
1

UNIVERSITY OF THESSALY

SCHOOL OF ENGINEERING

Department of Computer & Communication Engineering

TIMING ANALYSIS OF INTEGRATED

CIRCUITS

Master Thesis :

Alexandros Mittas Lazaridis

July 2012

Volos - Greece

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

2

DEDICATION

To my parents and friends

Hope for better days.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

3

ACKNOWLEDGMENTS

First I would like to thank Dr. George Stamoulis for advising me for the last 4 years. I

have learned many things from him and consider myself fortunate to have been one of his

students.

 I would also like to thank Dr. Nestoras Eymorfopoulos and Dr. Ioannis Moudanos.

Without their patience and crucial support this thesis would not have been completed.

 Finally I am really grateful to my roommates in E5 room of Glavani Steet whose help was

really appreciated. Konstantis, Giorgos, Babis, Tasos, Sofia, and Alexia I am really obliged.

Forgive me if having forgotten to mention anyone.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

4

1 Introduction _________________________________ 6

1.1 Goal of this Thesis...6

1.2 Moore’s Law……………………..……………………………..…………………………………………..6

2 Timing Analysis 8

2.1 What is Timing Analysis..8

2.2 Types of Timing Analysis...8

2.3 Static Timing Analysis ..9

2.4 Static Vs Dynamic Timing Analysis...10

2.5 Why Static Timing Analysis ..10

3 Methodoly _______ 11

3.1 In general……………………………………………………………………………………….………………11

3.1.1 Problem Description………………………………………………………..….………….11

3.1.2 Programming Language and Environment……………………….……………..12

3.2 Parsing Input Files………………………………………………………………………….….……………13

3.2.1 Parsing an Integrated Circuit……………………………..………….………………..13

3.2. 2 Parsing Standard Cell Library ………………………………………….…..…………15

3.3 Computations …………………………………………………………………..……………….…………..18

3.3.1 Levelization of the Circuit..…………………………………………….……….…………….18

3.3.2 Output Capacitance………………….……………………………………….…….……..20

3.3.3 Values Calculation………………………………………………………..……….….…….23

3.3.4 Interpolation for values calculation…………………………………………..……26

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

5

3.3.5 Critical Path………………………………………………………………….....…..……….27

3.3.6 Categorize Different Types of Paths………………………………………………30

3.3.7Acceleration of the execution……………………………………………………….34

3.3.8 Synthesis of ISCAS Benchmark Circuits ’89 and B-Circuits…………….37

3.3.9 Parallel Static Timing Analysis………………………………………………….…..40

4 Results Presentation _______________ 33

4.1 Critical Path ……………………………………………………………………………………….……….41

4.2 Path Categories…….….…………………………………………………………………………………50

4.2.1 Primary Input to Primary Output Paths………………………………………..50

4.2.2 Register to Primary Output Paths…………………………………….…………..51

4.2.3. Primary Input to Register Paths…………………………………………………..52

4.2.4. Register to Register Paths……………………………………………………………54

 4.3 Aggregate Results of Test Circuits………………………………………….…………...………59

4.4 Execution times……………………………………………………………………………………………60

4.4.1 Execution times ………………………………………………………………….……….60

4.4.2 Code Profile ……………………………………………………………………..………….62

5 Conclusion ____________64

5.1 Summary……………………….…………………………………………..………..………………………64

5.2 Future Directions - Optimizations………………………………………… …………………….64

Bibliography 65

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

6

Chapter 1. Introduction

1.1 Goal of this thesis

Given a digital Integrated Circuit described in a hardware description language we will

analyze its timing behavior. This is why we have implemented an EDA tool for timing analysis of

Integrated Circuits. We are going to present the factors that affect timing values of logic gates

such as delays or transition times.

The circuit may consist of both combinational and sequential elements. Out tool has the

ability to analyze circuits consisting of NAND, NOR, AND, OR, NOT, MUX, OAI, AOI, DFF, DFFR,

and many other gates.

We are going to describe the methodology for creating a timing analysis tool which is

capable of finding each path’s delay in a circuit and analyze the timing behavior of various

circuits given some timing constraints. The last may guide in a violation of the circuit’s clock

frequency which means that the hardware description of the circuit is incorrect, as it violates

the constraints dictated by the clock.

1.2 Moore’s Law

Moore's Law is a rule of thumb in the history of computing hardware whereby the

number of transistors that can be placed inexpensively on an integrated circuit doubles

approximately every two years. This trend has continued for more than half a century. 2005

sources expected it to continue until at least 2015 or 2020. However, the 2010 update to the

International Technology Roadmap for Semiconductors has growth slowing at the end of 2013,

after which time transistor counts and densities are to double only every 3 years.

The capabilities of many digital electronic devices are strongly linked to Moore's law:

processing speed, memory capacity, sensors and even the number and size of pixels in digital

cameras. All of these are improving at (roughly) exponential rates as well. This exponential

improvement has dramatically enhanced the impact of digital electronics in nearly every

segment of the world economy.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

7

.

Figure 1.1 Moore’s Law

Consequently, circuits consist of even more transistors. Even more transistors mean

larger area and distance for a signal to be propagated. Each Integrated Circuits’ Developer has

to worry about the constraints that these technological achievements induce. The current

master thesis is closely connected with the previous developments as our goal is to determine

the timing values of a digital circuit.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

8

Chapter 2. TIMING ANALYSIS

2.1 What is Timing Analysis

 Static Timing Analysis (STA) is a method of computing the expected timing of a digital
circuit without requiring simulation. High-performance integrated circuits have traditionally
been characterized by the clock frequency at which they operate. Gauging the ability of a circuit
to operate at the specified speed requires an ability to measure, during the design process, its
delay at numerous steps. Moreover, delay calculation must be incorporated into the inner loop
of timing optimizers at various phases of design, such as logic synthesis, layout (placement and
routing), and in in-place optimizations performed late in the design cycle. While such timing
measurements can theoretically be performed using a rigorous circuit simulation, such an
approach is liable to be too slow to be practical. Static timing analysis plays a vital role in
facilitating the fast and reasonably accurate measurement of circuit timing. The speedup
appears due to the use of simplified delay models, and on account of the fact that its ability to
consider the effects of logical interactions between signals is limited. Nevertheless, it has
become a mainstay of design over the last few decades.

2.2 Types of Timing Analysis

 There are 3 types of timing analysis widely-used to verify the behavior of an Integrated

Circuit:

1. Static Timing Analysis

2. Dynamic Timing Analysis

3. Statistical Timing Analysis

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

9

 Problems with both the first two approaches have resulted in the formation of a new
tool category hybrid timing verification. It selectively combine both static and dynamic
timing in an attempt to create the best of both worlds.

2.3 Static Timing Analysis

Static Timing Analysis (also referred as STA) is one of the many techniques available to
verify the timing of a digital design. An alternate approach used to verify the timing is the
timing simulation which can verify the functionality as well as the timing of the design. The
term timing analysis is used to refer to either of these two methods - static timing analysis, or
the timing simulation. Thus, timing analysis simply refers to the analysis of the design for timing
issues.

The STA is static since the analysis of the design is carried out statically and does not

depend upon the data values being applied at the input pins. This is in contrast to simulation
based timing analysis where a stimulus is applied on input signals, resulting behavior is
observed and verified, then time is advanced with new input stimulus applied, and the new
behavior is observed and verified and so on.

Given a design along with a set of input clock definitions and the definition of the

external environment of the design, the purpose of static timing analysis is to validate if the

design can operate at the rated speed. That is ,the design can operate safely at the specified

frequency of the clocks with-out any timing violations. Figure 2-1 shows the basic functionality

of static timing analysis. The DUA is the design under analysis. Some examples of timing checks

are setup and hold checks. A setup check ensures that the data can arrive at a flip-flop within

the given clock period. A hold check ensures that the data is held for at least a minimum time

so that there is no unexpected pass-through of data through a flip-flop: that is, it ensures that a

flip-flop captures the intended data correctly. These checks ensure that the proper data is ready

and available for capture and latched in for the new state.

The more important aspect of static timing analysis is that the entire design is analyzed

once and the required timing checks are performed for all poss ib le p a t h s a n d s c e n a r ios

o f t h e d e s ig n . T h u s , S TA i s a c om p le t e a n d e x haustive method for verifying the

timing of a design.

The design under analysis is typically specified using a hardware descrip tion
language such as VHDL or Verilog HDL.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

10

2.4 Static Vs Dynamic Timing Analysis

 Dynamic timing analysis uses simulation vectors to verify that the circuit computes
accurate results from a given input without any timing violations. The problem is that
the simulations vector not can guarantee 100% coverage. The goal for the dynamic
analysis is to get a 100% coverage. Dynamic timing simulation is still preferred for non-
synchronous logic style. As a rule, however, only dynamic timing verification tools
support glitch detection and race conditions, since these are inherently dynamic events.

 Static timing analysis on the other hand check all path in the circuit even the false paths.
False paths are paths that are not possible or interesting in actual operation of the
circuit. Therefore you can say that static analysis starts above 100% and works towards
100% by detecting and excluding the false paths. Static tools have made major
advancements in recent years, in fact all synthesis tools use static timing analysis
internally. Something good about this approach is that almost all tools using it supports
multi-cycle paths, in which a path delay constraint exceeds a single clock period.
Everything isn't just good, many static timing tools have problems with feedback loops.

2.5 Why Static Timing Analysis

S t a t i c t im i n g a n a ly s i s i s a c o m p le t e a n d e x h a u s t iv e v e r i f i c a t i o n o f
a l l t im in g checks of a design. Other timing analysis methods such as simulation
can only verify the portions of the design that get exercised by stimulus. Verification through
timing simulation is only as exhaustive as the test vectors used. To simulate and
verify all timing conditions of a design with 10-100m i l l io n g a t e s i s v e ry s l ow
a n d t h e t im in g c a n n ot b e v e r i f ie d c om p le t e ly . Thus, it is very difficult to do
exhaustive verification through simulation. Static t iming analysis on the other hand
provides a faster and simpler way of checking and analyzing all the timing paths in
a design for any timing violations. Given the complexity of present day ASICs ,
w h i c h m a y c on tain 10 to 100 million gates, the static timing analysis has become a
necessity to exhaustively verify the timing of a design.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

11

Chapter 3. METHODOLOGY

3.1 In general

3.1.1 Problem Description

In order to achieve the goal of this master thesis we need a digital circuit’s design in

hardware description language. This file would be one of the two crucial inputs to our

application for getting a timing report for that circuit.

We have used the following two crucial inputs to our application:

1. Some integrated circuits written in Hardware Description Language (VHDL). Of

course our work can give results for any VHDL circuit or be expanded so as to

perform the same operations for any other hardware description language (e.g.

Verilog). The circuits that have been used are ISCAS Benchmark Circuits ’89 and

b circuits which consist form simple to large-scale circuits consisting of tens of

thousands of components.

2. a Standard Cell Library is a collection of low-level logic-functions such as AND,

OR, INVERT, flip-flops, latches, and buffers. These cells are realized as fixed-

height, variable-width full-custom cells. The key aspect with these libraries is

that they are of a fixed height, which enables them to be placed in rows, easing

the process of automated digital layout. The cells are typically optimized full-

custom layouts, which minimize delays and area.

In first step these two types of input files have been read and their data have been

stored in appropriate data structures for later usage.

After having fully represented in our systems memory the interconnection of the circuit,

we divide it in levels and subsequently perform computational operations to this data such as

computation of capacitances, delays, transitions e.t.c.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

12

3.1.2 Programming Language and Environment

Before expand in detail the process followed we have to mention that our EDA-tool is

written on C programming language. This is not at all a random choice as the previously

mentioned programming language can boasts for a variety of advantages that other languages

do not.

For example a C written application is “light” program, with no extremely high storing

demands that can be compiled and executed quickly. This is one of the most important reasons

for why many industrial applications even whole operating systems are being programmed in C.

What is more C shows high portability and the code can be executed in any machine. There is

only need of two simple commands for compilation and execution in console’s prompt. Last but

not least even if a high-level programming language C is quite close to a CPU’s language

(assembly language) as it makes available a significant tool to the programmer, immediate

memory usage. In C memory allocation and deallocation is a hardcore bit by bit operation and

the programmer can access memory bytes by using pointers on them

Our code has been written in ubuntu UNIX environment and has been compiled and

executed with the following two commands.

Figure 3.1 Compilation and execution of our code

Where timing_analysis.c is our EDA tool’s source code and timing_analysis.o the

relevant executable file. The two input files coming next on the execution command are

1. S27_vhdl_netlist.vhdl: a netlist of a circuit

2. fast_conditional_nldm.txt: a Standard Cell Library

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

13

3.2 Parsing input Files

3.2.1 Parsing an Integrated Circuit

A digital circuit consists of primary inputs, primary outputs, logic-gates (components) and nets

connecting the gates (signals). The following VHDL commands

Figure 3.2 inputs and outputs of a digital circuit described in VHDL

declares that primary inputs and primary outputs of this circuit are:

S1, S2, S3, S4, S6, S8, S10

S7, S11, S5, S9_out

respectively

whereas the following command declares the nets names that connect the components

Figure 3.3 nets of a digital circuit described in VHDL

Finally when reading a port map command

Figure 3.4 example of port map()

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

14

The input and output connections the name and the type of the component are being

declared. This gate for example is U13 and is of type NAND2_X4. Also on pins A1, A2 of the gate

the primary inputs S6, S2 are being inserted respectively and has an output on net net282

which will be used as input on another component.

Figure 3.5 schematic representation of a NAND-gate VHDL description

We defined appropriate data structures in order to store in the memory the

aforementioned information.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

15

3.2.2 Parsing Standard Cell Library

NanGate 45nm Open Cell Library

For the purposes of the current master thesis we have used the open-source library

NanGate 45nm Open Cell Library. This library is appropriate for testing of integrated circuits.

Nangate has developed and donated this library to Si2 for open use. The library is intended

to aid university research programs and organizations such as Si2 in developing flows,

developing circuits and exercising new algorithms. In its first release the Open Cell Library

contains 38 different functions ranging from buffers to scan flip-flops with set and reset. All the

different cell functions come in multiple drive strength variants end up with more than 100

different cells in the library.

The library was generated using Nangate's Library Creatorâ„¢ and the 45nm FreePDK Base
Kit from North Carolina State University (NCSU) and characterization was done using the
Predictive Technology Model (PTM) from Arizona State University (ASU).

 The library is enhanced over time based on user suggestions and requests.

This Open Cell Library contains the following views:

 Liberty (.lib) formatted libraries with CCS Timing, ECSM Timing and NLDM/NLPM data
(fast, slow and typical corners)

 Geometric library in Library Exchange Format (LEF)

 Simulation libraries in Verilog and Spice (pre and post parasitic extracted netlists)

 Cell layouts in GDSII

 Schematics

 Library databook in HTML/XML format

 OpenAccess database containing layouts and netlists

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

16

On the following we can see some library data related to the input pin A1 of a 2-input NAND

gate.

Inputs data

Figure 3.6 contents of Standard Cell Library of a 2-input NAND gate

We can see some information the input pin A1 of a 2-input NAND gate such as its

capacitance and its max transition time.

Outputs data

Figure 3.7 contents of Standard Cell Library of a 2-input NAND gate’s output

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

17

We can see values like the pin’s capacitance or the logic function that the component

implements as well as the cell fall matrix its timing sense and the input related to that data.

Figure 3.8 look_up_table for interpolation in the previous matrices

All the aforementioned information is being stored in appropriately defined data

structures just like in the previous sector.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

18

3.3 COMPUTATIONS

3.3.1 LEVELIZATION OF THE CIRCUIT

The circuits gates can be categorized in levels according to the following simple observation

Each gate of level N has as inputs, output nets of gates of levels no larger than N-1.

Consequently a gate which has only primary inputs as input nets will by default be a

level 0 gate. Whereas a gate which has as inputs the output of the previously mentioned gate

and a primary input would be a level 2 gate and so on. According to this, each gate’s level

should be the maximum of all its inputs levels plus 1.

Resuming for a gate k of i inputs it is

level(k) = max (level(input1), level(input2), … , level(inputi)) + 1

Figure 3.9 levels of gates of an integrated circuit

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

19

Violating the previously mentioned rule a flip flop’s output net behaves as a primary

input.

If consider a gate of two inputs, where the first input is a level one gate’s output, whereas the

second input is a flip flops output, then the gate’s level would be

max (1 , 0) + 1 = 2

Figure 3.10 levels in sequential circuits

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

20

3.3.2 Output capacitance

The output capacitance of a gate equals to the sum of the capacitances of the input pins

in the gates that this output is an input, plus the parasitic capacitance of the output net.

k : gate to compute it’s output capacitance

i1 , … , in : gates which have as input the output net of k

Cout : output capacitance

Cin : input capacitance of a specific pin in a specific gate

CP : parasitic capacitance of the wire

Thus,

Cout(k) = Cin (i1) + … + Cin (in) + Cp

On Figure 3.11 output capacitance of gate U1 is being calculated. At this moment to point out

that the parasitic capacitance of the wire has not been added yet. Moreover to mention that

for gates with multiple outputs such as a FULL/HALF ADDERS or FLIP FLOPS each output

probably has different values of output capacitances, always with respect to the

interconnections that these output nets form.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

21

figure 3.11 computation of output capacitance of a gate (parasitic capacitance not included)

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

22

Parasitic Capacitance

Wireload models can be used to estimate capacitance, resistance and the area overhead

due to interconnect. It is used to estimate the length of a net based upon the number of its

fanouts. Given the following wireload model we can compute an approximation of the length of

each component. For the not explicitly listed fanout values we can compute the interconnect

length using linear extrapolation.

Figure 3.12 wire load model and calculation of wire’s length, capacitance, resistance and area

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

23

3.3.3 Values calculation

We now have to compute the delays and transitions of each component.

Timing sense of a component’s input pin (positive, negative, non unate)

Each input pin of a gate can be positive unate, negative unate or non unite, that is how

the output changes for different types of transitions on input.

The timing arc is positive unate, if a rising transition on an input causes the ouput to rise

(or not to change). Whats more a falling transition on an input causes the output to fall (or not

to change. For example an AND gate.

 AND 2

input input output

A1 A2 Z If an input from 1 turns 0, the output either turns

0 0 0 0 either remains the same

0 1 0

1 0 0 If an input from 0 turns 1, the output either turns

1 1 1 1 either remains the same

Table 3.1 True Table of 2 a input AND and its timing sense explanation

Conversely in a negative unate timing arc, a rising transition on an input causes the

ouput to fall (or not to change). What iss more a falling transition on an input causes the output

to rise (or not to change. For example a NAND gate

 NAND 2

input input output

A1 A2 Z If an input from 1 turns 0, the output either turns

0 0 1 1 either remains the same

0 1 1

1 0 1 If an input from 0 turns 1, the output either turns

1 1 0 0 either remains the same

Table 3.2 True Table of 2 a input NAND and its timing sense explanation

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

24

 In a non unate timing arc cannot be determined only from the direction of change of an

input, but also depends upon the state of the other inputs. For example a XOR gate.

Interpolation for delay-transition computation

Given the input transition time and the output capacitance of a gate we will calculate

the gate’s delays and transition times. Consider that input transition time in an input pin of gate

equals to 0.22ns and output capacitance at an output pin equals 0.49pF. In order to compute

for example the fall transition time in that timing arc we simply have to interpolate between

the values 0.1937, 0.7280, 0.2327, 0.7676 and get the requested value. This procedure will be

further explained in a following section.

Table 3.3 matrix to interpolate the indexed values and get fall transition time

Compuation of delays-transtions (input and output)

For each of the matrices cell_fall, cell_rise, fall_transition, rise_transition we perform

this interpolation operation and calculate the corresponding values.

 If a timing arc of a gate has positive timing sense,

o then the output fall transition of the previous gate linked in that pin is the

interpolated value for obtaining the cell fall and the fall transition values for that

input pin.

o Similarly the output rise transition of the previous gate linked in that pin is the

interpolated value for obtaining the cell rise and the rise transition values for

that input pin.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

25

 If a timing arc of a gate has negative timing sense,

o then the output fall transition of the previous gate linked in that pin is the

interpolated value for obtaining the cell rise and the rise transition values for

that input pin.

o Similarly the output rise transition of the previous gate linked in that pin is the

interpolated value for obtaining the cell fall and the fall transition values for that

input pin.

Values computed timing sense Output transition interpolated

cell_fall / fall transition positive fall_transition

cell_rise / rise transition positive rise_transition

cell_fall / fall transition negative rise_transition

cell_rise / rise transition negative fall_transition

Table 3.4 computation of gate delays and transitions in dependence of timing sense of the pin and the

output transition of the previous in the path gate

There are two types of static timing analysis that can be performed while computing gates’

delays.

 max value analysis

 min value analysis

After having computed all cell_fall, cell_rise, fall_transition, rise_transition values for all gate’s

timing arcs we have to find the max/min fall and rise transition. These would be the output

transitions (falling and rising) of a gate, which would be used as input transition in the gate

which is connected to that output.

We have admit that input transition equals to 0 for all level 0 gates and to the previously level’s

output transition time for each non zero level gate.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

26

3.3.4 Interpolation for values calculation

We will explain how the previous values are being calculated with usage of interpolation.

Consider that we want to calculate fall_transition where input transition time in an input pin of

gate equals to x0 = 0.15ns and output capacitance at an output pin equals y0 = 1.16pF.

x1, x2 are the input transition times from index1 for which it is x1 < x0 < x2

y1, y2 are the output capacitances from index2 for which it is y1 < y0 < y2.

We search and find for the fall_transition values in that range Τ11, Τ12, Τ21, Τ22

Table 3.5 matrix for interpolation. The interpolated values are in light blue background

Now we calculate Τ00 for the specific x0, y0 as follows:

Τ00 = x20 * y20 * Τ11 + x20 * y01 * Τ12 + x01 * y20 * Τ21 + x01 * y01 * Τ22

where

x01 = (x0-x1) / (x2-x1)

x20 = (x2-x0) / (x2-x1)

y01 = (y0-y1) / (y2-y1)

y20 = (y2-y0) / (y2-y1)

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

27

from the previous operations we can found that fall transition Τ00 = 0.8516.

In case x0 or y0 or both is/are out of the borders specified by the indices values, then

interpolation is being performed by the closest to that value elements. Of course this operation

can be omitted in case that our data are matching exactly to the values of the indices. In such

an occasion the requested value can be simply extracted by picking an element from the 2D

matrix, without interpolation being needed, although this has been extremely rare as shown

from our experiments.

3.3.5 Critical Path

Having followed the previously mentioned algorithm we computed all the required data

in order to find the critical path and its latency. This path is the slowest of all possible paths in a

circuit and consequently its importance is crucial for the verification of the timing requirements

of the circuits design. If for example from the Register to Register paths the critical has delay

larger than the clock’s frequency then the circuit’s implementation was not successful and it

has to be recreated so meet the requested requirements.

So we have to compute the total delay up to a gate for each gate. For a max static

timing analysis type total delay is the max sum of:

1) the delay of the cell

2) the total delay of a previous level gate whose output is input on that cell

so for each gate we have to compute #timings arcs sums and find the worst. Of course with

respect to the timing sense of each timing arc in similar way that is described in Table 3.5

timing sense of timing arc Cell delay Total delay of previous gate

positive cell rise / cell_fall Total delay rise / Total delay fall

negative cell_fall / cell rise Total delay rise / Total delay fall

Table 3.6 computation of total delay up to a gate related to specific timing arc

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

28

To sum up consider a gate g with k timing arcs and Tup_to_pin_i to be the total delay until the

input pin i of gate g whereas di is the cell delay of input i

then total delay of gate g is

Tg = max (Tup_to_pin_0 + d0 , … , Tup_to_pin_k + dk)

always with respect to timing sense of pins, so as to get rising and falling total delays.

It is obvious that total delay of a level 0 gate would be the max cell delay Tg = max (d0 , … , dk)

as all its input are primary inputs of the circuit. The computation of the total delays is being

performed from level 0 gates to higher level gates. First we trivially compute level 0 gates total

delays, secondly level 1 gates total delays and so on.

After having computed the total delay of its gate we have to search for ones whose

outputs are primary outputs for the whole circuit and find the gate with the highest value of

total delay. Then we go backwards to the circuit to a lower level gate linked with the last whose

total delay is the highest of all possible accessed gates. Then we go backwards again if

necessary with the same criterion until we finally reach to a gate that its total delay is in

dependence with some primary input and not with a lower level gate’s output. The critical path

has been found.

 To note here that in circuits with sequential logic the previous process

terminates when reach a sequential element. So the first component on the critical path would

be for example a flip flop. This process should be used for critical path’s track to all types of

paths explained in a following section.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

29

Figure 3.13 Critical Path

the minimum version of the algorithm to find the critical path is symmetrical.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

30

3.3.6 Categorize different types of paths

On next step we have to distinguish all types of paths between inputs, outputs and registers. At

first step we observe 4 different types of paths between sequential elements.

 from Primary Input to Register

 from Primary Input to Primary Output

 from Register to Primary Output

 from Register to Register

Consequently we recursively traverse the graph twice backwards.

 From all Primary Outputs. So we found the paths

o from Primary Input to Primary Output

o from Register to Primary Output

 From all Registers. So we found the paths

o from Primary Input to Register

o from Register to Register

after having determine the previous paths, and the total delay of each path up to a Register, we

can check for setup and hold time violations with respect to these constraints.

Definitions:

 Setup time is the minimum amount of time the data signal should be held steady before
the clock event so that the data are reliably sampled by the clock. This applies to
synchronous circuits such as the flip-flop.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

31

 Hold time is the minimum amount of time the data signal should be held steady after
the clock event so that the data are reliably sampled. This also applies to synchronous
circuits such as the flip-flop.

Figure 3.14 setup and hold values

These checks for violations in mathematical scope are equivalent to the following equations:

For the setup requirement it should be:

Trequire >= Tarrival

1. Register to Register

• Tarrival = Tclk1 + TDFF1(clk->Q) + Tpath

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

32

• Trequire = Tclk2 - TDFF2(setup)

• Tslack = Trequire – Tarrival

2. Primary Input to Register

• Tarrival = TPI(delay) + Tpath

• Trequire = Tclk1 – TDFF1(setup)

• Tslack = Trequire - Tarrival

3. Register to Primary Output

• Tarrival = Tclk1 + TDFF1(clk->Q) + Tpath

• Trequire = Tclk1 - TPO(output delay)

• Tslack = Trequire - Tarrival

4. Primary Input to Primary Output

• Tarrival = TPI(delay) + Tpath

• Trequire = Tcycle – TPO(output delay)

• Tslack = Trequire - Tarrival

 To meet the hold time requirement it should be:

• Trequire <= Tarrival

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

33

1. Register to Register

• Tarrival = Tclk1 + TDFF1(clk->Q) + Tpath

• Trequire = Tclk2 - TDFF2(hold)

• Tslack = Tarrival – Trequire

2. Primary Input to Register

• Tarrival = TPI(delay) + Tpath

• Trequire = Tclk - TDFF(hold)

• Tslack = Tarrival - Trequire

3. Register to Primary Output

• Tarrival = Tclk + TDFF(clk->Q) + Tpath

• Trequire = - TPO(output delay)

• Tslack = Tarrival - Trequire

4. Primary Input to Primary Output

• Tarrival = TPI(delay) + Tpath

• Trequire = - TPO(output delay)

• Tslack = Tarrival - Trequire

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

34

3.3.7 Acceleration of the execution

Parsing vhdl file acceleration

Assuming that all signals are connected to simple linked list, while reading the netlist

each input pin of each component has to be checked with each possible signal, so as to

determine whether the last is input to that component or not. Consequently for a circuit of

1,000,000 signals and 1,000,000 components, each of whom, consists in middle case of about 3

inputs, we have to perform 5*105 * 3*106 = 15*1011 string comparison operations. This

demands extremely high CPU usage and amount of time for the operations to be performed!

As a result we have to implement a more dynamic data structure to store the signals’

information than a simply linked list. So we implement a multi-dimensional hash-table (referred

as k-tree in data structure bibliography).

Figure 3.15 K-Tree example

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

35

Now a signal’s id could be found in O(strlen(signal)) memory accesses whereas

previously the complexity was in the average case O (signals_cnt / 2). However we have not

added the cost of the linear search of the hashing characters of each node until we find the

correct character, so as to move on a lower level of our tree hierarchy and so on. However if we

consider that all possible signals id characters created by a Synthesis tool are [0-9, _ , n] or a

few some more, in a average case each node has about 6 hash characters. So the new

complexity is O(strlen(signal) * (1 + 6/2)) memory accesses, yet an extremely worth-

implementing data structure.

Dynamic linked lists of components

 While parsing the netlist we allocate memory and store linking information for each

component.

Figure 3.16 simply linked list of components

Consider a simply linked list where each component would be stored in the same order

that there are read from the netlist. In many functions that we have implemented there is need

to search all the components and firstly do some operations with the level 0 gates values’,

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

36

secondly search the list again and do the same operations with level 1 gates values’ and so on.

For example computation of delays, transitions, and output capacitances of the gates’ needs

such an approach.

There is obviously a need to do some more dynamically linked data structure so as to

access only the needed components in each level. Consequently during the levelization function

we dynamically create #levels simply linked lists so as to categorize our components properly.

Figure 3.17 dynamic linked lists of components

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

37

3.3.8 Synthesis of ISCAS Benchmark Circuits ’89 and B-Circuits

For the purposes of the current master thesis we had to design some testing VHDL files in

order to validate the correctness of our EDA tool. For synthesis of these circuits we used

Synopsis Design Vision. In the following lines we present the methodology to create the

aforementioned circuits.

1. We have to setup the synthesis environment. Declare the link and target library.

2. Analysis and Elaboration of the design

Figure 3.18 analysis and elaboration results

3. Compile

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

38

Figure 3.19 compile results

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

39

4. Ungroup

Our tool is not implemented to analyze hierarchies of circuits. One circuit’s description

which consists of thousands of components will probably be synthesized as a set of

subcomponents appropriately connected which on may contain subcomponents on

their turn etc. As our tool was implemented to analyze only flat circuits we have to

completely remove this hierarchy from the created netlist.

5. Ungroup_bus

After synthesis they may be have defined some non-primitive VHDL types (e.g. some 64

bit vector). Our tool has the ability to use only primitive VHDL types such as std_logic.

Consequently we have to analyze each non-primitive VHDL type to a set of separately

declared bits.

6. After having done all the previous we have to save our synthesized circuit in VHDL

format.

The circuit with the largest number of components synthesized was S38584 which consists of

about 8,000 components. In order to really test our tool's high performance computing

capabilities we had to design some really large-scale circuit so we used also the b benchmarks.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

40

3.3.9 Parallel Static Timing Analysis

The execution times we have achieved can be considered quite satisfactory (paragraph

4.4). Although in high performance computing the need to analyze a circuit which consists of

millions of gates is not rare. As a result a parallel execution of our algorithm would have

extremely high interest. A first attempt in parallel execution of our method has been

implemented.

We tried to solve this problem using a parallel hybridic model. In detail we modeified

our code for execution in a cluster of PCs with multicore abilities on each PC’s processor. The

parallel programming libraries that have been used were Message Passing Interface for

distributed communication and POSIX threads for multicore execution.

Assuming 10 PCs properly linked in a local network and a QUAD core CPU on each PC

we separate the whole problem in 10*4 = 40 smaller problems. For example in the delays’

computation procedure each core would have to analyze and compute the delays of only the

1/40 of the total delays. The code to be executed by each core would still be the same but with

much fewer computations being demanded. Of course this had to be done always with respect

to the levels of the gates, moving from a lower to a higher level. Also an appropriate

synchronization and produced data fetching from each generated process has to be

implemented.

Unfortunately there were to crucial factors that tougher our research:

1. We did not have a circuit consisting of millions of gates appropriate for our research.

Although we created a circuit of approximately 400 000 components by starting from the

largest circuit we had, which was about 50 000 components. We cloned this circuit and

attached this clone next to the original by making the original’s Primary Outputs, inputs for

the cloned circuit’s components. We repeated that procedure three times and created a

circuit of about 400 000 components.

2. We did not have a cluster of PCs to test our code’s performance. So we executed are

code in an environment that simulated a virtual cluster of PCs.

Because of many parallel procedures that had to be implemented our whole parallel

algorithm is still under construction but many positive summaries have been made. In

conclusion the Parallel Static Timing Analysis is an area worth researching and will definitely be

probed in the foreseeable future.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

41

Chapter 4. Results Presentation

4.1 Critical Path

We are going to demonstrate our experiments’ results for a specific VHDL circuit. The

presentation will be based on the simplest circuit we have analyzed for practical reasons (e.g.

limited duration and area of the present lecture). Of course the same methodology has been

applied on the really large scale circuits’ analysis where similar results have been taken.

We quote the VHDL description of s27.vhdl circuit from the ISCAS Benchmark Circuits

’89 and a layout designed by our experiments’ verification tool.

Figure 4.1 layout of s27.vhdl

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

42

Figure 4.2 hardware language implementation of s27.vhdl

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

43

After having implemented appropriate data structures on the memory we determine

the level of each component. The relevant data are being presented on Table 4.1.

component type level

DFF_0_q_reg DFF_X1 4

DFF_2_q_reg DFF_X1 2

DFF_1_q_reg DFF_X1 3

U19 NOR2_X1 3

U20 INV_X1 3

U21 NOR3_X1 2

U22 AOI21_X1 1

U23 AOI22_X1 1

U24 AOI21_X1 1

U25 INV_X1 0

U26 INV_X1 0

Table 4.1 levelization of s27.vhdl

Afterwards, we computed the output capacitances of the components. It is worthy to

mention here that the following results are based on a Nangate’s fast version library. On the

following table we can see the relevant results.

component type
1st output's
capacitance

2nd output's
capacitance

DFF_0_q_reg DFF_X1 0.001014 0.000000

DFF_2_q_reg DFF_X1 0.000000 0.001909

DFF_1_q_reg DFF_X1 0.001906 0.000000

U19 NOR2_X1 0.001202 0.000000

U20 INV_X1 0.000310 0.000000

U21 NOR3_X1 0.003102 0.000000

U22 AOI21_X1 0.000929 0.000000

U23 AOI22_X1 0.000977 0.000000

U24 AOI21_X1 0.001202 0.000000

U25 INV_X1 0.002845 0.000000

U26 INV_X1 0.001952 0.000000

Table 4.2 output capacitances of s27.vhdl components

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

44

On next step we calculate for each cell of each component their falling and rising delays

as well as falling and rising transitions. Table 4.3.1 demonstrates the maximum delay analysis

type whereas table 4.3.2 the minimum delay analysis type.

component type
related

pin cell fall cell rise fall transition rise transition
timing
sense

DFF_0_q_reg DFF_X1
CK 0.0981925 0.0472844 0.0109709 0.0105332 x

CK 0.0363526 0.0635519 0.0071294 0.0084965 x

DFF_2_q_reg DFF_X1
CK 0.0912411 0.0402463 0.0071453 0.0051523 x

CK 0.0496623 0.0796773 0.0142703 0.0195819 x

DFF_1_q_reg DFF_X1
CK 0.1035835 0.0530488 0.0140351 0.0159084 x

CK 0.0363526 0.0635519 0.0071294 0.0084965 x

U19 NOR2_X1
A1 0.0197662 0.0292298 0.0166388 0.0193131 n

A2 0.0209801 0.0291132 0.0132844 0.0180793 n

U20 INV_X1 A 0.0088710 0.0160919 0.0121508 0.0098294 n

U21 NOR3_X1

A1 0.0260024 0.0450677 0.0179624 0.0404980 n

A2 0.0356030 0.0563398 0.0223852 0.0405963 n

A3 0.0368945 0.0594153 0.0240135 0.0405539 n

U22 AOI21_X1

A 0.0179404 0.0236752 0.0131191 0.0161987 n

A 0.0163588 0.0289999 0.0124682 0.0199436 n

A 0.0166646 0.0344360 0.0153348 0.0233212 n

B1 0.0183118 0.0267470 0.0120070 0.0199535 n

B2 0.0201712 0.0314294 0.0118803 0.0232510 n

U23 AOI22_X1

A1 0.0184230 0.0224161 0.0121384 0.0153040 n

A1 0.0184796 0.0264451 0.0121196 0.0202802 n

A1 0.0187671 0.0317194 0.0148644 0.0236541 n

A2 0.0202669 0.0257133 0.0120295 0.0175160 n

A2 0.0203545 0.0310876 0.0120076 0.0236583 n

A2 0.0206374 0.0364773 0.0147930 0.0270908 n

B1 0.0258263 0.0294055 0.0163698 0.0170389 n

B1 0.0238348 0.0348100 0.0158638 0.0206236 n

B1 0.0241982 0.0403001 0.0191247 0.0239174 n

B2 0.0278802 0.0352747 0.0164077 0.0195990 n

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

45

B2 0.0258080 0.0417190 0.0158571 0.0239373 n

B2 0.0261861 0.0472338 0.0191294 0.0272431 n

U24 AOI21_X1

A 0.0193294 0.0255154 0.0143604 0.0179035 n

A 0.0177868 0.0313783 0.0137430 0.0221122 n

A 0.0181043 0.0368408 0.0165939 0.0255235 n

B1 0.0207898 0.0291562 0.0135649 0.0221099 n

B2 0.0207668 0.0320357 0.0123593 0.0254984 n

U25 INV_X1 A 0.0172384 0.0235929 0.0134164 0.0212874 n

U26 INV_X1 A 0.0131764 0.0175763 0.0091140 0.0154247 n

Table 4.3.1 calculation of delays and transitions for each cell of the circuit (maximum values)

component type
related

pin cell fall cell rise fall transition
rise
transtiotion

timing
sense

DFF_0_q_reg DFF_X1
CK 0.0981925 0.0472844 0.0109709 0.0105332 x

CK 0.0363526 0.0635519 0.0071294 0.0084965 x

DFF_2_q_reg DFF_X1
CK 0.0912411 0.0402463 0.0071453 0.0051523 x

CK 0.0496623 0.0796773 0.0142703 0.0195819 x

DFF_1_q_reg DFF_X1
CK 0.1035835 0.0530488 0.0140351 0.0159084 x

CK 0.0363526 0.0635519 0.0071294 0.0084965 x

U19 NOR2_X1
A1 0.0197639 0.0267758 0.0166169 0.0183248 n

A2 0.0209801 0.0291132 0.0132844 0.0180793 n

U20 INV_X1 A 0.0088762 0.0143781 0.0121323 0.0086820 n

U21 NOR3_X1

A1 0.0260024 0.0450677 0.0179624 0.0404980 n

A2 0.0316100 0.0544126 0.0208344 0.0405312 n

A3 0.0344430 0.0585595 0.0234106 0.0405600 n

U22 AOI21_X1

A 0.0179404 0.0236752 0.0131191 0.0161987 n

A 0.0163588 0.0289999 0.0124682 0.0199436 n

A 0.0166646 0.0344360 0.0153348 0.0233212 n

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

46

B1 0.0183118 0.0267470 0.0120070 0.0199535 n

B2 0.0201712 0.0314294 0.0118803 0.0232510 n

U23 AOI22_X1

A1 0.0184230 0.0224161 0.0121384 0.0153040 n

A1 0.0184796 0.0264451 0.0121196 0.0202802 n

A1 0.0187671 0.0317194 0.0148644 0.0236541 n

A2 0.0202669 0.0257133 0.0120295 0.0175160 n

A2 0.0203545 0.0310876 0.0120076 0.0236583 n

A2 0.0206374 0.0364773 0.0147930 0.0270908 n

B1 0.0258263 0.0294055 0.0163698 0.0170389 n

B1 0.0238348 0.0348100 0.0158638 0.0206236 n

B1 0.0241982 0.0403001 0.0191247 0.0239174 n

B2 0.0278802 0.0352747 0.0164077 0.0195990 n

B2 0.0258080 0.0417190 0.0158571 0.0239373 n

B2 0.0261861 0.0472338 0.0191294 0.0272431 n

U24 AOI21_X1

A 0.0193294 0.0255154 0.0143604 0.0179035 n

A 0.0177868 0.0313783 0.0137430 0.0221122 n

A 0.0181043 0.0368408 0.0165939 0.0255235 n

B1 0.0207898 0.0291562 0.0135649 0.0221099 n

B2 0.0207668 0.0320357 0.0123593 0.0254984 n

U25 INV_X1 A 0.0172384 0.0235929 0.0134164 0.0212874 n

U26 INV_X1 A 0.0131764 0.0175763 0.0091140 0.0154247 n

Table 4.3.2 calculation of delays and transitions for each cell of the circuit (minimum values)

Subsequently we have all the required data to compute each components’ total delay.

Table 4.4.1 demonstrates the maximum total delay from a path ending to the named

component whereas Table 4.4.2 shows the equivalent minimum total delay.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

47

component type

total delay

1 st output 2nd output

falling rising falling rising

DFF_0_q_reg DFF_X1 0.098193 0.063552 0.036353 0.063552

DFF_2_q_reg DFF_X1 0.091241 0.079677 0.049662 0.079677

DFF_1_q_reg DFF_X1 0.103584 0.063552 0.036353 0.063552

U19 NOR2_X1 0.183664 0.200136 0.000000 0.000000

U20 INV_X1 0.172768 0.186998 0.000000 0.000000

U21 NOR3_X1 0.170906 0.163897 0.000000 0.000000

U22 AOI21_X1 0.081864 0.130331 0.000000 0.000000

U23 AOI22_X1 0.107557 0.135303 0.000000 0.000000

U24 AOI21_X1 0.100467 0.078819 0.000000 0.000000

U25 INV_X1 0.017238 0.023593 0.000000 0.000000

U26 INV_X1 0.013176 0.017576 0.000000 0.000000

Table 4.4.1 calculation of total delays for each component of the circuit (maximum values)

component type

total delay

1st output 2nd output

falling rising falling rising

DFF_0_q_reg DFF_X1 0.036353 0.047284 0.036353 0.063552

DFF_2_q_reg DFF_X1 0.049662 0.040246 0.049662 0.079677

DFF_1_q_reg DFF_X1 0.036353 0.053049 0.036353 0.063552

U19 NOR2_X1 0.044573 0.046352 0.000000 0.000000

U20 INV_X1 0.083795 0.072496 0.000000 0.000000

U21 NOR3_X1 0.058118 0.074918 0.000000 0.000000

U22 AOI21_X1 0.016359 0.023675 0.000000 0.000000

U23 AOI22_X1 0.041411 0.042582 0.000000 0.000000

U24 AOI21_X1 0.017787 0.025515 0.000000 0.000000

U25 INV_X1 0.017238 0.023593 0.000000 0.000000

U26 INV_X1 0.013176 0.017576 0.000000 0.000000

Table 4.4.2 calculation of total delays for each component of the circuit (minimum values)

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

48

Finally we could execute our critical path find algorithm and compute the maximum and

the minimum version of the critical path of the circuit. Tables 4.5.1 and 4.5.2 demonstrate the

previous respectively.

gate type increment total_delay gate_level polar

U20 INV_X1 0.01609190 0.18699779 3 r

U21 NOR3_X1 0.03560297 0.17090589 2 f

U23 AOI22_X1 0.03171939 0.13530292 1 r

DFF_1_q_reg DFF_X1 0.10358353 0.10358353 0 f

Table 4.5.1 maximum critical path

gate type increment total_delay gate_level polar

U20 INV_X1 0.01437810 0.07249625 3 r

U21 NOR3_X1 0.03444300 0.05811815 2 f

U22 AOI21_X1 0.02367515 0.02367515 1 r

Table 4.5.2 minimum critical path

On the following we quite a schematic repsrentation of the critical paths.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

49

Figure 4.3 demonstration of the critical paths on the layout of the circuit s27

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

50

4.2 Path Categories

Previously we have described the methodology for analyzing the different types of paths

on a circuit and check for violations. This section demonstrates the results taken by our tool’s

analysis on the s27 circuit. The paths are being presented in 4 sections with respect to section

3.3.6 for each delay analysis type (max or min). We have assumed a clock of frequency 0.2ns

and it is because of the clock’s frequency violation the behavior of the last 3 paths on register

to register path family.

1. Primary Input to Primary Output Paths

Table 4.6.1 Primary Input to Primary Output Paths in s27

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

51

2. Register to Primary Output Paths

Table 4.6.2 Register to Primary Output Paths in s27

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

52

3. Primary Input to Register Paths

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

53

Table 4.6.3 Primary Input to Register Paths in s27

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

54

4. Register to Register Paths

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

55

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

56

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

57

Table 4.6.4 Register to Register Paths in s27

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

58

4.3 Aggregate Results of Test Circuits

We are going to present the results of the total experiments we came across on the ISCAS

circuits’ family. Table 4.7.1 demonstrates the maximum and the minimum critical path’s delay

that our tool has calculated. We can also observe the equivalent values that the industrial EDA

tool that we have use for the result’s verification has computed. Finally a comparison between

the two different sets of results has been made and an accuracy rate of out tool’s result is being

presented.

Table 4.7 ISCAS Benchmark Circuits ’89 Timing Analysis results

By the previous table we can estimate that our EDA tool’s average accuracy is 99.74% in

calculation of maximum critical path and 92.73% in the equivalent minimum procedure.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

59

4.4 Execution times

4.4.1 Execution times

We will quote the execution times for the two previously mentioned circuits’ families.

To note here that our tool’s implementation, and the execution of the code for gathering the

results has been exclusively taken place in an Intel Core 2 6400 system equipped with 1GB

RAM. Obviously this in not an obsolete system but it is for sure that cannot be characterized

high-tech. Consequently our EDA tool can boast of even better execution times in an up to date

system.

Circuit #Inputs #Outputs #Gates CPU runtime (sec)

s27 5 1 11 0.210

s298 4 6 70 0.202

s349 12 11 81 0.204

s382 6 6 104 0.201

s386 10 7 72 0.202

s400 6 6 106 0.199

s420 21 1 83 0.207

s444 6 6 103 0.202

s510 22 7 134 0.203

s526 6 6 122 0.200

s641 38 24 112 0.201

s713 38 23 112 0.222

s820 21 19 162 0.206

s832 21 19 163 0.202

s1196 17 14 298 0.211

s1238 17 14 297 0.211

s1423 20 5 366 0.210

s1488 11 19 320 0.211

s5378 39 49 816 0.232

s15850 81 150 2075 0.295

s35932 38 320 5857 0.458

s38584 45 304 7793 0.609

Table 4.8 execution times of ISCAS Benchmark Circuits ’89

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

60

Circuit #Inputs #Outputs #Gates CPU runtime (sec)

b01 4 2 30 0.201

b02 3 1 16 0.196

b03 6 4 78 0.200

b05 3 36 320 0.211

b14 34 54 3824 0.437

b18 38 23 24452 2.327

b19 47 30 46964 3.762

Table 4.6.2 execution times of b circuits

Figure 4.4 execution times of timings analysis with respect to the number of gates

For the execution time information we regularly compile our code and append on the

beginning of the execution command the LINUX time command.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

61

4.4.2 Code Profile

In order to understand our code’s weaknesses we profiled our code with Intel VTune

Performance Amplifier. We have used the aforementioned profiler several times during our

tool’s implementation for spotting bottlenecks in our code. We wrote a different version of the

same algorithm and reprofiling the new code and so on. On this section we will present the

results of b19.vhdl hotspots analysis as it is the most demanding netlist we had to test.

Figure 4.5 Hotspots Analysis of the code with Intel VTune Performance Analyzer

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

62

We can see that the execution time of our application is finely balanced on its functions.

The interpolation, the delay calculation and the levelization functions consume a considerable

fraction of the CPU although these functions’ effects were not detrimental to our application’s

performance. To sum up we can conclude that the CPU has been used quite wisely and the

occupation of the CPU by these procedures is not unjustified. What is more to note here that

library parsing functions, although reading a quite large text file and storing its data on the

memory they had a little, almost inconsiderable, effect on the tool’s performance. This is quite

expected, if we consider the amount of calculations that have been made by the other

processes.

The only demand of the code profile is to compile our application with flag –ggdb.

Figure 4.6 CPU usage by the tool’s Procedures

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

63

Chapter 5. Conclusion

5.1 Summary

The software that has been developed is complete effort on the field of Timing Analysis

of Integrated Circuits. This EDA tool has the potential to analyze each digital integrated circuit’s

structural description and verify its timing behavior. After the analysis conclusions can be made

and circuits’ validation methods can be continued properly by examining other aspects of

verification in Integrated Circuits.

5.2 Future Directions - Optimizations

This project can be combined with similar EDA tools used for verification purposes of

Integrated Circuits, as timing is not an absolute factor to verify a circuit’s behavior.

Consequently the current project can be combined with

 Power and Noise analysis tools

 Place and Root tools

 Clock Domain Crossing Verification tools

 Temperature analysis or local voltage variations

The current project can also be expanded so as to perform

 Statistical Static Timing analysis. The aforementioned method replaces the normal

deterministic timing of gates and interconnects with probability distributions, and

gives a distribution of possible circuit outcomes rather than a single outcome.

 Parallel Execution so as to accelerate the execution times in VLSI.

 Graphics interface for schematic representation of the circuit with respect to its

placement using a library such as OpenGL.

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

64

Bibliography

 http://en.wikipedia.org/wiki/Static_timing_analysis

 http://en.wikipedia.org/wiki/Statistical_static_timing_analysis

 http://en.wikipedia.org/wiki/Electronic_design_automation

 Static Timing Analysis for Nanometer Designs. A Practical Approach (J. Bhasker, Rakesh

Chadha)

 CMOS VLSI Design (Neil Waste, David Harris)

 http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html#SEC1

 http://linux.about.com/library/cmd/blcmdl1_time.htm

 http://en.wikipedia.org/wiki/Static_timing_analysis

 http://wiki.answers.com/Q/Difference_between_the_dynamic_timing_analysis_and_st

atic_timing_analysis

 http://asic-soc.blogspot.com/2008/08/dynamic-vs-static-timing-analysis.html

 http://asic-soc.blogspot.com/2009/06/timing-paths.html

 http://www.nangate.com/

 http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html

 http://en.wikipedia.org/wiki/Time_%28Unix%29

 http://wiki.answers.com/Q/What_is_the_advantages_of_c_language

 http://en.kioskea.net/forum/affich-21243-advantages-and-disadvantages-of-c-language

Institutional Repository - Library & Information Centre - University of Thessaly
17/06/2024 16:52:30 EEST - 3.135.201.152

http://en.wikipedia.org/wiki/Static_timing_analysis
http://en.wikipedia.org/wiki/Electronic_design_automation
http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html#SEC1
http://asic-soc.blogspot.com/2009/06/timing-paths.html
http://www.nangate.com/
http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html
http://en.wikipedia.org/wiki/Time_%28Unix%29
http://wiki.answers.com/Q/What_is_the_advantages_of_c_language

	1 Introduction _________________________________ 6
	2.4 Static Vs Dynamic Timing Analysis...10

	3 Methodoly _______ 11
	4 Results Presentation _______________ 33
	5 Conclusion ____________64
	2.4 Static Vs Dynamic Timing Analysis
	 Statistical Static Timing analysis. The aforementioned method replaces the normal deterministic timing of gates and interconnects with probability distributions, and gives a distribution of possible circuit outcomes rather than a single outcome.

