
                                               

UNIVERSITY OF THESSALY 

DEPARTMENT OF CIVIL ENGINEERING  

LABORATORY OF HYDROLOGY AND 
AQUATIC SYSTEMS ANALYSIS 

 

UNIVERSITÉ JOSEPH FOURIER 

OBSERVATOIRE DES SCIENCES DE 
L’UNIVERS DE GRENOBLE I (OSUG)  

LABORATOIRE D’ ETUDE DES 
TRANSFERTS EN HYDROLOGIE ET 

ENVIRONEMENT  

 

 

COMMON GREEK-FRENCH MASTER PROGRAM 

“MANAGEMENT OF HYDROMETEREOLOGICAL HAZARDS - HYDROHASARDS” 

 

 

 

 

THE IMPACTS OF CLIMATE CHANGE  

ON DROUGHTS  

IN ACHELOOS RIVER BASIN 

 

 

 

LYSITSA GEORGIA 
 

 

 

MASTER THESIS 
 

 

 

 

 

 

 

 

VOLOS 2012 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 09:48:26 EEST - 3.133.128.217



 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 09:48:26 EEST - 3.133.128.217



i 
 

TABLE OF CONTENTS 

 

ACKNOWLEDMENTS ...................................................................................................... iii 

ABSTRACT ......................................................................................................................... iv 

ΠΕΡΙΛΗΨΗ ..........................................................................................................................v 

RÉSUMÉ............................................................................................................................. vii 

1. INTRODUCTION ........................................................................................................................ 1 

1.1. Climate change ................................................................................................................. 1 

i. Projections of future changes in climate ............................................................ 5 

1.2. Drought ............................................................................................................................... 7 

2. METHODOLOGY ...................................................................................................................... 12 

2.1. Climate downscaling .................................................................................................... 12 

2.1.1. Global circulation Model ................................................................................... 12 

2.1.2. Statistical downscaling ....................................................................................... 15 

2.1.3. Stochastic simulation of the residuals of the downscaled 
precipitation and temperature ......................................................................................... 23 

i. Generation of annual climate data ..................................................................... 25 

ii. Generation of monthly climate data .................................................................. 28 

2.2. Drought Indices ............................................................................................................. 31 

2.2.1. Standardized Precipitation Index .................................................................. 32 

2.2.2. Standardized Precipitation-Evapotranspiration Index ......................... 34 

2.2.3. The threshold level method ............................................................................. 37 

3. STUDY AREA ............................................................................................................................ 40 

3.1. Description ...................................................................................................................... 40 

3.2. Database ........................................................................................................................... 41 

i. Estimation of areal precipitation ........................................................................ 42 

ii. Estimation of areal temperature ........................................................................ 45 

iii. Estimation of Potential Evapotranspiration. ............................................. 46 

4. APPLICATION-RESULTS ....................................................................................................... 48 

4.1. Climate Downscaling ................................................................................................... 48 

4.2. Drought Indices – Present Climate ......................................................................... 52 

4.2.1. SPI .............................................................................................................................. 52 

4.2.2. SPEI ............................................................................................................................ 56 

4.3. Future Climate ............................................................................................................... 58 

4.3.1. SPI .............................................................................................................................. 62 

A. Future Period 2030-2050 ...................................................................................... 62 

B. Future Period 2080-2100 ...................................................................................... 65 

4.3.2. SPEI ............................................................................................................................ 69 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 09:48:26 EEST - 3.133.128.217



ii 
 

A. Future Period 2030-2050 ...................................................................................... 69 

B. Future Period 2080-2100 ...................................................................................... 71 

4.3.3. Comparison of indices ........................................................................................ 75 

5. CONCLUSIONS .......................................................................................................................... 78 

References ....................................................................................................................... 83 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 09:48:26 EEST - 3.133.128.217



 

iii 
 

ACKNOWLEDMENTS 

This study was carried out at the Laboratory of Hydrology and Aquatic Systems 

Analysis of the University of Thessaly (Department of Civil Engineering), Greece. 

The study is part of the Greek national project “Development of management 

plans for the river basins of Thessaly, Epirus and Western Greece Water 

Departments according to Water Framework Directive 2000/60/EC, Law 

3199/2003 and P.D. 51/2007”.  The study has been funded by the topical 

project "Climate change impacts estimation in the development of management 

plans of Thessaly Water Department" with scientific responsible Associate 

Professor Nikitas Mylopoulos.  I am thankful for this financial support. 

I would like to express my great appreciation to my supervisor Dr. Athanasios 

Loukas, Professor of Hydrology and Water Resources, Department of Civil 

Engineering, University of Thessaly, Greece, for his useful guidance and 

suggestions. I am also thankful to Dr. Lampros Vasiliades, Researcher of the 

Department of Civil Engineering and Mr. John Tzabiras, PhD student of 

Department of Civil Engineering. 

  

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 09:48:26 EEST - 3.133.128.217



 

iv 
 

ABSTRACT 

Despite uncertainties on future climates, climate variation will influence the 

hydrology of a region through changes in the timing, amount of precipitation, 

temperature, evapotranspiration and soil moisture, which in turn will affect the 

drought characteristics in a region. This study is focused on the influence of 

various climate change scenarios on droughts events and their characteristics in 

the river basin of Acheloos, Greece. Acheloos River is the second longest river in 

Greece and first in water contribution. It contains various reservoirs and 

constitutes the main source of water, both for the flat and the semi mountainous 

regions of Western Greece. The outputs of the Canadian Centre for Climate 

Modeling Analysis Global Circulation Model CGCM3 were applied for three socio-

economic scenarios, namely SRES B1, SRES A1B and SRES A2 for the assessment 

of climate change impact on droughts. A statistical downscaling method has been 

applied to estimate monthly precipitation and temperature time series for two 

future periods 2030-2050 and 2080-2100. The methodology is based on multiple 

regression of GCM predictant variables with observed areal precipitation and 

temperature and the application of a stochastic time series model for 

precipitation and temperature residuals simulation. The Standardized 

Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration 

Index (SPEI) computed at various timescales were used as indicators of 

meteorological droughts for present and future climate conditions. The analysis 

of the SPI and SPEI time series indicated an impact of climate change on the 

frequency of dry months and the allocation on various severity classes for the 

three SRES scenarios. SPEI indicated a larger increase in the frequency of dry 

months than SPI, due to the dependence of the index on the temperature. 

Comparison of the drought characteristics for the historical period (1980-2000) 

and the future periods indicated that the severity, maximum cumulative severity 

and maximum duration increased for the three under study scenarios for the 

period 2080-2100. 
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ΠΕΡΙΛΗΨΗ 

Παρόλη την αβεβαιότητα στα μελλοντικά κλίματα, η κλιματική διακύμανση θα 

επηρεάσει την υδρολογία μιας περιοχής μέσω αλλαγών στην χρονική κατανομή 

και στη ποσότητα της βροχόπτωσης, στην θερμοκρασία, στην δυνητική 

εξατμισοδιαπνοή και στην εδαφική υγρασία, οι οποίες στη συνέχεια θα 

επηρεάσουν τα χαρακτηριστικά της ξηρασίας της υπό μελέτη περιοχής. Η 

επίδραση των διάφορων κλιματικών σεναρίων στα γεγονότα ξηρασίας και στα 

χαρακτηριστικά αυτών στην λεκάνη απορροής του Αχελώου ποταμού αποτελεί 

το πεδίο μελέτης της παρούσας εργασίας. Ο Αχελώος είναι ο δεύτερος σε μήκος 

ποταμός της Ελλάδας και ο πρώτος στην παροχή ύδατος. Περιέχει αρκετούς 

ταμιευτήρες και αποτελεί την κύρια πηγή νερού για τις πεδινές και ημιορεινές 

περιοχές της Δυτικής Ελλάδας. Από τα αρχεία του παγκόσμιου μοντέλου 

κυκλοφορίας CGCM3 του CCCMA (Canadian Centre for Climate Modeling 

Analysis) εξήχθησαν οι μεταβλητές για τα τρία κοινωνικό-οικονομικά SRES 

σενάρια, Β1, Α1Β και Β2 με σκοπό την εκτίμηση της επίδρασης της κλιματικής 

αλλαγής στη ξηρασία. Εφαρμόστηκε η μέθοδος του στατιστικού καταβιβασμού 

κλίμακας για να εκτιμηθούν οι μηνιαίες  χρονοσειρές βροχόπτωσης και 

θερμοκρασίας για τις μελλοντικές χρονικές περιόδους 2030-2050 και 2080-

2100. Η μεθοδολογία βασίζεται στη μέθοδο της πολλαπλής γραμμικής 

παλινδρόμησης των ανεξάρτητων μεταβλητών πρόγνωσης (predictands) που 

εξήχθησαν από το GCM και της παρατηρούμενης επιφανειακής βροχόπτωσης 

και θερμοκρασίας, καθώς επίσης και στην στοχαστική προσομοίωση των 

υπολοίπων βροχόπτωσης και θερμοκρασίας. Ο κανονικοποιημένος  δείκτης 

βροχόπτωσης SPI (Standardized Precipitation Index) και ο κανονικοποιημένος 

δείκτης βροχόπτωσης εξατμισοδιαπνοής SPEI (Standardized Precipitation 

Evapotranspiration Index) υπολογίστηκαν για πολλαπλές χρονικές κλίμακες και 

χρησιμοποιήθηκαν σαν δείκτες για την εκτίμηση ξηρασίας για παρόντα και 

μελλοντικά κλίματα. Η ανάλυση των χρονοσειρών των δεικτών  SPI και SPEI 

έδειξε μια επίδραση της κλιματικής αλλαγής στην συχνότητα των ξηρών μηνών 

και στην κατανομή τους στις διάφορες κατηγορίες δριμύτητας για τα τρία 

εξεταζόμενα σενάρια. Ο δείκτης SPEI έδειξε μεγαλύτερη αύξηση στην συχνότητα 

των ξηρών μηνών συγκριτικά με τον SPI, εξαιτίας της εξάρτησης του δείκτη από 
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την θερμοκρασία. Συγκρίνοντας τα χαρακτηριστικά των γεγονότων ξηρασίας 

της ιστορικής (1980-2000) και της μελλοντικής περιόδου (2080-2100), η 

δριμύτητα, η μέγιστη αθροιστική δριμύτητα και η μέγιστη διάρκεια των 

επεισοδίων  ξηρασίας φάνηκε να αυξάνεται για τα τρία SRES σενάρια . 
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RÉSUMÉ 

Malgré les incertitudes sur le climat futur, les variations climatiques 

influenceront l’hydrologie d’une région à travers des changements dans le temps 

de réaction, la quantité de précipitation, la température, l’évapotranspiration ou 

l’humidité des sols qui affecteront les caractéristiques de sécheresse d’une 

région. Cette étude se concentre sur divers scénarios de changement climatique 

d’évènements de sécheresse et leurs caractéristiques sur le bassin versant de 

Acheloos, Grèce. La rivière Acheloos est la deuxième plus grande rivière de Grèce 

et la première pour la contribution en eau. Elle possède plusieurs réservoirs et 

constitue la première ressource en eau des régions de plaines et de montagnes 

de la Grèce occidentale. Les sorties de modèle du Canadian Centre for Climate 

Modeling Analysis Global Circulation (CGCM3) ont été appliquées à trois 

scénarios socio-économiques respectivement nommés SRES B1, SRES A1B et 

SRES A2 pour la prévision de l’impact du changement climatique sur les 

sécheresses. Une méthode de descente d’échelle statistique a été appliquée pour 

estimer les précipitations mensuelles et les séries temporelles de température 

pour la période 2030-2050 et 2080-2100. La méthodologie est basée sur une 

régression multiple des variables prédictives des GCM avec les précipitations et 

températures régionales observées ainsi que sur l’application d’un modèle 

stochastique de série temporelle pour les résidus de précipitations et 

températures modélisées. L’Indice de Précipitation Standardisé (SPI) et l’Indice 

d’Evapotranspiration et de Précipitation Standardisés (SPEI) calculés à 

différentes échelles de temps ont été utilisés comme indicateurs des sécheresses 

météorologiques pour le climat présent et futur. L’analyse des séries temporelles 

de SPI et SPEI indique un impact du changement climatique sur la fréquence des 

mois secs ainsi que sur l’allocation de divers classes de sévérités pour les 3 

scénarios SRES. Le SPEI prévois un plus grande augmentation de la fréquence 

des mois secs que le SPI due à sa dépendance à la température. La comparaison 

des caractéristiques de sécheresse de la période historique (1980-2000) avec les 

futures périodes, indique que la sévérité, la sévérité cumulative maximale et la 

durée maximale ont augmenté pour les 3 scénarios étudiés sur la période 2080-

2100. 
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1. INTRODUCTION 

1.1. Climate change 

The diversity of climate change impacts is a major environmental problem facing 

the globe and a point of global concern of the scientists and decision makers 

since the observed changes of meteorological variables, mainly in precipitation 

and temperature, have shown that extreme events such as floods and droughts 

are already on rise. Global surface temperature has been increased significantly 

during the last century and will continue to rise unless greenhouse gas (GHG) 

emissions are drastically reduced (IPCC, 2001, 2007).  According to 

Intergovernmental Panel on Climate Change report (IPCC, 2007) global GHG 

emissions due to human activities have grown since pre-industrial times, with an 

increase of 70% between 1970 and 2004.  

In the 4th Assessment Reports of the IPCC (IPCC, 2007), a recent summary of 

observed changes in hydroclimatological variables is provided. Records of global 

surface temperature for 150 years (1850-2006) show that the eleven years from 

the period 1995–2006 rank among the twelve warmest years. Analysis of 

historical meteorological observations indicated that the 100-year linear trend 

(1906-2005) of 0.74 [0.56 to 0.92] °C is larger than the corresponding trend of 

0.6 [0.4 to 0.8] °C (1901-2000) given in the Third Assessment Report (IPCC, 

2001). However, the extend of climate change varies regionally, even locally due 

to interactions between atmospheric processes, oceans, land surfaces. Studies in 

the Mediterranean region have shown that temperature exhibits a positive trend 

in west Mediterranean and a negative trend in the east Mediterranean over the 

20th century (National Observatory of Athens, 2001). A 5% decrease was 

observed in the precipitation over much of the land bordering the Mediterranean 

Sea, except for central North African coast (Tunisia and Libya). In the last decade 

a general drying is evident over most of southeastern Mediterranean and Greece. 

A precipitation decrease has been well documented in the central-west 

Mediterranean over the last 50 years (National Observatory of Athens, 2001; 

IPCC, 2007). 
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In 1990 and 1992 the IPCC developed long-term emissions scenarios, which 

widely used in the analysis of possible climate change, its impacts and option to 

mitigate climate change. Scenarios are alternative images of how the future 

might unfold and are an appropriate tool with which to analyze how driving 

forces may influence future emission outcomes and to assess the associated 

uncertainties. In 1996 a new set of scenarios, the SRES scenarios, were 

developed to update the IS92 series (IPCC, 2000).  Four narrative storylines were 

developed to describe the relationships between emission driving forces and 

their evolution, each of which represents different demographic, social, 

economic, technological and environmental developments. For each storyline 

several different scenarios were developed using different modeling approaches. 

Six models were used and this resulted in 40 different scenarios. All scenarios 

based on the same storyline constitute a scenario family. 

The A1 storyline and scenario family describes a future world of very rapid 

economic growth, low population growth, and the rapid introduction of new and 

more efficient technologies. Major underlying themes are convergence among 

regions, capacity building and increased cultural and social interactions, with a 

substantial reduction in regional differences in per capita income. It is divided 

into three groups that describe alternative directions of technological change in 

the energy system: fossil intensive (A1FI), non-fossil energy resources (A1T) and 

a balance across all sources (A1B). 

The B1 scenario describes a convergent world, with the same population as A1, 

but more rapid changes in economic growth, emphasizing local solutions to 

economic structures toward a service and information economy and with 

reductions in material intensity, and the introduction of clean and resource-

efficient technologies. The emphasis is on global solutions to economic, social, 

and environmental sustainability, including improved equity, but without 

additional climate initiatives. 

B2 scenario describes a world in which the emphasis is on local solutions to 

economic, social, and environmental sustainability. It is a world with moderate 

population growth, intermediate levels of economic development, and less rapid 
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and more diverse technological change than in the B1 and A1 storylines. While 

the scenario is also oriented toward environmental protection and social equity, 

it focuses on local and regional levels. 

 A2 describes a very heterogeneous world. The underlying theme is self-reliance 

and preservation of local identities. Fertility patterns across regions converge 

very slowly, which results in high population growth. Economic development is 

primarily regionally oriented and per capita economic growth and technological 

change, are more fragmented and slower than in other storylines. 

In order to capture the global climate system, General Circulation Models (GCMs) 

have been developed and used. GCMs are used to study the effects of the 

increasing concentration of carbon dioxide and the other greenhouse gases on 

the Earth’s climate. These models link atmospheric processes with ocean and 

land surface processes and can be used to provide projections of the changes in 

temperature, precipitation and other climate variables in response to changes in 

greenhouse gas emissions. The two main types of General Circulation Models are 

Atmospheric (AGCM) and Ocean (OGCM) models. Separately they account for the 

changes within the atmosphere and the ocean respectively. An AGCM and an 

OGCM can be coupled together to form an atmosphere-ocean coupled general 

circulation model (AOGCM). With the addition of other components (such as a 

sea ice model or a land model), the AOGCM becomes the basis for a full climate 

model. Projections made by GCMs are reflections of the current state of 

knowledge of the processes in the climate system, but they still contain 

uncertainties. Unfortunately, GCMs are restricted in their usefulness for local 

impact studies due to their coarse spatial resolution in the order of hundreds of 

kilometers and they are unable to represent local sub-grid scale features and 

dynamics, such as local topographical features and convective cloud processes 

(Dibike and Coulibaly, 2006). However, in most climate change impact studies, 

such as hydrological impacts of climate change, sub-grid scale phenomenon is 

required to be simulated and therefore input data such as precipitation and 

temperature at sub-grid scales are required. Hence, it is necessary to convert the 

GCM outputs at the scale of the watershed for which the hydrological impact is 

going to be investigated. The methods used for converting the GCM outputs into 
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local meteorological variables that are required for reliable modeling of water 

resources systems are referred to as downscaling techniques (Wilby et al., 2002). 

There are two main techniques of downscaling, the dynamical and statistical. 

Dynamical downscaling has the potential for capturing meso-scale nonlinear 

effects and providing coherent information among multiple climate variables. 

These models are formulated using physical principles and they can credibly 

reproduce a broad range of climates around the world, which increases 

confidence in their ability to downscale realistically future climates. The 

parameterization schemes that the dynamical models use to represent sub-grid 

scale processes in future climates that may be operating outside the range for 

which they were designed, as well as their computational cost are the main 

drawbacks of dynamical models. Statistical downscaling methods use cross-scale 

relationships that have been derived from observed data, and apply these to 

climate model data. These methods have the advantage of being computationally 

inexpensive, able to access finer scales than dynamical methods. Observational 

data at the desired scale for a long enough period are required in order to 

trained and validated. Unfortunately the statistical downscaling methods assume 

that the derived cross-scale relationships remain stable when the climate is 

perturbed. Other shortcomings of these techniques are that they cannot 

effectively accommodate regional feedbacks and, in some methods, can lack 

coherency among multiple climate variables. 

There are applications related criteria in a particular context in order an 

appropriate downscaling method to be chosen (Mearns et al., 2004; Wilby et al., 

2004). However, there are assumptions involved in both statistical and 

dynamical techniques which are difficult to verify a priori and contribute to the 

uncertainty of results (Giorgi et al., 2001). Many climate impact studies exist for 

developing and intercomparing statistical downscaling techniques (Wilby and 

Wigley, 1997; Xu 1999; Giorgi et al., 2001; Varis et al., 2004; Xu et al., 2005; 

Fowler et al., 2007). 
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i. Projections of future changes in climate 

According to IPCC, carbon dioxide concentrations, globally averaged surface 

temperature, and sea level are projected to increase under all IPCC emissions 

scenarios during the 21st century. 

All SRES emissions scenarios result in an increase in the atmospheric 

concentration of CO2. The projected concentrations of CO2 -the primary 

anthropogenic greenhouse gas- for the six illustrative SRES scenarios, in the year 

2100 range from 540 to 970 ppm, compared to about 280 ppm in the pre-

industrial era and about 368 ppm in the year 2000. These projections include the 

land and ocean climate feedbacks. 

The possibility of either increases or decreases in anthropogenic aerosols is 

included in the SRES scenarios, depending on the extent of fossil-fuel use and 

policies to abate polluting emissions. Sulfate aerosol concentrations are 

projected to fall below present levels by 2100 in all SRES scenarios. This would 

result in warming relative to present day. As a result of changes in climate, 

natural aerosols (e.g., sea salt, dust, and emissions leading to sulfate and carbon 

aerosols) are projected to increase. 

An increase by 1.4 to 5.8°C of the globally averaged surface temperature is 

projected over the period 1990 to 2100. This is about two to ten times larger 

than the central value of observed warming over the 20th century. It is very 

likely that nearly all land areas will warm more rapidly than the global average, 

particularly those at northern high latitudes in winter. More hot days and heat 

waves and fewer cold and frost days are projected over nearly all land areas. 

Increases in mean temperature will lead to increases in hot weather and record 

hot weather, with fewer frost days and cold waves. 

Furthermore, globally averaged annual precipitation is projected to increase 

during the 21st century as well as globally averaged water vapor and 

evaporation. At the regional scale, both increases and decreases in precipitation 

are projected, typically of 5 to 20%. It is likely that precipitation will increase 
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over high latitude regions in both summer and winter. Increases are also 

projected over northern mid-latitudes, tropical Africa and Antarctica in winter, 

and in southern and eastern Asia in summer. Australia, Central America, and 

southern Africa show consistent decreases in winter rainfall. Larger year-to-year 

variations in precipitation are very likely over most areas where an increase in 

mean precipitation is projected. 

The amplitude, duration, location and frequency of extreme precipitation events 

will increase over many areas and the return period for extreme precipitation 

events are projected to decrease. This would lead to more frequent floods and 

landslides with attendant loss of life, health impacts (e.g., epidemics, infectious 

diseases and food poisoning), property damage, loss to infrastructure and 

settlements, soil erosion, pollution loads, insurance and agriculture losses, 

amongst others. A general drying of the mid-continental areas during summer is 

likely to lead to increases in summer droughts and could increase the risk of wild 

fires, due to a combination of increased temperature and potential evaporation 

that is not balanced by increases in precipitation. 

Especially for Europe and the Mediterranean region, the models results showed 

an increase in the annual mean temperature more than the global mean. 

Northern Europe will face higher temperature in winter and Mediterranean area 

higher temperature in summer. The lowest winter temperatures will increase 

more than average winter temperature in northern Europe, and the highest 

summer temperatures are likely to increase more than average summer 

temperature in southern and central Europe. 

An increase to the annual precipitation is projected in most of northern Europe 

as well as to extremes of daily precipitation. In most of the Mediterranean area 

the annual precipitation will decrease. The annual number of precipitation days 

is expected to decrease. In central Europe, precipitation is likely to increase in 

winter but decrease in summer. As a consequence the risk of summer drought 

will increase in both Mediterranean area and central Europe. 
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1.2. Drought 

As it was mentioned before climate change is expected to primarily affect 

precipitation, temperature and potential evapotranspiration, and, thus, is likely 

to affect the occurrence and severity of meteorological droughts. Droughts are 

natural phenomena that affect nearly every region in the world and more people 

than any other natural disaster (Wilhite, 2000; Wilhite and Buchanan, 2005). It 

can be regarded as having been the most serious climatic risk in the 20th century 

(Obasi, 1994) with a devastating damage potential on agriculture, economy, 

environment and society. Drought has received special attention from 

researchers examining the Global Change hypothesis (Changnon et al., 2000). 

Droughts generally originate from a deficiency of precipitation, soil moisture and 

water resources over an extended period of time, resulting in water shortage for 

sustaining and supplying the socio-economic activities of a region (Loukas and 

Vasiliades, 2004). Due to the multi-discipline character of this natural hazard, 

numerous definitions on the drought have been developed. A broad review of 

definitions for drought can be found on technical notes published by the 

Worldwide Meteorological Organization (WMO, 1967); other sources as 

Subrahmanyam (1967), Sandford (1979), Dracup,  et al (1980), group the 

drought into three kinds: meteorological, hydrological and agricultural. The most 

well-known and widely used classification of droughts is the classification 

initially proposed by Dracup and his associates (Dracup et al., 1980) and 

integrated later by Wilhite and Glantz (1985), where four categories are 

identified. This drought classification system was adopted by the American 

Meteorological Society (2004). Based on the nature of the water deficit, four 

types of droughts are defined: a) the meteorological drought which is defined as 

a lack of precipitation over region for a period of time, b) the hydrological 

drought which is related to a period with deficiency in surface and subsurface 

water supplies of a given water resources management system, c) the 

agricultural drought, which, links impacts of meteorological drought to 

agricultural and usually refers to a period with declining soil moisture and 

consequent crop failure without any reference to surface water resources, d) the 

socio-economic drought which is associated to the failure of water resources 
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systems to meet the water demands and thus, associating droughts with supply 

of and demand for an economic good (water). The first three categories are 

referred as environmental droughts, and the socio-economic drought is 

considered as water resources systems drought (Wilhite, 2000). A similar 

classification is used by Tate and Gustard (2000) where droughts are classified 

into climatological, agrometeorological, river flow and groundwater droughts. 

Droughts differ from one another in three essential characteristics; intensity, 

duration and spatial coverage (Wilhite, 2000). It is very difficult to objectively 

quantify their characteristics in terms of intensity, magnitude, duration and 

spatial extent due to the adversity of defining their onset, extend and end. 

However, it is necessary for the analysis of droughts to detect their features and 

to link the drought variability to climate (Piechota and Dracup, 1996). For this 

purpose, much effort has been devoted to developing techniques in order to 

analyze, monitor and evaluate the droughts. Among these, drought indices are 

the most widely used. Drought indices are employed to characterize droughts 

and its statistical properties. Several generations of researchers during the 20th 

century have proposed numerous of indices in the domains of meteorology, 

hydrology, agriculture research and application, remote sensing and water 

resources management. Many reviews such as Du Pisani et al. ( 1998); Heim 

(2000, 2002); Keyantash and Dracup (2002); Vogt and Somma (2000); Hayes et 

al.(2007); Niemeyer (2008) and the International Water Management Institute 

(IWMI, 2008) have been published giving a brief overview of existing drought 

indices. Many attempts have been made in the last decades in order to produce 

new drought indices and improve the existing ones (González and Valdés, 2004; 

Keyantash and Dracup, 2004; Wells et al., 2004; Tsakiris et al., 2007; Vicente-

Serrano et al., 2010). 

Along the various meteorological indices, the most commonly used are: 1) 

Discrete and cumulative precipitation anomalies, 2) the Z-score or Standardized 

Rainfall Anomalies (Jones and Hulme, 1996) , 3) Rainfall deciles (Gibbs and 

Maher, 1967), 4) the Palmer Drought Severity Index (PDSI) (Palmer, 1965), 5) 

the Bhalme – Mooley Drought Index (BMDI) (Bhalme and Mooley, 1980), 6) the 

Rainfall Anomaly Index (RAI) (van Rooy, 1965), and 7) the Standardized 
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Precipitation Index (SPI) (McKee et al., 1993). However, the Palmer Drought 

Severity Index (PDSI), based on a soil water balance equation, and the 

Standardized Precipitation Index (SPI), based on a precipitation probabilistic 

approach, were widely accepted and used in most studies related to drought 

analysis.  

The Standardized Precipitation Index uses the precipitation as the only 

determinant. It is simpler than PDSI and it can be applied at any location.  The 

SPI quantifies the precipitation deficit for multiple time scales and reflects the 

impact of drought on the availability of different types of water resources 

including soil moisture, ground water, snowpack, river discharges, and reservoir 

storages. For example, the moisture stored in the soil is highly affected by the 

short-term precipitation anomalies, whereas streamflow, groundwater and 

reservoir storage slowly respond to longer-term precipitation anomalies. Due to 

the normalized character, the SPI can represent wetter and drier climates in the 

same way. 

Recently the Standardized Precipitation-Evapotranspiration Index (SPEI) was 

proposed by Vicente- Serrano et al. (2010) for identifying drought periods. It is 

based on precipitation and PET and combines the sensitivity of PDSI and to 

changes in evaporation demand (caused by temperature fluctuations and trends) 

with the simplicity of calculation and the multi-temporal nature of the SPI. 

According to recent studies (Vicente-Serrano et al., 2010; Potop, 2011) the role 

of temperature increase on drought conditions was not recognized using the 

precipitation-based SPI drought index, but was indentified for the drought in the 

decade of 2000 using the SPEI index. 

Many studies in the international literature have tested the effectiveness of the 

drought indices in monitoring and analyzing the regional droughts. The 

Standardized Precipitation Index was used by Hayes and his associates (Hayes et 

al., 1999) in order to monitor the drought of 1996 in the southern and 

southwestern USA. They concluded that the SPI has the ability to detect the onset 

of the drought and monitor its progression and compared the results with the 

PDSI, where they found that the onset of the drought was detected at least one 
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month earlier using the SPI. Earlier, Guttman (1998) with a spectral analysis, 

compared historical time series of PDSI with time series of SPI and demonstrated 

the spatially invariance of the spectral characteristics of the SPI in contrast with 

those of the PDSI which are spatially variable. For this reason, he concluded that 

SPI is a better drought index for interregional comparison of drought events. In 

his study, Guttman (1998) also found that the 12-month SPI oscillations were 

found to be in phase with the oscillations of PDSI. Loukas et al. (2003) in an 

intercomparison of SPI, Zscore, RAI, the PDSI and the Palmer moisture anomaly 

index (Z-Index) (Palmer, 1965) at 28 meteorological stations in Greece found 

similar results. In that study, the oscillations of the SPI were found to be in phase 

with the oscillations of the Z-score and the RAI for the same time-scales and with 

the oscillations of the PDSI for time-scales larger than 6-months. 

The SPI was used in recent regional drought analyses in the Mediterranean 

region using rain gauge data (Bordi et al., 2001; Lana et al., 2001), gridded rain 

gauge data (Lloyd-Hughes and Saunders, 2002; Tsakiris and Vangelis, 2004), and 

NCEP/NCAR reanalysis gridded precipitation data (Bordi and Sutera, 2001). The 

above studies indicate that the Mediterranean region have been afflicted by 

severe and more or less prolonged periods of drought   in the last 50 years.  

Furthermore, various studies (Vasiliades and Loukas, 2006, 2009; Vasiliades et 

al., 2011; Vicente-Serrano and Lopez-Moreno, 2005) examined the relationship 

between the timescales of the SPI and PDSI indices and the types of drought. 

Vicente- Serrano and Lopez-Moreno analyzed the usefulness of different SPI 

timescales to monitor droughts in river discharges and reservoir storages. They 

have shown that the response of the river discharges to higher timescales than 3-

months is very low and the usefulness of higher timescales to monitor river flow 

droughts in the mountain hydrological system is very debatable. On the other 

hand, the timescales of SPI useful to analyze droughts in the reservoir storages 

are longer than for river discharges. Vasiliades and Loukas (2006) comparing SPI 

and the Palmer four indices showed that SPI is better related to hydrological 

drought. However, different timescales of SPI were best correlated to 

hydrological drought for the study watersheds depending on their area, 

geophysical, and hydroclimatic characteristics. 
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Although many studies have been performed for the effectiveness of the drought 

indices in monitoring and analyzing the droughts, few studies on climate change 

impacts on droughts have employed meteorological drought indices which 

require less input data when compared to weather, soil and land use as the tools 

for assessing drought responses (Kothavala, 1999; Blenkishop and Fowler, 2007; 

Mavromatis, 2007; Loukas et al., 2007, 2008; Vasiliades et al., 2009). 

Vicente- Serrano et al.(2010), compared time series of three drought indices for a 

set of observatories with different climate characteristics located in different 

parts of the world. They used the SPI, the sc-PDSI and the proposed Standardized 

Precipitation Evapotranspiration Index (SPEI) and they concluded that under 

global warming conditions only the sc-PDSI and SPEI identified an increase in 

drought severity associated with higher water demand due to 

evapotranspiration. Comparing the two indices, the SPEI is crucial for drought 

analysis and monitoring due to its multi-scalar character. 
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2. METHODOLOGY 

The aim of this study is to evaluate a statistical downscaling method for monthly 

precipitation and temperature and the subsequent estimation of climate change 

impacts on droughts. The downscaling method was developed using the outputs 

of the Canadian Centre for Climate Modeling Analysis General Circulation Model 

(CGCMa3) for the base historical period (1980–2000), and used to estimate 

monthly precipitation and temperature time series for two future periods 

(2030–2050 and 2080– 2100). The droughts have been assessed using the most 

commonly used drought index, the Standardized Precipitation Index (SPI) and 

the most recent drought index the Standardized Precipitation-

Evapotranspiration Index (SPEI). Both the SPI and SPEI time series were 

estimated at multiple timescales for the historical base period 1980–2000 for 

observed and downscaled monthly precipitation and water balance respectively, 

as well as for the two future periods 2030-2050 and 2080-2100 for assessing 

drought severity classes, and used for evaluating future climate change impacts 

on droughts. 

2.1. Climate downscaling 

2.1.1. Global circulation Model 

Global Circulation Models (GCMs) have been used to study the effects of the 

increasing concentration of carbon dioxide and the other greenhouse gases on 

the Earth’s climate. These models link atmospheric processes with ocean and 

land surface processes and can be used to provide projections of the changes in 

temperature, precipitation and other climate variables in response to changes in 

greenhouse gas emissions. In this study the third generation of the Canadian 

Centre for Climate Modelling and Analysis (CCCma) Coupled Global Climate 

Model (CGCM3) and for three socio-economic development scenarios was used 

in order to assess the climate change impacts on monthly precipitation, 

temperature and evapotranspiration in Acheloos watershed. The third version of 

the Canadian Centre for Climate Modelling and Analysis (CCCma) CGCM3 makes 

use of the same ocean component as that used in the earlier, the Second 

Generation Coupled Global Climate Model (CGCM2), but it makes use of the 
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substantially updated atmospheric component  the Third Generation 

Atmospheric General Circulation Model (AGCM3). CGCM3.1 was run at two 

different resolutions. The T47 version was used in this study. It has a surface grid 

whose spatial resolution is roughly 3.75 degrees lat/lon and 31 levels in the 

vertical. The ocean grid shares the same land mask as the atmosphere, but has 

four ocean grid cells underlying every atmospheric grid cell. The ocean 

resolution in this case is roughly 1.85 degrees, with 29 levels in the vertical. The 

development of CGCM3 was a team effort involving G. Flato, G. Boer, D.Y. 

Robitaille, W.G. Lee, W. Merryfield, and O. Saenko, along with many contributions 

from the AGCM development team. 

CCCma performed experiments with CGCM3.1 for three scenarios, SRES A1B, 

SRES A2, and SRES B1, as well as for the so-called "Committed" scenario in which 

the greenhouse gas concentrations and aerosol loadings were held fixed at the 

year 2000 level. 

 

 

Figure 2.1. Time evolution of the CO2 concentrations (solid line curves, the range is on the left 

hand y-axis) and globally averaged sulphate aerosol loadings scaled to year 2000 (dotted line 

curves, the range is on the right hand side y-axis) as prescribed in the IPCC 20-th century 

(20C3M, purple), SRES B1 (blue), SRES A1B (green) and SRES A2 (red) experiment. 

The CGCM3.1 model output that used for the downscaling is: 

− 20C3M: The IPCC 20-th Century experiment with CGCM3.1/T47 for years 

1850-2000. 
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− SRES A1B: The IPCC SRES A1B 720 ppm stabilization experiment with 

CGCM3.1/T47 for years 2001-2100, initialized from the end of the 20C3M 

experiment. 

− SRES B1: The IPCC SRES B1 550 ppm stabilization experiment with 

CGCM3.1/T47 for years 2001-2100, initialized from the end of the 20C3M 

experiment. 

− SRES A2: The IPCC SRES A2 experiment with CGCM3.1/T47 for years 

2001-2100, initialized from the end of the 20C3M experiment. 

As already mentioned A1B scenario assumes a very rapid economic growth, 

global population that peaks in mid-century and declines thereafter, and rapid 

introduction of new and more efficient technologies. In this world developments 

of energy technologies are balanced across energy sources. 

According to Intergovernmental Panel on Climate Change, SRES B2 scenario 

emphasizes the protection of the environment and social equity, but also relies 

on local solutions to economic, social, and environmental sustainability. It 

represents a low emission scenario.  

The third scenario that used in the study is the SRES A2 scenario which describes 

a strong, but regionally oriented economic growth and fragmented technological 

change with an emphasis on human wealth and represents a high emissions 

scenario. 

The differences between developed and developing countries according to these 

scenarios remain strong. Scenario runs were taken over two time periods: 2030– 

2050 and 2080–2100. 

The commonly used approach in climate change studies is to combine the output 

of the GCMs with an impact model. This approach is quite realistic although there 

are inherent uncertainties about the details of regional climate changes. These 

uncertainties arise from a number of sources, such as uncertainties in GCM 

outputs, downscaling of GCM outputs and specification of the climate change 

scenarios. The limitation of the spatial resolution and the resolution of the 

output are the major shortcoming of the current generation of GCMs, since the 
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output of GCMs is given for a much larger scale than the scale of a watershed. 

Methods to overcome the spatial resolution limitation of the GCMs have been 

proposed in the literature.  Interpolation techniques (McCabe and Wolock, 

1999), statistical downscaling (Brandsma and Buishand, 1997; Wilby et al., 

2002) and downscaling through coupling of GCM output and regional 

meteorological models (Giorgi et al., 2001) are methods that have been used to. 

Uncertainty increases within and between every link of the approach. 

The uncertainty depends on four factors, on the quality of the GCM simulations, 

concerning the variables for downscaling and the uncertainty of the emission 

scenarios; the quality of the downscaled scenarios, due to inhomogeneities in 

observed data and drawbacks of the applied technique; the quality and the 

resolution of the impact models which are often strong simplification of reality; 

and finally on the errors of the input data due to instrumentation or sample data 

error (Vasiliades et al., 2009). Concerning the GCMs uncertainty, it can be 

assessed by using different GCMs or using Monte Carlo experiments with one 

GCM starting with different initial conditions. In order to assess the downscaling 

techniques uncertainty, different downscaling techniques can be used, otherwise 

by varying parameterizations of the downscaling models. Furthermore, 

uncertainties of impact models can be estimated by varying input parameters, 

taking into account, e.g. sampling errors. In this study, two types of uncertainty 

are addressed the downscaling technique and the impact model uncertainty. 

2.1.2. Statistical downscaling 

General Circulation Models (GCMs) have resolutions in the order of hundred 

kilometers while Regional Climate Models (RCMs) may be as tens of kilometers. 

However there is a mismatch between the grid resolution of the climate models 

and the resolution needed by impacts studies. Fine resolution climate change 

information can be obtained via downscaling. 

Statistical downscaling is based on the view that the regional climate is 

conditioned by two factors the large scale climatic state and regional/local 

physiographic features as topography, land-sea distribution and land use (von 

Storch, 1995, 1999). Therefore, regional or local climate information is derived 
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by first determining a statistical model which relates large-scale climate 

variables (predictors) to regional variables (predictands). Local and regional 

climate characteristics are estimated by feeding this statistical model with the 

large-scale output of a GCM simulation. The advantages by using these 

techniques consist the inexpensive computational and thus can be applied to 

output from different GCM experiments, and the fact that they can be used to 

provide site-specific information, which can be critical for many climate change 

impact studies. The major drawback of statistical downscaling methods is that 

the basic assumption is not verifiable, i.e. that the statistical relationships 

developed for the present day also hold under the different forcing conditions of 

possible future climates- a limitation that also applies to the physical 

parameterizations of dynamical models (Wilby et al., 2004). 

Methods of statistical downscaling 

Statistical downscaling involves developing quantitative relationships between 

large-scale atmospheric variables (predictors) and local surface variables 

(predictands) (Varis et al., 2004; Xu et al., 2005; Fowler et al., 2007). The main 

statistical downscaling techniques are weather classification schemes, regression 

models and weather generators (Wilby et al., 2004; Giorgi et al., 2001) 

− The weather classification methods group days into a finite number of 

discrete weather types or states according to their synoptic similarity. 

− Regression models are a conceptually simple means of representing 

linear or nonlinear relationships between predictands and the large scale 

atmospheric forcing. Commonly applied methods include multiple 

regression (Murphy, 1999), canonical correlation analysis (CCA) (von 

Storch et al., 1993) and artificial neural networks which are akin to 

nonlinear regression (Wilby and Wigley, 1997; Crane and Hewitson, 

1998). 

− Weather generators (WGs) are models that replicate the statistical 

attributes of a local climate variable such as the mean and variance, but 

not observed sequences of events (Wilks and Wilby, 1999). These models 

are based on representations of precipitation occurrence via Markov 
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processes for wet-/ dry-day or spell transitions (Table Σφάλμα! Δεν 

υπάρχει κείμενο καθορισμένου στυλ στο έγγραφο..1). 

It is important to be aware of several assumptions when downscaling climate 

model output for current and projected climates (Hewitson and Crane, 1996; 

Giorgi et al., 2001) 

1. Predictors relevant to the local predictand should be adequately 

reproduced by the host climate model at the spatial scales used to 

condition the downscaled responses. 

2. The relationship between the predictors and predictand remain valid 

for periods outside the fitting period (time invariance). 

3. The predictor set sufficiently incorporates the future climate change 

signal. 

4. The predictors used for determining future local climate should not lie 

outside the range of the climatology used to calibrate the statistical 

downscaling model. 

Table 2.1. A summary of the strengths and weaknesses of the main statistical downscaling 

methods (Wilby et al., 2004). 

 

Statistical downscaling is the process of building an empirical model: 

    � = ����                                                                   (2.1) 
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for a small-scale feature y, not adequately described in GCMs, and large-scale 

features x, well resolved. As predictands, � has been used as weather variables, 

such as monthly temperatures and monthly precipitation amounts. The predictor 

� has often been chosen as characteristics of the weather circulation. If the 

function F is linear, Eq. (2.1) becomes 

���� = �� + 	                                                         (2.2) 

with 	 drawn from a normal distribution with zero mean and standard deviation 

σ and 0<α<1. The variations in 	 are assumed to be independent from �. In this 

setting, the randomness in � stems from the randomness in 	. Hence, Eq. (2.1) 

must be understood as a stochastic equation (Von Storch, 1999). 

In this study, the GCM grid point outputs were downscaled using multiple 

regression equations between GCM predictor output variables and areal monthly 

precipitation and temperature. Stepwise screening of gridpoint data was found 

to be the best statistical model among canonical correlation analysis, singular 

value decomposition, and multiple regression models on principal components 

(PCs) of predictor fields for downscaling daily temperature in Europe (Huth, 

1999). 

The predictors used in such analyses should be: a) well simulated by the GCM, b) 

strongly correlated with the predictand variable (precipitation and 

temperature), and c) available. Using these criteria, 46 predictor grid variables 

were used (Table 2.2). The output data from 20CM3 experiment of the 

CGCM3.1/T47 model for the period 1850-2000 were used.  

The first step of the downscaling is the correlation analysis between the 46 

independent predictors and the dependent local variables (precipitation, 

temperature). The predictors that will be chosen should be uncorrelated with 

each other and explain the more of the variance of the predicted variable. For 

this purpose a procedure based on forward selection stepwise regression 

technique and included testing with various linear and non-linear regression 

models was employed. All of these models rely on homogeneous long timeseries 

of the target parameter on the local scale and one or several atmospheric 

predictors on the large-scale. A major limitation is the assumption that the 
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relationships obtained under present conditions will also hold true under a 

changing climate.  

The forward stepwise regression starts by choosing the independent variable 

which explains most of the variation in the dependent variable. Then a second 

variable is chosen which explains most of the residual variation and the 

regression coefficients are recalculated. Variables that do not significantly add to 

the success of the model are excluded. This procedure continues until no 

variables significantly explain residual variation. 

The above method, which was applied in order to predict monthly precipitation 

for the period 1980-2000, has unveiled that the most significant predictors the 

precipitation are the Toa outgoing longwave flux (Rlut, w/m2) and the Surface 

downward eastward stress (Tauu, Pa). Dummy variables (a set of twelve 

categorical variables assigned to the 12 months of the year) are used to account 

for the effect of the “month” on precipitation and the areal precipitation was 

transformed using natural logarithms (ln) to enhance the model’s accuracy. The 

coefficient of determination R2 was used as goodness of fit measure for the 

regression models (Table 2.3). The best regression downscaling model containing 

monthly dummy variables is expressed as: 


��
 = ���� + ���� + ���� +⋯������ + ��������� + ��������� + �                (2.3) 

where 
��
 is the logarithmically transformed monthly precipitation, ��, ��, ��, . . 

. , ��� are the monthly weighing dummy variables, ��, ��, ��, . . . , ��� are 

regression coefficients, and � is the regression constant. Dummy variables, 

��−���, are assigned binary values, 0 or 1, depending on the month in which 

precipitation is referred. For example, if month is October, then, ��,  takes the 

value of 1 and all the other dummy variables, ��−���, take the value of 0. 

Similarly, if month is November, then, �� takes the value of 0, �� takes the value 

of 1 and all the other dummy variables, ��−���, take the value of 0 and so on. 

However, the monthly downscaled precipitation (
��
) values will always have 

smaller variance than the local values (i.e. areal observed precipitation) (Von 

Storch, 1999). It is obvious from Figure 2.1 that the model simulates quite well 

the average observed areal precipitation but not with the highest accuracy.  
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Table 2.2. Predictor variables for statistical downscaling of precipitation and temperature. 

Α/Α Variable   Measurement unit Initials 
1 Air pressure at sea level Pa Psl 
2 Precipitation flux kg/m2s Pr 

3 Near-surface daily-mean air temperature K Tas 

4 Moisture content of soil layer kg/m2s Mrsos 

5 Soil moisture content kg/m2s Mrso 
6 Surface downward eastward stress Pa Tauu 

7 Surface downward northward stress Pa Tauv 

8 Surface snow thickness m Snd 
9 Surface upward latent heat flux w/m2 Hfls 

10 Surface upward sensible heat flux w/m2 Hfss 

11 Surface downwelling longwave flux in air w/m2 Rlds 
12 Surface upwelling longwave flux in air w/m2 Rlus 

13 Surface downwelling shortwave flux in air w/m2 Rsds 

14 Surface upwelling shortwave flux in air w/m2 Rsus 
15 Surface temperature K Ts 

16 Surface air pressure Pa Ps 

17 Snowfall flux kg/m2s Prsn 

18 Convective precipitation flux kg/m2s Prc 
19 Atmosphere water vapor content kg/m2 Prw 

20 Soil frozen water content kg/m2 Mrfso 

21 Surface runoff flux kg/m2s Mrros 
22 Runoff flux kg/m2s Mrro 

23 Surface snow amount where land kg/m2s Snw 

24 Surface snow area fraction where land (%) Snc 
25 Surface snow melt flux where land kg/m2s Snm 

26 Near-surface eastward wind m/s Uas 

27 Near-surface northward wind m/s Vas 

28 Toa incoming shortwave flux w/m2 Rsdt 
29 Toa outgoing shortwave flux w/m2 Rsut 

30 Toa outgoing longwave flux w/m2 Rlut 

31 Net downward radiative flux at top of atmosphere w/m2 Rtmt 
32 Surface downwelling shortwave flux in assuming clear sky w/m2 Rsdscs 

33 Surface upwelling shortwave flux in assuming clear sky w/m2 Rsuscs 

34 Surface downwelling longwave flux in assuming clear sky w/m2 Rldscs 
35 Toa outgoing longwave flux assuming clear sky w/m2 Rlutcs 

36 Toa outgoing shortwave flux assuming clear sky w/m2 Rsutcs 

37 Atmosphere cloud condensed water content kg/m2 Cllwvi 

38 Atmosphere cloud ice content kg/m2 clivi 
39 Sea ice thickness m Sit 

40 Sea ice outward velocity m/s Usi 

41 Sea ice northward velocity m/s Vsi 
42 Air temperature (10m-1000m) K Ta 

43 Eastward wind (10m-1000m) m/s Ua 

44 Northward wind (10m-1000m) m/s Va 
45 Lagrangian tendency of air pressure (10m-1000m) Pa/s Wap 

46 Geopotential height (10m-1000m) m Zq 

 

Table 2.3. Modification of coefficient of determination of the under study regression 

downscaling models for predicting precipitation 

Watershed R2 R2 with Dummies 

Acheloos 0.4492 0.5496 
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Figure 2.2. Comparison of observed average monthly areal precipitation and average monthly 

downscaled precipitation in Acheloos watershed. 

The same method was used in order to estimate monthly temperature of the 

Acheloos watershed for the same 20-years period (1980-2000). The regression 

analysis for the temperature is less complicated than the precipitation one, since 

extreme events emerge rarely comparing to extreme events of precipitation and 

with minimum standard deviation. 

Forward stepwise regression was applied in monthly temperature and the 

predictors that explained the most variation of the observed temperature were 

the Surface Downwelling shortwave flux in air (Rsds, w/m2) and the Geopotential 

height at 50hPa (Zg_50, m).  Dummy variables were used to account for the effect of 

the “month” on temperature as in the case of precipitation. The regression 

downscaling model containing monthly dummy variables is expressed as: 

���
 = ���� + ���� + ���� +⋯������ + ��������� + ������_50� + �            (2.4) 

where ���
 is the monthly temperature, ��, ��, ��, . . . , ��� are the monthly 

weighing dummy variables, ��, ��, ��, . . . , ��� are regression coefficients, and � is 

the regression constant. 

 Table 2.4 indicates the modification of the coefficient of determination of the 

downscaled models with and without the dummy variables. Furthermore, Figure 
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2.2 shows that the model that was used simulates the average monthly 

temperate very well. However, the extreme values of the observed temperature 

are not simulated adequately.  

Table 2.4. Modification of coefficient of determination of the under study regression 

downscaling models for predicting temperature. 

Watershed R2 R2 with Dummies 

Acheloos 0.9413 0.9644 

 

 

Figure 2.3. Comparison of observed average monthly temperature and average monthly 

downscaled temperature in Acheloos watershed. 

In many climate impact studies the variance of the downscaled time series 

should be the same with the variance of the observed values. To meet this 

requirement various methods have been proposed such as variance inflation 

(Karl et al., 1990; Huth, 1999), expanded downscaling (Burger, 1996), and 

randomization (Dehn and Buma, 1999). In this study, to preserve the variability 

of the observed series, the estimated precipitation, as well as temperature, was 

combined with the residual values of the regression. These can be viewed as a 

noise component, statistically independent of the large-scale climate. In the 

formula: 

    
 = 
��
 + 
"#$%&'()                (2.5) 
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with 
 is the observed monthly precipitation, 
��
  is monthly precipitation 

explained by multiple linear regression and 
"#$%&'() is the  residuals of MLR. If 

this operation is carried out on the estimated series of the regression fitting 

period (October 1980–September 2000), the result is the observed series 

Concerning the temperature the following equation was used: 

    � = ���
 + �"#$%&'()                (2.6) 

where � is the observed monthly temperature, ���
the monthly temperature 

explained by the multiple linear regression and �"#$%&'()the residuals of the MLR. 

For the climate scenarios, 
��
 is obtained by downscaling the GCM outputs 

while 
"#$%&'()  remains unchanged. In this way, the problem of limited 

correlation between predictor and predictand variables may be tackled. 

However, in order to estimate the uncertainty of the downscaling method 

stochastic time series modelling was applied for the treatment of the residuals. 

2.1.3. Stochastic simulation of the residuals of the downscaled 

precipitation and temperature 

Stochastic models are used for generating long synthetic time series of climate 

data which are random numbers and are modified to preserve the statistical 

properties (in terms of mean, variance, skew, long-term persistency, etc.) of the 

observed series which they are based. Each stochastic replicate (sequence) is 

different and has different characteristics compared to the historical data, but 

the average of each characteristic from all stochastic replicates is the same as the 

historical data (Box et al., 2008). Stochastic climate data can be used as inputs to 

complex hydrological and ecological models for the quantification of uncertainty 

in environmental systems as a result of climatic variability (Salas, 1993).  

Using historical climate data as inputs into hydrological models provides results 

that are based on only one realization of the past climate. However, using 

stochastic climate data provide alternative realizations that are equally likely to 

occur. Stochastic climate data are traditionally used in storage yield analysis to 

estimate reservoir size for a given demand and reliability, or to estimate system 

reliability (number and levels of water restrictions) for a given storage size and 

demand characteristics. 
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In the past, data generation models assumed that there was no variation in the 

model parameters between years and only the seasonal or monthly variations 

within a year were taken into account. However, there is a growing awareness of 

long term persistence in the climatic data in the form of wet and dry years or 

ENSO cycles, so the parameters of the models should be varied in some way to 

model the wet and dry spells. There has been very little research on this aspect 

(Srikanthan and McMahon, 2001). 

The generation of rainfall and other climate data needs a range of models 

depending on the time and spatial scales involved. Cox and Isham (1994) 

presented three broad types of rainfall models, namely, empirical statistical 

models, models of dynamic meteorology and intermediate stochastic models, a 

classification based on the amount of physical realism incorporated into the 

model structure.  

In empirical statistical models, empirical stochastic models are fitted to the data 

available. The models for the generation of annual, monthly and daily rainfall and 

climate data are of this type. In the models of dynamic meteorology, large 

systems of simultaneous nonlinear partial differential equations representing, 

fairly realistically, the physical processes involved, are solved numerically. These 

are generally used for weather forecasting rather than for data generation. In 

intermediate stochastic models, few parameters are used to represent the 

rainfall process, the parameters being intended to relate to underlying physical 

phenomena such as rain cells, rain bands and cell clusters. These types of models 

are used for the analysis of data collected at short time intervals such as hourly. 

The model used in this study is of the first type, namely, empirical statistical 

models and was applied in order to simulate and generate synthetic monthly 

time series of precipitation and temperature residuals, resulted from statistical 

downscaling for the Acheloos watershed for the base period (1980-2000). A 

special characteristic that must be preserved in stochastic modeling of climate 

data is the cross-correlation between variables. Hence, for the assessment of the 

uncertainty of the residuals time series, the potential evapotranspiration, which 

was calculated with the Thornthwaite method, was also added as input in the 

model for the stochastic simulation of the current climate. 
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i. Generation of annual climate data 

The generation of climate data is based on the following three methodologies: 

• AR(1) Model without parameter uncertainty. Srikanthan and McMahon 

(1985) recommended a first order Markov model incorporating the Wilson-

Hilferty transformation to generate annual rainfall data. This model 

degenerates into a white noise model when the coefficient of skewness and 

the lag one auto-correlation coefficient are close to zero. 

• AR(1) Model with parameter uncertainty. It is based on the previous 

methodology but it uses the Box-Cox transformation. 

• Hidden State Markov (HSM) model. Thyer and Kuczera (2000) developed a 

Hidden State Markov (HSM) model with Bayesian inference to generate 

annual rainfall data.  The model assumes that the climate is composed of two 

states, either a dry state (low rainfall year) or a wet state (high rainfall year). 

Each state has separate Normal annual rainfall distributions. The transition 

from one state to the other is governed by the transition probabilities. If the 

transition probabilities to other states are sufficiently low then the climate 

may persist in one state for a number of years. This provides an explicit 

mechanism for the HSM model to simulate the influence of a quasi-periodic 

phenomenon such as El Nino. 

In the current study the AR(1) model without parameter uncertainty was applied 

for the generation of annual climate data. In a previous study, the method 

applied in meteorological stations in Thessaly and indicated that it is a reliable 

method for generation of stochastic annual precipitation and temperature data 

for Mediterranean and continental climate. Moreover, this method is satisfactory 

for the simulation of wet and dry years and the preservation of the long term 

persistence (Vasiliades, 2010). 

The AR(1) Model is a first order autoregressive model and it is used to generate 

annual climate data. The AR(1) model simulates the annual precipitation or 

temperature which depends only on the previous time step and a random 

Gaussian component is added. The annual residuals of rainfall and temperature 

data have small variance, meaning that the variables simulate the normal 
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distribution. Hence, a first order autoregressive [AR(1)] or a random model is 

adequate for most cases. The AR(1)  model is of the form: 

( ) ( ) ttt rXrX η−−+= −
2

111 1                  (2.7) 

where Xt are the standardised rainfall residuals in time step t, ηt normally 

distributed random component with zero mean and unit variance and r is lag one 

autocorrelation coefficient. 

The residuals of annual precipitation is obtained from  

tt sXXx +=                  (2.8) 

where tx  the rainfall residuals at time t, X  the mean annual rainfall residuals 

and s the standard deviation of the annual rainfall residuals. If the annual data 

are skewed, the skewness in the data can be modelled through the Wilson-

Hilferty transformation: 
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where gε  is the skewness of εt which is related to the skewness of annual data 

through: 

( )
( )

g
r

r
ge 232

3

1

1

−

−
=                 (2.10) 

Because the variability (Cv), skewness (Cs), and lag one autocorrelation (r1) of 

annual climate data are low (Cv < 0.5, Cs <1 and r1 < 0.5) a first order 

autoregressive model with Wilson-Hilferty transformation (Wilson and Hilferty, 

1931) is adequate for the generation of annual climate data. Since the climate 

data are cross correlated a first order autoregressive multivariate model needs 

to be used to generate annual climate data to preserve the cross and 

autocorrelations. 

A multivariate model to generate annual climate data is of the form: 
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ttt BAXX ε+= −1                 (2.11) 

 Χt is a (3x1) matrix of standardized climate data for year t, A and Β (3x3) 

coefficient matrices to preserve the correlations, and εt random component with 

zero mean and unit variance. The matrices A and B are determined from the 

following (Matalas, 1967). 

    1
01
−= MMA                (2.12) 

TT MMMMBB 1

1

010

−−=               (2.13) 

where Μ0 and Μ1 are the lag zero and lag one cross correlation matrices 

respectively. The elements of Μ0 and Μ1 corresponding to variables i and j are 

given by: 

∑
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The matrix A can be obtained from Equation 2.12. The matrix BBT is symmetric 

and should be positive semi-definite for solving for B. The matrix B can be 

obtained by the Cholesky decomposition where the matrix B is assumed to be 

lower triangular. The elements bij of B are obtained from the recursive 

relationships: 

0=ijb ,   j > i             (2.16) 

1111 cb =                          (2.17) 

where cij is the element of matrix  B = BBT. The remaining elements in the first 

column of B are given by: 

1111 bcb jj =                            (2.18) 

For j > 1, the jth diagonal element is obtained from 
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∑
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The solution is complete when j= 3. Otherwise, the other elements of column j of 

B are computed from: 
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Once matrices A and B are determined, standardized normally distributed values 

are generated using Equation 2.11. The skewness is then input to the generated 

values by the Wilson-Hilferty transformation, rescaled by the standard deviation 

and the mean added to obtain the generated annual climate data. In order to 

evaluate generated annual climate data the following parameters were estimated 

from 100 replicates each of length equal to the historical record (20 years): Mean 

(�*), standard deviation (s), coefficient of skewness (g), lag one autocorrelation 

coefficient (r1), maximum, minimum, and cross correlation between the climate 

variables. One hundred replicates, each of length equal to the length of historical 

data were generated. The above parameters were estimated from each replicate 

and from these values the 0, 25, 50, 75, 100 percentile values and the mean were 

calculated. 

ii. Generation of monthly climate data 

Monthly rainfall and temperature data are used in the simulation of water 

resources systems, and in the estimation of water yield from large catchments.  

In order to assess the system response to climatic variability, long replicates of 

stochastically generated monthly data are used. However the monthly rainfall 

data are not suitable for most regions, where there is large number of months of 

no rainfall. In earlier studies (Srikanthan and McMahon, 1985; Hipel and McLeod, 

1994) recommended the method of fragments to disaggregate the annual rainfall 

data generated by a first order autoregressive model. The main drawbacks of 

this approach are the inability to preserve the monthly correlation between the 

first month of a year and the last month of the previous year and the occurrence 

of similar patterns from a short length of historic data (Salas, 1993). Maheepala 
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and Perera (1996) proposed a modification to the selection of fragments that 

preserves the year-end monthly correlation to improve on the first drawback 

and Porter and Pink (1991) used synthetic fragments from a Thomas-Fiering 

monthly model to overcome the second drawback. For sites with considerable 

number of zero rainfall months, there will be problems with the application of 

the Thomas-Fiering monthly model to generate the synthetic fragments. 

Moreover the extended model developed by Mejia and Rousselle (1976) can be 

used to disaggregate the generated annual rainfalls to monthly rainfalls. Here 

again, the condensed form of the model developed by Lane (1979) can be used at 

the expense of not preserving some of the cross correlations. 

In the current study the Modified method of synthetic fragments proposed by 

Maheepala and Perera (1996) was applied for generate synthetic monthly 

climate data. The method applied in meteorological stations in Thessaly and 

indicated that is a reliable method for the generation of stochastic monthly 

precipitation and temperature data for Mediterranean and continental climate 

(Vasiliades, 2010).  

The annual climate data were generated by a first order autoregressive 

multivariate model (AR(1)) and the monthly climate data by the modified 

method of fragments. The observed monthly climate data are standardized year 

by year so that the sum of the monthly climate data in any year equals to unity. 

This is carried out by dividing the monthly climate data in a year by the 

corresponding annual climate data. In the case of temperature, the mean annual 

temperature was first multiplied by 12. By doing so, from a record of n years, one 

will have n sets of fragments of monthly climate data. The generated annual 

climate data are disaggregated by selecting a fragment whose annual climate 

data are closer to the generated annual climate data by using the following 

indices 
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where j

kx  is generated annual climate data for variable j and year k, j

ix the 

observed annual climate data for variable j and year i, j

xs standard deviation of 

the observed annual climate data for variable j, j

ky 1− the disaggregated monthly 

climate data for variable j for the last month of year k-1, j

iy 1−  the disaggregated 

monthly climate data for variable j for the last month of year i-1 and j
ys the 

standard deviation of the observed monthly climate data for variable j for the 

last month of the year. 

A set of fragments are selected for which the sum (αi + βi) is minimum and 

multiplying the generated annual climate data by each set of the 12 fragments to 

give generated monthly climate data. 

For the evaluation of  the generated monthly climate data, apart from the annual 

parameters, monthly parameters were also estimated such as the mean, 

standard deviation, coefficient of skewness, correlation coefficient between 

successive months, maximum, minimum and cross correlation between the 

monthly climate variables. 

Finally the downscaled time series of precipitation and temperature were added 

to the stochastic replicates of the rainfall and temperature residuals so as to 

reproduce 100 synthetic time series of the historical precipitation and 

temperature. The previous statistical monthly and annual parameters were 

calculated for each of the 100 synthetic time series of precipitation and 

temperature and from these values the 0, 25, 50, 75, 100 percentile values and 

the mean were calculated. Synthetic time series were reproduced as well as for 

the potential evapotranspiration, which were calculated from the synthetic time 

series of temperature with the method of Thornthwaite.  

Concerning the future period, the developed  MLR equation (Eq.2.3 and Eq.2.4) 

were used to downscale monthly GCM precipitation and temperature  time series 

PMLR and TMLR for the future periods 2030–2050, and 2080-2100, and then the 
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precipitation residuals (Presidual) as well as the temperature residuals (Tresidual) 

were added to PMLR using Eq. (2.5) and TMLR using Eq. (2.6) respectively, 

assuming that the precipitation and temperature residual time series in the 

future have the same statistical characteristics of the historical period. 

Essentially, the precipitation and temperature residual time series for the future 

periods were the time series generated by Eq. (2.11) for the historical base 

period. 

 

2.2. Drought Indices 

Many indices have been used for the identification of more than one type of 

drought (Tate and Gustard, 2000; Keyantash and Dracup, 2002) and their 

categorization may not be appropriate, although it is widely used (Wilhite and 

Glantz, 1985; AMS, 2004). In this study two drought indices were used in order 

to identify the impacts of climate change on droughts. The first is the 

Standardized Precipitation Index proposed by McKee and his associates (1993) 

and the second is the Standardized Precipitation-Evapotranspiration Index 

recently proposed by Vicente-Serrano et al. (2010). Both indices were calculated 

for multiple time scales for the historical period as well as for the future periods 

of 2030-2050 and 2080-2100. The justification for using two different drought 

indices is the fact that the SPI only accounts for precipitation effects, whereas the 

SPEI accounts for inputs (precipitation) and outputs (evapotranspiration) to the 

system. Precipitation is the main variable explaining the frequency, duration and 

severity of droughts (Chang and Cleopa, 1991; Heim, 2002). However, recent 

studies have shown that the effect of temperature (or evapotranspiration) is 

significant (Hu and Willson, 2000), particularly under global warming scenarios 

(Dubrovsky et al., 2008).  Abramopoulos et al. (1988) showed that evaporation 

and transpiration can consume up to 80% of rainfall, and found that the 

efficiency of drying due to temperature anomalies is as high as that due to 

rainfall shortage. Moreover, Syed et al. (2008) showed that precipitation 

dominates terrestrial water storage variation in the tropics, but 

evapotranspiration explains the variability at middle latitudes. In addition, 
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studies have shown that anomalous high temperatures related to warming 

processes have in recent years exacerbated the impact of climatic droughts on 

water resources (Nicholls, 2004; Cai and Cowan, 2008). 

 

2.2.1. Standardized Precipitation Index 

The Standardized Precipitation Index (SPI) has been developed by McKee and his 

associates (1993) and used to define and monitor droughts. Among others, the 

US Colorado Climate Center, the US Western Regional Climate Center, and the US 

National Drought Mitigation Center use the SPI to monitor drought in the United 

States. SPI can be calculated for multiple time-scales. This is very important 

because the timescale over which precipitation deficits accumulate functionally 

separates different types of drought (McKee et al., 1995) and, therefore, allows to 

quantify the natural lags between precipitation and other water usable sources 

such as river discharge, soil moisture and reservoir storage. Recent studies have 

used SPI as indicator of hydrological and water resources variables, like soil 

moisture, surface runoff and reservoir storage (Loukas and Vasiliades, 2005; 

Vicente-Serrano and Lopez- Moreno, 2005). 

The SPI is calculated by adjusting the precipitation series to a given probability 

distribution. Initially, the Gamma distribution was used to calculate the SPI 

(McKee et al., 1993).  Computation of the SPI involves fitting a Gamma 

probability density function to a given frequency distribution of precipitation 

totals for a station, area or a watershed. The alpha and beta parameters of the 

Gamma probability density function are estimated for each station, for each 

timescale of interest (1, 3, 6, 9, 12 months, etc.), and for each month of the year.  

The Gamma distribution is defined by its probability density function: 

βα
α αβ

x
exxg
−−

Γ
= 1

)(

1
)(  for x>0            (2.23) 

where α, β >0 are the shape and scale parameters respectively, x >0 is the 

precipitation amount and Γ(α) is the gamma function. The unbiased Probability 

Weighted Moments are used to estimate α and β. 

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 09:48:26 EEST - 3.133.128.217



Methodology 

33 
 

The Gamma distribution is not defined for x=0 and a precipitation distribution 

may contain zeros. In this study a “naϊve” method has been applied. According to 

this method the null precipitation is substituted with a small amount of 

precipitation, for example 0.1 mm. This substitution does not affect the 

distribution of precipitation and circumvent the problem. The error introduced 

by this method depends on the number of months with null precipitation and it 

is usually evident for the 1-month precipitation. 

The estimated parameters are then used to find the cumulative probability, H(x), 

of an observed precipitation event for the given month and timescale for the 

station in question. The cumulative probability, H(x), is then transformed to the 

standard normal random variable z with mean equal to zero and variance of one, 

which is the value of the SPI.  Once standardized the strength of the anomaly is 

classified as set out in Table 2.5. This table also contains the corresponding 

probabilities of occurrence of each severity arising naturally from the Normal 

probability density function. Thus, at a given location for an individual month, 

moderate dry periods (SPI ≤ -1) have an occurrence probability of 15.9%, 

whereas extreme dry periods (SPI ≤ -2) have an event probability of 2.3%. 

Extreme values in the SPI will, by definition, occur with the same frequency at all 

locations. Negative SPI values indicate droughts and positive SPI values denote 

wet weather conditions (Table 2.5). 

Table 2.5 . Drought classification by SPI values and corresponding event probabilities. 

SPI value Category Probability (%) 

2.00  or  more Extremely wet 2.3 

1.50  to    1.99 Severely wet 4.4 

1.00  to    1.49 Moderately wet 9.2 

-0.99 to   0.99 Near normal 68.2 

-1.49 to  -1.00 Moderately dry 9.2 

-1.99 to  -1.50 Severely dry 4.4 

-2      or  less Extremely dry 2.3 
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In this study the observed and areal averaged monthly precipitation were used 

for the estimation of the monthly SPI for the watershed of Acheloos for 1-, 3-, 6-, 

9-, 12-, 24- month time scales for the historical period (1980-2000). Thereafter, 

the downscaled time series for the two future periods of 2030-2050 and 2080-

2100 were used in order to calculate the future climate time series of SPI for the 

same time scales and compared to the respective historical SPI time series. The 

parameters of the gamma distribution, α and β, are assumed unchanged in the 

future. Hence, their respective values for the historical period have been used. 

Several studies that assessing climate change impacts on drought indices have 

adopted the same technique (Loukas et al., 2007; Dubrovsky et al., 2008; Loukas 

et al., 2008; Vasiliades et al., 2009). 

The SPI time series were analyzed in order to identify the frequency of each 

category of droughts events (moderate, severe and extreme) in the historical and 

future periods, for all time scales. The percentile values 0, 25, 50, 75, 100 and the 

mean of the 100 SPI time series for all time scales and for all periods were 

calculated. Using the threshold level method, the average deficit, maximum 

severity and maximum duration were identified. 

 

2.2.2. Standardized Precipitation-Evapotranspiration Index 

Recently Vicente-Serrano et al. (2010) proposed a new multi-scalar drought 

index. The Standardized Precipitation Evapotranspiration Index (SPEI). It is 

based on precipitation and temperature data, and has the advantage of 

combining a multi-scalar character with the capacity to include the effects of 

temperature variability on drought assessment. The calculation procedure of 

SPEI is based on this of the original SPI. The SPI is calculated using monthly (or 

weekly) precipitation as the input data. The SPEI uses the monthly (or weekly) 

difference between precipitation and Potential Evapotranspiration (PET). This 

represents a simple climatic water balance (Thornthwaite, 1948) which is 

calculated at different time scales to obtain the SPEI. The first step, calculation of 

the PET, is difficult because of the involvement of numerous parameters 

including surface temperature, air humidity, soil incoming radiation, water vapor 

pressure and ground-atmosphere latent and sensible heat fluxes (Allen et al., 
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1998). Different methods have been proposed to indirectly estimate the PET 

from meteorological parameters measured at weather stations. According to 

data availability, such methods include physically based methods (e.g. the 

Penman–Monteith method; PM) and models based on empirical relationships, 

where PET is calculated with fewer data requirements. Although some methods 

in general provide better results than others for PET quantification (Droogers 

and Allen, 2002), the purpose of including PET in the drought index calculation is 

to obtain a relative temporal estimation, and therefore the method used to 

calculate the PET is not critical. Mavromatis (2007) recently showed that the use 

of simple or complex methods to calculate the PET provide similar results when 

a drought index such as the PDSI is calculated. Therefore, the simplest approach 

to calculate PET (Thornthwaite, 1948) was followed, which has the advantage of 

only requiring data on monthly mean temperature. With a value of PET, the 

difference between the precipitation (P) and PET for the month i is calculated 

according to: 

    +% = 
% − 
-�%                   (2.24) 

which provides a simple measure of the water surplus or deficit for the analyzed 

month. The calculated +%  values are aggregated at different time scales, following 

the same procedure as that for the SPI: 

    +./ = ∑ 
.1% − 
-�.1%/1�%23                  (2.25) 

Where k (months) is the timescale of the aggregation and n is the calculation 

month. In quantifying the SPEI, a three parameter distribution is needed to used, 

since in two parameter distributions the variable x (precipitation) has a lower 

boundary of zero (0>x<∞), whereas in three parameter distributions x can take 

values in the range (γ>x<∞, where γ is the parameter of origin of the 

distribution), consequently, x can have negative values, which are common in D 

series. To model +%  values at different time scales the probability density 

function of a three parameter Log-logistic distribution are used: 

    4��� = 5
6 7

819
6 :51� ;1 + 78196 :5=

1�
               (2.26) 

where �, > and ? are scale, shape and origin parameters, respectively, for D 

values in the range (γ>D<∞). Parameters of the Log-logistic distribution can be 

obtained following different procedures. Among them, the unbiased Probability 
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Weighted Moments can be used and therefore the parameters of the Pearson III 

distribution can be obtained following Singh et al. (1993): 

 

    > = �@A1@B
C@A1@B1C@D

            (2.27) 

    � = �@B1�@A�5
Γ��E� 5⁄ �Γ��1� 5⁄ �                (2.28) 

    ? = G3 − �Γ�1 + 1 >⁄ �Γ�1 − 1 >⁄ �                  (2.29) 

where Γ�>� is the gamma function of >. The Probability Weighted Moments of 

order s are calculated as: 

    G$ = �
I∑ �1 − �%�$+%I%2�                      (2.30) 

where +%  is the time series of precipitation and �%  is a frequency estimator 

calculated following the approach of Hosking (1990): 

    �% = %13.�K
I                    (2.31) 

where L is the range of observations arranged in increasing order, and M is the 

number of data points. 

The Log-logistic distribution adopted for standardizing the D series for all time 

scales is given by: 

    ���� = N1 + 7 6
819:

5O
1�

                 (2.32) 

F(x) value is then transformed to a normal variable by means of the following 

approximation (Abramowitz and Stegun, 1965): 

    P
-Q = R − SBESATESDTD
�E&AE&DTDE&UTU                 (2.33) 

where V3, V�, V�, ��, ��, �� are similar constants as for SPI and W is probability-

weighted moments: 

     R = W−2 ln�
�  for P≤ 0.5           (2.34) 

where P is the probability of exceeding a determined D value, P =1-F(x). If P > 

0.5, P is replaced by 1−P and the sign of the resultant SPEI is reversed. The 
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constants are: V3,  = 2.515517, V�,  = 0.802853, V�,  = 0.010328, ��,  = 1.432788, 

��,  = 0.189269, ��  = 0.001308. The average value of SPEI is 0, and the standard 

deviation is 1. The SPEI is a standardized variable, and it can therefore be 

compared with other SPEI values over time and space. An SPEI of 0 indicates a 

value corresponding to 50% of the cumulative probability of D, according to a 

Log-logistic distribution. 

The SPEI time series, as the SPI series, were calculated for the observed and 

stochastic time series for the historical period for multiple time scales (1-, 3-, 6-, 

9-, 12-, 24- month). Furthermore SPEI time series were calculated for the future 

periods of 2030-2050 and 2080-2100 for the same time scales. The parameters 

of the log-logistic distribution are assumed unchanged in the future, as was 

applied for the estimation of the future time series of SPI. For the estimation of 

the SPEI the time series of PET, which were calculated with the method of 

Thornthwaite from the observed and synthetic time series of temperature, were 

used for the historical and future period. 

The SPEI time series were investigated firstly, in order to identify the frequency 

of each category of droughts events (moderate, severe and extreme) in the 

historical and future periods, for all time scales. The percentile values 0, 25, 50, 

75, 100 and the mean of the 100 SPEI time series for all time scales and for all 

periods were calculated. Furthermore the average deficit, maximum severity and 

maximum duration were identified using the threshold level method. 

 

2.2.3. The threshold level method 

The most frequently applied quantitative definition of a drought is based on 

defining a threshold, Q0, below which the river flow is considered as a drought 

(also referred to as a low flow spell in the literature). There are two main 

methods to select and characterize deficits, namely the threshold level method 

and the sequent peak algorithm. The threshold level method was initially named 

method of crossing theory (Tallaksen, 2000). It is also referred to as run sum 

analysis because it generally study runs below or above a given threshold. The 

method is relevant for storage/yield analysis and is associated with hydrological 

design and operation of reservoir storage systems. Important areas of 
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application are hydropower and water management, water supply systems and 

irrigation schemes. 

The threshold level Q0 is also referred to as the truncation level and is used to 

define whether the flow in a river is in deficit. The deficit starts when the flow 

goes below the threshold and ends as soon as the flow returns above the 

threshold. Thus, the beginning and the end of a deficit can be defined. In addition 

the following deficit characteristics can be defined: 

− The duration, which is the period of time where the flow is below the 

threshold level and is also referred to as drought duration, low-flow spell 

or run length (di); 

− The volume or cumulative severity, which is also referred to as drought 

volume or run sum (vi); 

− The intensity, which is also referred to as deficit or drought severity/ 

magnitude, (mi) is the ratio between deficit volume and deficit duration; 

− The minimum value of each deficit event (Qmin); 

− The end of occurrence, for example, the starting date, the mean of the 

onset and termination, or the date of minimum value. 

 

Figure 2.4. Definition of low flow and drought characteristics (modified from Tallaksen, 2000). 

Based on the time series of the deficit characteristics, it is possible to determine 

indices, such as the average deficit duration or average deficit volume. The 

threshold might be chosen in a number of ways and the choice is amongst other a 

function of the type of water deficit to be studied (Dracup et al., 1980). The 

choice is influenced by the purpose and region of the study and the data 

availability. 
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In Acheloos watershed the method of threshold was applied in order to identify 

the average deficit, maximum severity and maximum duration for the observed 

time series of SPI and SPEI as well as for each replicate that were produced from 

the synthetic time series of precipitation and water balance, for 6-, 12- and 24- 

month time scale for the base period (1980-2000). Moreover, the above 

characteristics were identified for the future period of 2080-2100 for the two 

scenarios of B1 and A2 for the same time scales. The threshold level was chosen 

to have the value of -1, since SPI and SPEI values bellow -1 (Table 2.5) identify 

drought event. 
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3. STUDY AREA 

3.1. Description 

The study area is focusing on Acheloos watershed in western Greece (fig.3.1), 

near Ionian coastal zone and west of Pindos Mountain. Acheloos River is the 

second longest river in Greece, with total length of 220 km, and first in water 

contribution.  It constitutes the main source of water both for the flat and the 

semi mountainous regions of Aitoloakarnania. The river basin is about 2986 km2 

and extends from 21.08oE, 38.29oN to 21.92oE, 39.73oN. The maximum altitude of 

the area is 2420 m.  

Acheloos springs from Lakmos Mountain in the central Pindos Range. The river 

initially flows in the western part of prefecture of Trikala, then flows southward 

at the boundaries of prefectures of Trikala and Arta, and then at the boundaries 

of Karditsa and Arta. It continues through the limits of prefectures of Evritania 

and Aitoloakarnania. In this part Acheloos is linked with the rivers Agrafiotis, 

Tavropos and Trikeriotis and continues its southward flow. In the area of Agrinio 

it turns westward towards the Aitoliki basin. Then flows again southward, it is 

enriched with surplus water from the lakes Lysimachia and Trixonida and finally 

goes westward in the area of Neochori and flows into Ionian Sea shaping an 

extensive deltaic field. In its wider basin of flow, four natural lakes exist 

(Trichonida, Lisimachia Amvrakia, Ozeros), and four dams and reservoirs 

(Kremaston, Kastrakiou, Stratos I & Stratos II) have been constructed and several 

hydroelectric power stations of Greek Power Authority (Public Enterprise of 

Electricity) have been constructed.  

The drainage basin of Acheloos may be divided into three individual sub basins: 

a) the upper part, which is defined by the administrative boundaries of Trilofo 

community, b) the middle part, which is delimited in the south by Stratos village 

and includes Tavropos, Kremasta, Kastraki and Stratos reservoirs, and c) the 

lower part, which includes the Trichonida, Lisimahia, Amvrakia and Ozeros 

natural lakes, the alluvial plain and the Mesologi, Etoliko and Klisova lagoons 

(Liakouris, 1971).  
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Figure 3.1. Digital elevation model of Acheloos watershed. 

The climate in the Acheloos basin belongs to the mild Mediterranean type and 

tends to Continental type in north and north-eastern regions (Liakouris, 1971). 

In particular, the warmer month of the year is July (average temperature: 

27,40oC), while the coolest is January (average temperature: 8,30oC). The annual 

height of rain is approximately 1.100-1.200mm. 

3.2. Database 

Monthly data of precipitation were available from precipitation stations for the 

period 1980-2000 for the Acheloos watershed. Rain gauges generally measure 

rainfall at individual points. However, many hydrological applications require 

the average depth of rainfall occurring over an area which can then be compared 

directly with runoff from that area. Hence, average areal rainfall is required. The 

areal precipitation has been estimated using the methods of Thiessen polygon 

and the precipitation gradient method.  Similarly, for the estimation of the 

temperature of the Acheloos watershed, the temperature gradient was used, 
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using monthly data from the available meteorological stations for the base 

period. 

i. Estimation of areal precipitation 

The widely-used method of Thiessen method was proposed by A.M. Thiessen in 

1911. The Thiessen polygon method accounts for the variability in spatial 

distribution of gauges and the consequent variable area which each gauge 

represents. The areas representing each gauge are defined by drawing lines 

between adjacent stations on a map. The perpendicular bisectors of these lines 

form a pattern of polygons (the Thiessen polygons) with one station in each 

polygon. Stations outside the basin boundary should be included in the analysis 

as they may have polygons which extend into the basin area. The area of a 

polygon for an individual station as a proportion of the total basin area 

represents the Thiessen weight for that station. Areal rainfall is thus estimated 

by first multiplying individual station totals by their Thiessen weights and then 

summing the weighted totals as follows: 

( )
∑∑ 







 ×
=

×
=

A

PiAi

A

PiAi
Po                                              (3.1) 

where Ai is the area of Thiessen polygon for station i, A the total area under 

consideration, Pi is the monthly precipitation for station i and P0 the areal 

precipitation. In order to estimate the areal precipitation with this method, 

precipitation data from 51 raingages were used (Fig.3.2). Stations outside the 

watershed included in the analysis since they affected the basin area.  

This method is not ideal for mountainous areas where orographic effects are 

significant or where rain gauges are predominantly located at lower elevations of 

the basin. Therefore the precipitation gradient method was used. The method is 

based on the assumption that rainfall increases as the elevation increases. It uses 

a linear relationship between elevation and precipitation and since a satisfactory 

correlation exists, it can be used in order to estimate rainfall at any elevation. 

The first step was to find the linear relationship between the elevation of each 

station and the mean annual precipitation of each station. The coefficient of 

determination was not satisfied using the data from the stations that used for the 
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Thiessen method. Hence, 23 precipitation stations were included in the linear 

relationship (Fig. 3.3). 

 

Figure 3.2. Location of the precipitation stations used in this study. 

Thereafter, the mean annual precipitation of the watershed was estimated by the 

following equation: 

    
/ = 
[�/� − �\]1\�^
�33                                                   (3.2) 

where  
/ is the mean annual areal precipitation of the watershed,  
[�/� is the 

mean annual precipitation estimated with the Thiessen method, �[  is the 

weighted mean elevation of the watershed estimated by Thiessen, � is the 

elevation of the watershed estimated with the method of gradients and � is the 

slope of  the linear relationship. The mean monthly precipitation is estimated by: 

     
%/ = _`_]�a�`

_]�`�                             (3.3) 

where 
%/  is the monthly precipitation at the i month and k year, 
/ is the mean 

annual areal precipitation of the watershed, 
[�%�/  is the monthly precipitation at 
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the i month and k year estimated with the Thiessen method and ,  
[�/� is the 

mean annual precipitation estimated with the Thiessen method. 

With the above method the mean monthly areal precipitation of the Acheloos 

watershed was estimated (Fig. 3.4). 

 

 

Figure 3.3. Precipitation gradient of Acheloos watershed. 

 

Figure 3.4. Monthly areal precipitation estimated with the method of Thiessen and the 

precipitation gradient method for the base period (1980-2000). 
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ii. Estimation of areal temperature 

The temperature gradient method used for estimation of the areal temperature. 

According to this method the temperature decreases as the elevation increases 

per 100m. In order to estimate the mean annual and monthly temperature, the 

linear relationship between the elevation of each station and the mean annual 

temperature of each station should be found (fig.3.5). 

 

Figure 3.5. Precipitation gradient of Acheloos watershed. 

The mean annual and monthly temperature according to the temperature 

gradient method is estimated using temperature data from a base station. 

Therefore, the temperature can be defined as: 

     �/ = �[�/� − �\b1\�^
�33                  (3.4) 

( )

( )kT

k

iTkk

i
T

TT
T =                            (3.5) 

where  ( )kTT  is the mean annual temperature at the base station at year k, kT the 

mean annual temperature of the watershed at year k, 
k

iT the mean monthly 

temperature of the watershed at month i and year k, ( )
k

iTT the mean monthly 

temperature of the base station at month i and year k, b is the slope of the linear 

regression, �^ is the elevation of the base station and � is the elevation of the 

watershed. Figure 3.6 indicates the areal temperature estimated with the 

temperature gradient method as well as the temperature of the base station. 
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Figure 3.6. Monthly areal temperature of the base station and the Acheloos watershed estimated 
with the temperature gradient method for the base period (1980-2000). 

 

iii. Estimation of Potential Evapotranspiration. 

Different methods have been proposed to estimate the PET from meteorological 

parameters. Thornthwaite (1948) proposed a simple approach to calculate PET 

using only monthly mean temperature. Following this method monthly PET 

(mm) is obtained by: 

    
-� = 16d& 7�3[ef :(                  (3.6) 

where T is the monthly mean temperature in °C; I is a heat index, which is 

calculated as the sum of 12 monthly index values i, the latter being derived from 

mean monthly temperature using the formula: 

    L = 7[K:
�.K��

                    (3.7) 

� is a coefficient depending on I: � = 6.75-1hQ� − 7.71-1KQ� + 1.79-1�Q + 0.492 

and d&is a correction coefficient computed as a function of the latitude and 

month. 
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Therefore using the monthly temperature estimated with the temperature 

gradient method, monthly PET was calculated for the Acheloos watershed where 

it is obvious from figures 3.6 and 3.7 the relationship between them.  

 

Figure 3.7. Monthly Potential Evapotranspiration in Acheloos watershed estimated with the 
method of Thornthwaite for the base period (1980-2000). 
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4. APPLICATION-RESULTS 

The methods described in Chapter 2 were used firstly for the statistical 

downscaling of the monthly areal precipitation and temperature using 

information from the third generation Canadian Centre for Climate Modeling and 

Analysis GCM (CGCMa3) in Acheloos watershed. The statistical downscaling was 

developed for the historical period 1980-2000. Secondly, areal precipitation and 

temperature was estimated using the outputs from CGCMa3 for two future 

periods (2030-2050 and 2080-2100) and for three socio-economic scenarios 

(B1, A1B, A2). Moreover, the observed and the stochastically generated time 

series of areal precipitation and temperature, as well as potential 

evapotranspiration which was calculated from the temperature time series were 

used to estimate SPI and SPEI time series for the base period in order to identify 

drought events and their characteristics. The SPI and SPEI time series were 

calculated for various timescales. Finally future SPI and SPEI time series were 

calculated and the effect of climate change on droughts was assessed from the 

changes in the number of negative monthly SPI and SPEI values by severity 

classes. 

4.1. Climate Downscaling 

Statistical downscaling targeted in generating monthly time series of 

precipitation and temperature for evaluating climate change impacts on 

meteorological droughts. A combination of multiple linear regression and 

stochastic modeling of the residuals derived from MLR was used for the 

downscaling method of the parameters. The analysis results of the MLR has 

shown that the correlation coefficient, r, between the logarithmically 

transformed estimated downscaled monthly areal precipitation and the 

logarithmically transformed observed monthly basin-wide precipitation was 

equal to 0.74 for the base period, 1980-2000. Similar the correlation coefficient r 

between the estimated downscaled monthly temperature and the observed 

monthly temperature of the watershed was 0.98. The developed relationships 

has been found to be statistically significant at α=5% significance level using the 

t-test.  
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a) 

b)  

 

Figure 4.1. Statistical properties of the statistical downscaling procedure for the historical 

period 1980-2000 for a) average monthly precipitation and b) standard deviation. 
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a) 

 

b) 

 

Figure 4.2. Statistical properties of the statistical downscaling procedure for the historical 

period 1980-2000 for a) average monthly temperature and b)standard deviation of monthly 

temperature. 

The regression model simulated quite well the mean monthly precipitation (Fig. 

4.1) and temperature (Fig.4.2) for the historical period 1980-2000 but not the 

variance of the observed precipitation and temperature. 
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For the treatment of the residuals, stochastic time series theory was applied to 

preserve the variance of observed monthly precipitation. A first order 

autoregressive model (AR(1)) was applied and used to generate annual climate 

data. Moreover the modified method of fragments applied in order to 

disaggregate the annual data to monthly climate data. For the evaluation of the 

generated annual and monthly precipitation and temperature, annual and 

monthly parameters were estimated such as mean, standard deviation, 

coefficient of skewness, correlation coefficient between successive months, 

maximum, minimum and cross correlation between the monthly climate 

variables (precipitation-temperature, temperature-PET and precipitation-PET) 

for each of the 100 synthetic time series. From these values the 0, 25, 50, 75, 100 

percentile values and the mean were calculated. Figures 4.1 and 4.2 show the 

statistical properties (average and standard deviation) of the monthly generated 

time series for the historical period. The Box-Whisker plots refer to stochastic 

simulations results, whereas MLR are the results obtained from the multiple 

linear regression. Furthermore, the average of the 100 replicates is added in the 

plot. The figures show that the method is able to reproduce the statistical 

properties of observed monthly precipitation and temperature time series for 

the period 1980-2000. Similar results are obtained from the other monthly 

parameters (coefficient of skewness, correlation coefficient between successive 

months, maximum, minimum and cross correlation between the monthly climate 

variables). 

Table 4.1. Statistical properties of the statistical downscaling procedure for the historical period 

1980-2000 for annual precipitation. 

Observed 
MLR 

Downscaled Stochastically Downscaled 

Average Min 25% 50% 75% Max 

Average 1442.70 1212.03 1453.74 1302.30 1413.14 1461.97 1492.54 1567.61 

SD 233.84 46.04 216.97 143.70 189.46 213.89 239.12 333.39 

Skewness -0.57 0.09 -0.05 -1.60 -0.33 -0.04 0.29 1.27 

Minimum 988.37 1126.36 1050.36 749.09 972.04 1048.11 1123.69 1304.46 

Maximum 1787.40 1309.34 1855.49 1591.84 1777.30 1831.77 1931.21 2222.74 

Acf_1 0.15 -0.19 0.09 -0.47 -0.02 0.10 0.22 0.54 
Correl_rain-
temp 0.02 -0.24 0.02 -0.60 -0.13 0.04 0.15 0.55 
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Table 4.2. Statistical properties of the statistical downscaling procedure for the historical period 

1980-2000 for annual temperature. 

Annual Observed 
MLR 

Downscaled Stochastically  Downscaled 

Average Min 25% 50% 75% Max 

Average 12.43 12.43 12.44 12.21 12.38 12.44 12.50 12.64 

SD 0.46 0.01 0.44 0.26 0.39 0.44 0.50 0.64 

Skewness -0.04 -0.17 0.00 -1.29 -0.30 -0.04 0.33 1.21 

Minimum 11.41 12.40 11.61 10.63 11.45 11.65 11.78 12.15 

Maximum 13.45 12.45 13.26 12.95 13.12 13.23 13.38 13.82 

Acf_1 -0.24 0.44 -0.26 -0.66 -0.40 -0.27 -0.13 0.12 
Correl_rain-

temp 0.02 -0.24 0.02 -0.60 -0.13 0.04 0.15 0.55 

 
 
 

Furthermore, Tables 4.1 and 4.2 indicate that the statistical downscaling is able 

to reproduce the annual statistical characteristic of the annual observed time 

series of precipitation and temperature. The observed value is close to the 

median for most of the parameters and within the inter-quartiles range. Hence 

the generated data can be considered similar to the statistical characteristics of 

the historical data. 

4.2. Drought Indices – Present Climate 

SPI and SPEI time series were calculated from the observed and generated 

monthly time series at multiple time-scales (1-, 3-, 6-, 9-, 12- and 24-months). 

For the SPI time series the monthly precipitation time series were used, whereas 

for the estimation of SPEI the monthly water balance (Precipitation-PET) time 

series were used. The parameters of the gamma and log-logistic distributions 

were estimated based on the 100 generated time series of the historical period. 

The results will be presented for SPI and SPEI timescales of -6, 12-, 24-months 

since there are representative of hydrological and water resources drought 

(Loukas and Vasiliades, 2005). 

4.2.1. SPI 

Firstly the temporal variation of observed and generated SPI time series was 

investigated, by comparing the number of months for which the SPI values for all 
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timescales indicated moderate drought (−1.50<SPI<−1.00), severe drought 

(−2.00<SPI<−1.50), and extreme drought (SPI<−2.00). 

 
a) 

 

b) 
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c) 

 

Figure 4.3. Total number of dry months (SPI≤-1) for various drought severity classes at a) 6-, b) 

12- and c) 24-months timescale for 1980-2000. 

Figure 4.3 indicate that Acheloos watershed experienced moderate, severe and 

extreme droughts for the base period (1980-2000). The statistical downscaling 

method is capable to simulate drought patterns, since the generated time series 

produce similar number of total dry months with the observed time series. 

However, the allocation of the dry months in the respective drought classes is 

quite different. The downscaling method simulates satisfactorily the moderate 

and severe droughts at all timescales, except moderate droughts at 24-months 

timescale, but produces smaller number of dry months for extreme drought. 

However, the observed drought pattern is in the range of the stochastic 

simulation.  

Furthermore, from the analysis of drought events, indicated that about 17.45% 

of the time Acheloos watershed experienced drought for the historical period for 

SPI 6-month. Stochastic simulation results for the same timescale show that the 

watershed experienced droughts, on average, for 16.60 % of time with a range of 

12.77% to 20.85%. Similar results are observed and for the other timescales. On 

the other hand, for 24-month timescale, stochastic simulation results show a 
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small increase in the drought time in the order of 16.06% with a range from 

8.76% to 24.42%, whereas the observed is 13.9%. However, the difference in the 

time percentage of dry months is always within the range of the stochastic 

simulation results. 

Using the threshold level method the average severity, average maximum 

cumulative severity and average maximum duration of the 100 generated SPI 

timeseries were identified at 6-, 12- and 24-months timescale. The threshold 

level was chosen to have the value of -1, since SPI values bellow -1 (Table 2.5) 

identify drought event. Table 4.3 shows the results of the method that was 

applied to the observed time series of SPI and the generated SPI time series. The 

statistical downscaling results show a decrease in the severity for all timescales 

that was applied. Moreover, maximum cumulative severity is underestimated for 

6- and 12-months timescale. For 24-months timescale the simulated maximum 

cumulative severity is almost similar with the observed value. Finally, the 

observed maximum duration for the 6-month timescale is simulated well, 

whereas for the other timescales the stochastic method overestimates it. 

However the observed values are within the inter-quartiles range of the 

statistical downscaled values. 

Table 4.3. Average deficit characteristics of the generated 6-, 12-, 24-months SPI timeseries for 

period 1980-2000. 

Observed Statistically Downscaled 

Timescale 6-months Average Min 25% 50% 75% Max 

Severity 0.69 0.60 0.32 0.53 0.59 0.66 0.93 

Maximum 
cumulative severity 8.30 7.56 3.03 5.64 7.12 8.89 14.85 

Maximum duration 8 8 4 6 7 9 14 

Timescale 12-months 

Severity 0.70 0.62 0.29 0.46 0.59 0.75 1.37 

Maximum 
cumulative severity 14 12.51 2.14 7.93 11.79 16.27 28.09 

Maximum duration 11 14 5 11 13 15 36 

Timescale 24-months 

Severity 0.74 0.54 0.15 0.38 0.51 0.64 1.37 
Maximum 
cumulative severity 12.37 12.99 0.52 7.75 11.11 17.42 38.30 

Maximum duration 13 18 2 13 18 23 35 
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4.2.2. SPEI 

Drought events were also examined using the SPEI drought index. The number of 

months for which the SPEI values for all timescales indicated moderate drought 

(−1.50<SPI<−1.00), severe drought (−2.00<SPI<−1.50), and extreme drought 

(SPI<−2.00) was identified.  
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c) 

 

Figure 4.4. Total number of dry months (SPEI≤-1) for various drought severity classes at a) 6-, b) 

12- and c) 24-months timescale for 1980-2000. 

Drought patterns are simulated quite well by the statistical downscaling method. 

The generated time series produce similar number of total dry months with the 

observed time series for all timescales, except the 24-months timescale where 

the observed dry months are 43 and the average total months that produced 

from the generated time series are 38 with a range from 22 to 52. The extreme 

drought events for all timescales are near 0 both for observed and generated 

time series. The number of moderate drought events simulated satisfactorily at 

almost all timescales. The statistical downscaling underestimates the severe 

drought events at all timescales. However, the observed drought pattern is in the 

range of the stochastic simulation. 

Acheloos watershed experienced drought for the historical period for SPEI 6-

months about 17.45% of the time. Stochastic simulation results for the same 

timescale showed that the watershed experienced droughts, on average, for 

18.11% of time with a range of 13.19% to 21.28%. Similar results are observed 

and for the other timescales. For 12- and 24-month timescale, the stochastic 

simulation results showed 17.79% and 17.49% in the drought time with a range 

from 10.04% to 22.71% and from 10.14% to 23.96% respectively, whereas the 

observed is 19.21% for 12-months and 19.82% for 24-months timescale. 

Moderate Severe Extreme Total

0
1

0
2
0

3
0

4
0

5
0

Drought severity classes

D
ry

 m
o
n

th
s

Observed

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 09:48:26 EEST - 3.133.128.217



Application-results 

58 
 

Table 4.4. Average deficit characteristics of the generated 6-, 12-, 24-months SPEI timeseries for 

period 1980-2000. 

Observed Statistical Downscaling 

Timescale 6-months Average Min 25% 50% 75% Max 

Severity 0.45 0.42 0.33 0.39 0.42 0.44 0.55 

Maximum  
cumulative 
severity 5.27 4.85 2.72 4.12 4.84 5.47 8.88 

Maximum 
duration 8 8 5 7 8 8 13 

Timescale 12-months 

Severity 0.43 0.43 0.29 0.39 0.43 0.47 0.77 

Maximum  
cumulative 
severity 7.36 8.86 3.61 6.60 8.42 10.63 18.31 

Maximum 
duration 14 14 7 12 13 16 35 

Timescale 24-months 

Severity 0.38 0.43 0.24 0.37 0.41 0.49 0.73 

Maximum  
cumulative 
severity 7.21 10.31 3.49 7.31 10.56 13.17 20.30 

Maximum 
duration 15 18 10 14 18 23 33 

 

The threshold level method indicated that although the observed values are 

within the inter-quartiles range of the statistical downscaled values, there is an 

overestimation for the maximum cumulative severity and maximum duration at 

24-months timescale compared with the observed values in the order of 43.04% 

and 22.27% respectively. Moreover, the method showed an increase in the 

average severity that produced from the generated series in the order of 15.13% 

at 24-months timescale. 

 

4.3. Future Climate 

The statistical downscaling method was used in order to generate future time 

series of precipitation and temperature. Firstly the multiple linear regression 

model was used to estimate the areal precipitation and temperature from the 

outputs of the CGCMa3 for three socio-economic scenarios. The downscaling was 

applied for two future periods 2030-2050 and 2080-2100. Thereafter the 

residuals of temperature and precipitation time series that were produced from 

the AR(1) model for the historical period, added to the downscaled time series, 
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assuming that the time series of the residuals remain unchanged in the future. 

Finally time series of PET were produced with the method of Thornthwaite for 

the three socio-economic scenarios and the two future periods. 

Tables 4.3 and 4.4 show the statistical properties of the annual precipitation and 

temperature of the Acheloos river basin for all the socio-economic scenarios, for 

historical and future periods (2030-2050 and 2080-2100). The mean annual 

precipitation of the watershed is 1461.97 mm ranges from 1302.3mm to 

1567.61mm, whereas the mean annual temperature is 12.44οC with a range from 

12.21οC to 12.64οC. For 2030-2050 the SRES B1 scenario projection indicates a 

slight increase in mean annual precipitation of 0.56% as well as in mean annual 

temperature of 0.61%. According to SRES A1B scenario, it is possible a slight 

decrease in precipitation of 0.02% and a slight increase in temperature of 0.79%. 

The third SRES scenario (A2) indicates a decrease in annual precipitation of 

1.52% at 1439.70mm and a simultaneous increase in temperature of 0.82% at 

12.54οC. The standard deviation of precipitation is projected to decrease in the 

order of 0.77%, 1.08% and 0.49% for the B1, A1B and A2 scenarios respectively. 

The standard deviation of temperature remains unchanged for the three 

scenarios. 

 For the long-term period of 2080-2100 greater changes in precipitation and 

temperature are projected. For the more conservative SRES B1 scenario the 

precipitation and temperature increases in the order of 0.16% and 1.02% 

respectively. The SRES A1B scenario shows a decrease in precipitation in the 

order of 1.79% and an increase in the temperature in the order of 1.6%. Finally 

the SRES A2 scenario indicates slighter decrease in the precipitation at 1.52% 

and an increase in the temperature in the order of 2.17%. The changes in the 

values of standard deviation of precipitation and temperature are slighter for the 

three scenarios for the period 2080-2100. 

The larger reduction for average annual precipitation was observed for the 

period 2080–2100 as expected. The average annual precipitation ranges from -

1.52% to 0.56% for period 2030–2050 and from -1.79 to 0.16% for period 2080– 

2100 for the three scenarios. The average monthly precipitation is projected to 
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increase for most months of the two periods for the B1 SRES scenario. However, 

the other two scenarios showed a decrease of the average monthly precipitation 

in most months for both two periods (fig. 4.5 and 4.6). 

Similar with precipitation the larger change in the average annual temperature 

was observed for the long-term period (2080-2100). The average annual 

temperature ranges from 0.61% to 0.81% for period 2030-2050 and from 1.02% 

to 2.17% for period 2080-2100. Figures 4.7 and 4.8 show the monthly average 

temperature of the watershed for the two future periods. There is a slight 

increase on temperature in all months. 

 

 

Figure 4.5. Monthly average precipitation for period 2030-2050. 

 

Figure 4.6. Monthly average precipitation for period 2080-2100. 
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Table 4.3. Statistical properties of annual precipitation of Acheloos watershed. 

 Historical Period 1980-2000 Future Period 2030-2050 Future Period 2080-2100 
 Median Maximum Minimum Median Maximum Minimum Median Maximum Minimum 
Average Annual Precipitation (mm) 1461.97 1567.61 1302.30       
SRES B1    1470.17 1575.37 1308.83 1464.27 1569.55 1304.04 
SRES A1B    1461.71 1567.11 1303.35 1434.00 1539.48 1274.35 
SRES A2    1439.75 1545.08 1281.09 1437.84 1543.74 1276.86 
Standard deviation (mm) 213.89 333.39 143.70       
SRES B1    211.58 328.06 153.20 217.91 335.95 150.82 
SRES A1B    212.84 314.93 154.42 214.16 350.93 142.11 
SRES A2    212.24 333.73 144.60 213.17 322.79 141.81 
Maximum (mm) 1831.77 2222.74 1591.84       
SRES B1    1859.56 2249.66 1629.15 1855.55 2215.33 1637.62 
SRES A1B    1837.10 2214.93 1652.14 1819.00 2180.97 1587.06 
SRES A2    1806.73 2170.20 1607.41 1818.06 2158.70 1825.46 
Minimum (mm) 1048.11 1304.46 749.09       
SRES B1    1067.23 1294.81 739.86 1070.73 1315.92 707.65 
SRES A1B    1053.08 1294.72 738.87 1017.30 1266.32 705.97 
SRES A2    1043.04 1281.58 689.15 1031.63 1287.34 780.94 

 
Table 4.4. Statistical properties of annual temperature of Acheloos watershed. 

 Historical Period 1980-2000 Future Period 2030-2050 Future Period 2080-2100 
 Median Maximum Minimum Median Maximum Minimum Median Maximum Minimum 
Average Annual Temperature (οC) 12.44 12.64 12.21       
SRES B1    12.51 12.71 12.28 12.56 12.76 12.33 
SRES A1B    12.53 12.73 12.31 12.64 12.84 12.41 
SRES A2    12.54 12.74 12.31 12.71 12.91 12.48 
Standard deviation (οC) 0.44 0.64 0.26       
SRES B1    0.44 0.64 0.26 0.44 0.63 0.26 
SRES A1B    0.44 0.64 0.26 0.44 0.63 0.26 
SRES A2    0.44 0.64 0.26 0.44 0.63 0.26 
Maximum (οC) 13.23 13.82 12.95       
SRES B1    13.31 13.89 13.01 13.36 13.96 13.07 
SRES A1B    13.33 13.92 13.06 13.44 14.02 13.16 
SRES A2    13.34 13.93 13.04 13.50 14.07 13.22 
Minimum (οC) 11.65 12.15 10.63       
SRES B1    11.72 12.22 10.68 11.79 12.26 10.74 
SRES A1B    11.74 12.24 10.75 11.85 12.34 10.84 
SRES A2    11.75 12.25 10.72 11.90 12.42 10.93 
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Figure 4.7. Monthly average temperature for period 2030-2050. 

 

Figure 4.8. Monthly average temperature for period 2080-2100. 

 

4.3.1. SPI 

A. Future Period 2030-2050 

The 100 future generated monthly precipitation time series for the three socio-

economic scenarios and the two future periods were used for the estimation of SPI 

time series at multiple timescales (1-, 3-, 6-, 9-, 12-, 24- months). The parameters of 

the gamma distribution were assumed unchanged in the future and their respective 

values for the historical period have been used. 
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Figure 4.9. Total average dry months for SPI at multiple timescales for 2030-2050. 

Figure 4.9 indicates that the total number of dry months (SPI<-1) will be increased 

for the A2 scenarios for period 2030-2050 at all time scales. For the B1 SRES scenario 

there is a decrease due to the slight increase of the annual precipitation for the same 

future period at all timescales. This is also obvious from the box-plots of 6-, and 24-

months timescale for the three scenarios (fig.4.10 and 4.11). B1 scenario is more 

conservative that the others. For the downscaled time series of B1 scenario there is 

an average decrease of 5% and 3% that ranges from -31% to 20% and from -77% to 

66% at 6- and 24-months respectively. A1B SRES scenario indicate an average 

decrease of 1% and 5% that ranges from -28% to 31% and from -54% to 52% at 6-

and 24-months timescale. For 12-months timescale the average dry months 

simulated to be equal to the average dry months of the historical period with a range 

of -34% and 51%. Finally the number of negative values of the generated SPI time 

series of the A2 scenario will be increased at all timescales. The most increase will be 

at 24-months timescale by 23% with a range from -25% to 89%. At 6- and 12-months 

timescale the increase is lower at 4% and 15% that ranges from -28% to 28% and -

20% to 51% respectively.  

Figure 4.11 shows the number of dry months for the three socio-economic scenarios 

in period 2030-2050 at 12-months timescale, categorized with the severity of classes. 

According to this analysis, the total moderate dry months were increased for all 

scenarios. Similar patterns are observed in the other time scales. A2 scenario shows 

an average increase for the moderate dry months in the order of 9% with a range 
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from -68% to 99%, whereas B1 and A1B show an average increase of 2% and 5% 

with ranges from -73% to 132% and from -62% to 126% respectively at 12-months 

timescale. The extreme dry months were decreased at 6-, 12- and 24- months for the 

two scenarios, B1 and A1B, as well as a slight decrease in severe dry months were 

observed for period 2030-2050. However, A2 scenarios show an increase both in 

extreme and severe dry months with the highest increase at 24-months timescale in 

the order of 52% and 41% respectively. 

a) 

 

b) 

 

Figure 4.10. Total dry months for SPI for the three SRES scenarios at a)6- and b)24-months timescale 

for 2030-2050. 
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Figure 4.11. Total numbers of dry months (SPI≤-1) for various drought severity classes at 12-month 

timescale SPI for the three SRES scenarios and for period 2030-2050. 

B. Future Period 2080-2100 

Estimation of SPI time series for 2080-2100 for the three scenarios indicated an increase in 

the total dry months at almost all timescales (fig.4.12). For SPI at 6-months timescale an 

average increase of 12% and 8% was observed for A1B and A2 SRES scenario respectively. 

 

Figure 4.12. Total average dry months for SPI at multiple timescales for 2080-2100. 
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increase in the average number of dry months is observed. Hence, at 12-months 

timescale the average increase for A1B scenario is 23% and ranges between -26% 

and 62% whereas at 24-months the increase is in the order of 37% with a range from 

-25% to 104%. Moreover, for the A2 SRES scenario the average increase in total dry 

months is 19% and 29% at 12- and 24-months timescale respectively (fig.4.13). SPI 

estimation is based on precipitation. Hence, there is an increase in the values of SPI 

for A1B and A2 scenario, since the downscaled procedure showed a slight decrease in 

the precipitation pattern for these scenarios. The annual precipitation for A1B 

scenario was projected with the highest decrease compared with the other two 

scenarios and this result is obvious in the estimation of SPI series for this period. 

a) 

 

Historical B1 A1B A2

3
0

3
5

4
0

4
5

5
0

SRES scenarios

D
ry

 m
o
n

th
s

Observed

Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 09:48:26 EEST - 3.133.128.217



Application-Results 

67 
 

b) 

 

Figure 4.13. Total dry months for SPI for the three SRES scenarios at a)6- and b)24-months timescale 

for 2080-2100. 

 

Figure 4.14. Total numbers of dry months (SPI≤-1) for various drought severity classes at 12-months 

timescale for the three SRES scenarios and for period 2080-2100. 

Similar with the future period of 2030-2050, an increase in moderate dry months was 

indicated at all timescales and for all SRES scenarios (Fig. 4.14). Extreme dry months 

were increased at large timescales (12- and 24-months) for the three scenarios, 

where for B1 scenario the average increase is 6% and 11%, for A1B is 45% and 83% 

and finally for the A2 is 37% and 58% at 12- and 24-months timescale respectively. 
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the two most severe scenarios A1B and A2 at all timescale. For B1 scenario a slight 

decrease was estimated at all timescales, except 24-months timescale where an 

increase of 15% is observed. Similar with the other drought severity classes, A1B 

scenario indicates larger number of severe dry months at all timescales than the 

other scenarios. The largest increase is at 24-months timescale where 52% is the 

average increase in severe dry months. 

The results of the threshold level method are indicated in Table 4.5. The average 

severity for the three socio-economic scenarios was increased at all timescales by 

3.35% for the B1 scenario, 9.40% for A1B and 8.56% for A2 scenario at 6-months 

timescale. For the three SRES scenarios the lower increase is observed at 12-months 

timescale and the largest at 24-months. A1B scenario is the most severe scenario for 

period 2080-2100 as the frequency analysis of dry months also showed. The statistics 

of the other deficit characteristics showed an increase at all timescales and for all 

scenarios, except the average maximum duration at 12-months timescale and for A1B 

and B1 scenario. Generally, there is an increase in most statistical characteristics of 

the average deficit characteristics of the generated SPI timeseries compared with the 

historical and as the timescale increases the difference between the historical and 

future statistical characteristics is rising. 

Table 4.5. Average deficit characteristics of the generated 6-, 12-, 24-months SPI timeseries for 

period 2080-2100. 
Timescale 6-months Timescale 12-months Timescale 24-months 

Average Min Median Max Average Min Median Max Average Min Median Max 

Severity 

Historical 0.60 0.32 0.59 0.93 0.62 0.29 0.59 1.37 0.54 0.15 0.51 1.37 

B1 0.63 0.37 0.62 0.97 0.63 0.27 0.58 1.41 0.56 0.20 0.50 1.45 

A1B 0.66 0.37 0.66 1.02 0.68 0.33 0.67 1.20 0.64 0.31 0.58 1.38 

A2 0.66 0.43 0.65 0.99 0.67 0.36 0.64 1.30 0.60 0.14 0.57 1.26 

Maximum cumulative severity 

Historical 7.56 3.03 7.12 14.85 12.51 2.14 11.79 28.09 12.99 0.52 11.11 38.30 

B1 8.06 3.00 7.56 19.31 12.99 1.30 12.44 30.11 14.10 1.73 12.41 37.82 

A1B 9.12 3.85 8.81 17.98 13.39 3.01 12.09 36.68 18.86 4.04 16.60 51.25 

A2 8.95 3.63 8.19 21.44 15.02 4.19 13.94 33.02 17.32 0.57 15.28 49.10 

Maximum duration 

Historical 8 4 7 14 14 5 13 36 18 2 18 35 

B1 8 5 7 18 14 3 12 26 19 7 17 37 

A1B 8 5 8 16 13 6 12 31 22 8 22 62 

A2 8 5 8 17 15 7 13 28 21 5 22 62 
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4.3.2. SPEI 

A. Future Period 2030-2050 

The 100 future generated monthly time series of precipitation and 

evapotranspiration, which was calculated with the method of Thornwaite and is 

based on temperature, for the three socio-economic scenarios and the two future 

periods were used in order to estimate SPEI time series at multiple timescales (1-, 3-, 

6-, 9-, 12-, 24- months). The parameters of the log-logistic distribution were assumed 

unchanged in the future. Hence, their respective values for the historical period have 

been used. 

The analysis of the monthly SPEI time series for the period 2030-2050 showed that 

the total dry months (SPEI≤-1) will be increased for A2 SRES scenarios at all 

timescales (fig.4.12). For the B1 scenario there is a slight decrease at most timescales, 

whereas for A1B a slight decrease is observed at 12- and 24-months timescale. The 

largest average increase compared to the historical is observed for SPEI 24-months in 

the order of 24% and a range from -24% to 79%. At the same timescale the decrease 

in the SPEI time series is from -71% to 61% with a median decrease of -1% for the B1 

scenario. For the A1B scenario the median decrease is -3% that ranges between -53% 

and 48% (fig.4.13). 

 

Figure 4.12. Total average dry months for SPEI at multiple timescales for 2030-2050. 
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A2 seems more severe than the others for period 2030-2050 at all timescales. SPEI 

estimation is based on precipitation and temperature. Hence, there is an increase in 

the values of SPEI for A2 scenario, since the downscaled procedure showed a slight 

decrease in the precipitation pattern for this scenario and an increase in the 

temperature that probably affected the PET. 

An increase in extreme dry months indicated from figure 4.14 for the three scenarios. 

Similar patterns are observed for all time scales. A2 has larger average increase in 

extreme dry months which is 157% with range from -100% to 1072%, while 68% 

and 76% is for B1 and A1B scenarios at 12-months timescale. Severe and moderate 

dry months for 12- and 24-months timescale were decreased for both B1 and A1B 

scenarios. Moderate dry months were increased by 6% and 8% for SPEI 12- and 24-

months timeseries for A2. For the same timescales and the same scenario severe dry 

months were increased by 16% and 42% with ranges from -93% to 118% and from -

76% to 169% respectively.  
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b) 

 

Figure 4.13. Total dry months for SPEI for the three SRES scenarios at a)6- and b)24-months timescale 

for 2030-2050. 

 

Figure 4.14. Total numbers of dry months (SPEI≤-1) for various drought severity classes at 12-months 

timescale for the three SRES scenarios and for period 2030-2050. 
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smaller timescales for all scenarios. An average increase of 3%, 21% and 17% was 

observed from the 100 time series of SPEI for B1, A1B and A2 respectively at 12-

months timescale. At 24-months the average increase for B1 is 9%, for A1B 37% and 

30% for A2 SRES scenario.  

 

Figure 4.15. Total average dry months for SPEI at multiple timescales for 2080-2100. 
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b) 

 

Figure 4.16. Total dry months for SPEI for the three SRES scenarios at a) 6- and b)24-months 

timescale for 2080-2100. 

 

Figure 4.17. Total numbers of dry months (SPEI≤-1) for various drought severity classes at 12-months 

timescale for the three SRES scenarios and for period 2080-2100. 
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100% to 590%) and 49% ( range from -100% to 885%) for B1 scenario. However, for 

the other two scenarios the increase of extreme dry months is rising at larger 

timescales. For A1B SRES scenario the increase is from -100% to 797% with an 

average increase of 155% at 12-months timescale, whereas at 24-months extreme 

dry months were increased from -100% to 1112% and an average increase of 218%.  

The average increase for A2 scenario in the same severity class is 149% (range from -

100% to 866%) and 183% (range from -100% to 1036%) at 12- and 24-months 

timescales respectively.  

Table 4.5. Average deficit characteristics of the generated 6-, 12-, 24-months SPEI timeseries for 

period 2080-2100. 
Timescale 6-months Timescale 12-months Timescale 24-months 

Average Min Median Max Average Min Median Max Average Min Median Max 

Severity 

Historical 0.42 0.33 0.42 0.55 0.43 0.29 0.43 0.77 0.43 0.24 0.41 0.73 

B1 0.45 0.34 0.44 1.13 0.46 0.30 0.45 0.74 0.44 0.20 0.42 0.84 

A1B 0.46 0.20 0.46 0.58 0.48 0.30 0.47 0.69 0.49 0.21 0.48 0.82 

A2 0.46 0.32 0.46 0.58 0.47 0.30 0.47 0.74 0.47 0.16 0.47 0.89 

Maximum cumulative severity 

Historical 4.85 2.72 4.84 8.89 8.86 3.61 8.42 18.31 10.31 3.49 10.56 20.29 

B1 5.15 1.13 4.95 10.84 6.69 2.82 6.24 14.36 11.63 1.01 11.42 23.10 

A1B 5.66 0.20 5.56 11.66 7.87 2.30 7.16 16.31 14.86 2.17 14.86 27.62 

A2 5.73 1.79 5.48 12.30 7.43 3.04 7.04 15.39 13.83 0.72 14.02 26.94 

Maximum duration 

Historical 8 5 8 13 14 7 13 35 18 10 18 33 

B1 8 1 8 14 10 6 9 26 20 4 21 37 

A1B 9 1 8 16 11 6 12 26 23 10 24 62 

A2 8 3 8 15 11 5 12 29 22 6 23 62 

 

Table 4.5 shows the results of the threshold level method of the 6-, 12-, 24-months 

SPEI timeseries for 2080-2100. Overall, for all scenarios the average severity was 

slightly increased and is rising as the timescales increases. At larger timescales (12- 

and 24-months) A1B seems more severe than the other two scenarios. For A1B 

scenario the average increase in severity is 13.38% at 12-months and 30.48% at 24-

months timescale. For B1 and A2 scenarios the increase is 5.72% and 9.21% at 12-

months and 2.08% and 9.63% at 24-months timescale. Maximum cumulative severity 

and maximum duration are also increased for the same period. The largest increase 

was observed at 24-months timescales for the A1B scenario as in the case of average 
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severity and is in the order of 106.07% for maximum cumulative severity and 52% 

for maximum duration. 

4.3.3. Comparison of indices 

The SPI and SPEI drought index were estimated for the observed and statistically 

downscaled time series of the climate data for the Acheloos watershed of period 

1980-2000 at multiple timescales. The SPI is based only on the precipitation data, 

while the SPEI is based on the precipitation and the potential evapotranspiration, 

which was calculated with the method of Thornthwaite. Figure 4.18 indicate the 

difference between the total number of dry months (SPI≤-1 and SPEI≤-1) for various 

severity classes of the SPI and SPEI time series. Based on the observed data, the total 

number of dry months is equal to 41 for both indices at 6-months timescale. However, 

the allocation of the dry months in the respective drought classes is quite different. 

The SPI identifies less moderate and severe drought events than SPEI, but more 

extreme events. The statistically downscaled time series of the indices have similar 

patterns with the observed time series at all timescales. SPEI identified more drought 

events at large timescales but almost no extreme drought events (Fig. 4.18b). 
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b) 

 

Figure 4.18. Comparison of the historical SPI and SPEI time series for various drought severity classes 

at 6- and 24-months timescale of period 1980-2000. 

SPI and SPEI time series were estimated from the statistically downscaled time series 
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a) 

 
b) 

 

Figure 4.19 Comparison of total dry months for SPI and SPEI time series for the three SRES scenarios 

at 6-months timescale for a) 2030-2050 and b) 2080-2100. 
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5. CONCLUSIONS 

This study evaluated the impacts of climate change on drought impulses in Acheloos 

watershed in Western Greece. Climate data of monthly precipitation and temperature 

from several meteorological stations were available for the basin for the period 1980-

2000. The monthly areal precipitation of the watershed was estimated using the 

modified Thiessen method and the monthly temperature using the temperature 

gradient method. Moreover, potential evapotranspiration time series were calculated 

with the Thornthwaite method based on monthly temperature. 

 The outputs of CGCM3 model have been employed to statistically downscale monthly 

precipitation and temperature, to account the uncertainty of the downscaling method 

and to estimate future precipitation and temperature time series for the periods 

2030-2050 and 2080-2100.  The GCM grid point outputs were downscaled using 

multiple regression equations between GCM predictor output variables and areal 

monthly precipitation and temperature. 

The mean monthly precipitation and temperature were simulated quite well by the 

regression model for the historical period 1980-2000 but the variance of the 

observed precipitation and temperature was not simulated satisfactorily. 

The uncertainty of the GCM is included in the stochastic simulation of the residuals of 

the observed and downscaled time series. Hence, stochastic time series theory was 

applied to preserve the variance of observed monthly precipitation. A first order 

autoregressive model (AR(1)) was applied and used to generate annual climate data. 

Moreover the modified method of fragments applied in order to disaggregate the 

annual data to monthly climate data. Therefore, 100 synthetic precipitation and 

temperature time series were produced for historical period. Monthly and annual 

parameters were estimated for each replicate in order to evaluate the accuracy of the 

method. The statistical characteristics of the generated time series indicated that the 

method is able to reproduce the statistical properties of observed monthly 

precipitation and temperature time series for the period 1980-2000. 

Based on the observed and stochastic downscaled time series, two drought indices 

were estimated at multiple timescales, namely Standardized Precipitation Index (SPI) 

and Standardized Precipitation Evapotranspiration Index (SPEI). 
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From the analysis of the SPI and SPEI time series indicated that the statistical 

downscaling method is capable to simulate drought patterns, since the generated 

time series produced similar number of total dry months with the observed time 

series. However, the allocation of the dry months in the respective drought classes 

was quite different. For the SPI time series moderate and severe droughts at most 

timescales were simulated satisfactorily by the downscaling method, but smaller 

number of dry months for extreme drought was produced. For the SPEI index 

moderate and extreme dry months were simulated well even though the severe 

drought events were underestimated. However, the observed drought pattern was in 

the range of the stochastic simulation for both indices. 

The threshold level method applied in the observed and synthetic time series of SPI 

and SPEI for historical period and showed a decrease in the average severity for all 

the timescales that was applied, except for SPEI time series at 24-months timescale 

where it was increased. For SPEI an overestimation also exists for the maximum 

cumulative severity and maximum duration at 24-months timescale, whereas for SPI 

it is almost similar with the observed value. SPI maximum cumulative severity is 

underestimated for 6- and 12-months timescale. Finally the observed maximum 

duration for the 6-month timescale is simulated well, whereas for the other 

timescales the stochastic method overestimates it. However the observed values are 

within the inter-quartiles range of the statistical downscaled values. 

Monthly and annual time series of precipitation and temperature were also estimated 

with the statistical downscaled method for two future periods and three socio-

economic scenarios, namely SRES B1, SRES A1B and SRES A2, assuming that the 

residuals remain unchanged in the future. Potential evapotranspiration time series 

produced for the same periods and scenarios based on the Thorthwaite method. The 

procedure indicated that the annual temperature was slightly increased for all 

scenarios and the two future periods. Annual precipitation time series were 

simulated to decrease for A1B and A2 scenarios, whereas it was increased for the 

most conservative scenario B1. Similar results were indicated for monthly time series 

where temperature in almost all months was projected to increase and precipitation 

was decreased, except for B1 scenario where the precipitation was increased in 

almost all months. As it was expected the larger change in the average annual 
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temperature was observed for the long-term period (2080-2100). However, small 

changes in annual and monthly precipitation and temperature were indicated 

between the historical and future periods using the outputs of the CGCM3 model. 

SPI and SPEI calculation parameters were based according to the present climate and 

were used to calculate SPI and SPEI time series for the future climate for the three 

socio-economic scenarios. The accuracy, reliability and uncertainty of the statistical 

downscaling method for present and future climate conditions was indicated by the 

results of the study as well as the suitability of the downscaling method for the 

assessment of climate change on hydrological, agricultural and water resources 

droughts. The analysis of the SPI and SPEI time series showed an impact of climate 

change on the severity, the frequency of dry months and the allocation on various 

severity classes for the three SRES scenarios but the uncertainty is quite large. 

For the future period 2030-2050 the total number of dry months (SPI<-1) will be 

increased only for the A2 SRES scenarios at all time scales. For A1B and B1 scenarios 

a slight decrease was observed. B1 seems more conservative due to the slight 

increase of the downscaled annual precipitation and A2 the most severe for this 

period. According to the analysis of dry months and the categorization in severity 

classes, the total moderate dry months were estimated to increase for the three 

scenarios and at all timescales. However, a decrease in severe and extreme dry 

months was estimated for B1 and A1B scenarios at large timescales while A2 SRES 

scenarios showed an increase in all drought severity classes. 

The total dry months were simulated to increase for all SRES scenarios and at all 

timescales for period 2080-2100 and as the timescale increases the average number 

of dry months is rising. Similar with period 2030-2050 an increase in moderate dry 

months was indicated at all timescales and for all SRES scenarios as well as in 

extreme dry months at large timescales. For this period A1B seems more severe than 

the other two scenarios in the estimation of SPI timeseries due to the slight decrease 

of annual precipitation for this scenario. The threshold level method indicated an 

increase in the average deficit characteristics of the generated 6-, 12-, 24-months SPI 

timeseries such as severity, maximum cumulative severity and maximum duration of 
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a drought event. As the timescale increases the difference between the historical and 

future statistical characteristics is rising. 

The analysis of SPEI time series showed similar patterns with the SPI timeseries 

concerning the total dry months (SPEI≤-1) which will be increased for A2 SRES 

scenario at all timescales. A2 seems more severe than the others for period 2030-

2050 since the downscaled procedure showed a slight decrease in the precipitation 

pattern for this scenario and an increase in the temperature that probably affected 

the PET. Extreme dry months were estimated to be increased for all scenarios and at 

all time scales whereas severe and moderate dry months were decreased for both B1 

and A1B scenarios at large timescales. 

For period 2080-2100 A1B an increase in total dry months was indicated compared 

to the historical dry months at all timescales. For all scenarios moderate, severe and 

extreme dry months at almost all timescales were increased. Similar with SPI 

timeseries for the same period, A1B is the most severe and B1 the most conservative 

scenario at all timescales. Furthermore, the threshold level method showed that for 

all scenarios the average severity, maximum cumulative severity and maximum 

duration increase as the timescales increases.  

Comparing the two indices SPI identifies less moderate and severe drought events 

than SPEI, but more extreme events. For both indices the statistically downscaled 

time series have similar patterns with the observed time series at all timescales for 

the historical period. SPEI identified more drought events at large timescales but 

almost no extreme drought events for historical period. Under future climate 

conditions SPEI indicated a larger increase in the frequency of dry months than SPI, 

due to the dependence of the index on the temperature. The temperature was 

projected to increase for the three scenarios. Hence, a higher water demand was 

produced by PET. 

The results of this study indicated that even though the changes in precipitation and 

temperature between historical and future periods using the output of the CGCM3 

model were small, future climate change would probably affect drought severity in a 

region. However, the uncertainty in the future drought episodes should always be 

accounted for since the range of the drought episodes is quite large especially for 
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larger timescales. Future drought episodes due to climate change should be handled 

with caution and always with their respective ranges. 
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