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RATIONAL n-DIMENSIONAL SPACES
AND THE PROPERTY OF UNIVERSALITY

D. N. Georgiou

University of Thessaly, Faculty of Technological Sciences
Department of Planning and Regional Development,
Department of Civil Engineering, 383 34 Volos, Greece

S. D. lliadis

Department of Mathematics
University of Patras
261 10 Patras, Greece

In this paper we prove that in the family of all metrizable separable spaces

having rational dimension < n, n = 1,2,..., there exists a universal element.

Introduction. All spaces considered in this paper are separable metrizable.
Let Sp be a family of spaces. We define a family 1R{Sp) of spaces as follows: a
space X belongs to 1R(Sp) iff X has a basis IB for open sets such that the boundary
of every element of IB belongs to Sp. We set IR~1(Sp) = {0}, JR°(Sp) = Sp and
Mn(Sp) = 'R(IRN~-1(Sp)), for n = 1,2,.... In the sequel we denote by M the
family of all countable spaces. (The empty set and finite sets are considered to be
countable). Since M is a normal family of spaces (see [H]), for every n = 1,2,...,
the family JRn(IM) is also a normal family, that is, every subspace of any element
of JRn(Bd) is an element of IRNn{IM) and a space which is a countable union of
closed subsets belonging to Mn(IM), belongs also to 'Rn(IM). The elements of
Mn(lAl) are called spaces having rational dimension < n (see, for example, [N])
or n-dimensional rational spaces (see [Me]). Obviously, a space X is rational (see
[Ku]) iff X is an l-dimensional rational space, that is, iff X £ 1R(1M).

A space T is said to be universal for a family Sp of spaces iff T £ Sp and for
every X £ Sp there exists an embedding of X into T. In [I3] (see also [M-T1]) it has
been proved that in the family JR(1M) of all rational spaces there exists a universal
element. The property of universality for some subfamilies of rational spaces has
been studied, for example, in the papers: [li], [I2], [I4], [I5], [I-Z], [M-T2], [No].

The main result of the present paper is the following: in the family of all
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n-dimensional rational spaces there exists a universal element. The method used
for the proof of this result is a modification of the methods of papers [li], [I3], [I4],
[Is]:

Throughout this paper we will use the following notations and definitions.

Let F be a subset of a space A”. By Bd(F) (or Bd.\-(F)), C1(F) (or C1.\'(F)),
Int(F) (or Int.v(F)) and \F\ we denote the boundary, the closure, the interior and
the cardinality of F respectively. If JY is a metric space, then the diameter of F is
denoted by diam(F). Let Q and K be disjoint closed subsets of a space .Y. We say
that an open subset U of X separates Q and K iff either Q C U and K C X\C\(U)
or KCU and Q C X\ CI(lr). We denote by N the set {0,1,...}.

We use the symbol "=" in a relation A = B in two cases: (a) in order to
introduce two distinct notations, A and B, for the same object (set, ordered set,
space, map, etc.), and () in order to introduce a notation, A or B (if B or A,

respectively is a known notation), without mentioning this fact.

We denote by Ln, n = 1,2,..., the set of all ordered n-tuples i\...in, where
it=0o0r 1 t=1,,.,N. Also we set £0 = {0} and L = (J{Ln : n = 0,1,...}. For
n =0, by we denote the element 0 of L. We say that the element i\..:in of
L is a part of the element and we write iff either n = 0, or

0 < n<mandit =jt for every t < n. The elements of L are denoted by i, j,
/', etc. Ifi = then by 10 (respectively, il) we denote the element ii..:in0
(respectively, i\...inl) of L.

We denote by An, n = 1,2,..., the set of all ordered n-tuples where it,
t = 1....n, is a positive integer. We set A = (J{A,, : n = 1,2,...}. The elements
of A are denoted by cv, 3, etc. Let a = i\...in and B = We say that ft is a
part of B and we write a<diffl=mn<=m and it = jt for every t < n. Obviously,
if a,B G A, and a < [3, then a — (. Also, for every 'E G An the set of all elements
3 G An+1 such that a < 3 is a countable non-finite set.

We denote by C the Cantor ternary set. By Cj, where i = GL, n>1,
we denote the set of all points of C for which the tth digit in the ternary expansion,
t=1... n, coincides with 0 if it = 0 and with 2 if it = 1. Also we set C'$ = C. For
every point a of C and for every integer n G N, by i(a,n) we denote the uniquely
determined element i G Ln for which a G Cj. If i(a,n + 1) = io...in, n G N, then
by ija.n + 1) we denote the number in. For every subset F of C and for every
integer n G N, we denote by st(F, n) the union of all sets Cj, i G L,,, such that
C-nF @ 0. If F = {a} we set st(a. n) = st(F, n). Obviously st(a, n) = C-(a ny

A partition of a space A" is a set D of closed non-empty subsets of X such
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that (@) If Fi.Fo £ D and Fi ¢ Ft, then Fi N F2 = 0, and (3) the union of ail
ellements of D is A. The natural projection of A onto D is the map p defined as
follows: if x £ X, then p(xX) = F, where F is the uniquely determined element
of D containing x. The quotient space of the partition D is the set D with a
topology which is the minimal (with respect to the open sets) for which the map
p is continuous. (We observe that we use the same notation for a partition of a
space and for the corresponding quotient space). The partition D is called upper
semi- continuous iff for every F £ D and for every open subset U of A’ containing
F there exists an open subset V of X which is union of elements of D such that

FCVCU.

I. Representations of spaces corresponding to a given basis of open sets.
In the sequel, n is a fixed integer of N \ {0O}.

1. Definition. Let IB be a family of open sets of X £ Rn(L\f). It is possible
that for distinct elements U and V of IB we have U = V. We say that IB has the
property of boundary intersections iff for every integer k, 1 < k < n, and for every

mutually distinct elements V\,...,Vk of IB we have

f{BA(VI) ;i = 1,..., k} £ Rn~k{M).

It is not difficult to prove the following two lemmas.

2. Lemma. Let X £ Rn(IM) and IB be a basis for open sets of X. Then
there exists a countable locally finite open covering m of X such that for every

U £ m we have Bd(Lr) C Bd(Lo) U ... U Bd(VYm) for some elements Vq......Vm of IB.

3. Lemma. Let X £ 1R"(1M), F be a closed subset of X, F £ Rk{IM),
0 <k<n,x £ F and Vo be an open neighbourhood of x in >X. Then there exists
an open set V of X such that: (a) x £ V C Vo, (B) Bd(I/) £ Rn~=1(IM) and (7)
F (I BA(F) £ Rk~1{M).

The Lemmas 2 and 3 are used for the proof of the following lemma, which is

also stated without proof.

4. Lemma. Let X £ Rn(M), K and Q be disjoint closed subsets of X and Ft,
1 =0, ...,n—1, be a closed subset of X such that Fl £ R1(1M) and Fo C ... C Fn-\.
Then there exists an open subset U of X such that:

(1) The set U separates K and Q and K C U,
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(2) Bd(U) £ Rn—\M), and
(3) Ft M Bd{U) £ RI-\M), 1 = O,...,n — 1.

5. Theorem. A space X belongs to Rn(JM) iff there exists a basis R for

open sets of X having the property of boundary intersections.

Proof. Obviously, it is sufficient to prove that if X £ Rn(UVI), then X has
a basis R for open sets with the property of boundary intersections. We can
suppose that X is a metric space. Let {V"o,Vi,...} be a basis for open sets of
X. For every j £ N, let V3 be an open set of X such that C1(V}) C VJ and
diam((A) < 3 diam(V/). We set KI = CI(Vj) and Q) = X \ V3. Obviously,
K3n Q3 =0.

Using Lemma 4 we can construct by induction an open subset Uj of A”, j £ A,
such that:

(1) The set Uj separates the closed subsets K3 and Q3 and K3 C Uj.

(2) Bd(Uj) e Rn—-\MN).

@) IfFt,j>1 1<t<n,is the rrnion of all sets of the form Bd(Lril) T ... N
Bd(UIt), where {?i, C{O,— 1} and |{N, ....«<}] = t, then FJ N Bd(U)j) €
Rn~t~1(M).

It is easy to prove that the set R = {Uq, U\,...} is the required basis for open

sets of X having the property of boundary intersections.

6. Definitions and Notations. Let X be a space. Suppose that for every
k £ N we have two closed subsets Aq (A) = Ag and A*(A) = .4* of A" such that
Aqg UAj = A. (It is possible that either Ag = 0 or A* = 0). By o&(A\) =
we denote the ordered closed cover {Aq,Aj} of A. It is possible that for distinct
indexes i and j, the ordered covers o, and o} of A coincide, that is, Agq = Al
and A\ = A{, while these covers are considered to be distinct elements of ~. The
ordered set ~ = {oco0,0l,...} is called basic system for X iff for every x £ A" and
for every open neighbourhood U of x in A there exists an integer k £ N such that
XE£ Ag \ Af C Aqg C U.

In what follows of Section I, A is a fixed space and ~ = {co0,0l,...} is a fixed
basic system for A, where o* = {Aq,Aj}, k =0,1,....

For every integer k £ N, we set Fr™*,)) = Aqg N A}’. Also, we set

Pt(2) = JjFr~Mfc) : = 0,1,...}.

For every i = i\...ik € Lk, k > 0, we set Xj = ANT1...MA*}-1. Also, we set X$ = A.
It is easy to see that AjC A-, ifi < j,and A = (IJ{Aj: i £ Lk}, for every k £ N.
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We define a subset S(X. X) = S of C as follows: a point a of C belongs to S

iff -Y7(@0) n -Y7(@l) n — ™~ O For every a G 5 the set -Y7(@0) N -Y7(a.l) N —

a singleton. Indeed, let X,y £ X~(a,00 n"Y7@l) ™ - X ® y- Since X is a
basic systemfor X, there exists an integer k £ N such that x £ Aft \ A\ and
y @ Ag \ , that is, x £ Ag, vy ¢ Agand x ¢ .4* y £ A@ Since, either
A'- ., =X-, ,,M™Mn or X-, ., = X-,,.,0.4? we have that eithery 4 X-, , ,,,
or x £ Xj, which is a contradiction. We define a map q(X, ) = q of S into
A" as follows: if A-(a0) M X~"a 1( N .. = {.r}, then we set q(a) — x. Also we set

D(X,2) =D = {g_1(x) : x £ _A}. By it(A,X) = h we denote the map of D into
A" defined as follows: h(d) = x iff d = g~1(x). Obviously, D is a partition of S.

By p(X, Z) = p we denote the natural projection of 5 onto D.

7. Lemma. The following properties axe true:

1) gqC'jns) = Xj,l e L.

(2) For every x £ \' \ Py(X), the-set g~1(x) is a singleton.

(3) For every x £ INy(%), the set g~1(x) is compact.

(4) Let N(x) be the set of all elements k of N, for which x £ Fr(afc) and
let a £ g-1(.r). Then, the set g—x(x) consists of all points b of C for which
/(a. K Al) =i(b.k + 1) for every k £ N \ N(X).

(5) The map q is continuous.

(6) The map q is closed.

(7) The set D is an upper semi-continuous partition of S.

(8) The map h is a homeomorphism of D onto X and hop = q.

(9) The set li~1(Aq \ .4j), k £ N, is the set of all elements of D which axe
contained in the set (J{(A0 ;i £ LKk}

(10) The set h~1(A} \ Aqg), k £ N, is the set of all elements of D which are
contained in the set (J{C-tl . i £ Lk}

(11) The set h~1(Fr(ak)), k £ N, is the set of all elements of D, which intersect
both sets (J{Cj0 :z € Lk} and (JjC~ :1 ™ e}

(12) If {Ki.....km} is a subset of N, then the set h~1(Fr(akl) I ... M Fr(a*m))

is the set of all elements of D, which intersect all of the sets: (J{C'y0 : i £ Lk, },--.,

UIC;, ' J£ LtJ, U(C;i i € Lt,}....U{CT7l T€i*.}-

Proof. (1). Let a £ 5. By the definitions of 5 and q, (¢ct(a)} = Yy@0) N

Ylai) ~ - Ifa 6 C-, i £ Lk, then i(a,k) = i and hence g(a) £ A'-, that is,

qg(C-nN5) C X-, Let x £ X-, i £ Lk- For every integer m, 0 < m < k, we denote

by im the unique element of Lm for which im < i- Obviously, x £ A- . Since
5
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Y-= AN-0 U Ap we have x G .Y-Q U A’p. By ik+l we denote one of the elements
i0 and il of Zjt+i for which x G A7 . By induction, for every integer m > Kk,
we construct an element Am G Lm such that and X G A- . Then
C- i CCj and Cj0INncC-jnr... ¢ 0. Obviously, this intersection is a singleton {a}.
Since i(a.in) = im and x G A\- NAf- NMN.. /Z 0 we have a G 5 and g(a) = x, that
is, q(C'jn S) D Xj. Hence gq{Cjn sS) — A-.

2) . By property (1), ~-1(x) @ 0. Let a,b G 5 1(x), a ¢@ b. Let k be the
minimal integer for which there exists j1, j2 G L,t, jl ¢ j2, such that a G C-
and b G Cj . Let i G Lk-1 such that a,6 G Cp Obviously, {Jj..J2} = {*0,*1}. By
property (1), x G A"-OMA"p = (A-MAp-L)IM(N\AI1-1). Hence x G Ao_1nA* 1 =
Fr(an_1), which is a contradiction. Hence g-1(x) is a singleton.

3) . It is sufficient to prove that CI(#-1(x)) C g_1(x). Let a G CI(5_1(x)).
Then, for every integer k G N, g-1(x) O Cja ™~ @ 0, that is, x G Apa fc). Hence
{X} =A-@Q NA-@a N.. and therefore a G S and g(a) = x, that is, a G </-1(x).
Thus, Cl(g_1(x)) C <_1(x) and hence 8-1(x) is compact.

“4) . Let 6 G ?_1(i-). Then {x} = A-(«0) N Al(al) O .. = -4®a>1) N -4j@@2) O
— = 4°6d n 4?2062 n - Let rn e N\ N(X). Then x G A™ m+l) and X ¢
Al-i(a,m+\): Since x e -4i?6,m+i)> *(a>lll + x) = i(b,m + 1). Conversely, let b G C
and i(a,m + 1) = i(b,m + 1) for all me N\ N(x). Then A”bm+1) = -4"am+1),

m G A\ iV(xX). Since x G Af(ajt+l) O -4*_,(a,*+1p k G A(x), 4 follows that
x G A*6 fc+1), because either i(6,A + 1) = {(a, A + 1) or i(6,F +1) =1 —i(a, k + 1).
Hence {x} = A°M) MNA}b2 N..=Xlb0o)NA-(M) N ... Thus b G 5 and q(b) = x.

(5) . Let g(a) = x and U be an open neighbourhood of x in X. There exists
an integer m G N such that x G AM \ Ay C A™ C U. Let i G Zm+i and x G Ap
Since x G A™ C £7 and x O A™ we have A-C A™ C U. Then the set F = Cpn 5
is an open neighbourhood of a in S for which q(V) C U (see property (1)). Hence
g is continuous.

(6) . Let F be a closed subset of S. We prove that q(F) is closed in A. Let
X ©® q(F). Then </_1(x) N F = 0. Since q~1(x) is compact, there exists an integer
m such that st(g—~1(x),m) N st(F.m) = 0. The union K of all sets X-, i G Lm,
for which C- C st(i% m), contains q(F) and does not contain x. Hence the set
U = X \ K is an open neighbourhood of x in A for which U N q(F) = 0, that is,

q(F) is closed. Thus g is closed.

(7) . It is sufficient to prove that the natural projection p of S onto D is
closed. (See [K], Ch. 3, Theorem 12), that is, for every closed subset F of 5 the
set p_l(p(F)) is closed. (See [K], Ch. 3, Theorem 10). It is easy to see that
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p~Hp{F)) = qgq~l(q(F)). By properties (5) and (6) the set g~1(q(F)) is closed.
Hence p is closed and D is an upper semi-continuous partition.

(8) . It follows by properties (5), (6) and (7).

(9) . Let d G D and d C (J{C-0 :i G Lk}. We prove that h(d) = x G A{j \ .4*.
Suppose that x ¢ Ag \ and let i be an element of Lk for which x G AT- Then
n G X-M A* = X-n. Hence, by property (1), g~1(x) PIC-j = d N C~-n ¢ 0, which
is a contradiction. Conversely, let h(d) = x G Ag \ A*, k G N. We prove that
h~1(x) = d C |J{C-0 : i G Lk}  Indeed, in the opposite case, there exists an element
i G Lk such that dM O-x @ 0. Then h(d) = x G A This means that x G Af, that
is, X @ Ag \ A*, which is a contradiction.

(10) . The proof is similar to the proof of property (9).

(11) . The proof follows by properties (9) and (10).

(12) . The proof follows by property (11).

8. Definition. A pair (S.D), where 5 is a subset of C and D is an upper
semi-continuous partition of 5 whose elements are compact, is called a represen-
tation. Obviously, if X is a space and X is a basic system for X, then the pair
(S(-Y, 2), Z?(A', 2)) is a representation. This representation is called the represen-

tation of X corresponding to the basic system .

Il. The main Lemma.

1. Definitions and Notations. Let be a family of representations, the car-
dinality of which is less than or equal to the continuum. It is possible that for two
distinct elements (Si.Di) and (52, D2) of S\ = 52 and D! = D2 We suppose
that for every element ( = (5. D) G 3? there exists a space A'(C) G IRn{LM) (we re-
call that n is a fixed integer of NI\ {0}) and a basic system =(¢) = {crO(Cp c1(O? ---}
for A’(<f) such that (5. D) is the representation of X(Z) corresponding to the ba-
sic system =(g). Moreover, we suppose that the basic system () has the fol-
lowing property calling the property of boundary intersections: for every integer
k, 1 < k < n, and for every mutually distinct integers ji,...,jk of N (that is,

{ji< -+, jfc} = k) we have

For every representation ¢ = (5, D), the subset 5 of C is denoted also by 5(f) and
the partition D of 5 is denoted also by D{(). If C G 3?, then the map h(X(f). =(F))

is denoted also by Ac.
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Since the cardinality of 3? is less than or equal to the continuum, for every
element i £ L there exists a subfamily 3?(i) of 3? such that: (a) 3£(0) = 3?, (B)
R N3?@¢ =0, ifi,j £Lkii@j, k£ N, (7) 32>) = ?2)?@z0) U 3?(;1), 1 £ L, and (6)
for distinct elements ¢'i, 2 £ 3? there exist an integer k £ N and elements i,j £ L
1t @ j, such that 1 £ 3?(i)) and Q £ 3?(j).

For every integer k £ N, we set

ttC
Lk 1J3{CVo 1> € Lk}

If C = (5, D) is a representation, then we denote by U% the set i@ N5 and by U@

the set of all elements of D, which are contained in the set Uj?. Also, we denote

by the set of all elements of D which intersect the set Uj?. We set FrrUj?) =
\ U®. It easy to see that if ¢ £ 32, then Fr(Fr™(,)) = /i™1L(Fr(ajt(C)))- (See
property 11 of Lemma 7.1). Also, the ordered set IB(D(()) = {[/ID", ...} is

an ordered basis for open sets of O(J).
For every ¢ £ 3? we denote by D(Q(0) the set of all elements d of D(() for

which there exist mutually distinct integers Ji,..., jn. of N such that

I FINA/ZIFLid_01.... »>,

Since >~(g) has the property of boundary intersections and
Fr(C-f°) = ftT*(FrK(Q))),

i=1,.,.,n, the set D(g)(0) is countable.

We consider an ordered set
B(C)(O)NMD((=,rffK),...}

such that: (a) for every d £ D(()(0) there exists uniquely determined integer i £ N,
for which d = cq ™ and (J) if for some i £ N there is no element d £ 0({)(0) for
which Af™ — d, then = 0. We observe that, in general, 0 £ D (C)(0), while
0 ¢ D(O(0). Also, if @ 0 and d™M] = Af™\ then i = k.

For every subset C! of C and for every subfamily 3?' of 3? we set
J(C" x 3?) = {(a. ) £C"' x 3?”: a£ 5C)}

Let {UO,..., Um} be an ordered set of subsets of a space A" and {LO- m-, I'm} be

an ordered set of subsets of a space Y. We say that the ordered sets {Lro, ---, Um} and
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{To...... Vm} have the same structure iff for every ii,.,.,i™* £ N, 0 < < m

we have Utl M ... M Utk Y 0 iff n..MnvkooO.

2. Lemma. For every integer k £ N, for every element a of A*+1 and for
every m £ N, 0 < m < k, there exist:

(1) An integer n(3?) > 0.

(2) An integer n(a) > k + 1.

(3) An integer n(a, m) > 0.

(4) A subset A(a) of A. (It is possible that A(a) = 0 for some a £ AN+i).

(5) A subset d(a, k) of J(C' x R(a)). (It is possible that d(a. k) = 0 for some

a £ Ak+i
(6) A subset U(a,m) of J(C x 37?(a)). (It is possible that U(a,m) = 0 for

some a £ AM+i and some m, 0 < m < k),
such that:

(7) n(a) > n(B) ifa > 3.

(8) n(cv, m) < n(a).

(9) » = UW) S At}

(10) If ai, 02 £ Ajt+i, ' E\ a2, then jR(ai) N ~a™) = 0. Ifk >0, 3 £ Ak,
3 < a and A(B) = 'R(a), then the set ~(al) is a singleton.

(11) If3 £ Ak, k > 0, then

AB) = (J{3?(@) : a € ANLB < a}.

(12) There exists an element i(a) £ Lk such that A(a) C 3?(i(a)).
(13) Ifk A1l >71(A) and f. \ £ 3£(a), then the set

D(0 D jfD{c “
{1\ ( ltJt;;l((a, iJ<- 0 © muU °!I'T m\uiDf<\ TR T

VTD<C) 0o(o

has the same structure with the set

HT" ... XA, r¥'l.. rfis',>> L. DMXvSsfDMWW?2'™,

DO\VSILW'O™)  toWSitWx) \ W2W), .. D(X) \ Fr(t/,%V)}.

(14) If ¢, x £ A(a), then d°{° ¢ 0 iffdf(x) ¢ 0.
(15) If ( € &(&) and Af(0O @ 0, then

d(a,”)n(C X {C}) = df(0 X {(G-
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(16) If C\ 6 »(&) and df(C) ¢ 0, then Af(0 € Fr(UD(°) iff d°(x) £
Fr(riD<x)) for every i € iV.

A7) Ifk >0, d £ A*, d < a, C,X € »(a) and dE(C) ¢ 0, then dE(C) £ 7.f(a
where o < i < n(3), iffdm £ UNx1

(18) IfC € »(&) and d£(C) @ 0, then d£(C) £

(19) Ifk >0 B £ A* B<a, £ 3?0), <i,(() ® 0 and dm”™ € where
0 <1 < n(?)> ilen ~£m) ™~ ~D(0"'

(20) Ifk >0, BENt, B<a, ¢ £ 3?2, d™ ¢ 0 and N uf™\ where
0 <1 <nB), then U°£m) N (¢ =0.

(1) If¢ £ 3£(@), mi,m2 £ iV, 0 < mi, m2 < k, mi ¢ m2, dn* ¢ 0 and
=< # 0, iien ncr°(L°,a, = 0.

(22) IfC £ 'R(a) and dm~”™ @ 0, then
A INNTFC . ><™)) .

23) Ifk >0, d £ Afc, B < a, ¢ £ 3?(@), dn(t’) @ 0 and 0 < m < k — 1, then
r
Ra.m) € CRbmy

Proof. Let n(3?) be an arbitrary integer of IV. We prove the lemma by
induction on integer k. Let k = 0. For every ¢ £ 3?, we denote by n(() > 1 an
integer of TV such that d™ £ - Also, if the set 3? is not a singleton, then
we denote by 3?i and 3?2 two disjoint non-empty subsets of 3?, the union of which
is the set .3

In the set 3? we define an equivalence relation . We say that two elements
¢ and x of 3? are equivalent iff the following conditions axe satisfied: (a) either
d™ ¢ 0 and d™x) @ O, or dF<) = 0 and dA™x) = 0, (B) n(Q = n(\), (7) if
d~™ @ 0, then, for every 1 £ .V, either d™¢) £ Fr(UM) and d™Nx) £ Fe(U™NXD)
or d™NI’) ™ Fr(E7iD(t")) and A™NX) ™ Fr(f7D(x)), (<5) if 1 > n(3ft), then the set

TiD(O \ jD(0
ORB w0 e i) A \ BP0
p-mD(C)\ u.urOK)\ n/wv\\ rv

has the same structure with the set

{C01"l. . agF=J\N““V-r>\)\t"Dll) - a(x) \c““via(\)\ Cf<“.....
DM\U’EL Fruidm)  Er(U™),D(X) \ Fr(U,Dtx>)..... DO \ Erit,«h)}
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and (g) if the set 3? is not a singleton, then the elements { and \ belong to the
same set ifti or 32

Since for every { £ 3? the basic system X(g) has the property of boundary
intersections, the set of all equivalence classes of the above relation are countable.
Hence there exists an one-to-one correspondence between this set of equivalence
classes and a subset Aj of Ax. For every g£Aj, we denote by 3£(») the equivalence
class corresponding to a. If A\j, then we set 3?(a) = 0.

We define the set c/(a, 0) as follows: if for some ¢ £ 3?(a) (and, hence, by
property (cv) of the definition of the relation ", for every ¢ £ 3£(ct)) we have

d™ 7~ 0i then we set

d(@a.o) = x (Cl) : C € *(chH}.

If for some ¢ £ ffi(a) (and, hence, for every { £ 3?(a)) we have = 0 or if
?R(a) = 0, then we set d(a,0) = 0.

We set n(a) = n(a 0 = n(Q, where ¢ £ 3?(a). By property (B) of the
definition of the relation ", the integer n(a) — n(a, 0) is independent from
element ¢ of 3f?(a).

We define the set U(a, 0) setting

i-(5\0) = J(U~m x S(Ef).

Obviously, properties (7) —(10), (12) —(16), (18) and (22) of the lemma are satisfied
for k = 0. Properties (11), (17), (19) — (21) and (23) concern k > 0}

Suppose that for every integer k, k < r, r > 0, for every a £ A/t+iand for
every rn £ N, 0 < m < k, we have construct an integer n(a), an integer n(a,m)
a subset ;3?(a) of 3i, a subset d(a,k) of J{C x 3?(a)) and a subset LT(a,m) of
mJ(C x fft(a)) such that properties (7) — (23) of the lemma are satisfied for k < r.

Now, for every a £ Ar_ | i and for every m £ N, 0 < m < r, we define an integer
n(a), an integer n(a, m), a subset 3i(n) of 3?, a subset d(a,k) of J(C x 3?(a)) and
a subset U(a,m) of J(C x 3R(cv)) such that properties (7) — (23) are satisfied for
k <r. Let a £ Ar+i. Let B £ Ar be the uniquely determined elementof Ar for
which B < a. If $(B) = 0, then we set 3?(cv) = 0.

Suppose that M(B) @ 0. H the set 3?(/3) is not a singleton then we denote
by i(3) and 'R2(/?) two disjoint non-empty subsets of 3ft, the union of which is

the set 3£(ii)). For every { £ 3?(/i) we consider the elements d~")...... dnn of

D (C)(0). For every m, 0 < m < r, we denote by n(6,m1,{) an element of N

11
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. DO jjbDQ . . .
h that: d
suc at: (a) NG dif0<mi, m2 <r, mi ¢ m2, @ 0 and
T o > _ . -D(C)
) ¢ B,then r o NETRA). o =0, (7) ifdEC) €t , 0 < z< n(d), then
rola DO gy ir cQ 259 0 < i < n(a), then 121> n 0O
ne.m,y ! n(B.m.i,)
- D(O o/ o__¢ 1
and (g¢) if m @ 0, 0 <m < r, then Un"p,7n,<"; L{1(B,r>n)' The existence of the
integers n(d,m.(,") are easily proved.
In the set ft(d) we define an equivalence relation ".  We say that the

elements ¢ and \ of ft(d) are equivalent iff the following conditions are satisfied:
(a) for every m, 0 < in < r, either @ 0 and dm<x) ¢ 0 or = 0 and
cn<xy = 0, (B) for every m, 0 < m < r, B, 1, = N(PB.1t,X), () for every
m, 0 <m <r, if dn(c,) yf 0, then for every z 6 iV, either G Fr(LrD(<") and
d°(x) € FI’(%’QS.);)') or é%B £ Fr(llo‘qg) and O(x) £ Fr(éRe}j), (<5) for every m.
O<m<r ifdn~ @0, then d¥% 6 °© 0 < i < n(d), iff dAX 6 URES, (1)
there exists an element /| G Lr such that (, \ G ft(z), (¢ If r + 1 > n(ft), then

the set

0 ffO(O
{C.D,Cl...... U’\%|8K,,...,U°'(o,D(O \ UIDf(\..:,D(C) \ L’Jof(orD(O \ u: (

0(0\ .Fr(CIDIil), -.-.n(8T1)) fI(C) \ Fr(<(0)- ....0(0 \ Fr(tr°!5’))) *
has the same structure with the set
{C_r‘o(\) jf((,\?\).jA?(x) -7c7:(')((§);,.fl(\) \ rD,>....000\ 0&L By \ £ 1O
a(ONtfi(FILFr( p=")  Fr(G,), O(O \ Fr(CIDU")- ....0(O \ )h
where

n(r,C) = max{?z(d. 0, Q), ....n(B, r,O,r + ILNn(B)} = n(r,\) =
max{n(d. 0, \).....M.Or. \), r + I,n(d)}

and (#) if the set ft(d) is not a singleton, then the elements { and \ belong to the
same set fti(d) and ft2(d).

It is easy to see that the set of all equivalence classes of the above relation is
countable. Hence there exists an one-to-one correspondence between the set of all
equivalence classes and a subset (Aj?+1)' of the set A™1 of all elements of Ar+i,
which are larger than 3. For every a G (Ajf. 1)', we denote by -ft(a) the equivalence
class corresponding to a. If a @ (A™+1)', then we set ft(a) = 0.

Now, for every m, 0 < m < r, we define the set d(a, r), the integer n(a,m)

and the set U(a,m) as follows:

rf(a.r) = [J{dDIi'x{C}:CeS(3-)}.

12
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if for some £ G 3?(a) (and hence for every £ G 3?(a)) we have dr (i) ¢ 0, and
d(a, r) = 0 if for some £ G ~(07) (and hence for every £ G ~(al)) we have dr ™~ =0
or if SR(@ = 0.

We set n(a,m) = N(B,tnN.Q if £ G ft(a) and n(a.m) is an arbitrary element
of N if ?R(a) = 0. Obviously, the integer n(a,m) is independent of the element
C € R(a).

If d(a,r) ¢ 0, then we set

U(a. m) = J(C£5.m) x S(a))

and 77(o, m) =0 if d(a,r) = 0 or if ?R(a) = 0.

Finally, we set n(a) = max{n(a, 0), n(@,r), r +1,n(/?)}.

Now, we prove the properties of the lemma for the case k = r. The properties
(7) — (11) of the lemma are satisfied by the construction of the subsets ?R(a) of
T(b) and by the definition of the integer n(a). The properties (12), (13), (14),
(16) and (17) follow, respectively, by the properties (g) (£), (a), (7) and (6) of the
definition of the equivalence relation " in the set $(B). The properties (18),
(19), (20), (21) and (23) follow, respectively, by the properties («), (7), (6), (B)
and (5) of the definition of the integers n(3,TN,{) and the definition of the integer
n(a, m). The property (15) follows by the definition of the set d(a,r). Finally, the
property (22) follows by the definition of the set U(a,m). The proof of the lemma

is completed.

I1l. The construction of the space T(T)

1. Notations. By T(?R)(0) we denote the set of all non-empty sets of the
form d(a, k), a G A+, k G N. If 0 < m < k, then we set

d{a,m) = x {£} : £ G M0ON)}.

We observe that, in general, the sets d(a, m) are not elements of T(5?)(0). For every
a G Afc+i, k G N, we denote by T(3?)(a) the set of all elements d(al, N'1) G T(JR)(0),
where 'E\ G A™N+i and cti < a. Obviously, the set T(3?)(a) is finite. By T(Ift) we
denote the union of the set T(jR)(0) and the set of all subsets of J(C x 3?) of the
form d x {£}, where £ G 3? and d G D(() \ D(£)(0).

For every a G Afc+i, kK + 1 > n(3?), and for every r G N, 0 < 7 < n(a), we

denote by H(a,r) the set J(Uf x 3?(a)): The set of all sets of this form is denoted
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by IA. For every a G Afc+i, A G N, for which the set cl(a.k) ¢ 0, and for every

integer r G N, for which k + r + 1 > n(J?), we set
V(a,r) = {L(7,A) :7 G A*+r+l,a < 7}.

By V we denote the set of all sets of the form V(a, r).

For every FF 6 WU V we denote by O{W) the set of all elements of T(37),
which axe contained in W and by Fr(VF) the set of all elements cl of T(3?) such
that ciMW & 0 and dN (J(C x '£) \ W) @ 0. We denote by O(IA) (respectively, by
0(V)) the set of all subsets O(LF), where W G IA (respectively, W G V). Also, we
set 1B(T(?R)) = O{U) U O(V).

2. Remarks. Let K G N, a G Ajt+i, m £ N and 0 < m < k. It is not dificult
to prove the following propositions:

(1) If d(oi. k) G T(3?)(0) and a < 7, then 0 ¢ d(7, A) C d(a, A). (See properties
(11) and (15) of Lemma 2.11 and the definition of the set d(a,m)).

(2) If di.dv G T(1R), d\ ¢ cl2, then di M do = 0- (See the definition of the set
£>(¢)(0), property (15) of Lemma 2.11 and the definition of the elements of the set

(8) The ruiion of all elements of T(3i) is the set J(C x 3?).

@) If d(a.k) G I'(3i)(0), a < 7, then d(j,k) C U(j,k). (See the definition of
the sets d(a,m) and properties (15), (18) and (22) of Lemma 2.11).

B) Ifd(a, k) GI(3E)(©O), r G N and k + r +1 > n(JR), then d(a, L) C V(a,r).
(See the definitions of the sets d(a,m) and V(&a,r) and properties (11), (15), (18)
and (22) of Lemma 2.11).

®) If d(a,k) G T(B?)(0) and a < B < 7, then U(j,k) CO{BAN). (See
properties (7), (8), (11), (15), (19) and (22) of Lemma 2.11).

(7 Ifd(a, k) G T(CR)(O), r G -V and k +r +1 > n(R), then VV(a, r) C F(qg, A).
(See the definition of the set V(a, r) and the above proposition (6)).

(8) Ifd(a, A) G T(,??)(0), r G iV and A+r+1 > n(3?), then V(a, r+1) C V(a,r).
(See the definition of the set VV(a, r) and the above proposition (6)).

9 If d(a,m) C H(3.i), where 0 G A™+i, K\ < A and 0< i < n(), then
U(a.m) C H(0.i). (See the definitions of the sets d(a,m) and H(a,r), properties
(17) and (19) of Lemma 2.11 and the above propositions (1) and (6)).

(10) If d(a,m) N H(O,i) = 0, where O G A™+i, Ai < A and 0 < i < n(B),
then U(a,m) N H(B,i) = 0. (See the definitions of the sets d(a,m) and H(a,r),
properties (16), (17) and (20) of Lemma 2.1l and the above propositions (1) and

(6)):
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(11) U(a-m) = H(a,n(a, m)). (See property (22) of Lemma 2.1l and the
definition of the set H(a, r)).

(12) U(a,mi) N U(a,m2) = 0, where 0 < mi, m2 < h and mi @ m2 (See
properties (21) and (22) of Lemma 2.11).

13) If HH 1 > n@BE), ( € 3£@), r £ N, 0 <r < n), d G Ur("™ and
d x {c} G T(R) \ T(»)(0), then d x {¢} C H(a,r). (See the definition of the set
H(a.r)).

(14) The union of all elements of IB(T(iR)) is the set T(3£).

(15) The set fE?(T(57?)) is countable.

3. Lemma. Let d = d(a,k) G T(3?)(0), where k G AlL a G A/t+i, and
I = V(qgi,g) G V, where a\ G A™+i, hi G iV, 77 G N and k\ + 77 + 1 > n(8R).
The following properties are true:

(1) Ifd C PL, then there exists an integer r G N such that VV(a,r) C PL.

(2) ifdfIPL = 0, then there exists an integer r G N such that V{fa. r)flPL = 0.

Proof. (1). Let d C PPL Since d(a,k) C L(ai,ri), by properties (15) and
(22) of Lemma 2.1l and the definition of the sets Pr(a, r), we have 3?(a) C R(cvi).
If vw < a\ and a /7 aj, then by property (10) of Lemma 2.11, the set 3?(c*) is a
singleton. In this case the lemma is easily proved.

Hence we can suppose that 07 < a and therefore k\ < k. If k\ = k, then
ax = a and setting r = ri we have d C L(a,r) = L(ai,ri) = PL. Let E\ < a,
01 @ a. Then ki < k. If n(lR) < ki +ri +1 < k, then ¢l — d(a. k) C U(7, k\) C
P'(ai,ri), where 7 G AkMn+i and 7 < a. Hence U(a,k) C U(.ki). (See
Remarks 2 (9), (11)). Setting r = 0 we have U(a,k) = L(cv,0) C U(,ki) C
f(ai.fi).

Now, suppose that k < k\ +ri +1. Letr = k\ +77 +1 —k G N. We
prove that VV(a,r) C L(ai.ri). For this it sufficient to prove that if 7 G Afc+r+i,
7 > a, then 17(7,h) C L(ai./’i)). Let 7 G NA*+[+1, 7 > a. There exists an
element 77 G A*1+l+1 such that 7 > 77 =a. Since d(a,k) C V(01,77) we have
(7, k) C 17(7!, hi). On the other hand, since k +r +1 = (hi +ri + 1) + 1, by
Remarks 2 (9), we have U{j,k) C 17(77, hi) — R(O1,77).

(2). Let dM W = 0. Suppose that ?}(o) M 5?(oi) = 0. Setting r = n(3?) we
have Pr(a, r)fl P'(oi. 77) = 0. Suppose that J?(a 1) 3?(a) ¢ 0. Let ft<(Vi,a/cFi.
Then h < hi and R(»i) C 'R(0). For every 7 G AN+"+i, 7 > Oi > cv, by Remarks
2 (12), we have £(7, hi) N L:(7.h) = 0. From this and by the definition of the
elements of the set V we have pr(o, r) N VV(01,77) = 0, where r = hi + [1 — h.
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Now, let ai < a. Then k\ < k. Let n(3?) < k\+ Tt + 1 < k. Since
cl(a.k) N T(ax,'x) = 1 we have d(a,k) N U(,ki) = 0, where 7 G A,itl+ri+1 and
T < a. Hence U(a,k) N ir(7, k\) = 0. (See Remarks 2 (10), (11)). Setting r = 0
we have T(a,0) N T(ax,M'x) = U(a, k) N U7, ,x) = 0.

Let kK < k\+r\ +1. We setr = & + 1 +1— k G IV and prove that
T(ar) N Tlax,M'x) = 0. For this it is sufficient to prove that if 7 G A/ttr+i»
then O(n, k) N T(ax,'x) = 0. Let 7 G Ak+r+i, 7 > a. There exists an element
7: G N"+,-,+x such that 7 > > a. Since d(a, i) N T(ax,'x) = 0 we have
d(7, /)nL7(71, ) = 0. On the other hand, since i+r+1 = (& +I'x +1) +1, we have
[1(7, K)C\U(y1, ki) = 0. (See Remarks 2 (10), (11)). Hence 7/(7, )NT (7], rx) = 0.

4, Lemma. Let d = d(a i) G T(3£)(0), where k G IV, a G A™+YX, and
IT = O(a, M) G if, where ax G A/tl+x, fci + 1 > n(3?) and 0 < Iy < n(ax). The
following properties are true:

(1) ifd C W, then there exists an. integer r £ N such that T(a, r) C IT.

(2) ifdC\W = 0, then there exists an integer r G N such that V(a, )DW = 0.

Proof. (1). Let d C IT. Since d(a, k) C H(ai,r1l), by property (15) of Lemma
2.11 and the definition of the sets if(a, r), we have ii(a) C >K(ay).

If a < &1 and a Y ay, then, 3£(ax) is a singleton. In this case the lemma is
easily proved.

Let a = oil. Then k = ki and 3£(a) = 3£(ax). For every 7 G A/tji+2,7 =>ai, we
have d(7, k) C d(a,k) (see Remarks 2 (1)), d(j,k) C U(j,k) (seeRemarks 2 (4))
and i'r(7, k) C H(CE\,vi) (see Remarks 2 (9)). Setting r = 1 we have

T(a,r) = [J{f1(7, 1) : 7 £ Lkl+r+1,7 > &ax} C 0(ax,Nx).

Suppose that ax < a, ax ¢ a. Then k\ < k. Let r be an integer of N such
that k + r +1 > n@3?). Then d(a,k) C T(a,r) C U(a,k) C O(ax.Nx). (See
Remarks 2 (5), (7), (9)).

(2). Let dN IT = 0. Suppose that ?R(a) N 5i(ax) = 0. Setting r = n(Jfc)
we have T(a, r) N O(ax.Nx) = 0. Suppose that 5?(a) N 3?(ax) @ 0. Leta< ax.
Then k < ki and li(ax) C R(cv). For every 7 G A(*.1+1)+1, 7 > oy >a, we
have d(7.i) C d(ci,k) (see Remarks 2 (1)) and hence d(j,k) N ff(al Ty = 0.
By Remarks 2 (10) we have L-(7,k) N O(ax,x) = 0. If 7 G A*1+1)+x, n > a
and 7 ™ ax, then ~(7) M Yi(ax) = 0 and hence U{pf,k) N O(ax,Nx) = 0. Thus,
T(a.r) N O(ax,MN'x) = 0. Let ax < a and ax a. Then & < k. Setting r = 0 we
have U(a.k) = T(a. 0) and T(a, 0) NMo(ax,MNx) = 0. (See Remarks 2 (10)).
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5. Lemma. The set 1B(T(3?)) is a basis for the open sets of a topology on
T(&).

Proof. It is sufficient to prove that: (a) for every d £ T{3?) there exists
IV £ ITUV such that d £ O(W) and (id) if W\. W2 £ L/UV and d £ O(Wi )fl O(W?2),
then there exists W £ U U V such that d £ O(W) C O(W\) N O(W2).

Property (a) follows by Remarks 2 (14). We prove property (id). Suppose
that d — d(a,k), where a £ Ajk+i. By Lemma 3 (1) and Lemma 4 (1) it follows
that there exist integers 77,r2 £ N such that k +rl +1 > n(5R), k +r? +1 > n(3?),
d(a.k) C F(a,ri) C ILL and d(a,k) C VV(a,r2) C ILL. Let r = max{ri,r2}. Then
by Remarks 2 (8) we have

d(a,k) C V(a,r) C V(a, ri) N F(a, r2) C ILL MM ILL.

Hence d £ O(VV(a. r)) C O(W\) N O(W2).

Now, suppose that d = dl x {£}. £ T@4t) \ T(3£)(0). If ILL — V(a.r), where
a £ Afc+i, K £ -V, r £ ANl and k +r + 1 > n(5R), then by yl we denote the
element of Afc+r+i for which ¢ £ ~(xtL)- Setting r!l = n(yl,k) we have d' x {(} C
JUN x 3?(7:) C ILL- If ILL = H(a,r), where a £ A*+i, k £ iV, r £ W,
0 <r <n(a) and &+ 1 > n(9£), then by yl we denote the element a and by 77 we
denote the integer r. Hence d' x {(,'} C J(U™ x 3™(yl)) C ILL.

Similarly, there exists an element y2 £ A and an integer r2 £ N such that

dl <{C} C J(U?2 x K(72)) C LlI,.

Let r0 £ iV such that d' £ C n Let & 6 iV and 70 £ A*0+i
such that C £ 3?(70), ko + 1 > n(3£), 0 < r0 < n(70), 77 > 77 and 77 > 77. Then

d X {;} C H(70, r0) ¢ J(L™ X n J(L™ x »(72)) C W, N W2

Thus, d £ O(H(V0i ro)) C O(ITi) N O(W2).

6. Remark. In what follows, N(3i) denotes the topological space for which

fB(T(ift)) is a basis for the open sets.

7. Corollary. Ifd = d(a, k) £ T(9?)(0), a £ Ajt+i, then the set
H3d) = {O(F(a,r) : r£€iVand L +r +1 > n(9?)}

is a basis for open neighbourhoods of d(a,k) in T(H). Ifd = d x {£} £ T(R) \
T(3?)(0), then the set

B(d) = {O(H(a,r)) : a £ A*+1, k+ 1 >n(K), C G 3?(a), d £ UD{]. 0 <r < n(a)}
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is a basis for open neighbourhoods ofd' X {(,}7 in T(3?).

Proof. The proof of this corollary follows immediately from the proof of

Lemma 5.
8. Lemma. The space T(JR) is Hausdorff.

Proof. Let d\,d2 G T(3i), d\ ¢ d22 We shall prove that there exists Ox G
IB(di) and O2 G -©("2) such that Ox N O2 = 0- We consider the following cases:
(a) d\ = d(oiiki), do = d(a2,A’2), where a G Afcl+l and a2 € Afc2+1, (/3) d\ —
dx {;} G T(?R) \ T(3?)(0), do = d(a,k), where a G A*+u, and (7) dx = d\ x {¢'} G
M(«) \ T(»)(O) and d2 = d' x {(2} G T(3fc) \ T(»)(0).

Consider the first case. Without loss of generality we can suppose that k\ > A'2,
If ax ™ 02) then for every Ox G ©(dx) and Oo G IB(do) we have Ox N Oo = 0. Let
ai > 02 Since dx we have ax @ 02 and hence Ay > A2- Let I'x,2 G iV such
that ki + Ty +1 = M2 +T12 +1 > n(3i). We prove that O(ax,lN'x) N R(a2)r2) = 0.
Indeed,- let 7 G A™N+n+1 and 7 > ox. It is sufficient to prove that U(pj,k\) N
['(7,~2) = 0- But this follows by Remarks 2 (12).

Now, we condider the second case. Let ¢ ¢ 3?(0) and let I'x G N such that
d G Ur™ There exist an integer k\ G N and an element ox G Ax,+X such that
¢ G 'ft(ox), 0 < Y < n(OBX), AY > k and Ay + 1 > n(9£). If Ox = O(Ai(ax,x)) and
02 G IB(do), then we have dx G Ox, do. G O2 and Ox M O2 = 0. Let ¢ G 'R(0). Then
dfl dP(* = 0. Since D(() is a Hausdorff space, there exist integers I'x,i G N such
that d G Urx(°, df(C) G O™'° and 0,?(C) (I [AD(0O = 0. Let Ay G IV, Ay + 1 > n(»),
Ax > max{A, ¢, I'x} and let G AL, 7G A\N+x suchthat 7 > 77 > o and ( G ™N(7).
Then n(7j) > Ax. We prove that H(7,I'xY) N V(a,r) = 0, where r = Ay — k. It is
sufficient to prove that #(7,'x) N O(7,A) = 0.

By property (13) of Lemma 2.11 we have U P(X)C\UD(X) = 0 for every \ G ~(7)
This means that if(7, ) N = 0. By property (17) of Lemma 2.1l we have
d™x) G UN™X) for every \ G ™~(7). By property (19) of Lemma 2.11, for every
\ G ~(7), we have C 0-D(x). This means that U(j,k) C H(pj,i). Hence
fd(7-rxy) N O(7,b) = 0. Setting Ox = O(H(N, Nx)) and 02 = O(F(o, r)) we have
d\ G Ox, d2 G O2 and Ox N O2 = 0.

Finally, we consider the third case. If &1 @ (2, then there exist integers
A.rx. r2 G iv and elements ax, 02 G A/t+x such that A + 1 > max{n(3?),rx,r2},
ax @ a2, Ci € »(cFx), C2 € ft(a2), d[ G 0,?(Cl), d G o£(Ca) Then we have n <
n(x), r2 < n(az), d\ C H(a\. ry), d2 C id(az2,r2) and H(a\, Ix) N H(cio.r2) = o
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Setting O1 = O(fi(ai, 77)), O1 = O(H(a2,r2)) we have d\ G O\, d2 G O2 and

orno2=0.
Now, let Ci = C2 = C. Then d\ ¢ d2. Since the space D({) is HausdorfF, there
exist r1,?’2 G iV such that d[ G d2 G and n ung) = 0. Let

A GiV, k+1>max{n@3fi).Tx. r2} and let 7 G A™+i and ¢ G 3?(7). Then «(7) >
max{rl, r2}. By property (13) of Lemma 2.1, we have - ® = 0 for every
\ G ~(7). This means that #(7,77) 1 H(y, r2) = 0. Setting O\ ~ O(H(y,ri)) and
Oo = O(H(.r2)) we have di G Oi, 4 G O2 and O1 N O2 = 0.

9. Lemma. Let W G W U V. For every point d of the boundary Bd(O(IF))
of the set O(W) in T(9t), we have dMNIF @ 0 and dN (J(C x R)\ IF) 7/ 0, that ))
Bd(O(IF)) C Fr(IF).

Proof. Let d G Bd(O(IF)). If d G T(3?)(0), then by Lemmas 3 and 4 we hav££L.4-
d< IFand dnIF ™~ 0 and hence dN (T(K) \ IF) @ 0. Let d G T(9fc) \ T(»)(0),
that is, d = d' X {(}- Since d ¢- IF it is sufficient to prove that dN IF ¢ 0. Let
IF = H(a,r), where a G Afc+x, k+ 1 > n(3?) and 0 < r < n(a). We prove that
d" G CI(Fr (¢)). indeed, in the opposite case, there exists an integer 1 G N such
that FDt’) Nhfl0 =0 and d! G Uf™. Let k\ G N and k\ > max{fc,z, r}. Let 7 G
Afel+i and ¢ G (7). Then n(7) > hi- We prove that O(H(y, i)) (1 O(H(, r)) = 0.

Indeed, in the opposite case, let d\ G O(H(y,i)) N O(H(y, r)). There exists
( G T(7) such that di M (C x {C}) = d\ G £>((). Then d\ G U?(a N ® 0.
By property (13) of Lemma 2.11, this is a contradiction, because ¢. @ G "~(7) and
U?Il° n LyD(C) = 0. Hence, d' G CI(FD<O0).

On the other hand, { G 3?(a). Indeed, if { ¢ 3?(a), then there exist integers
i, K\ G N and an element 7 G A™+1 such that d' G { G N(7), ki +1 > n(3i),
k\ > i and 8(7) N 3?(@) = 0. Then d G O(H(j,i)) and H(g/,i) N W = 0, that is,
d ¢ Bd(O(LF)), which is contradiction. Hence ¢ G 3?(a).

Now, we prove that d N IF @ 0. Since W I (C x {C}) = Ur* x {C}> it is
sufficient to prove that d! N @ 0- Indeed, in the opposite case, d!' @ UD(O
and since CI(FD«<™) C we have d!' ¢ CI(UI??). But this is impossible.
Let W = F(a,r), where a G Ajt+i, kK +r +1 > n(B£). Let 7 G A™Nr+i and
C G T(7). Then U(y,k) C F(a,r) and U{y,k) = #(7,711(7,*)) = Hf G U. We
prove that d G Bd(O(LFi)). Indeed, it is sufficient to prove that if 77 G Aj™+i,
where A7 > k+r1, ¢ G ™N7), " GiV,0<ri <n(7X) and d G O{H{NA, ri)), then
O(H(yjx, ri))nO(LFi) @ 0. This follows by the relations: O(H(™1, rj))OO(LF) @ 0,
IFMN(C x3?2(7:)) = I'' and H(yl,r-i) C Cx T(y). Hence dMIFC ¢ 0 and therefore
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dnw @ 0.
10. Theorem. The space T(5f) is separable metrizable.

Proof. By Lemma 5, Lemma 8 and Remarks 2 (15) it is sufficient to prove
that the space T(ff) is regular. Let d G O(W), where IF G U U V. We prove that
there exists an element W\ G Z7 U V such that d G O(ITi) C CI(O(Hg.)) C O(T).

Let d = d(cF, A) G T(ff)(0). Without loss of generality, we can suppose that
IT =F(a,r) GV, where 77 G Afc+i, Kk +r + 1 > n(3f). (See Corollary 7). We prove
that the set W\ = VV(a, r + 1) is the required element of U U V. By Lemma 9 and
Remarks 2 (8), it is sufficient to prove that if d\ G T(3f) and d\ N V(a,r + 1) ¢ O,
then d\ C W.

Let d\ has the above property. First we suppose that d\ = d\ x {¢}. Let
3 G Alt+r+i, 7 G Alt+r+2) d < 7 and ( G iff(7). Obviously, F(/?,A) C T(a, r) and
£(7, A C F(a,r +1). Also, F(,A N (C x {}) = UE%)A\C) x {G and F(y. K)

5(0

(C x{C}H = UK x {(G}- Since dx I T(a,r + 1) ® 0, we have d[ N ®

that is, d[ G U™\y By property (23) of Lemma 2.1l we have d[ G Fﬁf)}go, that

is, d2 C US™ . Hence d[ x {(,} C U(3.k) C V(a, r) = IT, that is, d\ C IF.

Let di G T(ff)(O). Then di = d(ai.Aq), where ax G A"1+1 If Ai <A+ r + 1
then for every 7 G A(*+r+1)+1 we have {7(7, A) N ££(7, Aq) = 0. (See Remarks
2 (12)). This means that d\ N V(a,r + 1) = 0, which is a contradiction. Hence
we can suppose that k\ > k +r + 1 Let 7 G Ayt+tr+2) B G Afcf —|i such that
Qi > 7 > 3. Since d\N T(a, r + 1) @ 0, there exists an element { G 3?(cti) such
that d n ush."k) ® 0, that is, d™t’) G U,,~ky By property (23) of Lemma 2.11,

- ; (e](e) o(o
we have n(7.t) Cc L ~ . thatis, d. G £ NG By property (17) of Lemma
i Kyt <)
2.11, for every \ G ff(dq), we have d”<Y) G U'Rb)% that is, dP*x* C £%(B,k) . Thus,
for every x G iffloq), we have d™x> x {\} C ££(/?,A) C V(a,r) = IT. Hence

dx C LT.

Now, let d = d" x {(,} G T(ff) \ T(fF)(0). Without loss of generality, we can
suppose that LF = H(a.r), where a G A*+i, A+l > n(?ff), 0 < r < n(ct), ( G iff(a)
and d' G F,D(c,). There exists an integer rq G iV such that d' G C LU
£gD(I’) and dm(i’) 0 F\'l for every m, 0 <m < k. Let Ag G IV, Aq > A, Aq >rq, 7 G
ANl+1, 7 > a and ( G iff(7). We prove that d G O(TE(7,rq)) C CI(O(id(7,rq))) C
O(H(a,r)). Since #(7,77) C H(a,r), by Lemma 9, it is sufficient to prove that if
di G T(iff) and di N H{pj.r\) ¢ 0, then d\ C H(a,r).

Let di has the above property. Suppose that di = d\ x {\} G T(-ff) \ T((ff)(0).
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Since d\ M H(7, rj) @ 0, we have \ G ~(7) and M Ly((x) @ O, that is, d\ G Uri X).
Since C by property (13) of Lemma 2.1I, we have C UID{x).
This means that d\ C H(a,r).

Now, suppose that di = c/(a2,fc2) £ T(3£)(0), where a2 £ A*2+1. Since
d N Hpi,Mx) ¢ 0, there exists an element G ~(7) N 3£(a2) such that d™x | N
L7((v ! ¢ O, that is, d™ * G 17X * If k2 < k, then a2 < ~ and hence ~(7) C
B(02). Since, for every \ G ~(7), I'™X) — Ur™x) U Fr(Lnr™~(l)), by properties (16)
and (17) of Lemma 2.11, we have d™x) G U™X) and hence d”™x) G W™\ which
is a contradiction. Hence k < N2, a < a2 and 3?(a2) C 3?(a). Since C
and ( G ~(7), by property (13) of Lemma 2.1, we have 7rri<x) C for every
\ G ~(7). Since X' G ~(7) and d™x | G W_B* C [MD(x ’, by property (17) of
Lemma 2. Il, for every X G 3£(a2), we have c/Mx) G U?(x\ that is, <fA(x) C Ur(x)1
Hence, d™(x) x {\} C fyS(x> x {\} C H(a,r). This means that d\ C H(a,r).

IVV. The rationality of T'(iR).

1. Notations. Let X be a space and ~ = {00,0X,...} be a basic system
for X, where at = {.49,GL(}. Let X be a subspace of X. We set Al = Al N X,
Al = AVTLY, o, = {4g, .4)} and Z = {00,01,...}. It is easy to see that X is a basic
system for the space X. Therefore we can use the notations P1(o;), Ey(X), Xj,
76 L, SCXX) =5, 0(CX,2) =5, ¢(X,2) £ g, p(X,Z) =p, and /i(X X) ee h,
which are given in Section I.

If /is amap of aset Y into aset Z and Q C Y, then by f\qg we denote the

restriction of / onto Q.

2. Lemma. The following properties axe true:
(1) x- = x-nx,JelL.
(2) s = g-1(X)Cs.

) a9 = q\~.
4) D = {g-px) : x GDHC D.
(5) p = p\~.
(6) h = h\~.

This lemma is not dificult to be proved.

3. Notations. Let 3? be a family of representations considered in Section I.11.
Let {ri,..., rl} be a fixed subset of N, where 0 <t < n, such that |{rl..... iJ} =t
Hence, if t = 0, then {ri,..., r(} = 0.
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Let C = (S.D) € R. According to our assumptions (see Section I.1l), there
exists a space A’(C) £ 'Rn(IM) and a basic system =~(() = (oc0o(Q), & (C),...} for
Y(() such that (S.D) is the representation of A"(C) corresponding to the basic
system Z({). The pair (S.D) is denoted also by (S((),D(Q). We set

A(C) = [ 'i{Fr(crri (Q) i =1,.,.,i} if t > 0 and X() — A(C) if t — O,

Setting N'(¢) = X, Z(¢) = ~ and X(Q) = X, we can consider the ordered cover o,
of X, the basic system X for X, the subset S of C, the partition D of S and the
map h of D onto X. In order to show that the above notions depend on (, we use
the notations <r,;(C), Z((), 5(C), D(¢) and instead of notations at, ~, 5, D and
h, respectively.

The pair ¢ = (S(), D(Q) is a representation of A’(C) corresponding to basic
system >(g) for A”(C)- The family of all representations ( is denoted by R. If Ci,
C2 are distinct elements of R, then we consider Ci and (2 to be distinct elements of
R. The element ( of R and the element { of R are considered to correspond to each
other. We observe that the cardinality of R is less than or equal to the continuum.

For the family R we use all notations of Section L.1l, that is, if the element

c = (5(C), D(Q) £ R corresponds to the element ¢ = (5(0),0O(Q)) £ R, then
-1I(0Q = -Y(C). Z(cE = Z(0, o,(0 = 1.(O, S(O = 5(C). D(Q = 5(C), h_ = h(

= u£ n 5(C) = U)? Nns(0), is the set of all elements of D(() containing
in the set and * is the set of all elements of D(() which intersect the
set Also Fr(LT ™) = \ UM\ By Lemma 7.1 and Lemma 2 it
follows that the ordered set 1B(D(()) = ...} is an ordered basis for
open sets of D(() and that the set is the set of all elements d £ D(C)
such that d Pi (U{Cj0 : i £ L™}) @ 0. We observe that: (a) C (3)
CT° nD{c) = md (-,) n D(C) = Fr([/?«>).

We denote by D(C)(0) the set of all elements d of D({) for which there exist
mutually distinct integers j1,..., Jn of N (that is, |{ji, ...,jn}\ — n) such that

JefI\N\/If)>=>""1 . »>.

We observe that in this case, since E(C) has the property of boundary intersec-
tions, we have {ri,...,?-*} C {j\, ....jn}- From the above it follows that D(C)(0) =
0O(0O(0) NnD(c).
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We denote by
D{OO)s{d°[O,d"I<>,...}

an ordered set such that: (a) for every d £ £>(O(0) there exists uniquely deter-
mined integer | £ N for which d = dD(<”)), (B) if for some 1 £ N there is no element
d £ £5(0(0) for which df* = d, then df™ = 0, and (7) if for some integer i £ N,
@ O, then df(® = df(C).

We observe that for every ( £ 3? by the property of boundary intersections of
the basic system >(g), it follows that X(Q) £ £?"~f(/l/).

For every element 1 £ £ we denote by ?ft(i) the set of all elements { £ 3f for
which ¢ £ 3f(i). Obviously, subfamilies 3?(z) of 3? have properties (a)-(h) mentioned
for subfamilies 'Jt(i) of 3?. (See Section I.11).

For every subset C of C and for every subfamily 3?' of 3? we set
J(C X3L) ={@C)£C x1': a£ 50CO)}.

We define a map F of the set J(C x 3f) into the set J{C x 3?) as follows:
if (a,¢) £ J(C x 3?), then we set F(a,) = (a,C). We observe that F is an
one-to-one map of J(C x .3?) into J(C x 3?). Also, if A C 5(C) C 5(C), then
FAAX{(Q) = AX{G-

4. Lemma. For every integer k £ N, for every element a of Ajfc+i and for
every m(EN,O<m<k, we denote by:

(1) n(3?) the integer max{n(3?), rl,..., r1}+1 ift > 0 and n(3?) = n(3?) ift = 0.

(2) 3i(a) the set of all elements ¢ £ 3? for which ¢ £ 3?(a).

(3) d(a,k) the set F*1(d(a.k)), and

(4) U(a,m) the set F_1(17(a, m)).

Then, the properties (7)-(23) of Lemma 2.11 are satisfied if we replace the inte-
ger n(3i), by the integer n(3i), the symbols 3?, C and y by 3?, C ajid vy, respectively,
and the sets d(a.k) and U(a,m) by the sets d(a,k) and U(a,m), respectively.

(The numbers n(a) and n(a,m) are not changed).

Proof. It is sufficient to prove the case t > 0.
(7)-(12). Obviously, these properties are true.
(13). Let k+ 1 > n(3?) and C,\ £ 3?(a). Obviously, k + 1 > n(3?). Let

= )foDI<I ufffiTo O\uy®,...d(o\ \ u7700(0
DO\ mo(0> Fr(Lf/Q;‘), D(O \ Fref<{S,....1>(0 \ R{UXSX.
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Let B be the set, which is obtained by .4 replacing the element ¢ by \. Also, let A
and B be the sets, which are obtained by the sets A and B replacing the elements
( and x by the elements { and \, respectively. If At, i G N, is an element of
4, then by BI, .4, and Bt we denote the corresponding element of B, A and B,
respectively.

Since ¢, \ G 3?(cv), by property (13) of Lemma 2.1l, the set .4 has the same

structure with the set B. We observe that

=niFr(ffF<:’); -=
and
r>(ie) = =i mY)
Now, let AX,..., Ar be elements of .4 such that Ax IN...MAr ¢ 0. Then (Ax NzZ)(¢"))MN
.. M (4r N D(Q)) 1- 0. (See Section 3). Hence
Ax n..n Arn Fr(u°{O) n .. n Fr(U?t{°) @ 0.
Since A has the same structure with B we have

Bl n .. nsrnFi(u©ix))n ... nFr(U°{x)) ¢ 0,

that is, (Bi N DN\N)) N .. N0 @BrMNDAN) o 0. This means that B\ N ... M Br ¢ 0.
Similarly, we prove that if B\ N ... M1 Br @ 0, then Ax M ... M Ar @ 0. Hence the set
A has the same structure with the set B.

(14)  Let ((x G T(n) and @ 0. Then (,x G T(a) and d™(C) = @0
(see the definition of the ordered set Z)({)(0), property (7)) By property (14)

of Lemma 2.1, d°M @ 0. Since dif< = df(0 G =1, by
property (16) of Lemma 2.1, we have that d™x" G fl{Fi(U™") :i = I,...,t}, that
is, c/Mx) G Z?(\)(0). By the definition of the ordered set D(\)(0),

and hence d”™x' ¢ 0.

(15) . Let ¢ G T(a) and Af™ @ 0. Then ¢ G 3?(a) and A™ = d™ @ 0. We

have

d{a,k)n(C X {(}) = F-'(d(&a,Kk)nF-"((C x {c})) = F~'(d(a,k)n(C x {(})

F-(d™> x {O) = d?«> x {(}-
(See property (15) of Lemma 2.11 and properties of the map F in Section 3).
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(16). Let ¢,x G »(a), Adf(®© / 0 and c/f(° G Fr(tL°(<})), i G -V. Then
C-\ € R(a), = c/f(a ¢ 0 and G Fr(riD">) N D(f). By properties (14)
and (16) of Lemma 2.11, we have «——l ¢ 0 and c/*(v) G Fr(L:iD<x)) N D(\). Hence
rff(x) 6 D(\)(0) and dfU) = df(x). Thus c/fU) G Fr(ELD(x)).

Similarly we can prove properties (17)-(23).

5. Notations. The sets T(3ft)(0), T(3£), d(a,m), H(a,r), F(a,r), U, V,
O(IF) for IF G WU V, 0O(li), 0{V) and 1B(T(5R)) (See Notations I.I11) conserning
the family 3?, for the family 1? will be denoted by T(3?)(0), T(3£), d(a,m), H(a,r),
F(a,rn), U, V, O(W) for IF G L/ UV, 0(77), O(V) and H3(T(ik)), respectively.

All results of Section Ill, related to the above sets concerning the family 5?, are
also true for the corresponding sets concerning the family 3?. In the constuction of
the family iR we had a fixed subset {rl,...,rf} of N. Let {ri,..., r4, rt+l1,..., r*1} be
a subset of N such that 0 <t < t\ < n and [{rl..... r(1}} = t\. The corresponding
family 3? constructed for the fixed subset {rl,..., r(I} of N will be denoted by 'R.
Also, in all notations concerning this family, the symbol " will be replaced by
the symbol " ~

By ® we denote a map of the space T(3R) into the space T('R) defined as
follows: If 5G A/t+i and d(a,k) G T(3R)(0), then we set ®(d(a,k)) = d(a,k). If
d x {¢} G T(jR) \ T(iR)(0), then we set ®(& x {(}) =d x {(} G T('R). We observe
that d(a,k) G T(5R)(0), that is, d(a,k) @ 0. Indeed, if ( G 3£(a), then we have
d(a.k) n (€ x {g&) = x {C}, where d”™’) ¢@ 0. Then, by the definition of
the ordered set 13(C)(0), we have . Since {ri,...,r*} C {rl,..., rfl},
d™N( G D(() and hence «—l = d™™ @ 0. Since d(a, K)C\(C x {C}) = df™ x {(}
we have d(a, k) ¢ O

By F we denote the map of the set .J(C x 3?) into the set J(C x ?R), which is
defined as follows: if (a.C) G J{C x R), then we set F(a, Q) = (a,()- Obviously,
this map is one-to-one and F(A x {(}) = .4 x {{}, where .4 C 5(C) F 5(C)-

6. Lemma. The map @ is a homeomorphism of the space T(-R) into a subset

of the space T(jR).

Proof. It is not difficult to see that the map ® is one-to-one. Let ®(1l(a, K)) =
d(a. k). Let r be an integer of N such that k +r +1 > n(3?) > n('R). Consider the
sets F(o\r) and F(q, r). Then, d(a,k) C F(a, r) and d(a,k) C F(a, ).

Let d(ai,ki) G T(>R)(0), d(oii,ki) ¢ d(a,k) and d(ai,ki) C V(a.r). Then,

there exists an element 7 G A-k+r+i such that 'E\ > j > a and for every C £ ?R(«i)
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we have d°{® C U™ ky Then Z £ »(ai) and df*O C Tf(—fc). This means that
$(d(ai,ki)) = d(ai,ki) C T(n,r).

Let d x {¢} C y(a,r). Let 7 £ At+r+j and ¢ £ (1) Then 7 > a and
dT fc). This means that ¢ £ ~(y) and hence (& x {(}) = dx {3 C T(n, ).
Thus, ®(O(XI(a, r))) C O(V(a,r)). By Corollary 7.111, we have that the map ¢ is

continuous at the point d(a, k) of T(9i). Similarly we can prove that
P-X(P(T(M) NnO(F(a,r))) C ofv{a.n).

This means that the map ®-1 of ®(T(3?)) onto T(3?) is continuous at the point
d(a. k).

Now, let ®(& x {C}) = d x {(}. Consider the sets H(a,r) and H(a, r), where
a £ Afcti, k +1 > n(3i), £ £ 'R(n), C £ 3?(g), 0 <r < n(a and d C L. Then
dx {(¢ C H(a,r) and d x {£} C H(a,r). Let d(ai, k\) £ T(3£)(0) and d(ai, Ay) C
H(a, r). Hence 37?(ai) C 3fJ(a). If ay < a, then 3f?(a) is a singleton. In this case it is
easy to prove that ®~(ai,A’t)) = d(al, Ay) C H(a,r). Therefore, we can suppose
that a < ay. Obviously, for every ¢ £ $R(@al) we have df(c) C I7ic. This means
that ¢ £ 3£(ay) and d™" C UM, that is, ®(o?(ai,A:)) = d(ai,Ay) C H(a,r).

Let d' x {('} C H(a,r). Therefore, £ £ 3?(n) and d! C . Then ¢ £ T(0)
and hence d! x {£'} C H(a,r), that is, ®(0? x {7}) = d' X {£'} C H(ci,r). By
Corollary 7.111, we have that the map @ is continuous at the point d X {¢} of T(5i).

Similarly, we can prove that
o_1(P(T(>»)) n O(H(a, r))) C O(tf(a,r)).
Hence the map ®-1 is continuous at the point d X {Z} of ®(T(5?)). Thus, ® is a
homeomorphism of the space T(3£) onto the subspace ®(T(3?)) of the space T(3i).
7. Lemma. The set ®(T(1R)) is a closed subset of T(3ff).

Proof. Let d £ T(3?) \ ®(T(3?)). We prove that there exists an element
IT £ 77UV such that
d £ O(T) C (&) \ d(T(£)).

Let d = cl x {(Q £ T@Uft) \ T(?R)(0). We prove that d! O D((. Indeed, let
d £ D((). Ifd ~ D(£)(0), then d' x {£} £ T(3?) and PN x {(}) = d! x {g}, which
is impossible. If d' £ D(£)(0), then d! = df(C), for some A £ V. Let ci £ A*+i
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and ¢ E 3?(a). Then d(a,k) E T(ft) and ®(<:/(a.A)) = d(a.k) E T(0?). Since
d@a. foyn(C x {(}) = x {¢G and ™ = d™™\ we have dnd(a, #’) ¢ 0, which
is a contradiction. Hence, d' ¢ O(Q).

There exists an integer r E iV such that d! E and MnT() =0. Let
AE-V,A+1>n(3BE), g EAx+tX, CE T(a) and 0 < r < ir(cv). We set W = H(a r)
and prove that

ol(t,NINB(T(S)) =0

Indeed, in the opposite case, there exists an element d\ E O(H(a&a,r)) N o(T(T)).
Let hi = hi x {x} E T@\T@)(O). Then d'LE AT’(x) and ™ x {x}) = d[ x {X}
This means that d[ E -D(\) and hence nzi(x) @ 0. Since ¢, x E 5R(0) and
since

B(g-) = M1QT(T,?2(): = 1....,i>
and

BO) = MNMEXE®<",):. =1..

by property (13) of Lemma 4, this is a contradiction.

Let d\ = d(ai.Ai) E T(5ft)(0). Let x E ?R(ai). Then

i(ai,i-pn(C x {\)) = TA’ x {\}

and hence d”<x) E UNXK On the other hand, ®(<:/(ax,Ax)) = ii(ax,Ax). This
means that d”™x) = d”™x) E D(\), and hence TiD(x) N D(x) @ 0. As in the above
this is a contradiction.

Now, suppose that d = d(a,k). Let ¢ E 3ft(a). We prove that d™ ¢ D(().
Indeed, in the opposite case, d™ = d™ and d(a,k) E T(0?)(0) and hence
d(&(a, A)) = d(a,k), which is a contradiction. Hence d™ ¢ D(Q).

Let r E N such that A +r + 1 > n(3i). Since

DO = H{Fr(U°{<):l = I1..... O},
there exists an integer «((,) E N, 1 < i(Q) < ix, such that 0 Fr(a ).
Then, by properties, (19) and (20) of Lemma 2.11, Mn )) = 0. where

T t Afc+r+1, 7 > a and C E 3?(7)j that is, W™k N £>(() = 0.
We set IT = Vr(a, r) and prove that O(T(a, r)) N ®(T(?}?)) = 0. Indeed, in
the opposite case, there exists dx E O(T(a, r)) N &(T(3?)). Let d\ = d\ x {\} E
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F(B\M()(O) and let \ G SR(-y), where 7 G A*+I'+1. Then, 7 > a and d\ G UD.~XL,
that is, d\ ¢ D(\). On the other hand,

rm x {x}) =d[ x {y}

This means that d[ G D{\), which is a contradiction.
Let d\ = d(a,k'i) G T(3?)(0) and let x G Then d(ai,k\) N (C x
\}P = d™x) x {7} and hence d”<x) G WI"K), where 7 G Afc+r+i and y G (7).

Therefore, dj*(x) ¢ D(\). On the other hand, ®”™(a, Ai)) = d(ad, Ai) and hence

d(a\,ki) 0 (C x {y}) = d™x) x {7}, that is, d™x) = d™x) G D(\), which is a

contradiction.

8 Lemma. Let {rl...rtx} = {rl,..., r( rt+1}, where rt+1 G NN\ {rl,..,rt}.
Let a G A/t+i, A+ 1 > n(T) and 0 < ri+l < n(a). Then Fr(PF) \ I(3?)(a) C
Dd(M(&)), where W = H(a, ri+1).

Proof. Let d G Fr(PT)\T(3?)(0). Then dfIPF ¢ 0 and df](J3(C x ft)y\ W) y 0.
Let d — dl x {¢} G (8 \ T(?F)(0). Then d! @ 'O({)(0). We prove that dl G D(().
Since H(a, rt+1) = JUMNM+1 x ~(ct)), we have ¢ G 3i(a), di N UM+l ¢ 0 and
d I {C \ Uft+1) 7- 0. This means that d' G FrfT~j"™) C Fr(Li™N?)). Hence, if t = 0,
then d! G D((,”).

Since d' G T)(g), for t > 0, we have that d! G PH{Fr(Lr™") : 1 = 1, ...,t}.

Hence,

rfen(Fr(C,?0):! = 1....,i + I}=D(C).

Since T>(¢)(0) C £)(Q)(0) we have d' ™ Z)()(0) and hence d' x {£} G I (K). Obvi-
ously, ®(&' x {¢}) = d' x {c¢}. Thus, d —d! x {g} G P([(Bii)).

Now, let d = d(ai, A%). Since dnPPr ¢ 0, we have 3?(0)M5i?(61) ¢@ 0. This means
that either dd > a or ad < a. If ad < a, then d G T(3?)(ol). Hence gj > a. Let

C G -ft(ad)- By Lemma 4.1V, we have Af™~ TN UM+l ¢@ 0 and A™* M (C \ Urt+1) ¢ 0.

This means that A™ G Fr(A-n™M™) C Fr(t™]i*). Hence if t = 0, then A™ G
D((). For t > 0, since

AT € DO = f{Fr(ife<) i = L.....i},

we have

<C €n{Fr{dv'™) - =1..t+ 1} = £()m
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Hence, @ 0, d(a.k\) G T(1R) and ®(a(aiN1)) — d(ai,k\). Thus d(ai.ki) £
D(N)).|

9. Lemma. Lett = 0 and |{r1 o rfl}| = t\ = n. Then ®(I(5?)) C
r(M(O) = T(R)(0).

Proof. Let d £ T(3fi). Let ¢ G T and dI G D(() such that o" x {¢} =
rfn(C x {C}) ® 0- Then,

i € B(<) ~FINA/ALO) i = C B(0(0).

Since D(Q)(0) = D(O@) N O(Q) we have dI G D(C)(0). Hence there exists an
integer k such that d! — d®"K IfaG A-k+i and { G T(a), then d = d(a, A). Hence,
»(4) = d(d(a,k)) = d(a, k) = d(a.k) G T(R)(0). Thus, ®(IN(&)) C T(R)(0O).

10. Corollary. If |{r1 o rtl}] — t\ = n, then the space T(3?) is countable.
11. Theorem. The space T(JR.) belongs to the family Mn~i1(1M).

Proof. We prove the theorem by induction on integer n—t. Let n—t = 0. Then
t — n and by Corollary 10, the space T(Jk) belongs to the family M = JR°(IM).

Suppose that for every subset of N for which |[{r1 _ r*1}| — t\
and 0 < n—ti < n—t, we have proved that the space T(3ft) belongs to IRn~tl (Rf).

Now, we prove that for every subset {rl,.., ri} of N for which |{rl,..,ri}|] =1t,
the space T(3ft) belongs to JRn—~t(IM). By Corollary 7.1l it is sufficient to prove
that

Bd(O{H{a,r))) G Rn~t~1(M),

where a G A*+1, k+1 > [;(?R) and 0 < r < n(a), and

Bd(O(f(cv,r))) G IRn~t—=1(M),

where a G Afc+i and k + r + 1 > n(3i).

Let a G A-k+u k + 1 > n()J?) and 0 < r < n(a). Suppose that r G
We prove that in this case O((H(a,r)) = 0. Indeed, let d G O(H(&a,r)), that is,
d C H(oi,r). Let G 'R(cv) and d! G D(() such that dC\(C x {(}) = d! x {g}. Since

d C H(a,r) we have d! G and hence cll G
On the other hand we have d! £ D{Q) = H){Fr([/~) :i =1, ...,f} and, since
r G {ril, we have d! G Fr(U?(0O). Since U?(0 N Fr{U?(0) = 0, this is a

contradiction. Hence, O(H(a,r)) = 0 and Bd(O(H(a, r))) = 0 £ IRn~t~1(lIVI).
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Thus, we can suppose that r ™ {rl,...,ri}. For the subset {rl1 _ re rt+1}
of X, where rt+1 = r we construct the space T(Jfc). Since 0 < n — (t + 1) <
n — t, by induction, the space T(T) belongs to IRNn~t~I{IXI) and hence ®(T(T)) G

(AM). (See Leixuna 6).

By Lemma 9.111 we have Bd(O(H(a,r))) C Fr(ii(a, r)).

By Lemma 8, Fr(tf(a,r)) \ T(E)(&) C d(M(.%)). Let AU = Fr(tf(a,r)) N
d(TCN) and Hi — Fr(H(A,r)) \ &(T(3?)). The set Hi is a closed subset of
Fi(H(a, r)) and belongs to the family JRn~t~1(JM). The set H2, as a finite sub-
set of T(3£), is also closed in Fr(H(a,r)) and belongs to the family IRn~t~I[IM).
Since Fi(H(a, r)) — Hi U Ho, we have Fr(H(a,r)) G (HI) and hence
Bd(O(tf (a,r))) G

Now, let a G A/t+x and k + r + 1 > n(3£). We prove that BdA(O(F(a,r))) G
JRN-t-i (2VL). By Lemma 9.1ll, it is sufficient to prove that

Fr(F(a.r)) G
and for this, it is sufficient to prove that
Fr(F(a,r)) C (J{Fr(i7(y, 71(7,Kk))) :y G Afc+r+i,7 > a}.

We have
V(a,r) = [J{F(7- k) : 7 £ Afc+tr+i,7 > a}
= U{H(,N(N.K"Y)) :n G A*+r+i,7 > a}.

Let d G Fr(U(a, r))- Then there exists an element ¢ G 3?(a) and a G C such that
(a,) ™ dC\V(a,r) and dn(J(Cx3f2)\F(a,r)) Y 0. Let { G 3?(7), where 7 G Afc+r+i
and 7 > a. Then (a,) G d N H(7, «(7,A)) and dGI (J(C x 0) \ #(7, «(7, A))) ™ 0,
that is, d G Fr(ii(7, «(7. A))). Hence

Fr(F(a, r)) C |NJ{Fr(i(7,n(y, A)) : 7 G A*+r+1,7 > a}.

12. Corollary. The space T(JR) belongs to the family Mn(JAI).

V. Universal spaces

1. Notations. Let (1 = (Si.-Di) and @ = {S2.D2) are two representations
and let m G N. We say that (j and 2 are m— equivalent and write ~ Q2 iff for

every element d G D\ there exists an element d! G D2 such that st(d, m) = st(d\ m)
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and, conversely, for every d 6 D2 there exists d' G D\ such that st(c?, m) = st(h' m).
It is easy to see that the relation " is an equivalence relation in the family of

all representations. Obviously, the number of equivalence classes are finite.

2. Lemma. Let IE be a family of representations such that:

(1) For every (fi, f2 G E and for every m G Al (fi — Q2

(2) For every if = (S.D) G E the set 2(¢) = {c0((), oy }, where ak(f) =
{rk,D\u?},kelN, is a basic system for the space D and ( is the representation
of D corresponding to the basic system >({). Then we have:

(3) The pair (IE) = (S(E). D(E)), where S(E) = (J{S(¥) : ¢ G E) and
D(E) = (J{E)(E) : C G E) is a representation.

(4) The set >{E) = {oc0(E), oy (JE),...}, where ak(E) = {UK(IE\D{E)\

k G N, is a basic system for the space D(IE).

(5) The pair ¢ (E) is the representation of D(E) corresponding to the basic

system > (E).

Proof. (3). First, we observe that the set S(E) is a subset of C and D(E) is
a set of subsets of S(E), the union of all elements of which is the set S(E).

Now, we prove that D(E) is a partition of S(E), that is, if hi, d2 are distinct
elements of D(E), then d\ N1 d2 = 0. Indeed, let di, d2 be distinct elements of
D(E), that is d\ ¢ d2. There exist elements and (S2.D2) of E such that
d\ G Di and d2 G D2 Suppose that d2 N dj Z |. If d2 ¢ hi, then there exists
an integer mo G N such that d2 nst(hi,m) ¢ 0 and d2 ¢ st(hi,mo) for every
m > mO0. Since (S\,Di) — (S2,D2), for every m > mo, there exists an element
h"! G Di such that st(h2,??;) = st(h”~,m). This means that h™nst(hi,m) ¢ 0 and
ap @ st(hi, mo), that is, D\ is not upper semi-continuous, which is a contradiction.
Similarly, if hi ® d2, then D2 is not upper semi-continuous. Hence d2 M hi = 0.

We prove that D{E) is an upper semi-continuous partition of S(E), that is,
for every h G D(E) and for every m G N, there exists an integer k G N such
that if d' M st(th. k) @ 0, where ci G D(E), then h' C st(h. m). Suppose that
D(E) is not upper semi-continuous. Then, there exists an element h G D(E), an
integer m G N and for every k G N, there exists an element dk G D(IE) such that
dk Mist(h. k) @ 0 and dk ¢ st(h, m).

Let (S' D" and (Sk.Dk), k G N, be elements of E such that h G D' and
dk G Dk, Since (SLD1l) — (Sk.DKk), there exists an element dk of D' such that
st[dk. k) = st(h'fc, k). Then st(h),., A)Tst(h, k) ¢ 0 and hence dk Hst(h, k) ¢ 0. Also,
for every k > m, we have st(dk,k) ¢ st(h, m), that is, st(dk,k) ® st(h, m) and
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hence dk @ st(d,m). This means that D' is not upper semi-continuous, which is a
contradiction. Hence D(E) is an upper semi-continuous partition.

(4) . Let d £ D(AE) and m0 € N. It is sufficient to prove thatthere exists
an integer k £ JY such that d £ uP”~"*and every element of Uk* * is contained
in st(d.mO0). There exists an element (S,D) £ IE such that d £ D. Since the set
E(C) is a basic system for D, there exists an integer k £ N such that d £ Uk and
every element of Uk is contained in st(d, mo). We prove that d £ UpJiE> and every
element of U™ is contained in st(d, mo). By the definition of the sets Up, VP
and ITP(IE) it follows that Uk C Up{lE) and hence d £EUP"™

Let d! £ ITP(IE). Suppose that dl ¢ st(d, mo). Let (S',D") £ IEand d'£ D"
Since (S'.D") — (S,D), for every m £ N, there exists an element d° £ D such
that st(d',mi) = st(d°,mi), where m\ = ma.x{m0,k}. Since d' £ UpE), we
have dl M Up ¢ 0 and hence st(<f,mi) N Up ¢ 0. Then st(d°,/??1) N Up ¢ 0 and
hence d° N Up ¢ 0, which means that d° £ Uk . Since dl ¢ st(d, mo), we have
st(d". 1) ¢ st(d.mo). Hence st(<f°,mi) % st(c/,mo) and therefore d° ¢ st(d, mO).
This is a contradiction. Thus d' C st(d, ???0) and therefore the set E(IE) is a basic
system for the space D(1E).

5) . Let S(D(1E), Z(1E)) and D(D(1E), Z(IE)) be the subset of C and the
partition of 3(O(IE-),~(1E)), respectively, constructed in Section | for the basic
system X(1E) of D(1E). We prove that S(1E) = S(D(IE), X(1E)) and D(1E) =
O(OMM),2(E)).

First, we prove by induction on integer k that the set (D(IE))j, i £ LKk is
the set of all elements of D(IE) which intersect the set C-. Indeed, this is true if
i — 0 £ To- Suppose that this statement is true if k < kg. Let jOo £ L,t0+i. Then
there exists an element £ Lko such that either jo0 = fo0 or j0 = igl. Hence either

(D(E))lo = (D(E))-lo n vdU or (D(E))Jo = (DEB)E N (D(E) \ U®im).
Let (D(IE))lo = (D(E))lonC°U I*t < € (B(E))jO Then d € (O(JE))70

and by induction, d (1 C- ¢ 0. On the other hand, d £ UE), which means that

r’In(U{C;o:>e W)#O.
Let a £dNC-. Ifaf C—n=C—thendnNC— @ 0. Let a £ C-,. Then, d £
Fr(LPO'IE>) = Fr{ako(E)). Let b be a point of C, b ¢ a, for which the kth digit in the
ternary expansion coincides with the corresponding digit of a for all k £ A except
k = ko +1 Then b £ C~00 and by property (4) of Lemma 7.1, b £ d. This means
that dC\C-j ¢ 0. Similarly, we prove that if D(E)- = (O(E))-iolN\(O(IE)\uP"IEP,
then d £ (D&E));O iff d N CJ—0 ® 0.
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For the proof of the equalities

S{1E) = S(D(IE), >(IE))

and

D(1E) = G{O{IE).=Z(1E))

it is sufficient to prove that for every d G D(1E) we have (q(D(IE),E(IE))~1(d) =
d C S(1E). Let a G S(D(1E), Z(1E)) and let q(D(IE). Z(1E))(a) = d. Then,

{d} = f{(D(IE));ait) : * € IV}.

By the above, df)Cj, k) ¢ 0, for every k G N, which means that a G d. Conversely,
let a G d. Then, d CV ft) ® 0, for every A G iV, that is,

{d} = : k € -V}

which means that a G (q(D(IE), (d). Thus, the pair {(1E) is the repre-

sentation of D(1E) corresponding to the basic system Z(IE).

3. Lemma. Let LE be the family of representations of Lemma 2. Suppose
that:

(1) For every subset s C N with \s\ =t < n and for every { G IE we have

P){Fr(L'f(°) 6 Rn-\IM) : k G s}.

(We recall again that n is fixed).
(2) There exists a countable subset S° of S such that for { £ IE and for every

subset s C N with |s] = n we have

H{FiI(UP°):k<Es}CS°.

Then, for every s C N with |i] =t < n we have

H{Fr(U?IE)) G RN-\M) : k G s}.

Proof. By Lemma 2 the pair (S(1E). D(IE)) is a representation. First we observe

that for every s G N with |s|] =t < n we have

NMwWwitfl*1): *€ G = UiIrH™M"GO0'O). ke 4 : (e E).
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This follows immediately by the definition of the sets ) and Ft(UNEN).
We prove the lemma by induction on integer n —t. Let n —t = 0, that is,

/ =n. Let s C N and |s) = n. By property (2) and relation (3) it follows that

NM\WN\/FE> te 3} c s°

and hence

M{Fr(U°(E)) : fc € s} G

Suppose that the lemma has been proved for all integers n—t', 0 < n—tl < n—t.

We prove the lemma for the integer n—t. Let s C N and |s| = t. Consider the set
D“(IE)=D{FT(U?(,E>):k<Es}.

Since DS{E) is a subspace of D(E) and the set {U™E) : k G N) is a basis for
open sets of D(E) (see the definition of the basic system and Lemma 2), the set
{D3(E) N UNE] : k G N} is a basis for open sets of D3(E). For the proof of the

lemma it is sufficient to prove that for every r G N,
Bdd,{E){D9(E) n u?(E)) g En~t~1(M).
Let r G N. First we suppose that r G s. Then DS(E) C Fr(UNE”") and hence

DS{E) n u?(E) c ET(L?(E)) n u?[E) =

Thus
BdD3(1E)}{Da{E)NUIID{IE)) ¢ Mn~t~1(M).

Now, let r ' s. Let S\ = s U {r}. Then |6x] =t + 1 and by induction,
P{Fr(fp(E)) : k G sx} G Mn~t~=1(M).

Since
Bdd,{JE)(Ds(E) n ufm) c Bd(U?{E)) c Fr(U°(E])

for every k G N, we have

BdD.{E)(Da(E) N U?IiE)) C P|{Fr(Lf[E)) : k G si} G Rn~t~I1(IM).

4, Corollary. If E is the family of Lemma 3, then D(E) is an element of
JRN{EI) containing topologically every space D for every { = (S.D) G E.
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Proof. Since the set {UNIE) : k £ Nj is a basis for open sets of D(1E), by
the relation

Bd{U°(1E)) C Ft(U°{1E)) £

for every k £ N, we have that D(JE) £ Mn(IM).
Let £ — (S.D) £ E. It is easy to see that the map e? of D into D(JE) for
which e”(d) = d £ D(1E), for every d £ 0, is a homeomorphism of D into D(1E).
The map e™ . D — D(1E) is called i/ie natural embedding of D into D(E).

5. Theorem. In the family of all spaces having rational dimension < n,

n=1,2,..., there exists a universal element.

Proof. For every element X of the family IRn(IM) of all spaces having ra-
tional dimension < n, we denote by Z(/A\’) a basic system for X with the prop-
erty of boundary intersections. The existence of such a basic system follows by
Theorem 5.1. Indeed, if JB(X) = {Ujf,11*,...} is a basis for open sets of X hav-
ing the property of boundary intersections, then it is easy to see that the set
>(N\") = (o°, ol,...}, where a1 = {CI(UN), X \ U;x}, is a basic system for X hav-
ing the property of boundary intersections. Let (S(X, Z(.Y)), D(X, Z(.Y))) be the
representation of A" corresponding to the basic system Z(.Y) constructed in Section
1.1. The family of all such representations is denoted by Men(IM).

In the family IRen(IM) we define an equivalence relation We say that
two elements (fi and £2 of IRen(IM) are equivalent and we write £1 — £2 iff for every
m £ X1 £1 ~ £2 and -D(£i)(0) = _D(£2)(0). It is easy to see that the cardinality of
the set E.C.Men(IM) of all equivalence classes of the relation is less than or
equal to the continuum.

By % we denote the family of all representations of the form (S(1E), D(IE)),
where IE £ E.C.Men(IM). (See Lemma 2). If £ = (S(E), D(E)) £ 3? then
by X(£) we denote the space D(IE) £ IRNn(IAll) (see Corollary 4) and by >(£)
we denote the basic system Z(IE") z£ (o°(£), ol (£),...} of D(IE), where ck(() =
o<(1E) = {UN'IEAD{E)\LT'!IE)}. (See Lemma 2). By Lemma 2 the pair £ is the
representation of A’(£) corresponding to the basic system >(£).

Let T(3?) be the space constructed in Section Ill. Since >(£) has the property
of boundary intersections (see Lemma 3), by Corollary 12.IVV we have (3i) £
Mn(1Al). We prove that the space T(3i) is the required universal element of
JRN(M).

Let £ £ 3?. We construct a map e<; of D(£) into T(3?) as follows: if d £ D(f) \
D(£)(0), then by the definition of the set T(W) we have d x {£} £ T(F) \ I'('K)(0).
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In this case e™(d) = d X {(,+ Let d G D((,")(0). Then there exists an integer k G N
such that d = dfj«’). If a G A1 and { G 5?(a), then d(a,k) G T(3£)(0) C I'('N).
In this case we set e”d) = d(a.k).

We prove that ¢ is an embedding of D(f) into T(3£). Obviously, € is one-
to-one. We prove the continuity of e<p Let e”(d) = d' and O(W), W E Id UV,
be an open neighbourhood of d! in T(fi). Ifd G D(Q) \ D(f)(0), that is, d' G
TE?)N\T(3£)(0), then we can suppose that W = H(a, r), where a G A/t+i, { G ?R(cf),
A+ 1 > n(ft) and 0 < r < n(a). (See Corollary 7. Ill). Obviously, d G and
d T(3?)(@). Hence, the set

V = UDIl« \ ep(T(>)(if))

is an open neighbourhood of d in D((). It easy to verify that e”(U) C O(W).
If d G _D((,")(0), that is, d! G IN'(31)(0), then we can suppose that W = V(a,r),
where a G A/t+i, ( G 3£(<a), ¥ +r + 1 > n(3?). Let n G Afc+r+i and ¢ G ftI(ff).

Then d G and it is easy to verify that ~N) C O(ffY). Hence, €; is
continuous.
We prove the continuity of eTl. Let be an open neighbourhood of d.

Let dl G TUR.) \ TAUR)(0). Let k £ N and k + 1 > max{r, n(3ft)} and let a G A"+i
such that ¢ G 3?(a). Then, H(a,r) is an open neighbourhood of d! in T(3?) such
that eT! (O(fd(a, r))) C LnD(a

Let d' G T(3?)(0). There exists an integer k G N such that d = d®”™\ Let
ri GiV suchthat A+ri >r, k+Tx +1>n(3?), 76 AMri+i and { G (7). If
d G Afctn and 3 < 7, then 0 < r < n(/3). By property (19) of Lemma 2.1l we have
u~n-\) C It is easy to verify that

~NLOoNLIrr)) cuT™

This means that eT! is continuous and hence B¢ is an embedding of D({) into
r(#).

Now, let JY G IRn(JM). Then the map (hJY, ~(X)))-1 is an embedding of
X into D(X, 2(.Y)). (See Section 1). Let E G E.C.Men(IM) such that ((fA) =
(BAY, (X)), £)LY,=Z(N\)) G E and let the natural embedding of D(X, Z(Y))
into D(E). (See Section 4). Let ( = (S(E), D(E)) and let be the embedding
of D(E) into the space T(3?). The map t\ = & o e”Y) 0 (h(X, Z(.Y)))-1 is an
embedding of JY into T(JR). Thus, T(3f) is a universal elemnt of the family En(lAl).

6. Definition. We say that a universal element T for a family Sp of spaces

has the property of boundary intersections with respect to subfamily (Sp)i of Sp iff
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for every X £ Sp there exists an embedding ix of X into T such that if Y and
Z are distinct elements of Sp and Y £ (Sp)i, then the set iy(Y) N iz{Z) is finite.

(See, for example, [I3]).

7. Theorem. In the family Mn(IM) there exists a universal element having
the property of finite intersections with respect to a given subfamily of Mn(IM)

the cardinality of which is less than or equal to the continuum.

Proof. Let JR be a fixed subfamily of Mn(M1). For every X £ JRn(IM) let
2(A\”) and (S(X, Z(X)), D(X, Z(_Y))) be the basic system for X and the represen-
tation of X, respectively, constructed in the proof of Theorem 5. As in Theorem 5,
by IRNn(RI) we denote the family of all representations (S(X. Z(.Y)). D(X. Z(A))).

By -fti we denote the family of all representations of the form
1S(E).D(IE)).

where IE £ E.C.Ren(IM).(In the proof of Theorem 5, this family is denoted by

ft). By (ft2 we denote the family of all representations of the form

*y

(BAY, Z(A)), D(X, Z(N\))),

where X £ IR.

We set (ft = fti US2. If (i G fti and (2 G fts, then (1 and ¢2 we consider as
distinct elements of ft. Obviously, the cardinality of (R is less than or equal to the
continuum.

For every ¢ = (S(X. Z(A\")). D(X, Z(\"))) £ %2 we denote by X({) the space
.Y and by >({) the basic system Z(A) for X.

If C = (S(E), D(IE)) £ rti, then, as in the proof of Theorem 5, by X(J) we
denote the space D(1E) £ 'Rn(IM) and by Z((,”’) we denote the basic system Z(IE)
for D(IE).

Let T(ft) be the space constructed in Section Ill. If X £ M, then the pair { =
{S(X. Z(X)), D(X, Z(A\"))) £ ft2 C ft. Hence the map ex = ec 0 (h(X, Z(A"))-!
is an embedding of X into T(ft), where e is the embedding of D({) into T(ft)
constructed in the proof of Theorem 5.

If X $ IR, then by ey we denote the embedding of X into T(ft) constructed
in the proof of Theorem 5.

For the proof of the Theorem it is sufficient to prove that T(ft) has the property

of finite intersections with respect to subfamily IR C JRNn(JM).
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Let Y and Z are distinct elements of Mn(Tvl) such that Y G 1R. Let Ci =

(5(1"=@3)), O(Y=(Y)) and Q = (S(Z, =(2)), £>(Z, =(Z))) if Z ~ R and Q =
(S(1E). D(IE)) if Z £ R, where (S(Z, =(2)). E>(Z. 5(Z))) 6 E G E.C.Ren(M).

Then Ci and C2 are distinct elements of 3?. There exists an integer k G N and

elements ai,a? G A™+1, o1 Y a2, such that Ci € 5?(a1) and (2 G 'K(a2). It is easy

to verify that

ey(F) Nez(Z2) C T(K)(aO U T(»)(ia2).

Hence T(T) has the property of finite intersections with respect to IR.
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