## Σχεδιασμός και Βελτιστοποίηση Χαρακτηρισμού Βιβλιοθηκών Standard Cells για Τεχνολογίες Κάτω των 45nm

Συγγραφέας Ευτυχία Μπέλλου

Επιβλέποντες Καθηγητές Ιωάννης Μούντανος Νέστορας Ευμορφόπουλος

Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων Πανεπιστήμιο Θεσσαλίας

Σεπτέμβριος 30, 2011

## Ευχαριστίες

Θέλω να ευχαριστήσω τον επιβλέποντα καθηγητή μου κ. Ιωάννη Μούντανο και τον κ. Νέστορα Ευμορφόπουλο για την όλη υποστήριζη που μου προσέφεραν κατά την εκπόνηση της διπλωματικής μου εργασίας.

Επίσης θέλω να ευχαριστήσω εξαιρετικά τον καθηγητή κ. Γεώργιο Σταμούλη που ήταν δίπλα μου σε όλη τη διάρκεια της φοίτησης μου, και ιδιαίτερα στις δύσκολες στιγμές, με προθυμία και χιούμορ, δίνοντάς μου κουράγιο να συνεχίσω. Οι προτροπές του ήταν η κινητήριος δύναμη όλα αυτά τα χρόνια...

Επιπλέον ένα μεγάλο ευχαριστώ στο Μιχάλη Τσιαμπά που με βοήθησε με τις ιδέες του και τις προτάσεις του να φέρω εις πέρας τη διπλωματική μου εργασία.

Θα ήθελα να δώσω τις θερμότερες ευχαριστίες μου σε όλους τους καθηγητές του τμήματος Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων που με βοήθησαν καθ' όλη την διάρκεια των σπουδών μου και μου προσέφεραν γνώσεις και με έκαναν να αγαπήσω το μελλοντικό μου επάγγελμα. Ήταν μεγάλη μου τιμή που τους συνάντησα...

Σε αυτό το σημείο να ευχαριστήσω τους γονείς μου για την αμέριστη αγάπη τους, την υπομονή και τη στήριζη τους. Αν δεν ήταν αυτοί, δε θα βρισκόμουν τώρα σε αυτή τη θέση.

Τέλος, ένα μεγάλο ευχαριστώ στις φίλες μου και ιδιαίτερα τη Λυδία Βλιώρα που ήμασταν μαζί σε αυτή την εργασία. Η φιλία τους είναι ίσως ότι πιο σημαντικό κέρδισα όλα αυτά τα χρόνια και ελπίζω να συνεχίζουμε να είμαστε η μία το στήριγμα της άλλης, στα επόμενα βήματα της ζωής μας.

## **Table of Contents**

| <u>Chapter 1: Introduction</u>                              | 8  |
|-------------------------------------------------------------|----|
| Chapter 2: Nanometer issues.                                | 9  |
| Alternative models                                          | 10 |
| The CCS solution for today and tomorrow                     | 10 |
| Chapter 3: CCS Timing Solution.                             | 11 |
| Characterization for CCS Timing.                            | 11 |
| Benefits of CCS Timing.                                     | 13 |
| Chapter 4: CCS Power Library Model.                         | 14 |
| CCS Power Characterization.                                 | 14 |
| Leakage Current.                                            | 14 |
| Dynamic Current.                                            | 15 |
| Equivalent Parasitics                                       | 16 |
| Chapter 5: Liberty NCX Operation Description                | 17 |
| Liberty NCX Usage Flows                                     | 19 |
| Chapter 6: Standard Cells Characterization with Liberty NCX | 21 |
| References                                                  | 64 |

#### ПЕРІЛНЧН

Η σχεδίαση των ολοκληρωμένων κυκλωμάτων στις μέρες μας απαιτεί έναν ισορροπημένο χειρισμό πολύπλοκων ζητημάτων. Ο χρονισμός των κυκλωμάτων παραμένει κρίσιμος, αλλά η ισχύς, ο θόρυβος, η αξιοπιστία και η κατασκευασιμότητα είναι επίσης σημαντικά για την επιτυχία της σχεδίασης.

Όσον αφορά το χρονισμό των κυκλωμάτων, τα φυσικά φαινόμενα και οι τρόποι σχεδίασης παρουσιάζουν νέες προκλήσεις. Η διασύνδεση ανωτέρου επιπέδου παρουσιάζει μεγαλύτερη αντίσταση με μικρότερα πλάτη μετάλλου, με αποτέλεσμα σε κάποιες περιπτώσεις η εμπέδηση διασύνδεσης να είναι πολύ μεγαλύτερη από την αντίσταση οδήγησης του driving cell. Έτσι, απαιτείται η ανάλυση, σε ένα ευρύ φάσμα τιμών, της τάσης  $V_{dd}$  για την υποστήριξη των επιδράσεων της δυναμικής πτώσης τάσης (IR drop) καθώς και τρόποι σχεδίασης κυκλωμάτων χαμηλής κατανάλωσης ισχύος που συμπεριλαμβάνουν voltage islands και δυναμική κλιμάκωση τάσης/συχνότητας.

Απαιτείται ένα μοντέλο καθυστέρησης που να είναι ακριβές σε σχέση με την προσομοίωση του κυκλώματος, αλλά να εκτελεί γρήγορους υπολογισμούς για την υποστήριξη επίπεδης ανάλυσης μεγαλύτερων κυκλωμάτων. Το μοντέλο θα πρέπει να υποστηρίζει τον υπολογισμό καθυστέρησης κελιού, καθυστέρησης διασύνδεσης (interconnect delay), χρόνου μετάβασης (pin slew) και χωρητικότητας ακροδέκτη εισόδου για όλα τα στάδια, συμπεριλαμβανομένων των παρασιτικών.

Παράλληλα, όσον αφορά το μοντέλο ισχύος, η βιβλιοθήκη NLPM (Non-Linear Power Models) έχει εξυπηρετήσει το σκοπό της ικανοποιητικά, αλλά είναι ξεκάθαρο ότι το απλό lookup-based μοντέλο πάσχει από σημαντικές ελλείψεις που το εμποδίζουν από το να χρησιμοποιηθεί επιτυχώς σε ένα ευρύ φάσμα εφαρμογών και με προχωρημένες τεχνικές σχεδίασης.

Για όλα τα παραπάνω, εισήχθη το μοντέλο βιβλιοθήκης CCS (Composite Current Source), το οποίο επεκτείνει τα σημερινά μοντέλα βιβλιοθηκών έτσι ώστε να περιλαμβάνουν δεδομένα κυματομορφών ρεύματος. Με αυτό τον τρόπο επιτρέπεται μια πιο ακριβή ανάλυση και ενοποίηση των δεδομένων της βιβλιοθήκης.

Στην παρούσα εργασία, χρησιμοποιήθηκε η βιβλιοθήκη CCS της εταιρείας Nangate για τον σχεδιασμό και τη βελτιστοποίηση του χαρακτηρισμού standard cells για τεχνολογίες κάτω των 45nm σε περιβάλλον Synopsys. Πιο συγκεκριμένα, χρησιμοποιήθηκε το εργαλείο Liberty<sup>TM</sup> NCX το οποίο παράγει μια βιβλιοθήκη σε Liberty<sup>TM</sup> μορφή (.lib), από ένα σύνολο μοντέλων SPICE, λειτουργικών περιγραφών κελιών και των αντίστοιχων netlists. Η παραγόμενη βιβλιοθήκη περιέχει δεδομένα χρονισμού και ισχύος, βελτιστοποιήθηκε ως προς το χρόνο μετάβασης ακροδεκτών και μπορεί μετέπειτα να χρησιμοποιηθεί για ανάλυση χρονισμού και ισχύος με διάφορα εργαλεία. Σε αυτό το σημείο πρέπει να αναφερθεί πως η βιβλιοθήκη μας δεν περιέχει δεδομένα θορύβου καθώς το CCS Noise model δεν υποστηρίζεται από τη συγκεκριμένη έκδοση του Liberty<sup>TM</sup> NCX.

Η παρούσα εργασία οργανώνεται ως εξής: Στο 2° κεφάλαιο παρουσιάζονται θέματα σχετικά με τη σχεδίαση ολοκληρωμένων κυκλωμάτων μικρότερης κλίμακας καθώς και διάφοροι τύποι μοντέλων βιβλιοθηκών. Στο 3° κεφάλαιο αναλύεται η μοντελοποίηση CCS Timing και στο 4° κεφάλαιο η μοντελοποίηση CCS Power. Στο 5° κεφάλαιο περιγράφεται η λειτουργία του εργαλείου Liberty<sup>TM</sup> NCX της Synopsys και στο τελευταίο κεφάλαιο η διαδικασία που ακολουθήθηκε για το χαρακτηρισμό των βιβλιοθηκών Standard Cells της Nangate.

# Chapter 1: Introduction

Accurate cell library models are essential for IC design implementation and sign-off tools. To ensure high accuracy at technology nodes of 90-nm and below, library models must accurately capture the complex transistor behavior of cells. Current-based modeling was introduced and proven in industry in the last few years as an effective way to model nanometer timing effects. However, accurate timing models alone are no longer sufficient because the effects are inter-dependent between timing, noise and power. To comprehensively deal with the inter-dependent timing, noise, and power effects in nanometer ICs, designers need a single current-based library model that enables the concurrent analysis and optimization of issues in all three categories.

The Composite Current Source (CCS) modeling technology is the first in the industry to deliver a complete open-source current based modeling solution for timing, noise and power. Along with the available parsers, characterization/validation tools, and guidelines, this open-source Liberty<sup>TM</sup> modeling format enables efficient characterization for cell library creators. For IC designers, the CCS modeling technology enables comprehensive nanometer design analysis and optimization for the first time. Designers can reduce design margins and speed design closure by eliminating iterations.

## Chapter 2: Nanometer issues

The widely available Non-Linear Delay and Power Models (NLDM/NLPM) have served the IC design industry for over 5 years. These models consist of tables capturing a cell's delay or power for each combination of input slew and output load. At process geometries of 90-nm and below, many new effects can no longer be modeled using this approach. They include:

- ➤ High impedance interconnect
- Miller effect
- Dynamic IR-drop
- Multi-voltage, and Dynamic Voltage and Frequency Scaling (DVFS) design
- Driver weakening
- > Temperature inversion
- > Increasing variations



Figure 1

To make matters worse, some of these effects are inter-dependent between timing, noise and power. Figure 1 illustrates some of these inter-dependencies. For example, timing and slew rates affect power, which impacts IR-drop, which in turn changes timing. Also, timing impacts signal-integrity, which in turn can because crosstalk induced delay shifts. Another often overlooked fact is that signal integrity can impact power, which in turn impacts IR-drop and timing. Typically designers overlook glitches in a design that do not propagate to a register to cause a functional failure. However, a large number of glitches in a design increase power consumption.

#### Alternative models

The issues discussed so far, along with many others, prompted the development of the CCS modeling technology. Note that other models have addressed some of these issues using current-based methods, but always relating to timing or noise, or power separately—never all three. These ad-hoc models are typically closed, proprietary and do not provide the comprehensive approach that is vital for improving nanometer design modeling capabilities.

Moreover, some current-based timing models store voltage values for the driver. This provides only limited information about the actual current waveform. In between two (voltage, time) points, only the average current value is known. The true shape of the current waveform cannot be preserved unless a large number of voltage samples are used. Accurate current-based models should rely directly upon current values and include a method for reducing the number of (current, time) points while still retaining accuracy for the every time step in the output pin response.

#### The CCS solution for today and tomorrow

The Composite Current Source modeling technology addresses today's existing and emerging design requirements—the physical effects of nanometer designs as well as the needs of design strategies such as multiple-voltage domains. In one model, this open-source Liberty<sup>TM</sup> format combines the cell data needed to support timing, noise, and power analyses that are efficient yet accurate because they begin with current values that are characterized for the relevant nanometer dependencies. Because the open CCS format is extensible, these models constitute a foundation that can be enhanced as needed to meet future requirements such as variation-aware or statistical timing analysis.

#### Complete current-based modeling solution



Figure 2

# **Chapter 3: CCS Timing solution**

CCS Timing consists of a driver model and a receiver model. The driver model describes how a timing arc propagates a transition from input to output, and how it can drive arbitrary RC networks. The receiver model describes the capacitance that an input pin presents to driving cells.

CCS Timing delay calculation uses advanced interpolation technology to determine a current waveform when the input slew and/or output load values do not match those used during cell characterization. Additionally, interpolation is used for intermediate values of VDD and temperature by using data from multiple libraries.



Figure 3

#### **Characterization for CCS Timing**

Characterizing a cell timing arc for CCS Timing is very similar to characterization for nonlinear delay models (NLDM): an input stimulus is chosen to produce a specific input slew time ( $S_{inp}$ ); a load capacitance ( $C_{out}$ ) is connected to the output pin; and a circuit simulation is run in the same way as for NLDM. But instead of measuring voltage thresholds at the output pin, current is measured through the load capacitor and into the input pin. The current through  $C_{out}$  is used for the driver model, and the current into the input pin is used to determine the receiver model.



**Figure 4 : CCS Timing characterization measurements** 

These characterization experiments are repeated for a table of different  $S_{inp}$  and  $C_{out}$  combinations. The current through  $C_{out}$  is saved for every circuit simulation timestep and then reduced to a much smaller set of current and time (i, t) points. The points are chosen such that  $V_{out(t)}$  can be accurately reproduced for every timestep during the transition. Figure 5 shows an example of the complete i(t) waveform and a reduced set of points.



Figure 5: Current waveform from circuit simulation, and reduced current points

The current and voltage at the input pin are saved and then used to determine C1 and C2 values such that gate-level delay calculation can closely match times to the delay threshold and to the second slew threshold at the input pin.

An additional piece of information, input reference time, is needed in order to calculate cell delays. The reference time is the simulation time at which the waveform at the input pin crosses the rising or falling delay threshold (often this is 50% of VDD).

#### **Benefits of CCS Timing**

- The CCS Timing delay calculation provides a high accuracy response for cell delay, interconnect delay, and pin slew.
- The CCS Timing receiver model produces excellent results on single-stage cells with large Miller effect. Furthermore, the stage delay and slew results are typically within 2% of the golden circuit simulation values.
- $\succ$  The CCS Timing enables scaling for intermediate VDD and temperature values. Synopsys delay calculation with CCS Timing includes powerful nonlinear  $V_{dd}$  scaling for timing check arcs. This results in better correlation to circuit simulation than with simple linear interpolation approaches.
- The current waveforms are expected to consume larger space in terms of data size compared to the NLDM models. Therefore, a "Compact CCS" is used to represent the current waveforms in a very compact form. The compact CCS takes advantage of similarity of I/V curves in the library. The compact CCS modeling uses a common set of I/V curves (known as base-curves) for the entire library and each instantiation of the current waveform is derived from one of these base curves. This technique allows for high accuracy while reducing the library size by up to 3 to 4x compared to the expanded (non-compact) CCS timing library.
- CCS timing also allows, for accurate representation of current characteristics of the library subjected to the process, variation. The variation-aware extension of CCS timing captures the current waveforms as the cell is subjected to process variation with respect to the process parameters.

# Chapter 4: CCS Power Library model

The CCS Power Library model represents the physical circuit properties more closely to the simulated data obtained during characterization with Spice. It is a current-based power model that contains the following features:

- ➤ One library format suitable for a wide range of applications (power analysis and optimization; reliability analysis)
- Allows power analysis with much higher time resolution compared to NLPM
- Equivalent parasitics necessary to perform IR-drop analysis
- Standard-cell and macro-cell modeling

#### **CCS Power Characterization**

The CCS Power characterization process is very similar to NLPM characterization:

- 1. First, the leakage currents are measured with simple DC analysis.
- 2. Next, the dynamic current waveforms are acquired with a transient analysis.
- 3. Finally, the equivalent parasitics is measured with fast AC and DC analysis runs.

Most of the characterization for timing and power can be performed simultaneously to reduce the characterization runtime.

#### Leakage Current

The typical simulation setup for leakage characterization is shown in Figure 6. This measurement is usually performed as part of the simulation setup for timing analysis.



Figure 6: Leakage Current Measurement

### **Dynamic Current**

The dynamic current waveforms are acquired by performing a transient analysis as shown in Figure 7. This setup is identical to that used for timing characterization.



**Figure 7 : Dynamic Current Waveform Measurements** 

### **Equivalent Parasitics**

You can obtain the equivalent capacitance by performing a simple AC analysis in the DC operating points obtained during SD leakage analysis. By applying an AC voltage source to the PG pin and measuring the resulting AC current, you can derive the capacitance (shown in Figure 8 a).

An easy way to measure the equivalent resistance is to perform a second DC analysis with a slightly different voltage on the PG pin and with the output tied to a voltage source with the original DC output voltage, as shown in figure 8.b. Calculate the equivalent resistance from the current supplied by the voltage source at the output.



Figure 8: Characterization of equivalent parasitics

## Chapter 5: Liberty<sup>TM</sup> NCX Operation Description

Liberty NCX is a software tool that generates a library in Liberty<sup>TM</sup> (.lib) format from a set of SPICE models, cell functional descriptions, and associated netlists. The generated library can then be used for timing, power, and noise analysis with compatible tools such as Library Compiler, IC Compiler, Design Compiler, and PrimeTime. The tool can generate CCS, NLDM, and NLPM models for the library.

**Figure 9** shows the data files used for characterization. The procedure starts with either an existing seed library or a set of template files containing high-level descriptions of each cell, a set of SPICE netlist files for the cells to be characterized, and a set of SPICE model files for the circuit elements used in the cell netlists.



Figure 9: Liberty NCX Characterization Data

#### Liberty<sup>TM</sup> NCX:

- reads cell descriptions from the seed library or cell template files
- > reads SPICE netlists and models
- > sets up SPICE simulations of the cells
- runs the simulations using HSPICE or a compatible simulator
- > gathers the simulation results
- generates the library cell characterization data
- > writes out a .lib library file containing the newly characterized cells.

Liberty<sup>TM</sup> NCX gets the cell functionality information from the descriptions contained in the existing .lib seed library or the user-supplied template files. More cells can be added or the parameters for the existing cells can be overridden by providing a library template file for global parameters or individual cell template files for the cells and cell parameters being characterized.

Figure 10: Liberty<sup>TM</sup> NCX Operation



Continue to the next figure



### Liberty<sup>TM</sup> NCX Usage Flows

Liberty<sup>TM</sup> NCX can be used to perform two kinds of tasks: characterization and library formatting. Characterization means creating a new library or adding new cell models to an existing library. Library formatting means converting the data in an existing library to a different format. The types of library formatting are:

- compacting/expanding CCS models
- variation-aware library merging
- CCS Noise model merging

- > CCS-to-ECSM conversion
- > and CCS-to-NLDM conversion.

In characterization there are two flows, creation and re-characterization. The library creation flow uses a library template, a library index file and cell level templates to generate a new library. The templates can be created from scratch or generated by Liberty<sup>TM</sup> NCX from a similar seed library. The templates would have to be modified as required to get the desired library. To characterize a cell, it runs SPICE simulations of the cell under various conditions and records the cell behavior into its database. Then it writes out the cell model in Liberty format. Library Compiler or a similar tool can then be used to compile the .lib description into a form that can be used by timing, power, and noise analysis tools.

The re-characterization flow reads in an existing seed library and recharacterizes the timing tables, the power tables, the design rules (max-capacitance, max-transition), the pin capacitances, and the setup/hold constraints as instructed with specific PVT (Process Voltage Temperature) corners. In this thesis we are dealing with the creation flow in different corner each time which is described in the next chapter.

## Chapter 6: Standard Cells Characterization with Liberty<sup>TM</sup> NCX

The NanGate 45nm Open Cell Library is an open-source, standard-cell library provided for the purposes of testing and exploring EDA flows. NanGate has developed it for open use. The library is intended to aid university research programs and organizations in developing flows, developing circuits and exercising new algorithms. In this release the Open Cell Library contains 33 different functions ranging from buffers to scan flip-flops with set and reset. With multiple drive strength variants, the library includes over 100 different standard cells.

The library was generated using NanGate's Library Creator<sup>TM</sup> and the 45nm FreePDK Base Kit from North Carolina State University (NCSU) and characterized with NanGate's NanSpice<sup>TM</sup> using the Predictive Technology Model (PTM) from Arizona State University (ASU).

The 45nm Open Cell Library contains the following views:

- Liberty (.lib) formatted libraries with CCS Timing, ECSM Timing and NLPM/NLDM data (slow, typical, fast, low temperature and worst low temperature corners)
- ➤ Geometric library in Library Exchange Format (LEF)
- ➤ Simulation libraries in Verilog and Spice (pre and post parasitic extracted netlists)
- ➤ Cell layouts in GDSII
- > Schematics in EDIF and PNG formats
- ➤ Library databook in HTML format
- > OpenAccess database containing layouts and netlists

In this thesis we use as inputs:

- ➤ the Liberty formatted library with CCS Timing(typical corners)
- > SPICE netlist files for each cell being characterized (post-layout parasitic parameters)
- > SPICE model file for the circuit elements used in the cell netlists
- ➤ Configuration files that will be described later.

Our goal is to produce, through the characterization process, a Liberty formatted library that contains CCS Timing and Power models which can then be used for timing

and power analysis with compatible tools such as Library Compiler, IC Compiler, Design Compiler and Prime Time.

The file below is the first configuration file (run1):

```
./N angate Open Cell Library\_typical\_conditional\_ccs.lib
set input_library
set work_dir
                 mywork
                     ./N angate Open Cell Library\_typical\_conditional\_25\_0.6\_CCS. lib
set output_library
set templates
                true
set output_template_dir
                           templates
set compact
               false
set ccs_timing
                 false
set ccs_power
                 false
set farm_type
                nofarm
```

The following table briefly describes the characterization settings in the first configuration file:

| Command setting | Description                                                                                                                                                                                                                                                                                  | Used Value |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| input_library   | The name of the existing Liberty <sup>TM</sup> (.lib) source file. Liberty <sup>TM</sup> NCX uses this library to gather cell function descriptions. If no input library is specified, Liberty <sup>TM</sup> NCX generates an entirely new library using the library and the cell templates. |            |
| work_dir        | The name of the working directory used by Liberty <sup>TM</sup> NCX to write all working files.                                                                                                                                                                                              |            |
| output_library  | The name of the new Liberty (.lib) library file created by Liberty <sup>TM</sup> NCX.                                                                                                                                                                                                        |            |
| templates       | When this attribute is set to                                                                                                                                                                                                                                                                | true       |

|                     | true causes the generation of sample templates for the library and cells. The generated template files can be modified to specify the characterization parameters for future runs of Liberty <sup>TM</sup> NCX. The files are written to the directory defined by output_template_dir.                                                                                                                                                                                  |           |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| output_template_dir | The name of the directory where the output template files are to be written. These files can be used as input template files in future runs of Liberty <sup>TM</sup> NCX.                                                                                                                                                                                                                                                                                               | templates |
| compact             | If CCS models are being generated, this attribute causes generation of driver models in compact form. Compact models contain the same current-source information as standard models, but with the information encoded as a set of current-versus-voltage waveform parameters to reduce the size of the characterized library. When the compact command is set to true (the default), Liberty <sup>TM</sup> NCX performs compaction for CCS power and CCS timing models. | false     |
| ccs_timing          | This attribute causes acquisition of CCS timing models.                                                                                                                                                                                                                                                                                                                                                                                                                 | false     |

ccs\_power

This attribute causes acquisition of CCS power models. When the ccs\_power command is set to true (the default), Liberty<sup>TM</sup> NCX generates CCS power models.

false

farm\_type

This attribute specifies the multiprocessor farm system. Can be set to LSF (Platform Computing LSF), SGE (Sun Grid Engine), user, or nofarm (local processor usage only). For LSF or SGE, you must run Liberty NCX on a submit machine that can accept bsub (LSF) or qsub (SGE) job submission commands. Setting user allows you to specify your own script for managing the farm.

nofarm

In the second step we use the following configuration file (run2):

```
set model_file ./model_nom.typ

set netlist_dir ./netlists

set netlist_suffix .sp

set work_dir mywork

set output_library ./NangateOpenCellLibrary_typical_conditional_25_0.6_CCS.lib

set input_template_dir ./templates

set simulator_exec ./hspice

set timing true

set ccs_timing true

set nldm false
```

set fix\_nldm\_timing none
set power true
set ccs\_power true
set compact false
set farm\_type nofarm

The following table describes the settings that are not included in the first configuration file:

| Command setting    | Description                                                                                                                                                                                                                                   | Used Value |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| model_file         | This attribute specifies the name of the SPICE model file containing the process and device models for the circuit elements used in the cell netlists.                                                                                        |            |
| netlist_dir        | This attribute specifies the directory containing the SPICE netlists for the cells being characterized. There must be a separate SPICE netlist file for each cell being characterized.                                                        | •          |
| netlist_suffix     | This attribute specifies the file name extension used by Liberty <sup>TM</sup> NCX to recognize the SPICE netlist files in the cell netlist directory.  If the SPICE netlist file names had the extension .spc the value .spc should be used. | .sp        |
| input_template_dir | The name of the directory containing the input template files.  These files specify the cells that need to be characterized and the library and cell characterization parameters.                                                             |            |
| simulator_exec     | This attribute specifies the absolute path to the SPICE circuit simulator executable. The supported simulators are hspice, eldo, and spectre.                                                                                                 |            |
| timing             | This attribute causes acquisition of                                                                                                                                                                                                          | true       |

|                 | NLDM and CCS timing models.                                                                                                                                                                                                                      |      |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| power           | This attribute causes acquisition of NLPM and CCS power models.                                                                                                                                                                                  | true |
| fix_nldm_timing | This attribute ensures monotonically increasing cell delays with increasing output load capacitance in the generated NLDM timing models.                                                                                                         | none |
|                 | This command accepts the following values: delay, slew, both, and none. When fix_nldm_timing is set to delay, the tool ensures monotonically increasing cell delays with increasing output load capacitance in the generated NLDM timing models. |      |
|                 | When the command is set to slew, the tool ensures monotonically increasing cell transitions with increasing output load capacitance in the generated NLDM timing models.                                                                         |      |
|                 | When the command is set to both, the tool ensures monotonicity for cell delays and cell transition tables in the generated NLDM models.                                                                                                          |      |
|                 | When the command is set to none, the tool does not ensure monotonicity for cell delay and transition tables.                                                                                                                                     |      |
|                 | For backward compatibility, the tool internally translates true to delay and false to none.                                                                                                                                                      |      |
| nldm            | When this command is set to true, it causes acquisition of NLDM timing models.                                                                                                                                                                   |      |

We set to true the commands:

- > timing
- > ccs\_timing
- > power
- > ccs\_power

because we want the desired output library to contain CCS Timing and Power models.

If we set the above commands to false, then the output library does not support neither CCS nor NLDM/NLPM models as we see below.

```
0 .
                                                                                                                                                                                                                                                           NangateOpenCellLibrary_example1_CCS.lib - KWrite
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  v o x
    File Edit View Tools Settings Help
      New Open Save Save As Octobe Unido Pedo
250
251
252
253
254
255
256
257
258
259
260
261
262
                                                                                fanout_length("8", \
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           *
                                                                               "22.6727000");
fanout_length("9", \
"25.4842000");
                                                                               famout length("11", \
                                                                                      "27.0320000");
                                                   operating_conditions (typical) {
                                                                              process_corner : "TypTyp";
process : 1.000000;
voltage : 1.100000;
                                                                               temperature : 25.000000;
                                                                               tree_type : "balanced_tree";
263
264
265
                                                  /
lu_table_template ("driver_waveform_template") {
    variable 1 : "input_net_transition";
    index_1("1, 2");
    variable 2 : "normalized_voltage";
    index_2(") = "normalized_voltage";
  266
 267
 268
                                                                               index_2("1, 2");
269
270
271
272
273
274
                                                 values("0.0000000e+00, 9.3750000e-03, 1.8750000e-02", \
                                                                                     **0.0000000e+00, 3.3750000e-03, 1.8750000e-02", \
**0.000000e+00, 2.3437500e-02, 4.6875000e-02", \
**0.000000e+00, 4.6875000e-02, 3.3750000e-02", \
**0.000000e+00, 9.3750000e-02, 1.8750000e-01", \
**0.000000e+00, 1.8750000e-01, 3.7500000e-01", \
**0.0000000e+00, 3.7500000e-01, 7.500000e-01", \
**0.0000000e+00, 3.750000e-01, 7.500000e-01", \
**0.000000e+00, 3.750000e-01, 7.500000e-01", \
**0.000000e+00, 3.750000e-01, 7.500000e-01", \
**0.0000000e+00, 3.750000e-01, 7.500000e-01", \
**0.000000e+00, 3.750000e-01, 7.50000e-01", \
**0.000000e-01, 7.50000e-01, 7.50000e-01", \
**0.000000e-01, 7.50000e-01, 7.50000e-01", \
**0.000000e-01, 7.50000e-01, 7.50000e-01", \
**0.000000e-01, 7.50000e-01, 7.50000e-01", \
**0.00000e-01, 7.50000e-01, 7.50000e-01", \
**0.00000e-01, 7.50000e-01, 7.50000e-01, 7.50000e-01, 7.50000e-01, \
**0.00000e-01, 7.50000e-01, 7.50000e-01, \
**0.00000e-01, 7.50000e-01, 7.50000e-01, \
*
275
276
277
278
  279
 280
                                                                                      "0.0000000e+00, 7.5000000e-01, 1.5000000e+00");
 281
                                                   cell ("AND2_X1") {
282
283
                                                                              drive_strength : "1";
area : 1.064000;
cell_leakage_power : 8.230018e+03;
 284
285
                                                                              driver_waveform_rise : "ramp";
driver_waveform_fall : "ramp";
pin (Al) {
  287
288
289
                                                                                                          direction : "input";
max_transition : 0,600000;
 290
  291
                                                                                                            related_power_pin : "VDD";
                                                                                                            related_ground_pin : "VSS";
```

```
00
                                                                                             NangateOpenCellLibrary_example1_CCS.lib - KWrite
                                                                                                                                                                                                                                   * * X
 File Edit View Tools Settings Help
  New - Open Save Save As Octobe Ujido Pedo
282
                   cell ("AND2_X1") {
283
                             drive_strength : "1";
284
                             area: 1.064000:
                             cell_leakage_power : 8 23001Be+03;
driver_waveform_rise : "ramp";
driver_waveform_fall : "ramp";
285
286
287
288
                             pin (A1) {
                                        direction : "input";
289
                                        max_transition : 0.600000;
290
291
292
                                        related_power_pin : "VDD";
                                        related_ground_pin : "VSS";
293
294
                             pin (A2) {
295
                                        direction : "input";
296
                                        max_transition : 0.600000;
297
                                        related_power_pin : "VDD";
298
299
                                        related_ground_pin : "VSS";
300
301
302
303
304
305
306
307
308
310
311
312
313
314
315
                             pin (ZN) {
                                        direction : "output";
                                        max_capacitance : 0,025600;
max_transition : 0.600000;
                                       function: "(Al & A2)";
related power pin: "VDD";
related ground pin: "VSS";
timing () (
                                                 related_pin : "Al";
timing_type : "combinational";
timing_sense : "positive_unate";
                                        timing () {
                                                  related_pin : "A2";
                                                  timing_type : "combinational";
                                                  timing_sense : "positive_unate";
316
317
318
319
320
321
322
323
324
                             pg_pin (VDD) {
                                        voltage_name : "VDD";
                                        pg_type : "primary_power";
                             pg_pin (VSS) {
                                        voltage_name : "VSS";
                                        pg_type : "primary_ground":
```

#### Example 1

Moreover, if we set the commands timing and power to true and the commands ccs\_timing and ccs\_power to false, then the output library supports both CCS and NLDM/NLPM models.

```
NangateOpenCellLibrary_example2_CCS.lib - KWrite <2>
                                                                                                                                                                                                                                                          y o x
 File Edit View Tools Settings Help
   Open Save Save As Octobe U/ido Redo
                                fanout_length("4", \
2444
2445
2446
2447
2548
2549
2552
2554
2556
2566
267
268
269
260
271
272
274
275
276
277
278
279
281
279
281
281
283
                               "9.2201000");
fanout_length("5", \
"11.9123000");
                               fanout_length("6", \
"14.8358000");
fanout_length("7", \
                               "18.0155000");

fanout_length("8",

"22.6727000");

fanout_length("9",

"25.4842000");

fanout_length("11", \

"27.0320000");
                    operating_conditions (typical) {
                               process_corner : "TypTyp";
process : 1.000000;
voltage : 1.100000;
                               temperature : 25.000000;
tree_type : "balanced_tree";
                    }
lu_table_template ("driver_waveform_template") {
    variable 1 : "input_net_transition";
    index 1("1, 2");
    variable 2 : "normalized_voltage";
    index 1 ("1, 2");
}
                                index_2("1, 2");
                   cell ("AND2 X1") {
284
                               drive_strength : "1";
area : 1.064000;
                                                                                                                                                                                                                                                                   A
•
```

#### Example 2

Also, we set nldm command to false in order not to cause acquisition of NLDM timing models. If we set it to true and set the commands timing, power, ccs\_timing, ccs\_power to false we have the following output library.

```
NangateOpenCellLibrary_example3_CCS.lib -KWrite <2>
                                                                                                                                                                                   v o x
 File Edit View Tools Settings Help
          Open Save Save As Octobe Unido Pedo
241
242
                       fanout_length("4", \
243
244
                         "9.2201000");
                       fanout_length("5", \
245
                         "11.9123000");
246
                       fanout_length("6", \
247
                         "14.8358000");
248
                       fanout_length("7", \
249
                         "18.6155000");
250
251
                       fanout_length("8", \
                         "22.6727000");
252
253
254
255
                       fanout length ("9", \
                         "25.4842000");
                       fanout length("11", \
                         "27.0320000");
256
257
               operating_conditions (typical) {
258
                       process corner : "TypTyp";
259
                       process : 1,000000;
260
                       voltage : 1.100000:
                       temperature : 25,000000;
261
                       tree_type : "balanced_tree";
262
263
               lu table template ("driver waveform template") {
264
265
                       variable_1 : "input_net_transition";
                       index_1("1, 2");
variable 2 : "normalized_voltage";
266
267
268
                       index_2("1, 2");
269
270
               normalized_driver_waveform ("driver_waveform_template") {
271
                       driver waveform name : "ramp";
272
                       index 1("0.0075000, 0.0187500, 0.0375000, 0.0750000, 0.1500000, 0.3000000, 0.6000000");
273
274
275
                       index 2(°0.0000000, 0.5000000, 1.0000000°);
                       values("0.0000000e+00, 9.3750000e-03, 1.8750000e-02", \
                         "0.0000000e+00, 2.3437500e-02, 4.6875000e-02", \
276
                         "0,0000000e+00, 4.6875000e-02, 9.3750000e-02", \
277
278
279
280
                         "0.0000000e+00, 9.3750000e-02, 1.8750000e-01", \
                         "0.0000000e+00, 1.8750000e-01, 3.7500000e-01", \
                         "0,0000000e+00, 3.7500000e-01, 7.5000000e-01", \
                         "0.0000000e+00, 7.5000000e-01, 1.5000000e+00");
281
               cell ("AND2_X1") {
                       drive_strength : "1";
```

```
NangateOpenCellLibrary_example3_CCS.lib - KWrite <2>
                                                                                                                                                                                                                                                                        v o x
 File Edit View Tools Settings Help
   New - Open Save Save As Octobe Undo Redo
                                     "0.0000000e+00, 7.5000000e-01, 1.5000000e+00");
282
                     cell ("AND2_X1") {
283
284
285
                                  drive_strength : "1";
                                  area: 1.064000:
                                  cell_leakage_power : 8.230018e+03;
                                 driver_waveform_rise : "ramp";
driver_waveform_fall : "ramp";
286
287
288
289
290
291
292
293
294
295
296
297
298
299
301
302
303
304
305
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
                                  pin (Al) {
                                              direction : "input";
                                              max_transition : 0.600000;
                                              related_power_pin ; "VDD";
related_ground_pin : "VSS";
                                  pin (A2) {
                                              direction : "input";
                                             max_transition : 0,600000;
related_power_pin : "VDD";
related_ground_pin : "VSS";
                                  pin (ZN) {
                                              direction : "output";
                                             max_capacitance; 0.025600;
max_transition: 0.6000009;
function: "(A1 & A2)";
related_power_pin: "VSD";
related_ground_pin: "VSS";
timing () /
                                              timing ()
                                                          related_pin : "Al";
timing_type : "combinational";
                                                          timing_sense : "positive_unate";
                                              timing () (
                                                          related_pin : "A2";
timing_type : "combinational";
timing_sense : "positive_unate";
                                  pg_pin (VDD) {
                                              voltage_name : "VDD";
                                              pg_type : "primary_power";
                                 pg_pin (VSS) {
```

#### Example 3

In order to execute the first configuration file the following command must be typed in the Linux bash prompt:

#### $\triangleright$ ncx –f run1

This step produces three types of template files which are stored in the templates directory. These are the library template files, the cell template files and the library index file. A library template file specifies parameters such as units, delay thresholds, slew thresholds and derating factors. A cell template file specifies cell characterization parameters, such as scaling factors, area and sensitization.

The library template file that is produced at this first step is the following:

```
* Generated by Liberty NCX vD-2010.06
Date: "Fri 17 Jul 2009, 20:52:36";
revision: "revision 1.0";
comment: "Copyright (c) 2004-2008 Nangate Inc. All Rights Reserved.";
technology: cmos;
delay_model: table_lookup;
in_place_swap_mode: match_footprint;
library_features : report_delay_calculation report_power_calculation ;
time_unit: 1ns;
leakage_power_unit : 1pW ;
voltage_unit : 1V ;
current_unit: 1uA;
pulling_resistance_unit : 1kohm ;
capacitive_load_unit: 1 pf;
nom_process: 1.0000000;
nom_temperature: 25.0000000;
nom_voltage: 1.1000000;
default_operating_conditions: typical;
slew_lower_threshold_pct_fall: 30.0000000;
slew_lower_threshold_pct_rise: 30.0000000;
slew_upper_threshold_pct_fall: 70.0000000;
slew upper threshold pct rise: 70.0000000;
slew_derate_from_library: 1.0000000;
input_threshold_pct_fall: 50.0000000;
input_threshold_pct_rise: 50.0000000;
output_threshold_pct_fall: 50.0000000;
output threshold pct rise: 50.0000000;
default_leakage_power_density: 0.0000000e+00;
default_cell_leakage_power: 0.0000000e+00;
default_inout_pin_cap: 1.0000000;
default_input_pin_cap: 1.0000000;
```

```
default_output_pin_cap: 0.0000000e+00;
default_fanout_load: 1.0000000;
default_wire_load : 5K_hvratio_1_1 ;
ncx_use_pg_pins : true ;
ncx_nlpm_mode : aggregate ;
operating_conditions typical {
 define process_corner : TypTyp ;
 process: 1.0000000;
 voltage: 1.1000000;
 temperature: 25.0000000;
 tree_type : balanced_tree ;
}
wire_load 1K_hvratio_1_4 {
 capacitance: 1.7740000e-04;
 resistance : 0.0035714;
 area: 0.0755970;
 slope: 5.0000000;
 fanout_length: 1 1.3207000;
 fanout_length: 2 2.9813000;
 fanout_length: 3 5.1135000;
 fanout_length: 47.6639000;
 fanout_length: 5 10.0334000;
 fanout_length: 6 12.2296000;
 fanout_length: 8 19.3185000;
wire_load 1K_hvratio_1_2 {
 capacitance: 1.7740000e-04;
 resistance : 0.0035714;
 area: 0.0762066;
 slope: 5.0000000;
 fanout_length: 1 1.3216000;
 fanout_length: 2 2.8855000;
 fanout_length: 3 4.6810000;
```

```
fanout_length: 4 6.7976000;
 fanout_length: 5 9.4037000;
 fanout_length: 6 13.0170000;
 fanout_length: 8 24.1720000;
}
wire_load 1K_hvratio_1_1 {
 capacitance: 1.7740000e-04;
 resistance: 0.0035714;
 area: 0.0765020;
 slope: 6.2836880;
 fanout_length: 1 1.3446000;
 fanout_length: 2 2.8263000;
 fanout_length: 3 4.7581000;
 fanout_length: 4 7.4080000;
 fanout_length: 5 10.9381000;
 fanout_length: 6 15.7314000;
 fanout_length: 8 29.7891000;
wire_load 3K_hvratio_1_4 {
 capacitance: 1.7740000e-04;
 resistance: 0.0035714;
 area: 0.0799410;
 slope: 5.0000000;
 fanout_length: 1 1.8234000;
 fanout_length: 2 4.5256000;
 fanout_length: 3 7.5342000;
 fanout_length: 4 10.6237000;
 fanout_length: 5 13.5401000;
 fanout_length: 6 16.3750000;
 fanout_length: 7 18.6686000;
 fanout_length: 8 19.4348000;
 fanout_length: 10 20.9672000;
```

```
wire_load 3K_hvratio_1_2 {
 capacitance: 1.7740000e-04;
 resistance: 0.0035714;
 area: 0.0800407;
 slope: 5.0000000;
 fanout_length: 1 1.6615000;
 fanout_length: 2 3.9827000;
 fanout_length: 3 6.6386000;
 fanout_length: 4 9.6287000;
 fanout_length: 5 12.8485000;
fanout_length: 6 16.4145000;
fanout_length: 7 20.0747000;
 fanout_length: 8 22.6325000;
fanout_length: 10 21.7173000;
wire_load 3K_hvratio_1_1 {
 capacitance: 1.7740000e-04;
 resistance: 0.0035714;
 area: 0.0811883;
 slope: 5.0000000;
 fanout_length: 1 1.5771000;
 fanout_length: 2 3.9330000;
 fanout_length: 3 6.6217000;
 fanout_length: 4 9.7638000;
 fanout_length: 5 13.5526000;
 fanout_length: 6 18.1322000;
fanout_length: 7 22.5871000;
fanout_length: 8 25.1074000;
fanout_length: 10 30.1480000;
}
wire_load 5K_hvratio_1_4 {
 capacitance: 1.7740000e-04;
 resistance: 0.0035714;
```

```
area: 0.0803598;
 slope: 5.0000000;
 fanout_length: 1 2.0449000;
fanout_length: 2 4.4094000;
 fanout_length: 3 7.2134000;
 fanout_length: 4 10.4927000;
 fanout_length: 5 13.9420000;
 fanout_length: 6 18.0039000;
 fanout_length: 7 23.9278000;
 fanout_length: 8 30.8475000;
fanout_length: 9 34.9441000;
fanout_length: 11 43.1373000;
wire_load 5K_hvratio_1_2 {
 capacitance: 1.7740000e-04;
resistance: 0.0035714;
 area: 0.0802320;
 slope: 5.0000000;
 fanout_length: 1 1.6706000;
 fanout_length: 2 3.7951000;
 fanout_length: 3 6.2856000;
 fanout_length: 4 9.1309000;
 fanout_length: 5 12.1420000;
 fanout_length: 6 15.6918000;
 fanout_length: 7 20.1043000;
 fanout_length: 8 24.2827000;
fanout_length: 9 27.3445000;
fanout_length: 11 35.3421000;
}
wire_load 5K_hvratio_1_1 {
 capacitance: 1.7740000e-04;
resistance: 0.0035714;
 area: 0.0815905;
```

```
slope: 5.0000000;
 fanout_length: 1 1.7460000;
 fanout_length: 2 3.9394000;
 fanout_length: 3 6.4626000;
 fanout_length: 4 9.2201000;
 fanout_length: 5 11.9123000;
 fanout_length: 6 14.8358000;
 fanout_length: 7 18.6155000;
 fanout_length: 8 22.6727000;
 fanout_length: 9 25.4842000;
 fanout_length: 11 27.0320000;
}
include NangateOpenCellLibrary_typical_conditional_25_0.6_CCS.indexes;
do {
 TLAT_X1
 SDFF_X2
 SDFF_X1
 SDFFS_X2
 SDFFS_X1
 SDFFR_X2
 SDFFR_X1
 SDFFRS_X2
 SDFFRS_X1
 LOGIC1_X1
 LOGIC0_X1
 FILLCELL_X8
 FILLCELL_X4
 FILLCELL_X32
 FILLCELL_X2
 FILLCELL_X16
```

FILLCELL\_X1

DLL\_X2

DLL\_X1

DLH\_X2

DLH\_X1

DFF\_X2

DFF\_X1

DFFS\_X2

DFFS\_X1

DFFR\_X2

DFFR\_X1

DFFRS\_X2

DFFRS\_X1

CLKGATE\_X8

 $CLKGATE\_X4$ 

 $CLKGATE\_X2$ 

CLKGATE\_X1

CLKGATETST\_X8

CLKGATETST\_X4

CLKGATETST\_X2

CLKGATETST\_X1

AND2\_X1

AND2\_X2

AND2\_X4

AND3\_X1

AND3\_X2

AND3\_X4

AND4\_X1

AND4\_X2

AND4\_X4

ANTENNA\_X1

AOI211\_X1

AOI211\_X2

AOI211\_X4

AOI21\_X1

AOI21\_X2

AOI21\_X4

AOI221\_X1

AOI221\_X2

AOI221\_X4

AOI222\_X1

AOI222\_X2

AOI222\_X4

AOI22\_X1

AOI22\_X2

AOI22\_X4

BUF\_X1

BUF\_X16

 $BUF_X2$ 

BUF\_X32

BUF\_X4

BUF\_X8

CLKBUF\_X1

CLKBUF\_X2

CLKBUF\_X3

FA\_X1

HA\_X1

INV\_X1

 $INV_X16$ 

INV\_X2

INV\_X32

INV\_X4

INV\_X8

MUX2\_X1

 $MUX2\_X2$ 

NAND2\_X1

- NAND2\_X2
- $NAND2_X4$
- NAND3\_X1
- NAND3\_X2
- NAND3\_X4
- NAND4\_X1
- NAND4\_X2
- NAND4\_X4
- NOR2\_X1
- $NOR2\_X2$
- NOR2\_X4
- NOR3\_X1
- NOR3\_X2
- NOR3\_X4
- NOR4\_X1
- NOR4\_X2
- NOR4\_X4
- OAI211\_X1
- OAI211\_X2
- OAI211\_X4
- OAI21\_X1
- OAI21\_X2
- OAI21\_X4
- OAI221\_X1
- OAI221\_X2
- OAI221\_X4
- OAI222\_X1
- OAI222\_X2
- OAI222\_X4
- OAI22\_X1
- OAI22\_X2
- OAI22\_X4
- OAI33\_X1

```
OR2_X1
OR2_X2
OR2_X4
OR3_X1
OR3_X2
OR3_X4
OR4_X1
OR4_X2
OR4_X4
TBUF_X1
TBUF_X16
TBUF_X2
TBUF_X4
TBUF_X8
TINV_X1
XNOR2_X1
XNOR2_X2
XOR2_X1
XOR2_X2
}
```

If we use the above library template file as input in the second characterization step and run the congifuration file 2, the produced library had some errors, as far as the reference time is concerned. The reference\_time attribute represents the time at which the input waveform crosses the rising or falling input delay threshold. The reference\_time attribute must be identical for the same input transition time and edge (either rise or fall) across all capacitive loads. This ensures that the input characterization waveform is consistent across all characterization loads.

These errors are highlighted in the output library extract that follows:

```
values("0.0008546663, 4.963764, 4.133261, 2.613386, 0.7445581, 0.2246704, -0.02369");
3456
3457
3458
        vector ("ccs_power_output_switching_0") {
3459
                 reference time : 1.022544;
3460
                 index 1("0.0187500");
                index_2("0.0004000");
index_3("1.0000000, 1.0053457, 1.0160370, 1.0267284, 1.0481111, 1.0588025, 1.0908766, 1.3581605, 1.4543828, 1.5185309,
3461
3462
3463
                 values("0.0008546665, 2.662641, 4.076142, 3.878189, 5.616803, 3.763288, 2.85431, 1.284617, 0.5381629, 0.2319812, 0.1163
3464
3465
        vector ("ccs power output switching 0") {
3466
                 reference time : 1.022544;
3467
                 index_1("0.0187500");
3468
                index 2("0.0008000");
3469
                index 3("1.0000000, 1.0066003, 1.0330014, 1.0462019, 1.0594025, 1.0990041, 1.4026167, 1.5214216, 1.5874244, 1.6798282,
                values("0.0008546663, 2.954142, 4.17976, 5.731007, 3.997799, 3.028922, 1.563103, 0.6301195, 0.3200116, 0.1506251, 0.047
3470
3471
3472
               ("ccs power output switching 0") {
                reference time : 1.022
index_1("0.0187500");
3473
3474
                index_2("0.0016000");
3475
                index_3("1.0000000, 1.0084695, 1.0254086, 1.0423476, 1.0762257, 1.6013364, 1.7199098, 1.8046051, 1.8893003, 2.0332823")
3476
3477
                 values("0.0008546663, 3.1356, 3.805115, 5.463246, 3.655042, 1.184876, 0.5292718, 0.306631, 0.1710553, 0.04755661");
3478
3479
        vector
                ("ccs power output switching 0") {
3480
                reference time : 1.022539;
index_1("0.0187500");
3481
                index 2("0.0032000");
3482
3483
                 index 3("1.0000000, 1.0127390, 1.0382170, 1.1146510, 1.7261228, 2.0063808, 2.1592487, 2.2611607, 2.5286796");
3484
                 values("0.0008546663, 3.227767, 4.996208, 3.621795, 2.049557, 0.6841255, 0.3120988, 0.1972339, 0.02004733");
3485
3486
        vector ("ccs_power_output_switching_0") {
3487
                 reference time : 1,022540;
3488
                 index 1("0.0187500");
                 index 2("0.0064000");
3489
3490
                index 3("1.0000000, 1.0192710, 1.0578131, 1.0963551, 2.2526165, 2.5994950, 2.8307472, 2.9849154, 3.3510649");
                 values("0.0008546663, 3.49686, 5.161347, 4.020049, 1.991259, 0.8615484, 0.4236318, 0.2816415, 0.04626827");
3491
          INS LINE C NangateOpenCellLibrary typical conditional 25 0.6 error CCS.lib
```

## Example 4

This extract shows that for an input transition time of 0.0187500ns, the reference\_time for a load of 0.0008000pf is 1.022544ns, is 1.022540ns for a load of 0.0016000ns and is 1.022539ns for a load of 0.0032000pf.

In order to correct these errors we made some modifications and added some attributes with different values each time. Some of the attempts that we made, before we conclude in the final format of the library template file, are shown below.

First we tried different values for the following attributes and left the other ones with the default values that are shown in the sample template file above.

| Attribute                     | Description             |
|-------------------------------|-------------------------|
| slew_lower_threshold_pct_fall | The lower threshold for |

|                               | determining the slew of a falling signal, expressed as a percentage of the rail voltage; typically used only in the library template.                         |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| slew_lower_threshold_pct_rise | The lower threshold for determining the slew of a rising signal, expressed as a percentage of the rail voltage; typically used only in the library template.  |
| slew_upper_threshold_pct_fall | The upper threshold for determining the slew of a falling signal, expressed as a percentage of the rail voltage; typically used only in the library template. |
| slew_upper_threshold_pct_rise | The upper threshold for determining the slew of a rising signal, expressed as a percentage of the rail voltage; typically used only in the library template.  |

```
NangateOpenCellLibrary example4 CCS.lib - KWrite
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         v o x
       File Edit View Tools Settings Help
2969 3_group () {
    input switching condition("fall");
    putput_switching conditio
        New Open Save Save As Close Undo Peo
                                                                                          Index 1 (0.0073003 ), index 2 ("0.0008000"); index 2 ("0.0008000"), index 2 ("1.0000000, 1.0018370, 1.0042863, 1.0128589, 1.0165328, 1.0434752, 1.0569464, 1.0642943, 1.0704176, 1.0747039" values ("0.003234092, 15.53037, 17.17267, 37.09596, 29.25125, 24.157, 13.59493, 6.156485, 3.462931, 2.66359");
     2983
2984
     2985
     2986
2987
                                                             vector ("ccs power output switching 0") {
                                                                                        2988
2989
     2990
2991
     2992
     2993
2994
                                                             vector ("ccs power output switching 0") {
                                                                                         reference time: 1.005637;
index_1("0.0075000");
index_2("0.0032000");
index_3("1.0000000, 1.0010356, 1.0113918, 1.0134630, 1.0176054, 1.0466026, 1.0652437, 1.1004546, 1.1263449");
values("0.003234091, 8.852704, 34.36711, 35.95294, 29.33538, 16.35536, 8.547146, 1.432063, 0.3997007");
     2995
2996
     2997
     2998
     2999
     3000
                                                           vector ("ccs_power_output_switching_0") {
    reference time : 1.005637;
    index 1("0.0075000");
     3001
     3002
```

<u>Example 5</u>: output library extract for slew\_lower\_thresholds=20 and slew\_upper\_thresholds=80

> Then, we tried to change the value for

| Attribute                | Description                                                                         |
|--------------------------|-------------------------------------------------------------------------------------|
| slew_derate_from_library | slew_derate_from_library =simulation trip point range extrapolated trip point range |

```
NangateOpenCellLibrary_example5_CCS.lib - KWrite
                                                                                                                                        y o x
File Edit View Tools Settings Help
Open 🔚 Save 🔏 Save As 🔞 Close Unido 🕟 Redo
 t_switching_condition("fall");
 ut switching condition("fall");
 urrent (VDD) {
     vector ("ccs_power_output_switching_0") {
             reference_time : 1.009023;
             index_1("0.0075000");
             index_2("0.0004000");
             index_3("1.0000000, 1.0005813, 1.0029067, 1.0063947, 1.0203469, 1.0249976, 1.0447631, 1.0563899, 1.0610406, 1.0645286, 1.06917
             values("0.003234086, 2.559748, 8.62456, 10.6771, 32.6537, 27.60272, 29.39535, 18.20713, 10.4705, 7.038004, 4.742787, 3.826246'
     vector ("ccs power output switching 0") {
             reference time : 1.009023;
             index_1("0.0075000");
             index_2("0.0008000");
             index 3("1.0000000, 1.0019373, 1.0045205, 1.0071036, 1.0200192, 1.0264770, 1.0600575, 1.0678069, 1.0716815, 1.0755562, 1.07878
             values("0.003234086, 7.4721, 10.76932, 12.92649, 33.28046, 28.78435, 17.04831, 8.490566, 6.017834, 4.846427, 2.328288");
     vector ("ccs power output switching 0") {
             reference_time : 1.009009;
             index_1("0.0075000");
             index 2("0.0016000");
             index 3("1.0000000, 1.0007794, 1.0023382, 1.0085735, 1.0194853, 1.0288383, 1.0475442, 1.0818384, 1.0865149, 1.0935296");
             values("0.003234086, 3.025544, 6.805803, 13.23394, 33.22602, 27.18836, 21.53849, 3.362858, 1.920979, 1.375216");
     vector ("ccs_power_output_switching_0") {
             reference time : 1.009023;
             index 1("0.0075000");
             index_2("0.0032000");
             index 3("1.0000000, 1.0011145, 1.0033434, 1.0078012, 1.0189458, 1.0724399, 1.1036448, 1.1170183, 1.1359642");
             values("0.003234086, 2.71095, 7.573911, 12.00047, 32.70715, 7.440499, 1.057301, 0.1388779, 0.2549188");
     vector ("ccs_power_output_switching_0") {
             reference time : 1.009023;
             index 1("0,0075000");
```

Example 6: output library extract for slew\_derate\_from\_library=0.0

> In addition, we tried some values for

| Attribute                 | Description                                                                       |
|---------------------------|-----------------------------------------------------------------------------------|
| input_threshold_pct_fall  | The timing threshold on input falling edge, as a percentage of the rail voltage   |
| input_threshold_pct_rise  | The timing threshold on input falling edge, as a percentage of the rail voltage.  |
| output_threshold_pct_fall | The timing threshold on output falling edge, as a percentage of the rail voltage. |
| output_threshold_pct_rise | The timing threshold on output rising edge, as a percentage of the rail voltage.  |

```
NangateOpenCellLibrary example6 CCS.lib - KWrite
                                                                                                                                           V O X
File Edit View Tools Settings Help
 Piew Appen Redo Save As Octobe Unido Redo
            index 2("0.0256000");
           index_3("1.0000000, 1.0121227, 1.0363681, 1.0606136, 1.1091044, 1.4242951, 1.9092037, 2.0546763, 2.2486397, 2.4789713");
           values("0.006069697, -2.007323, 2.621338, 18.16133, 50.47237, 38.22397, 8.727824, 4.183617, 1.646968, 0.6443021");
           reference time : 1.041971;
            index_1("0.0/50000
           index_2("0.0004000");
            index_3("1.0000000, 1.0223437, 1.0567187, 1.1048437, 1.1323437, 1.1495312, 1.1598437, 1.1667187, 1.1735937, 1.1804687, 1.1873437
            values("0.006069697, -1.236268, 0.09663978, 12.07526, 35.52649, 22.60165, 9.7291, 4.944996, 2.267041, 1.057143, 0.2860332, -0.30
   vector ("ccs power output switching 0") {
    reference_time : 1.041970;
            index 1("0.0750000");
           index_2("0.0008000");
           index_3("1.0000000, 1.0226235, 1.0574289, 1.1061564, 1.1340007, 1.1514034, 1.1722866, 1.1827282, 1.1966504, 1.2123128");
           values("0.006069697, -1.410611, 0.05247628, 12.49442, 38.87569, 29.47203, 9.345592, 3.929892, 1.040834, 0.6094962");
   vector ("ccs power output switching 0") {
           reference_time : 1.041970;
           index_1("0.0750000");
            index_2("0.0016000");
           index 3("1.0000000, 1.0230881, 1.0566708, 1.1028470, 1.1154406, 1.1364297, 1.1658146, 1.1951995, 1.2119908, 1.2245844, 1.2413757
            values("0.006069697, -1.144893, 0.1933226, 11.61183, 21.00873, 42.06776, 29.75901, 10.05376, 4.733351, 2.514797, 1.200367, 0.600
   vector ("ccs power output switching 0") {
           reference_time : 1.041970;
           index_1("0,0750000");
           index_2("0.0032000");
           index_3("1.0000000, 1.0206996, 1.0561846, 1.0620987, 1.1034979, 1.1153262, 1.1389829, 1.1803820, 1.2513520, 1.2809229, 1.2809229, 1.298654
            values("0.006069697, -1.220234, -0.1471912, 1.016572, 11.73755, 20.97627, 45.35152, 35.56491, 8.337689, 3.438295, 1.902831, 0.68
   vector ("ccs_power_output_switching_0") {
            reference_time : 1.041970;
            index 1("0.0750000");
```

<u>Example 7</u>: output library extract for input\_threshold\_pct\_fall=80, input\_threshold\_pct\_rise=20, output\_threshold\_pct\_fall=20, output\_threshold\_pct\_rise=80

➤ Also, we added the attribute min\_pulse\_width\_slew

| Attribute            | Description                                                                                                                                                                                                                                             |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| min_pulse_width_slew | Allows you to assign the input slew for pin-based minimum pulse width acquisition. You can define the value in library time units. The default is 0.1 ps. This attribute affects only pin-based minimum pulse width, not arc-based minimum pulse width. |

```
NangateOpenCellLibrary_example7_CCS.lib - KWrite
                                                                                                                                             y o x
File Edit View Tools Settings Help
New 🔚 Open 🔚 Save 📈 Save As 🔞 Close Unido 🕟 Redo
:_low_value : -1.579521e-04;
:s : "A1";
 ıts : "ZN";
) () que
 _switching_condition("rise");
 ut_switching_condition("rise");
rrent (VDD) {
    vector ("ccs_power_output_switching_0") {
             reference_time : 1.009018;
index_1("0.0075000");
             index 2("0.0004000");
             index_3("1.0000000, 1.0024155, 1.0040259, 1.0056362, 1.0072465, 1.0088569, 1.0120776, 1.0281810, 1.0491154, 1.0636085, 1.070045
             values("0.006069697, -8.992782, -11.31681, -10.28756, -6.073313, 0.06257179, 12.65783, 43.01841, 27.8101, 9.669551, 5.26604, 3
     vector ("ccs_power_output_switching_0") {
             reference time : 1.009017;
             index_1("0.0075000");
             index 2("0.0008000");
             index_3("1.0000000, 1.0029411, 1.0049018, 1.0068625, 1.0088232, 1.0127446, 1.0303909, 1.0539194, 1.0774479, 1.0872514, 1.095094
             values("0.006069697, -10.49123, -11.41982, -7.277145, -0.1839096, 14.14687, 44.40618, 31.00014, 8.765196, 4.390855, 2.598099,
     vector ("ccs_power_output_switching_0") {
             reference_time : 1.009017;
             index 1("0.0075000");
             index_2("0.0016000");
index_3("1.0000000, 1.0013053, 1.0039158, 1.0065263, 1.0091368, 1.0117473, 1.0326313, 1.0613469, 1.1031149, 1.1187780, 1.139662
             values("0.006069697, -4.831246, -11.22934, -8.239187, 0.9283752, 11.07732, 46.14631, 35.5701, 8.948884, 4.179879, 1.679564, 0.6
    vector ("ccs_power_output_switching_0") {
             reference_time : 1.009017;
                                                                                                                                                  index 1("0.0075000");
             index 2("0,0032000");
```

**Example 8:** output library extract for min\_pulse\_width\_slew=0.05 ps

After, we tried different values for the attribute

| Attribute     | Description                                                                                                                                                               |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ccs_delay_tol | The acceptable difference between measured delay from simulation and delay obtained from the CCS waveform, expressed as a fraction of the measured delay from simulation. |

```
NangateOpenCellLibrary example8 CCS.lib - KWrite
                                                                                                                                                                                                                                                                                                                            y o x
File Edit View Tools Settings Help
  Open Save M Save As Octobe Unition Pedo
  ut_low_value : -1.579521e-04;
   uts : "A1";
   puts : "ZN";
  roup () {
   ut_switching_condition("rise");
   put_switching_condition("rise");
   current (VDD) {
                                   "ccs power output switching 0") {
               vector
                                  reference_time : 1.009018;
                                   index_1("0.0075000");
                                  index 2("0.0004000");
                                  index 3("1.0000000, 1.0024155, 1.0040259, 1.0056362, 1.0072465, 1.0088569, 1.0120776, 1.0281810, 1.0491154, 1.0636085, 1.0706
                                  values("0.006069697, -8.992782, -11.31681, -10.28756, -6.073313, 0.06257179, 12.65783, 43.01841, 27.8101, 9.669551, 5.26604,
               vector ("ccs power output switching 0") {
    reference_time : 1.009017;
                                  index 1("0.0075000");
                                  index_2("0.0008000");
                                  index\_3("1.0000000, 1.0029411, 1.0049018, 1.0068625, 1.0088232, 1.0127446, 1.0303909, 1.0539194, 1.0774479, 1.0872514, 1.0956, 1.0872514, 1.0956, 1.0872514, 1.0956, 1.0872514, 1.0956, 1.0872514, 1.0956, 1.0872514, 1.0956, 1.0872514, 1.0956, 1.0872514, 1.0956, 1.0872514, 1.0956, 1.0872514, 1.0956, 1.0872514, 1.0956, 1.0872514, 1.0956, 1.0872514, 1.0956, 1.0872514, 1.0956, 1.0872514, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0956, 1.0
                                  values("0.006069697, -10.49123, -11.41982, -7.277145, -0.1839096, 14.14687, 44.40618, 31.00014, 8.765196, 4.390855, 2.598099,
               vector ("ccs_power_output_switching_0") {
                                  reference time : 1.009017;
                                  index_1("0.0075000");
                                  index_2("0.0016000");
                                  index 3("1.0000000, 1.0013053, 1.0039158, 1.0065263, 1.0091368, 1.0117473, 1.0326313, 1.0613469, 1.1031149, 1.1187780, 1.1396
                                  values("0.006069697, -4.831246, -11.22934, -8.239187, 0.9283752, 11.07732, 46.14631, 35.5701, 8.948884, 4.179879, 1.679564, 6
                vector ("ccs_power_output_switching_0") {
                                  reference_time : 1.009017;
                                  index_1("0.0075000");
                                                                                                                                                                                                                                                                                                                                        •
                                  index 2("0.0032000");
```

Example 9: output library extract for ccs\_delay\_tol=0.0

## ➤ Also, we tried some values for the attributes

| Attribute | Description                                                                                                                                                                                                                                                                                                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| clk_tran  | Clock transition time, in seconds, used for generating the input stimulus for a cell being characterized. This also represents the transition time for input signal edges.                                                                                                                                    |
| clk_width | Clock width, in seconds, used for generating the input stimulus for a cell being characterized. This represents the minimum time between input signal toggles. This attribute might need to be set to a larger number in the case of failing constraint acquisitions for a cell, at the cost of more runtime. |

```
NangateOpenCellLibrary example9 CCS.lib - KWrite
                                                                                                                                              V O X
File Edit View Tools Settings Help
Open Save Save As Octobe Unido Pedo
 switching_condition("fall");
 t_switching_condition("fall");
rrent (VDD) {
   vector ("ccs_power_output_switching_0") {
            reference_time : 1.009023;
index_1("0.0075000");
            index_2("0.0004000");
            index_3("1.0000000, 1.0005813, 1.0029067, 1.0063947, 1.0203469, 1.0249976, 1.0447631, 1.0563899, 1.0610406, 1.0645286, 1.069179
            values("0.003234086, 2.559748, 8.62456, 10.6771, 32.6537, 27.60272, 29.39535, 18.20713, 10.4705, 7.038004, 4.742787, 3.826246")
    vector ("ccs power output switching 0") {
    reference_time : 1.009023;
             index_1("0.0075000");
             index 2("0.0008000");
            index 3("1.0000000, 1.0019373, 1.0045205, 1.0071036, 1.0200192, 1.0264770, 1.0600575, 1.0678069, 1.0716815, 1.0755562, 1.078785
            values("0.003234086, 7.4721, 10.76932, 12.92649, 33.28046, 28.78435, 17.04831, 8.490566, 6.017834, 4.846427, 2.328288");
    vector ("ccs_power_output_switching_0") {
    reference_time : 1.009009;
            index_1("0.0075000");
            index_2("0.0016000");
            index_3("1.0000000, 1.0007794, 1.0023382, 1.0085735, 1.0194853, 1.0288383, 1.0475442, 1.0818384, 1.0865149, 1.0935296");
            values("0.003234086, 3.025544, 6.805803, 13.23394, 33.22602, 27.18836, 21.53849, 3.362858, 1.920979, 1.375216");
    vector ("ccs_power_output_switching_0") {
            reference_time : 1.009023;
             index 1("0.0075000");
            index 2("0.0032000");
            index 3("1.0000000, 1.0011145, 1.0033434, 1.0078012, 1.0189458, 1.0724399, 1.1036448, 1.1170183, 1.1359642");
            values("0.003234086, 2.71095, 7.573911, 12.00047, 32.70715, 7.440499, 1.057301, 0.1388779, 0.2549188");
    vector ("ccs_power_output_switching_0") {
             reference_time : 1.009023;
             index 1("0,0075000"):
```

Example 10: output library extract for clk\_tran=0e-12, clk\_width=0e-9

Finally, we concluded in the following combination of attributes and values which are the bold ones.

```
* Generated by Liberty NCX vD-2010.06
date: "Fri 17 Jul 2009, 20:52:36";
revision: "revision 1.0";
comment: "Copyright (c) 2004-2008 Nangate Inc. All Rights Reserved.";
technology: cmos;
delay_model: table_lookup;
in_place_swap_mode : match_footprint ;
library_features : report_delay_calculation report_power_calculation ;
time_unit: 1ns;
leakage_power_unit : 1pW ;
voltage_unit : 1V ;
current_unit: 1uA;
pulling_resistance_unit : 1kohm ;
capacitive_load_unit: 1 pf;
nom_process: 1.0000000;
nom_temperature: 25.0000000;
nom_voltage: 0.6000000:
default_operating_conditions: typical;
slew_lower_threshold_pct_fall: 10.0000000;
slew_lower_threshold_pct_rise: 10.0000000;
slew_upper_threshold_pct_fall: 90.0000000;
slew upper threshold pct rise: 90.0000000;
slew_derate_from_library: 0.5000000;
input_threshold_pct_fall: 90.0000000;
input_threshold_pct_rise: 10.0000000;
output_threshold_pct_fall: 10.0000000;
output threshold pct rise: 90.0000000;
default_leakage_power_density: 0.0000000e+00;
default_cell_leakage_power: 0.0000000e+00;
default_inout_pin_cap: 1.0000000;
```

```
default_input_pin_cap: 1.0000000;
default_output_pin_cap: 0.0000000e+00;
default_fanout_load: 1.0000000;
default_wire_load : 5K_hvratio_1_1 ;
ncx_use_pg_pins : true ;
clk_tran: 145e-12;
clk_width: 145e-9;
operating_conditions typical {
 define process_corner : TypTyp ;
 process: 1.0000000;
 voltage: 0.6000000;
 temperature : 25.0000000;
 tree_type : balanced_tree ;
wire_load 1K_hvratio_1_4 {
 capacitance: 1.7740000e-04;
 resistance: 0.0035714;
 area: 0.0755970;
 slope: 5.0000000;
 fanout_length: 1 1.3207000;
 fanout_length: 2 2.9813000;
 fanout_length: 3 5.1135000;
 fanout_length: 4 7.6639000;
 fanout_length: 5 10.0334000;
 fanout_length: 6 12.2296000;
 fanout_length: 8 19.3185000;
}
wire_load 1K_hvratio_1_2 {
 capacitance: 1.7740000e-04;
 resistance: 0.0035714;
 area: 0.0762066;
 slope: 5.0000000;
 fanout_length: 1 1.3216000;
```

```
fanout_length: 2 2.8855000;
 fanout_length: 3 4.6810000;
 fanout_length: 4 6.7976000;
fanout_length: 5 9.4037000;
 fanout_length: 6 13.0170000;
 fanout_length: 8 24.1720000;
}
wire_load 1K_hvratio_1_1 {
 capacitance: 1.7740000e-04;
resistance: 0.0035714;
 area: 0.0765020;
 slope: 6.2836880;
 fanout_length: 1 1.3446000;
 fanout_length: 2 2.8263000;
 fanout_length : 3 4.7581000;
 fanout_length: 4 7.4080000;
 fanout_length: 5 10.9381000;
 fanout_length: 6 15.7314000;
fanout_length: 8 29.7891000;
wire_load 3K_hvratio_1_4 {
 capacitance: 1.7740000e-04;
 resistance: 0.0035714;
 area: 0.0799410;
 slope: 5.0000000;
 fanout_length: 1 1.8234000;
fanout_length : 2 4.5256000;
fanout_length: 3 7.5342000;
 fanout_length: 4 10.6237000;
 fanout_length: 5 13.5401000;
 fanout_length: 6 16.3750000;
 fanout_length: 7 18.6686000;
 fanout_length: 8 19.4348000;
```

```
fanout_length: 10 20.9672000;
wire_load 3K_hvratio_1_2 {
 capacitance: 1.7740000e-04;
resistance: 0.0035714;
 area: 0.0800407;
 slope: 5.0000000;
 fanout_length: 1 1.6615000;
 fanout_length: 2 3.9827000;
 fanout_length: 3 6.6386000;
fanout_length: 4 9.6287000;
fanout_length: 5 12.8485000;
 fanout_length: 6 16.4145000;
 fanout_length: 7 20.0747000;
 fanout_length: 8 22.6325000;
fanout_length: 10 21.7173000;
wire_load 3K_hvratio_1_1 {
 capacitance: 1.7740000e-04;
resistance: 0.0035714;
 area: 0.0811883;
 slope: 5.0000000;
 fanout_length: 1 1.5771000;
 fanout_length: 2 3.9330000;
 fanout_length: 3 6.6217000;
 fanout_length: 4 9.7638000;
fanout_length: 5 13.5526000;
fanout_length: 6 18.1322000;
 fanout_length: 7 22.5871000;
 fanout_length: 8 25.1074000;
 fanout_length: 10 30.1480000;
wire_load 5K_hvratio_1_4 {
```

```
capacitance: 1.7740000e-04;
 resistance: 0.0035714;
 area: 0.0803598;
 slope: 5.0000000;
 fanout_length: 1 2.0449000;
 fanout_length: 2 4.4094000;
 fanout_length: 3 7.2134000;
 fanout_length: 4 10.4927000;
 fanout_length: 5 13.9420000;
 fanout_length: 6 18.0039000;
fanout_length: 7 23.9278000;
fanout_length: 8 30.8475000;
 fanout_length: 9 34.9441000;
fanout_length: 11 43.1373000;
wire_load 5K_hvratio_1_2 {
 capacitance: 1.7740000e-04;
 resistance: 0.0035714;
 area: 0.0802320;
 slope: 5.0000000;
 fanout_length: 1 1.6706000;
 fanout_length: 2 3.7951000;
 fanout_length: 3 6.2856000;
 fanout_length: 4 9.1309000;
 fanout_length: 5 12.1420000;
 fanout_length: 6 15.6918000;
fanout_length: 7 20.1043000;
fanout_length: 8 24.2827000;
 fanout_length: 9 27.3445000;
 fanout_length: 11 35.3421000;
wire_load 5K_hvratio_1_1 {
 capacitance: 1.7740000e-04;
```

```
resistance: 0.0035714;
 area: 0.0815905;
 slope: 5.0000000;
fanout_length: 1 1.7460000;
 fanout_length: 2 3.9394000;
 fanout_length: 3 6.4626000;
fanout_length: 4 9.2201000;
fanout_length: 5 11.9123000;
 fanout_length: 6 14.8358000;
fanout_length: 7 18.6155000;
fanout_length: 8 22.6727000;
fanout_length: 9 25.4842000;
fanout_length: 11 27.0320000;
}
include NangateOpenCellLibrary_typical_conditional_25_0.6_CCS.indexes;
do {
TLAT_X1
SDFF_X2
SDFF_X1
 SDFFS_X2
 SDFFS_X1
 SDFFR_X2
 SDFFR_X1
 SDFFRS_X2
SDFFRS_X1
LOGIC1_X1
LOGIC0_X1
 FILLCELL_X8
 FILLCELL_X4
 FILLCELL_X32
 FILLCELL_X2
```

FILLCELL\_X16

FILLCELL\_X1

DLL\_X2

DLL\_X1

DLH\_X2

DLH\_X1

DFF\_X2

DFF\_X1

DFFS\_X2

DFFS\_X1

DFFR\_X2

DFFR\_X1

DFFRS\_X2

DFFRS\_X1

 $CLKGATE\_X8$ 

 $CLKGATE\_X4$ 

CLKGATE\_X2

CLKGATE\_X1

CLKGATETST\_X8

CLKGATETST\_X4

CLKGATETST\_X2

CLKGATETST\_X1

AND2\_X1

AND2\_X2

AND2\_X4

AND3\_X1

AND3\_X2

AND3\_X4

AND4\_X1

AND4\_X2

AND4\_X4

ANTENNA\_X1

AOI211\_X1

AOI211\_X2

AOI211\_X4

AOI21\_X1

AOI21\_X2

AOI21\_X4

AOI221\_X1

AOI221\_X2

AOI221\_X4

AOI222\_X1

AOI222\_X2

AOI222\_X4

AOI22\_X1

AOI22\_X2

AOI22\_X4

BUF\_X1

BUF\_X16

BUF\_X2

BUF\_X32

BUF\_X4

 $BUF_X8$ 

CLKBUF\_X1

CLKBUF\_X2

CLKBUF\_X3

FA\_X1

HA\_X1

INV\_X1

INV\_X16

INV\_X2

INV\_X32

INV\_X4

 $INV_X8$ 

MUX2\_X1

 $MUX2\_X2$ 

- NAND2\_X1
- NAND2\_X2
- NAND2\_X4
- NAND3\_X1
- NAND3\_X2
- NAND3\_X4
- NAND4\_X1
- NAND4\_X2
- $NAND4_X4$
- NOR2\_X1
- NOR2\_X2
- NOR2\_X4
- NOR3\_X1
- NOR3\_X2
- NOR3\_X4
- NOR4\_X1
- NOR4\_X2
- NOR4\_X4
- OAI211\_X1
- OAI211\_X2
- OAI211\_X4
- OAI21\_X1
- OAI21\_X2
- OAI21\_X4
- OAI221\_X1
- OAI221\_X2
- OAI222\_X1
- OAI22\_X1
- OAI33\_X1
- OR2\_X1
- OR2\_X2
- OR2\_X4
- OR3\_X1

```
OR3_X2
OR3_X4
OR4_X1
OR4_X2
OR4_X4
TBUF_X1
TBUF_X16
TBUF_X2
TBUF_X4
TBUF_X8
TINV_X1
XNOR2_X2
XOR2_X1
XOR2_X2
}
```

In this thesis we characterized the library for the default temperature of 25 °C and the voltage range is from 0.55 to 0.9 increased each time by 0.05

When we finish modifying the template file, we executed the final step with the command nex -f run2 to perform characterization:

- > using as cell netlists the post-layout parasitic parameters. The output library contained some cells that were not correct when it comes to the reference time. The problematic cells were the following:
  - 1. OAI221\_X4
  - 2. OAI222\_X2
  - 3. OAI222\_X4
  - 4. OAI22\_X2
  - 5. OAI22\_X4
  - 6. XNOR2\_X1

- ➤ Then, we assumed that the cause of the problem is in the connectivity of the parasitics with the transistors of the misbehaved cells. So we used the pre-layout parasitics netlists which do not contain R, C elements. During the process, we noticed that we had to remove from the DO list of the library template file the ANTENNA cell because it is incompatible with the Liberty NCX tool using the pre-layout netlits. In the output library the above six cells were corrected but many other cells were wrong (different reference time for the same input transition).
- Next try was to check the cell netlist schematics of the different drive strength variants in the same function and the compatibility between the cell netlist files and the related schematics that are provided by Nangate. We noticed that in almost every netlist, the polarity of some transistors was reversed. Thus we corrected the netlists of the cells that were wrong in the previous try and we run the characterization using the pre-layouts. Again the output library had many problematic cells.



Figure 11: Schematic of cell OAI22\_X2

The wrong netlist for the above cell that we took from Nangate is shown below (the red lines show the transistors whose drain and source are reversed):

.SUBCKT OAI22\_X2 A1 A2 B1 B2 ZN VDD VSS

M\_i\_0 VSS B2 net\_000 VSS NMOS\_VTL

M\_i\_7 net\_000 B1 VSS VSS NMOS\_VTL

M\_i\_13 ZN A1 net\_000 VSS NMOS\_VTL

M\_i\_19 net\_000 A2 ZN VSS NMOS\_VTL

M\_i\_25 net\_001 B2 VDD VDD PMOS\_VTL

M\_i\_30 ZN B1 net\_001 VDD PMOS\_VTL

M\_i\_36 net\_002 A1 ZN VDD PMOS\_VTL
M\_i\_40 VDD A2 net\_002 VDD PMOS\_VTL
.ENDS

Now we can see the corrected netlist:

.SUBCKT OAI22\_X2 A1 A2 B1 B2 ZN VDD VSS M\_i\_0 net\_000 B2 VSS VSS NMOS\_VTL M\_i\_7 net\_000 B1 VSS VSS NMOS\_VTL M\_i\_13 ZN A1 net\_000 VSS NMOS\_VTL M\_i\_19 ZN A2 net\_000 VSS NMOS\_VTL M\_i\_25 net\_001 B2 VDD VDD PMOS\_VTL M\_i\_30 ZN B1 net\_001 VDD PMOS\_VTL M\_i\_36 ZN A1 net\_002 VDD PMOS\_VTL M\_i\_40 net\_002 A2 VDD VDD PMOS\_VTL .ENDS

- Finally, we corrected the post-layout netlists of the six cells mentioned in the first try and the result was a library with the least number of wrong cells among all tries. The problematic cells were the following:
  - 1. OAI222\_X4
  - 2. OAI22\_X2
  - 3. XNOR2\_X1



Figure 12: Schematic of cell OAI222\_X2

The wrong netlist for the above cell that we took from Nangate is shown below (the red lines show the transistors whose drain and source are reversed):

M\_M6 N\_VDD\_M0\_d N\_B2\_M0\_g N\_5\_M0\_s VDD PMOS\_VTL

M\_M7 noxref\_13 N\_C2\_M1\_g N\_VDD\_M0\_d VDD PMOS\_VTL

M\_M8 N\_ZN\_M2\_d N\_C1\_M2\_g noxref\_13 VDD PMOS\_VTL

M\_M9 N\_5\_M3\_d N\_B1\_M3\_g N\_ZN\_M2\_d VDD PMOS\_VTL

M\_M10 noxref\_14 N\_A1\_M4\_g N\_ZN\_M4\_s VDD PMOS\_VTL

M\_M11 N\_VDD\_M5\_d N\_A2\_M5\_g noxref\_14 VDD PMOS\_VTL

M\_M0 N\_6\_M6\_d N\_B2\_M6\_g N\_4\_M6\_s VSS NMOS\_VTL

M\_M1 N\_VSS\_M7\_d N\_C2\_M7\_g N\_6\_M6\_d VSS NMOS\_VTL

M\_M2 N\_6\_M8\_d N\_C1\_M8\_g N\_VSS\_M7\_d VSS NMOS\_VTL

M\_M3 N\_4\_M9\_d N\_B1\_M9\_g N\_6\_M8\_d VSS NMOS\_VTL

M\_M4 N\_ZN\_M10\_d N\_A1\_M10\_g N\_4\_M9\_d VSS NMOS\_VTL

M\_M5 N\_4\_M11\_d N\_A2\_M11\_g N\_ZN\_M10\_d VSS NMOS\_VTL

M\_M5 N\_4\_M11\_d N\_A2\_M11\_g N\_ZN\_M10\_d VSS NMOS\_VTL

Now we can see the corrected netlist:

SUBCKT OAI222\_X2 VSS VDD B2 C2 C1 ZN B1 A1 A2

M\_M6 N\_5\_M0\_s N\_B2\_M0\_g N\_VDD\_M0\_d VDD PMOS\_VTL

M\_M7 noxref\_13 N\_C2\_M1\_g N\_VDD\_M0\_d VDD PMOS\_VTL

M\_M8 N\_ZN\_M2\_d N\_C1\_M2\_g noxref\_13 VDD PMOS\_VTL

M\_M9 N\_ZN\_M2\_d N\_B1\_M3\_g N\_5\_M3\_d VDD PMOS\_VTL

M\_M10 N\_ZN\_M4\_s N\_A1\_M4\_g noxref\_14 VDD PMOS\_VTL

M\_M11 noxref\_14 N\_A2\_M5\_g N\_VDD\_M5\_d VDD PMOS\_VTL

M\_M0 N\_4\_M6\_s N\_B2\_M6\_g N\_6\_M6\_d VSS NMOS\_VTL

M\_M1 N\_6\_M6\_d N\_C2\_M7\_g N\_VSS\_M7\_d VSS NMOS\_VTL

M\_M2 N\_6\_M8\_d N\_C1\_M8\_g N\_VSS\_M7\_d VSS NMOS\_VTL

M\_M3 N\_4\_M9\_d N\_B1\_M9\_g N\_6\_M8\_d VSS NMOS\_VTL

M\_M4 N\_ZN\_M10\_d N\_A1\_M10\_g N\_4\_M9\_d VSS NMOS\_VTL

M\_M5 N\_ZN\_M10\_d N\_A2\_M11\_g N\_4\_M11\_d VSS NMOS\_VTL

ENDS

After the Liberty<sup>TM</sup> NCX tool finishes, the ncx.log file is produced where we can see that defined cells were acquired sequentially. The input slews and output loads used during acquisition are defined in the cell templates. If there are any failures, they will be detailed at the end of the log file.

## **References**

- [1] Synopsys Inc., CCS Timing Technical White Paper version 2.0, 2006
- [2] Synopsys Inc., CCS Power Technical White Paper version 3.0, 2006
- [3] Synopsys Inc., Liberty<sup>TM</sup> NCX User Guide version D-2010.06, June 2010
- [4] Low Power Cells Liberty Characterization with Liberty NCX, <a href="http://www.synopsys.com.cn/information/snug/2009/low-power-cells-liberty-characterization-with-liberty-ncx">http://www.synopsys.com.cn/information/snug/2009/low-power-cells-liberty-characterization-with-liberty-ncx</a>
- [5] Nangate Open Cell Library, <a href="http://www.nangate.com/?page\_id=22">http://www.nangate.com/?page\_id=22</a>