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Abstract
Surveys have been undertaken in the US on operational basis to report flash flood events, as well
as their magnitude and spatio-temporal extent. The first dataset is the National Weather Service
(NWS) Storm Data, which consists of spotters reports. The second is the Severe Hazards Anal-
ysis and Verification Experiment (SHAVE), conducted by the National Severe Storms Laboratory
(NSSL) in Norman [Gourley et al., 2010]. SHAVE dataset is based on a near real-time public survey.

This study provides an impact classification of these datasets, to evaluate the ability of three
US flash flood forecasting tools (FFG, GFFG and DHM-TF) to predict impacts. SHAVE impacts
are used in a first spatio-contextual analysis, based on interviewees answers already included in
the dataset, as well as GIS-sampled spatial attributes. This analysis showed consistent results,
indicating that impact classification was made correctly and that the SHAVE dataset (even if based
on public polls) is a reliable tool for flash flood characterisation. Moreover, interesting results
emerged. Evacuations are not only observed in urban zones, but also in rural areas, and Rescues,
Fatality or Injuries are mostly observed in low population density areas. Moreover, these severe
impacts are not always perceived by the interviewees as extreme, rare events, which may indicate
how people have difficulties to estimate an event frequency.

For two extreme cases of flash flood in Oklahoma (the Erin and Oklahoma City events) FFG,
GFFG, and DHM-TF are evaluated on a YES/NO-forecast basis, but also as function of impacts.
For the Erin event (using NWS reports), DHM-TF shows the best Probability Of Detection (1),
followed by FFG (0.94) and GFFG (0.78). But on maps, DHM-TF (and GFFG, to a lesser extent)
show larger forecast areas, which may indicate more false alarms, even if False Alarm Ratio can not
be computed with the NWS dataset. Also, FFG and GFFG seem to show a relation between average
tool values and impacts, when ranked by severity, whereas DHM-TF does not. For the Oklahoma
City event (using SHAVE reports), only GFFG and DHM-TF are available but with SHAVE, FAR
and Critical Success Index can be computed. GFFG shows the best value of CSI (0.14), despite a
lower POD value than DHM-TF, but thanks to a better FAR. These CSI values are very low, even
if they stay in the same order of magnitude as the highest value found by Gourley et al. [2011a].
For this particular smaller scaled, urban case, no clear link is found between impact type and tools
values.

Keywords : Flash flood ; Database ; Impacts ; Forecasting ; Model evaluation
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Περὶληψη

Στις Η.Π.Α έρευνες έχουν διεξαχθεί σε επιχειρησιακή βάση ώστε να μελετηθούν φαινόμενα ξαφνικών

πλημμυρών καθώς επίσης το μέγεθος και η χωροχρονική τους έκταση. ;ο πρώτο σύνολο δεδομένων

είναι τα δεδομένα καταιγίδων του National Weather Service (NWS) που αποτελείται από εκθέσεις
παρατηρήσεων. ;ο δεύτερο είναι το πείραμα SHAVE (Severe Hazards Analysis and Verification Ex-
periment) που διεξήχθη από το NSSL (National Severe Storms Laboratory) , στο Norman [Gour-
ley et al., 2010]. Το σύνολο δεδομένων του SHAVE βασίζεται σε σχεδόν πραγματικού χρόνου
δημοσκοπήσεις. Η μελέτη αυτή παρέχει μια ταξινόμηση επιπτώσεων των δεδομένων αυτών για την

εκτίμηση της ικανότητας τριών προγνωστικών εργαλείων για ξαφνικές πλημύρες στις Η.Π.Α. (FFG,
GFFG kai DHM-TF), με σκοπό να γίνει η πρόγνωση αυτών των επιπτώσεων. Οι επιπτώσεις του
πειράματος SHAVE χρησιμοποιούνται σε μια πρώτη χωρική ανάλυση συμφραζομένων, βασισμένη σε
απαντήσεις των δημοσκοπούμενων, οι οποίες συμπεριλαμβάνονται στο σύνολο των δεδομένων, καθώς

επίσης και στα δειγματοληπτικά χωρικά χαρακτηριστικά των Γεωγραφικών Συστημάτων Πληροφοριών

(ΓΣΠ). Η ανάλυση αυτή έδειξε συνεπή αποτελέσματα, αποδεικνύοντας ότι η ταξινόμηση των επιπτώσεων

ήταν ορθή, και ότι το σύνολο δεδομένων του SHAVE (αν και βασίζεται σε κοινωνικές δημοσκοπήσεις)
είναι ένα αξιόπιστο εργαλείο για τον χαρακτηρισμό των ξαφνικών πλημμυρών. Επιπλέον προέκυ;αν

ενδιαφέροντα αποτελέσματα. Εκκενώσεις παρατηρήθηκαν όχι μόνο σε αστικές ζώνες αλλά και σε

αγροτικές περιοχές, και επιπλέον διασώσεις, θνησιμότητα ή τραυματισμοί παρατηρούνται κυρίως σε

αραιοκατοικημένες περιοχές. Επίσης αυτές οι σοβαρές επιπτώσεις δεν εκτιμώνται πάντοτε από τους

ερωτηθέντες ως ακραία, σπάνια περιστατικά, το οποίο μπορεί να αποδεικνύει πως οι άνθρωποι αν-

τιμετωπίζουν δυσκολία στο να αντιμετωπίσουν την συχνότητα του φαινομένου. Για δύο ακραίες

περιπτώσεις ξαφνικών πλημμύρων στην Οκλαχόμα (περιστατικά Erin και Oklahoma City) τα εργαλεία
FFG, GFFG και DHM-TF εκτιμήθηκαν σε μια προγνωστική βάση τύπου ΝΑΙ/ΟΞΙ, καθώς επίσης και
ως συνάρτηση των επιπτώσεων. Για την περίπτωση της Erin (χρησιμοποιώντας τις αναφορές του NWS),
το DHM-TF δείχνει την καλύτερη πιθανότητα ανίχνευσης (1), ακολουθεί το FFG με πιθανότητα 0.94
και το GFFG με πιθανότητα 0.78. Ωστόσο στους χάρτες το DHM-TF (και το GFFG σε μικρότερη
έκταση) δείχνει μεγαλύτερες περιοχές πρόγνωσης, το οποίο μπορεί να υποδεικνύει περισσότερες εσ-

φαλμένες αναφορές εκτάκτου ανάγκης, αν και οι αναλογία τους μπορεί να υπολογιστεί από το σύνολο

δεδομένων του NWS. Επιπλέον το FFG και το GFFG φαίνεται να δείχνουν μία σχέση μεταξύ των
μέσων τιμών των εργαλείων και των επιπτώσεων, όταν ταξινομούνται βάση της δριμύτητάς τους, ενώ

αυτό δεν συμβαίνει με το DHM-TF. Για το περιστατικό της Oklahoma City (χρησιμοποιώντας τις
αναφορές του SHAVE) μόνο το GFFG και το DHM-TF είναι διαθέσιμα αλλά σ΄ αυτήν την περίπτωση
μπορούν να υπολογιστούν το FAR και ο δείκτης CSI (Critical Success Index). Το GFFG δείχνει την
καλύτερη τιμή για τον CSI (0.14), παρά την χαμηλότερη τιμή POD απ΄ ότι το DHM-TF, αλλά εξαιτίας
καλύτερης τιμής του FAR. ;υτές οι τιμές του CSI είναι πολύ χαμηλές, αν και παραμένουν στην ίδια
τάξη μεγέθους με την μέγιστη τιμή που βρήκαν οι Gourley et al. [2011a]. Για αυτήν την συγκεκριμένη
μικρής κλίμακας αστική περίπτωση, δεν βρέθηκε κάποια καθορισμένη διασύνδεση μεταξύ του τύπου

επίπτωσης και των τιμών των εργαλείων.

Λέξεις-Κλειδιά : Ξαφνική Πλημμύρα· Βάση Δεδομένων, Επιπτώσεις· Πρόγνωση· Αξιολόγηση Μοντέλου.
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Résumé
Des études ont été menées aux USA, de manière opérationnelle, pour reporter les crues
éclaires, ainsi que leur magnitude et leur étendue spatio-temporelle. La première base de
données est le National Weather Service (NWS) Storm Data, qui consiste en des rapports
d’observateurs professionnels. La seconde est le Severe Hazards Analysis and Verification
Experiment (SHAVE), mise en place par le National Severe Storms Laboratory (NSSL) à
Norman [Gourley et al., 2010]. SHAVE est basée sur un système d’enquête par téléphone en
quasi-temps réel.

La présente étude fournit une classification d’impacts pour ces deux bases de données et
évalue la capacité de trois outils américains de prédiction des crues éclaires (FFG, GFFG
et DHM-TF) à prédire ces impacts. Les impacts SHAVE sont utilisés dans une première
analyse, basée sur les réponses déjà incluses dans la base de données et sur des attributs
spatiaux échantillonnés via GIS. Cette analyse montre des résultats cohérents, indiquant
que la classification des impacts a été faite correctement, et que SHAVE (même si basée
sur des sondages publics) est un outil fiable pour la caractérisation des crues éclaires. De
plus, des résultats intéressants émergent. Les évacuations ne sont pas seulement observées
dans les zones urbaines, mais aussi dans les zones rurales, et les sauvetages, décès ou blessés
sont majoritairement observés dans des zones de faible densité de population. De plus, ces
impacts sévères ne sont pas toujours perçus par les sondés comme des événements rares,
extrêmes, ce qui pourrait indiquer la difficulté que les gens ont pour estimer la fréquence de
tels événements.

Pour deux cas extrêmes de crues éclaires en Oklahoma (les événements d’Erin et de Okla-
homa City) FFG, GFFG et DHM-TF sont évalués de manière binaire (événement prédit ou
pas), mais aussi en fonction des impacts. Pour l’événement d’Erin (en utilisant les rapports
NWS), DHM-TF montre la meilleure Probabilité De Détection (1), suivi de FFG (0.94) et
GFFG (0.78). Mais sur les cartes, DHM-TF (et GFFG, dans une moindre mesure) montrent
de plus larges étendues de crues détectées, ce qui pourrait indiquer plus de fausses alertes,
même si malheureusement le Ratio de Fausses Alertes ne peut être calculé avec les rapports
NWS. Aussi, FFG et GFFG semblent montrer une relation entre les valeur moyennes des
outils de prévision et les impacts, étant classés par sévérité croissante, alors que DHM-TF
ne montre pas telle relation. Pour l’événement d’Oklahoma City (en utilisant les rapports
SHAVE), seuls GFFG et DHM-TF sont disponibles, mais dans ce cas-ci, le RFA et l’Index
Critique de Succès peuvent être calculés. GFFG montre la meilleure valeur de ICS (0.14),
malgré une PDD plus basse que DHM-TF mais grâce à un meilleur RFA. Ces valeurs de ICS
sont très faibles, même si elles restent dans le même ordre de grandeur que la plus grande
valeur trouvée par Gourley et al. [2011a]. Enfin, pour ce cas particulier urbain et à plus
petite échelle, aucun lien clair n’est trouvé entre le type d’impact et les valeurs d’outils de
prédiction.

Mots-clefs : Crue éclair ; Base de données ; Impacts ; Prévision ; Evaluation de modèle
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1 Introduction

Flash flooding differs from river flooding in terms of space and time. A flash flood is defined
as "a rapid flooding of water over land caused by heavy rain or a sudden release of impounded
water (e.g., dam or levee break) in a short period of time, generally minutes op to several
hours" [Hong et al., 2010]. In the United States, flash flooding is considered as one of the
first cause of death among weather-related hazards [Ashley and Ashley, 2008]. However,
comparatively to its human and environmental impacts, this phenomenon remains poorly
documented [Gaume and Borga, 2008]. Efforts have been made over the last decades to
collect data of physics (rainfall-runoff processes) and spatio-temporal scope of flash floods :
stream gauges measurements, remote sensing of water surface extents, post event field inves-
tigations or rainfall-runoff modelling. Beside these process understanding datasets, surveys
have been undertaken in the US on operational basis to report flash flood events, as well
as their magnitude and spatio-temporal extent. The first dataset is the National Weather
Service (NWS) Storm Data, which consists of spotters reports collected by US Weather
Forecast Offices. The second is the Severe Hazards Analysis and Verification Experiment
(SHAVE), conducted by the National Severe Storms Laboratory (NSSL) in Norman [Gourley
et al., 2010]. SHAVE dataset is based on a near real-time public survey. These products
are primarily designed to evaluate US flash flood forecasting tools, on a yes/no event basis.
Nevertheless, information contained in these databases (e.g., flood magnitude, damages, fa-
talities, contextual comments) can be used to further portray flash flood events in terms of
impacts, and eventually see how forecasting tools are able to predicts such impacts.

Indeed, as societal impacts of flash floods are resulting from the combination of flooding
hazard and human/environmental vulnerability, research now also focuses on these vulnera-
bility aspects, to ultimately integrate hydrometeorology and social science. This integrated
concept was first introduced by the Weather and Society Integrated Study (WAS*IS) [De-
muth et al., 2007] and recent integrated studies about flash floods include topics such as
human behaviour and mobility [Ruin et al., 2008] or road susceptibility [Versini et al., 2010].
Efforts are also made at the NSSL to build an enhanced database that would combine NWS
and SHAVE reports, but also US Geological Survey stream flows. Impact characterization
would be a valuable addition to this project.

This report introduces an impact classification of flash flood reports, in order to evaluate
the ability of US flash flood forecasting tools to predict such categories of impacts. It is
organized as follows. Section 2 presents and reviews the NWS and SHAVE flash flood
reports datasets. Section 3 describes the methodology for impact classification and a spatio-
contextual analysis of impacts from SHAVE reports. Section 4 introduces an evaluation of
the ability of US flash flood forecasting tools to predict impacts, for two extreme cases of
flash flooding in Oklahoma. Finally, section 5 provides a summary and concluding remarks.
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2 Presentation and review of the flash flood reports datasets

2.1 NWS reports

The NWS dataset contains flash flood reports in USA. Reports are collected throughout the
year and since 2006 they are digitised and stored either as latitude/longitude points (from
2006 to 2007) or polygons (from 2007 to 2010). See Figure 1 for a presentation of SHAVE
and NWS spatial coverage. The principal aim of this dataset is to verify NWS flash flood
warnings, issued by Weather Forecast Offices (e.g., the Flash Flood Guidance [FFG]).

The sampling method is based on calling of trained spotters and businesses within the
warned areas. Then forecasters define polygons (formerly, points) that delineate the regions
impacted by flash flood. Information about event timing, fatalities, injuries or damages are
also gathered, as well as comments about the flood event and the meteorological context.
The structure of this dataset is presented in Appendix A (Table 11).

Figure 1: Spatial coverage of SHAVE flash flood observation and NWS flash flood event polygons
in 2010.
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NWS reports main advantages:

• NWS collects flash flood observations on all US.

• Reports sources are considered as reliable (i.e., emergency managers, trained spotters).
Although sources also include newspapers and public.

• The database is developed by forecasters who are very familiar with their area of
responsibility, can provide immediate quality control of reports, and there is personnel
in the office at all hours of the day throughout the year.

NWS reports main drawbacks:

• Does not include reports of no flooding in warned regions (i.e., false alarms).

• Often does not report flood events that occurred without warning (i.e., missed events).

• Poor spatial accurracy of polygon reports.

• Poor timing accurracy (meteorological event start/end times are often taken as flood
event timing).

2.2 SHAVE reports

The SHAVE dataset was set up at the National Severe Storms Laboratory in Norman, OK
[Gourley et al., 2010] and includes flash flood reports in USA, from 2008 to 2010. Reports
were collected during summer months (June > August) by undergraduate students, using
questionnaires. This dataset is point-based and was originally designed to complement hail
observational data (starting in 2006). But subsenquently wind damage, tornadoes and flash
flood reports were added to the experiment, in order to create higher-resolution datasets for
model verification.

The sampling method is storm-targeted, which means that the survey is only initiated if
at least one of the following conditions is met:

1. The NWS issued a flash flood warning or urban/small stream advisory.

2. Quantitative Precipitation Estimation (QPE) from the US weather radar network ap-
proached or exceeded FFG for any of 1-,3-, or 6-h rainfall accumulation periods.

3. A call for another targeted hazard (e.g., hail) suggested flooding was a problem.
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Note that the study being focused on flash flood, larger scale, fluvial floods (within basin
areas > 300km2) were avoided, using DEM-derived catchments and river maps.
Phone calls are then made to the public and geolocated via Google EarthTM using the
following strategy:

1. Identification of areas potentially impacted by flash flood (as described above).

2. Poll the public in regularly spaced clusters through the potentially impacted region.
Distances between cluster points vary from 3 to 10km, depending on population density
and habitat/road network configuration.

3. Adapt the spatial coverage of each cluster so the range of magnitudes varied from no
impact to severe impacts.

Reports are classified as null (i.e. non impacted location), minor and severe events us-
ing information collected through the questionnaire : flood type, water movement, depth,
extent, eventual evacuation or rescue, flood frequency. Localisation and timing are also in-
cluded, as well as textual comments about the flood event. See Appendix A (Table 12)
for a description of the database structure and details about how questionnaire answers and
report severity were classified.

SHAVE reports main advantages:

• Higher spatial resolution (dense point sampling).

• Estimation of flash floods spatial magnitude (reports range from no impact to severe
for each event).

• Additional information about the event (flood type, depth, extent, frequency, textual
comments).

• Includes reports of no flooding in warned regions (i.e., false alarms) and flood events
that occurred without warning (i.e., missed events).

SHAVE reports main drawbacks:

• Data collected only during summer months.

• Does not include information about interviewee’s age, gender or profession.

• As a public-based survey, uncertainty and bias may occur :
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- About timing : people might not be able to estimate start event time (e.g., if started
at night) or only give rough estimations. Even worse, when timing is unknown, the recorded
event start/end time is simply the time of phone call, which can be the next day. Also,
because it is a near-real time poll, the event is often still ongoing, so the end time is not
known. Therefore, as for NWS reports, timing must be considered extremely cautiously.

- About spatial accurracy : even if reports are precisely georeferenced using GoogleEarthTM,
the event described by the public may occur from one meter to a few kilometers around the
report point, depending on people’s perception or knowledge. For instance, people living in
urban areas would be aware of their neighborhood’s flooding, whereas a farmer will know if
flooding occurred on his land, which might represent a much larger area. Uncertainty buffers
must then be considered around SHAVE reports points.

Furthermore, as SHAVE is based on public survey, reports will be more represented in
urban areas than in remote or rural places.

Before impact classification, a first clean up of the SHAVE dataset has been done. Fields
for internal use or redundant ones were removed, i.e.: ’Event type’ (only floods), ’Mags units’
(meters), ’Revision time’, ’Revision number’ and ’Contact phone’. Also, as SHAVE reports
are georeferenced in GIS format and because it was not recorded in 2010, ’City’, ’County’,
’State’ and ’CWA’ fields were removed as well.

Moreover, start/end timing fields, originally separated in ’Year’, ’Month’, ’Day’, ’Hours
(UTC)’ and ’time (UNIX)’ were put in two single fields : a date/time in UTC and a UNIX
time. After analysing histograms of UTC hours for the three SHAVE years, a shift of 12hours
was observed for the 2010 dataset. UNIX time was then found to be the most accurrate, so
the new date/time UTC were computed from UNIX fields. Unfortunately, for the reasons
listed above (see SHAVE drawbacks), timing inaccuracies will not permit a temporal analysis.
Nevertheless, analysing them raises questions that could help to set up more efficient polls
in the future :

- As SHAVE end times are often missing (or even equal to start times) and because
poll times are considered inaccurate, could one single event time be sufficient, with its own
uncertainties?

- Adding a field with the event start in local time might be useful if the social event has
to be analysed. Nevertheless, such a field can easily be added a posteriori.

Further clean up of the SHAVE dataset was undertaken through impact classification,
presented in the following section.
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3 Flash flood impacts classification and analysis

3.1 Creation of an impact typology from flash flood reports

An impact typology was created, based on the information available in each dataset. These
impacts classes were ranked from the less to the most severe, based on a priori judgment.
As more than one impact can occur for a single flash flood report, three impact fields were
created, in order to keep record of the first, second and third most severe impacts. This way,
multi-impact reports can be handled.

Impact classes were made in order to be extracted from both SHAVE and NWS datasets
and to allow comparison. Nevertheless, there is a slight difference between both datasets
classification.

3.1.1 SHAVE impacts

Impact classification for the SHAVE dataset is based on information contained in the follow-
ing fields : ’Flood type’, ’Flood nature other’, ’Flood evac’, ’Flood rescue’, ’Comments’ and
’Metr comments’. As information about evacuation and rescue was recorded in two distinct
fields, two impact classes could be created. Along with the presence of a ’No impact’ class,
this is the only difference from the NWS classification.

SHAVE impact typology is presented in Table 1.

Code SHAVE impact classes Description
1 No impact SHAVE ’null reports’.
2 Other Unclassified or unknown impact.
3 Overflow Streams out of their banks.
4 Greenlands Flooded cropland, pasture, yard or grassland.
5 Street/Road Flooded street or road
6 Road closure Also includes impassible roads.
7 Inundation Floodwaters in buildings or homes, including basements.
8 Evacuation
9 Stranded cars e.g.: moved by floodwaters, stalled in ditches,...

10 Rescue/Fatality/Injury

Table 1: SHAVE impact classification.

3.1.2 NWS impacts

Impact classification for the NWS dataset is based on information contained in the following
fields : ’Direct injuries’, ’Indirect injuries’, ’Direct fatalities’, ’Indirect fatalities’ and ’Event
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narrative’. For the NWS dataset, impact classification is almost only based on textual
comment (the ’Event narrative’ field), which makes the task more challenging (there are
about 3000 reports a year). The impact classification was then limited to the Arkansas Red
River Basin, for which forecasting products are readily available.

Recall that NWS does not include null reports, then the ’No impact’ class is not used.
Also, as for SHAVE dataset, redundant fields were removed. NWS impact typology is
presented in Table 2.

Code NWS impact classes Description
2 Other Unclassified or unknown impact.
3 Overflow Streams out of their banks.
4 Greenlands Flooded cropland, pasture, yards or grassland.
5 Street/Road Flooded street or road
6 Road closure Also includes impassible roads.
7 Inundation Floodwaters in buildings or homes, including basements.
8 Stranded cars e.g.: move by floodwaters, stalled in ditches,...
9 Evacuation/Rescue/Fatality/Injury

Table 2: NWS impact classification.

3.2 Spatial and contextual analysis of SHAVE flash flood impacts

An analysis was done by crossing SHAVE flash flood impacts with the interviewee perception
of the flooding context and characteristics (already included in the dataset) and with spatial
attributes, sampled using Geographic Information System.

3.2.1 Perceived attributes

Some information about interviewees perceptions of flash floods are readily available for each
report in the SHAVE dataset. These perceived attributes, chosen to be compared with flash
flood impacts are the following :

Water Movement ; nominal variable

Water Depth ; scaled variable [meters]

Flood Frequency (return period) ; nominal variable

3.2.2 GIS-sampled spatial attributes

Spatial attributes were added to the SHAVE dataset by sampling raster data in a GIS :
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Land Use ; nominal variable

Population Density ; scaled variable [inhab./km2]

Local Upslope ; scaled variable [degrees]

Drainage Area ; scaled variable [km2]

Wetness index (CTI) ; scaled variable : CTI = ln[Drainage area/tan(Local upslope)]

The Wetness index, or Compound Topographic Index (CTI) is a value combining ups-
lope drainage area and local slope. It is commonly used to quantify topographic control on
hydrological processes : it describes water accumulation in soils [Beven and Kirkby, 1979].
Low CTI values describe places with smaller drainage areas and steeper slopes, whereas high
values are associated to larger drainage areas and more gentle slopes.

Attributes were retrieved by point-sampling, i.e., by assigning the pixel value located
right under each SHAVE report. All these raster layers are at 1km resolution.
Population density is derived from the US 2000 census. Land Use is taken from USGS’ Land
Use and Land Cover (LULC) database. Local Upslope, Drainage Area and Wetness index
rasters are taken from the USGS’ HYDRO1k dataset, derived from the 30 arc-second digital
elevation model of the world (GTOPO30). Please refer to the Earth Resources Observation
and Science (EROS) website for additional information : http://eros.usgs.gov/.
See Appendix B (Tables 13 and 14) for a description of the updated impact-foccused SHAVE
and NWS datasets.

3.2.3 Methodology for attribute categorisation and cross-tabulation analysis

Because flash flood impacts and many attributes consist of categorised variables, a cross-
tabulation approach was chosen to analyse the relationship between these variables. So, in
order to deal only with nominal variables, continuous attributes (i.e., Water Depth, Pop-
ulation Density, Local Upslope, Drainage Area and Wetness index) had to be categorised.
Attribute categories were chosen manually, in order to be both meaningful and sufficiently
sampled (see Table 3).

- The Water Depth perceived attribute has been split into three categories: ≤10cm
(corresponding to ankle-deep waters and below), 10-30cm (between ankle-deep and knee-
deep waters) and >30cm (above knee-deep waters).

- The 13 Land Use classes (see Table 14) have been grouped to make five new categories
: Water, Forest (includes all Forest, Woodland and Shrubland sub-categories), Grassland,
Cropland and Urban. Note that the Bare Ground class has not been sampled.
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Impact classes OVER. GREEN. ROAD CLOS. INUN. EVAC. CARS RESC.
n = 471 1019 237 291 388 71 40 31

Water Movement Moving Standing (unknown)
n = 1131 776 641

Water Depth [cm] ≤ 10 ]10-30] > 30 (unknown)
n = 815 608 905 220

Flood Return Period ≤ 1year ]10-30y.] Never Seen (unknown)
n = 1440 295 312 501

Land Use Water Forest Grassland Cropland Urban
n = 15 906 160 1225 242

Pop. Density [i./km2] ≤ 4 ]4-70] ]70-500] > 500
n = 1017 866 339 326

Local Upslope [°] ≤ 0.2 ]0.2-0.6] > 0.6
n = 946 1182 420

Drainage Area [km2] ≤ 1 ]1-20] > 20
n = 1562 642 343

Wetness index (CTI) ≤ 5 ]5-7] > 7
n = 503 1244 801

Table 3: Distribution of impacts and spatial attributes classes.

- Population Density has been divided into four classes, in order to account for sparsely
populated (≤4 inhab./km2), low density (]4-70] inhab./km2), high density (]70-500] inhab./km2)
and very high density areas (>500 inhab./km2).

- Drainage Area has been split into three classes. The first class (≤1km2) corresponding
to points sampled in a grid cell which has only one or no adjacent draining cell. The two
other classes has been chosen to make the distinction between drainage areas being below
and above 20km2. This limit was chosen in accordance with Ruin et al. [2008], who studied
the hydro-meteorological circumstances of fatal accidents during the 2002 flash flood event
in the Gard region (France). They found that fatalities in catchments <20km2 occured
outdoor, with and average age of 43 and were mainly males, whereas in larger catchments
(>1000km2), fatalities occured at home and concerned older people (average age of 76).

- Finally, Local Upslope and Wetness index were first split into five classes using quan-
tiles, but it happened that there were too many classes to give robust cross-tabulation results,
then these 5 classes were grouped into three larger categories.

This classification leads to unevenly distributed categories of spatial/perceived attributes
(the independent variables). The impact classes (the dependent variables) being also strongly
unevenly sampled (for instance, n=1019 for ’Greenland’ and n=71 for ’Evacuation’), a some-
what double standardisation has been done. One one hand, to take into account the uneven
impact classes distribution, percentages have been computed within each impact classes (see
Table 4). On the other hand, to take into account the non-uniform attribute classes dis-
tribution, a deviation from the attribute total percentage was computed. It is simply the
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subtraction between impact percentages and the total percentage of each attribute. These
values will be used in the next section to illustrate cross-tabulation results.

Attributes Impacts
(Water Move.) OVER. GREEN. ROAD CLOS. INUN. EVAC. CARS RESC. Total
MOVING
Count 293 340 128 166 111 46 23 24 1131
% within Impacts 80.9% 45.9% 74.4% 75.8% 38.7% 69.7% 76.7% 80.0% 59%
Deviation from
attribute Total % 21.6% -13.4% 15.1% 16.5% -20.6% 10.4% 17.4% 20.7%
STANDING
Count 69 401 44 53 176 20 7 6 776
% within Impacts 19.1% 54.1% 25.6% 24.2% 61.3% 30.3% 23.3% 20.0% 41%
Deviation from
attribute Total % -21.6% 13.4% -15.1% -16.5% 20.6% -10.4% -17.4% -20.7%
Total
% of Total 19.0% 38.9% 9.0% 11.5% 15.1% 3.5% 1.6% 1.6% 100%
Count 362 741 172 219 287 66 30 30 1907

Table 4: Example of cross-tabulation : SHAVE Impacts crossed with Water Movement.

Note that for impacts, the ’second’ and ’third’ impact fields were added to the analysis,
which allows larger sample sizes.

3.2.4 Results and discussion : cross tabulation analysis

Before analysing cross-tabulation results, two statistics have been computed to account for
independence and relationship’s strength of each impact-attribute crossing : the Pearson Chi2

and Cramer’s V tests. The Pearson’s Chi2 is a test for independence (i.e., independence
between tested variables is the null hypothesis, H0). So if H0 is significantly rejected (when
the Chi2 asymptotic significance value [the p-value] is below the significance level, at α=0.05),
there is a statistically significant relationship between the variables. The Cramer’s V is a
test that evaluates the strength of a relationship between variables. High Cramer’s V values
indicate strong relationship, with the maximum being 1 and the minimum zero. In the
following table, these statistics are presented for each cross-tabulation (Table 5).

Chi2 values indicate significant relationships (at α=0.05) between impacts and attributes,
apart from Drainage Area, which appears to be significantly independent of impacts. How-
ever, Cramer’s V values are relatively low, indicating weak relationship between impacts
and attributes, especially for Local Upslope, Drainage Area and Wetness index (< 0.1).
But these statistics account for the whole cross-tabulation table, so individual relationships
between each classes of impacts and attributes should be analysed case by case in order to
retrieve as much information as possible.
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Impact vs : Chi2 2-sided p-value Cramer’s V
Water Movement 0 0.22
Water Depth 0 0.18
Flood Return Period 0 0.15
Land Use 0 0.13
Pop. Density 0 0.19
Local Upslope 0.006 0.08
Drainage Area 0.063 0.07
Wetness index (CTI) 0.004 0.08

Table 5: Summary of statistical tests (Cramer’s V and Pearson’s Chi2 2-sided asymptotic signifi-
cance [p-value]) for each Impact vs Attritube cross-tabulation.

Bar charts representing the deviation from attribute total % have been choosen to illus-
trate the relationship between impacts and spatial attribute classes. Note that the three
first cross tabulation analyses (Fig. 2, 3 and 4) are those conducted with the SHAVE data
themselves.

The Impact versus Water Movement chart (see Fig. 2).
Strong positive signals (>10% dev.) show that Moving Water is related with Overflow,
Street/Road, Road Closure, Evacuation, Stranded Cars and Rescue. On the other hand,
strong signals (>10% dev.) indicate that Standing Water is associated with Greenlands and
Inundation. These relationships seem consistent with the impacts context, i.e. standing
water for flat, low lying impacts and running water for impacts associated to overflow/runoff
and most severe ones. As these results make sense with impact contexts, this is a first ele-
ment showing that impacts were correctly classified.

These moving/standing results will be complemented wih the next cross-tabulation :
Impact versus Flood Depth (see Fig. 3).

The Overflow, Road Closure, Evacuation, Stranded Cars and Rescue impact classes show
strong signals for the > 30cm bin, with deviations over > 10%. The three most severe im-
pacts are then related by the interviewees to high waters, as well as rivers out of their banks
and road closures (which are often associated with overflows on nearby roads or low-water
crossings). These associations then make sense with these impact contexts. And if previous
results are added, these impacts are associated to high and moving waters, representing se-
vere hazards. Note that Overflow is not a severe impact, but there may be little vulnerability
(see next associations to low density/rural areas).

Furthermore, Inundation is strongly not associated (≤ -10% dev.) with high flood waters.
This can be explained by the fact that this classification also includes basement flooding.
Also, recall the previous association with standing waters. Street/Road shows a positive
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Figure 2: SHAVE impacts versus Water Movement cross-tabulation. Bar chart representing devi-
ation from attribute total %.

Figure 3: SHAVE impacts versus Water Depth cross-tabulation. Bar chart representing deviation
from attribute total %.
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signal (> 5 % dev.) for the 10-30cm bin and strongly negative (< -10% dev.) for shallow
floodwaters. This association with intermediate water depths (in movement) could be pos-
sibly related to a runoff context. Finally, Greenlands shows a weak positive signal for the
two ≤ 30cm bins (< 5% dev.), but is clearly not linked (< -5% dev.) to high waters. This
result makes sense with the previous standing water association, if we imagine a situation
with inundating waters in croplands.

The last perceived attribute chart is Impact versus Flood Return Period (see Fig. 4).
Overflow impacts are associated with 1-10years return period (> 5% dev.), whereas Green-
lands and Street/Roads are linked (> 5% dev.) to frequent events (≤ 1year). However,
Road Closure and Inundation show weak signals (< 5% dev.), so interviewees equaly asso-
ciate these impacts to frequent and rare events. Finally, Evacuation, Stranded Cars, and
Rescue are mostly associated with rare events (note the contradictory signal for Stranded
Cars). For this SHAVE attribute, signals are sometimes weak, or unexpected (Stranded
cars). It may be due to people’s perceptions, knowledge or age. These results must also
be taken cautiously because of the smaller sample size for severe impacts. In the end, they
show that people are moderately able to evaluate flood frequency, but there is still a general
tendency showing that the most severe the impact is, the rarest the event.

Figure 4: SHAVE impacts versus Flood Return Period cross-tabulation. Bar chart representing
deviation from attribute total %.
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The following cross tabulation analyses (Fig. 5, 6, 7 and 9) are now those concerning the
independent, GIS-sampled dataset :

The Impact vs Land Use chart (see Fig. 5).

Figure 5: SHAVE impacts versus Land Use cross-tabulation. Bar chart representing deviation from
attribute total %.

Overflow impacts are mostly associated with Forest (> 5% dev.) and show a negative
signal for the Urban bin (< -5% dev.). Overflow then appears to be more of a rural impact.
Furthermore, Greenlands flooding is associated with Cropland (> 5% dev.), which makes
sense. Street/Roads and Road Closure show weak signals (both below 5% dev.). These im-
pacts seem to happen both in rural/urbanized areas. Nevertheless, there is a slightly negative
association with Cropland. For the Inundation impact, there is a strong positive signal for
Urban (> 10% dev.). This result (along with Greenlands associated to Cropland) confirms
that the impact classification is consistent. The Evacuation impact shows a negative signal
for Cropland (< -5% dev.) and positive signals (but relatively weak : around 5% dev.) for
both Forest and then Urban. Evacuation is then not especially linked to urbanised areas, as
we would expect, but also occurs in rural zones. The Stranded cars impact is strongly asso-
ciated to Urban (> 15% dev.) and also linked to Grassland (> 8% dev.). This result reflects
well the classification of this impact, which includes cars stalled in parking lots (Urban) or
ditches (Grassland). Finally, the Rescue impact does not show any clear tendency (all bins
bellow 5% dev.), which indicates that these observed Rescues, Fatalities and Injuries are not
linked to a particular type of land use.
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The Impact vs Population Density chart (see Fig. 6).

Figure 6: SHAVE impacts versus Population Density cross-tabulation. Bar chart representing
deviation from attribute total %.

Before going into details, note that this chart presents clear trends for almost every impact
category : going from the lowest to the highest population density bins, deviations evolve
progressively from minimum to maximum values. Moreover, recall that this population
density information was collected independently from the SHAVE reports.

Overflow and Greenlands classes are associated to sparsely populated areas (strong pos-
itive signals (> 10% and > 5% dev.) for densities ≤ 4 inhab/km2). This is consistent with
the previous rural association. Street/Road and Road closure does not show strong positive
signals (< 5% dev.), but there is a really clear evolution from strongly negative on sparsely
populated areas (< -5% dev.) to positive towards dense areas. Street/Roads has a maxi-
mum postive signal for very dense, possibly urban areas (> 500 inhab/km2) whereas Road
Closure has its maximum slightly more towards medium/heavily populated areas (70-500
inhab/km2). Road closure and Street/Roads were not linked to a particular land use, but
are now associated to denser inhabited zones (>70 inhab/km2). This result seems logical if
we consider that urbanisation is built along roads, or the other way round. Inundation and
Stranded Cars show very strong association (> 15% dev.) with heavily populated areas (>
500 inhab/km2). This is consistent with their association to urban land use. Evacuation
is also associated to heavily populated areas, but there is a weaker signal than for the two
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previous impacts (even if > 5% dev.). This less strong association can be correlated with
its previous correlation with both Forest and Urban land uses. This result shows that Evac-
uation might happen in populated areas, but not necessarily in very dense cities. Finally,
Rescue is mostly related to low population density (> 10% dev.). This association is very
interesting, as the most severe impact then seems to occur in less dense areas.

The Impact vs Local Upslope chart (see Fig. 7).

Figure 7: SHAVE impacts versus Local Upslope crosstabulation. Bar chart representing deviation
from attribute total %.

In general Local Upslope associations show relatively weak signals. Moreover, note the
overall low range of slope values (see Table 3). Note also that these values are computed
from the maximum change in the elevations between each gridcell (i.e., on a km2) and its
eight neighbors.

Nevertheless, for Overflow, Street/Road and Inundation, there is a tendency towards
higher slopes and for Greenlands, towards lower slopes. For Road closure, no signal at all.
Finally, Evacuation, Stranded Cars and Rescue (the most severe impacts) are associated to
the intermediate slope bin (0.2-0.6°).

The Impact vs Drainage Area chart (see Fig. 8).
Overflow, Greenlands, Road Closure and Inundation show weak signals, but note a pos-

itive tendency (even if weak : < 5% dev.) for Road Closure towards larger drainage areas.
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Figure 8: SHAVE impacts versus Drainage Area crosstabulation. Bar chart representing deviation
from attribute total %.

Figure 9: SHAVE impacts versus Wetness index (CTI) crosstabulation. Bar chart representing
deviation from attribute total %.
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However, Street/Roads flooding is associated (> 5% dev.) with smaller drainage areas
(≤ 1km2), possibly linked to runoff. Evacuation, Stranded Cars and Rescue (the most se-
vere impacts) are associated to the intermediate bin ( > 5% dev.) of drainage areas between
1 and 20 km2, possibly related to overflows in upstream catchments.

The Impact vs Wetness index (CTI) chart (see Fig. 9).
First, Overflow, Greenlands, Road Closure and Inundation show weak signals (as for drainage
area). But here, note a positive tendency (even if weak : < 5% dev.) for Inundation towards
lower CTI values. Street/Roads is mostly associated (almost 5% dev.) with smaller CTI
values (see low drainage areas) and has a negative signal (< -5% dev.) for higher values.
Again, linked to runoff? On the other side, Evacuation and Rescue are associated to high
CTI values (> 7), which represent larger drainage areas and more gentle slopes, leading
to higher water accumulation. Finally, Stranded cars is associated with intermediate CTI
values ]5-7].

3.2.5 Summary table and conclusion

Table 6 is summarizing attributes mostly associated to each impact classes.

OVER. GREEN. ROAD CLOS. INUN. EVAC. CARS RESC.
Water Move. move stand move move stand move move move
Return Period ]1-10y] ≤1y ≤1y - - n.seen ≤1/n.seen ]1y-n.seen]
Land Use forest crop - - urban forest/urban urban/grass -
Pop. Density ≤ 4 ≤ 4 >500 >70 >500 >500 >500 ]4-70]
Water Depth >30cm ]10-30cm] ]10-30cm] >30cm ≤10cm >30cm >30cm >30cm
Local Upslope - ≤0.2° >0.6° - >0.6° ]0.2-0.6°] ]0.2-0.6°] ]0.2-0.6°]
Drainage Area - - ≤1km2 - - ]1-20km2] ]1-20km2] ]1-20km2]
CTI - - ≤5 - ≤5 >7 ]5-7] >7

Table 6: Table summarizing attributes mostly associated to each impact classes.

A first significant result of this spatio-contextual analysis is that associations found using
cross-tabulation are consistent with the impact classification. This is true for perceived
attributes already included in the SHAVE dataset, as well as for spatial attributes (at
1km2 resolution) sampled through GIS. However, topographic variables (i.e.: Local Ups-
lope, Drainage Area and Wetness index) do not show significant results. The 1km2 grid
resolution used for the present analysis might be to coarse to correctly characterise local
topography, which controls hydrological processes. Nevertheless, meaningful results found
for the other attributes show that the SHAVE dataset is a trustworthy tool for flash flood
characterisation (at least at a 1km2 scale), even if it is based on public polls.

24

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 04:38:12 EEST - 18.222.90.148



A second important finding is that, apart from trivial associations, interesting results
emerge from the spatio-contextual analysis :

- Evacuations are not necessarily only observed in urban zones, but also in rural areas.
- Rescues, Fatality or Injuries mostly take place in low population density areas. More-

over, these impacts are not perceived by the interviewees as extreme, rare events (as it is
the case for Evacuation) because associated return periods vary from one year to ’never
seen before’. This result indicates how people may have difficulties to estimates an event
frequency.

4 Evaluation of the ability of US flash flood forecasting

tools to predict impacts

Launched in the mid-eighties, the operational flash flood prediction tool in the US is radar-
based and relies on the concept of flash flood guidance (FFG). Besides this, alternative
approaches to FFG have been recently developed, using spatially distributed land surface
and soil characteristics maps (the Gridded FFG) as well as distributed hydrological models.

In this section, the impact-classified NWS and SHAVE datasets will be used to evaluate
the ability of three of these prediction tools (FFG, GFFG and the Distributed Hydrological
Model - Threshold Frequency [DHM-TF]) to predict flash flood impacts.

4.1 Presentation of the flash flood forecasting tools

4.1.1 Flash Flood Guidance

The concept of flash flood guidance (FFG) is the threshold rainfall over nominal accumulation
periods of one, three, and six hours required to initiate flooding on small streams that respond
to rainfall within a few hours [Georgakakos, 1986]. In other words, FFG is the basin-averaged
rainfall required over a basin to produce flooding at its outlet. One to three times a day, FFG
is derived using a hydrologic model taking into account initial soil moisture and stream states.
These values, when overlaid with radar’s Quantitative Precipitation Estimates (QPE), are
used by the forecaster to issue flash flood warnings when observed or forecast rainfall rates
exceed the thresholds. FFG is computed in two steps :

First, determining the threshold runoff [L] required to cause flooding (bankfull conditions)
at the basin outlet. In the NWS, this value is derived by dividing the estimated 2-year return
period flow [L3/T ] by the unit hydrograph peak flow [L2/T ]. Threshold runoff values are
computed once offline at a resolution down to 5km2 basins and are considered static.

Then, a lumped-parameter hydrological model is run under differing basin-averaged rain-
fall scenarios to yield rainfall-runoff curves over 1-, 3-, and 6-hours accumulation periods,
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given initial soil moisture and stream states. The method employed at the NWS uses the
Sacramento Soil Moisture Accounting model (SAC-SMA) and includes contributing processes
such as snowmelt, interception, infiltration, interflow, soil water storage and evapotranspira-
tion. These rainfall-runoff curves are then used in reverse to look up the rainfall rates that
correspond to the static threshold runoff values; this is FFG [Gourley et al., 2011b].

Because FFG values are computed at basin scale, a recent development has been made
to create a tool at higher spatial resolution : the Gridded FFG.

4.1.2 Gridded Flash Flood Guidance

The general GFFG methodology, proposed by Schmidt et al. [2007], follows that of FFG in
that static values of threshold-runoff are first derived to estimate bankfull discharge and are
subsequently used to derive rainfall thresholds, which change in response to modelled soil
saturation [Gourley et al., 2011b]. The difference here is that threshold-runoff values and
rainfall-runoff curves are computed at a grid cell scale, taking into account variability in the
land surface and soil types, as well as slope. The nominal resolution of GFFG products is
4km (see Figure 10 for a comparison between maps of FFG and GFFG). Note that GFFG
is progressively replacing FFG as operational tool in several US River Forecast Centers, but
FFG is still in use for the major part of the US. For this reason, FFG and GFFG products
are hardly available simultaneously for a particular area.

4.1.3 Distributed Hydrological Model - Threshold Frequency

Developed by Reed et al. [2007], the Distributed Hydrological Model - Threshold Frequency
(DHM-TF) deviates from FFG in that it uses observed or forecast rainfall as direct forcing
to a hydrological model, rather than determining the rainfall thresholds in scenario mode
[Gourley et al., 2011b]. The method consists of running a distributed hydrologic model at
each grid point using historical rainfall historic data. This way, simulated runoff can be
assigned to grid cells where discharge observations are not available. Then a flood frequency
analysis (assuming a log-Pearson Type III distribution) is used to compute flows that cor-
respond to return periods of one, two, five yr, etc. In forecast mode, DHM-TF is forced
with real-time, radar-based rainfall. Exceedance of simulated flows over the threshold re-
turn period flows (in this study, a 2-year return period flow) is the basis for alerting on an
impending flash flood [Gourley et al., 2011b].

4.2 Presentation of the flash flood case studies

In this analysis, two flash flood case studies (considered as extreme events) were chosen, for
which at least two of the three forecasting tools were available. They are: the flash floods
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Figure 10: Average values of a) FFG and b) GFFG corresponding to 1-h accumulation period over
Arkansas-Red River Basin from 01 September 2006 to 22 August 2008 [Gourley et al., 2011a].

caused by the Erin storm over the state of Oklahoma in 2007 and the Oklahoma City flash
flood event of 2010. These events occurred at different spatio-temporal scales (see Fig. 11):

- The first flash flood case study was caused by the remains of the tropical storm Erin,
which crossed the state of Oklahoma from West to East over two days (August 18th to 20th)
in 2007. Rainfall rates of over three inches (76mm) per hour were common, with signif-
icant flash flooding reported in numerous counties. Rainfall amounts exceeded five inches
(127mm) over a large area, with some locations receiving eight to ten inches (203 to 254mm).

- The second flash flood case is at a smaller spatio-temporal scale. It was more of an urban
event, occurring June 14th 2010 over the Oklahoma City area. A first round of significant
rain impacted central Oklahoma around 3 am. This round moved east before another, longer
lived, thunderstorm complex developed over the Oklahoma City metro area. Rainfall rates
averaged one to two inches (25-50mm) per hour, with some thunderstorm bands producing
rates near three inches (76mm) per hour. A total of 5-9inches (127-228mm) was reported
over the area, with up to 12inches (305mm) over the north-central portion of Oklahoma City.
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Figure 11: Presentation of the two case studies : maps of observed monthly precipitation. Source
: National Weather Service, http://water.weather.gov/precip/.

A description of the spatio-temporal domain of the meteorological events associated to
these flash floods as well as the available impacts and forecasting datasets is included in
Table 7 :

Erin event Oklahoma City event
Approximated start time August 18th 2007 17:00 UTC June 14th 2010 14:00 UTC
Approximated end time August 20th 2007 7:00 UTC June 14th 2010 21:00 UTC
Spatial extent 300x200km 50x60km
Available impact datasets NWS (points) NWS (polygons) / SHAVE
Available forecasting tools FFG / GFFG / DHM-TF GFFG / DHM-TF

Table 7: Table summarizing spatio-temporal domains and available impacts and forecasting prod-
ucts for both case studies.

4.3 Preparation of the flash flood forecasting tools datasets

In this analysis, 1-hour accumulation FFG and GFFG were chosen, rather than 3- or 6hours,
as they showed better skill when using observed NWS data (see Gourley et al. [2011a]). To be
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sure not to miss the events, these hourly FFG, GFFG and DHM-TF products were collected
over the whole Arkansas-Red River Basin (see Fig. 10) and over a time window extending
from 8 hours prior to the meteorological event to 2 hours after. Quantitative Precipitation
Estimates (QPE), taken from the hourly multi-sensor Stage IV product (mosaicked from
US radars and rain gauges, see: http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/)
are used to calculate QPE/FFG and QPE/GFFG ratios for every 1-hour grid. Then, grids
of maximum 1-h QPE/FFG, QPE/GFFG and DHM-TF return periods were computed,
encompassing the whole event duration. Finally, these grids of maximum forecasting tool
values were sampled for each impact point, using circular point clusters with a radius of 7.5km
for the Erin case and 1.5km for the Oklahoma City case (see Fig. 12 for an illustration of
this sampling cluster). The selected tool value associated to the impact is the maximum
value sampled by the cluster.

Figure 12: Sampling cluster used for the Erin case.

Note that bank-full conditions are met starting from QPE/FFG-GFFG ratios of 1, or a
DHM-TF return period of 2 years. These limits will be used to define if a flash flood event
is forecast by the tools or not, in order to populate contingency tables (see Fig. 8).

Forecast Not forecast
Observed hit miss

Not observed false alarm correct negative

Table 8: Contengency table, for forecasting.

Three statistics were then computed (when possible) from the hits, misses, and false
alarms in each of the contingency tables:

- The Probability Of Detection (POD) describes the fraction of observed flash floods that
were correctly forecast (eq. 1).
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POD =
hits

hits+misses
(1)

A POD of 1 indicates all flash floods were correctly forecast while 0 indicates no flash
floods were detected by the forecast tools.

- The False Alarm Ratio (FAR), which describes the fraction of forecast events that were
not associated with observed events (eq. 2).

FAR =
false alarms

hits+ false alarms
(2)

Similar to POD, FAR ranges from 0 indicating no forecast events went unobserved to 1
indicating all forecast flash floods were not associated with an observed event.

- The Critical Success Index (CSI) combines both aspects of POD and FAR and thus
describes the skill of a forecast system (eq. 10).

CSI =
hits

hits+misses+ false alarms
(3)

CSI ranges from 0, indicating no skill, to 1 for perfect skill.

4.4 Results and discussion

4.4.1 The Erin storm event

For the Erin case, only NWS, point-based impacts are available. A symbology was created
for each impact. Furthermore, to better illustrate the multi impact aspect, the first and
second impact are symbolised by white squares and circles, respectively. Property damage
estimations are also included as labels. A first map compares flash flood impacts and Pop-
ulation Density (Fig. 13) and the next three compare impacts with 1-h QPE/FFG ratios
(Fig. 14), 1-h QPE/GFFG ratios (Fig. 15) and DHM-TF return periods (Fig. 16). Primary
roads and majors streams are also included in each figure.

The map representing impacts and population density (Fig. 13), was created with the
idea to identify factors of possible vulnerability linked to impacts. The map shows that
impacts are not necessarily located in areas of high population densities, but are clearly
situated along primary roads and/or major streams.

A first analysis is done on a YES/NO event basis, by studying the forecasting tool maps
and then by computing statistics. In general and before looking at statistics, we can see that
all flash flood forecasting tools correctly locate the global area impacted by flash flood.
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Figure 13: Map of NWS flash flood Impacts and Population Density for the Erin case.

Figure 14: NWS flash flood Impacts and maximum 1h QPE/FFG ratios for the Erin case.

31

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 04:38:12 EEST - 18.222.90.148



Figure 15: NWS flash flood Impacts and maximum 1h QPE/GFFG ratios for the Erin case.

Figure 16: NWS flash flood Impacts and maximum DHM-TF return periods for the Erin case.
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Note that GFFG is the tool identifying the smaller impacted areas (in blue colours) com-
pared to the two other tools, and it is missing a few impacts. But for FFG and DHM-TF,
even if they detect almost all impacts, they also forecast large areas where no NWS impacts
are observed. This could mean that either:
- the tools are overestimating flash flood impacted zones, or
- these zones were impacted but no NWS report was collected, or
- these zone were experiencing flash floods but there was little vulnerability, so no impact.

Because the NWS dataset does not include null reports (so no information about false
alarms), the Probability Of Detection was the only statistics that could be computed for the
three flash flood forecasting tools (see Table 9). The tool having the best detection skill is
DHM-TF, followed by FFG then GFFG. However, these high detection skills may go along
with high False Alarm Ratio values, which unfortunately can not be estimated.

Erin event POD
1-h QPE/FFG 0.94
1-h QPE/GFFG 0.78
DHM-TF 1

Table 9: POD results for Erin impacts sampling.

Recall also that because tools were sampled by taking the maximum of a circular point
cluster, it artificially increases the POD.

A second analysis was done by comparing sample values for each tool, as function of
impacts. A line delimiting the bank-full and non bank-full conditions (a detected flash flood
or not) is added to the following graphs.

On the impact versus 1-h QPE/FFG graph (Fig. 17), the average ratio per impact (black
squares) are on the ’detected’ zone for all impacts. Note that the distribution of sampled
tool values is very wide (see grey diamonds), but apart from two sampled impacts, all are
over bank-full conditions. Also, average ratios per impact seem to be divided in two groups :
the four most severe impacts have larger ratios (around 2) whereas the two less severe have
lower average values (around 1.4), meaning that in this particular case, the FFG tool is able
to make a distinction between non severe and more severe impacts.

On the impact versus 1-h QPE/GFFG graph (Fig. 18), more impacts remain non de-
tected, compared to the FFG tool. And the Greenlands impacts are event not detected at
all. Also, compared to FFG average ratios per impacts, the GFFG tool show globally lower
values (all below 2). But while FFG seemed to distinguish two groups, for GFFG, there
seems to be a increase of ratio values, going from the less severe to the most severe impact.
But this must be taken with caution, as the Stranded Cars impact has only three sampled
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Figure 17: Sampled maximum 1h QPE/FFG ratios as function of impact classes for the Erin case.

Figure 18: Sampled maximum 1h QPE/GFFG ratios as function of impact classes for the Erin
case.

values, so the average value could be biased. Note also the highly spread distribution of
sampled ratios (grey diamonds).

On the impact versus DHM-TF return periods graph (Fig. 19), all impact classes have
very high return periods (recall that both Erin and Oklahoma City are extreme cases), with
average values ranging from 100 to 200 years. Every single impact is sampled with values
over the bank-full zone. However, no strong link between impact type and return period is
observed, apart from the two less severe impacts (Street/Road and Greenlands), for which
the average return period is about a hundred years lower (note the logarithmic scale). Again,
note the very wide distributions of sampled tool values (grey diamonds).
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Figure 19: Sampled maximum DHM-TF return periods as function of impact classes for the Erin
case.

4.4.2 The Oklahoma City event

For the Oklahoma City flash flood event, only SHAVE impacts (points) were used, because
they include null reports (white points on the maps), so that FAR and CSI can be com-
puted. Moreover, in 2010, NWS reports are represented by polygons, which appeared to be
inconvenient, as they are often the size of the whole metro area.

As for the Erin case, a map of impacts and Population Density is presented before the two
analysed tools, which are in this case 1-h QPE/GFFG ratios and DHM-TF return periods.
Then skill analysis is done on a YES/NO event basis (computation of POD, FAR and CSI),
before undergoing an impact-based analysis.

The map presenting SHAVE impacts versus Population Density (Fig. 20) shows that the
SHAVE sampling covers the whole Oklahoma City metro area. Impacts are not necessarily
located along primary roads, neither along major streams. Note that the major river crossing
Oklahoma City is regulated.
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Figure 20: Map of SHAVE flash flood Impacts and Population Density for the Oklahoma City
case.

On the maps of impact versus 1-h QPE/GFFG (Fig. 21) and DHM-TF return periods
(Fig. 22), flash flood forecast patterns (in blue) correctly match the global extension of
impacts. But at the same time, there is a lot of null reports on forecast grid-cells, indicating
numerous false alarms. In order to assess their skills on a YES/NO event basis, POD, FAR
and CSI are computed for both tools in Table 10.

Oklahoma City event POD FAR CSI
1-h QPE/GFFG 0.86 0.85 0.14
DHM-TF 1 0.88 0.12

Table 10: POD, FAR and CSI results for Oklahoma City impacts sampling.

Results show that DHM-TF has the highest POD (1), but also the highest FAR (0.88).
In the end, it is 1-h QPE/GFFG that shows the best CSI, with a score of 0.14, despite a
lower POD value, but thanks to a better FAR. Note that even if the GFFG tool has a better
skill than DHM-TF for this particular case, both CSI values are still very low, even if they
stay in the same order of magnitude as the highest value found by Gourley et al. [2011a]
for the 1-h GFFG tool (0.12), using NWS reports over Arkansas-Red River Basin from 01
September 2006 to 22 August 2008.
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Figure 21: SHAVE impacts and max 1h QPE/GFFG ratios for the Oklahoma City case.

Figure 22: SHAVE impacts and max DHM-TF return periods for the Oklahoma City case.
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The next analysis for this case consists of comparing tool values as function of impact
classes. On average (see Fig. 23 and 24) both tools are detecting all kind of impacts (except
Stranded Cars for 1-h QPE/GFFG, but this result must be taken with high caution as there
is only one observation). But note that the GFFG tool shows values are just above bank-
full conditions, whereas DHM-TF shows very high return periods, compared to bank-full
conditions. For this particular smaller scaled, urban case, no clear link is found between
impact type and tool values.

Figure 23: Max 1h QPE/GFFG ratios as function of impacts for the Oklahoma City case.

Figure 24: Max DHM-TF return periods as function of impacts for the Oklahoma City case.
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5 Conclusion

This study provides an impact classification of flash flood reports datasets over the United
States, in order to evaluate the ability of US flash flood forecasting tools to predict such
categories of impacts.

After presenting the flash flood reports datasets (NWS and SHAVE), the method used
for impact classification is described. That way, impact-enhanced datasets could be created.
SHAVE impacts are then used in a spatio-contextual analysis, based on a cross-tabulation
method using attributes already included in the SHAVE dataset (perceived attributes : Water
Movement, Return Period and Water Depth) as well as GIS-sampled spatial attributes (Land
Use, Population Density, Local Upslope, Drainage Area and Wetness index). This analysis
showed consistent results (apart from topographic variables : Local Upslope, Drainage Area
andWetness index), indicating that on the one hand, impact classification was made correctly
and on the other hand, that the SHAVE dataset (even if based on public polls) is a reliable
tool for flash flood characterisation. Moreover, interesting results emerge from this analysis:

- Evacuations are not necessarily only observed in urban zones, but also in rural areas.
- Rescues, Fatality or Injuries mostly take place in low population density areas. More-

over, these impacts are not perceived by the interviewees as extreme, rare events (as it is the
case for Evacuation) because associated return periods vary from one year to "never seen
before". This result indicates how people may have difficulties to estimate an event frequency.

The second part of this study consisted in an evaluation of three US flash flood forecasting
tools : FFG, GFFG and DHM-TF. After a brief presentation of the tools, two extreme cases
of flash flood in Oklahoma (the Erin and Oklahoma City events) were chosen to evaluate the
tools on a YES/NO-forecast basis (computing Probability Of Detection, False Alarm Ratio
and Critical Success Index), but also as function of impacts.

For the Erin case (using NWS reports), all three tools are available, but the only statistic
that can be computed is the POD, as there is no false alarm reports available in the NWS
dataset. DHM-TF shows the maximum value of POD (1), followed by FFG (0.94) and GFFG
(0.78). But on the maps, DHM-TF (and GFFG, to a lesser extent) show larger forecast areas,
which may indicate more false alarms, even if FAR can not be computed. When looking
at tools values as function of impacts, FFG and GFFG seem to show a relation (even if
it must be taken with extreme care as some impacts are not sufficiently sampled) between
average tool values and impacts, when ranked by severity, whereas DHM-TF does not show
any relation between return period and impact severity. Moreover, for this larger scale case,
on a map, impacts seem to be located mostly along primary roads and streams.

For the Oklahoma City case (using SHAVE reports), only two tools are available (GFFG
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and DHM-TF) but in this case, FAR and CSI can be computed. GFFG shows the best value
of CSI (0.14), despite a lower POD value than DHM-TF, but thanks to a better FAR. These
CSI values are very low, even if they stay in the same order of magnitude as the highest
value found by Gourley et al. [2011a]. When looking at tools values as function of impacts,
for this particular smaller scaled, urban case, no clear link is found between impact type and
tool values. Moreover, on a map, impacts are not especially located along primary roads or
streams.

In conclusion, only a weak link between FFG and GFFG ratios and impact types could
be observed, for the Oklahoma City case. Indeed these tools not were not designed to take
into account flash flood impacts, which is the combination of a hazard (in this study, quite
well described by the tools) but also human and environmental vulnerability. This result
demonstrates that these vulnerabilities must be assessed in more details. It can be done by
a thinner analysis of topographic attributes (Drainage Area, Local Upslope, Wetness index),
using nominal resolutions down to 30m (this can be derived from an Aster Digital Elevation
Model for instance). Other methods could also be used to estimate the Drainage Area, like
stream proximity or watershed area. Furthermore, it would be interesting to cross impacts
with road network density.

Finally, of course, the analysis of these two particular flash flood cases should be com-
pleted with a study of the whole NWS and SHAVE dataset. This would provide much more
samples and produce more robust statistics for tool evaluation.
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Appendix A : original flash flood reports datasets

NWS fields Comments
1. ID number
2. Event Type In our case, only flash floods.
3. WFO Weather Forecast Office
4. Begin Time (UTC)
5. End Time (UTC)
6. Begin Time (Unix)
7. End Time (Unix)
8. Timezone
9. State

10. County
11. Region
12. Direct Injuries
13. Indirect Injuries
14. Direct Fatalities
15. Indirect Fatalities
16. Property Damage Often estimated.
17. Crop Damage Often estimated.
18. Flood Cause For the great majority of the cases : Heavy Rain.
19. Event Source e.g.: Emergency manager, Trained Spotter, Public, News
20. Event Narrative of the flood event.
21. Episode Narrative of the meteorological event.
22. Location City, range and azimuth of the impacted area.
23. Location1 (Lat) Latitude in decimal degrees of the point or polygon first vertex.
24. Location1 (Lon) Longitude in decimal degrees of the point or polygon first vertex.

Table 11: Structure of the NWS dataset.
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SHAVE fields Comments
1. Event type Denotes if the report is about flood, wind, or hail. In our case: flood only.
2. Mag units Units for flood depth and extent
3. Id tag Denotes the call time and caller (for internal use)
4. Revision time Time of file edit (for internal use)
5. Revision number Number of times the file was edited (for internal use)
6. Start time Event start time in Unix time
7. Start year/month/day/hour Event start (hour in UTC), separated in 4 fields.
11. End time Event end time in Unix time
12. End year/month/day/hour Event end (hour in UTC), separated in 4 fields.
16. Start lat Latitude of report
17. Start lon Longitude of report
18. City Relationship of report location to the nearest city
19. County/State/CWA County/State/County Warning Area where the report is located (3fields).
22. Flood nearby location The location of the report if not at lat/lon of residence
23. Flood type - poor drainage/street flooding

- road/bridge closure
- inundation of structure
- pond/creek/stream overflow
- farmland/pasture flooding
- yard flooding
- cropland flooding
- other (see comments)

24. Flood nature other Comments about flooding marked "other" in the above field
25. Flood ongoing Denotes if the flooding was still occurring at the time of the call
26. Flood move Denotes if the floodwater was moving or standing.
27. Flood water depth m Depth of the floodwater (in meters)
28. Flood lateral extent m Lateral extent of pond/creek/stream overflow (in meters)
29. Flood evac Denotes if evacuations occurred due to flooding
30. Flood evac location Location of the evacuation(s)
31. Flood rescue Denotes if rescues occurred because of flooding
32. Comments Additional comments about the call (not pertaining to meteorological

events)
33. Metr comments Additional comments about the call (pertaining to meteorological events)
34. Contact phone Resident’s phone number [Removed prior to public consumption of data]
35. Contact results Marks the call as "questionable" if the resident could not provide an

exact time or location of the event or if the data given were suspect
36. Flood frequency 0 = no response

1 = every time it rains
2 = only during heavy rain
3 = once per year
4 = once every 5 years
5 = once every 10 years
6 = never had seen it before

37. Report type 2 = severe / 1 = non-severe / 0 = null
The following criteria were used for determining a severe flood: 0.5 ft
(0.15 m) of moving water, 3.0 ft (0.91 m) of standing water, road/bridge
closures, washed out roads/bridges, rescues, evacuations, water in an
above-ground structure, or major creeks/rivers out of banks.

Table 12: Structure of the SHAVE dataset.

43

Institutional Repository - Library & Information Centre - University of Thessaly
19/04/2024 04:38:12 EEST - 18.222.90.148



Appendix B : modified impact-foccused flash flood re-

ports datasets

Modified NWS fields Comments
1. ID number
2. Begin Time (UTC)
3. End Time (UTC)
4. Begin Time (Unix)
5. End Time (Unix)
6. Timezone
7. Property Damage Often estimated.
8. Crop Damage Often estimated.
9. Impact1 Most severe recorded impact
10. Impact2 Second most severe recorded impact
11. Impact3 Third most severe recorded impact
12. Event Source e.g.: Emergency manager, Trained Spotter, Public, News
13. Event Narrative of the flood event.
14. Location City, range and azimuth of the impacted area.
15. Location1 (Lat) Latitude in decimal degrees of the point or polygon first vertex.
16. Location1 (Lon) Longitude in decimal degrees of the point or polygon first vertex.

Table 13: Structure of the modified impact-foccused NWS dataset.
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Modified SHAVE fields Comments
1. Id tag Report identification number
2. Start UTC Event start date and time in UTC
3. Start UNIX Event start time in UNIX
4. End UTC Event end date and time in UTC
5. End UNIX Event end time in UNIX
6. Start lat Latitude of report
7. Start lon Longitude of report
8. Impact1 Most severe recorded impact
9. Impact2 Second most severe recorded impact
10. Impact3 Third most severe recorded impact
11. Metr comments Additional comments about the call (pertaining to meteorological events)
12. Report type 2 = severe / 1 = non-severe / 0 = null

The following criteria were used for determining a severe flood: 0.5 ft
(0.15 m) of moving water, 3.0 ft (0.91 m) of standing water, road/bridge
closures, washed out roads/bridges, rescues, evacuations, water in an
above-ground structure, or major creeks/rivers out of banks.

13. Flood ongoing Denotes if the flooding was still occurring at the time of the call
14. Flood move Denotes if the floodwater was moving or standing.
15. Flood water depth m Depth of the floodwater (in meters)
16. Flood lateral extent m Lateral extent of pond/creek/stream overflow (in meters)
17. Flood evac location Location of the evacuation(s)
18. Contact results Marks the call as "questionable" if the resident could not provide an

exact time or location of the event or if the data given were suspect
19. Flood frequency 0 = no response

1 = every time it rains
2 = only during heavy rain
3 = once per year
4 = once every 5 years
5 = once every 10 years
6 = never had seen it before

20. Land Use C Land Use (code)
0 = Water
1 = Evergreen Needleleaf Forest
2 = Evergreen Broadleaf Forest
3 = Deciduous Needleleaf Forest
4 = Deciduous Broadleaf Forest
5 = Mixed Forest
6 = Woodland
7 = Wooded Grassland
8 = Closed Shrubland
9 = Open Shrubland
10 = Grassland
11 = Cropland
12 = Bare Ground
13 = Urban and Built-up

21. Land Use Land Use (text)
22. Population Population density (inhabitant/km2)
23. Slope Local maximum upslope (°)
24. Flow Accu Flow accumulation, i.e.: drainage area (km2)
25. CTI Compound Topographic Index, also called ’Wetness Index’

Table 14: Structure of the modified impact-foccused SHAVE dataset.
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