations. The bottom wall has a length, l, consisting of kc periodic corrugations of

wavelength, λ, so l = kc λ. Each periodic corrugation of amplitude a has a sinusoidal

profile,

y = w(x) = a cos(2π
x

λ
). (6.7)

At this point, a good characteristic length, which is the capillary length lc =
√
σ/(ρg sinα),

is proposed for scaling the wavelength of the periodic corrugation, λc = λ/lc as it can

distinguish three different regimes, i.e. strong capillary, capillary-gravity, and gravity

regime. Then, the equation (6.7) can be rewritten as

y

hN
=
a

λ

λ

lc

lc
lν

lν
hN

cos

[
2π

x

hN

hN
lν

lν
lc

lc
λ

]
,

or,

Y = W (X) = Aλc (Ka)
1/2 (3Re)−1/3 cos

[
2πX (3Re)1/3(Ka)−1/2 1

λc

]
. (6.8)

With this scaling, the dimensionless profile of the bottom periodic corrugation exposes

an explicit connection with both the liquid properties and the flow rate by including

dimensionless variables (Ka) and (Re) respectively. Finally, the dynamical balance

of the shear stress with the capillary force along the free surface is expressed as,

T · n = ∆P n+ 31/3KaRe−5/3Kn. (6.9)

In equation (6.9), T is the stress tensor,

T = −PI + 1

Re

[
2UX UY + VX

UY + VX 2VY

]
, (6.10)

and n is the outward unit normal vector on the free surface,

n =
(−HX , 1)

∗√
1 +H2

X

,
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K is the surface curvature

K =
HXX

(1 +H2
X)

3/2
.

Beside that, there is a pressure jump term ∆P = Pref − Pgas on the right hand

side of the equation (6.9) due to the computed relative pressure based on a reference

pressure, Pref set at some point in the flow domain, e.g. at the top of its inlet. This

pressure term arises as an additional variable which requires one more equation to

avoid a degeneracy of the problem by imposing the mass of liquid being equal to the

mass of the Nusselt mean flow on the domain length, l = LhN and L = kc λc
lc
hN

,

m =

l∫
0

[h(x, t)− w(x)] dx = hN l.

or in the dimensionless form,

1

L

L∫
0

[H(X,T )−W (X)] dX = 1. (6.11)

6.2.2 Dimensionless Parameters

The dimensionless parameters arisen in the problem are the Reynolds number (in

Eqs. (6.4)),

Re =
q

ν
=

1

3

(
hN
lν

)3

, (6.12)

with the viscous length, lν = [ν2/(g sinα)]
1/3

, and the mean inclination angle, α. In

Eqs. (6.4), the unit normal vector g pointing in the gravity direction g = [sinα − cosα]T ,

indicates the importance of each gravity component. Three other dimensionless pa-

rameters, appear in equations (6.8) and (6.9), namely the corrugation steepness,

A =
a

λ
, (6.13)

the ratio of the corrugation wavelength with respect to the capillary length,

λc =
λ

lc
, (6.14)
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and the Kapitsa number which only depends on the liquid properties,

Ka =

(
lc
lν

)2

. (6.15)

6.2.3 Computational Method for Time Dependent Formulation

Applying the Galerkin-Finite Element Method, the governing equations (6.3),

(6.4) and (6.5) are integrally weighted to produce the continuity, momentum and

kinematic residuals respectively,

Ri
C :=

∫∫
V

∇ · UΨi dV = 0, (6.16)

Ri
M :=

∫∫
V

(
UT + U · ∇U −∇ · T − 3

Re sinα
g

)
Φi dV = 0, (6.17)

Ri
K :=

∫
S

(HT Xξ + U Hξ − V Xξ) Φ
idξ = 0, (6.18)

where,

• In Eq. (6.16), Ψi is the bilinear basis function assigned at ith node (where

Ψi = 0). In Eqs. (6.17) Φi is the biquadratic basis function at ith node, and in

Eq. (6.18) Φi(ξ, η = 1) is set for nodes on the free surface (η = 1) and becomes

actually the quadratic basis function.

• The velocity, the pressure, the free surface height elsewhere in the flow are inter-

polated elementwise from the pertinent nodal unknowns in the same element,

U =
9∑

j=1

U jΦ
j; P =

4∑
j=1

PjΨ
j; H =

3∑
j=1

HjΦ
j(ξ, η = 1), (6.19)

where the tessellation of each element consists of nine nodal velocities U j, four

nodal pressures Pj and three nodal heights Hj.

• V and S are the whole flow domain and the free surface of the flow. The

continuity, momentum, and kinematic residuals in Eqs. (6.16), (6.17), and (6.18)

at each ith node are respectively evaluated elementwise by the four-point, nine-

point, and three-point Gauss quadratures. The number of equations Ri
C , R

i
M ,

and Ri
K are equal to the number of the nodal unknown variables Pi, U i, and Hi

respectively.

102

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:51:43 EEST - 18.219.33.223



In order to avoid the second derivative of the velocity in Eqs. (6.17), the integration

can be rewritten as follows by mean of the divergence theorem,

∇ · (ΦiT ) = Φi(∇ · T ) + T · ∇Φi,∫∫
V

(∇ · T )Φi dV =

∫
Ω

ΦiT · n dΩ−
∫∫
V

T · ∇Φi dV ,

then,

Ri
M :=

∫∫
V

[(
∂U

∂T
+ U · ∇U − 3

Re sinα
g

)
Φi + T · ∇Φi

]
dV −

∫
Ω

ΦiT · n dΩ = 0.

(6.20)

In the Eqs. (6.20), the surface integration is done around the boundary Ω of the flow

domain, which can be divided into the inflow (Ω1), outflow (Ω2), free surface (S = Ω3)

and solid wall(Ω4) boundaries. Here,

• For any ith node at inlet, outlet and inside flow domain, the surface integration

of the residual (in Eqs. (6.20)) is cancelled out from both sides of surface (n

takes opposite sign),

Ri
MS :=

∫
Ω

ΦiT · n dΩ = 0.

• If the ith node is on the solid wall (Ui = Vi = 0), the relating residual and its

derivatives are simply given as,

Ri
M = 0;

∂Ri
M

∂Ui

= 1;
∂Ri

M

∂Vi
= 1.

• Finally, the surface integration requires the evaluation only at any ith node along

the free surface,
∫
Ω
→
∫
S
.

Due to the stress balance along the free surface given in Eq. (6.9), the surface inte-

gration term can be rewritten as follows,

Ri
MS := −

∫
S

ΦiT · n dS = −
∫
S

(∇P +WeK)nΦi dS = Ri
MS1 +Ri

MS2 (6.21)

whereWe = 31/3KaRe−5/3 =
σ

ρU2H
is the Weber number. The outward normal unit

103

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:51:43 EEST - 18.219.33.223



is explicitly expressed by n =
(−Yξ, Xξ)

∗√
X2

ξ + Y 2
ξ

where ξ, η are two coordinates of the com-

putational domain related to the X, Y of the physical domain by the isoparametric

transformation,

X = Lξ; Y = (H(X,T )−W (X))η +W (X), (6.22)

with ξ and η vary in the range [0, 1]. For the free surface, it is known η = 1

hence the arclength, dS, is a parametric curve in terms of ξ, dS =
√
dX2 + dY 2 =√

X2
ξ + Y 2

ξ dξ. Now, the first term of the surface integration in Eq. (6.21) are treated

separately as follows,

Ri
MS1 := −

∫
S

∇PnΦi dS, (6.23)

Ri
MS1X := −

∫
S

∇P Yξ√
X2

ξ + Y 2
ξ

Φi dS = −
∫
S

∇PYξΦidξ, (6.24)

Ri
MS1Y := −

∫
S

∇P Xξ√
X2

ξ + Y 2
ξ

Φi dS = −
∫
S

∇PXξΦ
idξ, (6.25)

The second term is rewritten by using the curvature definition, Kn =
dt

dS
where t is

the unit tangential vector, t =
(Xξ, Yξ)

∗√
X2

ξ + Y 2
ξ

,

Ri
MS2 := −

∫
S

We
dt

dS
Φi dS = −We

∫
S

Φidt = −We

{Φit
}Last node
F irst node

−
∫
S

t
∂Φi

∂ξ
dξ

 ,
(6.26)

Ri
MS2X := −We


Φi Xξ√

X2
ξ + Y 2

ξ


Last node

F irst node

−
∫
S

XξΦ
i
ξ√

X2
ξ + Y 2

ξ

dξ

 , (6.27)

Ri
MS2Y := −We


Φi Yξ√

X2
ξ + Y 2

ξ


Last node

F irst node

−
∫
S

YξΦ
i
ξ√

X2
ξ + Y 2

ξ

dξ

 , (6.28)

The periodic boundary condition is applied for the inlet and outlet of the flow domain,

so the first node and the last node on the free surface take the same value of the
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unknown variables and the terms in the curly bracket become zero,Φi Xξ√
X2

ξ + Y 2
ξ


Last node

F irst node

= 0,

Φi Yξ√
X2

ξ + Y 2
ξ


Last node

F irst node

= 0.

Finally, the two X and Y components of the momentum residual are expressed as

follows ready for numerical implementation,

Ri
MX :=

∫∫
V

[(
UT + U UX + V UY − 3

Re sinα
sinα

)
Φi +

(
−P +

2

Re
UX

)
Φi

X

+
1

Re
(UY + VX) Φ

i
Y

]
dV +

∫
S

∆PYξΦ
i dξ +We

∫
S

XξΦ
i
ξ√

X2
ξ + Y 2

ξ

dξ, (6.29)

Ri
MY :=

∫∫
V

[(
VT + U VX + V VY +

3

Re sinα
cosα

)
Φi +

1

Re
(UY + VX) Φ

i
X

+

(
−P +

2

Re
UY

)
Φi

Y

]
dV −

∫
S

∆PXξΦ
i dξ +We

∫
S

YξΦ
i
ξ√

X2
ξ + Y 2

ξ

dξ,

(6.30)

To this point, the number of nodal residuals of the governing equations in Eqs. (6.16),

(6.18) and (6.20) corresponds to the number of the nodal unknown variables. How-

ever, due to setting a pressure datum at a reference grid node in the flow, the residual

of the continuity at that node is set a priori. This setting results in a pressure dif-

ference between the pressure datum and the uniform gas pressure in the dynamical

balance at the gas-liquid interface, as shown in Eq. (6.9). The unknown variables of

pressure difference, ∆P , requires an additional equation of liquid mass in the flow

domain in order that the problem is well defined, as follows

M :=

L∫
0

(H −W ) dX = L, (6.31)

RMASS :=

L∫
0

(H −W ) dX − L = 0. (6.32)

Until now, the vector of the nodal unknown variables,

Q = [U1, V 1, · · · , UN , V N , P 1, · · · , PNP , H1, · · · , HNH ,∆P ],
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corresponds fully to the vector of the residuals,

R = [R1
MX , R

1
MY , · · · , RN

MX , R
N
MY , R

1
C , · · · , RNP

C , R1
K , · · · , RNH

K , RMASS].

The indices N , NP , and NH denote respectively the number of unknown nodal

velocities, unknown nodal pressures, and unknown nodal free surface height in the

flow domain, where one unknown nodal pressure is set as a datum value which results

in an additional variable of pressure difference to count for the dynamical balance at

the gas-liquid interface. The nodal residuals of the governing equations, Eqs. (6.16),

(6.18) and (6.20) and the additional mass equation (6.31) are discretised in time,

if it is time-dependent, using the Crank-Nicolson (C.N.) scheme, and are integrally

weighted by the Gaussian quadratures: the nine-point Gaussian quadrature for the

domain integration and the three-point for the surface one. The basic C.N. scheme

is as follows,

∂Q

∂T
+ L(Q) = 0,

∂Q

∂T
+

1

2

[
L(Qn+1) + L(Qn)

]
= 0. (6.33)

For the integrated residuals of the governing equations, the extended Crank-Nicolson

scheme gives:

Ri :=

∫
V

[
∂Q

∂T
+ L(Q)

]
Φi dV = 0,

Ri :=

∫
V

[
∂Q

∂T
+

1

2
L(Qn+1) +

1

2
L(Qn)

]
Φi dV = 0. (6.34)

Here, the time derivatives of unknown variables are discretised using the backward

difference with a special attention to the vertically moving grid, as follows:

∂U

∂T
=
Un+1 − Un

∆T
− Y n+1 − Y n

∆T

(
∂U

∂Y

)n

,

∂V

∂T
=
V n+1 − V n

∆T
− Y n+1 − Y n

∆T

(
∂V

∂Y

)n

,

∂H

∂T
=
Hn+1 −Hn

∆T
,

where the flow field variables at the (n+ 1)th time step is unknown and to be solved

based on the known ones at the previous nth time step. The system of the algebraic

equations obtained are solved for the unknown variables vector Q using the Newton-
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Raphson method,

Qn+1 = Qn − J−1R(Qn),

where J is the Jacobian of the vector of residuals, R, with respect to the vector

of unknown variables, Q.

6.3 Computational Method for the Linearised Governing Equa-

tions

6.3.1 Linearising the Unknown Variables

In order to investigate the linear stability of the flow, the perturbation to the

known base flow is assumed to be infinitesimal. Hence all nonlinear (high order)

terms of perturbation are neglected in comparison to the first order terms. This

results in a linearised form of the governing equations for the time evolution of the

unknown perturbation. Denoting the overhead bar for the steady value of the base

flow and the tilde for the perturbed value, the linearisation of the nodal coordinates

and free surface height are expressed as follows,

X = X̄, (grid node is not perturbed in the streamwise direction) (6.35)

Y = Ȳ + Ỹ , (6.36)

H = H̄ + H̃. (6.37)

Any other unknown variable of the flow field is necessarily linearized as a sum

of the known steady value and an unknown perturbed value. If considered in the

physical domain, the perturbed term should include both local perturbation Ũ)|Y=Ȳ

and the one due to perturbed grid UY |Y=Ȳ Ỹ , and results in complication with higher-

order Y derivative. In order to avoid this Y -derivative, it is practical to determine

the linearization of the flow unknown variables at frozen coordinates (ξ, η) of the

107

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:51:43 EEST - 18.219.33.223



computational domain, as follows,

U = Ū + Ũ , (6.38)

V = V̄ + Ṽ , (6.39)

P = P̄ + P̃ . (6.40)

The pressure jump, which is set at a fixed node, is linearised as ∇P = ∇P̄ + ∇P̃ .
The unit tangential vector, t =

(Xξ, Yξ)
∗√

X2
ξ + Y 2

ξ

= (t1, t2)
∗ of the free surface is linearised

by first considering the denominator,

(X2
ξ + Y 2

ξ )
−1/2 =

(
X̄2

ξ + (Ȳξ + Ỹξ)
2
)−1/2

=(X̄2
ξ + Ȳ 2

ξ + 2ȲξỸξ +O(Ỹ 2
ξ ))

−1/2

=(X̄2
ξ + Ȳ 2

ξ )
−1/2 + (−1/2)(X̄2

ξ + Ȳ 2
ξ )

−3/2 2 Ȳξ Ỹξ.

Plugging it back into the two components of the tangential vector, it yields,

t1 =
Xξ√

X2
ξ + Y 2

ξ

=
X̄ξ(

X̄2
ξ + (Ȳξ + Ỹξ)2

)1/2
=X̄ξ

[
(X̄2

ξ + Ȳ 2
ξ )

−1/2 − (X̄2
ξ + Ȳ 2

ξ )
−3/2ȲξỸξ

]
=t̄1 −

X̄ξȲξ
(X̄2

ξ + Ȳ 2
ξ )

3/2
Ỹξ, (6.41)

t2 =
Yξ√

X2
ξ + Y 2

ξ

=
Ȳξ + Ỹξ(

X̄2
ξ + (Ȳξ + Ỹξ)2

)1/2
=(Ȳξ + Ỹξ)

[
(X̄2

ξ + Ȳ 2
ξ )

−1/2 − (X̄2
ξ + Ȳ 2

ξ )
−3/2ȲξỸξ

]
=Ȳξ(X̄

2
ξ + Ȳ 2

ξ )
−1/2 +

[
(X̄2

ξ + Ȳ 2
ξ )

−1/2 − (X̄2
ξ + Ȳ 2

ξ )
−3/2Ȳ 2

ξ

]
Ỹξ

=t̄2 +
X̄2

ξ

(X̄2
ξ + (̄Y )2ξ)

3/2
Ỹξ. (6.42)

For the linear stability analysis, the unknown variables are the perturbed ones to be

computed from the given base flow. A computational approach is going to be devel-

oped in the following to solve the linearised governing equations for these unknown

variables. The linearised governing equations are obtained by replacing all the lin-
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earised variables to the governing equations and their residuals and by eliminating

the nonlinear terms of the perturbation in these formulations.

Computationally, the linearised governing equations are then solved for the un-

known perturbation in a straightforward way by the same technique as for the non-

linear problem. By the Galerkin Finite Element Method, the weak formulation of the

governing equations is established by integrating the weighted residual of the gov-

erning equations. Therefore instead of linearising the governing equations first, then

taking their integrations of weighted residuals, the formulation will be the same as

the direct linearisation of the weighted residual of the governing equations.

6.3.2 Linearising the Continuity Equation

First, the continuity equation is considered for linearisation by replacing the lin-

earised expressions of U and V from Eq. (6.38), (6.39) into the nonlinear residual of

the continuity equation, Eq. (6.16),

Ri
C :=

∫∫
V

(
∂U

∂X
+
∂V

∂Y

)
Ψi dV =

∫
V

[
∂

∂X
(Ū + Ũ) +

∂

∂Y
(V̄ + Ṽ )

]
Ψi dV. (6.43)

By eliminating the zero-sum base flow terms, the nonlinear residual becomes the

linear one in terms of perturbed unknown variables,

R̃i
C :=

∫∫
V

[
∂Ũ

∂X
+
∂Ṽ

∂Y

]
Ψi dV. (6.44)

6.3.3 Linearising the Momentum Conservation Equations

Now the two X and Y components of the nonlinear momentum residuals in

Eqs. (6.29) and (6.30) are going to be linearised. Replacing the linearised expres-

sions of the variables and tangential vector in Eqs. (6.38), (6.39), (6.40), (6.41), and
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(6.42) into the equation (6.29) gives the nonlinear residual of the X momentum,

Ri
MX :=

∫∫
V

[(
∂

∂T
{Ū + Ũ}+ (Ū + Ũ)

∂

∂X
{Ū + Ũ}

+(V̄ + Ṽ )
∂

∂Y
{Ū + Ũ} − 3

Re sinα
sinα

)
Φi

+(−{P̄ + P̃}+ 2

Re
{ŪX + ŨX}) Φi

X

+
1

Re
(ŪY + ŨY + V̄X + ṼX) Φ

i
Y

]
dV

+

∫
S

(∆P̄ +∆P̃ )(Ȳξ + Ỹξ)Φ
i dξ

−We

∫
S

(t̄1 −
X̄ξȲξ

(X̄2
ξ + Ȳ 2

ξ )
3/2
Ỹξ)Φ

i
ξ dξ. (6.45)

By eliminating the zero-sum terms of the steady base flow and the nonlinear terms

of perturbation, the nonlinear residual, Ri
MX , in Eq. (6.45) reduces to a linear one,

R̃i
MX , as follows,

R̃i
MX :=

∫∫
V

[(
∂Ũ

∂T
+ Ũ ŪX + Ū ŨX + Ṽ ŪY + V̄ ŨY

)
Φi

+

(
−P̃ +

2

Re
ŨX

)
Φi

X +
1

Re

(
ŨY + ṼX

)
Φi

Y

]
dV

+

∫
S

(∆P̃ Ȳξ +∆P̄ Ỹξ)Φ
i dξ +We

∫
S

X̄ξȲξ
(X̄2

ξ + Ȳ 2
ξ )

3/2
ỸξΦ

i
ξ dξ. (6.46)
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Similarly the nonlinear and linear Y components, Ri
MY and R̃i

MY , of the momentum

residual are obtained,

Ri
MY :=

∫∫
V

[(
∂

∂T
{V̄ + Ṽ }+ (Ū + Ũ)

∂

∂X
{V̄ + Ṽ }

+(V̄ + Ṽ )
∂

∂Y
{V̄ + Ṽ }+ 3

Re sinα
cosα

)
Φi

+
1

Re
(ŪY + ŨY + V̄X + ṼX) Φ

i
X

+(−{P̄ + P̃}+ 2

Re
{V̄Y + ṼY }) Φi

Y

]
dV

−
∫
S

(∆P̄ +∆P̃ )(Ȳξ + Ỹξ)Φ
i dξ

−We

∫
S

(t̄2 +
X̄2

ξ

(X̄2
ξ + Ȳ 2

ξ )
3/2
Ỹξ)Φ

i
ξ dξ. (6.47)

and

R̃i
MY :=

∫∫
V

[(
∂Ṽ

∂T
+ Ū ṼX + Ũ ṼX + V̄ ṼY + Ṽ V̄Y

)
Φi

+
1

Re

(
ŨY + ṼX

)
Φi

X +

(
−P̃ +

2

Re
ṼY

)
Φi

Y

]
dV

−
∫
S

∆P̃ X̄ξ Φ
i dξ −We

∫
S

X̄2
ξ

(X̄2
ξ + Ȳ 2

ξ )
3/2
ỸξΦ

i
ξ dξ. (6.48)

6.3.4 Linearising the Kinematic Equation

Replacing the linearised expression of H, as well as U and V in Eq. (6.37), (6.38),

(6.39) into the equation (6.18) gives:

Ri
K :=

1∫
0

[
(H̄T + H̃T )X̄ξ + (Ū + Ũ)(Ȳξ + Ỹξ)− (V̄ + Ṽ )X̄ξ

]
Φi dξ. (6.49)
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By eliminating the terms of the steady base flow and the nonlinear terms of pertur-

bation, the linearised residual of the kinematic equation is given as follows,

R̃i
K :=

1∫
0

[
H̃T X̄ξ + Ū Ỹξ + Ũ Ȳξ − Ṽ X̄ξ

]
Φi dξ. (6.50)

6.3.5 Linearising the Mass Equation

For a no-mass exchange flow, the mass conservation dictates that the mass per-

turbation during the flow evolution on the computational domain is equal to zero. It

is described as follows,

M :=

L∫
0

(H −W ) dX = L, or

M :=

L∫
0

(H̄ + H̃ −W ) dX = L. (6.51)

When scaling with the mean film thickness, the mass of the steady base flow equals

to L

M̄ :=

L∫
0

(H̄ −W ) dX = L. (6.52)

Therefore, the condition of no mass perturbation is expressed as follows,

M̃ :=

L∫
0

H̃ dX = 0, or (6.53)

R̃Mass :=

L∫
0

H̃ dX = 0. (6.54)

Given the steady base flow, the vector of unknown variables of the perturbation,

Q̃ = [Ũ1, Ṽ 1, · · · , ŨN , Ṽ N , P̃ 1, · · · , P̃NP , H̃1, · · · , H̃NH ,∆P̃ ],

are correspondingly solved from the vector of the perturbed residuals,

R̃ = [R̃1
MX , R̃

1
MY , · · · , R̃N

MX , R̃
N
MY , R̃

1
C , · · · , R̃NP

C , R̃1
K , · · · , R̃NH

K , R̃MASS],
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established in the set of Eqs. (6.44), (6.46), (6.48), (6.50), and (6.54), using the the

same technique as described in Sec. 6.2.3.

6.4 Numerical results and discussion

The time-dependent computational study based on the full Navier-Stokes equa-

tions present preliminary results about the evolution of perturbation on free surface.

We do the numerical experiment, using a periodic sinusoidal wall with amplitude

a = 1mm and wavelength λ = 12mm. Computational domain is periodic and consists

of eight corrugations, kc = 8. The liquid used is the aqueous glycerol solution in per-

centage weight 68% with physical properties: kinematic viscosity ν = 8.4x10−6m2/s,

surface tension σ = 0.068N/m, and density ρ = 1185.6kg/m3.

Noting that those dimensional parameters are given for a more realistic reference,

in fact computation by the non-dimensionalized governing equations is applied for

a set of dimensionless controlling parameters as follows. The Kapitsa number is

Ka = 188.85 which only depends on the liquid properties and is for a wall inclination

fixed at a mean angle α = 35◦. Other normalized lengths are the ratio of wavelength

of wall over capillary length, λc = 3.76 (Scaled corrugation wavelength), and the ratio

of amplitude over wavelength of wall, A = 1/12 (Corrugation steepness). We have

a good reason to use the normalized λc in order to express physically the effect of

capillary force on free surface, which is in this case in the acting range in comparison

with forcing corrugation of the high steepness.

From the above information, three different critical Reynolds numbers, corre-

sponding to disturbances of infinitely long wavelength, wavelength of eight corruga-

tions (equal to computational domain length), and one-corrugation wavelength are

respectively given by Eq. (1.17) as Recrl = 1.19; Recr8 = 1.23; and Recr1 = 3.52.

Based on these different theoretical values of Recr, we may want to question the flow

stability under corrugation forcing. This suggests us to carry out numerical exper-

iments by varying only flow rate for two study cases. In the first case, Re = 3.0,

Reynolds number is larger than both Recrl and Recr8, but smaller than Recr1. The

second is with Reynolds number, Re = 5.0, higher than all three critical values.

The time-dependent problem of liquid film flow along a specified corrugation wall

now are defined with six dimensionless parameters (Re, Ka, λc, A, α, kc), with ap-

propriate boundary conditions. To start the simulation, initial condition is needed to

feed into the numerical code, which is in the study a relevant steady flow solution.

However, in order to observe the instability of flow, the introduction of perturba-
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tion compounded with different wavelengths is necessary to facilitate the growth or

to recognize the decay of disturbance. Therefore, we need to get first the steady

solution, called the base flow. Then, it is perturbed with very small amplitude of

periodic disturbance on free surface height, so the mass conservation is ensured on

the domain. The time-dependent computation provides full evolution of flow field,

which is subtracted from the base flow to obtain merely evolution of perturbation.

The time step should be small enough to follow flow evolution, in particular it can be

∆T = 0.2 in both cases. The decay or growth of perturbation in time respectively in-

dicate the stable or unstable state of the base flow. Moreover, perturbation evolution

is rigorously quantified by its kinetic energy, E, which is obtained by integrating on

the whole domain the sum of two square velocity components of perturbation part of

flow.

E =

∫∫
V

(Ũ2 + Ṽ 2)dV. (6.55)

The decrease or increase of this energy is plotted in time to provide accurate infor-

mation on the nonlinear stability of flow.

First, we want to examine the flow structure of the steady solutions for two study

cases, Re = 3, and 5, shown in Fig. 6.2. Both are in the subcritical regime (in

the context of steady flow specifically defined in Chapter V) where both inertia and

surface tension equivalently act on free surface. Higher inertia results in larger de-

formation of free surface. In particular, the relative amplification (Amplitude ratio

of free surface deformation to corrugation, see Ref. Chapter V) of these flows are

β = 0.73 for Re = 3, and β = 0.82 for Re = 5. Moreover, these flows are close to the

resonance region (Ref. Chapter V) as these large deformations of free surface couple

with suppression of recirculation eddy that is found at lower Re around the bottom

trough.

Next moving on the instability of the first case at Re = 3, due to strong forcing

of capillarity combined with corrugation, free surface of the base flow significantly

deforms with the same corrugation wavelength. Inertia is described as an acting

cause of flow instability so a flow at Re = 3 on planar wall is unstable to disturbance

of wavelengths equal to or shorter than the domain length. However, in this capillary-

inertial regime, flow rate at Re = 3 is not sufficiently strong to win over the combined

capillarity and corrugation force for feeding momentum to long wave instability. Any

travelling disturbance on free surface is readily forced to deform periodically with

a similar morphology and wavelength of the free surface of base flow. Whatever
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wavelength of disturbance is, the combined forces of surface tension, flow inertia and

wall corrugation will gradually modulate any long wavelength into the one-corrugation

wavelength. The resulting one-corrugation wavelength disturbance is not unstable

under this small flow rate. As a result, all disturbances with all scales of wavelengths

on the computational domain, after passing through of the modulation, declines and

disappears altogether, see Fig. 6.3.

Moreover, Figure 6.4 shows meaningful information on kinetic energy (E) evolu-

tion of the above flow. At the beginning, T = 0 → 50, travelling waves are modulated

by wall corrugation action. They can locally be unstable but globally stable as the

curve trend of kinetic energy goes down. The mechanism of raising little-up and sink-

ing much-down of E in time depicts how is long travelling wave evolved into short

wave along corrugation wall. The modulation of travelling disturbances into short-

wave mode of one corrugation can clearly be reflected on this staircase-down curve

at early stage T = 0 → 100. After that, there is no more long wavelength so we do

not see any localized increase of E but only a linear decrease. It means that there is

now only short waves which are gradually being stabilized with declining amplitude.

The flow in this case is stable, but interestingly at a higher Reynolds number (more

than 2.4 times of Recr8) in comparison to the planar wall case. So we can conclude

that this particular wall corrugation imposes a stabilizing effect on flow.

On the other hand, a small perturbation consisting of different wavelengths up to

the domain length can grow from a base flow at Re = 5, see Fig. 6.5. This Reynolds

number is larger than the critical threshold corresponding to a one-corrugation wave-

length disturbance on planar wall. As the evolution of perturbation can show,

long travelling wave can not completely be modulated by the wall forcing to one-

corrugation short wave. Analysis by Fast Fourier Transform in Figure 6.6 reveals

that disturbance of larger than one-corrugation wavelength still exists and grows

with increasing amplitude, see the curve H̃ ordered from 10 upward or from time

T = 200 afterward. Despite of the wall forcing, flow inertia is sufficiently strong to al-

low disturbance stretching out wavelength larger than the corrugation to survive and

grow. There are two reasons. i) The capillary and wall forcing are unable to arrest

these disturbances to synchronize with the corrugation. ii) Even so, they are unable

to stabilize this one-corrugation disturbance because inertia is larger than the critical

threshold for that wavelength disturbance. This is indeed a result of the interplay

of both supercritical inertia and wall modulation on flow perturbation. Disturbance

of intrinsically defined wavelength erupts and grows from the base flow because the

two stabilizing forces of surface tension and wall corrugation are no more effective to
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sustain the primary stability of flow.

More information can be revealed from Figure 6.7, depicting the kinetic energy

evolution of unstable flow. At the beginning (T = 0 → 50), it is dominated with the

long-wave modulation process. Long wave components in the perturbation strongly

decay and break into shorter waves, and on the other hand the growth rate of short-

wave mode is still very weak. As a whole, perturbation decays when passing through

this transitional process of long-to-short mode-transfer. So we can not see the pertur-

bation growing right away, kinetic energy even declines there. After that transition,

very long or very short travelling waves continue to decay. However, short wave

components which can survive with wavelength in the range λ̃ = (1 → 1.14)λ, being

larger than corrugation wavelength λ, become dominant in perturbation. Inertia finds

its own effect on these short waves and facilitates them to grow. As a result, there

is a train of travelling waves dominant with wavelength in the range (1 → 1.14)λ or

(1.07 ± 0.07)λ along the free surface, see the curve of H̃ ordered from 15 upward or

from time T = 300 afterward in Fig.6.5. Normalized with the mean film thickness,

the wavelength of perturbation is calculated as follows,

Λ̃ =
λ̃

hN
=
λ̃

λ
λcKa

1/2(3Re)−1/3. (6.56)

So the normalized dominant wavelength of perturbation is given by Eq. (6.56) as

Λ̃ = 22.4 ± 1.5. From the enlarged inset of Fig. 6.7 which depicts around seven

periodicities on a time range from 350 → 400, the period of the travelling perturbation

is estimated about T̃ = 7.14. These results provide an estimate of the phase speed

C̃ = Λ̃/T̃ = 3.13± 0.21. Noting that this phase speed is of a flow beyond the critical

threshold. So it is predicted that the perturbation travels as fast as three times

the mean velocity near the criticality, and may increase its phase speed with higher

inertia. For now, we numerically observe that the primary instability occurring on

corrugation wall is of short wave mode, contradicting with long-wave instability which

was extensively discussed in the classical literature for planar wall, see e.g. works by

Benjamin (1957); Yih (1963). As the wall corrugation does establish a short-wave

mode of primary instability on film flow, it suggests a rethinking about theoretical

analysis to address properly this kind of instability.
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6.5 Concluding Remarks and Perspective

Numerical tools have been developed in Sec. 6.2 for the full time-dependent simula-

tion and in 6.3 for the linear stability analysis. DNS result presents a flow stabilization

by wall corrugation. The evolution of the disturbance which results from the subtrac-

tion of time-dependent flow to the steady flow is focused. We observe that long wave

perturbation evolves into short wave mode due to the interaction with the corrugated

wall. As short wave destabilizes flow as higher Reynolds number, this satisfactorily

provides the physical mechanism of stabilization by corrugation on flow. It corrobo-

rates the stabilizing effect of wall corrugation on the film flow, as documented in some

experimental studies (Vlachogiannis and Bontozoglou, 2002; Wierschem et al., 2005)

as well as numeric (Trifonov , 2007). Moreover beyond the critical threshold, there

is a transfer of perturbation energy from long-wave to short-wave mode. The short

travelling perturbation is dominant, which reveals a primary short-wave instability of

film flows along corrugated wall.
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Figure 6.2: Steady solutions of a) the stable flow at Re = 3, and b) the unstable flow
at Re = 5.
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Figure 6.3: Evolution of perturbation in the stable flow at Re = 3. Perturbed height,
H̃, of the free surface is depicted every time interval of 2. It is shifted
upward a distance of 0.01 consecutively for the sake of clarity.
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Figure 6.4: Kinetic energy of perturbation in the stable flow at Re = 3.
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Figure 6.5: Evolution of perturbation in the unstable flow at Re = 5. Perturbed
height, H̃, of the free surface is depicted every time interval of 20. It is
shifted upward a distance of 0.1 consecutively for the sake of clarity.
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Figure 6.6: Fast Fourier Transform of perturbation profile at time T = 400 of the
unstable flow at Re = 5.
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Figure 6.7: Kinetic energy of perturbation in the unstable flow at Re = 5.
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CHAPTER VII

Summary and Outlook

So far, this thesis presents the computational work to investigate the gravity-

driven thin film flow along either the flat wall or periodic corrugations, using the

Galerkin Finite Element Method to solve the two dimensional Navier-Stokes equa-

tions. In particular, four topical issues of the physical problem have been tackled.

For the film flow down a flat wall, the fully developed solitary waves on the

free surface of film flow are characterised on a sufficiently large domain with periodic

boundary condition. True solitary wave has a distinct profile consisting of main hump

and capillary ripples. The wave grows monotonically exponentially at the tail of main

hump and decays oscillatorily exponentially in the front of main hump, in a form of

capillary ripples. Numerical prediction of the properties of the extreme solitary wave

has shown their non-monotonic dependence in the transition and high inertia regime.

In particular, whereas both phase speed and wave height exhibit the same behaviour

for all liquids in the drag-gravity regime (low inertia), there is a fast increase of

their amplitude during the transition regime and reach a maximum in the drag-

inertia regime (high inertia). Computational evidence for this drastically different

behaviour of regimes is marked by the gradual appearance of the reverse flow in the

transition regime. Deep into the high inertia regime, the reverse flow increasingly

grows and scatters in other surface dimples. After the reversal is well established, the

characteristic of phase speed and heigh amplitude drops to plateau and approaching

an asymptotic limit. These characteristics can only be predicted in the full second

order low-dimension model of Ruyer-Quil and Manneville (2002). Furthermore, the

viscous diffusion is found to cause opposite effects in both regimes. High viscosity

liquid tends to destabilize the flow in the low inertia regime and stabilize it in higher

inertia. The DNS study also confirms that below the critical threshold given by

theory, there is no more wave on free surface. Parametric variation of inclination
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angle shows that the phase speed and wave height of extreme solitary waves increase

with inclination and reach the maximum in a vertical falling film.

As it is observed that solitary waves are moving consecutively as a train of waves,

the question naturally arises as to what is the interaction pattern between successive

solitary waves, and in particular whether bound-states are formed. The question is

first addressed for the two solitary pulse system, when it is fully developed. The

computational code is successful with the novel technique of joining two individual

true solitary waves to form an appropriate initial combination, rather than the naive

superposition. The numerical prediction of the intrinsic separation distances, both

stable and unstable, in the stationary-in-a-comoving-frame doublet has been doc-

umented and has led to the following two physical conclusions: (a) Higher inertia

causes a closer increment of separation distances. (b) The separation distance is

regular and in agreement with theoretical predictions (weak interaction theory) for

pulses separated by intermediate to large distances, but becomes gradually irregular

and deviates from theory as pulses approach each other. Moving on to the time-

dependent simulation of these stationary doublets, it reveals intriguing interaction

dynamics of solitary pulses. Initially large separation doublet shows a monotonic

attraction or repulsion in time evolution to its stable bound-state, whereas at closest

distances, the doublet system is potentially unstable and explodes, passing over sev-

eral intermediate separations, to much larger separation distance. In a narrow range

covering several medium separation distance, the doublet exhibits an intriguing per-

manent oscillation of separation distance between the two pulses, with a pronounced

and non-decaying amplitude and a defined frequency. It is a kind of metastable state

which indicates a narrow strange attractor of flow dynamics. Beyond this range of

permanent oscillation, the separation distance in doublet evolves in a combined fash-

ion of the behaviour. In particular, pulses will attract or repel to the nearby stable

bound-state separation, not monotonically but in a form of a damping oscillation. In

order to interpret the wide distribution of separation distances in a multi-pulse sys-

tem Pradas et al. (2011a), the bound-state formation of a triplet has been studied by

adding a third solitary pulse to a doublet system. If the triplet system is symmetric,

the two bound-state separations are similar to the ones found in the two-pulse system.

However, the separation distances significantly deviate from the doublet’s one if the

triplet is asymmetric, and the third pulse can affect the doublet’s separation differ-

ently depending on whether it is located in front or behind. Triplet’s information has

given a good understanding on a statistically broad band of separations in a train of

numerous solitary waves.
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Moving on the effect of the periodic corrugation on the free surface flow, the

steady solutions of inertial film flows under gravitation has been studied. Several

physical factors, such as inertia of flow, wall geometry, and liquid properties, all

combine to make a complex matrix of parameters in the problem. It is observed

that there is free surface resonance where the amplitude of free surface deformation

attains maximum value. This physical phenomenon can be used as a demarcation

to characterise uniformly the flow behaviour into subcritical or supercritical regimes.

In subcritical regime, at low inertia flow or small mean film thickness, the capillary

force plays the dominant role and tends to reduce the free surface deformation. This

essentially creates an eddy separation in the trough of corrugation, apparently coupled

with free surface deformation. Increasing inertia enhances the surface deformation

up to the limit where resonance with the wall creates the largest deformation. Here,

there is an interplay between inertial and capillary forces, which affect equally the

flow, while the separation eddy disappears. With increasing inertia, and resembling a

ballistic projection, the landing point (the lowest point on the free surface) gradually

moves from upstream of the wall trough, to the bottom, and then to downstream.

In the supercritical regime, the capillary force becomes now unimportant, strong

inertia helps the flow to bridge the gap between two consecutive crests and the free

surface may flatten again. In this regime, the separation eddy in the trough plays as

roller to support the upper-layer liquid moving faster across the corrugated substrate.

It is quantitatively indicated that the flow rate on a corrugated wall with recirculation

eddy is higher than the one on a flat wall. More insight can suggest, even it is another

problem, that whether an object with a rather undulated surface could possibly face

less resistance than with a smooth one. In the above physical studies, the flow is

in the capillary-gravity regime where the ratio of the capillary length of liquid to

the wavelength of corrugation wall is equally relevant to order one. Deep into the

gravity regime, where the capillary length is insignificant to the wall wavelength, the

flow exhibits new fascinating phenomena. The free surface can follow closely the

inclined corrugated substrate, even with phase difference, to form a standing wave.

However, a little higher flow rate can drastically change to form a bump or hump on

the stationary free surface at its low-sloped part downstream. Finally it can evolve

into a hydraulic shock where a steep and abrupt change on the free surface profile

renders the computation impossible to give any more solution.

Now, several questions can be raised concerning the effect of wall corrugation on

the flow instability. To this end, I wish to address this issue computationally, and

to contribute some hypotheses on the prevailing physical mechanisms. Even though

126

Institutional Repository - Library & Information Centre - University of Thessaly
09/06/2024 06:51:43 EEST - 18.219.33.223



there have been a few theoretical and numerical results that predicted a delay of

instability by the corrugation, the mechanism by which the wall corrugation imposes

on the flow to modify the primary instability was not well explained and constitutes

an interesting open question. My DNS results present essential information that the

flow can be stable at much larger Reynolds number than in planar case. Discussion

on the physical mechanism of this stabilization is sensibly addressed by focusing on

the evolution of free surface disturbance obtained by subtracting full flow from the

relevant steady flow. Dynamical simulation has revealed that there is a transfer

of energy from long waves to short waves due to the interaction with the periodic

corrugation. In order word, the additional forcing by wall corrugation modulates

long waves and facilitates shorter wave formation. As shorter waves destabilize at

higher Reynolds number than the long-wave threshold, this energy transfer process

provides the mechanism that expands the stable regime and leads to a new, short-wave

mode.

That may motivate a proper stability theory to seek for both intrinsic unstable

wavelength and critical Reynolds number, in complement to the long wave one ex-

tensively established in classical literature. If intrinsic wavelength could be assumed

the same as the corrugation wavelength, the critical threshold would be given by the

growth rate condition, similarly to the long wave theory. However, it disregards of

the corrugation amplitude whose infinitesimal limit makes the assumption inappro-

priate. Thus, intrinsic short wavelength is unknown a priori and must be sought

together with critical Reynolds. Finally, what else will be in prospective work? i)

Apart from the well-documented convective instability, there is always the possibility

of a globally absolute instability at very low Reynolds number. Of particular interest

is the flow over corrugations with geometric singularity such as the orthogonal wall.

The latter contains multiple recirculation eddies whose instability and flexibility can

modify flow, coupling with global oscillation of free surface. ii) Strongly undulated

substrates can result in multiple steady flow solutions with possible bistable states

and/or absolute instability. iii) The propagation of wave package on free surface flow

along corrugation may deserve more investigation to understand absolute instability

not in a laboratory frame but in a co-moving frame.
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