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IHepiinyn

H dwapxdg avavouevn ypnon tov Video On Demand spapuoydv kot 1
dtadoon tov IPTV vanpesidv avgdvouv Tig avaykes yior e0pog Lmvng,
EVOLVOLMOVOLV TN dnovpyio copeopnong otig Levéelg Tov Internet ko
™V ELEAVICT] VYNA®V KaOVGTEPNGEMY GTNV TAELPA TOV YPT|GTOV TOV.
Ot otpatnykég duoyeiptong g Kpueng uvnung (caching) mapéyovv évav
OMOTELEGLATIKO TPOTO Y10l VO TEPLOPIGTOVV Ol OTTALTIGELS Y10 EVPOC
Covng, Héoa amd TV EMAEKTIKT TOTOHETNON TEPLEYOUEVOL KOVTE GTOVG
¥PNOoTES avTi va TomobeTeiton o€ Eva LOVO KEVTIPIKO EEVTNPETNTH. XNV
epyacia avt Tapovctdlovpe alydptOpovg ToToBETN OGS TEPLEYOUEVOL LE
oTOYO TNV EANYLGTOTOINGT) TOV TNG EVTOONG TNG KLKAOPOPLaG OEOOUEVOV
7oV eEVINPETOVVTOL Amd TOV KEVTIPIKO e&umnpetnth (avti amd Tig KPLEEG
LVALES), OEOOUEVNC TNG TOTOAOYING QTd KPVQOEC LVALES KO TOV TPOPIA
TOV QITHCEDV Y10 TEPLEYOUEVO OO TOVC YPNOTEG. XPNCLULOTOLEITON
emiong og LETPo PertioTomoinong Kot To PEco KOGTOG AdYm NG Kivnomng
TV 0ed0UéVV oT1g (evéelc Tov OkTvov. Eotidlovie 6T0 GuyKeEKPIUEVO
TOTO TOTOAOYI0G SIKTVOL OV £ivar 1EPaPYIKOS, BempOVTAS TOV KEVTIPIKO
eEumnpemt ©g piCa Tov, Kol deYOUOGTE OTL EMMTPEMETAL 1] GLVEPYOGIA
LETOED KPUOOV UVIULAOV OLUPOPETIKMV EMTEOWOV, OPKEL 1] KPLOT LVI|UN
TOL OVTOTOKPIvETOL G€ pia aitnon vo BpiockeTon GTO LOVOTATL TOV EVMVEL
TNV 0ITOVG0 KPLET UVIUN KoL TOV KEVTIPIKO eEumnpetnth. Avtifeta, dev
EMTPEMOVLE GLVEPYOGTA LETOED KPUOAOV UVIULAOV TOV 1010V EMTEOOV
epapyias. H cvvelspopd pog yxettal oty mapovcioon BEATIGTOV
TOAVOVVUKNG TOALTAOKOTNTOG aAyopiOumV Tomo0ETNoNG AVTIKEWEVOV
07O TOPATAVED HLOVTELD, BempdvTag 0Tt OAa Ta avTikeipeva eival id1ov
ueyéboug, Kavovikomomuévo otn povada. Emiong, eEetaleton to
TpOPANUa TG amd Kotvod exilvong Tov TpoPANUaToc ToTofETnong
TEPLEYOUEVOV KO OVAOEST|C TOV KIVITOV TEAUTOV GTOVG KOUPBOVC-QUAAN
™G 1epapyiog kpemv pvnuov. Iapovosialovue Eva BEATIoTO 0AYOp1OLL0,



Y10t TO TTAVE TPOPAN LA, LITOBETOVTOC OTL OEV EMTPENETOL GVVEPYATIO
LETOED TV KPLEOV Pynuov. ' v mepintmon mov emTtpéneton
cuvepyaoia HETOED TOV KPLOE®OV UVNUOV, TPOTEIVOVLE EVA VEO EVPLGTIKO
alyopiBpo mov Abvel TpoTo 10 TPOPANUA TNG avAOESTG TV TEAATMOV
OTIC KPLPEG UVIUEG-QVALA TNG LlEPAPYING YPTCUYLOTOIDVTOS TNV TEXVIKN
NG GLGTASOTOINOMG KOl GTT GLVEYELN OEOOUEVNC OVTNG TNG avaBEa™g
Bpiokel mn PEATIoTN TOMOOETNON TTEPLEYOUEVOL e PAom ToV BEATIGTO
adyopBpo mov mpoteivovpe. AmtoteléGato amd TIC TPOCOUOLDGELS TMV
alyopiBuwv mov eledyape Topovsldloval, MGTE Vo PUVEL N
OMOTELEGLATIKOTNTO, TOV VE®V dAYOPIOL®OV TOL EIGAYALE OTEVAVTL GTOVG
TPOKOTOHNOVS TOVS, OGOV APOPA TNV ATOGTACT TS AVOTC oL Ppickovv
amd T PEATIOTN, TNV TOLOTNTA TG ADOTG GE TEPUTTMOGELS AAAOIOUEVNG
TANpopopiog 16600V, KABMS Kol Tr TOALTAOKOTNTO Kol TO puOuod
oVYKALoNG TOVC.

To k0p1o chpo ¢ Sumhopatikig epyaciog akoAovbel (og TapdpTnua)
oMV AyYAMKN YAOGGA.



Content placement and client
assignment algorithms in hierarchical
cache topologies when inter-level
cooperation 1s allowed

Abstract

Popularity of VoD applications and spread of IPTV services increase the bandwidth
demands, enforcing the creation of congestion in Internet’s links and the experience of
big delays to the users. Caching strategies provide an effective way for eliminating the
bandwidth requirements by collectively placing content close to users instead of storing
it in a central server. In this work, we present cache management algorithms aimed at
minimizing the traffic volume that is not served by caches, given the cache topology
and the profile of users’ requests for objects. We focus on a hierarchy of distributed
caches, where inter level cache cooperation is allowed and present an optimal content
placement algorithm (assuming that sizes of objects are normalized to 1) subject to the
constraint that each user’s requests can be replied only by its own distributed cache or
by a parent node on the path to the origin server, not allowing any cooperation between
the distributed caches of the same level. Numerical experiments for typical popularity
distributions show the performance distance between the optimal algorithm and some
low complexity heuristic algorithms that are commonly applied nowadays. Finally, we
present a formulation of the problem of joint content placement and assignment of
clients in the leaf caches of an hierarchy of caches. We show that this problem can
be solved efficiently for the case that no cooperation is allowed, and we propose a
heuristic algorithm to handle the case that inter-level cache cooperation is allowed.
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I. INTRODUCTION

We have witnessed a tremendous growth in the use of the World Wide Web in the past
few years. Furthermore, the expansion of VoD (Video-on-demand) libraries, enforced by
the popularity of user generated clips leads in huge bandwidth demands. These demands
are envisioned to be further increased by the deployment of IPTV services such as live
television and time-shifted programming. Instead of the traditional TV networks that use
broadcast sessions, in this kind of applications there must be a unicast session for each
video transmission to each single user, increasing the total bandwidth demands.

In the previous conditions it is clear that efficient content delivery to users is a
challenging issue. Most effort has been dedicated to the study and development of content
network as an answer to this challenge. We identify five important applications in this
context:

e Server farms (mirroring)

e Web caching

o Content Distribution Networks

o Peer to peer

o Cooperative web caching

A shortly description of each of the previous applications follows:

Server farms (Mirroring)

In this type of content networks the content of an origin server is all copied to other
mirror servers near the origin server. This allocation is static over time, thus creating the
impression that the group of servers is actually a single origin site. The requests to the
origin server are load-balanced across all servers in the group and automatic routing of
requests away from servers that fail is performed. However, server farms do nothing about
problems due to network congestion, or to improve latency issues due to the network
overuse. Figure 1 visualizes the above description.

Figure 1

Web Caching

At this approach objects of more than one origin servers are copied in caches near to
the users. Caches store most frequently or most recently requested content in a passive
uncontrollable way. If the requested object is not contained in the cache then the request
is redirected to the origin server. Web caching is typically be employed by an Internet
Service Provider (ISP) for the benefit of users accessing the Internet. The benefit for the



ISP is that a fraction of content requests is absorbed by the caches, decreasing the level
of congestion in the network and the high processing power needed of the central server
and the benefit for the internet users is the experience of lower delays. Figure 2 illustrates
this capital.

Figure 2

Content Delivery Networks (CDNs)

A CDN is a collection of content servers scattered across the network that try to absorb
a fraction of work load of origin servers by cooperatively delivering content on behalf
of them. Clients get the content they requested by the nearest content server found by
the DNS servers. Achieves better performance and reliability than caching. Responsible
of the operation of a CDN is its Content Administrator. Clients of CDN are not the
ISPs as they were in caching but content providers. Unlike web caching, where content
replication is decided according to the requests that arrive in caches at the last time
period, in CDNs content replication is done in a deterministic way decided by a content
manager. Next figure shows an example of CDN.

Figure 3

P2P systems

A P2P system is composed by PCs at the edge of the network which are both suppliers
and consumers of files. A Peer exploit resources (bandwidth rate, disk space, CPU power)
of a large collection of other peers in order to deliver a content. At this type of system
scaling is feasible, enhancing the benefits of this choice. In order for a peer to find out
the peers that hold the requested object directory services are needed. Examples of P2P
systems are: Napster, Gnutella, Freenet, FastTrack.

Cooperative Caching
Caches at different sites in the network can cooperate in order to improve total perfor-
mance. In contrast with traditional caching, a cache can serve anothers cache requests.



Caches can cooperate in order to perform storage decisions. It is needed a slightly more
controlled environment where the content placement can be actively managed. In the
following example clients 1,2 request in average both the blue and red file. However
each of two nearby caches owns storage space to hold only one of the two files. Clearly,
there is incentive to cooperate in order to alleviate the requests to the remote origin server.

Figure 4

Given the dimensions of the caches and the sites in the network that they are placed,
the design of efficient caching strategies comes mainly to the content placement problem.
The content placement problem asks for selecting the contents that have to be placed
at each of the available caches in order to optimize the performance metric. However,
another problem that needs to be addressed is the accurate prediction of the users’
demand rate for each different piece of content. This demand rate can be considered
to be constant or (most realistically) to change across time. In the second case a strategy
for replacement of objects in caches can be periodically applied as a best response
to the change of demand rates. Besides that efficient routing of object requests can
further increase the system performance. A commonly applied routing strategy is the one
selecting the nearest cache that holds a replica of the object to respond to the request.
Finally, for supporting additionally ” write requests”, i.e. requests for updating an object,
a consistency mechanism is needed in order to spread the content changes to all the
caches that contain a replica of this object.

In this work, we studied cooperative caching and considered the following mode of
operation: Every content request is first submitted to the subset of caches that can be
accessed by the user that generated this request. If content is found to be placed in any
of these caches we call that a hit is performed, otherwise this request is handled by the
data center and we call that a miss is performed. We focused on the content placement
problem in an hierarchy of caches, when inter-level cooperation is allowed, willing to
minimize the probability of miss, i.e. a user requests an object which is not found in
any of the accessible caches. This problem is equivalent to the one of maximizing the
fraction of requests for objects that is absorbed by the set of caches. We assume that
demand estimates are given and remain constant in time, cache topology is known and
the dimensions and locations of the caches in the network are constant and known.

The rest of the paper is organized as follows: We review related work in Section II and
introduce our system model in Section III. Then, in Section IV we introduce a polynomial
algorithm that solves the problem of optimal content placement in terms of minimizing



probability of accessing origin server for a two-level hierarchy of caches, where there are
two leaf caches and a parent cache and inter-level cooperation is allowed. In Section V,
we propose an optimal algorithm for the previous problem for any number of leaf caches
and describe low complexity sub optimal algorithms. We extend the previous algorithm
in order to solve the problem of minimizing average access cost of content requests in
Section VI and for any number of levels of hierarchy in section VII. Section VIII deals
with the problem of joint content placement and client assignment in hierarchical cache
topologies. Simulation results of the performance of proposed algorithms are provided
in section IX. Section X concludes the paper and offers directions for future research.



II. RELATED WORK

Previous work on cooperative caching can be categorized according to the assumptions
about system model done. A great effort is done assuming static system model as
well as assuming dynamic characteristics of the topology and/or user request patterns.
Additionally, some researchers focused on the full replication case, i.e. the case that
there is only one unit of content of an origin server that must be efficiently placed in the
network whereas other treated the partial replication case where there are many pieces
of content that must be spread across the network. A great attention is given to the study
of hierarchical topologies assuming cooperation is allowed between caches of the same
level (intra-level) or of different levels (inter-level) of the hierarchy. Figure 5 briefs the
above grouping.

Figure 5

Full replication case has mainly been studied as a minimum k median problem of
choosing M sites of the network to replicate the content of total N sites (N > M). Each
client is assigned to the nearest cache, that has chosen to store the replica, incurring a
cost that is proportional to it’s request rate and the distance (number of hops, delay due
to the capacity of links..) between them. However the problem of selecting M centers so
as to minimize the sum of the assignment costs is NP-hard and approximation algorithms
are often used.

B. Li, et al.[1] studied the full replication case and presented an optimal algorithm for
the content placement problem on tree topologies. They assumed that requests generated
at a tree node follow the direct path to the root node (origin server) until they find
the cached content. Thus routing of requests is predetermined and a request can not
reach caches of sibling nodes. The problem of optimally choosing the M sites of the N
sites of the tree to place the caches that hold the replica was formulated as a dynamic
programming problem of complexity O(N3M?).

L. Qiu, et al. [2] proposed three heuristic algorithms for the above problem. Particularly,
they proposed a greedy algorithm in which the M sites are picked one by one and
at iteration ¢ < M it is placed a replica at site S; if it yields the lowest cost in



conjunction with the sites already picked. In general, in computing the cost, we assume
that clients direct their accesses to the nearest replica. The complexity of greedy algorithm
is O(N2M). Moreover Hot Spot Algorithm is presented which sorts the N potential sites
according to the amount of traffic generated within their vicinity, and places the replicas
at the top M sites. A’s vicinity is the circle centered at node A with some radius. The
complexity of hot spot algorithm is O(N?). Finally, Random Algorithm is considered
according to which, M sites from N places are chosen randomly. The complexity of
random algorithm is O(N M). The contribution of this paper is the comparative results os
extensive simulation performed for the above algorithm including the tree-based algorithm
proposed in [1]. Figure 6 shows the CDF of the relative performance of the four mentioned
algorithms for a large number of experiments in random not-tree topologies. By relative
performance they denoted the ratio of the performance of a heuristic algorithm to a not
achievable lower bound of the optimal cost determined by a super optimal algorithm that
solved the linear relaxation of the problem by using a subgradient method as described
in [3]. Greedy algorithm is better than hot spot algorithm which is better than tree-
based algorithm which is better than random algorithm. The non optimality of tree based
algorithm is because the topologies picked were not trees.

300 nodes graph and a subset of Trace | and 3
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Tree-based algorithm {Tree 1) g
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Figure 6

Partial replication case has attracted a great interest of research community over the
last decade as the increasing popularity of huge video files spread across the internet
revealed that storage capacity of caches is a bottleneck to the system performance and
should be efficiently used. Thus, replicating only the parts of files that are usual requested
instead of the whole file can increase performance. In order to describe the mathematical
formulation of the PRP we use the notation organized in table 1.



Symbol Description
0] set of objects
C set of caches
oF object j
C; cache i
1041 the size of object j
|Cs] the storage capacity of cache i
Tij indicates if object j is stored in cache i
Ai the average rate of external requests generated at cache i
Dij the probability that a request generated at cache i is for object j
dig; the distance/cost between cache i and cache k
djo, the distance/cost between cache i and origin server of object j
K; the subset of caches that have stored object j

Tablel.

The partial replication problem (PRP) can be stated as follows: “For a network of N
caches each with different storage capacity, replicate M objects at the caches such that it
satisfies the storage constraints and also minimizes the average access cost. (we assume
that each request is satisfied by the nearest cache that has stored the requested object and
there is an origin cache Cj, that has initially stored object O;)”.

ming Zobjectj anchei )\ipij(l B xij) minkEKj dzk‘OJ|
subject to:

Z zi;|0;| < |Cil, Veachei
object j
xi; € {0,1}

Specifying the exact form of the optimal content placement policy for the PRP appears
to be intractable problem in general, as it is an NP-complete problem. That is because
PRP is NP, as given a file placement x and a target cost D, we can verify in polynomial
time whether the placement results in an average cost of less than D. Besides that PRP
is NP-hard as it is proven below:

Consider the special case where |C1| = C, |C;| =0 Vi # 1, \; = A Vi, p;; = p, Vi, Vj.
We define the utility of placing an object j in cache 1 as U(j) = >_ . cne i(dio, — di1)
Given a target decrease in cost D’ we now ask if there is a set of objects J’ such that:
> jes |0jl <Cand } i, Uj > D'

By the above discussion it is seen that the problem is identical to the knapsack problem
which is a known np-complete problem.

Various heuristic algorithms for solving PRP has been presented in the last years. In
[4] authors presented the following four heuristic content placement algorithms:

Random
While there is free space in any cache pick uniformly a cache i and an object j. If i has
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not already stored j and has enough free space to store it, put j in i. Else, pick a new
pair i,j.

Popularity
Each cache stores the most popular objects according to its clients, as the storage
constraints allow.

Greedy-single
Each cache i stores the most weighted objects, as the storage constraints allow. The
weight of object j for cache i is equal to W;; = p;;dio, The disadvantage of this
method against the two later mentioned is that it requires that each cache has information
about the network topology (which is the origin server for each object and what are the
characteristics of each link to the path of the lowest cost between the cache i and the
origin server O;). In case that there is only one origin server that holds all the objects
then the resulting content placement of Greedy-single is the same to the one achieved
by popularity algorithm.

Greedy-global
It inserts objects in caches one by one according to the following: While there is free
space in any cache an administrator calculates a weight for each pair of cache i and object
J- This weight is W;; = \jp;;mingek, d;, where K is the set of caches (including origin
server O;) that have stored object j until that step of the algorithm. Then administrator
puts object j* in cache ¢* where (i*, j*) = argmaxW;;.

Figure 7 shows the relative performance of the above heuristics for increasing values
of cache sizes as simulated in [4]. We observe that Greedy-global is better than greedy-
single which is better than popularity which is better than random algorithm. However,
the computation requirements needed for these algorithms is inverse proportional to the
above ranking. Besides that, we observe that the performance of all the above heuristics
except random is better when the zipfian parameter of the request rates is larger, as a
large zipfian parameter means that a small number of objects generate a large amount of
requests.

Relative performance

Figure 7

Another Heuristic for PRP problem was proposed in [5] and a briefly presentation of
it is the following:
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First calculate the total number of replicas of each object j in all the caches proportional
to its total popularity from all clients. Particularly for object j set w; = [Z%]'ClPﬂ
where P; is the sum of the probabilities of all the clients to request object j. Then sort
objects according to their aggregate popularity P; and for each object O; find the w;
caches that will store it by solving a capacitated constraint p median problem. The solution
to each of the previous p median problems is attained by an appropriate approximation
clustering algorithm.

Simulation results in [5] showed that this algorithm is better than Random as figure 8
shows (the green line is the relative performance achieved by random algorithm and the
other two lines correspond to the performance of the discussed heuristic for two values of
zipfian parameter for probability of request vectors for increasing values of cache sizes):

Figure 8

Ending the discussion to the partial replication case we shortly describe two other
approaches: the A-star algorithms[6] and the genetic algorithms[7]. In an A-star algorithm
it is constructed a tree, of which the root represents the empty cache assignment, interme-
diate tree nodes represent partial solutions and leaf nodes represent the complete solutions
of the PRP problem. Each node n of the tree has a cost f(n)=g(n)+h(n), where g(n)
represents the search path cost from root until n and h(n) is a lower bound estimate of the
cost from n to a leaf node. Starting from the root of the tree, algorithm moves to the node n
with the lowest cost f(n) and places in cache i object j, specified by the node n. Pruning
techniques can be used to speed up the algorithm in trade off algorithm’s optimality.
In a Genetic Algorithm a set of binary vectors represent the assignment of objects to
caches called chromosomes. Starting with a finite population of chromosomes a genetic
algorithm iteratively creates new chromosomes by the operations of crossover, mutation
and selection. The best chromosome (that corresponds to lowest cost assignment) replaces
the worst chromosome. This operation continues until the algorithm converges.

Great effort has been done in studying and optimizing control of caches in hierarchical
topologies. Particularly, for the PRP problem a significant number of studies analyzed
mathematically PRP in the case that caches can cooperate by storing and serving objects
that clients at other caches request. We distinguish two types of cooperation, one that
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the only cooperation that is allowed between caches of the same level in the hierarchy
(intra-level) and the one that cooperation is allowed between caches of different levels
in the hierarchy (inter-level). Below it is shown a description of the formulation of PRP
problem in two-level hierarchies in terms of each type of cooperation.

Intra-level cache cooperation PRP in a two level hierarchy is shown in figure 9.

Figure 9

This problem can be equivalently seen as the problem of maximizing average cost sav-
ing instead of minimizing average access cost of client requests. The problem formulation
is the following:

H)l)axm D object j 2cache i AiPij|O4lTij(do + di) + 3 uene vz Nibij|Ojlwiiri (do + di —
iy

subject to:

Z :EU‘O]| < |CZ‘,V cache i
object j
x5 < x5,V cache i, V cache i’ # 4, V object j
Tij + ini/j <1,V cache i, V cache i’ # i, V object ]
i
xi; € {0,1},V cache i, V object ]
xi; € {0,1},V cache i, V cache i” # i, V object j

where,
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{1 if cache 1 takes object j from cache 1’
Tijrj =

0 else

d; 18 not necessarily equal to d; + d;

Related work on the content placement for hierarchical cooperative caching in terms of
intra-level cooperation has been performed. Korupolu et al. [8] investigated this problem
in it’s general form, allowing any number of levels in the hierarchy. In their model
caches are all leaf nodes and two caches can cooperate each other incurring a cost that
is equal to the total costs in the path that unites them. They presented an exact algorithm
based on reduction to a min-cost flow problem of computational complexity quadratic
to the number of different content objects, which generalizes the results in [13] (in [13]
authors studied only 2-level hierarchies). The high complexity of the above algorithm lead
authors to provide a constant factor distributed approximation algorithm that is at most
13.93 times from optimal. This algorithm is two stage as in the first stage it computes a
content pseudoplacement in caches (i.e. a content placement that does not respect capacity
constraints of caches) and in the second stage it transforms it to a valid placement.

Laoutaris et al. showed that the problem can be expressed as a game in which players
are caches, strategy space of each cache is the decision of placing an object or not
and utility function of each cache is the difference of average access cost of requests
of clients of that cache under a cache placement P from the average access cost if no
content placement in caching was used. They proposed the following algorithm:

TSLS Algorithm

1) Each cache ¢ compute it’s initial placement Py, by placing the most popular objects
according to its clients without violating its capacity constraints.

2) Caches are sorted in an arbitrary order

3) According to the previous order each cache ¢ improves its content placement by
picking a local placement that is a best response to the current global placement
at this step

A Nash Equilibrium point is achieved, in which no cache has incentive to change its
content placement and, as authors proved, a better global performance is achieved than
in the case of no cooperation.

Borst et al. [10] studied distributed low-complexity content placement algorithms in
both types of cooperation in two level hierarchical topologies, where requests for objects
are generated in leaf caches. For the intra-level cache cooperation scenario they proposed
the following algorithm:

Local-Greedy-Gen Algorithm (LGG)

 Start with an initial content placement
o lteratively:
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o Select a node ¢ and an object n. If object n is currently not stored at node ¢,then
replace that by some object m that is currently stored at node ¢, if and only if that
increases the global utility

LGG algorithm needs as input an initial content placement of caches which can be
computed in various ways. In [10] authors studied the cases that as initial placement
were chosen the most popular objects in each cache (Full replication placement) or as
initial placement was decided each of the ) _, .. |C;i| most popular objects according to
total popularity to be stored one time in a cache (No replication placement). Figure 10
shows the convergence of Local greedy gen algorithm to the optimal content placement
when it gets as initial content placement: full replication, no replication and random
placement. Besides that authors in [10] reduced the discussed problem to a two knapsack
problem and proved structural properties of the solution to the problem. They also showed
that LGG algorithm achieves a 2-approximation ratio for the metric of maximizing cost
savings.

s
s
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% 2500 5000

Member of requssts rmosied
Figure 10

Inter-level cache cooperation PRP in a two level hierarchy is shown in figure 11.
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Figure 11

Observe that, unlike intra-level case, there is additionally a parent cache-node Cy. Leaf
caches can not take objects one from the other and the only cooperation that is allowed
is between parent node and each of the leaf caches. Similar to the intra-level case this
problem can be equivalently seen as the problem of maximizing average cost saving
instead of minimizing average access cost of client requests. The problem formulation is
the following:

MAXe Y opicct j 2 cache i(AiPij|Of1ij (do + di) + Aipis| Ojlwi0;do)

subject to:
Z zij|0;] < |C;], ¥ cache i
object j
z;i0j < Toj,V leaf cache i, V object j
x;j + zi0; < 1,V leaf cache i, V object j

zi; € {0,1},V cache i, V object j

xio; € {0,1},V leaf cache i, V object j
where,

{1 if leaf cache i takes object j from parent cache 0
Tioj =
0 else

Authors in [10] proposed a heuristic greedy algorithm for dealing with inter-level cache
cooperation problem. According to this algorithm each leaf cache stores the most popular
objects of it’s clients without violating it’s capacity constraints. Then parent cache stores
the most popular objects according to the requests of all the clients that have not been
stored in any of the leaf caches without violating it’s capacity constraints. They proved
that greedy achieves at least a fraction i N%‘dfdnyg]évjl;) o 23 ]\],V 1 of the maximum
achievable bandwidth savings, where d,,;p, = min;—1, nd;.

Now we mention the related work performed in cooperative caching area for studying
simultaneously more than one control problems, involving content placement problem.
Laoutaris et al. [14] consider the joint problem of optimal location of the objects together
with the capacity dimensioning of the proxies. Another study by Laoutaris et al. [15]
addresses the storage capacity allocation problem for CDNs, which takes into account
the optimal location of the proxies, the capacity of each proxy and the objects that
should be placed in each proxy. Almeida et al. [16] considered the problem of jointly
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routing requests and placing proxy servers in streaming CDNs. Authors presented an
optimization model for the problem and proposed a number of heuristics for its solution in
an attempt to minimize the total server and network delivery cost. More recently, Nguyen
et al. [17] considered the problem of provisioning the so-called overlay distribution
networks, which includes proxy server placement, request routing and object replication.
These authors proposed an integer linear programming formulation along with a heuristic
solution algorithm based on Lagrangean relaxation. In [18] Bektas et al. considers a design
problem arising in CDNs, and simultaneously solves three problems: (i) the number and
the location of the proxy servers to be used in the CDN among a given set of potential
sites (proxy server placement), (ii) the objects to be located in each proxy server (object
placement), and (iii) the assignment of each client to a proxy server (request routing). In
[11] authors only considered the object placement and request routing subproblems.

Study of cooperative caching in P2P systems was initially performed in [19], where
authors show that depending on the distance between two neighbor peers it may be
beneficial or not to cooperatively perform content placement. Other investigations of
content placement in P2P video on demand systems were performed by Suh et al. in [20],
where performance analysis of both queuing and loss models are considered. However,
optimal content placement in P2P video on demand systems with respect to the content
popularity was first performed in [21].



17

III. SYSTEM MODEL

We now introduce our mathematical model and related notations. For convenience
we use the same notations as in table 1 presented in previous section. Additionally, we
specify that all objects are of the same size, normalized to 1. Topology is an hierarchy,
with N leaf caches (indexed from 1 to N), where inter level cooperation is allowed, i.e a
request generated at cache i follows the direct root to the origin server until it reaches a
cache that has stored the requested object. Thus a request routed in a cache can not be
routed to another cache in the same level of the hierarchy (intra-level cooperation is not
permitted). External requests are generated only in leaf caches and not in internal cache-
nodes of the hierarchy. The above assumptions are used throughout the paper without
any violation.

In sections IV-V we make additionally the following system model assumptions:
topology is a two level hierarchy where inter-level cooperation is allowed, with N leaf
caches and a parent cache indexed to 0. Origin server is indexed as -1. We simplify the
model by defining that the cost for transmitting a piece of unit over a link between parent
cache and a leaf cache is O i.e. d;o = 0 V ¢ € C and the cost for traversing a link between
origin server and parent cache and is 1 i.e. do,—1 = 1. Thus we are only interested in
minimizing the average rate of requests reaching origin server. We call the probability of
accessing origin server probability of missing of the system, denoted by M. The problem
of minimizing the probabili Z:y of m1ssmg in the described system may then be formulated
as follows: minM = min=&E<—— EC A, ;where M; =1— 2]60 uc, Pij 18 the probability of
missing of the requests generated in cache i. The optimization variables are the content
of caches. An equivalent way to express the problem is maximizing the probability a
stream to find the requested content in any of the caches of the topology that has access
and not to reach origin server (probability of hit). An important observation is that in
optimal content placement the sets of the objects cached in each of the leaf caches must
be disjoint to the set of objects stored in parent cache, as in any other case we could
swap the common object with an unused increasing probability of hit. Based on that
observation the formulation of the problem becomes:

maXg Zobject yi anche i()‘ipij :Ei]')

subject to:

Z xi; < |Gy, V cache i
object j
x;j + xo; < 1,V leaf cache i, V object j
xi; € {0,1},V cache i, V object j

Figure 12 shows the discussed system model:
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Figure 12

In section VI we make the same additional system model assumptions as in sections
IV-V but now we allow the variables d;p and dop _; to take any value. This value will
represent the distance/cost between each pair of connected nodes. Thus, we are interested
in minimizing the average access cost incurred by the routing of requests for content,
or equivalently maximizing the average cost savings. The problem formulation is the
following:

MAXy Y opicet i Dcache i(AiPiiTij (do,—1 + dio) + AipijTiojdo,—1)

subject to:
Z xij < |Cy,V cache i
object j
zi0j < o4,V leaf cache i, V object j
x;j + zi0; < 1,V leaf cache i, V object j
xi; € {0,1},V cache i, V object j
zio; € {0,1},V leaf cache i, V object j
where,

{1 if leaf cache i takes object j from parent cache 0
Tioj =
0 else

Observe that now there is no restriction the object set stored in parent cache and the
content stored in each leaf cache to be disjointed sets. Figure 13 shows the discussed
system model:
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Figure 13

In section VII we make the same additional system model assumptions as in section
VI but now we allow any number of levels of the hierarchical topology instead of only
two.
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IV. A COMMONLY USED AND TWO ATOMIC CACHES SCENARIO

In this section we deal with the simple case of inter level cache cooperation in a two-
level hierarchy consisted of N=2 leaf caches and one parent cache. Request generated
only in leaf caches, and a newly request access it’s private cache and a commonly used
(parent) cache in order to be satisfied. A miss is performed if a requested object is not
placed nor in the leaf cache that is generated nor in the commonly used cache. Figure
14 shows the discussed cache topology.

Figure 14

The probability of missing of requests for objects is M; = 1 — ZjeCluCo p1; for
requests generated at cache 1 and My = 1 — > FECLUC, P2j for requests generated at
cache 2. The optimization problem is to find the configuration of the three caches that
minimizes the probability of missing of the system:

minM = mm% (D)

In this section we reduce the content placement problem (1) to the problem of finding
the maximum weight perfect matching in a bipartite graph. We construct an instance G
of the maximum weight perfect matching in bipartite graph problem that it’s solution
yields a minimum probability of missing content placement.

IV.a The reduction. The instance G is constructed as follows. The vertex set consists
of the following: (i) two vertices j,j’ for every object j of object set O, (ii) a vertex C
for every position p of the cache C; that needs to be filled in, (iii) a vertex C} for every
position 1 of the cache C5 that needs to be filled in, (iv) a vertex d,, for every object of the
object set that will not be placed in any of the Cj or C; where = 1,2, ..., |O]|—|C1|—|Co|
and (v) a vertex d;J for every object of the object set that will not be placed in any of the
Cy or Cy, where y = 1,2, ...,|0| — |C2| — |Cy|. The edge set consists of the following
types of edges: (i) for each object j and j’ there is an edge (j.,j’) with weight A1p1;+A2p2;,
(ii) for each vertex j and vertex C:f there is an edge (j,Cf ) with weight A\1py;, (iii) for
each vertex j> and vertex C) there is an edge (j’,C%) with weight Agp2jr, (iv) for each
vertex j and vertex d, there is an edge (j,d,) with zero weight,(iv) for each vertex j* and
vertex d’, there is an edge (j°,d’,) with zero weight. The described graph is shown in
figure 15.
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Figure 15

Graph G is bipartite as vertices are separated in two parts, one that contains vertices
named as j, C}, d’ » and the other part that contains vertices named as j’, C1, d,,, where j =
1,40 =110, p=1,..,|Ci], L =1,...,|Cs], . = 1,2,...,|0| — |C1| — |Co|,
y=1,2,...,]0] = |Ca| — |Cp|. There are no links with both their endpoints in the same
part of the graph. The graph is of size nXn where n = 2|0| — |Cy|.

The proposed Algorithm named as MWPMCP (Maximum weight perfect matching
Content Placement) is the following:

1. Create the bipartite graph G according to the previous directions

2. Find a maximum weight perfect matching m in the bipartite graph G, of weight W
3. Calculate probability of missing of the system M =1 — %

4. For every edge (el,e2) that is selected in m

a. Assign object j to cache Cy, if (el,e2)=(,j’)

b. Assign object j to cache Cy, if (el,e2)=(j,C?)

c. Assign object j to cache Oy, if (el,e2)=(j",C})

IV.b Proof of optimality. We now prove that the preceding reduction yields the
optimal solution according to algorithm MWPMCP, by proving the next three theorems.

Theorem 1: Every perfect matching in the graph G corresponds to an assignment of
objects to the caches such that the number of assigned objects in each cache is equal to
the size of the cache.

Proof

Computing one of the possible perfect matching m in the graph G, and then assigning
objects to caches according to step 4 of the MWPMCP Algorithm specifies that the
number of assigned objects in each cache is equal to the size of the cache. This can be
proved as follows:

Suppose that a perfect matching in G corresponds to an assignment to cache Cy of
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|Co|+n objects, where n > 0. Then |Cp|+n pairs of vertices (j,j’), where j € O were
selected during the calculation of perfect matching in the corresponding bipartite graph
G. By the structure of the graph G, the selection of edges (j,C?) and of edges (j,dz)
will surely result that the degree of at least one vertex j € O will be more than one, in
order the assignment to be perfect. Thus, this assignment is no more a matching, which
contradicts the hypothesis. So, every perfect matching assigns to cache Cp at most |Cp|
objects.

Now, suppose that a perfect matching corresponds to an assignment to cache Cy of
|Co|-n objects, where n > 0. Then |Cp|-n pairs of vertices (j,j’), where j € O were
selected during the calculation of perfect matching in the corresponding bipartite graph
G. By the structure of the graph G, the selection of edges (j,C?) and of edges (j,d,;) will
surely result that at least one vertex j € O will not be matched, in order the assignment
to be a matching. Thus, this assignment is no more a matching, which contradicts the
hypothesis. So, every perfect matching assigns to cache Cj at least |Cy| objects.

So, every perfect matching assigns to cache Cy exactly |Cy| objects.

Similarly, we can conclude that every perfect matching assigns to cache C; exactly
|C1| objects and to cache Cy exactly |Ca| objects.

Theorem 2: Every perfect matching in the graph G corresponds to an assignment of
objects to the caches Cy, C4, Co such that Co N Cy = 0 and Cy N Co = ().

Proof
Computing one of the possible perfect matching m in the graph G, and then assigning
objects to caches according to step 4 of the MWPMCP Algorithm specifies that the set of
the assigned objects the common cache is disjoined from each of the sets of the assigned
objects in each atomic cache. This can be proved as follows:

Assume that CyNCy # () and name j € O an object in CoyNC1. Then, according to the
definition of step 4 of the MWPMCP algorithm, both links (j,j°) and (j,C¥), where p €
(1,...,|C1]), were selected during the calculation of perfect matching in the corresponding
bipartite graph G. Then, the degree of node j in the graph that came from G, by keeping
all the vertex set of G and include in edge set all the edges of G that are selected by
perfect matching procedure, must be at least two. That contradicts the statement that the
links (j,j°) and (j,C¥) were selected in the perfect matching of graph G, as the degree of
every vertex that belongs to the matching must be exactly one. So, Co N C1 = ().
Similar we prove that Cp N Co = ().

Theorem 3: MWPMCP Algorithm calculates the minimum probability of missing of
the system

Proof
Theorems 1 and 2 showed that every perfect matching corresponds to an assignment
of the objects to caches. By definition, the maximum weight perfect matching finds the
maximum value W of the following expression between all the other choices of perfect
matching:
W = TVI;CLJZ Zjecl Apij + Zje(]z Xopa; + Zjeco A1p1; + A2pz2;. So, It holds:
1 =

DYEDY
= minl — Pjec, MPLTY jec, A2P2i 2 ey MP1iHA2D2;
- PRSP
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Because of theorem 2, it holds:/\ = \
W _ 2uieciucy 191+ ecyuc, A2P2)
1 SvES min 1 NN

n >‘1+>‘2_(Zjecluco >\1p1j+zjeczucu A2p2;)

A1+
Al(l_ZjeclucU Alplj)—’_)\Z(l_szCQUCO A2p2;)
Atz

= min
— min 2
= min M

IV.c Computational complexity analysis. The computational complexity of MW-
PMCP algorithm comes mainly to the calculation of the max weight perfect matching
in the bipartite graph G, of dimension 2|O| — |Cp|. It is known that algorithm proposed
by Kuhn (also known as hungarian method), finds the max weight perfect matching with
complexity cubic to the dimension of the graph, resulting complexity O((2|O| — Cp)?).
The rest of the calculations performed by algorithm is less significant than the cubic
factor.
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V. A CLUSTER OF CACHES SCENARIO

We now focus on an extension of the problem described above: the case that the
number of leaf caches is greater or equal than two (N > 2) and there is again one parent
cache. Requests generated only in leaf caches, and a newly request access the leaf cache
that is generated and the parent cache in order to be satisfied. A miss is performed if a
requested object is not placed nor in the leaf cache that is generated nor in the parent
cache.

To the best of our knowledge MWPMCP algorithm can not be extended to handle this
generalized case. Thus, in this section we present an optimal algorithm based on different
philosophy that solves the problem of content placement that minimizes the probability
of missing of the generalized system: minM = mmW, where Mi is the
probability of missing of requests generated in leaf cache i, for i=1,,N and ); is the rate
of requests of stream i. We name this algorithm Dynamic, because it dynamically fills
in each of the available positions of parent cache Cj by placing objects in it one by
one. Furthermore, we present low complexity heuristic algorithms that approximate the
optimal solution.

V.a Dynamic Algorithm
The algorithm is based on the following two properties:

Property 1:

Given the placement of Cj the best content placement to leaf caches is trivial to find (i.e.
place in leaf cache C; the most popular objects according to pi, not included in Cp).

Property 2:

The optimal content placement of the parent cache when it is of size K is a subset of the
optimal content placement of the parent cache when it is of size K+1 and the number
and sizes of the leaf caches, the request patterns of users and the object set remain the
same in both cases.

Property 2 will be proved strictly by theorem 4. Before describing the structure of
the algorithm we first present the function exhaustive(ng,n1,...,ny,J) which return the
optimal content placement of common cache when |Cy| = ng, |C1| = n1,.., |Cn| = nn
and O = J (assuming that user request patterns are fixed and known). This function
calculates its result by exhaustively, comparing the probability of missing of all the
different content placements in each of the caches. Dynamic algorithm iteratively calls
function exhaustive by always passing as parameter ng = 1,n1 = |C4],.., ny = |Cn| i.e.
finding the optimal content placement when size of common cache is 1 and the other
sizes are the same to the ones of the true topology. The only difference in callings of
function exhaustive() by dynamic algorithm is the passing value on parameter J. We define
as Cp[p] the object stored in position p of parent cache Cj. Analytically, the algorithm
works as follows:

1 J=0

2) For each position p = 1, .., |Cp| of the common cache:
a) Colp] = exhaustive(1,|C4],...,|Cn]|, J)
b) J=J\ Colp]
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We reduced the non-polynomial solvable problem of content placement in a 2-level
hierarchy of a parent cache of size |Cy| to a sequence of |Cy| polynomial solvable
problems of content placement in a 2-level hierarchy of parent cache of size 1. However
these problems can not be solved in parallel as the output of the p** problem is input for
the (p + 1)™* problem. Figure 16 illustrates the split of the initial placement problem.

Figure 16

We define as Cj(n,O) the subset of size n of object set O, that corresponds to the
optimal content placement of the parent cache, when |Cy| = n, and the sizes of the leaf
caches are constant |C1|, .., |Cn|.

Theorem 4: C§(n —1,0) is a subset of Cjj(n,O).

Proof
The proof of the theorem is described in the Appendix.
Theorem 5 proves the optimality of the proposed Algorithm.
Theorem 5:
Ci(n,0)=Ci(n—1,0)UCy(1,0\ Ci(n—1,0)).
Proof
By theorem 4 and the definition of C§(1,0 \ C{(n — 1,0)).

Observe that execution run time of function exhaustive is polynomial when it is called
with size of parent cache equal to 1, and non-polynomial in the general form that is
called with size of parent node ng > 1. For the case that passing parameter ng = 1,
the complexity of execution of exhaustive() is N|O|?, as it exhaustively calculates the
missing achieved by each of the |O| objects that can be placed in parent cache of size
1, placing at the same time the most popular objects in each of the N leaf caches, by
searching it’s vector p; of size |O|, for finding the |C;| most popular objects. Assuming
that p; vectors are initially sorted, the cost of this search of a vector is at most equal to
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it’s size, |O|. Thus, The computational complexity of the proposed algorithm, Dynamic,
is O(N|O|log|O| + N|Cy||O|?), where the first term of the sum is for the initial sorting
of the object probability vectors and the second term is for the |Cp| calls of function
exhaustive() with parameter ng = 1.
V.b Swapping Algorithm
We present the following simple heuristic swapping algorithm:
Algorithm Swapping:
start with a random content placement in all the caches such that no double entries in
the same cache exist
do
for each object j
for each cache i
find the replacement of object j with an object already in
a cache that gives the largest decrement in probability
of missing of the system
while probability of missing is lower after replacement

V.c Greedy Algorithm
We present the following simple greedy algorithm:
Fill in each leaf cache C; with the most weighted objects according to it’s popularity
vector p; (first-tier objects).
Fill in the parent cache Cj with the most weighted objects according to the sum of
popularity of all the requests p; + ... + py that were not included in any of the leaf
caches in the previous step (second-tier objects).

V.d A lower bound of performance

Probability of missing of the above system is lower bounded by the amount: Mg =

s )\‘Z‘CO“HCi‘q_‘ . .
1 — =ee=i=s = ,where ¢;; is the 4 largest probability among the values of the

probability vector: pi = [pi1; -, Pijo)]- In simple words, My, p represents the hypothetical
scenario that there are N different parent caches instead of only 1 (all of them with the
same size to the size of real parent cache), such that requests generated at each leaf cache
has access at exactly one of these parent caches, and requests of two or more different
leaf caches can not access the same parent cache.
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VI. EXTENSION TO GENERAL COST MODEL

Until now we concentrated on minimizing probability of missing of the system in 2-
level hierarchical cache topologies in which inter level cooperation is allowed. This can
be seen as the special case of minimizing average access cost of traversing of requests
when cost of using each link between a leaf cache and parent cache is 0 and cost of using
link between parent cache and origin server is 1. In this section we generalize some of
the ideas presented above to deal with arbitrary link costs.

MWPMCP algorithm can not be extended to handle the case of arbitrary link costs in
a topology of two leaf caches, as it depends on the idea that the content that is stored
in parent cache must be disjoint with the content stored in each of the leaf caches. This
principle was right in the case of minimizing probability of missing. However it does
not hold for arbitrary link costs. (Property 1 does not hold now).

From the other hand dynamic algorithm can be extended to handle the case of arbitrary
link costs in a topology of N leaf caches. We only need to change the operation of function
exhaustive in order to allow the algorithm to place an object in a leaf cache that already
is placed in parent cache. We change the set of parameters of function exhaustive to be
(ng,n1,....,nN.Jalready[]) which return the optimal content placement of common cache
when |Cy| = ng, |C1| = ni1,.., |Cn| = nxy and O = J, assuming that objects in matrix
already[] are stored in parent cache without consuming any of the ng free positions of
Co, and so can satisfy requests for that that reach parent cache. Thus, calculation of cost
saving of placing an object in a cache depends on the objects already placed in parent
cache. This function calculates its result by exhaustively, comparing the probability of
missing of all the different content placements in each of the caches.

We call the generalized form of dynamic algorithm that handle link costs as CostDy-
namic. Analytically, the algorithm works as follows:

1) Cy[] =empty set

2) For each position p =1, .., |Cy| of the common cache:
a) Colp] = exhaustive(l1,|C],...,|Cn|, O, Col])

The passing value of parameter Cy|] in the call of exhaustive function by CostDynamic
algorithm is the set of objects already placed in parent cache until the execution of p
step of the loop. Observe that according to the above definition of exhaustive() there is
no chance an object already placed in parent cache to be placed again by CostDynamic
algorithm. The difference to Dynamic algorithm is that now algorithm allows for addi-
tional placements in leaf caches of an object that already being placed in common cache
at previous step. The complexity of CostDynamic algorithm remains polynomial due to
the same arguments discussed in complexity analysis of Dynamic Algorithm.
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VII. INTER-LEVEL COOPERATIVE CONTENT PLACEMENT IN MULTI LEVEL CACHE
HIERARCHIES

CostDynamic algorithm can be extended to find optimal content placement of caches
in an hierarchy of arbitrary number of levels H > 2, where inter level cooperation is
allowed. We call this algorithm RecAlgorithm as it solves the problem in a recursive
manner starting from the root of the hierarchy. The idea is that each internal cache-node
in the hierarchy represents a content placement problem involving it and it’s descendants.
The initial problem is represented by the root cache-node. The internal nodes in level 1
represent 2-level hierarchy content placement problems and can be solved by application
of algorithm CostDynamic. Problems represented by cache nodes in higher levels can be
solved, using the same philosophy, by placing objects in them one by one, picked after
exhaustive comparison of the cost saving of all object choices, which can be calculated
using the optimal content placement in the children of them computed in a recursive
manner.

Assuming that CostDynmic() and RecDynamic() functions return the cost saving of
the optimal content placement that calculated in the hierarchy specified by their input
parameters, the algorithm works as follows:
Initially we call this method RecDynamic() with current = root and level = H.
RecDynamic(current, level)
if current is on level 1
Return CostDynamic(current)
Else if current is on level > 1
max=0
For each position p of cache current
max(p)=0
For each object j
max(p,j)=0
For each child Ci of current
max(p, j) = max(p, j) + RecDynamic(Ci,level — 1)
if max(p,j) > mazx(p)
maz(p) = maz(p, j)
max = mazx + maz(p)
return mazx

where max(p,j) is the cost saving incurred by placing object j in position p of cache
current in combination to the optimal content placement of children nodes of current.
max(p) is the largest cost saving achieved by placing an object in position p of cache
current and max is the total cost saving incurred by all the content placement in cache
current and it’s descendants.

Figure 17 shows a content placement problem in a four-level hierarchy. In order to
solve problem PO, RecDynamic solves the P11 and P12 problems for each of the possible
object placed in each of the positions of Cj cache. Similarly, P11 problem requires repeat
solution of P21 and P22 and P12 requires repeat solution of P23 and P24 problems.
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P21,P22,P23,P24 problems are solved each time using CostDynamic Algorithm.

Figure 17

The complexity of RecDynamic Algorithm is polynomial: |07+ Cy| H{ial nodes(l),

where nodes(l) is the number of cache-nodes in H-1 level.
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VIII. JOINT CONTENT PLACEMENT AND CLIENT ASSIGNMENT PROBLEM

Until now we assumed that stream of requests are a priori assigned to N leaf caches,
described by popularity vectors p; and request rates \;, V leaf cache i. However, assuming
now that the clients that generate these streams are mobile, and because of this ability
can choose to be assigned to any leaf cache, a new problem of joint client assignment
to leaf caches and content placement in caches of the hierarchy arises. We assume that
each client can be assigned to exactly one leaf cache and this assignment is static, i.e.
a client assigned to a leaf cache i can not later move and be assigned to another cache
i’. For simplicity, we assume that the client assignments are of zero cost. The stream
assignment should be performed jointly with the content placement problem in order to
optimally minimize the average access cost of traversing of requests for objects in links
of hierarchy.

In order to handle the client assignment problem of M clients, we define as S the set of
clients indexed as {1, ..., M}. Additionally we change the definition of vectors A and p
in order to refer to clients instead of leaf caches, i.e. A\; = the rate that client s generates
requests for content and py; = the probability that a request generated by client s is for
object j,for s = 1,.., M, j=1,..,|O|. Additionally, we change the definition of vector x
and introduce a new vector z, defined as follows:

1 if client s is assigned to cache i
Lsj =

0 else

1 if object j is stored in cache i
Zij =

0 else

Vs=1,..,M, Vi=1,..,N, Vj=1,..,|0|

Below we present methodology for the solution of the joint client assignment and
content placement problem in two-level hierarchies of caches where no cooperation is
allowed between caches or inter level cooperation between leaf caches and parent cache
is allowed in order to respond to requests for content.

Vlll.a Non-cooperation cache model
Figure 18 shows the system topology. Observe the absence of a parent cache-node
between origin server and leaf caches as it is not allowed inter-level cache cooperation.
Additionally it is not allowed for a leaf cache to take a requested object from another leaf
cache as it is not allowed intra-level cache cooperation. As a result requests for content
generated in a leaf cache i can be satisfied without cost by cache i, or incurring a cost
of d;o from origin server.
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Figure 18

Based on the above discussion a formulation of the joint problem is the following:

(P) ming,z >-cpient s 2ocache i 2object j(AsPsi|O5lTsidio — Aspsj|Ojl@sizijdip)

subject to:

Z xsi =1,V client s (1)
cache i
Z |0z < |Ci],V cache i (2)
object j
xsi > 0,V cache i, V client s (3)
z;j € {0,1},V cache i, V object j (4)

Based on the methodology described in [11] for solving the joint problem of con-
tent placement and routing of requests satisfying QoS constraints in an arbitrary cache
topology, we describe a subgradient method that finds an exact solution of (P).

Observe that problem (P) is non-linear because of the product term xg;z;; in the
objective function, which makes it difficult to be solved. A linearization procedure is
needed. We choose a linearization procedure based on that proposed by Glover [22].
Particularly, we choose as linearizing variable the vi; = 2ij Y yionts |Oj| AsDsidio®ss,
incurring the below additional constraints:
vij < Mz;j, Veachei, Yobjectj (5)
where M =" ... |0 Aspsidio
Vij < chients ‘Oj’)‘spsidioxsi (6)
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After (P) is linearized, we relax constraint (5), by introducing a lagrange multiplier
7ij> for each of the constraints in (5) and adding the product of multiplier and related
constraint term in objective function. Thus, a new problem (RP) is formulated. Observe
that the solution of (RP) is a lower bound to the solution of (P). Problem (RP) decomposes
to the following two subproblems (RP1) and (RP2), which can be solved individually
one from the other given that we know the values of lagrange multipliers ~.

(Rpl) min“:x chient s anchei Zobject 7 (Aspsj |OJ |x5idi70)+zcachei Zobject 7 (r}/ij_l)vij

subject to:

Z rg = 1,V client s

cache i

Vij — Z AsPsj|Ojldioxsi < 0,V cache i,V object j
stream s

xg > 0,V client s,V cache i

v;j > 0,V cache i,V object j

(sz) max, M anchei Zobject i (’Yij Zij)

subject to:

Z zij < |C;l,V cache i
object j
zij € {0,1},V cache i, V object j

Given that we know the values of lagrange multipliers ~, (RP1) can be solved simply
by an assignment rule:

)0 if 7, —1>0
N Eclients ( ‘ Oj |)\spsj dioxij) else
Tip = 1,p € argmin; Z(‘ij\spsjdio),VClient S

J

As for subproblem (RP2), it is easy to show that it further decomposes into N unidi-
mensional knapsack problems, one for each cache ¢ € C' . It is known that each knapsack
problem can be solved by dynamic programming in O(|O||C;|) for i € C. Therefore, for
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a given set of Lagrange multipliers v subproblem (RP2) can be solved in O(N|O||C;|)
time.

The subgradient method iteratively calculates a new set of lagrange multipliers -,
solves the problem (RP) by solving (RP1) and (RP2) and compares the solution of (RP)
to the solution of (P) in order to check if the solutions are close enough to stop the
procedure. We provide below an outline of the algorithm:

o Start with an initial multiplier 7'

e LB=—0
e UB =+
o t=1

e While |UB—-LB|>¢
— Find the solution of (RP) given ~*, v(RP(y))
- If v(RT (")) > LB
* LB =v(RT(y))
— UB = the solution of (P) given the value of z calculated in v(RP(v'))
= gy = vij — Mz,
st — )\UB—Tﬁf(W‘))
- A = maz(0,4" + stg)
—t=t+1
where A and € are constants.
VIIL.b Inter level cache cooperation model
Now we study the above joint problem allowing inter level cooperation of leaf caches
with a parent cache, which is located between leaf caches and origin server as in figure 19.

Figure 19

The subgradient method can not be applied as before, as the decomposition to subprob-
lems is not as simple as before, because of the presence of the parent cache. Alternatively,
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we present a heuristic algorithm based on the following idea: Clients with similar request
patterns should be assigned to the same cache, in order to take from it the “most popular
common objects”. A clustering algorithm (k-means) can be used that assigns the clients
into M clusters, one for each leaf cache. Given the assignment of clients calculated above,
optimal content placement can be performed using CostDynamic algorithm described
in previous sections. However, solving the two problems separately, implies that the
solution to the joint problem will not be optimal but only a heuristic solution. A distance
metric must be used by k-means algorithm in order to calculate the distance between
a client and each cluster in order to decide at each step in which cluster each client
must be assigned. This distance metric can be Euclidean distance or the sine metric [12]:

D(S1,52) = sin(S1,52) =1 — \/1 — c0s(51, 52)%, where:

> obicer; AS1PS1As2P52; . . . .
cos(S1,52) = object] , 1s the distance of clients S1, with
(51,52) V2 opjects As1P51)°V/ Copyeery As2psz;)’? )
rate Ag1 and popularity vector pg1;, and S2, with rate Ago and popularity vector pga;.

We provide below an outline of the algorithm:

1) randomly select N clients as the centers of the clusters

2) for each unassigned client,assign it to the cluster whose center is the nearest to it.
The distance between a client and the center is calculated by D function

3) Compute the means of the new clusters and assign clients to clusters with the new
centers

4) If there is no change, exit. Otherwise go to step 2).
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IX. SIMULATION RESULTS

In this section we present the results of the simulation performed for the evaluation of
the proposed algorithms.

IX.a A commonly used and two atomic caches scenario

We assumed that the popularity of objects generated in every cache is a zipfian
distribution, i.e. the frequency of any object is inversely proportional to its rank in the
frequency table. Particularly, the popularity of the jt" object generated in cache i is:
Dij = Z‘l/%’ for i=1,2, for j = 1,2,...,]0|, where k;; is the rank of the gt
object in ‘the popularity vector p; and s is the value of the exponent characterizing the
distribution.

We simulated the described algorithms for constant number of objects |O| = 100, size
of leaf caches |C1| = 5, |Co| = 5, rate of requests A\;=Xo=1 and popularity vectors p1,
p2 picked according to zipfian distribution where s = 0.8 and k; ; were picked randomly.

Figure 20 shows the probability of missing of the system for increasing values of the
size of parent cache |Cy| (from 1 to 95) achieved by the algorithms we described. Blue
square points are the values outputted by the optimal algorithm MWPMCP. Red cyclic
points present the performance achieved by the heuristic swapping method and with the
black-star line we denote the greedy algorithm. The top black line presents the worst
case performance of the greedy algorithm as being defined in [10]. The cyan line is the
lower bound to the probability of missing My p of the system as described in section V.

Figure 20

The difference of probability of missing of optimal and heuristic swapping algorithm
due to the above simulation is shown in figure 21.
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Figure 21

We note that the difference of probability of missing is proportional to the value of
the expression min(|O| — |C1| — |Ca| — |Col, |C1| +|C2| + |Co|). This is logical since in
that cases the choice of the content of the common cache is a more crucial issue rather
than in the rest cases.

IX.b A cluster of caches scenario
We simulated the algorithms described for a cluster topology for the case that the number
of leaf caches is N=5, the number of object is constant and equal to |O|=100, the size of
each one of the five leaf caches is set to be 5, the rate of requests of all the stream is equal
and normalized to 1 and popularity vectors are picked according to zipfian distribution
where skew parameter is set s = 0.8 for all the streams.

Figure 22 shows the probability of missing of the system for increasing values of the
size of common cache |Cy| (from 1 to 95) achieved by the algorithms we described.
Blue square points are the values outputted by the optimal algorithm Dynamic. Red
cyclic points present the performance achieved by the heuristic swapping method and
with the black-star line we denote the greedy algorithm. The top black line presents the
worst case performance of the greedy algorithm as being defined in [10]. The cyan line
is the lower bound to the probability of missing Mg of the system. Observe that the
performance achieved by greedy algorithm does not get lower after the size of the parent
cache becomes 75, that because the objects that are not picked by any leaf cache are
less than the size of parent cache, and as a result some positions of parent cache remains
empty. Simulation results verified that, as it is first described in [10], greedy algorithm
is the most favorable choice between heuristics low complexity algorithms for inter level
cooperation cache hierarchies (while swapping algorithm is a good choice for intra level
cooperation cache hierarchies).
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Figure 22

IX.c Effect of zipfian parameter in optimal solution

Figure 23 shows the average access cost of variation of size of parent cache for
increasing values of zipfian parameter found by CostDynamic algorithm described in
section VI. The topology used was a two level hierarchy with two leaf caches and a
parent cache, while cooperation between leaf cache and parent was allowed. The cost of
traversing a link between a leaf cache and parent cache was set to 1 and the cost for
traversing link between parent cache and origin server was set to 2. The request rates
was set to 1 and the popularity vectors were picked according to zipfian distribution of
parameter s. The cache sizes of all cache was set to 5 and the size of object set to 100. The
returned values coincide with the values found by exhaustive Algorithm, which evaluates
one by one all the possible content placement in every cache,verifying the optimality of
CostDynamic algorithm. We observe that as zipfian parameter s increases, the average
access cost gets lower, as the selected objects that are stored in caches are more often
requested than for low values of s.

Figure 23

I1X.d Effects of imperfect knowledge about input data
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The above simulation results are based on the assumption that we have perfect knowl-
edge of the number of requests generated from each node. In practice, we do not have
perfect knowledge about these input, but only have rough estimates. In this section, we
show how the inaccurate of request patterns affects the performance achieved by the
heuristic content placement algorithms. In particular, we will show that the placement
decision based on inaccurate information performed by the proposed heuristic algorithms
is still useful. That is because, as we show, the difference in performance between the
case of perfect information and imperfect information is small.

We distorted the popularity of request vectors for the parent cache and two leaf caches
scenario, by a factor of y. Particularly, for each node i and object j we chose uniformly
at random a value between p;;/p and p;; * p. Finally, we normalized these |O| values
earned for each node i, in order to sum to 1. We feed the previous incorrect inputs to the
heuristic swapping and greedy algorithm for the same topology and the same numerical
values for |O|, A1, A2, p1 and py as in section IX.a. Figure 24 shows the probability
of missing of the system for increasing values of the size of parent cache |Cy| (from
1 to 95) achieved by the algorithms we described. Blue square points are the values
outputted by the optimal algorithm MWPMCP, red cyclic points present the performance
achieved by the heuristic swapping method and with the black-star line we denote the
greedy algorithm, when the information of the popularity of request vectors was perfect.
Black-cross points present the performance achieved by the heuristic swapping method
and with the cyan-dotted line we denote the greedy algorithm, when the information of
the popularity of requests vectors was imperfect, by a factor y = 3.

Figure 24

We note that heuristic swapping algorithm obtains performance that deviates slightly
from that obtained using perfect knowledge. In contrast, greedy algorithm is not so robust
to imperfect knowledge, as it deviates more than swapping algorithm in cases of imperfect
information. However greedy’s performance is for almost all values of common size better
than performance of swapping algorithm, even when greedy algorithm operates under
imperfect information and swapping under perfect information. In order to demonstrate
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the deviation of the performance of these algorithms to the optimal algorithm’s, figure 25
shows the the related performance of them for various values of size of common cache. By
related performance metric we mean the fraction of the probability of missing achieved
by an algorithm to the probability of missing achieved by the optimal algorithm fed
with perfect input information. Again, red cyclic points present the relative performance
achieved by the heuristic swapping method and with the black-star line we denote
the greedy algorithm, when the information of the popularity of request vectors was
perfect. Black-cross points present the relative performance achieved by the heuristic
swapping method and with the cyan-dotted line we denote the greedy algorithm, when
the information of the popularity of requests vectors was imperfect, by a factor y = 3.

Figure 25

Figure 26 shows the mean value of relative performance values achieved by each of the
heuristic algorithms over the variation of size of common cache, for increasing values of
factor of distortion i (¢4+ = 1 means that no distortion happened to popularity of request
vectors). The blue bars represents the relative performance of greedy algorithm and the
brown represents the relative performance of swapping algorithm.

Figure 26



40

IX.e Joint Content placement and client assignment problem

We performed simulation on a topology of one parent cache of size 1 and five leaf
caches allowing inter level cache cooperation, the number of object was constant and
equal to |O|=100, the number of clients was 100, the rate of requests of all the stream
is equal and normalized to 1 and popularity vectors are picked according to zipfian
distribution where skew parameter is set s = 0.8 for all the clients.

Figure 27.a shows the probability of missing of the system for increasing values of sizes
of leaf caches achieved by application of the clustering algorithm described in section
VIILb, that finds a client assignment to leaf caches, and then application of optimal
Dynamic algorithm that finds the optimal content placement in caches given the above
client assignment (blue line) compared to the probability of missing achieved if we keep
the random client assignment and do not perform clustering and then apply Dynamic
algorithm (red line). Figure 27.b differs from 28.a only in that the content placement
algorithm that is used is Greedy instead of Dynamic, i.e. it shows the probability of
missing of the system for increasing values of sizes of leaf caches achieved by applica-
tion of the clustering algorithm, that finds a client assignment to leaf caches, and then
application of Greedy algorithm that finds a suboptimal content placement in caches given
the above client assignment (blue line) compared to the probability of missing achieved
if we keep the random client assignment and do not perform clustering and then apply
Greedy algorithm (red line).

Figure 27

Figure 28 shows the average difference in probability of missing for all the sizes of leaf
caches of the method of performing client assignment by clustering algorithm and content
placement by Dynamic algorithm and the method that does client assignment at random
and then performs Dynamic algorithm for content placement, for increasing values of
zipfian parameter. We observe that as the zipfian parameter increases, the benefit of
using clustering algorithm for performing client assignment instead of random algorithm
increases.
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Figure 28

Figure 29 shows the number of iterations needed by the clustering algorithm to con-
verge for increasing values of number of objects and number of clients respectively. We
observe that the number of iterations does not get higher as the number of objects and/or
streams scales. However the complexity of the clustering algorithm increases linearly to
the number of objects and number of streams.

Figure 29
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X. CONCLUSION AND FUTURE WORK

Cooperative caching is an efficient way to exploit cache capacity and achieve content
delivery to users at low delays and with low congestion of the network. In this study ,
we deal with the problems of content placement in caches and of assignment of clients
in caches, assuming the partial replication model. We focused on hierarchical cache
topologies and allowed inter-level cache cooperation for responding to requests generated
by clients at the leaf nodes. We used as performance metrics the average rate at which
origin server is accessed and the average cost emerged by the traversing of requests on
the route to the origin server until they reach a cache that stores the requested content
and showed that the first metric is a subcase of the second.

Content placement problem, assuming the partial replication model, is NP-complete
problem in any topology, including the hierarchical one. However as we showed in this
paper, the simplification that the size of each object is equal to 1, makes the problem
polynomially solvable assuming that the cache topology is hierarchical and inter-level
cache cooperation is permitted. The restriction of unit sized objects does not alleviate the
applicability of the model, as objects of a real system could be split in smaller segments
of data of the same popularity, so that all objects are of the same size and then perform
the optimization procedure. We presented two optimal polynomial algorithms MWPMCP
and RecDynamic. The first solves the problem only when restricting that the number of
levels of the hierarchy is two, the number of leaf caches is two and the performance metric
is the average rate at which origin server is accessed and the second that is applicable
for any number of levels of the hierarchy and any number of leaf caches and uses the
more general optimization metric of the average access cost of traversing of requests for
content. Besides that, we established simulation comparative results between two well
known heuristic suboptimal algorithms and the optimal presented algorithm in cases of
perfect or imperfect information.

We also studied the problem of jointly performing content placement in caches and
assignment of mobile clients in leaf caches in case of hierarchical topologies. We saw
that this problem is solvable in case of non-cooperative model, by applying a subgradient
method. We, further, investigated this problem in case that inter-level cache cooperation is
allowed and proposed an algorithm that solves the two problems separately. Particularly
we proposed a heuristic algorithm for the solution to the client assignment problem that
groups the clients to clusters, depending on the similarity of the request patterns of them.
The number of clusters is equal to the number of leaf caches and the input of two clients
in the same cluster means that they are assigned to the same leaf cache. After client
assignment is performed we apply RecDynamic Algorithm in order to perform content
placement, given the requests on each leaf cache computed by the clustering procedure.

A topic for future work could be the treatment of cases that request rates per objects
are not constant, but change dynamically over time, creating the need for online object
replacement policies. Besides that, to the best of our knowledge, joint content placement
and assignment of clients to caches in hierarchical cache topologies, where cooperation
between caches is allowed (inter level or intra level) is still an open issue and it can be
a topic for further study.
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A. Appendix

Theorem 4: Cj(n — 1,0) is a subset of Cjj(n,O).
Proof

Recall that C§j(n,O) is the subset of size n of object set O, that corresponds to the
optimal content placement of the parent cache, when |Cy| = n, and the sizes of the leaf
caches are constant |C1], .., |Cn|. We set mazs(n,O) the n most popular objects in set
O according to popularity vector ps. We define as H (P, O) the probability of hitting
of the system that corresponds to the content placement in caches such that: Cy = P,
Cs = mazxs(|Cs|, O\ Py), i.e. the |Cs| most popular objects according to vector p, such
that Py N Cs = (), for s=1,..,N, when object set is O.

We will show that Cjj(n—1, O) is a subset of Cjj(n, O), by proving that every solution
C§(n,O) that contains set J,—1 C O of size n-1, instead of Cj(n — 1,0) gives lower
probability of hitting, i.e. gives larger probability of missing.

Without lose of generality assume that J,_; = (C§(n — 1,0) \ i) U4’ and i =
Ci(1,0\ C§(n—2,0)), ie. set J,_1 and C(n — 1,0) to differ only in one element,
where i was the (n— 1)*" object placed in common cache by the proposed algorithm and
i’ is the object that .J,,_; contains instead of i. We define o = Cj(1,0\ Cp*(n —1,0))
and o/ = C{(1,0 \ (Co*(n —2,0) U1’)). So it will be sufficient to show that always
holds:

H((i,0),0\ C§(n—2,0)) > H(({,0"),0\ C§(n —2,0)).

For simplicity assume that the number of streams of requests is two. We study the

following subcases:

a) i ¢ max1(|C1],0\ C§(n — 1)) Umaza(|C2|,0 \ Cj(n — 1))

It holds:

H(i,0\Cj(n—2,0)) > H(i',O\C§(n—2,0)) (2), because i = C(1,0\C§(n—2,0)).
We calculate:

H((Z7 0)7 @) \ Cf)k(n -2, O)) = H(Za o \ Cak(n -2, O)) + Alp'}n + )‘2p3n’ where

. [ ifo¢ 0,0\ Cin—2,0))
Pm = ps,. else

,where my is the most popular object in O\ (Cj(n—1, O)Umaz,(|Cs|, O\Cj(n—1,0)))
according to popularity vector p®, for s = 1,2.

it holds:

H((/,0"),0\ Ci(n—2,0)) =
H(i',0\ Cj(n —2,0)) + Mip} + Aop?
H(iv 0 \ CS(” -2, O)) + )\lpzl' + )\21012'
H(iv 0O \ Cf)k(n -2, O)) + )\lp}nl + )\2p72nz = H((Z7 U)v 0O \ CS(TL -2, O))

,where the first equality comes from the fact that ¢/ = 7 in this subcase and the inequality
is from the definition of mg. Figure 30.a. shows the selection of objects of the two
popularity vectors in this subcase.

b) i' € max(|C1],0\ Cj(n — 1)) Umaza(|Caf, O\ Ci(n —1)).

IA
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Without lose of generality assume ¢’ € maz1(|C1|, O\C§(n—1)) and i’ ¢ maz2(|Cs|, O\
Ci(n —1)), as shown in figure 30.b.

We study the following subcases of subcase b).

b.)if o’ ¢ maz1(|C1|,0\ C§(n — 1)) Umaza(|Cs|, 0 \ Ci(n — 1))

H((i",0"),0\ Ci(n —2,0)) =
Mph + Aap? + H(o!,0\ (Ci(n —2,0) Ui’))=
DL NP5 NPy A2 A D e man (10110 (Cs (n—2)0ir) PF A2 D icmas(1CaONCs (n—2)uir)) D=

A2 HNPy A2 N D e, (101,00 (n—2)) PF AP, FA2 2 e mas (1Co1,0N(Cs (n2)0i)) P <

MDyr +A2D5 F MY iemar (1C1ON\C: (n—2)) PF A2 2 jemas (1Cs,0\(Cs (n2)0ir)) P+
Aph, + dap?, <

H(i,0) + M\ipg: + Aops <

,where m; = maz1(1,0 \ maz(|C1],0 \ Cj(n — 1))

b.ii)if o’ € max1(|C1],0\ C§(n — 1)) Umaxz(|C2],0\ C§(n — 1))
Without lose of generality assume o’ ¢ maz(|C1|, O\C§(n—1)) and o’ € maxz(|Cs|, O\
Ci(n —1)).

It holds:
H((i,a OJ)? O \ C{)k(n - 2a O)) =
APy HXDE NPy A2 N D e mans (102 ONC (n—2))Ui o) PTTA2 2 jemas (I02].0N(Cs (n—2) Uit o)) P =

)\22]712/4‘)\1]);/"’_)\1 szmam1(|Cl|,O\C§“ (n—2)) p}+>\1p7lTLi’ A2 Zjemarzﬂcﬂvo\(Cg (n—2)ui")) p§+
AP, (3)

,where m; = maz1(1,0 \ maz1(|C1],0 \ Cgj(n — 1))
and my = maxz(1,0 \ maz1(|C1],0 \ (C§(n —2) Ui"))
We study the following four subcases due to the values of p; and p;,, s = 1,2.
Dif p% > p,lnl and p% > p,zn2
then my =i, 0/ = mq, My = 1.
H((i,a OJ)? O \ C{)k(n - 27 O)) =
AP APy FN D jemar (€11,0\C (n-2)) Py TAPIHA2 D jeman (0. 0\ G -2 BT
)\217% < A2D5, T AP, FAL 2 jemaa (164 ,0\Cg (n—2)) P T AP TA2 D jemany (1Ca,0\(Ci (n—2)0ir)) Pj T
Aop; =
H((i,0),0\ C§(n—2,0)).

: 1 1 2 2
if p; > Py, and p7 < pp,,
then my = 7;7 OJ =mi, Mg’ = M2.
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H((ilv OJ)? @) \ Cg(n - 27 O)) =

)\221912/4')\11071711 FA D jman (1C11.0\C (n—2)) 23 FAD FA2 2 s mans (102].0\(Ci (n—2)uiry) P+
Aopi,, <

)\gpz?+>\1p71n1+)‘l > jemazy (|CL1,0\Cs (n—2)) py+Mp; e 2 jemazs(1Ca,O\(Cs (n—2)Ui’)) pi+
AoPp, =

3)if p} < py, and p} > py,
then m; = mq, o’ = smq, my = 1.

H((/,0"),0\ C§(n—2,0)) =

>\22Pz%+)\1p§m1+>‘1 D jemazy (|CL 1,0\t (n—2)) Pi+ A1, A2 D jemaza(1Cal,0\ (G (n—2)Ui)) pi+
/\ZP,‘ <

/\§p12+>\1p%+>\1 D emaz (10 0NC: (n—2)) P F A D, FA2 2 mas (1651, 0\ (O3 (n—2)0ir)) P+
AoPp, =

H((i,0),0\ C§(n—2,0)).

That can be proved by considering that i = C(n — 2, 0), which yields that )\1]911 +
/\2])12 > )qp,ln1 —i—)\gpz%, which yields that )\1p2-1+)\2p$n2 > Alp}nl —h\gpl% —/\gpf—i-)\gp%lz >
)\2p7,2/ + )\lpgml

4jif p} < py, and pf < pp,
then m; = my, o' = smy, My = Mmo.

H((/,0"),0\ C§(n—2,0)) =

>\22P?f+>\1p§m1+>‘1 > jemaz (1C11,0\Ci (n—2)) P HMPI, F32 2 jeimans (1C1,0\ (s (n—2)uir)) P
Aopi, <

2 1 1 1 2
)‘22pi +)‘1pi +A1 ZjEmaxl(\Cl |,0\Ci (n—2)) Pj +)‘1pm1 +A2 ZjEmaarz(|Cz|,O\(C{;(n—2)Ui’)) pj +
AoPp,, =

H((i,0),0\ Cy(n—2,0)).

That can be proved by considering that i = C§(n — 2, 0), which yields that A\;p} +
A2pf = M, + A2b) 2 Aipl, + A2p}

,where sm; = max1(1,0 \ maz1(1,0 \ (C§(n — 1)) Umy)

So, we proved that for every choice of objects i,i’,0 and o’ it holds that: H((i,0), 0 \
Ci(n—2,0)) > H((/,0"),0\ Ci(n—2,0))
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So, swapping an object i € Cj(n — 1,0) with an object ¢/ ¢ Cj(n — 1,0), can only
decrease probability of hitting of the system. The above arguments can be applied for
any number of streams N > 2. Proof of theorem completed.

Figure 30
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