ПANEПI THMIO $\Theta E \Sigma \Sigma A \Lambda I A \Sigma$

 TMHMA MHXANIKQN XQPOTAEIA乏 KAI IIEPIФEPEIAKHE ANAITTYEHE
IEIPA EPEYNHTIKQN EPTAZIQN

Rational n-Dimensional Spaces and the Property of Universality

97-10
D. N. Georgiou * and S. D. Iliadis**

DISCUSSION PAPER SERIES

Rational n-Dimensional Spaces and the Property of Universality

97-10

D. N. Georgiou * and S. D. Iliadis**

[^0]
RATIONAL n-DIMENSIONAL SPACES AND THE PROPERTY OF UNIVERSALITY

D. N. Georgiou
University of Thessaly, Faculty of Technological Sciences Department of Planning and Regional Development, Department of Civil Engineering, 38334 Volos, Greece

S. D. Iliadis

Department of Mathematics
University of Patras
26110 Patras, Greece

In this paper we prove that in the family of all metrizable separable spaces having rational dimension $\leq n, n=1,2, \ldots$, there exists a universal element.

Introduction. All spaces considered in this paper are separable metrizable. Let Sp be a family of spaces. We define a family $\mathbb{R}(\mathrm{Sp})$ of spaces as follows: a space X belongs to $\mathbb{R}(\mathrm{Sp})$ iff X has a basis \mathbb{B} for open sets such that the boundary of every element of \mathbb{B} belongs to Sp . We set $\mathbb{R}^{-1}(\mathrm{Sp})=\{\emptyset\}, \mathbb{R}^{0}(\mathrm{Sp})=\mathrm{Sp}$ and $\mathbb{R}^{n}(\mathrm{Sp})=\mathbb{R}\left(\mathbb{R}^{n-1}(\mathrm{Sp})\right)$, for $n=1,2, \ldots$. In the sequel we denote by \mathbb{M} the family of all countable spaces. (The empty set and finite sets are considered to be countable). Since \mathbb{M} is a normal family of spaces (see $[H]$), for every $n=1,2, \ldots$, the family $\mathbb{R}^{n}(\mathbb{M})$ is also a normal family, that is, every subspace of any element of $\mathbb{R}^{n}(\mathbb{M})$ is an element of $\mathbb{R}^{n}(M)$ and a space which is a countable union of closed subsets belonging to $\mathbb{R}^{n}(\mathbb{M})$, belongs also to $\mathbb{R}^{n}(M)$. The elements of $\mathbb{R}^{n}(\mathbb{M})$ are called spaces having rational dimension $\leq n$ (see, for example, $[\mathrm{N}]$) or n-dimensional rational spaces (see $[\mathrm{Me}]$). Obviously, a space X is rational (see $[\mathrm{Ku}])$ iff X is an 1-dimensional rational space, that is, iff $X \in \mathbb{R}(M)$.

A space T is said to be universal for a family Sp of spaces iff $T \in \mathrm{Sp}$ and for every $X \in S p$ there exists an embedding of X into T. In $\left[I_{3}\right]$ (see also $\left[M-T_{1}\right]$) it has been proved that in the family $\mathbb{R}(\mathbb{M})$ of all rational spaces there exists a universal element. The property of universality for some subfamilies of rational spaces has been studied, for example, in the papers: $\left[I_{1}\right],\left[I_{2}\right],\left[I_{4}\right],\left[I_{5}\right],[\mathrm{I}-\mathrm{Z}],\left[\mathrm{M}-\mathrm{T}_{2}\right],[\mathrm{N} 0]$.

The main result of the present paper is the following: in the family of all
n-dimensional rational spaces there exists a universal element. The method used for the proof of this result is a modification of the methods of papers $\left[I_{1}\right],\left[I_{3}\right],\left[I_{4}\right]$, $\left[\mathrm{I}_{5}\right]$.

Throughout this paper we will use the following notations and definitions.
Let F be a subset of a space X. $\operatorname{Byd} \operatorname{Bd}(F)($ or $\operatorname{Bd} .(F)), \mathrm{Cl}(F)\left(\right.$ or $\mathrm{Cl}_{\mathrm{X}}(F)$), $\operatorname{Int}(F)$ (or $\operatorname{Int} .(F)$) and $|F|$ we denote the boundary, the closure, the interior and the cardinality of F respectively. If X is a metric space, then the diameter of F is denoted by $\operatorname{diam}(F)$. Let Q and K be disjoint closed subsets of a space X. We say that an open subset U of X separates Q and K^{-}iff either $Q \subseteq U$ and $K^{\prime} \subseteq X \backslash \mathrm{Cl}(U)$ or $K^{-} \subseteq U$ and $Q \subseteq \mathrm{X} \backslash \mathrm{Cl}\left(U^{\prime}\right)$. We denote by N the set $\{0,1, \ldots\}$.

We use the symbol " \equiv " in a relation $A \equiv B$ in two cases: (α) in order to introduce two distinct notations, A and B, for the same object (set, ordered set, space, map, etc.), and (β) in order to introduce a notation, A or B (if B or A, respectively is a known notation), without mentioning this fact.

We denote by $L_{n}, n=1,2, \ldots$ the set of all ordered n-tuples $i_{1} \ldots i_{n}$, where $i_{t}=0$ or $1, t=1, \ldots, n$. Also we set $L_{0}=\{\emptyset\}$ and $L=\bigcup\left\{L_{n}: n=0,1 \ldots\right\}$. For $n=0$, by $i_{1} \ldots i_{n}$ we denote the element \emptyset of L. We say that the element $i_{1} \ldots i_{n}$ qf L is a part of the element $j_{1} \ldots j_{m}$ and we write $i_{1} \ldots i_{n} \leq j_{1} \ldots j_{m}$ iff either $n=0$, or $0<n \leq m$ and $i_{t}=j_{t}$ for every $t \leq n$. The elements of L are denoted by \bar{i}, \bar{j}, $\overline{i_{1}}$, etc. If $\bar{i}=i_{1} \ldots i_{n}$, then by $\bar{i} 0$ (respectively, $\bar{i} 1$) we denote the element $i_{1} \ldots i_{n} 0$ (respectively, $i_{1} \ldots i_{n} 1$) of L.

We denote by $\Lambda_{n}, n=1,2, \ldots$, the set of all ordered n-tuples $i_{1} \ldots i_{n}$, where i_{t}, $t=1, \ldots n$, is a positive integer. We set $\Lambda=\bigcup\left\{\Lambda_{n}: n=1,2, \ldots\right\}$. The elements of Λ are denoted by $\bar{\alpha}, \overline{3}$, etc. Let $\bar{\alpha}=i_{1} \ldots i_{n}$ and $\bar{\beta}=j_{1} \ldots j_{m}$. We say that $\bar{\alpha}$ is a part of $\bar{\beta}$ and we write $\bar{\alpha} \leq \overline{3}$ iff $1 \leq n \leq m$ and $i_{t}=j_{t}$ for every $t \leq n$. Obviously, if $\bar{\alpha}, \bar{\beta} \in \Lambda_{n}$ and $\bar{\alpha} \leq \bar{\beta}$, then $\bar{\alpha}=\bar{\beta}$. Also, for every $\bar{\alpha} \in \Lambda_{n}$ the set of all elements $\overline{3} \in \Lambda_{n+1}$ such that $\bar{\alpha} \leq \overline{3}$ is a countable non-finite set.

We denote by C the Cantor ternary set. By $C_{\bar{i}}$, where $\bar{i}=i_{1} \ldots i_{n} \in L, n \geq 1$, we denote the set of all points of C for which the $t^{\text {th }}$ digit in the ternary expansion, $t=1, \ldots n$, coincides with 0 if $i_{t}=0$ and with 2 if $i_{t}=1$. Also we set $C_{n}^{\prime}=C$. For every point a of C and for every integer $n \in N$, by $\bar{i}(a, n)$ we denote the uniquely determined element $\bar{i} \in L_{n}$ for which $a \in C_{\bar{i}}$. If $\bar{i}(a, n+1)=i_{0} \ldots i_{n}, n \in N$, then by $i(a, n+1)$ we denote the number i_{n}. For every subset F of C and for every integer $n \in N$, we denote by $\operatorname{st}(F, n)$ the union of all sets $C_{\bar{i}}, \bar{i} \in L_{n}$, such that $C_{i}^{\prime} \cap F \neq \emptyset$. If $F=\{a\}$ we set $\operatorname{st}(a, n)=\operatorname{st}(F, n)$. Obviously $\operatorname{st}(a, n)=C_{\overline{\overline{1}}(a, n)}$.

A partition of a space X is a set D of closed non-empty subsets of X such
that (α) if $F_{1} . F_{2} \in D$ and $F_{1} \neq F_{2}$, then $F_{1} \cap F_{2}=\emptyset$, and (3) the union of all ellements of D is X. The natural projection of X onto D is the map p defined as follows: if $x \in X$, then $p(x)=F$, where F is the uniquely determined element of D containing x. The quotient space of the partition D is the set D with a topology which is the minimal (with respect to the open sets) for which the map p is continuous. (We observe that we use the same notation for a partition of a space and for the corresponding quotient space). The partition D is called upper semi-continuous iff for every $F \in D$ and for every open subset U of \mathcal{X} containing F there exists an open subset V of X which is union of elements of D such that $F \subseteq V \subseteq U$.

I. Representations of spaces corresponding to a given basis of open sets.

In the sequel, n is a fixed integer of $N \backslash\{0\}$.

1. Definition. Let \mathbb{B} be a family of open sets of $X \in \mathbb{R}^{n}(\mathbb{M})$. It is possible that for distinct elements U and V of \mathbb{B} we have $U=V$. We say that \mathbb{B} has the property of boundary intersections iff for every integer $k, 1 \leq k \leq n$, and for every mutually distinct elements V_{1}, \ldots, V_{k} of \mathbb{B} we have

$$
\bigcap\left\{\operatorname{Bd}\left(V_{i}\right): i=1, \ldots, k\right\} \in \mathbb{R}^{n-k}(\mathbb{M})
$$

It is not difficult to prove the following two lemmas.
2. Lemma. Let $X \in \mathbb{R}^{n}(\mathbb{M})$ and \mathbb{B} be a basis for open sets of X. Then there exists a countable locally finite open covering π of X such that for every $U \in \pi$ we have $\operatorname{Bd}\left(U^{\prime}\right) \subseteq \operatorname{Bd}\left(V_{0}\right) \cup \ldots \cup \operatorname{Bd}\left(V_{m}\right)$ for some elements $V_{0} \ldots . . V_{m}$ of \mathbb{B}.
3. Lemma. Let $\mathrm{X} \in \mathbb{R}^{n}(M I), F$ be a closed subset of $X, F \in \mathbb{R}^{k}(\mathbb{M})$, $0 \leq k \leq n, x \in F$ and V_{0} be an open neighbourhood of x in X. Then there exists an open set V of X such that: $(\alpha) x \in V \subseteq V_{0},(\beta) \operatorname{Bd}(V) \in \mathbb{R}^{n-1}(M)$ and (γ) $F \cap \operatorname{Bd}(V) \in \mathbb{R}^{k-1}(M)$.

The Lemmas 2 and 3 are used for the proof of the following lemma, which is also stated without proof.
4. Lemma. Let $X \in \mathbb{R}^{n}(\mathbb{M}), \hbar^{-}$and Q be disjoint closed subsets of X and F_{i}, $i=0, \ldots, n-1$, be a closed subset of X such that $F_{i} \in \mathbb{R}^{i}(M)$ and $F_{0} \subseteq \ldots \subseteq F_{n-1}$. Then there exists an open subset U of X such that:
(1) The set U separates K and Q and $K \subseteq U$,
(2) $\operatorname{Bd}\left(U^{U}\right) \in \mathbb{R}^{n-1}(I M)$, and
(3) $F_{i} \cap \mathrm{Bd}\left(U^{\top}\right) \in \mathbb{R}^{i-1}(\mathbb{M}), i=0, \ldots, n-1$.
5. Theorem. A space X belongs to $\mathbb{R}^{n}(\mathbb{M})$ iff there exists a basis \mathbb{B} for open sets of X having the property of boundary intersections.

Proof. Obviously, it is sufficient to prove that if $X \in \mathbb{R}^{n}(\mathbb{M})$, then X has a basis \mathbb{B} for open sets with the property of boundary intersections. We can suppose that X is a metric space. Let $\left\{V_{0}, V_{1}, \ldots\right\}$ be a basis for open sets of X. For every $j \in N$, let V^{j} be an open set of X such that $\mathrm{Cl}\left(V_{j}^{\prime \prime}\right) \subseteq V^{j}$ and $\operatorname{diam}\left(V^{j}\right) \leq 3 \operatorname{diam}\left(V_{j}\right)$. We set $K^{j}=\mathrm{Cl}\left(V_{j}\right)$ and $Q^{j}=\mathrm{X} \backslash V^{j}$. Obviously, $K^{\prime} \cap Q^{j}=\emptyset$.

Using Lemma 4 we can construct by induction an open subset U_{j} of $X, j \in N$, such that:
(1) The set U_{j} separates the closed subsets K^{j} and Q^{j} and $K^{j} \subseteq U_{j}$.
(2) $\operatorname{Bd}\left(U_{j}\right) \in \mathbb{R}^{n-1}(I M)$.
(3) If $F_{t}^{j}, j \geq 1,1 \leq t \leq n$, is the union of all sets of the form $\operatorname{Bd}\left(U_{i_{1}}\right) \cap \ldots \cap$ $\operatorname{Bd}\left(U_{i_{t}}\right)$, where $\left\{i_{1}, \ldots, i_{t}\right\} \subseteq\{0, \ldots, j-1\}$ and $\left|\left\{i_{1}, \ldots, i_{t}\right\}\right|=t$, then $F_{t}^{j} \cap \operatorname{Bd}\left(U_{j}\right) \in$ $\mathbb{R}^{n-t-1}(\mathbb{M})$.

It is easy to prove that the set $\mathbb{B}=\left\{U_{0}, U_{1}, \ldots\right\}$ is the required basis for open sets of X having the property of boundary intersections.
6. Definitions and Notations. Let X be a space. Suppose that for every $k \in V$ we have two closed subsets $A_{0}^{k}(X) \equiv A_{0}^{k}$ and $A_{1}^{k}(X) \equiv A_{1}^{k}$ of X such that $A_{0}^{k} \cup A_{1}^{k}=X$. (It is possible that either $A_{0}^{k}=\emptyset$ or $A_{1}^{k}=\emptyset$). By $\sigma_{k}(X) \equiv \sigma_{k}$ we denote the ordered closed cover $\left\{A_{0}^{k}, A_{1}^{k}\right\}$ of X. It is possible that for distinct indexes i and j, the ordered covers σ_{i} and σ_{j} of X coincide, that is, $A_{0}^{i}=A_{0}^{j}$ and $A_{1}^{2}=A_{1}^{j}$, while these covers are considered to be distinct elements of Σ. The ordered set $\Sigma=\left\{\sigma_{0}, \sigma_{1}, \ldots\right\}$ is called basic system for X iff for every $x \in X$ and for every open neighbourhood U^{r} of x in X there exists an integer $k \in N$ such that $x \in A_{0}^{k} \backslash A_{1}^{k} \subseteq A_{0}^{k} \subseteq C$.

In what follows of Section I, X is a fixed space and $\Sigma=\left\{\sigma_{0}, \sigma_{1}, \ldots\right\}$ is a fixed basic system for X, where $\sigma_{k}=\left\{A_{0}^{k}, A_{1}^{k}\right\}, k=0,1, \ldots$

For every integer $k \in N$, we set $\operatorname{Fr}\left(\sigma_{k}\right)=A_{0}^{k} \cap A_{1}^{k}$. Also, we set

$$
\operatorname{Fr}(\Sigma)=\bigcup\left\{\operatorname{Fr}\left(\sigma_{k}\right): k=0,1 \ldots\right\}
$$

For every $\bar{i}=i_{1} \ldots i_{k} \in L_{k}, k>0$, we set $X_{\bar{i}}=A_{i_{1}}^{0} \cap \ldots \cap \cdot i_{i_{k}}^{k-1}$. Also, we set $X_{\eta}=X$. It is easy to see that $X_{\bar{j}} \subseteq X_{\bar{i}}$, if $\bar{i} \leq \bar{j}$, and $X=\bigcup\left\{X_{\bar{i}}: \bar{i} \in L_{k}\right\}$, for every $k \in N$.

We define a subset $S(X, \Sigma) \equiv S$ of C as follows: a point a of C belongs to S iff $X_{\bar{i}(a, 0)} \cap X_{\bar{i}(a, 1)} \cap \ldots \neq \emptyset$. For every $a \in S$ the set $X_{\bar{i}(a, 0)} \cap X_{\bar{i}(a, 1)} \cap \ldots$ is a singleton. Indeed, let $x, y \in X_{\bar{i}(a, 0)} \cap X_{\bar{i}(a, 1)} \cap \ldots$ and $x \neq y$. Since Σ is a basic system for X , there exists an integer $k \in N$ such that $x \in A_{0}^{k} \backslash A_{1}^{k}$ and $y \notin A_{0}^{k} \backslash A_{1}^{k}$, that is, $x \in A_{0}^{k}, y \notin A_{0}^{k}$ and $x \notin A_{1}^{k}, y \in A_{1}^{k}$. Since, either $X_{\bar{i}(a, k+1)}=X_{\bar{i}(a, k)} \cap A_{0}^{k}$ or $X_{\bar{i}(a, k+1)}=X_{\bar{i}(a, k)} \cap A_{1}^{k}$ we have that either $y \notin X_{\bar{i}(a, k+1)}$ or $x \notin X_{\bar{i}(a, k+1)}$, which is a contradiction. We define a map $q(X, \Sigma) \equiv q$ of S into X as follows: if $X_{\bar{i}(a, 0)} \cap X_{\bar{i}(a, 1)} \cap \ldots=\{x\}$, then we set $q(a)=x$. Also we set $D(\mathbb{X}, \Sigma) \equiv D=\left\{q^{-1}(x): x \in \mathbb{X}\right\}$. By $h(\mathbb{X}, \Sigma) \equiv h$ we denote the map of D into X defined as follows: $h(d)=x$ iff $d=q^{-1}(x)$. Obviously, D is a partition of S. By $p(X, \Sigma) \equiv p$ we denote the natural projection of S onto D.
7. Lemma. The following properties are true:
(1) $q\left(C_{\bar{i}} \cap S\right)=X_{\bar{i}}, \bar{i} \in L$.
(2) For every $x \in X \backslash \operatorname{Fr}(\Sigma)$, the set $q^{-1}(x)$ is a singleton.
(3) For every $x \in \operatorname{Fr}(\Sigma)$, the set $q^{-1}(x)$ is compact.
(4) Let $N(x)$ be the set of all elements k of N, for which $x \in \operatorname{Fr}\left(\sigma_{k}\right)$ and let $a \in q^{-1}(x)$. Then, the set $q^{-1}(x)$ consists of all points b of C for which $i(a . k+1)=i(b . k+1)$ for every $k \in N \backslash N(x)$.
(5) The map q is continuous.
(6) The map q is closed.
(7) The set D is an upper semi-continuous partition of S.
(8) The map h is a homeomorphism of D onto X and $h \circ p=q$.
(9) The set $h^{-1}\left(A_{0}^{k} \backslash A_{1}^{k}\right), k \in N$, is the set of all elements of D which are contained in the set $\bigcup\left\{C_{\bar{i} 0}: \bar{i} \in L_{k}\right\}$.
(10) The set $h^{-1}\left(A_{1}^{k} \backslash A_{0}^{k}\right), k \in N$, is the set of all elements of D which are contained in the set $\bigcup\left\{C_{\overline{1} 1}: \bar{i} \in L_{k}\right\}$.
(11) The set $h^{-1}\left(\operatorname{Fr}\left(\sigma_{k}\right)\right), k \in V$, is the set of all elements of D, which intersect both sets $\bigcup\left\{C_{\bar{i} 0}: \bar{i} \in L_{k}\right\}$ and $\bigcup\left\{C_{\bar{i} 1}: \bar{i} \in L_{k}\right\}$.
(12) If $\left\{k_{1} \ldots . . k_{m}\right\}$ is a subset of N, then the set $h^{-1}\left(\operatorname{Fr}\left(\sigma_{k_{1}}\right) \cap \ldots \cap \operatorname{Fr}\left(\sigma_{k_{m}}\right)\right)$ is the set of all elements of D, which intersect all of the sets: $\bigcup\left\{C_{\bar{i} 0}: \bar{i} \in L_{k_{1}}\right\}, \ldots$, $\bigcup\left\{C_{\bar{i} 0}: \bar{i} \in L_{k_{m}}\right\}, \bigcup\left\{C_{\bar{i} 1}: \bar{i} \in L_{k_{1}}\right\}, \ldots, \bigcup\left\{C_{\bar{i} 1}: \bar{i} \in L_{k_{m}}\right\}$.

Proof. (1). Let $a \in S$. By the definitions of S and $q,\{q(a)\}=X_{\bar{\imath}(a, 0)} \cap$ $\bar{X}_{\bar{i}(a, 1)} \cap \ldots$. If $a \in C_{\bar{i}}, \bar{i} \in L_{k}$, then $\bar{i}(a, k)=\bar{i}$ and hence $q(a) \in X_{\bar{i}}$, that is, $q\left(C_{\bar{i}} \cap S\right) \subseteq X_{\bar{i}}$. Let $x \in X_{\bar{i}}, \bar{i} \in L_{k}$. For every integer $m, 0 \leq m \leq k$, we denote by \bar{i}_{m} the unique element of L_{m} for which $\bar{i}_{m} \leq \bar{i}$. Obviously, $x \in X_{i_{m}}$. Since
$X_{\bar{i}}=X_{\bar{i} 0} \cup X_{\bar{i} 1}$ we have $x \in X_{\bar{i} 0} \cup X_{\bar{i} 1}$. By \bar{i}_{k+1} we denote one of the elements $\bar{i} 0$ and $\bar{i} 1$ of L_{k+1} for which $x \in X_{i_{k+1}}$. By induction, for every integer $m \geq k$, we construct an element $\bar{i}_{m} \in L_{m}$ such that $\bar{i}_{m} \leq \bar{i}_{m+1}$ and $x \in X_{\bar{i}_{m}}$. Then $C_{\bar{i}_{m+1}} \subseteq C_{\bar{i}_{m}}$ and $C_{\bar{i}_{0}} \cap C_{\bar{i}_{1}} \cap \ldots \neq \emptyset$. Obviously, this intersection is a singleton $\{a\}$. Since $\bar{i}(a, m)=\bar{i}_{m}$ and $x \in X_{\bar{i}_{0}} \cap X_{\bar{i}_{1}} \cap \ldots \neq \emptyset$ we have $a \in S$ and $q(a)=x$, that is, $q\left(C_{\bar{i}}^{\prime} \cap S\right) \supseteq X_{\bar{i}}$. Hence $q\left(C_{\bar{i}}^{\prime} \cap S\right)=X_{\bar{i}}$.
(2). By property (1), $q^{-1}(x) \neq \emptyset$. Let $a, b \in q^{-1}(x), a \neq b$. Let k be the minimal integer for which there exists $\bar{j}_{1}, \bar{j}_{2} \in L_{k}, \bar{j}_{1} \neq \bar{j}_{2}$, such that $a \in C_{\bar{j}_{1}}$ and $b \in C_{\bar{j}_{2}}$. Let $\bar{i} \in L_{k-1}$ such that $a, b \in C_{\bar{i}}$. Obviously, $\left\{\bar{j}_{1}, \bar{j}_{2}\right\}=\{\bar{i} 0, \bar{i} 1\}$. By property (1), $x \in X_{\bar{i} 0} \cap \mathrm{X}_{\bar{i} 1}=\left(\mathrm{X}_{\bar{i}} \cap A_{0}^{k-1}\right) \cap\left(\mathrm{X}_{-\bar{i}} \cap A_{1}^{k-1}\right)$. Hence $x \in A_{0}^{k-1} \cap A_{1}^{k-1}=$ $\operatorname{Fr}\left(\sigma^{k-1}\right)$, which is a contradiction. Hence $q^{-1}(x)$ is a singleton.
(3). It is sufficient to prove that $\mathrm{Cl}\left(q^{-1}(x)\right) \subseteq q^{-1}(x)$. Let $a \in \mathrm{Cl}\left(q^{-1}(x)\right)$. Then, for every integer $k \in N, q^{-1}(x) \cap C_{\bar{i}(a, k)}^{\prime} \neq \emptyset$, that is, $x \in X_{\bar{i}(a, k)}$. Hence $\{x\}=\mathcal{X}_{\bar{i}(a, 0)} \cap X_{\bar{i}(a, 1)} \cap \ldots$ and therefore $a \in S$ and $q(a)=x$, that is, $a \in q^{-1}(x)$. Thus, $\mathrm{Cl}\left(q^{-1}(x)\right) \subseteq q^{-1}(x)$ and hence $q^{-1}(x)$ is compact.
(4). Let $b \in q^{-1}(x)$. Then $\{x\}=X_{\bar{i}(a, 0)} \cap X_{\bar{i}(a, 1)} \cap \ldots=A_{i(a, 1)}^{0} \cap A_{i(a, 2)}^{1} \cap$ $\ldots=A_{i(b, 1)}^{0} \cap A_{i(b, 2)}^{0} \cap \ldots$ Let $m \in N \backslash N(x)$. Then $x \in A_{i(a, m+1)}^{m}$ and $x \notin$ $A_{1-i(a, m+1)}^{m}$. Since $x \in A_{i(b, m+1)}^{m}, i(a, m+1)=i(b, m+1)$. Conversely, let $b \in C$ and $i(a, m+1)=i(b, m+1)$ for all $m \in N \backslash N(x)$. Then $A_{i(b, m+1)}^{m}=A_{i(a, m+1)}^{m}$, $m \in N \backslash N(x)$. Since $x \in A_{i(a, k+1)}^{k} \cap A_{1-i(a, k+1)}^{k}, k \in N(x)$, it follows that $x \in A_{i(b, k+1)}^{k}$, because either $i(b, k+1)=i(a, k+1)$ or $i(b, k+1)=1-i(a, k+1)$. Hence $\{x\}=A_{i(b, 1)}^{0} \cap A_{i(b, 2)}^{1} \cap \ldots=X_{\bar{i}(b, 0)} \cap X_{\bar{i}(b, 1)} \cap \ldots$ Thus $b \in S$ and $q(b)=x$.
(5). Let $q(a)=x$ and U be an open neighbourhood of x in X. There exists an integer $m \in N$ such that $x \in A_{0}^{m} \backslash A_{1}^{m} \subseteq A_{0}^{m} \subseteq U$. Let $\bar{i} \in L_{m+1}$ and $x \in X_{\bar{i}}$. Since $x \in A_{0}^{m} \subseteq U$ and $x \notin A_{1}^{m}$ we have $X_{\bar{i}} \subseteq A_{0}^{m} \subseteq U$. Then the set $V=C_{\bar{i}} \cap S$ is an open neighbourhood of a in S for which $q(V) \subseteq U$ (see property (1)). Hence q is continuous.
(6). Let F be a closed subset of S. We prove that $q(F)$ is closed in X. Let $x \notin q(F)$. Then $q^{-1}(x) \cap F=\emptyset$. Since $q^{-1}(x)$ is compact, there exists an integer m such that $\operatorname{st}\left(q^{-1}(x), m\right) \cap \operatorname{st}(F, m)=\emptyset$. The union K of all sets $X_{-}, \bar{i} \in L_{m}$, for which $C_{\bar{i}} \subseteq \operatorname{st}(F, m)$, contains $q(F)$ and does not contain x. Hence the set $U=X \backslash K^{\prime}$ is an open neighbourhood of x in X for which $U \cap q(F)=\emptyset$, that is, $q(F)$ is closed. Thus q is closed.
(7). It is sufficient to prove that the natural projection p of S onto D is closed. (See $[\mathrm{K}]$, Ch. 3, Theorem 12), that is, for every closed subset F of S the set $p^{-1}(p(F))$ is closed. (See $[\mathrm{K}]$, Ch. 3, Theorem 10). It is easy to see that
$p^{-1}(p(F))=q^{-1}(q(F))$. By properties (5) and (6) the set $q^{-1}(q(F))$ is closed. Hence p is closed and D is an upper semi-continuous partition.
(8). It follows by properties (5), (6) and (7).
(9). Let $d \in D$ and $d \subseteq \bigcup\left\{C_{\bar{i} 0}: \bar{i} \in L_{k}\right\}$. We prove that $h(d)=x \in A_{0}^{k} \backslash A_{1}^{k}$. Suppose that $x \notin A_{0}^{k} \backslash A_{1}^{k}$ and let \bar{i} be an element of L_{k} for which $x \in X_{\bar{i}}$. Then $x \in \mathrm{X}_{\bar{i}} \cap A_{1}^{k}=\mathrm{X}_{\bar{i} 1}$. Hence, by property (1), $q^{-1}(x) \cap C_{\bar{i} 1}=d \cap C_{\bar{i} 1}^{\prime} \neq \emptyset$, which is a contradiction. Conversely, let $h(d)=x \in A_{0}^{k} \backslash A_{1}^{k}, k \in N$. We prove that $h^{-1}(x)=d \subseteq \bigcup\left\{C_{\overline{i 0}}: \bar{i} \in L_{k}\right\}$. Indeed, in the opposite case, there exists an element $\bar{i} \in L_{k}$ such that $d \cap C_{\bar{i} 1} \neq \emptyset$. Then $h(d)=x \in X_{\bar{i} 1}$. This means that $x \in A_{1}^{k}$, that is, $x \notin A_{0}^{k} \backslash A_{1}^{k}$, which is a contradiction.
(10). The proof is similar to the proof of property (9).
(11). The proof follows by properties (9) and (10).
(12). The proof follows by property (11).
8. Definition. A pair $(S . D)$, where S is a subset of C and D is an upper semi-continuous partition of S whose elements are compact, is called a representation. Obviously, if X is a space and Σ is a basic system for X, then the pair $(S(\mathbb{X}, \Sigma), D(\mathbb{X}, \Sigma))$ is a representation. This representation is called the represer: tation of X corresponding to the basic system Σ.

II. The main Lemma.

1. Definitions and Notations. Let \Re be a family of representations, the cardinality of which is less than or equal to the continuum. It is possible that for two distinct elements $\left(S_{1}, D_{1}\right)$ and $\left(S_{2}, D_{2}\right)$ of $\Re, S_{1}=S_{2}$ and $D_{1}=D_{2}$. We suppose that for every element $\zeta=(S . D) \in \mathbb{R}$ there exists a space $X(\zeta) \in \mathbb{R}^{n}(\mathbb{M})$ (we recall that n is a fixed integer of $\mathcal{V} \backslash\{0\}$) and a basic system $\Sigma(\zeta) \equiv\left\{\sigma_{0}(\zeta), \sigma_{1}(\zeta), \ldots\right\}$ for $X(\zeta)$ such that (S, D) is the representation of $X(\zeta)$ corresponding to the basic system $\Sigma(\zeta)$. Moreover, we suppose that the basic system $\Sigma(\zeta)$ has the following property calling the property of boundary intersections: for every integer $k, 1 \leq k \leq n$, and for every mutually distinct integers j_{1}, \ldots, j_{k} of \mathcal{V} (that is, $\left|\left\{j_{1}, \ldots, j_{k}\right\}\right|=k$) we have

$$
\bigcap\left\{\operatorname{Fr}\left(\sigma_{j_{i}}(\zeta)\right): i=1, \ldots, k\right\} \in \mathbb{R}^{n-k}(M) .
$$

For every representation $\zeta=(S, D)$, the subset S of C is denoted also by $S(\zeta)$ and the partition D of S is denoted also by $D(\zeta)$. If $\zeta \in \Re$, then the map $h(\mathrm{X}(\zeta) . \Sigma(\zeta))$ is denoted also by h_{ζ}.

Since the cardinality of R is less than or equal to the continuum, for every element $\bar{i} \in L$ there exists a subfamily $\Re(\bar{i})$ of \Re such that: $(\alpha) \Re(\emptyset)=\Re,(3)$ $R(\bar{i}) \cap R(\bar{j})=\emptyset$, if $\bar{i}, \bar{j} \in L_{k}, \bar{i} \neq \bar{j}, k \in N,(\gamma) \Re(\bar{i})=\Re(\bar{i} 0) \cup R(\bar{i} 1), \bar{i} \in L$, and (δ) for distinct elements $\zeta_{1}, \zeta_{2} \in \Re$ there exist an integer $k \in V$ and elements $\bar{i}, \bar{j} \in L_{k}$, $\bar{i} \neq \bar{j}$, such that $\zeta_{1} \in \Re(\bar{i})$ and $\zeta_{2} \in R(\bar{j})$.

For every integer $k \in N$, we set

$$
U_{k}^{C}=\bigcup\left\{C_{\bar{i} 0}: \bar{i} \in L_{k}\right\} .
$$

If $\zeta=(S, D)$ is a representation, then we denote by U_{k}^{S} the set $U_{k}^{C} \cap S$ and by U_{k}^{D} the set of all elements of D, which are contained in the set L_{k}^{S}. Also, we denote by \bar{U}_{k}^{D} the set of all elements of D which intersect the set U_{k}^{S}. We set $\operatorname{Fr}\left(U_{k}^{D}\right)=$ $\bar{U}_{k}^{D} \backslash U_{k}^{C D}$. It easy to see that if $\zeta \in R$, then $\operatorname{Fr}\left(U_{k}^{D(\zeta)}\right)=h_{\zeta}^{-1}\left(\operatorname{Fr}\left(\sigma_{k}(\zeta)\right)\right)$. (See property 11 of Lemma 7.I). Also, the ordered set $\mathbb{B}(D(\zeta)) \equiv\left\{U_{0}^{D(\zeta)}, U_{1}^{D(\zeta)}, \ldots\right\}$ is an ordered basis for open sets of $D(\zeta)$.

Far every $\zeta \in \Re$ we denote by $D(\zeta)(0)$ the set of all elements d of $D(\zeta)$ for which there exist mutually distinct integers j_{1}, \ldots, j_{n} of N such that

$$
d \in \bigcap\left\{\operatorname{Fr}\left(U_{j_{i}}^{D(\zeta)}\right): i=1, \ldots, n\right\} .
$$

Since $\Sigma(\zeta)$ has the property of boundary intersections and

$$
\operatorname{Fr}\left(U_{j_{i}}^{D(\zeta)}\right)=h_{\zeta}^{-1}\left(\operatorname{Fr}\left(\sigma_{j_{i}}(\zeta)\right)\right),
$$

$i=1, \ldots, n$, the set $D(\zeta)(0)$ is countable.
We consider an ordered set

$$
\vec{D}(\zeta)(0) \equiv\left\{d_{0}^{D(\zeta)}, d_{1}^{D(\zeta)}, \ldots\right\}
$$

such that: (α) for every $d \in D(\zeta)(0)$ there exists uniquely determined integer $i \in N$, for which $d=d_{i}^{D(\zeta)}$ and (3) if for some $i \in N$ there is no element $d \in D(\zeta)(0)$ for which $d_{i}^{D(\zeta)}=d$, then $d_{i}^{D(\zeta)}=\emptyset$. We observe that, in general, $\emptyset \in \vec{D}(\zeta)(0)$, while $\emptyset \notin D(\zeta)(0)$. Also, if $d_{k}^{D(\zeta)} \neq \emptyset$ and $d_{k}^{D(\zeta)}=d_{i}^{D(\zeta)}$, then $i=k$.

For every subset $C^{\prime \prime}$ of C^{\prime} and for every subfamily \Re^{\prime} of \Re we set

$$
J\left(C^{\prime} \times R^{\prime}\right)=\left\{(a . \zeta) \in C^{\prime} \times \mathbb{R}^{\prime}: a \in S(\zeta)\right\} .
$$

Let $\left\{U_{0}, \ldots, U_{m}\right\}$ be an ordered set of subsets of a space X and $\left\{V_{0}, \ldots, V_{m}\right\}$ be an ordered set of subsets of a space Y^{*}. We say that the ordered sets $\left\{U_{0} \ldots \ldots \dot{U}_{m}^{*}\right\}$ and
$\left\{V_{0} \ldots . . V_{m}\right\}$ have the same structure iff for every $i_{1} \ldots . i_{k} \in N, 0 \leq i_{1}, \ldots, i_{k} \leq m$ we have $U_{i_{1}} \cap \ldots \cap U_{i_{k}} \neq \emptyset$ iff $V_{i_{1}} \cap \ldots \cap V_{i_{k}} \neq \emptyset$.
2. Lemma. For every integer $k \in N$, for every element $\bar{\alpha}$ of Λ_{k+1} and for every $m \in N, 0 \leq m \leq k$, there exist:
(1) An integer $n(\Re) \geq 0$.
(2) An integer $n(\bar{\alpha}) \geq k+1$.
(3) An integer $n(\bar{\alpha}, m) \geq 0$.
(4) A subset $\Re(\bar{\alpha})$ of \Re. (It is possible that $\Re(\bar{\alpha})=\emptyset$ for some $\bar{\alpha} \in \Lambda_{k+1}$).
(5) A subset $d(\bar{\alpha}, k)$ of $J(C \times \Re(\bar{\alpha}))$. (It is possible that $d(\bar{\alpha}, k)=\emptyset$ for some $\left.\bar{\alpha} \in \Lambda_{k+1}\right)$.
(6) A subset $U(\bar{\alpha}, m)$ of $J(C \times \Re(\bar{\alpha}))$. (It is possible that $U(\bar{\alpha}, m)=\emptyset$ for some $\bar{\alpha} \in \Lambda_{k+1}$ and some $\left.m, 0 \leq m \leq k\right)$, such that:
(7) $n(\bar{\alpha}) \geq n(\bar{\beta})$ if $\bar{\alpha} \geq \bar{B}$.
(8) $n(\bar{\alpha}, m) \leq n(\bar{\alpha})$.
(9) $\Re=\bigcup\left\{\Re(\bar{\alpha}): \bar{\alpha} \in \Lambda_{1}\right\}$.
(10) If $\bar{\alpha}_{1}, \bar{\alpha}_{2} \in \Lambda_{k+1}, \bar{\alpha}_{1} \neq \bar{\alpha}_{2}$, then $\Re\left(\bar{\alpha}_{1}\right) \cap \Re\left(\bar{\alpha}_{2}\right)=\emptyset$. If $k>0, \bar{\beta} \in \Lambda_{k}$, $\overline{3} \leq \bar{\alpha}$ and $\Re(\bar{\beta})=\Re(\bar{\alpha})$, then the set $\Re(\bar{\alpha})$ is a singleton.
(11) If $\overline{3} \in \Lambda_{k}, k>0$, then

$$
\Re(\bar{\beta})=\bigcup\left\{\Re(\bar{\alpha}): \bar{\alpha} \in \Lambda_{k+1}, \bar{\beta} \leq \bar{\alpha}\right\} .
$$

(12) There exists an element $\bar{i}(\bar{\alpha}) \in L_{k}$ such that $\Re(\bar{\alpha}) \subseteq \Re(\bar{i}(\bar{\alpha}))$.
(13) If $k+1 \geq n(\Re)$ and $\zeta \cdot \gamma \in \Re(\bar{\alpha})$, then the set

$$
\begin{aligned}
& \left\{U_{0}^{D(\zeta)}, \ldots, U_{n(\bar{\alpha})}^{D(\zeta)}, \bar{U}_{0}^{D(\zeta)}, \ldots \bar{U}_{n(\bar{\alpha})}^{D(\zeta)}, D(\zeta) \backslash U_{0}^{D(\zeta)}, \ldots, D(\zeta) \backslash U_{n(\bar{\alpha})}^{D(\zeta)}, D(\zeta) \backslash \bar{U}_{0}^{D(\zeta)}, \ldots,\right. \\
& \left.D(\zeta) \backslash \bar{U}_{n(\bar{\alpha})}^{D(\zeta)}, \operatorname{Fr}\left(U_{0}^{D(\zeta)}\right) \ldots . \operatorname{Fr}\left(U_{n(\bar{\alpha})}^{D(\zeta)}\right), D(\zeta) \backslash \operatorname{Fr}\left(U_{0}^{D(\zeta)}\right), \ldots, D(\zeta) \backslash \operatorname{Fr}\left(U_{n(\bar{\alpha})}^{D(\zeta)}\right)\right\}
\end{aligned}
$$

has the same structure with the set

$$
\begin{aligned}
& \left\{U_{0}^{-D(\chi)} \ldots . U_{n(\bar{\alpha})}^{D(\chi)} \cdot \bar{C}_{0}^{D(\chi)} \ldots . \bar{C}_{n(\bar{\alpha})}^{D(\chi)} \cdot D(\chi) \backslash U_{0}^{D(\chi)} \ldots, D(\chi) \backslash U_{n(\bar{\alpha})}^{D(\chi)} \cdot D(\chi) \backslash \bar{U}_{0}^{D(\chi)}, \ldots,\right. \\
& \left.D(\chi) \backslash \bar{U}_{n(\bar{\alpha})}^{D(\chi)} \cdot \operatorname{Fr}\left(U_{0}^{D(\chi)}\right) \ldots . \operatorname{Fr}\left(U_{n(\bar{\alpha})}^{D(\chi)}\right), D(\chi) \backslash \operatorname{Fr}\left(U_{0}^{D(\chi)}\right), \ldots, D(\chi) \backslash \operatorname{Fr}\left(U_{n(\bar{\alpha})}^{D(\chi)}\right)\right\} .
\end{aligned}
$$

(14) If $\zeta, \chi \in \Re(\bar{\alpha})$, then $d_{k}^{D(\zeta)} \neq \emptyset$ iff $d_{k}^{D(\chi)} \neq \emptyset$.
(15) If $\zeta \in \Re(\bar{\alpha})$ and $d_{k}^{D(\zeta)} \neq \emptyset$, then

$$
d(\bar{\alpha}, k) \cap(C \times\{\zeta\})=d_{k}^{D(\zeta)} \times\{\zeta\} .
$$

(16) If $\zeta, \chi \in \Re(\bar{\alpha})$ and $d_{k}^{D(\zeta)} \neq 0$, then $d_{k}^{D(\zeta)} \in \operatorname{Fr}\left(U_{\imath}^{D(\zeta)}\right)$ iff $d_{k}^{D(\chi)} \in$ $\operatorname{Fr}\left(C_{i}^{-D(\lambda)}\right)$ for every $i \in N$.
(17) If $k>0, \overline{3} \in \Lambda_{k}, \overline{3} \leq \bar{\alpha}, \zeta, \backslash \in \Re(\bar{\alpha})$ and $d_{m}^{D(\zeta)} \neq \emptyset$, then $d_{m}^{D(\zeta)} \in U_{i}^{D(\zeta)}$, where $0 \leq i \leq n(\overline{3})$, iff $d_{m}^{D(\gamma)} \in U_{i}^{D(x)}$.
(18) If $\zeta \in \Re(\bar{\alpha})$ and $d_{m}^{D(\zeta)} \neq \emptyset$, then $d_{m}^{D(\zeta)} \in U_{n(\bar{\alpha}, m)}^{D(\zeta)}$.
(19) If $k>0, \bar{\beta} \in \Lambda_{k}, \bar{\beta} \leq \bar{\alpha}, \zeta \in R(\bar{\alpha}), d_{m}^{D(\zeta)} \neq \emptyset$ and $d_{m}^{D(\zeta)} \in U_{i}^{D(\zeta)}$, where $0 \leq i \leq n(\bar{\beta})$, then $U_{n(\bar{\alpha}, m)}^{D(\zeta)} \subseteq U_{i}^{D(\zeta)}$.
(20) If $k>0, \overline{3} \in \Lambda_{k}, \bar{\beta} \leq \bar{\alpha}, \zeta \in \Re(\bar{\alpha}), d_{m}^{D(\zeta)} \neq \emptyset$ and $d_{m}^{D(\zeta)} \notin \bar{U}_{i}^{D(\zeta)}$, where $0 \leq i \leq n(\bar{\beta})$, then $U_{n(\bar{\alpha}, m)}^{D(\zeta)} \cap \bar{U}_{i}^{D(\zeta)}=\emptyset$.
(21) If $\zeta \in R(\bar{\alpha}), m_{1}, m_{2} \in N, 0 \leq m_{1}, m_{2} \leq k, m_{1} \neq m_{2}, d_{m_{1}}^{D(\zeta)} \neq \emptyset$ and $d_{m_{2}}^{D(\zeta)} \neq \emptyset$, then $\bar{U}_{n\left(\bar{\alpha}, m_{2}\right)}^{D(\zeta)} \cap \bar{U}_{n\left(\bar{\alpha}, m_{2}\right)}^{D(\zeta)}=\emptyset$.
(22) If $\zeta \in \Re(\bar{\alpha})$ and $d_{m}^{D(\zeta)} \neq \emptyset$, then

$$
U(\bar{\alpha}, m)=J\left(U_{n(\bar{\alpha}, m)}^{C} \times \Re(\bar{\alpha})\right)
$$

(23) If $k>0, \overline{3} \in \Lambda_{k}, \bar{\beta} \leq \bar{\alpha}, \zeta \in \Re(\bar{\alpha}), d_{m}^{D(\zeta)} \neq \emptyset$ and $0 \leq m \leq k-1$, then $\bar{C}_{n(\bar{\alpha}, m)}^{D(\zeta)} \subseteq U_{n(\bar{\beta}, m)}^{D(\bar{\beta})}$.

Proof. Let $n(\Re)$ be an arbitrary integer of N. We prove the lemma by induction on integer k. Let $k=0$. For every $\zeta \in \Re$, we denote by $n(\zeta) \geq 1$ an integer of N such that $d_{0}^{D(\zeta)} \in U_{n(\zeta)}^{D(\zeta)}$. Also, if the set \Re is not a singleton, then we denote by \Re_{1} and \Re_{2} two disjoint non-empty subsets of \Re, the union of which is the set $\Re_{\text {. }}$.

In the set \Re we define an equivalence relation " \sim ". We say that two elements ζ and χ of \Re are equivalent iff the following conditions are satisfied: (α) either $d_{0}^{D(\zeta)} \neq \emptyset$ and $d_{0}^{D(\gamma)} \neq \emptyset$, or $d_{0}^{D(\zeta)}=\emptyset$ and $d_{0}^{D(\chi)}=\emptyset,(\beta) n(\zeta)=n(\gamma),(\gamma)$ if $d_{0}^{D(\zeta)} \neq \emptyset$, then, for every $i \in \mathcal{V}$, either $d_{0}^{D(\zeta)} \in \operatorname{Fr}\left(U_{i}^{D(\zeta)}\right)$ and $d_{0}^{D(\gamma)} \in \operatorname{Fr}\left(U_{i}^{D(x)}\right)$ or $d_{0}^{D(\zeta)} \notin \operatorname{Fr}\left(U_{i}^{D(\zeta)}\right)$ and $d_{0}^{D(\Lambda)} \notin \operatorname{Fr}\left(U_{i}^{D(\chi)}\right),(\delta)$ if $1 \geq n(\Re)$, then the set

$$
\begin{aligned}
& \left\{U_{0}^{D(\zeta)}, \ldots, U_{n(\zeta)}^{D(\zeta)}, \bar{U}_{0}^{D(\zeta)}, \ldots . \bar{U}_{n(\zeta)}^{D(\zeta)}, D(\zeta) \backslash U_{0}^{D(\zeta)}, \ldots, D(\zeta) \backslash U_{n(\zeta)}^{D(\zeta)}, D(\zeta) \backslash \bar{U}_{0}^{D(\zeta)}, \ldots,\right. \\
& \left.D(\zeta) \backslash \bar{U}_{n(\zeta)}^{D(\zeta)}, \operatorname{Fr}_{r}\left(U_{0}^{D(\zeta)}\right), \ldots, \operatorname{Fr}_{r}\left(U_{n(\zeta)}^{D(\zeta)}\right), D(\zeta) \backslash \operatorname{Fr}_{r}\left(U_{0}^{D(\zeta)}\right), \ldots, D(\zeta) \backslash \operatorname{Fr}\left(U_{n(\zeta)}^{D(\zeta)}\right)\right\}
\end{aligned}
$$

has the same structure with the set

$$
\begin{aligned}
& \left\{U_{0}^{D(\chi)} \ldots, U_{n(\chi)}^{D(\chi)}, \bar{U}_{0}^{D(\chi)} \ldots ., \bar{U}_{n(\chi)}^{D(\chi)} \cdot D(\chi) \backslash U_{0}^{D(\chi)}, \ldots, D(\chi) \backslash U_{n(\chi)}^{D(\chi)} \cdot D(\chi) \backslash \bar{U}_{0}^{D(\chi)}, \ldots,\right. \\
& \left.D(\chi) \backslash \bar{U}_{n(\chi)}^{D(\chi)}, \operatorname{Fr}\left(U_{0}^{D(\chi)}\right), \ldots, \operatorname{Fr}\left(U_{n(\chi)}^{D(\chi)}\right), D(\chi) \backslash \operatorname{Fr}\left(U_{0}^{D(\chi)}\right), \ldots, D(\chi) \backslash \operatorname{Fr}\left(U_{n(\chi)}^{D(\chi)}\right)\right\}
\end{aligned}
$$

and (\equiv) if the set \Re is not a singleton, then the elements ζ and \Varangle belong to the same set \Re_{1} or \Re_{2}.

Since for every $\zeta \in \Re$ the basic system $\Sigma(\zeta)$ has the property of boundary intersections, the set of all equivalence classes of the above relation are countable. Hence there exists an one-to-one correspondence between this set of equivalence classes and a subset Λ_{1}^{\prime} of Λ_{1}. For every $\bar{\alpha} \in \Lambda_{1}^{\prime}$, we denote by $\Re(\bar{\alpha})$ the equivalence class corresponding to $\bar{\alpha}$. If $\bar{\alpha} \notin \Lambda_{1}^{\prime}$, then we set $\Re(\bar{\alpha})=\emptyset$.

We define the set $d(\bar{\alpha}, 0)$ as follows: if for some $\zeta \in \Re(\bar{\alpha})$ (and, hence, by property (α) of the definition of the relation " \sim ", for every $\zeta \in \Re(\bar{\alpha})$) we have $d_{0}^{D(\zeta)} \neq \emptyset$, then we set

$$
d(\bar{\alpha} \cdot 0)=\bigcup\left\{\left(d_{0}^{D(\zeta)} \times\{\zeta\}\right): \zeta \in \Re(\bar{c} \bar{\alpha})\right\}
$$

If for some $\zeta \in \Re(\bar{\alpha})$ (and, hence, for every $\zeta \in \Re(\bar{\alpha})$) we have $d_{0}^{D(\zeta)}=\emptyset$ or if $\Re(\bar{\alpha})=\emptyset$, then we set $d(\bar{\alpha}, 0)=\emptyset$.

We set $n(\bar{\alpha})=n(\bar{\alpha}, 0)=n(\zeta)$, where $\zeta \in \Re(\bar{\alpha})$. By property (β) of the definition of the relation " \sim ", the integer $n(\bar{\alpha})=n(\bar{\alpha}, 0)$ is independent from element ζ of $\Re R(\bar{\alpha})$.

We define the set $U(\bar{\alpha}, 0)$ setting

$$
U(\bar{\alpha}, 0)=J\left(U_{n(\bar{\alpha}, 0)}^{C} \times \Re(\bar{\alpha})\right)
$$

Obviously, properties (7)-(10), (12) - (16), (18) and (22) of the lemma are satisfied for $k=0$. Properties (11), (17), (19) - (21) and (23) concern $k>0$.

Suppose that for every integer $k, k<r, r>0$, for every $\bar{\alpha} \in \Lambda_{k+1}$ and for every $m \in N, 0 \leq m \leq k$, we have construct an integer $n(\bar{\alpha})$, an integer $n(\bar{\alpha}, m)$ a subset $\Re(\bar{\alpha})$ of \Re, a subset $d(\bar{\alpha}, k)$ of $J(C \times \Re(\bar{\alpha}))$ and a subset $U(\bar{\alpha}, m)$ of $J(C \times \Re(\bar{\alpha}))$ such that properties (7) - (23) of the lemma are satisfied for $k<r$.

Now, for every $\bar{\alpha} \in \Lambda_{r+1}$ and for every $m \in N, 0 \leq m \leq r$, we define an integer $n(\bar{\alpha})$, an integer $n(\bar{\alpha}, m)$, a subset $\Re(\bar{\alpha})$ of \Re, a subset $d(\bar{\alpha}, k)$ of $J(C \times \Re(\bar{\alpha}))$ and a subset $U(\bar{\alpha}, m)$ of $J(C \times R(\bar{\alpha}))$ such that properties (7) - (23) are satisfied for $k \leq r$. Let $\bar{\alpha} \in \Lambda_{r+1}$. Let $\bar{\beta} \in \Lambda_{r}$ be the uniquely determined element of Λ_{r} for which $\bar{\beta} \leq \bar{\alpha}$. If $\Re(\bar{\beta})=\emptyset$, then we set $\Re(\bar{\alpha})=\emptyset$.

Suppose that $\Re(\bar{\beta}) \neq \emptyset$. If the set $\Re(\bar{\beta})$ is not a singleton then we denote by $\Re_{1}(\bar{\beta})$ and $\Re_{2}(\bar{\beta})$ two disjoint non-empty subsets of \Re, the union of which is the set $\Re(\bar{\beta})$. For every $\zeta \in \Re(\bar{\beta})$ we consider the elements $d_{0}^{D(\zeta)} \ldots . . d_{r}^{D(\zeta)}$ of $\vec{D}(\zeta)(0)$. For every $m, 0 \leq m \leq r$, we denote by $n(\overline{3}, m, \zeta)$ an element of N
such that: $(\alpha) d_{m}^{D(\zeta)} \in U_{n(\bar{\beta}, m, \zeta)}^{D(\zeta)},(\beta)$ if $0 \leq m_{1}, m_{2} \leq r, m_{1} \neq m_{2}, d_{m_{1}}^{D(\zeta)} \neq \emptyset$ and $d_{m_{2}}^{D(\zeta)} \neq \emptyset$, then $\bar{U}_{n\left(\overline{3}, m_{1}, \zeta\right)}^{D(\zeta)} \cap \bar{U}_{n\left(\bar{\beta}, m_{2}, \zeta\right)}^{D(\zeta)}=\emptyset,(\gamma)$ if $d_{m}^{D(\zeta)} \in C_{i}^{D(\zeta)}, 0 \leq i \leq n(\overline{3})$, then $U_{n(\zeta), m, \zeta)}^{D(\zeta)} \subseteq U_{i}^{D(\zeta)},(\delta)$ if $d_{m}^{D(\zeta)} \notin \bar{U}_{i}^{D(\zeta)}, 0 \leq i \leq n(\bar{\beta})$, then $U_{n(\bar{\beta}, m, \zeta)}^{D(\zeta)} \cap \bar{U}_{i}^{-D(\zeta)}=0$, and (ε) if $d_{m}^{D(\zeta)} \neq \emptyset, 0 \leq m<r$, then $\bar{U}_{n(\bar{\beta}, m, \zeta)}^{D(\zeta)} \subseteq U_{n(\bar{\beta}, m)}^{D(\zeta)}$. The existence of the integers $n(\bar{B}, m, \zeta)$ are easily proved.

In the set $\Re(\bar{\beta})$ we define an equivalence relation " \sim ". We say that the elements ζ and \of $\Re(\bar{\beta})$ are equivalent iff the following conditions are satisfied: (a) for every $m, 0 \leq m \leq r$, either $d_{m}^{D(\zeta)} \neq \emptyset$ and $d_{m}^{D(\lambda)} \neq \emptyset$ or $d_{m}^{D(\zeta)}=\emptyset$ and $d_{m}^{D(\gamma)}=\emptyset,(\beta)$ for every $m, 0 \leq m \leq r, n(\bar{\beta}, m, \zeta)=n(\bar{\beta}, m, \chi),(\gamma)$ for every $m, 0 \leq m \leq r$, if $d_{m}^{D(\zeta)} \neq \emptyset$, then for every $i \in N$, either $d_{m}^{D(\zeta)} \in \operatorname{Fr}\left(U_{i}^{D(\zeta)}\right)$ and $d_{m}^{D(\chi)} \in \operatorname{Fr}\left(U_{i}^{D(\chi)}\right)$ or $d_{m}^{D(\zeta)} \notin \operatorname{Fr}\left(U_{i}^{D(\zeta)}\right)$ and $d_{m}^{D(\chi)} \notin \operatorname{Fr}\left(U_{i}^{D(\chi)}\right),(\delta)$ for every m, $0 \leq m \leq r$, if $d_{m}^{D(\zeta)} \neq \emptyset$, then $d_{m}^{D(\zeta)} \in U_{i}^{D(\zeta)}, 0 \leq i \leq n(\bar{\beta})$, iff $d_{m}^{D(\chi)} \in U_{i}^{D(\chi)},(\bar{\zeta})$ there exists an element $\bar{i} \in L_{r}$ such that $\zeta, \chi \in \Re(\bar{i})$, (ζ) If $r+1 \geq n(\Re)$, then the set

$$
\begin{aligned}
& \left\{U_{0}^{D(\zeta)}, \ldots, U_{n(r, \zeta)}^{D(\zeta)} \bar{U}_{0}^{D(\zeta)}, \ldots, \bar{U}_{n(r, \zeta)}^{D(\zeta)}, D(\zeta) \backslash U_{0}^{D(\zeta)}, \ldots, D(\zeta) \backslash U_{n(r, \zeta)}^{D(\zeta)}, D(\zeta) \backslash \bar{U}_{0}^{D(\zeta)}, \ldots,\right. \\
& \left.D(\zeta) \backslash \bar{U}_{n(r, \zeta)}^{D(\zeta)}, \operatorname{Fr}\left(U_{0}^{D(\zeta)}\right), \ldots, \operatorname{Fr}\left(U_{n(r, \zeta)}^{D(\zeta)}\right), D(\zeta) \backslash \operatorname{Fr}^{(}\left(U_{0}^{D(\zeta)}\right), \ldots, D(\zeta) \backslash \operatorname{Fr}\left(U_{n(r, \zeta)}^{D(\zeta)}\right)\right\}
\end{aligned}
$$

has the same structure with the set
$\left\{U_{0}^{D(\chi)} \ldots . . U_{n(r, \chi)}^{D(x)}, \bar{U}_{0}^{D(\chi)} \ldots ., \bar{U}_{n(r, \chi)}^{D(x)}, D(\chi) \backslash U_{0}^{D(x)}, \ldots, D(\chi) \backslash U_{n(r, \chi)}^{D(x)}, D(\chi) \backslash \bar{U}_{0}^{D(x)}, \ldots\right.$
$\left.D(\chi) \backslash \bar{U}_{n(r, \chi)}^{D(\chi)}, \operatorname{Fr}\left(U_{0}^{D(\chi)}\right), \ldots, \operatorname{Fr}\left(U_{n(r, \chi)}^{D(\chi)}\right), D(\chi) \backslash \operatorname{Fr}\left(U_{0}^{D(\chi)}\right), \ldots, D(\chi) \backslash \operatorname{Fr}\left(U_{n(r, \chi)}^{D(x)}\right)\right\}$,
where

$$
\begin{aligned}
n(r, \zeta) & =\max \{n(\bar{\beta}, 0, \zeta), \ldots, n(\bar{\beta}, r, \zeta), r+1, n(\bar{\beta})\}=n(r, \chi)= \\
& =\max \{n(\overline{3}, 0, \backslash), \ldots n(\bar{\beta}, r, \chi), r+1, n(\bar{\beta})\}
\end{aligned}
$$

and (θ) if the set $\Re(\bar{\beta})$ is not a singleton, then the elements ζ and χ belong to the same set $\Re_{1}(\bar{\beta})$ and $\Re_{2}(\bar{\beta})$.

It is easy to see that the set of all equivalence classes of the above relation is countable. Hence there exists an one-to-one correspondence between the set of all equivalence classes and a subset $\left(\Lambda_{r+1}^{\bar{\beta}}\right)^{\prime}$ of the set $\Lambda_{r+1}^{\bar{\beta}}$ of all elements of Λ_{r+1}, which are larger than $\overline{3}$. For every $\bar{\alpha} \in\left(\Lambda_{r+1}^{\overline{3}}\right)^{\prime}$, we denote by $\Re(\bar{\alpha})$ the equivalence class corresponding to $\bar{\alpha}$. If $\bar{\alpha} \notin\left(\Lambda_{r+1}^{\overline{3}}\right)^{\prime}$, then we set $\Re(\bar{\alpha})=\emptyset$.

Now, for every $m, 0 \leq m \leq r$, we define the set $d(\bar{\alpha}, r)$, the integer $n(\bar{\alpha}, m)$ and the set $U(\bar{\alpha}, m)$ as follows:

$$
d(\bar{\alpha}, r)=\bigcup\left\{d_{r}^{D(\zeta)} \times\{\zeta\}: \zeta \in R(\bar{\alpha})\right\}
$$

if for some $\zeta \in \Re(\bar{\alpha})$ (and hence for every $\zeta \in \Re(\bar{\alpha})$) we have $d_{r}^{D(\zeta)} \neq \emptyset$, and $d(\bar{\alpha}, r)=\emptyset$ if for some $\zeta \in \Re(\bar{\alpha})$ (and hence for every $\zeta \in \Re(\bar{\alpha})$) we have $d_{r}^{D(\zeta)}=\emptyset$ or if $R(\bar{\alpha})=\emptyset$.

We set $n(\bar{\alpha}, m)=n(\overline{3}, m, \zeta)$ if $\zeta \in \mathbb{R}(\bar{\alpha})$ and $n(\bar{\alpha}, m)$ is an arbitrary element of N if $\Re(\bar{\alpha})=\emptyset$. Obviously, the integer $n(\bar{\alpha} . m)$ is independent of the element $\dot{\beta} \in R(\bar{\alpha})$.

If $d(\bar{\alpha}, r) \neq \emptyset$, then we set

$$
U(\bar{\alpha}, m)=J\left(U_{n(\bar{\alpha}, m)}^{C} \times \Re(\bar{\alpha})\right)
$$

and $U(\bar{\alpha}, m)=\emptyset$ if $d(\bar{\alpha}, r)=\emptyset$ or if $\Re(\bar{\alpha})=\emptyset$.
Finally, we set $n(\bar{\alpha})=\max \{n(\bar{\alpha}, 0), \ldots, n(\bar{\alpha}, r), r+1, n(\bar{\beta})\}$.
Now, we prove the properties of the lemma for the case $k=r$. The properties (7) - (11) of the lemma are satisfied by the construction of the subsets $\Re(\bar{\alpha})$ of $R(\bar{\beta})$ and by the definition of the integer $n(\bar{\alpha})$. The properties (12), (13), (14), (16) and (17) follow, respectively, by the properties $(\varepsilon)(\zeta),(\alpha),(\gamma)$ and (δ) of the definition of the equivalence relation " \sim " in the set $\Re(\bar{\beta})$. The properties (18), (19), (20), (21) and (23) follow, respectively, by the properties $(\alpha),(\gamma),(\delta),(\beta)$ and (ξ) of the definition of the integers $n(\bar{\beta}, m, \zeta)$ and the definition of the integer $n(\bar{\alpha}, m)$. The property (15) follows by the definition of the set $d(\bar{\alpha}, r)$. Finally, the property (22) follows by the definition of the set $U(\bar{\alpha}, m)$. The proof of the lemma is completed.

III. The construction of the space $T(\Re)$

1. Notations. By $T(\Re)(0)$ we denote the set of all non-empty sets of the form $d(\bar{\alpha}, k), \bar{\alpha} \in \Lambda_{k+1}, k \in V$. If $0 \leq m \leq k$, then we set

$$
d(\bar{\alpha}, m)=\bigcup\left\{d_{m}^{D(\zeta)} \times\{\zeta\}: \zeta \in \Re(\bar{\alpha})\right\} .
$$

We observe that, in general, the sets $d(\bar{\alpha}, m)$ are not elements of $T(\Re)(0)$. For every $\bar{\alpha} \in \Lambda_{k+1}, k \in N$, we denote by $T(\Re)(\bar{\alpha})$ the set of all elements $d\left(\bar{\alpha}_{1}, k_{1}\right) \in T(\Re)(0)$, where $\bar{\alpha}_{1} \in \Lambda_{k_{1}+1}$ and $\bar{\alpha}_{1} \leq \bar{\alpha}$. Obviously, the set $T(\Re)(\bar{\alpha})$ is finite. By $T(\Re)$ we denote the union of the set $T(\Re)(0)$ and the set of all subsets of $J(C \times \Re)$ of the form $d \times\{\zeta\}$, where $\zeta \in \Re$ and $d \in D(\zeta) \backslash D(\zeta)(0)$.

For every $\bar{\alpha} \in \Lambda_{k+1}, k+1 \geq n(\Re)$, and for every $r \in N, 0 \leq r \leq n(\bar{\alpha})$, we denote by $H(\bar{\alpha}, r)$ the set $J\left(U_{r}^{C} \times \Re(\bar{\alpha})\right)$. The set of all sets of this form is denoted
by \mathcal{U}. For every $\bar{\alpha} \in \Lambda_{k+1}, k \in \mathcal{V}$, for which the set $d(\bar{\alpha} \cdot k) \neq \emptyset$, and for every integer $r \in \mathcal{V}$, for which $k+r+1 \geq n(R)$, we set

$$
V(\bar{\alpha}, r)=\bigcup\left\{U(\bar{\gamma}, k): \bar{\gamma} \in \Lambda_{k+r+1}, \bar{\alpha} \leq \bar{\gamma}\right\} .
$$

By \mathcal{V} we denote the set of all sets of the form $V(\bar{\alpha}, r)$.
For every $W \in \mathcal{U} \cup \mathcal{V}$ we denote by $O(W)$ the set of all elements of $T(\Re)$, which are contained in W and by $\operatorname{Fr}(W)$ the set of all elements d of $T(\Re)$ such that $d \cap W \neq \emptyset$ and $d \cap(J(C \times \Re) \backslash W) \neq \emptyset$. We denote by $O(\mathcal{U})$ (respectively, by $O(\mathcal{V}))$ the set of all subsets $O(W)$, where $W \in \mathcal{U}$ (respectively, $W \in \mathcal{V}$). Also, we set $\mathbb{B}(T(\Re))=O(\mathcal{U}) \cup O(\mathcal{V})$.
2. Remarks. Let $k \in N, \bar{\alpha} \in \Lambda_{k+1}, m \in N$ and $0 \leq m \leq k$. It is not dificult to prove the following propositions:
(1) If $d(\bar{\alpha}, k) \in T(\Re)(0)$ and $\bar{\alpha} \leq \bar{\gamma}$, then $\emptyset \neq d(\bar{\gamma}, k) \subseteq d(\bar{\alpha}, k)$. (See properties (11) and (15) of Lemma 2.II and the definition of the set $d(\bar{\alpha}, m)$).
(2) If $d_{1}, d_{2} \in T(\Re), d_{1} \neq d_{2}$, then $d_{1} \cap d_{2}=\emptyset$. (See the definition of the set $\vec{D}(\zeta)(0)$, property (15) of Lemma 2.II and the definition of the elements of the set $T(\Re))$.
(3) The union of all elements of $T(\Re)$ is the set $J(C \times \Re)$.
(4) If $d(\bar{\alpha}, k) \in T(\Re)(0), \bar{\alpha} \leq \bar{\gamma}$, then $d(\bar{\gamma}, k) \subseteq U(\bar{\gamma}, k)$. (See the definition of the sets $d(\bar{\alpha}, m)$ and properties (15), (18) and (22) of Lemma 2.II).
(5) If $d(\bar{\alpha}, k) \in T(\Re)(0), r \in N$ and $k+r+1 \geq n(\Re)$, then $d(\bar{\alpha}, k) \subseteq V(\bar{\alpha}, r)$. (See the definitions of the sets $d(\bar{\alpha}, m)$ and $V(\bar{\alpha}, r)$ and properties (11), (15), (18) and (22) of Lemma 2.II).
(6) If $d(\bar{\alpha}, k) \in T(\Re)(0)$ and $\bar{\alpha} \leq \bar{\beta} \leq \bar{\gamma}$, then $U(\bar{\gamma}, k) \subseteq U(\bar{\beta}, k)$. (See properties (7), (8), (11), (15), (19) and (22) of Lemma 2.II).
(7) If $d(\bar{\alpha}, k) \in T(\Re)(0), r \in \mathcal{V}$ and $k+r+1 \geq n(\Re)$, then $V(\bar{\alpha}, r) \subseteq C^{\prime}(\bar{\alpha}, k)$. (See the definition of the set $I(\bar{\alpha}, r)$ and the above proposition (6)).
(8) If $d(\bar{\alpha}, k) \in T(\Re)(0), r \in N$ and $k+r+1 \geq n(\Re)$, then $V(\bar{\alpha}, r+1) \subseteq V(\bar{\alpha}, r)$. (See the definition of the set $V^{\prime}(\bar{\alpha}, r)$ and the above proposition (6)).
(9) If $d(\bar{\alpha}, m) \subseteq H(\bar{\beta} . i)$, where $\bar{B} \in \Lambda_{k_{1}+1}, k_{1}<k$ and $0 \leq i \leq n(\bar{\beta})$, then $\tau^{-}(\bar{\alpha}, m) \subseteq H(\bar{\beta}, i)$. (See the definitions of the sets $d(\bar{\alpha}, m)$ and $H(\bar{\alpha}, r)$, properties (17) and (19) of Lemma 2.II and the above propositions (1) and (6)).
(10) If $d(\bar{\alpha}, m) \cap H(\bar{\beta}, i)=\emptyset$, where $\bar{\beta} \in \Lambda_{k_{1}+1}, k_{1}<k$ and $0 \leq i \leq n(\bar{\beta})$, then $U(\bar{\alpha}, m) \cap H(\bar{\beta}, i)=\emptyset$. (See the definitions of the sets $d(\bar{\alpha}, m)$ and $H(\bar{\alpha}, r)$, properties (16), (17) and (20) of Lemma 2.II and the above propositions (1) and (6)).
(11) $U(\bar{\alpha}, m)=H(\bar{\alpha}, n(\bar{\alpha}, m))$. (See property (22) of Lemma 2.II and the definition of the set $H(\bar{\alpha}, r))$.
(12) $U^{U}\left(\bar{\alpha}, m_{1}\right) \cap U^{\prime}\left(\bar{\alpha}, m_{2}\right)=\emptyset$, where $0 \leq m_{1}, m_{2} \leq k$ and $m_{1} \neq m_{2}$. (See properties (21) and (22) of Lemma 2.II).
(13) If $k+1 \geq n(\Re), \zeta \in \Re(\bar{\alpha}), r \in N, 0 \leq r \leq n(\bar{\alpha}), d \in U_{r}^{D(\zeta)}$ and $d \times\{\zeta\} \in T(\Re) \backslash T(\Re)(0)$, then $d \times\{\zeta\} \subseteq H(\bar{\alpha}, r)$. (See the definition of the set $H(\bar{a}, r))$.
(14) The union of all elements of $\mathbb{B}(T(\Re))$ is the set $T(\Re)$.
(15) The set $\mathbb{B}(T(\Re))$ is countable.
3. Lemma. Let $d=d(\bar{\alpha}, k) \in T(\Re)(0)$, where $k \in N, \bar{\alpha} \in \Lambda_{k+1}$, and $W \equiv V\left(\bar{\alpha}_{1}, r_{1}\right) \in \mathcal{V}$, where $\bar{\alpha}_{1} \in \Lambda_{k_{1}+1}, k_{1} \in N, r_{1} \in N$ and $k_{1}+r_{1}+1 \geq n(R)$. The following properties are true:
(1) If $d \subseteq W$, then there exists an integer $r \in N$ such that $V(\bar{\alpha}, r) \subseteq W$.
(2) If $d \cap W=\emptyset$, then there exists an integer $r \in N$ such that $V(\bar{\alpha}, r) \cap W=\emptyset$.

Proof. (1). Let $d \subseteq W$. Since $d(\bar{\alpha}, k) \subseteq V\left(\bar{\alpha}_{1}, r_{1}\right)$, by properties (15) and (22) of Lemma 2.II and the definition of the sets $V(\bar{\alpha}, r)$, we have $\Re(\bar{\alpha}) \subseteq \Re\left(\bar{\alpha}_{1}\right)$. If $\bar{\alpha} \leq \bar{\alpha}_{1}$ and $\bar{\alpha} \neq \bar{\alpha}_{1}$, then by property (10) of Lemma 2.II, the set $\Re\left(\bar{\alpha}_{1}\right)$ is a singleton. In this case the lemma is easily proved.

Hence we can suppose that $\bar{\alpha}_{1} \leq \bar{\alpha}$ and therefore $k_{1} \leq k$. If $k_{1}=k$, then $\bar{\alpha}_{1}=\bar{\alpha}$ and setting $r=r_{1}$ we have $d \subseteq V(\bar{\alpha}, r)=V\left(\bar{\alpha}_{1}, r_{1}\right)=W$. Let $\bar{\alpha}_{1} \leq \bar{\alpha}$, $\bar{\alpha}_{1} \neq \bar{\alpha}$. Then $k_{1}<k$. If $n(R) \leq k_{1}+r_{1}+1<k$, then $d=d(\bar{\alpha}, k) \subseteq l^{*}\left(\bar{\gamma}, k_{1}\right) \subseteq$ $I^{\prime}\left(\bar{\alpha}_{1}, r_{1}\right)$, where $\bar{\gamma} \in \Lambda_{k_{1}+r_{1}+1}$ and $\bar{\gamma} \leq \bar{\alpha}$. Hence $U^{\prime}(\bar{\alpha}, k) \subseteq C^{\prime}\left(\bar{\gamma}, k_{1}\right)$. (See Remarks $2(9),(11))$. Setting $r=0$ we have $U(\bar{\alpha}, k)=V(\bar{\alpha}, 0) \subseteq U\left(\bar{\gamma}, k_{1}\right) \subseteq$ $l^{\prime}\left(\bar{\alpha}_{1}, r_{1}\right)$.

Now, suppose that $k \leq k_{1}+r_{1}+1$. Let $r=k_{1}+r_{1}+1-k \in N$. We prove that $V(\bar{\alpha}, r) \subseteq V\left(\bar{\alpha}_{1}, r_{1}\right)$. For this it sufficient to prove that if $\bar{\gamma} \in \Lambda_{k+r+1}$, $\bar{\gamma} \geq \bar{\alpha}$, then $U(\bar{\gamma}, k) \subseteq I\left(\bar{\alpha}_{1}, r_{1}\right)$. Let $\bar{\gamma} \in \Lambda_{k+r+1}, \bar{\gamma} \geq \bar{\alpha}$. There exists an element $\bar{\gamma}_{1} \in \Lambda_{k_{1}+r_{1}+1}$ such that $\bar{\gamma} \geq \bar{\gamma}_{1} \geq \bar{\alpha}$. Since $d(\bar{\alpha}, k) \subseteq V\left(\bar{\alpha}_{1}, r_{1}\right)$ we have $d(\bar{\gamma}, k) \subseteq U\left(\bar{\gamma}_{1}, k_{1}\right)$. On the other hand, since $k+r+1=\left(k_{1}+r_{1}+1\right)+1$, by Remarks $2(9)$, we have $U^{\prime}(\bar{\gamma}, k) \subseteq U^{\prime}\left(\bar{\gamma}_{1}, k_{1}\right) \subseteq V\left(\bar{\alpha}_{1}, r_{1}\right)$.
(2). Let $d \cap W=\emptyset$. Suppose that $\Re(\bar{\alpha}) \cap \Re\left(\bar{\alpha}_{1}\right)=\emptyset$. Setting $r=n(\Re)$ we have $V(\bar{\alpha}, r) \cap V\left(\bar{\alpha}_{1}, r_{1}\right)=\emptyset$. Suppose that $\Re\left(\bar{\alpha}_{1}\right) \cap \Re(\bar{\alpha}) \neq \emptyset$. Let $\bar{\alpha} \leq \bar{\alpha}_{1}, \bar{\alpha} \neq \bar{\alpha}_{1}$. Then $k<k_{1}$ and $\Re\left(\bar{\alpha}_{1}\right) \subseteq R(\bar{\alpha})$. For every $\bar{\gamma} \in \Lambda_{k_{1}+r_{1}+1}, \bar{\gamma} \geq \bar{\alpha}_{1} \geq \bar{\alpha}$, by Remarks 2 (12), we have $U\left(\bar{\gamma}, k_{1}\right) \cap U(\bar{\gamma}, k)=\emptyset$. From this and by the definition of the elements of the set \mathcal{V} we have $V(\bar{\alpha}, r) \cap V\left(\bar{\alpha}_{1}, r_{1}\right)=\emptyset$, where $r=k_{1}+r_{1}-k$.

Now, let $\bar{\alpha}_{1} \leq \bar{\alpha}$. Then $k_{1} \leq k$. Let $n(\Re) \leq k_{1}+r_{1}+1 \leq k$. Since $d(\bar{\alpha}, k) \cap V^{\prime}\left(\bar{\alpha}_{1}, r_{1}\right)=\emptyset$ we have $d(\bar{\alpha}, k) \cap L^{\prime}\left(\bar{\gamma}, k_{1}\right)=\emptyset$, where $\bar{\gamma} \in \Lambda_{k_{1}+r_{1}+1}$ and $\overline{\bar{\gamma}} \leq \bar{\alpha}$. Hence $C^{\prime}(\bar{\alpha}, k) \cap U^{V}\left(\bar{\gamma}, k_{1}\right)=\emptyset$. (See Remarks 2 (10), (11)). Setting $r=0$ we have $V(\bar{\alpha}, 0) \cap V\left(\bar{\alpha}_{1}, r_{1}\right)=U(\bar{\alpha}, k) \cap U\left(\bar{\gamma}, k_{1}\right)=\emptyset$.

Let $k<k_{1}+r_{1}+1$. We set $r=k_{1}+r_{1}+1-k \in N$ and prove that $V^{\prime}(\bar{\alpha}, r) \cap V\left(\bar{\alpha}_{1}, r_{1}\right)=\emptyset$. For this it is sufficient to prove that if $\bar{\gamma} \in \Lambda_{k+r+1}$, then $U^{*}(\bar{\gamma}, k) \cap V^{\prime}\left(\bar{\alpha}_{1}, r_{1}\right)=\emptyset$. Let $\bar{\gamma} \in \Lambda_{k+r+1}, \bar{\gamma} \geq \bar{a}$. There exists an element $\bar{\gamma}_{1} \in \Lambda_{k_{1}+r_{1}+1}$ such that $\bar{\gamma} \geq \bar{\gamma}_{1} \geq \bar{\alpha}$. Since $d(\bar{\alpha}, k) \cap V\left(\bar{\alpha}_{1}, r_{1}\right)=\emptyset$ we have $d(\bar{\gamma}, k) \cap U\left(\bar{\gamma}_{1}, k_{1}\right)=\emptyset$. On the other hand, since $k+r+1=\left(k_{1}+r_{1}+1\right)+1$, we have $U(\bar{\gamma}, k) \cap U\left(\bar{\gamma}_{1}, k_{1}\right)=\emptyset$. (See Remarks $\left.2(10),(11)\right)$. Hence $U(\bar{\gamma}, k) \cap V\left(\bar{\gamma}_{1}, r_{1}\right)=\emptyset$.
4. Lemma. Let $d=d(\bar{\alpha}, k) \in T(\Re)(0)$, where $k \in N, \bar{\alpha} \in \Lambda_{k+1}$, and $W=H\left(\bar{\alpha}_{1}, r_{1}\right) \in \mathcal{U}$, where $\bar{\alpha}_{1} \in \Lambda_{k_{1}+1}, k_{1}+1 \geq n(\Re)$ and $0 \leq r_{1} \leq n\left(\bar{\alpha}_{1}\right)$. The following properties are true:
(1) If $d \subseteq W$, then there exists an integer $r \in N$ such that $V(\bar{\alpha}, r) \subseteq W$.
(2) If $d \cap W=\emptyset$, then there exists an integer $r \in N$ such that $V(\bar{\alpha}, r) \cap W=\emptyset$.

Proof. (1). Let $d \subseteq W$. Since $d(\bar{\alpha}, k) \subseteq H\left(\bar{\alpha}_{1}, r_{1}\right)$, by property (15) of Lemma 2.II and the definition of the sets $H(\bar{\alpha}, r)$, we have $\Re(\bar{\alpha}) \subseteq \Re\left(\bar{\alpha}_{1}\right)$.

If $\bar{\alpha} \leq \bar{\alpha}_{1}$ and $\bar{\alpha} \neq \bar{\alpha}_{1}$, then, $\Re\left(\bar{\alpha}_{1}\right)$ is a singleton. In this case the lemma is easily proved.

Let $\bar{\alpha}=\bar{\alpha}_{1}$. Then $k=k_{1}$ and $\Re(\bar{\alpha})=\Re\left(\bar{\alpha}_{1}\right)$. For every $\bar{\gamma} \in \Lambda_{k_{1}+2}, \gamma \geq \bar{\alpha}_{1}$, we have $d(\bar{\gamma}, k) \subseteq d(\bar{\alpha}, k)$ (see Remarks $2(1)$), $d(\bar{\gamma}, k) \subseteq U(\bar{\gamma}, k)$ (see Remarks 2 (4)) and $U(\bar{\gamma}, k) \subseteq H\left(\bar{\alpha}_{1}, r_{1}\right)$ (see Remarks $2(9)$). Setting $r=1$ we have

$$
V(\bar{\alpha}, r)=\bigcup\left\{U(\bar{\gamma}, k): \bar{\gamma} \in L_{k_{1}+r+1}, \bar{\gamma} \geq \bar{\alpha}_{1}\right\} \subseteq H\left(\bar{\alpha}_{1}, r_{1}\right) .
$$

Suppose that $\bar{\alpha}_{1} \leq \bar{\alpha}, \bar{\alpha}_{1} \neq \bar{\alpha}$. Then $k_{1}<k$. Let r be an integer of N such that $k+r+1 \geq n(\Re)$. Then $d(\bar{\alpha}, k) \subseteq V(\bar{\alpha}, r) \subseteq U(\bar{\alpha}, k) \subseteq H\left(\bar{\alpha}_{1}, r_{1}\right)$. (See Remarks 2 (5), (7), (9)).
(2). Let $d \cap W=\emptyset$. Suppose that $\Re(\bar{\alpha}) \cap \Re\left(\bar{\alpha}_{1}\right)=\emptyset$. Setting $r=n(\Re)$ we have $V(\bar{\alpha}, r) \cap H\left(\bar{\alpha}_{1}, r_{1}\right)=\emptyset$. Suppose that $\Re(\bar{\alpha}) \cap \Re\left(\bar{\alpha}_{1}\right) \neq \emptyset$. Let $\bar{\alpha} \leq \bar{\alpha}_{1}$. Then $k \leq k_{1}$ and $R\left(\bar{\alpha}_{1}\right) \subseteq \Re(\bar{\alpha})$. For every $\bar{\gamma} \in \Lambda_{\left(k_{1}+1\right)+1}, \bar{\gamma} \geq \bar{\alpha}_{1} \geq \bar{\alpha}$, we have $d(\bar{\gamma}, k) \subseteq d(\bar{\alpha}, k)$ (see Remarks $2(1))$ and hence $d(\bar{\gamma}, k) \cap H\left(\bar{\alpha}_{1}, r_{1}\right)=\emptyset$. By Remarks 2 (10) we have $U(\bar{\gamma}, k) \cap H\left(\bar{\alpha}_{1}, r_{1}\right)=\emptyset$. If $\bar{\gamma} \in \Lambda_{\left(k_{1}+1\right)+1}, \bar{\gamma} \geq \bar{\alpha}$ and $\bar{\gamma} \nexists \bar{\alpha}_{1}$, then $\Re(\bar{\gamma}) \cap \Re\left(\bar{\alpha}_{1}\right)=\emptyset$ and hence $U(\bar{\gamma}, k) \cap H\left(\bar{\alpha}_{1}, r_{1}\right)=\emptyset$. Thus, $V(\bar{\alpha}, r) \cap H\left(\bar{\alpha}_{1}, r_{1}\right)=\emptyset$. Let $\bar{\alpha}_{1} \leq \bar{\alpha}$ and $\bar{\alpha}_{1} \neq \bar{\alpha}$. Then $k_{1}<k$. Setting $r=0$ we have $U^{\prime}(\bar{\alpha}, k)=V(\bar{\alpha}, 0)$ and $V^{\prime}(\bar{\alpha}, 0) \cap H\left(\bar{\alpha}_{1}, r_{1}\right)=\emptyset$. (See Remarks $\left.2(10)\right)$.
5. Lemma. The set $\mathbb{B}(T(\Re))$ is a basis for the open sets of a topology on $T(\Re)$.

Proof. It is sufficient to prove that: (α) for every $d \in T(\Re)$ there exists W $\in \mathcal{U} \cup \mathcal{V}$ such that $d \in O(W)$ and (β) if $W_{1}, W_{2} \in \mathcal{U} \cup \mathcal{V}$ and $d \in O\left(W_{1}\right) \cap O\left(W_{2}\right)$, then there exists $W \in \mathcal{U} \cup \mathcal{V}$ such that $d \in O\left(W^{*}\right) \subseteq O\left(W_{1}\right) \cap O\left(W_{2}\right)$.

Property (α) follows by Remarks 2 (14). We prove property (β). Suppose that $d=d(\bar{\alpha}, k)$, where $\bar{\alpha} \in \Lambda_{k+1}$. By Lemma 3 (1) and Lemma 4 (1) it follows that there exist integers $r_{1}, r_{2} \in N$ such that $k+r_{1}+1 \geq n(\Re), k+r_{2}+1 \geq n(\Re)$, $d(\bar{\alpha}, k) \subseteq V\left(\bar{\alpha}, r_{1}\right) \subseteq W_{1}$ and $d(\bar{\alpha}, k) \subseteq V\left(\bar{\alpha}, r_{2}\right) \subseteq W_{2}$. Let $r=\max \left\{r_{1}, r_{2}\right\}$. Then by Remarks 2 (8) we have

$$
d(\bar{\alpha}, k) \subseteq V(\bar{\alpha}, r) \subseteq V\left(\bar{\alpha}, r_{1}\right) \cap V\left(\bar{\alpha}, r_{2}\right) \subseteq W_{1} \cap W_{2} .
$$

Hence $d \in O(V(\bar{\alpha}, r)) \subseteq O\left(W_{1}\right) \cap O\left(W_{2}\right)$.
Now, suppose that $d=d^{\prime} \times\{\zeta\} \in T(\Re) \backslash T(\Re)(0)$. If $W_{1}=V(\bar{\alpha}, r)$, where $\bar{\alpha} \in \Lambda_{k+1}, k \in N, r \in N$ and $k+r+1 \geq n(R)$, then by $\bar{\gamma}_{1}$ we denote the element of Λ_{k+r+1} for which $\zeta \in \mathbb{R}\left(\bar{\gamma}_{1}\right)$. Setting $r_{1}=n\left(\bar{\gamma}_{1}, k\right)$ we have $d^{\prime} \times\{\zeta\} \subseteq$ $J\left(C_{r_{1}}^{C} \times \Re\left(\bar{\gamma}_{1}\right)\right) \subseteq W_{1}$. If $W_{1}=H(\bar{\alpha}, r)$, where $\bar{\alpha} \in \Lambda_{k+1}, k \in N, r \in \Omega$ $0 \leq r \leq n(\bar{\alpha})$ and $k+1 \geq n(\Re)$, then by $\bar{\gamma}_{1}$ we denote the element $\bar{\alpha}$ and by r_{1} we denote the integer r. Hence $d^{\prime} \times\{\zeta\} \subseteq J\left(U_{r_{1}}^{C} \times \Re\left(\bar{\gamma}_{1}\right)\right) \subseteq W_{1}$.

Similarly, there exists an element $\bar{\gamma}_{2} \in \Lambda$ and an integer $r_{2} \in N$ such that

$$
d^{\prime} \times\{\zeta\} \subseteq J\left(U_{r_{2}}^{C} \times \Re\left(\bar{\gamma}_{2}\right)\right) \subseteq W_{2} .
$$

Let $r_{0} \in N$ such that $d^{\prime} \in U_{r_{0}}^{D(\zeta)} \subseteq U_{r_{1}}^{D(\zeta)} \cap U_{r_{2}}^{D(\zeta)}$. Let $k_{0} \in N$ and $\bar{\gamma}_{0} \in \Lambda_{k_{0}+1}$ such that $\zeta \in \Re\left(\bar{\gamma}_{0}\right), k_{0}+1 \geq n(\Re), 0 \leq r_{0} \leq n\left(\bar{\gamma}_{0}\right), \bar{\gamma}_{0} \geq \bar{\gamma}_{1}$ and $\bar{\gamma}_{0} \geq \bar{\gamma}_{2}$. Then

$$
d^{\prime} \times\{\zeta\} \subseteq H\left(\bar{\gamma}_{0}, r_{0}\right) \subseteq J\left(U_{r_{1}}^{C} \times \Re\left(\bar{\gamma}_{1}\right)\right) \cap J\left(U_{r_{2}}^{C} \times \Re\left(\bar{\gamma}_{2}\right)\right) \subseteq W_{1} \cap W_{2} .
$$

Thus, $d \in O\left(H\left(\bar{\gamma}_{0}, r_{0}\right)\right) \subseteq O\left(W_{1}\right) \cap O\left(W_{2}\right)$.
6. Remark. In what follows, $T(\Re)$ denotes the topological space for which $\mathbb{B}(T(\Re))$ is a basis for the open sets.
7. Corollary. If $d=d(\bar{\alpha}, k) \in T(\Re)(0), \bar{\alpha} \in \Lambda_{k+1}$, then the set

$$
\mathbb{B}(d) \equiv\{O(V(\bar{\alpha}, r)): r \in N \text { and } k+r+1 \geq n(\Re)\}
$$

is a basis for open neighbourhoods of $d(\bar{\alpha}, k)$ in $T(\Re)$. If $d=d^{\prime \prime} \times\{\zeta\} \in T(\Re) \backslash$ $T(R)(0)$, then the set

$$
\mathbb{B}(d) \equiv\left\{O(H(\bar{\alpha}, r)): \bar{\alpha} \in \Lambda_{k+1}, k+1 \geq n(\Re), \zeta \in \Re(\bar{\alpha}), d^{\prime} \in U_{r}^{D(\zeta)} .0 \leq r \leq n(\bar{\alpha})\right\}
$$

is a basis for open neighbourhoods of $d^{\prime} \times\{\zeta\}$ in $T(\Re)$.
Proof. The proof of this corollary follows immediately from the proof of Lemma 5.

8. Lemma. The space $T(\Re)$ is Hausdorff.

Proof. Let $d_{1}, d_{2} \in T(\Re), d_{1} \neq d_{2}$. We shall prove that there exists $O_{1} \in$ $\mathbb{B}\left(d_{1}\right)$ and $O_{2} \in \mathbb{B}\left(d_{2}\right)$ such that $O_{1} \cap O_{2}=\emptyset$. We consider the following cases: ($\alpha) d_{1}=d\left(\bar{\alpha}_{1}, k_{1}\right), d_{2}=d\left(\bar{\alpha}_{2}, k_{2}\right)$, where $\bar{\alpha} \in \Lambda_{k_{1}+1}$ and $\bar{\alpha}_{2} \in \Lambda_{k_{2}+1},(\beta) d_{1}=$ $d \times\{\zeta\} \in T(\Re) \backslash T(\Re)(0), d_{2}=d(\bar{\alpha}, k)$, where $\bar{\alpha} \in \Lambda_{k+1}$, and $(\gamma) d_{1}=d_{1}^{\prime} \times\left\{\zeta_{1}\right\} \in$ $T(R) \backslash T(R)(0)$ and $d_{2}=d_{2}^{\prime} \times\left\{\zeta_{2}\right\} \in T(\Re) \backslash T(\Re)(0)$.

Consider the first case. Without loss of generality we can suppose that $k_{1} \geq k_{2}$. If $\bar{\alpha}_{1} \nsupseteq \bar{\alpha}_{2}$, then for every $O_{1} \in \mathbb{B}\left(d_{1}\right)$ and $O_{2} \in \mathbb{B}\left(d_{2}\right)$ we have $O_{1} \cap O_{2}=\emptyset$. Let $\bar{a}_{1} \geq \bar{\alpha}_{2}$. Since $d_{1} \neq d_{2}$ we have $\bar{\alpha}_{1} \neq \bar{\alpha}_{2}$ and hence $k_{1}>k_{2}$. Let $r_{1}, r_{2} \in N$ such that $k_{1}+r_{1}+1=k_{2}+r_{2}+1 \geq n(\Re)$. We prove that $V\left(\bar{\alpha}_{1}, r_{1}\right) \cap V\left(\bar{\alpha}_{2}, r_{2}\right)=\emptyset$. Indeed, let $\bar{\gamma} \in \Lambda_{k_{1}+r_{1}+1}$ and $\bar{\gamma} \geq \bar{\alpha}_{1}$. It is sufficient to prove that $U\left(\bar{\gamma}, k_{1}\right) \cap$ $U\left(\bar{\gamma}, k_{2}\right)=\emptyset$. But this follows by Remarks 2 (12).

Now, we condider the second case. Let $\zeta \notin \Re(\bar{\alpha})$ and let $r_{1} \in N$ such that $d \in U_{r_{1}}^{D(\zeta)}$. There exist an integer $k_{1} \in N$ and an element $\bar{\alpha}_{1} \in \Lambda_{k_{1}+1}$ such that $\zeta \in \Re\left(\bar{\alpha}_{1}\right), 0 \leq r_{1} \leq n\left(\bar{\alpha}_{1}\right), k_{1}>k$ and $k_{1}+1 \geq n(\Re)$. If $O_{1}=O\left(H\left(\bar{\alpha}_{1}, r_{1}\right)\right)$ and $O_{2} \in \mathbb{B}\left(d_{2}\right)$, then we have $d_{1} \in O_{1}, d_{2} \in O_{2}$ and $O_{1} \cap O_{2}=\emptyset$. Let $\zeta \in \Re(\bar{\alpha})$. Then $d \cap d_{k}^{D(\zeta)}=\emptyset$. Since $D(\zeta)$ is a Hausdorff space, there exist integers $r_{1}, i \in N$ such that $d \in U_{r_{1}}^{D(\zeta)}, d_{k}^{D(\zeta)} \in U_{i}^{D(\zeta)}$ and $U_{r_{1}}^{D(\zeta)} \cap U_{i}^{D(\zeta)}=\emptyset$. Let $k_{1} \in N, k_{1}+1 \geq n(\Re)$, $k_{1}>\max \left\{k, i, r_{1}\right\}$ and let $\bar{\gamma}_{1} \in \Lambda_{k_{1}}, \bar{\gamma} \in \Lambda_{k_{1}+1}$ such that $\bar{\gamma} \geq \bar{\gamma}_{1} \geq \bar{\alpha}$ and $\zeta \in \Re(\bar{\gamma})$. Then $n\left(\bar{\gamma}_{1}\right) \geq k_{1}$. We prove that $H\left(\bar{\gamma}, r_{1}\right) \cap V(\bar{\alpha}, r)=\emptyset$, where $r=k_{1}-k$. It is sufficient to prove that $H\left(\bar{\gamma}, r_{1}\right) \cap U^{\prime}(\bar{\gamma}, k)=\emptyset$.

By property (13) of Lemma 2.II we have $U_{r_{1}}^{D(\chi)} \cap U_{i}^{D(\chi)}=\emptyset$ for every $\ell \in \Re(\bar{\gamma})$. This means that $H\left(\bar{\gamma}, r_{1}\right) \cap H(\bar{\gamma}, i)=\emptyset$. By property (17) of Lemma 2.II we have $d_{k}^{D(\chi)} \in L_{i}^{D(\chi)}$ for every $\chi \in \Re(\bar{\gamma})$. By property (19) of Lemma 2.II, for every $\backslash \in R(\bar{\gamma})$, we have $U_{n(\bar{\gamma}, k)}^{D(\gamma)} \subseteq U_{i}^{D(\lambda)}$. This means that $U^{\prime}(\bar{\gamma}, k) \subseteq H(\bar{\gamma}, i)$. Hence $H\left(\bar{\gamma}, r_{1}\right) \cap U(\bar{\gamma}, k)=\emptyset$. Setting $O_{1}=O\left(H\left(\bar{\gamma}, r_{1}\right)\right)$ and $O_{2}=O(V(\bar{\alpha}, r))$ we have $d_{1} \in O_{1}, d_{2} \in O_{2}$ and $O_{1} \cap O_{2}=\emptyset$.

Finally, we consider the third case. If $\zeta_{1} \neq \zeta_{2}$, then there exist integers k. $r_{1}, r_{2} \in N$ and elements $\bar{\alpha}_{1}, \bar{\alpha}_{2} \in \Lambda_{k+1}$ such that $k+1 \geq \max \left\{n(\Re), r_{1}, r_{2}\right\}$, $\bar{\alpha}_{1} \neq \bar{\alpha}_{2}, \zeta_{1} \in \Re\left(\bar{\alpha}_{1}\right), \zeta_{2} \in \Re\left(\bar{\alpha}_{2}\right), d_{1}^{\prime} \in U_{r_{1}}^{D\left(\zeta_{1}\right)}, d_{2}^{\prime} \in U_{r_{2}}^{D\left(\zeta_{2}\right)}$. Then we have $r_{1} \leq$ $n\left(\bar{\alpha}_{1}\right), r_{2} \leq n\left(\bar{\alpha}_{2}\right), d_{1} \subseteq H\left(\bar{\alpha}_{1}, r_{1}\right), d_{2} \subseteq H\left(\bar{\alpha}_{2}, r_{2}\right)$ and $H\left(\bar{\alpha}_{1}, r_{1}\right) \cap H\left(\bar{\alpha}_{2}, r_{2}\right)=\emptyset$.

Setting $O_{1}=O\left(H\left(\bar{\alpha}_{1}, r_{1}\right)\right), O_{2}=O\left(H\left(\bar{\alpha}_{2}, r_{2}\right)\right)$ we have $d_{1} \in O_{1}, d_{2} \in O_{2}$ and $O_{1} \cap O_{2}=\emptyset$.

Now, let $\zeta_{1}=\zeta_{2}=\zeta$. Then $d_{1}^{\prime} \neq d_{2}^{\prime}$. Since the space $D(\zeta)$ is Hausdorff, there exist $r_{1}, r_{2} \in N$ such that $d_{1}^{\prime} \in U_{r_{1}}^{D(\zeta)}, d_{2}^{\prime} \in U_{r_{2}}^{D(\zeta)}$ and $U_{r_{1}}^{D(\zeta)} \cap U_{r_{2}}^{D(\zeta)}=\emptyset$. Let $k \in N, k+1 \geq \max \left\{n(\Re), r_{1}, r_{2}\right\}$ and let $\bar{\gamma} \in \Lambda_{k+1}$ and $\zeta \in \Re(\bar{\gamma})$. Then $n(\bar{\gamma}) \geq$ $\max \left\{r_{1}, r_{2}\right\}$. By property (13) of Lemma 2.II, we have $U_{r_{1}}^{D(\chi)} \cap U_{r_{2}}^{D(\chi)}=\emptyset$ for every $\backslash \in \Re(\bar{\gamma})$. This means that $H\left(\bar{\gamma}, r_{1}\right) \cap H\left(\bar{\gamma}, r_{2}\right)=\emptyset$. Setting $O_{1}=O\left(H\left(\bar{\gamma}, r_{1}\right)\right)$ and $O_{2}=O\left(H\left(\bar{\gamma} \cdot r_{2}\right)\right)$ we have $d_{1} \in O_{1}, d_{2} \in O_{2}$ and $O_{1} \cap O_{2}=\emptyset$.
9. Lemma. Let $W \in \mathcal{U} \cup \mathcal{V}$. For every point d of the boundary $\operatorname{Bd}(O(W))$ of the set $O(W)$ in $T(\Re)$, we have $d \cap W \neq \emptyset$ and $d \cap(J(C \times \Re) \backslash W) \neq \emptyset$, that is, $\operatorname{Bd}(O(W)) \subseteq \operatorname{Fr}(W)$.

Proof. Let $d \in \operatorname{Bd}(O(W))$. If $d \in T(\Re)(0)$, then by Lemmas 3 and 4 we have $d \nsubseteq W$ and $d \cap W \neq \emptyset$ and hence $d \cap(T(\Re) \backslash W) \neq \emptyset$. Let $d \in T(\Re) \backslash T(\Re)(0)$, that is, $d=d^{\prime} \times\{\zeta\}$. Since $d \nsubseteq W$ it is sufficient to prove that $d \cap W \neq \emptyset$. Let $W=H(\bar{\alpha}, r)$, where $\bar{\alpha} \in \Lambda_{k+1}, k+1 \geq n(\Re)$ and $0 \leq r \leq n(\bar{\alpha})$. We prove that $d^{\prime} \in \mathrm{Cl}\left(U_{r}^{D(\zeta)}\right)$. Indeed, in the opposite case, there exists an integer $i \in N$ such that $U_{r}^{D(\zeta)} \cap U_{i}^{D(\zeta)}=\emptyset$ and $d^{\prime} \in U_{i}^{D(\zeta)}$. Let $k_{1} \in N$ and $k_{1} \geq \max \{k, i, r\}$. Let $\bar{\gamma} \in$ $\Lambda_{k_{1}+1}$ and $\zeta \in \Re(\bar{\gamma})$. Then $n(\bar{\gamma}) \geq k_{1}$. We prove that $O(H(\bar{\gamma}, i)) \cap O(H(\bar{\gamma}, r))=\emptyset$.

Indeed, in the opposite case, let $d_{1} \in O(H(\bar{\gamma}, i)) \cap O(H(\bar{\gamma}, r))$. There exists $\zeta^{\prime} \in \Re(\bar{\gamma})$ such that $d_{1} \cap\left(C \times\left\{\zeta^{\prime}\right\}\right)=d_{1}^{\prime} \in D\left(\zeta^{\prime}\right)$. Then $d_{1}^{\prime} \in U_{i}^{D\left(\zeta^{\prime}\right)} \cap U_{r}^{D\left(\zeta^{\prime}\right)} \neq \emptyset$. By property (13) of Lemma 2.II, this is a contradiction, because $\zeta \cdot \zeta^{\prime} \in \Re(\bar{\gamma})$ and $U_{r}^{D(\zeta)} \cap U_{i}^{D(\zeta)}=\emptyset$. Hence, $d^{\prime} \in \mathrm{Cl}\left(U_{r}^{D(\zeta)}\right)$.

On the other hand, $\zeta \in \Re(\bar{\alpha})$. Indeed, if $\zeta \notin \Re(\bar{\alpha})$, then there exist integers $i, k_{1} \in N$ and an element $\bar{\gamma} \in \Lambda_{k_{1}+1}$ such that $d^{\prime} \in U_{i}^{D(\zeta)}, \zeta \in \Re(\bar{\gamma}), k_{1}+1 \geq n(\Re)$, $k_{1} \geq i$ and $\Re(\bar{\gamma}) \cap \Re(\bar{\alpha})=\emptyset$. Then $d \in O(H(\bar{\gamma}, i))$ and $H(\bar{\gamma}, i) \cap W=\emptyset$, that is, $d \notin \operatorname{Bd}(O(W))$, which is contradiction. Hence $\zeta \in \Re(\bar{\alpha})$.

Now, we prove that $d \cap W \neq \emptyset$. Since $W \cap(C \times\{\zeta\})=U_{r}^{S(\zeta)} \times\{\zeta\}$, it is sufficient to prove that $d^{\prime} \cap U_{r}^{S(\zeta)} \neq \emptyset$. Indeed, in the opposite case, $d^{\prime} \notin \bar{U}_{r}^{D(\zeta)}$ and since $\mathrm{Cl}\left(U_{r}^{D(\zeta)}\right) \subseteq \bar{U}_{r}^{D(\zeta)}$ we have $d^{\prime} \notin \mathrm{Cl}\left(U_{r}^{D(\zeta)}\right)$. But this is impossible. Let $W=V(\bar{\alpha}, r)$, where $\bar{\alpha} \in \Lambda_{k+1}, k+r+1 \geq n(\Re)$. Let $\bar{\gamma} \in \Lambda_{k+r+1}$ and $\zeta \in \Re(\bar{\gamma})$. Then $U(\bar{\gamma}, k) \subseteq V(\bar{\alpha}, r)$ and $U(\bar{\gamma}, k)=H(\bar{\gamma}, n(\bar{\gamma}, k))=W_{1} \in \mathcal{U}$. We prove that $d \in \operatorname{Bd}\left(O\left(W_{1}\right)\right)$. Indeed, it is sufficient to prove that if $\bar{\gamma}_{1} \in \Lambda_{k_{1}+1}$, where $k_{1} \geq k+r, \zeta \in \Re(\bar{\gamma}), r_{1} \in N, 0 \leq r_{1} \leq n\left(\bar{\gamma}_{1}\right)$ and $d \in O\left(H\left(\bar{\gamma}_{1}, r_{1}\right)\right)$, then $O\left(H\left(\bar{\gamma}_{1}, r_{1}\right)\right) \cap O\left(W_{1}\right) \neq \emptyset$. This follows by the relations: $O\left(H\left(\bar{\gamma}_{1}, r_{1}\right)\right) \cap O(W) \neq \emptyset$, $W^{*} \cap\left(C \times \Re\left(\bar{\gamma}_{1}\right)\right)=W_{1}$ and $H\left(\bar{\gamma}_{1}, r_{1}\right) \subseteq C \times \Re(\bar{\gamma})$. Hence $d \cap W_{1} \neq \emptyset$ and therefore
$d \cap W \neq \emptyset$.
10. Theorem. The space $T(\Re)$ is separable metrizable.

Proof. By Lemma 5, Lemma 8 and Remarks 2 (15) it is sufficient to prove that the space $T(\Re)$ is regular. Let $d \in O(W)$, where $W \in \mathcal{U} \cup \mathcal{V}$. We prove that there exists an element $W_{1} \in \mathcal{U} \cup \mathcal{V}$ such that $d \in O\left(W_{1}\right) \subseteq \mathrm{Cl}\left(O\left(W_{1}\right)\right) \subseteq O\left(W^{\circ}\right)$.

Let $d=d(\bar{\alpha}, k) \in T(\Re)(0)$. Without loss of generality, we can suppose that $W^{-}=V(\bar{\alpha}, r) \in \mathcal{V}$, where $\bar{\alpha} \in \Lambda_{k+1}, k+r+1 \geq n(\Re)$. (See Corollary 7). We prove that the set $W_{1}=V(\bar{\alpha}, r+1)$ is the required element of $\mathcal{U} \cup \mathcal{V}$. By Lemma 9 and Remarks $2(8)$, it is sufficient to prove that if $d_{1} \in T(\Re)$ and $d_{1} \cap V(\bar{\alpha}, r+1) \neq \emptyset$, then $d_{1} \subseteq W$.

Let d_{1} has the above property. First we suppose that $d_{1}=d_{1}^{\prime} \times\{\zeta\}$. Let $\overline{3} \in \Lambda_{k+r+1}, \bar{\gamma} \in \Lambda_{k+r+2}, \bar{\beta} \leq \bar{\gamma}$ and $\zeta \in \Re(\bar{\gamma})$. Obviously, $U(\bar{\beta}, k) \subseteq V(\bar{\alpha}, r)$ and $U^{*}(\bar{\gamma}, k) \subseteq V^{\prime}(\bar{\alpha}, r+1)$. Also, $U(\bar{\beta}, k) \cap(C \times\{\zeta\})=U_{n(\bar{\beta}, k)}^{S(\zeta)} \times\{\zeta\}$ and $U(\bar{\gamma}, k) \cap$ $(C \times\{\zeta\})=U_{n(\bar{\gamma}, k)}^{S(\zeta)} \times\{\zeta\}$. Since $d_{1} \cap V^{\prime}(\bar{\alpha}, r+1) \neq \emptyset$, we have $d_{1}^{\prime} \cap U_{n(\bar{\gamma}, k)}^{S(\zeta)} \neq \emptyset$, that is, $d_{1}^{\prime} \in \bar{U}_{n(\bar{\gamma}, k)}^{D(k)}$. By property (23) of Lemma 2 .II we have $d_{1}^{\prime} \in U_{n(\bar{\beta}, k)}^{D(\zeta)}$, that is, $d_{1}^{\prime} \subseteq U_{n(\bar{\beta}, k)}^{S(\bar{\zeta})}$. Hence $d_{1}^{\prime} \times\{\zeta\} \subseteq U^{+}(\bar{\beta}, k) \subseteq V^{\prime}(\bar{\alpha}, r)=W$, that is, $d_{1} \subseteq W$.

Let $d_{1} \in T(\Re)(0)$. Then $d_{1}=d\left(\bar{\alpha}_{1}, k_{1}\right)$, where $\bar{\alpha}_{1} \in \Lambda_{k_{1}+1}$. If $k_{1} \leq k+r+1$, then for every $\bar{\gamma} \in \Lambda_{(k+r+1)+1}$ we have $U(\bar{\gamma}, k) \cap U\left(\bar{\gamma}, k_{1}\right)=\emptyset$. (See Remarks 2 (12)). This means that $d_{1} \cap V(\bar{\alpha}, r+1)=\emptyset$, which is a contradiction. Hence we can suppose that $k_{1}>k+r+1$. Let $\bar{\gamma} \in \Lambda_{k+r+2}, \bar{\beta} \in \Lambda_{k+r+1}$ such that $\bar{\alpha}_{1} \geq \bar{\gamma} \geq \bar{\beta}$. Since $d_{1} \cap V(\bar{\alpha}, r+1) \neq \emptyset$, there exists an element $\zeta \in \Re\left(\bar{\alpha}_{1}\right)$ such that $d_{k_{1}}^{D(\zeta)} \cap U_{n(\bar{\gamma}, k)}^{S(\zeta)} \neq \emptyset$, that is, $d_{k_{1}}^{D(\zeta)} \in \bar{U}_{n(\bar{\gamma}, k)}^{D(\zeta)}$. By property (23) of Lemma 2.II, we have $\bar{U}_{n(\bar{\gamma}, k)}^{D(\zeta)} \subseteq U_{n(\bar{\beta}, k)}^{D(\zeta)}$, that is, $d_{k_{1}}^{D(\zeta)} \in U_{n(\bar{\beta}, k)}^{D(\zeta)}$. By property (17) of Lemma 2.II, for every $\chi \in \Re\left(\bar{\alpha}_{1}\right)$, we have $d_{k_{1}}^{D(\chi)} \in U_{n(\bar{\beta}, k)}^{D(\chi)}$, that is, $d_{k_{1}}^{D(\chi)} \subseteq U_{n(\bar{\beta}, k)}^{S(\chi)}$. Thus, for every $\chi \in \Re\left(\bar{\alpha}_{1}\right)$, we have $d_{k_{1}}^{D(\chi)} \times\{\chi\} \subseteq U(\bar{\beta}, k) \subseteq V(\bar{\alpha}, r)=W$. Hence $d_{1} \subseteq W$.

Now, let $d=d^{\prime} \times\{\zeta \zeta\} \in T(R) \backslash T(\Re)(0)$. Without loss of generality, we can suppose that $W=H(\bar{\alpha} \cdot r)$, where $\bar{\alpha} \in \Lambda_{k+1}, k+1 \geq n(\Re), 0 \leq r \leq n(\bar{\alpha}), \zeta \in \Re(\bar{\alpha})$ and $d^{\prime} \in U_{r}^{D(\zeta)}$. There exists an integer $r_{1} \in N$ such that $d^{\prime} \in C_{r_{1}}^{-D(\zeta)} \subseteq \bar{L}_{r_{1}}^{D(\zeta)} \subseteq$ $U_{r}^{-D(\zeta)}$ and $d_{m}^{D(\zeta)} \notin \bar{U}_{r_{1}}^{D(\zeta)}$ for every $m, 0 \leq m \leq k$. Let $k_{1} \in N, k_{1}>k, k_{1} \geq r_{1}, \bar{\gamma} \in$ $\Lambda_{k_{1}+1}, \bar{\gamma} \geq \bar{\alpha}$ and $\zeta \in \Re(\bar{\gamma})$. We prove that $d \in O\left(H\left(\bar{\gamma}, r_{1}\right)\right) \subseteq \mathrm{Cl}\left(O\left(H\left(\bar{\gamma}, r_{1}\right)\right)\right) \subseteq$ $O(H(\bar{\alpha}, r))$. Since $H\left(\bar{\gamma}, r_{1}\right) \subseteq H(\bar{\alpha}, r)$, by Lemma 9 , it is sufficient to prove that if $d_{1} \in T(\Re)$ and $d_{1} \cap H\left(\bar{\gamma}, r_{1}\right) \neq \emptyset$, then $d_{1} \subseteq H(\bar{\alpha}, r)$.

Let d_{1} has the above property. Suppose that $d_{1}=d_{1}^{\prime} \times\{\chi\} \in T(R) \backslash T(\Re)(0)$.

Since $d_{1} \cap H\left(\bar{\gamma}, r_{1}\right) \neq \emptyset$, we have $\chi \in \Re(\bar{\gamma})$ and $d_{1}^{\prime} \cap U_{r_{1}}^{S(\chi)} \neq \emptyset$, that is, $d_{1}^{\prime} \in \bar{U}_{r_{1}}^{D(\chi)}$. Since $\bar{U}_{r_{1}}^{D(\zeta)} \subseteq U_{r}^{D(\zeta)}$, by property (13) of Lemma 2.II, we have $\bar{U}_{r_{1}}^{D(\Upsilon)} \subseteq U_{r}^{D(x)}$. This means that $d_{1} \subseteq H(\bar{\alpha}, r)$.

Now, suppose that $d_{1}=d\left(\bar{\alpha}_{2}, k_{2}\right) \in T(\Re)(0)$, where $\bar{\alpha}_{2} \in \Lambda_{k_{2}+1}$. Since $d \cap H\left(\bar{\gamma}, r_{1}\right) \neq \emptyset$, there exists an element $\chi^{\prime} \in \Re(\bar{\gamma}) \cap \Re\left(\bar{\alpha}_{2}\right)$ such that $d_{k_{2}}^{D\left(\chi^{\prime}\right)} \cap$ $U_{r_{1}}^{S\left(X^{\prime}\right)} \neq \emptyset$, that is, $d_{k_{2}}^{D\left(x^{\prime}\right)} \in \bar{U}_{r_{1}}^{D\left(\chi^{\prime}\right)}$. If $k_{2} \leq k$, then $\bar{\alpha}_{2} \leq \bar{\gamma}$ and hence $R(\bar{\gamma}) \subseteq$ $R\left(\bar{\alpha}_{2}\right)$. Since, for every $\chi \in \Re(\bar{\gamma}), \bar{U}_{r_{1}}^{D(\chi)}=U_{r_{1}}^{D(\chi)} \cup F_{r}\left(U_{r_{1}}^{D(\lambda)}\right)$, by properties (16) and (17) of Lemma 2.II, we have $d_{k_{2}}^{D(\chi)} \in \bar{U}_{r_{1}}^{D(\chi)}$ and hence $d_{k_{2}}^{D(\zeta)} \in \bar{U}_{r_{1}}^{D(\zeta)}$, which is a contradiction. Hence $k<k_{2}, \bar{\alpha} \leq \bar{\alpha}_{2}$ and $\Re \Re\left(\bar{\alpha}_{2}\right) \subseteq \Re(\bar{\alpha})$. Since $\bar{U}_{r_{1}}^{D(\zeta)} \subseteq U_{r}^{D(\zeta)}$ and $\zeta \in \Re(\bar{\gamma})$, by property (13) of Lemma 2.II, we have $\bar{U}_{r_{1}}^{D(\chi)} \subseteq U_{r}^{D(\chi)}$ for every $\backslash \in \Re(\bar{\gamma})$. Since $\chi^{\prime} \in \Re(\bar{\gamma})$ and $d_{k_{2}}^{D\left(\chi^{\prime}\right)} \in \bar{U}_{r_{1}}^{D\left(\chi^{\prime}\right)} \subseteq U_{r}^{D\left(\chi^{\prime}\right)}$, by property (17) of Lemma 2. II, for every $\chi \in \Re\left(\bar{\alpha}_{2}\right)$, we have $d_{k_{2}}^{D(x)} \in U_{r}^{D(x)}$, that is, $d_{k_{2}}^{D(x)} \subseteq U_{r}^{S(x)}$. Hence, $d_{k_{2}}^{D(\chi)} \times\{\chi\} \subseteq U_{r}^{S(\chi)} \times\{\chi\} \subseteq H(\bar{\alpha}, r)$. This means that $d_{1} \subseteq H(\bar{\alpha}, r)$.
IV. The rationality of $T(R)$.

1. Notations. Let X be a space and $\Sigma=\left\{\sigma_{0}, \sigma_{1}, \ldots\right\}$ be a basic system for X, where $\sigma_{i}=\left\{A_{0}^{i}, A_{1}^{i}\right\}$. Let \widetilde{X} be a subspace of X. We set $\widetilde{A}_{0}^{i}=A_{0}^{i} \cap \widetilde{X}$, $\tilde{A}_{1}^{L}=A_{1}^{i} \cap \widetilde{X}, \tilde{\sigma}_{i}=\left\{\tilde{A}_{0}^{i}, \widetilde{A}_{1}^{i}\right\}$ and $\widetilde{\Sigma}=\left\{\tilde{\sigma}_{0}, \tilde{\sigma}_{1}, \ldots\right\}$. It is easy to see that $\widetilde{\Sigma}$ is a basic system for the space $\tilde{\mathbb{X}}$. Therefore we can use the notations $\operatorname{Fr}\left(\tilde{\sigma}_{i}\right), \operatorname{Fr}\left(\tilde{\Sigma}^{\prime}\right), \widetilde{X}_{\bar{i}}$, $\bar{i} \in L, S(\tilde{X}, \widetilde{\Sigma}) \equiv \widetilde{S}, D(\tilde{X}, \widetilde{\Sigma}) \equiv \widetilde{D}, q(\tilde{X}, \widetilde{\Sigma}) \equiv \tilde{q}, p(\tilde{X}, \tilde{\Sigma}) \equiv \widetilde{p}$, and $h(\widetilde{X}, \widetilde{\Sigma}) \equiv \widetilde{h}$, which are given in Section I.

If f is a map of a set Y into a set Z and $Q \subseteq Y$, then by $\left.f\right|_{Q}$ we denote the restriction of f onto Q.
2. Lemma. The following properties are true:
(1) $\tilde{X}_{i}=X_{\bar{i}} \cap \tilde{X}, \bar{i} \in L$.
(2) $\widetilde{S}=q^{-1}(\tilde{X}) \subseteq S$.
(3) $\tilde{q}=\left.q\right|_{\widetilde{S}}$.
(4) $\widetilde{D}=\left\{q^{-1}(x): x \in \tilde{X}\right\} \subseteq D$.
(5) $\tilde{p}=\left.p\right|_{\tilde{S}}$.
(6) $\widetilde{h}=\left.h\right|_{\widetilde{D}}$.

This lemma is not dificult to be proved.
3. Notations. Let \vDash be a family of representations considered in Section 1.II. Let $\left\{r^{1}, \ldots, r^{t}\right\}$ be a fixed subset of N, where $0 \leq t \leq n$, such that $\left|\left\{r^{1} \ldots . r^{t}\right\}\right|=t$. Hence, if $t=0$, then $\left\{r^{1}, \ldots, r^{t}\right\}=\emptyset$.

Let $\zeta \equiv(S . D) \in R$. According to our assumptions (see Section 1.II), there exists a space $\mathbb{X}(\zeta) \in \mathbb{R}^{n}(M)$ and a basic system $\Sigma(\zeta) \equiv\left\{\sigma_{0}(\zeta), \sigma_{1}(\zeta), \ldots\right\}$ for $X(\zeta)$ such that (S, D) is the representation of $X(\zeta)$ corresponding to the basic system $\Sigma(\zeta)$. The pair (S,D) is denoted also by $(S(\zeta), D(\zeta))$. We set

$$
\tilde{\mathbb{X}}(\zeta)=\bigcap\left\{\operatorname{Fr}\left(\sigma_{r^{i}}(\zeta)\right): i=1, \ldots, t\right\} \text { if } t>0 \text { and } \tilde{X}(\zeta)=X(\zeta) \text { if } t=0 .
$$

Setting $X(\zeta)=X, \Sigma(\zeta)=\Sigma$ and $\tilde{X}(\zeta)=\tilde{X}$, we can consider the ordered cover $\tilde{\sigma}_{v}$ of \widetilde{X}, the basic system $\widetilde{\Sigma}$ for \widetilde{X}, the subset \widetilde{S} of C, the partition \widetilde{D} of \widetilde{S} and the map \widetilde{h} of \tilde{D} onto \tilde{X}. In order to show that the above notions depend on ζ, we use the notations $\tilde{\sigma}_{i}(\zeta), \widetilde{\Sigma}(\zeta), \widetilde{S}(\zeta), \widetilde{D}(\zeta)$ and \tilde{h}_{ζ} instead of notations $\widetilde{\sigma}_{i}, \widetilde{\Sigma}, \widetilde{S}, \widetilde{D}$ and \hat{h}, respectively.

The pair $\widetilde{\zeta} \equiv(\widetilde{S}(\zeta) . \widetilde{D}(\zeta))$ is a representation of $\widetilde{X}(\zeta)$ corresponding to basic system $\tilde{\Sigma}(\zeta)$ for $\tilde{X}(\zeta)$. The family of all representations $\widetilde{\zeta}$ is denoted by $\tilde{\Re}$. If ζ_{1}, ζ_{2} are distinct elements of \Re, then we consider $\widetilde{\zeta}_{1}$ and $\widetilde{\zeta}_{2}$ to be distinct elements of \widetilde{R}. The element ζ of \Re and the element $\tilde{\zeta}$ of $\widetilde{\Re}$ are considered to correspond to each other. We observe that the cardinality of $\widetilde{\Re}$ is less than or equal to the continuum.

For the family $\tilde{\Re}$ we use all notations of Section 1.II, that is, if the element $\tilde{\zeta} \equiv(\widetilde{S}(\zeta), \tilde{D}(\zeta)) \in \tilde{\Re}$ corresponds to the element $\zeta \equiv(S(\zeta), D(\zeta)) \in \Re$, then $X(\widetilde{\zeta})=\widetilde{X}(\zeta), \Sigma(\widetilde{\zeta})=\widetilde{\Sigma}(\zeta), \sigma_{i}(\widetilde{\zeta})=\widetilde{\sigma}_{i}(\zeta), S(\widetilde{\zeta})=\widetilde{S}(\zeta), D(\widetilde{\zeta})=\widetilde{D}(\zeta), h_{\widetilde{\zeta}}=\widetilde{h}_{\zeta}$, $U_{k}^{S(\widetilde{\zeta})}=U_{k}^{C} \cap \tilde{S}(\zeta)=U_{k}^{C} \cap S(\tilde{\zeta}), U_{k}^{D(\widetilde{\zeta})}$ is the set of all elements of $D(\tilde{\zeta})$ containing in the set $U_{k}^{S(\tilde{\zeta})}$ and $\bar{U}_{k}^{D(\widetilde{\zeta})}$ is the set of all elements of $D(\tilde{\zeta})$ which intersect the set $U_{k}^{S(\widetilde{\zeta})}$. Also $\operatorname{Fr}\left(U_{k}^{-D(\widetilde{\zeta})}\right)=\bar{U}_{k}^{D(\widetilde{\zeta})} \backslash C_{k}^{D(\widetilde{\zeta})}$. By Lemma 7.I and Lemma 2 it follows that the ordered set $\mathbb{B}(D(\widetilde{\zeta}))=\left\{U_{0}^{D(\widetilde{\zeta})}, U_{1}^{D(\widetilde{\zeta})}, \ldots\right\}$ is an ordered basis for open sets of $D(\tilde{\zeta})$ and that the set $\bar{U}_{k}^{D(\widetilde{\zeta})}$ is the set of all elements $d \in D(\widetilde{\zeta})$ such that $d \cap\left(\bigcup\left\{C_{\bar{i} 0}: \bar{i} \in L_{k}\right\}\right) \neq \emptyset$. We observe that: $(\alpha) U_{k}^{S(\widetilde{\zeta})} \subseteq U_{k}^{S(\zeta)},(\beta)$ $U_{k}^{-D(\zeta)} \cap D(\tilde{\zeta})=U_{k}^{D(\tilde{\zeta})}$ and $(\gamma) \operatorname{Fr}\left(U_{k}^{D(\zeta)}\right) \cap D(\tilde{\zeta})=\operatorname{Fr}_{(}\left(U_{k}^{D(\tilde{\zeta})}\right)$.

We denote by $D(\tilde{\zeta})(0)$ the set of all elements d of $D(\tilde{\zeta})$ for which there exist mutually distinct integers j_{1}, \ldots, j_{n} of N (that is, $\left|\left\{j_{1}, \ldots, j_{n}\right\}\right|=n$) such that

$$
d \in \bigcap\left\{\operatorname{Fr}\left(U_{J_{i}}^{D(\tilde{\zeta})}\right): i=1, \ldots, n\right\} .
$$

We observe that in this case, since $\Sigma(\zeta)$ has the property of boundary intersections, we have $\left\{r^{1} \ldots ., r^{t}\right\} \subseteq\left\{j_{1}, \ldots, j_{n}\right\}$. From the above it follows that $D(\tilde{\zeta})(0)=$ $D(\zeta)(0) \cap D(\tilde{\zeta})$.

We denote by

$$
\vec{D}(\tilde{\zeta})(0) \equiv\left\{d_{0}^{D(\tilde{\zeta})}, d_{1}^{D(\tilde{\zeta})}, \ldots\right\}
$$

an ordered set such that: (α) for every $d \in D(\tilde{\zeta})(0)$ there exists uniquely determined integer $i \in N$ for which $\left.d=d_{i}^{D(\widetilde{\zeta})}\right),(\beta)$ if for some $i \in N$ there is no element $d \in D(\tilde{\zeta})(0)$ for which $d_{i}^{D(\widetilde{\zeta})}=d$, then $d_{i}^{D(\widetilde{\zeta})}=\emptyset$, and (γ) if for some integer $i \in N$, $d_{i}^{D(\widetilde{\zeta})} \neq \emptyset$, then $d_{i}^{D(\widetilde{\zeta})}=d_{i}^{D(\zeta)}$.

We observe that for every $\widetilde{\zeta} \in \widetilde{R}$ by the property of boundary intersections of the basic system $\Sigma(\zeta)$, it follows that $X(\widetilde{\zeta}) \in \mathbb{R}^{n-t}(M)$.

For every element $\bar{i} \in L$ we denote by $\widetilde{R}(\bar{i})$ the set of all elements $\widetilde{\zeta} \in \widetilde{\Re}$ for which $\zeta \in \Re(\bar{i})$. Obviously, subfamilies $\widetilde{\Re}(\bar{i})$ of $\widetilde{\Re}$ have properties (α) - (δ) mentioned for subfamilies $\Re(\bar{i})$ of \Re. (See Section 1.II).

For every subset C^{\prime} of C and for every subfamily $\widetilde{\Re}^{\prime}$ of $\widetilde{\Re}$ we set

$$
J\left(C^{\prime} \times \widetilde{R}^{\prime}\right)=\left\{(a, \tilde{\zeta}) \in C^{\prime} \times \widetilde{R}^{\prime}: a \in S(\tilde{\zeta})\right\}
$$

We define a map F of the set $J(C \times \tilde{R})$ into the set $J(C \times \Re)$ as follows: if $(a, \widetilde{\zeta}) \in J(C \times \tilde{\Re})$, then we set $F(a, \tilde{\zeta})=(a, \zeta)$. We observe that F is an one-to-one map of $J(C \times \widetilde{R})$ into $J(C \times \Re)$. Also, if $A \subseteq S(\widetilde{\zeta}) \subseteq S(\zeta)$, then $F^{-1}(A \times\{\zeta\})=A \times\{\widetilde{\zeta}\}$.
4. Lemma. For every integer $k \in N$, for every element $\bar{\alpha}$ of Λ_{k+1} and for every $m \in N, 0 \leq m \leq k$, we denote by:
(1) $n(\widetilde{\Re})$ the integer $\max \left\{n(\Re), r^{1}, \ldots, r^{t}\right\}+1$ if $t>0$ and $n(\widetilde{\Re})=n(\Re)$ if $t=0$.
(2) $\widetilde{R}(\bar{\alpha})$ the set of all elements $\tilde{\zeta} \in \widetilde{\Re}$ for which $\zeta \in \Re(\bar{\alpha})$.
(3) $\tilde{d}(\bar{\alpha}, k)$ the set $F^{-1}(d(\bar{\alpha}, k))$, and
(4) $\tilde{U}(\bar{\alpha}, m)$ the set $F^{-1}(C(\bar{\alpha}, m))$.

Then, the properties (7)-(23) of Lemma 2.II are satisfied if we replace the inte-
 and the sets $d(\bar{\alpha}, k)$ and $U(\bar{\alpha}, m)$ by the sets $\tilde{d}(\bar{\alpha}, k)$ and $\tilde{U}(\bar{\alpha}, m)$, respectively. (The numbers $n(\bar{\alpha})$ and $n(\bar{\alpha}, m)$ are not changed).

Proof. It is sufficient to prove the case $t>0$.
(7)-(12). Obviously, these properties are true.
(13). Let $k+1 \geq n(\tilde{R})$ and $\tilde{\zeta} \cdot \tilde{\ell} \in \widetilde{R}(\bar{\alpha})$. Obviously, $k+1 \geq n(\Re)$. Let

$$
\begin{aligned}
\tilde{A}= & \left\{U_{0}^{-D(\widetilde{\zeta})}, \ldots, U_{n(\bar{\alpha})}^{D(\tilde{\zeta})}, \bar{U}_{0}^{=D(\widetilde{\zeta})}, \ldots, \bar{U}_{n(\bar{\alpha})}^{D(\tilde{\alpha})}, D(\tilde{\zeta}) \backslash U_{0}^{D(\tilde{\zeta})}, \ldots, D(\tilde{\zeta}) \backslash U_{n(\bar{\alpha})}^{D(\tilde{\zeta})}, D(\tilde{\zeta}) \backslash \bar{U}_{0}^{D(\tilde{\zeta})}, \ldots,\right. \\
& \left.D(\tilde{\zeta}) \backslash \bar{U}_{n(\bar{\alpha})}^{D(\widetilde{\alpha})}, \operatorname{Fr}\left(U_{0}^{D(\tilde{\zeta})}\right), \ldots, \operatorname{Fr}\left(U_{n(\bar{\alpha})}^{D(\widetilde{\zeta})}\right), D(\widetilde{\zeta}) \backslash \operatorname{Fr}\left(U_{0}^{D(\widetilde{\zeta})}\right), \ldots, D(\widetilde{\zeta}) \backslash \operatorname{Fr}\left(U_{n(\bar{\alpha})}^{D(\widetilde{\zeta})}\right)\right\} .
\end{aligned}
$$

Let \widetilde{B} be the set, which is obtained by \widetilde{A} replacing the element $\widetilde{\zeta}$ by $\widetilde{\chi}$. Also, let A and B be the sets, which are obtained by the sets \widetilde{A} and \widetilde{B} replacing the elements $\tilde{\zeta}$ and $\tilde{\imath}$ by the elements ζ and χ, respectively. If $\tilde{A}_{i}, i \in N$, is an element of \tilde{A}, then by \widetilde{B}_{i}, A_{i} and B_{i} we denote the corresponding element of \widetilde{B}, A and B, respectively.

Since $\zeta, x \in \Re(\bar{\alpha})$, by property (13) of Lemma 2.II, the set A has the same structure with the set B. We observe that

$$
D(\widetilde{\zeta})=\bigcap\left\{\operatorname{Fr}\left(U_{r^{i}}^{D(\zeta)}\right): i=1, \ldots, t\right\}
$$

and

$$
D(\tilde{x})=\bigcap\left\{\operatorname{Fr}\left(U_{r^{i}}^{D(\chi)}\right): i=1, \ldots, t\right\}
$$

Now, let $\tilde{A}_{1}, \ldots, \tilde{A}_{r}$ be elements of \tilde{A} such that $\tilde{A}_{1} \cap \ldots \cap \tilde{A}_{r} \neq \emptyset$. Then $\left(A_{1} \cap D(\tilde{\zeta})\right) \cap$ $\ldots \cap\left(A_{r} \cap D(\widetilde{\zeta})\right) \neq \emptyset$. (See Section 3). Hence

$$
A_{1} \cap \ldots \cap A_{r} \cap \operatorname{Fr}\left(U_{r^{2}}^{D(\zeta)}\right) \cap \ldots \cap \operatorname{Fr}\left(U_{r^{t}}^{D(\zeta)}\right) \neq \emptyset
$$

Since A has the same structure with \dot{B} we have

$$
B_{1} \cap \ldots \cap B_{r} \cap \operatorname{Fr}\left(U_{r^{1}}^{D(\chi)}\right) \cap \ldots \cap \operatorname{Fr}\left(U_{r^{t}}^{D(x)}\right) \neq \emptyset
$$

that is, $\left(B_{1} \cap D(\tilde{\chi})\right) \cap \ldots \cap\left(B_{r} \cap D(\tilde{\chi})\right) \neq \emptyset$. This means that $\widetilde{B}_{1} \cap \ldots \cap \widetilde{B}_{r} \neq \emptyset$. Similarly, we prove that if $\widetilde{B}_{1} \cap \ldots \cap \widetilde{B}_{r} \neq \emptyset$, then $\widetilde{A}_{1} \cap \ldots \cap \widetilde{A}_{r} \neq \emptyset$. Hence the set \tilde{A} has the same structure with the set \widetilde{B}.
(14). Let $\widetilde{\zeta}, \tilde{\chi} \in \widetilde{R}(\bar{\alpha})$ and $d_{k}^{D(\widetilde{\zeta})} \neq \emptyset$. Then $\zeta, \chi \in \Re(\bar{\alpha})$ and $d_{k}^{D(\widetilde{\zeta})}=d_{k}^{D(\zeta)} \neq \emptyset$ (see the definition of the ordered set $\vec{D}(\widetilde{\zeta})(0)$, property $(\gamma))$ By property (14) of Lemma 2.II, $d_{k}^{D(\chi)} \neq \emptyset$. Since $d_{k}^{D(\widetilde{\zeta})}=d_{k}^{D(\zeta)} \in \bigcap\left\{\operatorname{Fr}\left(U_{r^{i}}^{D(\zeta)}\right): i=1, \ldots, t\right\}$, by property (16) of Lemma 2.II, we have that $d_{k}^{D(\chi)} \in \bigcap\left\{\operatorname{Fr}\left(U_{r^{i}}^{D(\chi)}\right): i=1, \ldots, t\right\}$, that is, $d_{k}^{D(\tilde{x})} \in D(\tilde{\gamma})(0)$. By the definition of the ordered set $\vec{D}(\tilde{\chi})(0), d_{k}^{D(\tilde{x})}=d_{k}^{D(x)}$ and hence $d_{k}^{D(\tilde{x})} \neq \emptyset$.
(15). Let $\tilde{\zeta} \in \tilde{R}(\bar{\alpha})$ and $d_{k}^{D(\tilde{\zeta})} \neq \emptyset$. Then $\zeta \in \Re(\bar{\alpha})$ and $d_{k}^{D \widetilde{\zeta})}=d_{k}^{D(\zeta)} \neq \emptyset$. We have

$$
\begin{aligned}
\tilde{d}(\bar{\alpha}, k) \cap(C \times\{\tilde{\zeta}\}) & =F^{-1}(d(\bar{\alpha}, k)) \cap F^{-1}((C \times\{\zeta\}))=F^{-1}(d(\bar{\alpha}, k) \cap(C \times\{\zeta\})) \\
& =F^{-1}\left(d_{k}^{D(\widetilde{\zeta})} \times\{\zeta\}\right)=d_{k}^{D(\widetilde{\zeta})} \times\{\widetilde{\zeta}\} .
\end{aligned}
$$

(See property (15) of Lemma 2.II and properties of the map F in Section 3).
(16). Let $\tilde{\zeta} \cdot \tilde{l} \in \widetilde{R}(\bar{\alpha}), d_{k}^{D(\widetilde{\zeta})} \neq 0$ and $d_{k}^{D(\widetilde{\zeta})} \in \operatorname{Fr}\left(C_{i}^{D(\tilde{\zeta})}\right), i \in \mathcal{V}$. Then $\therefore \backslash \in R(\bar{\alpha}), d_{k}^{D(\zeta)}=d_{k}^{D(\zeta)} \neq \emptyset$ and $d_{k}^{D(\zeta)} \in \operatorname{Fr}\left(C_{\imath}^{D(\zeta)}\right) \cap D(\tilde{\zeta})$. By properties (14) and (16) of Lemma 2.II, we have $d_{k}^{D(\chi)} \neq \emptyset$ and $d_{k}^{D(\chi)} \in \operatorname{Fr}\left(U_{2}^{D(\chi)}\right) \cap D(\tilde{\gamma})$. Hence $d_{k}^{D(\tilde{x})} \in D(\tilde{x})(0)$ and $d_{k}^{D(\tilde{x})}=d_{k}^{D(x)}$. Thus $d_{k}^{D(\tilde{x})} \in \operatorname{Fr}\left(U_{i}^{D(\tilde{x})}\right)$.

Similarly we can prove properties (17)-(23).
5. Notations. The sets $T(\Re)(0), T(\Re), d(\bar{\alpha}, m), H(\bar{\alpha}, r), V(\bar{\alpha}, r), \mathcal{U}, \mathcal{V}$, $O(W)$ for $W \in \mathcal{U} \cup \mathcal{V}, O(\mathcal{U}), O(\mathcal{V})$ and $\mathbb{B}(T(\Re))$ (See Notations 1.III) conserning the family \Re, for the family $\widetilde{\Re}$ will be denoted by $T(\widetilde{R})(0), T(\widetilde{R}), \widetilde{d}(\bar{\alpha}, m), \widetilde{H}(\bar{\alpha}, r)$, $\tilde{V}(\bar{\alpha}, r), \widetilde{\mathcal{U}}, \widetilde{\mathcal{V}}, O(\widetilde{W})$ for $\widetilde{W} \in \widetilde{\mathcal{U}} \cup \widetilde{\mathcal{V}}, O(\widetilde{\mathcal{U}}), O(\widetilde{\mathcal{V}})$ and $\mathbb{B}(T(\widetilde{\Re}))$, respectively.

All results of Section III, related to the above sets concerning the family R, are also true for the corresponding sets concerning the family \tilde{R}. In the constuction of the family $\widetilde{\mathscr{R}}$ we had a fixed subset $\left\{r^{1} \ldots, r^{t}\right\}$ of N. Let $\left\{r^{1}, \ldots, r^{t}, r^{t+1} \ldots, r^{t_{1}}\right\}$ be a subset of N such that $0 \leq t<t_{1} \leq n$ and $\left|\left\{r^{1} \ldots r^{t_{1}}\right\}\right|=t_{1}$. The corresponding family \widetilde{R} constructed for the fixed subset $\left\{r^{1}, \ldots, r^{t_{1}}\right\}$ of N will be denoted by \widehat{R}. Also, in all notations concerning this family, the symbol "~ " will be replaced by the symbol " \sim ".

By Φ we denote a map of the space $T(\widehat{\Re})$ in to the space $T(\widetilde{\Re})$ defined as follows: If $\bar{\alpha} \in \Lambda_{k+1}$ and $\hat{d}(\bar{\alpha}, k) \in T(\widehat{\Re})(0)$, then we set $\Phi(\widehat{d}(\bar{\alpha}, k))=\tilde{d}(\bar{\alpha}, k)$. If $d \times\{\widehat{\zeta}\} \in T(\widehat{\Re}) \backslash T(\widehat{\Re})(0)$, then we set $\Phi(d \times\{\widehat{\zeta}\})=d \times\{\tilde{\zeta}\} \in T(\widetilde{\Re})$. We observe that $\tilde{d}(\bar{\alpha}, k) \in T(\tilde{R})(0)$, that is, $\tilde{d}(\bar{\alpha}, k) \neq \emptyset$. Indeed, if $\widehat{\zeta} \in \widehat{\Re}(\bar{\alpha})$, then we have $\hat{d}(\bar{\alpha}, k) \cap(C \times\{\widehat{\zeta}\})=d_{k}^{D(\widehat{\zeta})} \times\{\widehat{\zeta}\}$, where $d_{k}^{D(\widehat{\zeta})} \neq \emptyset$. Then, by the definition of the ordered set $\vec{D}(\widehat{\zeta})(0)$, we have $d_{k}^{D(\zeta)}=d_{k}^{D(\widehat{\zeta})}$. Since $\left\{r^{1}, \ldots, r^{t}\right\} \subseteq\left\{r^{1}, \ldots, r^{t_{1}}\right\}$, $d_{k}^{D(\zeta)} \in D(\tilde{\zeta})$ and hence $d_{k}^{D(\zeta)}=d_{k}^{D(\zeta)} \neq \emptyset$. Since $\tilde{d}(\bar{\alpha}, k) \cap(C \times\{\tilde{\zeta}\})=d_{k}^{D(\zeta)} \times\{\widetilde{\zeta}\}$ we have $\widetilde{d}(\bar{\alpha}, k) \neq \emptyset$.

By \widehat{F} we denote the map of the set $J(C \times \widehat{R})$ into the set $J(C \times \widetilde{R})$, which is defined as follows: if $(a, \hat{\zeta}) \in J(C \times \hat{R})$, then we set $\widehat{F}(a, \widehat{\zeta})=(a, \tilde{\zeta})$. Obviously, this map is one-to-one and $\widehat{F}(A \times\{\hat{\zeta}\})=A \times\{\tilde{\zeta}\}$, where $A \subseteq S(\hat{\zeta}) \subseteq S(\widetilde{\zeta})$.
6. Lemma. The map Φ is a homeomorphism of the space $T(\widehat{R})$ into a subset of the space $T(\widetilde{R})$.

Proof. It is not difficult to see that the map Φ is one-to-one. Let $\Phi(\hat{d}(\bar{\alpha}, k))=$ $\tilde{d}(\bar{a}, k)$. Let r be an integer of N such that $k+r+1 \geq n(\widehat{\Re}) \geq n(\tilde{\Re})$. Consider the sets $\hat{V}(\bar{\alpha}, r)$ and $\tilde{V}(\bar{\alpha}, r)$. Then, $\hat{d}(\bar{\alpha}, k) \subseteq \hat{V}(\bar{\alpha}, r)$ and $\tilde{d}(\bar{\alpha}, k) \subseteq \tilde{V}(\bar{\alpha}, r)$.

Let $\hat{d}\left(\bar{\alpha}_{1}, k_{1}\right) \in T(\hat{R})(0), \hat{d}\left(\bar{\alpha}_{1}, k_{1}\right) \neq \hat{d}(\bar{\alpha}, k)$ and $\hat{d}\left(\bar{\alpha}_{1}, k_{1}\right) \subseteq \hat{V}(\bar{\alpha} . r)$. Then, there exists an element $\bar{\gamma} \in \Lambda_{k+r+1}$ such that $\bar{\alpha}_{1} \geq \bar{\gamma} \geq \bar{\alpha}$ and for every $\hat{i} \in \widehat{R}\left(\bar{\alpha}_{1}\right)$
we have $d_{k_{1}}^{D(\widehat{\zeta})} \subseteq U_{n(\bar{\gamma}, k)}^{C}$. Then $\tilde{\zeta} \in \tilde{R}\left(\bar{\alpha}_{1}\right)$ and $d_{k_{1}}^{D(\widetilde{\zeta})} \subseteq U_{n(\bar{\gamma}, k)}^{C}$. This means that

$$
\Phi\left(\widehat{d}\left(\bar{\alpha}_{1}, k_{1}\right)\right)=\tilde{d}\left(\bar{\alpha}_{1}, k_{1}\right) \subseteq \tilde{V}(\bar{\alpha}, r)
$$

Let $d \times\{\hat{\zeta}\} \subseteq \widehat{V}(\bar{\alpha}, r)$. Let $\bar{\gamma} \in \Lambda_{k+r+1}$ and $\widehat{\zeta} \in \widehat{\Re}(\bar{\gamma})$. Then $\bar{\gamma} \geq \bar{\alpha}$ and $d \subseteq U_{n(\bar{\gamma}, k)}^{C}$. This means that $\widetilde{\zeta} \in \widetilde{R}(\bar{\gamma})$ and hence $\Phi(d \times\{\widehat{\zeta}\})=d \times\{\widetilde{\zeta}\} \subseteq \tilde{V}(\bar{\alpha}, r)$. Thus, $\Phi(O(\widehat{V}(\bar{\alpha}, r))) \subseteq O(\tilde{V}(\bar{\alpha}, r))$. By Corollary 7.III, we have that the map Φ is continuous at the point $\widehat{d}(\bar{\alpha}, k)$ of $T(\widehat{\Re})$. Similarly we can prove that

$$
\Phi^{-1}(\Phi(T(\widehat{\Re})) \cap O(\widetilde{V}(\bar{\alpha}, r))) \subseteq O(\widehat{V}(\bar{\alpha}, r))
$$

This means that the map Φ^{-1} of $\Phi(T(\Re))$ onto $T(\widehat{\Re})$ is continuous at the point $\widetilde{d}(\bar{a}, k)$.

Now, let $\Phi(d \times\{\widehat{\zeta}\})=d \times\{\widetilde{\zeta}\}$. Consider the sets $\hat{H}(\bar{\alpha}, r)$ and $\widetilde{H}(\bar{\alpha}, r)$, where $\bar{\alpha} \in \Lambda_{k+1}, k+1 \geq n(\widehat{\Re}), \widehat{\zeta} \in \widehat{\Re}(\bar{\alpha}), \widetilde{\zeta} \in \tilde{\Re}(\bar{\alpha}), 0 \leq r \leq n(\bar{\alpha})$ and $d \subseteq U_{r}^{C}$. Then $d \times\{\widehat{\zeta}\} \subseteq \widehat{H}(\bar{\alpha}, r)$ and $d \times\{\widetilde{\zeta}\} \subseteq \widetilde{H}(\bar{\alpha}, r)$. Let $\widehat{d}\left(\bar{\alpha}_{1}, k_{1}\right) \in T(\widehat{R})(0)$ and $\hat{d}\left(\bar{\alpha}_{1}, k_{1}\right) \subseteq$ $\widehat{H}(\bar{\alpha}, r)$. Hence $\widehat{\Re}\left(\bar{\alpha}_{1}\right) \subseteq \widehat{\Re}(\bar{\alpha})$. If $\bar{\alpha}_{1} \leq \bar{\alpha}$, then $\widehat{\Re}(\bar{\alpha})$ is a singleton. In this case it is easy to prove that $\Phi\left(\widehat{d}\left(\bar{\alpha}_{1}, k_{1}\right)\right)=\tilde{d}\left(\bar{\alpha}_{1}, k_{1}\right) \subseteq \tilde{H}(\bar{\alpha}, r)$. Therefore, we can suppose that $\bar{\alpha} \leq \bar{\alpha}_{1}$. Obviously, for every $\widehat{\zeta} \in \widehat{\Re}\left(\bar{\alpha}_{1}\right)$ we have $d_{k_{1}}^{D(\widehat{\zeta})} \subseteq U_{r}^{C}$. This means that $\widetilde{\zeta} \in \widetilde{\Re}\left(\bar{\alpha}_{1}\right)$ and $d_{k_{1}}^{D(\widetilde{\zeta})} \subseteq U_{r}^{C}$, that is, $\Phi\left(\widehat{d}\left(\bar{\alpha}_{1}, k_{1}\right)\right)=\tilde{d}\left(\bar{\alpha}_{1}, k_{1}\right) \subseteq \widetilde{H}(\bar{\alpha}, r)$.

Let $d^{\prime} \times\left\{\hat{\zeta^{\prime}}\right\} \subseteq \widehat{H}(\bar{\alpha}, r)$. Therefore, $\widehat{\zeta^{\prime}} \in \widehat{\Re}(\bar{\alpha})$ and $d^{\prime} \subseteq U_{r}^{C}$. Then $\widetilde{\zeta}^{\prime} \in \widetilde{R}(\bar{\alpha})$ and hence $d^{\prime} \times\left\{\tilde{\zeta}^{\prime}\right\} \subseteq \widetilde{H}(\bar{\alpha}, r)$, that is, $\Phi\left(d^{\prime} \times\left\{\hat{\zeta}^{\prime}\right\}\right)=d^{\prime} \times\left\{\tilde{\zeta}^{\prime}\right\} \subseteq \widetilde{H}(\bar{\alpha}, r)$. By Corollary 7.III, we have that the map Φ is continuous at the point $d \times\{\hat{\zeta}\}$ of $T(\widehat{\Re})$.

Similarly, we can prove that

$$
\Phi^{-1}(\Phi(T(\widehat{\Re})) \cap O(\tilde{H}(\bar{\alpha}, r))) \subseteq O(\widehat{H}(\bar{\alpha}, r)) .
$$

Hence the map Φ^{-1} is continuous at the point $d \times\{\tilde{\zeta}\}$ of $\Phi(T(\widehat{\Re}))$. Thus, Φ is a homeomorphism of the space $T(\widehat{\Re})$ onto the subspace $\Phi(T(\widehat{\Re}))$ of the space $T(\widetilde{\Re})$.
7. Lemma. The set $\Phi(T(\hat{\Re}))$ is a closed subset of $T(\tilde{\Re})$.

Proof. Let $d \in T(\tilde{R}) \backslash \Phi(T(\widehat{R}))$. We prove that there exists an element $\widetilde{I} \in \tilde{\mathcal{U}} \cup \tilde{\mathcal{V}}$ such that

$$
d \in O(\widetilde{W}) \subseteq T(\widetilde{R}) \backslash \Phi(T(\widehat{\Re}))
$$

Let $d=d^{\prime} \times\{\tilde{\zeta}\} \in T(\tilde{R}) \backslash T(\tilde{R})(0)$. We prove that $d^{\prime} \notin D(\widehat{\zeta})$. Indeed, let $d^{\prime} \in D(\hat{\zeta})$. If $d^{\prime} \notin D(\widehat{\zeta})(0)$, then $d^{\prime} \times\{\widehat{\zeta}\} \in T(\widehat{\Re})$ and $\Phi\left(d^{\prime} \times\{\widehat{\zeta}\}\right)=d^{\prime} \times\{\tilde{\zeta}\}$, which is impossible. If $d^{\prime} \in D(\widehat{\zeta})(0)$, then $d^{\prime}=d_{k}^{D(\widehat{\zeta})}$, for some $k \in N$. Let $\bar{\alpha} \in \Lambda_{k+1}$
and $\widehat{\zeta} \in \widehat{\Re}(\bar{\alpha})$. Then $\widehat{d}(\bar{\alpha}, k) \in T(\widehat{\Re})$ and $\Phi(\widehat{d}(\bar{\alpha}, k))=\tilde{d}(\bar{\alpha}, k) \in T(\widehat{\Re})$. Since $\tilde{d}(\bar{\alpha}, k) \cap(C \times\{\widetilde{\zeta}\})=d_{k}^{D(\zeta)} \times\{\tilde{\zeta}\}$ and $d_{k}^{D(\widetilde{\zeta})}=d_{k}^{D(\widehat{\zeta})}$, we have $d \cap \tilde{d}(\bar{\alpha}, k) \neq \emptyset$, which is a contradiction. Hence, $d^{\prime} \notin D(\widehat{\zeta})$.

There exists an integer $r \in N$ such that $d^{\prime} \in U_{r}^{D(\tilde{\zeta})}$ and $U_{r}^{D(\widetilde{\zeta})} \cap D(\widehat{\zeta})=\emptyset$. Let $k \in V, k+1 \geq n(\widehat{\Re}), \bar{\alpha} \in \Lambda_{k+1}, \widetilde{\zeta} \in \widetilde{\Re}(\bar{\alpha})$ and $0 \leq r \leq n(\bar{\alpha})$. We set $\widetilde{W}=\widetilde{H}(\bar{\alpha}, r)$ and prove that

$$
O(\tilde{H}(\bar{\alpha}, r)) \cap \Phi(T(\widehat{\Re}))=\emptyset
$$

Indeed, in the opposite case, there exists an element $d_{1} \in O(\tilde{H}(\bar{\alpha}, r)) \cap \Phi(T(\widehat{\Re}))$. Let $d_{1}=d_{1}^{\prime} \times\{\tilde{\chi}\} \in T(\widetilde{\Re}) \backslash T(\widetilde{\Re})(0)$. Then $d_{1}^{\prime} \in U_{r}^{D(\widetilde{\chi})}$ and $\Phi\left(d_{1}^{\prime} \times\{\widehat{\chi}\}\right)=d_{1}^{\prime} \times\{\widetilde{\chi}\}$. This means that $d_{1}^{\prime} \in D(\widehat{\chi})$ and hence $U_{r}^{D(x)} \cap D(\widehat{\chi}) \neq \emptyset$. Since $\widetilde{\zeta}, \tilde{\chi} \in \widetilde{\Re}(\bar{\alpha})$ and since

$$
D(\widehat{\zeta})=\bigcap\left\{\operatorname{Fr}\left(U_{r^{i}}^{D(\widetilde{\zeta})}\right): i=1, \ldots, t_{1}\right\}
$$

and

$$
D(\widehat{x})=\bigcap\left\{\operatorname{Fr}\left(U_{r^{i}}^{D(\tilde{x})}\right): i=1^{\dot{x}}, \ldots, t_{1}\right\},
$$

by property (13) of Lemma 4, this is a contradiction.
Let $d_{1}=\widetilde{d}\left(\bar{\alpha}_{1}, k_{1}\right) \in T(\widetilde{\Re})(0)$. Let $\tilde{\chi} \in \widetilde{\Re}\left(\bar{\alpha}_{1}\right)$. Then

$$
\tilde{d}\left(\bar{\alpha}_{1}, k_{1}\right) \cap(C \times\{\tilde{\chi}\})=d_{k_{1}}^{D(\tilde{x})} \times\{\tilde{\chi}\}
$$

and hence $d_{k_{1}}^{D(\tilde{x})} \in U_{r}^{D(\tilde{r})}$. On the other hand, $\underset{\sim}{\Phi}\left(\widehat{d}\left(\bar{\alpha}_{1}, k_{1}\right)\right)=\tilde{d}\left(\bar{\alpha}_{1}, k_{1}\right)$. This means that $d_{k_{1}}^{D(\hat{x})}=d_{k_{1}}^{D(\tilde{x})} \in D(\widehat{x})$, and hence $U_{r}^{D(\tilde{x})} \cap D(\hat{\chi}) \neq \emptyset$. As in the above this is a contradiction.

Now, suppose that $d=\widetilde{d}(\bar{\alpha}, k)$. Let $\tilde{\zeta} \in \widetilde{\Re}(\bar{\alpha})$. We prove that $d_{k}^{D(\widetilde{\zeta})} \notin D(\widehat{\zeta})$. Indeed, in the opposite case, $d_{k}^{D(\widetilde{\zeta})}=d_{k}^{D(\widehat{\zeta})}$ and $\hat{d}(\bar{\alpha}, k) \in T(\widehat{\Re})(0)$ and hence $\Phi(\widehat{d}(\bar{\alpha}, k))=\tilde{d}(\bar{\alpha}, k)$, which is a contradiction. Hence $d_{k}^{D(\widetilde{\zeta})} \notin D(\widehat{\zeta})$.

Let $r \in N$ such that $k+r+1>n(\widehat{\Re})$. Since

$$
D(\hat{\zeta})=\bigcap\left\{\operatorname{Fr}\left(U_{r^{i}}^{D(\zeta)}\right): i=1, \ldots, t_{1}\right\}
$$

there exists an integer $i(\zeta) \in N, 1 \leq i(\zeta) \leq t_{1}$, such that $\left.d_{k}^{D(\zeta)} \notin \operatorname{Fr}\left(U_{r^{i}(\zeta)}^{D(\zeta)}\right)\right)$. Then, by properties, (19) and (20) of Lemma 2.II, $\left.U_{n(\bar{\gamma}, k)}^{D(\zeta)} \cap \operatorname{Fr}\left(U_{r^{\prime}(\zeta)}^{D(\tilde{\zeta})}\right)\right)=\emptyset$. where $\bar{\gamma} \in \Lambda_{k+r+1}, \bar{\gamma} \geq \bar{\alpha}$ and $\zeta \in \|(\bar{\gamma})$, that is, $U_{n(\bar{\gamma}, k)}^{D(\zeta)} \cap D(\widehat{\zeta})=\emptyset$.

We set $\widetilde{W}=\widetilde{V}(\bar{\alpha}, r)$ and prove that $O(\widetilde{V}(\bar{\alpha}, r)) \cap \Phi(T(\widehat{R}))=\emptyset$. Indeed, in the opposite case, there exists $d_{1} \in O(\tilde{V}(\bar{\alpha}, r)) \cap \Phi\left(T(\hat{\Re)})\right.$. Let $d_{1}=d_{1}^{\prime \prime} \times\{\tilde{\chi}\} \in$
$T(\tilde{R}) \backslash T(\tilde{\Re})(0)$ and let $\tilde{\gamma} \in \tilde{R}(\bar{\gamma})$, where $\bar{\gamma} \in \Lambda_{k+r+1}$. Then, $\bar{\gamma} \geq \bar{\alpha}$ and $d_{1}^{\prime} \in U_{n(\bar{\gamma}, k)}^{-D(\tilde{\gamma})}$, that is, $d_{1}^{\prime} \notin D(\widehat{r})$. On the other hand,

$$
\Phi\left(d_{1}^{\prime} \times\{\widehat{\chi}\}\right)=d_{1}^{\prime} \times\{\tilde{\imath}\} .
$$

This means that $d_{1}^{\prime} \in D(\widehat{r})$, which is a contradiction.
Let $d_{1_{\sim}}=\tilde{d}\left(\bar{\alpha}, k_{1}\right) \in T(\widetilde{\Re})(0)$ and let $\tilde{\gamma} \in \widetilde{\Re}\left(\bar{\alpha}_{1}\right)$. Then $\widetilde{d}\left(\bar{\alpha}_{1}, k_{1}\right) \cap\left(C^{\prime} \times\right.$ $\{\widetilde{\imath}\})=d_{k_{1}}^{D(\tilde{\gamma})} \times\{\tilde{\gamma}\}$ and hence $d_{k_{1}}^{D(\tilde{\chi})} \in U_{n(\bar{\gamma}, k)}^{D(\tilde{\gamma})}$, where $\bar{\gamma} \in \Lambda_{k+r+1}$ and $\tilde{\gamma} \in \widetilde{\Re}(\bar{\gamma})$. Therefore, $d_{k_{1}}^{D(\widetilde{x})} \notin D(\widehat{\gamma})$. On the other hand, $\Phi\left(\widehat{d}\left(\bar{\alpha}, k_{1}\right)\right)=\widetilde{d}\left(\bar{\alpha}_{1}, k_{1}\right)$ and hence $\hat{d}\left(\bar{\alpha}_{1}, k_{1}\right) \cap(C \times\{\hat{\chi}\})=d_{k_{1}}^{D(\hat{x})} \times\{\hat{\chi}\}$, that is, $d_{k_{1}}^{D(\widehat{x})}=d_{k_{1}}^{D(\tilde{x})} \in D(\widehat{\chi})$, which is a contradiction.
8. Lemma. Let $\left\{r^{1}, \ldots, r^{t_{1}}\right\}=\left\{r^{1}, \ldots, r^{t}, r^{t+1}\right\}$, where $r^{t+1} \in N \backslash\left\{r^{1}, . ., r^{t}\right\}$. Let $\bar{\alpha} \in \Lambda_{k+1}, k+1 \geq n(\widetilde{\Re})$ and $0 \leq r^{t+1} \leq n(\bar{\alpha})$. Then $\operatorname{Fr}(\widetilde{W}) \backslash T(\widetilde{\Re})(\bar{\alpha}) \subseteq$ $\Phi(T(\widehat{\Re}))$, where $\widetilde{W}=\widetilde{H}\left(\bar{\alpha}, r^{t+1}\right)$.

Proof. Let $d \in \operatorname{Fr}(\widetilde{W}) \backslash T(\widetilde{R})(\bar{\alpha})$. Then $d \cap \widetilde{W} \neq \emptyset$ and $d \cap(J(C \times \widetilde{R}) \backslash \widetilde{W}) \neq \emptyset$. Let $d=d^{\prime} \times\{\tilde{\zeta}\} \in T(\widetilde{\Re}) \backslash T(\tilde{R})(0)$. Then $d^{\prime} \notin D(\tilde{\zeta})(0)$. We prove that $d^{\prime} \in D(\widehat{\zeta})$. Since $\widetilde{H}\left(\bar{\alpha}, r^{t+1}\right)=J\left(U_{r^{t+1}}^{C} \times \widetilde{\Re}(\bar{\alpha})\right)$, we have $\widetilde{\zeta} \in \widetilde{\Re}(\bar{\alpha}), d^{\prime} \cap U_{r^{t+1}}^{C} \neq \emptyset$ and $d^{\prime} \cap\left(C \backslash U_{r^{t+1}}^{C}\right) \neq \emptyset$. This means that $d^{\prime} \in \operatorname{Fr}\left(U_{r^{t}+1}^{D(\widetilde{\zeta})}\right) \subseteq \operatorname{Fr}\left(U_{r^{t+1}}^{D(\zeta)}\right)$. Hence, if $t=0$, then $d^{\prime} \in D(\widehat{\zeta})$.

Since $d^{\prime} \in D(\widetilde{\zeta})$, for $t>0$, we have that $d^{\prime} \in \bigcap\left\{\operatorname{Fr}\left(C_{r^{t}}^{D(\zeta)}\right): i=1, \ldots, t\right\}$. Hence,

$$
d^{\prime} \in \bigcap\left\{\operatorname{Fr}\left(U_{r^{i}}^{D(\zeta)}\right): i=1, \ldots, t+1\right\}=D(\widehat{\zeta})
$$

Since $D(\widehat{\zeta})(0) \subseteq D(\widetilde{\zeta})(0)$ we have $d^{\prime} \notin D(\widehat{\zeta})(0)$ and hence $d^{\prime} \times\{\widehat{\zeta}\} \in T(\widehat{R})$. Obviously, $\Phi\left(d^{\prime} \times\{\widehat{\zeta}\}\right)=d^{\prime} \times\{\tilde{\zeta}\}$. Thus, $d=d^{\prime} \times\{\tilde{\zeta}\} \in \Phi(T(\widehat{\Re}))$.

Now, let $d=\widetilde{d}\left(\bar{\alpha}_{1}, k_{1}\right)$. Since $d \cap \widetilde{W} \neq \emptyset$, we have $\widetilde{\Re}(\bar{\alpha}) \cap \widetilde{\Re}\left(\bar{\alpha}_{1}\right) \neq \emptyset$. This means that either $\bar{\alpha}_{1} \geq \bar{\alpha}$ or $\bar{\alpha}_{1} \leq \bar{\alpha}$. If $\bar{\alpha}_{1} \leq \bar{\alpha}$, then $d \in T(\tilde{\Re})(\bar{\alpha})$. Hence $\bar{\alpha}_{1} \geq \bar{\alpha}$. Let $\tilde{\zeta} \in \widetilde{R}\left(\bar{\alpha}_{1}\right)$. By Lemma 4.IV, we have $d_{k_{2}}^{D(\widetilde{\zeta})} \cap V_{r^{+}+1}^{C} \neq \emptyset$ and $d_{k_{1}}^{D(\widetilde{\zeta})} \cap\left(C \backslash U_{r^{c+1}}^{C}\right) \neq \emptyset$. This means that $d_{k_{1}}^{D(\widetilde{\zeta})} \in \operatorname{Fr}\left(U_{r^{t+1}}^{D(\widetilde{\zeta})}\right) \subseteq \operatorname{Fr}\left(U_{r^{t+1}}^{D(\zeta)}\right)$. Hence if $t=0$, then $d_{k_{1}}^{D(\widetilde{\zeta})} \in$ $D(\widehat{\zeta})$. For $t>0$, since

$$
d_{k_{1}}^{D(\tilde{\zeta})} \in D(\widetilde{\zeta})=\bigcap\left\{\operatorname{Fr}\left(U_{r^{i}}^{D(\zeta)}\right): i=1, \ldots, t\right\}
$$

we have

$$
d_{k_{1}}^{D \tilde{\zeta})} \in \bigcap\left\{\operatorname{Fr}\left(U_{r^{i}}^{D(\zeta)}\right): i=1, \ldots, t+1\right\}=D(\hat{\zeta})
$$

Hence, $d_{k_{1}}^{D(\hat{\zeta})} \neq \emptyset, \hat{d}\left(\bar{\alpha}, k_{1}\right) \in T(\hat{R})$ and $\Phi\left(\hat{d}\left(\bar{\alpha}_{1}, k_{1}\right)\right)=\tilde{d}\left(\bar{\alpha}_{1}, k_{1}\right)$. Thus $\tilde{d}\left(\bar{\alpha}_{1}, k_{1}\right) \in$ $\Phi(T(\widehat{R}))$.
9. Lemma. Let $t=0$ and $\left|\left\{r^{1}, \ldots, r^{t_{1}}\right\}\right|=t_{1}=n$. Then $\Phi(T(\widehat{\Re})) \subseteq$ $T(\tilde{R})(0)=T(\Re)(0)$.

Proof. Let $d \in T(\widehat{\Re})$. Let $\widehat{\zeta} \in \widehat{\Re}$ and $d^{\prime} \in D(\widehat{\zeta})$ such that $d^{\prime} \times\{\widehat{\zeta}\}=$ $d \cap(C \times\{\hat{\zeta}\}) \neq \emptyset$. Then,

$$
d^{\prime} \in D(\widehat{\zeta})=\bigcap\left\{\operatorname{Fr}\left(U_{r^{i}}^{D(\zeta)}\right): i=1, \ldots, n\right\} \subseteq D(\zeta)(0)
$$

Since $D(\widehat{\zeta})(0)=D(\zeta)(0) \cap D(\widehat{\zeta})$ we have $d^{\prime} \in D(\widehat{\zeta})(0)$. Hence there exists an integer k such that $d^{\prime}=d_{k}^{D(\widehat{\zeta})}$. If $\bar{\alpha} \in \Lambda_{k+1}$ and $\widehat{\zeta} \in \widehat{\Re}(\bar{\alpha})$, then $d=\widehat{d}(\bar{\alpha}, k)$. Hence, $\Phi(d)=\Phi(\widehat{d}(\bar{\alpha}, k))=\tilde{d}(\bar{\alpha}, k)=d(\bar{\alpha}, k) \in T(\Re)(0)$. Thus, $\Phi(T(\widehat{R})) \subseteq T(\Re)(0)$.
10. Corollary. If $\left|\left\{r^{1}, \ldots, r^{t_{1}}\right\}\right|=t_{1}=n$, then the space $T(\widehat{\Re})$ is countable.
11. Theorem. The space $T(\tilde{R})$ belongs to the family $\mathbb{R}^{n-t}(M)$.

Proof. We prove the theorem by induction on integer $n-t$. Let $n-t=0$. Then $t=n$ and by Corollary 10 , the space $T\left(\tilde{\Re)}\right.$ belongs to the family $\mathbb{M}=\mathbb{R}^{0}(\mathbb{M})$.

Suppose that for every subset $\left\{r^{1}, \ldots, t^{t_{1}}\right\}$ of N for which $\left|\left\{r^{1}, \ldots, r^{t_{1}}\right\}\right|=t_{1}$ and $0 \leq n-t_{1}<n-t$, we have proved that the space $T(\widetilde{R})$ belongs to $\mathbb{R}^{n-t_{1}}(\mathbb{M})$.

Now, we prove that for every subset $\left\{r^{1}, \ldots, r^{t}\right\}$ of N for which $\left|\left\{r^{1}, \ldots, r^{t}\right\}\right|=t$, the space $T(\tilde{R})$ belongs to $\mathbb{R}^{n-t}(\mathbb{M})$. By Corollary 7.III it is sufficient to prove that

$$
\operatorname{Bd}(O(\tilde{H}(\bar{\alpha}, r))) \in \mathbb{R}^{n-t-1}(M)
$$

where $\bar{\alpha} \in \Lambda_{k+1}, k+1 \geq n(\widetilde{R})$ and $0 \leq r \leq n(\bar{\alpha})$, and

$$
\operatorname{Bd}(O(\tilde{V}(\bar{\alpha}, r))) \in \mathbb{R}^{n-t-1}(\mathbb{M})
$$

where $\bar{\alpha} \in \Lambda_{k+1}$ and $k+r+1 \geq n(\tilde{R})$.
Let $\bar{\alpha} \in \Lambda_{k+1}, k+1 \geq n(\widetilde{R})$ and $0 \leq r \leq n(\bar{\alpha})$. Suppose that $r \in\left\{r^{1}, \ldots, r^{t}\right\}$. We prove that in this case $O((\tilde{H}(\bar{\alpha}, r))=\emptyset$. Indeed, let $d \in O(\tilde{H}(\bar{\alpha}, r))$, that is, $d \subseteq \widetilde{H}(\bar{\alpha}, r)$. Let $\widetilde{\zeta} \in \widetilde{R}(\bar{\alpha})$ and $d^{\prime} \in D(\widetilde{\zeta})$ such that $d \cap(C \times\{\widetilde{\zeta}\})=d^{\prime} \times\{\widetilde{\zeta}\}$. Since $d \subseteq \widetilde{H}(\bar{\alpha}, r)$ we have $d^{\prime} \in U_{r}^{D(\widetilde{\zeta})}$ and hence $d^{\prime} \in U_{r}^{D(\zeta)}$.

On the other hand we have $d^{\prime} \in D(\widetilde{\zeta})=\bigcap\left\{\operatorname{Fr}\left(U_{r^{i}}^{D(\zeta)}\right): i=1, \ldots, t\right\}$ and, since $r \in\left\{r^{1}, \ldots, t^{t}\right\}$, we have $d^{\prime} \in \operatorname{Fr}\left(U_{r}^{D(\zeta)}\right)$. Since $U_{r}^{D(\zeta)} \cap \operatorname{Fr}\left(U_{r}^{D(\zeta)}\right)=\emptyset$, this is a contradiction. Hence, $O(\tilde{H}(\bar{\alpha}, r))=\emptyset$ and $\operatorname{Bd}(O(\tilde{H}(\bar{\alpha}, r)))=\emptyset \in \mathbb{R}^{n-t-1}(M)$.

Thus, we can suppose that $r \notin\left\{r^{1}, \ldots, r^{t}\right\}$. For the subset $\left\{r^{1}, \ldots, r^{t}, r^{t+1}\right\}$ of V, where $r^{t+1}=r$ we construct the space $T(\widehat{R})$. Since $0 \leq n-(t+1)<$ $n-t$, by induction, the space $T(\widehat{\Re})$ belongs to $\mathbb{R}^{n-t-1}(M)$ and hence $\Phi(T(\widehat{\Re})) \in$ $\mathbb{R}^{n-t-1}(M I)$. (See Lemma 6).

By Lemma 9.III we have $\operatorname{Bd}(O(\widetilde{H}(\bar{\alpha}, r))) \subseteq \operatorname{Fr}(\widetilde{H}(\bar{\alpha}, r))$.
By Lemma $8, \operatorname{Fr}(\widetilde{H}(\bar{\alpha}, r)) \backslash T(\widetilde{\Re})(\bar{\alpha}) \subseteq \Phi(T(\widehat{\Re}))$. Let $H_{1}=\operatorname{Fr}(\widetilde{H}(\bar{\alpha}, r)) \cap$ $\Phi(T(\widehat{R}))$ and $H_{2}=\operatorname{Fr}(\widetilde{H}(\bar{\alpha}, r)) \backslash \Phi(T(\widehat{\Re}))$. The set H_{1} is a closed subset of $\operatorname{Fr}(\widetilde{H}(\bar{\alpha}, r))$ and belongs to the family $\mathbb{R}^{n-t-1}(\mathbb{M})$. The set H_{2}, as a finite subset of $T(\tilde{R})$, is also closed in $\operatorname{Fr}(\tilde{H}(\bar{\alpha}, r))$ and belongs to the family $\mathbb{R}^{n-t-1}(\mathbb{M})$. Since $\operatorname{Fr}(\widetilde{H}(\bar{\alpha}, r))=H_{1} \cup H_{2}$, we have $\operatorname{Fr}(\widetilde{H}(\bar{\alpha}, r)) \in \mathbb{R}^{n-t-1}(\mathbb{M})$ and hence $\operatorname{Bd}(O(\tilde{H}(\bar{\alpha}, r))) \in \mathbb{R}^{n-t-1}(I M)$.

Now, let $\bar{\alpha} \in \Lambda_{k+1}$ and $k+r+1 \geq n(\widetilde{R})$. We prove that $\operatorname{Bd}(O(\tilde{V}(\bar{\alpha}, r))) \in$ $\mathbb{R}^{n-t-1}(\mathbb{M})$. By Lemma 9.III, it is sufficient to prove that

$$
\operatorname{Fr}(\tilde{V}(\bar{\alpha}, r)) \in \mathbb{R}^{n-t-1}(I M)
$$

and for this, it is sufficient to prove that

$$
\operatorname{Fr}(\tilde{V}(\bar{\alpha}, r)) \subseteq \bigcup\left\{\operatorname{Fr}(H(\bar{\gamma}, n(\bar{\gamma}, k))): \bar{\gamma} \in \Lambda_{k+r+1}, \bar{\gamma} \geq \bar{\alpha}\right\} .
$$

We have

$$
\begin{aligned}
\tilde{V}(\bar{\alpha}, r) & =\bigcup\left\{\tilde{U}(\bar{\gamma}, k): \bar{\gamma} \in \Lambda_{k+r+1}, \bar{\gamma} \geq \bar{\alpha}\right\} \\
& =\bigcup\left\{\widetilde{H}(\bar{\gamma}, n(\bar{\gamma}, k)): \bar{\gamma} \in \Lambda_{k+r+1}, \bar{\gamma} \geq \bar{\alpha}\right\} .
\end{aligned}
$$

Let $d \in \operatorname{Fr}(\tilde{V}(\bar{\alpha}, r))$. Then there exists an element $\tilde{\zeta} \in \tilde{R}(\bar{\alpha})$ and $a \in C$ such that $(a . \widetilde{\zeta}) \in d \cap \tilde{V}(\bar{\alpha}, r)$ and $d \cap(J(C \times \widetilde{\Re}) \backslash \tilde{V}(\bar{\alpha}, r)) \neq \emptyset$. Let $\tilde{\zeta} \in \tilde{\Re}(\bar{\gamma})$, where $\bar{\gamma} \in \Lambda_{k+r+1}$ and $\bar{\gamma} \geq \bar{\alpha}$. Then $(a, \tilde{\zeta}) \in d \cap \tilde{H}(\bar{\gamma}, n(\bar{\gamma}, k))$ and $d \cap(J(C \times \tilde{\Re}) \backslash H(\bar{\gamma}, n(\bar{\gamma}, k))) \neq \emptyset$, that is, $d \in \operatorname{Fr}(\tilde{H}(\bar{\gamma}, n(\bar{\gamma}, k)))$. Hence

$$
\operatorname{Fr}(\tilde{V}(\bar{\alpha}, r)) \subseteq \bigcup\left\{\operatorname{Fr}(\widetilde{H}(\bar{\gamma}, n(\bar{\gamma}, k))): \bar{\gamma} \in \Lambda_{k+r+1}, \bar{\gamma} \geq \bar{\alpha}\right\} .
$$

12. Corollary. The space $T(\Re)$ belongs to the family $\mathbb{R}^{n}(\mathbb{M})$.

V. Universal spaces

1. Notations. Let $\zeta_{1} \equiv\left(S_{1}, D_{1}\right)$ and $\zeta_{2} \equiv\left(S_{2}, D_{2}\right)$ are two representations and let $m \in N$. We say that ζ_{1} and ζ_{2} are m-equivalent and write $\zeta_{1} \sim \zeta_{2}$ iff for every element $d \in D_{1}$ there exists an element $d^{\prime} \in D_{2}$ such that $\operatorname{st}(d, m)=\operatorname{st}\left(d^{\prime}, m\right)$
and, conversely, for every $d \in D_{2}$ there exists $d^{\prime} \in D_{1}$ such that $\operatorname{st}(d, m)=\operatorname{st}\left(d^{\prime} . m\right)$. It is easy to see that the relation " $\sim^{\prime \prime}$ is an equivalence relation in the family of all representations. Obviously, the number of equivalence classes are finite.
2. Lemma. Let \mathbb{E} be a family of representations such that:
(1) For every $\zeta_{1}, \zeta_{2} \in \mathbb{E}$ and for every $m \in N, \zeta_{1} \stackrel{m}{\sim} \zeta_{2}$.
(2) For every $\zeta \equiv(S, D) \in \mathbb{E}$ the set $\Sigma(\zeta) \equiv\left\{\sigma_{0}(\zeta), \sigma_{1}(\zeta), \ldots\right\}$, where $\sigma_{k}(\zeta)=$ $\left\{\bar{U}_{k}^{D}, D \backslash U_{k}^{D}\right\}, k \in V$, is a basic system for the space D and ζ is the representation of D corresponding to the basic system $\Sigma(\zeta)$. Then we have:
(3) The pair $\zeta(\mathbb{E}) \equiv(S(\mathbb{E}), D(\mathbb{E}))$, where $S(\mathbb{E})=\bigcup\{S(\zeta): \zeta \in \mathbb{E}\}$ and $D(\mathbb{E})=\bigcup\{D(\zeta): \zeta \in \mathbb{E}\}$ is a representation.
(4) The set $\Sigma(\mathbb{E})=\left\{\sigma_{0}(\mathbb{E}), \sigma_{1}(\mathbb{E}), \ldots\right\}$, where $\sigma_{k}(\mathbb{E})=\left\{\bar{U}_{k}^{D(\mathbb{E})}, D(\mathbb{E})\right\}$ $\left.U_{k}^{-D(\mathbb{E})}\right\}, k \in N$, is a basic system for the space $D(\mathbb{E})$.
(5) The pair $\zeta(\mathbb{E})$ is the representation of $D(\mathbb{E})$ corresponding to the basic system $\Sigma(\mathbb{E})$.

Proof. (3). First, we observe that the set $S(\mathbb{E})$ is a subset of C and $D(\mathbb{E})$ is a set of subsets of $S(\mathbb{E})$, the union of all elements of which is the set $S(\mathbb{E})$.

Now, we prove that $D(\mathbb{E})$ is a partition of $S(\mathbb{E})$, that is, if d_{1}, d_{2} are distinct elements of $D(\mathbb{E})$, then $d_{1} \cap d_{2}=\emptyset$. Indeed, let d_{1}, d_{2} be distinct elements of $D(\mathbb{E})$, that is $d_{1} \neq d_{2}$. There exist elements $\left(S_{1}, D_{1}\right)$ and $\left(S_{2}, D_{2}\right)$ of \mathbb{E} such that $d_{1} \in D_{1}$ and $d_{2} \in D_{2}$. Suppose that $d_{2} \cap d_{1} \neq \emptyset$. If $d_{2} \nsubseteq d_{1}$, then there exists an integer $m_{0} \in N$ such that $d_{2} \cap \operatorname{st}\left(d_{1}, m\right) \neq \emptyset$ and $d_{2} \nsubseteq \operatorname{st}\left(d_{1}, m_{0}\right)$ for every $m \geq m_{0}$. Since $\left(S_{1}, D_{1}\right) \stackrel{m}{\sim}\left(S_{2}, D_{2}\right)$, for every $m \geq m_{0}$, there exists an element $d_{1}^{m} \in D_{1}$ such that $\operatorname{st}\left(d_{2}, m\right)=\operatorname{st}\left(d_{1}^{m}, m\right)$. This means that $d_{1}^{m} \cap \operatorname{st}\left(d_{1}, m\right) \neq \emptyset$ and $d_{1}^{m} \nsubseteq \operatorname{st}\left(d_{1}, m_{0}\right)$, that is, D_{1} is not upper semi-continuous, which is a contradiction. Similarly, if $d_{1} \nsubseteq d_{2}$, then D_{2} is not upper semi-continuous. Hence $d_{2} \cap d_{1}=\emptyset$.

We prove that $D(\mathbb{E})$ is an upper semi-continuous partition of $S(\mathbb{E})$, that is, for every $d \in D(\mathbb{E})$ and for every $m \in N$, there exists an integer $k \in N$ such that if $d^{\prime} \cap \operatorname{st}(d, k) \neq \emptyset$, where $d^{\prime} \in D(\mathbb{I E})$, then $d^{\prime} \subseteq \operatorname{st}(d, m)$. Suppose that $D(\mathbb{E})$ is not upper semi-continuous. Then, there exists an element $d \in D(\mathbb{E})$, an integer $m \in N$ and for every $k \in N$, there exists an element $d^{k} \in D(\mathbb{E})$ such that $d^{k} \cap \operatorname{st}(d, k) \neq \emptyset$ and $d^{k} \notin \operatorname{st}(d, m)$.

Let $\left(S^{\prime}, D^{\prime}\right)$ and $\left(S_{k}, D_{k}\right), k \in N$, be elements of \mathbb{E} such that $d \in D^{\prime}$ and $d^{k} \in D_{k}$. Since $\left(S^{\prime}, D^{\prime}\right) \stackrel{k}{\sim}\left(S_{k}, D_{k}\right)$, there exists an element d_{k}^{\prime} of D^{\prime} such that $\operatorname{st}\left(d^{k}, k\right)=\operatorname{st}\left(d_{k}^{\prime}, k\right)$. Then $\operatorname{st}\left(d_{k}^{\prime}, k\right) \cap \operatorname{st}(d, k) \neq \emptyset$ and hence $d_{k}^{\prime} \cap \operatorname{st}(d, k) \neq \emptyset$. Also, for every $k \geq m$, we have $\operatorname{st}\left(d^{k}, k\right) \nsubseteq \operatorname{st}(d, m)$, that is, $\operatorname{st}\left(d_{k}^{\prime}, k\right) \nsubseteq \operatorname{st}(d, m)$ and
hence $d_{k}^{\prime} \nsubseteq \operatorname{st}(d, m)$. This means that D^{\prime} is not upper semi-continuous, which is a contradiction. Hence $D(\mathbb{E})$ is an upper semi-continuous partition.
(4). Let $d \in D(\mathbb{E})$ and $m_{0} \in N$. It is sufficient to prove that there exists an integer $k \in N$ such that $d \in V_{k}^{D(\mathbb{E})}$ and every element of $\bar{C}_{k}^{D(\mathbb{E})}$ is contained in st $\left(d . m_{0}\right)$. There exists an element $(S, D) \in \mathbb{E}$ such that $d \in D$. Since the set $\Sigma(\zeta)$ is a basic system for D, there exists an integer $k \in N$ such that $d \in C_{k}^{D}$ and every element of \bar{U}_{k}^{D} is contained in st $\left(d, m_{0}\right)$. We prove that $d \in U_{k}^{D(\mathbb{E})}$ and every element of $\bar{U}_{k}^{D(\mathbb{E})}$ is contained in $\operatorname{st}\left(d, m_{0}\right)$. By the definition of the sets U_{k}^{C}, U_{k}^{D} and $U_{k}^{D(\mathbb{E})}$ it follows that $U_{k}^{D} \subseteq U_{k}^{D(\mathbb{E})}$ and hence $d \in U_{k}^{D(\mathbb{E})}$.

Let $d^{\prime} \in \bar{C}_{k}^{D(\mathbb{E})}$. Suppose that $d^{\prime} \nsubseteq \operatorname{st}\left(d, m_{0}\right)$. Let $\left(S^{\prime}, D^{\prime}\right) \in \mathbb{E}$ and $d^{\prime} \in D^{\prime}$. Since $\left(S^{\prime}, D^{\prime}\right) \sim_{\sim}^{m}(S . D)$, for every $m \in N$, there exists an element $d^{0} \in D$ such that $\operatorname{st}\left(d^{\prime}, m_{1}\right)=\operatorname{st}\left(d^{0}, m_{1}\right)$, where $m_{1}=\max \left\{m_{0}, k\right\}$. Since $d^{\prime} \in \bar{U}_{k}^{D(\mathbb{E})}$, we have $d^{\prime} \cap U_{k}^{C} \neq \emptyset$ and hence $\operatorname{st}\left(d^{\prime}, m_{1}\right) \cap U_{k}^{C} \neq \emptyset$. Then $\operatorname{st}\left(d^{0}, m_{1}\right) \cap U_{k}^{C} \neq \emptyset$ and hence $d^{0} \cap U_{k}^{C} \neq \emptyset$, which means that $d^{0} \in \bar{U}_{k}^{D}$. Since $d^{\prime} \nsubseteq$ st $\left(d, m_{0}\right)$, we have $\operatorname{st}\left(d^{\prime}, m_{1}\right) \nsubseteq \operatorname{st}\left(d . m_{0}\right)$. Hence $\operatorname{st}\left(d^{0}, m_{1}\right) \nsubseteq \operatorname{st}\left(d, m_{0}\right)$ and therefore $d^{0} \nsubseteq \operatorname{st}\left(d, m_{0}\right)$. This is a contradiction. Thus $d^{\prime} \subseteq \operatorname{st}\left(d . m_{0}\right)$ and therefore the set $\Sigma(\mathbb{E})$ is a basic system for the space $D(\mathbb{E})$.
(5). Let $S(D(\mathbb{E}), \Sigma(\mathbb{E}))$ and $D(D(\mathbb{E}), \Sigma(\mathbb{E}))$ be the subset of C and the partition of $S(D(\mathbb{E}), \Sigma(\mathbb{E})$), respectively, constructed in Section I for the basic system $\Sigma(\mathbb{E})$ of $D(\mathbb{E})$. We prove that $S(\mathbb{E})=S(D(\mathbb{E}), \Sigma(\mathbb{E}))$ and $D(\mathbb{E})=$ $D(D(\mathbb{E}) . \Sigma(\mathbb{E}))$.

First, we prove by induction on integer k that the set $(D(\mathbb{E}))_{\bar{i}}, \bar{i} \in L_{k}$, is the set of all elements of $D(\mathbb{E})$ which intersect the set $C_{\bar{i}}$. Indeed, this is true if $\bar{i}=\emptyset \in L_{0}$. Suppose that this statement is true if $k \leq k_{0}$. Let $\bar{j}_{0} \in L_{k_{0}+1}$. Then there exists an element $\bar{i}_{0} \in L_{k_{0}}$ such that either $\bar{j}_{0}=\bar{i}_{0} 0$ or $\bar{j}_{0}=\bar{i}_{0} 1$. Hence either $(D(\mathbb{E}))_{\bar{j}_{0}}=(D(\mathbb{E}))_{\bar{\nu}_{0}} \cap \bar{\tau}_{k_{0}}^{D(\mathbb{E})}$ or $(D(\mathbb{E}))_{\bar{j}_{0}}=(D(\mathbb{E}))_{\bar{i}_{0}} \cap\left(D(\mathbb{E}) \backslash U_{k_{0}}^{D(\mathbb{E})}\right)$.

Let $(D(\mathbb{E}))_{\bar{j}_{0}}=(D(\mathbb{E}))_{\bar{i}_{0}} \cap \bar{C}_{k_{0}}^{D(\mathbb{E})}$ and let $d \in(D(\mathbb{E}))_{\bar{j}_{0}}$. Then $d \in(D(\mathbb{E}))_{\bar{i}_{0}}$ and by induction, $d \cap C_{i_{0}} \neq \emptyset$. On the other hand, $d \in \bar{U}_{k_{0}}^{D(\mathbb{E})}$, which means that

$$
d \cap\left(\bigcup\left\{C_{\bar{i} 0}: \bar{i} \in L_{k_{0}}\right\}\right) \neq \emptyset .
$$

Let $a \in d \cap C_{\bar{i}_{0}}$. If $a \in C_{\overline{i_{0}} 0}=C_{\overline{j_{0}}}$, then $d \cap C_{\overline{j_{0}}} \neq \emptyset$. Let $a \in C_{\bar{i}_{0} 1}$. Then, $d \in$ $\operatorname{Fr}\left(U_{k_{0}}^{D(\mathbb{E})}\right)=\operatorname{Fr}\left(\sigma_{k_{0}}(\mathbb{E})\right)$. Let b be a point of $C, b \neq a$, for which the $\mathrm{k}^{\text {th }}$ digit in the ternary expansion coincides with the corresponding digit of a for all $k \in V$ except $k=k_{0}+1$. Then $b \in C_{\bar{i}_{0} 0}$ and by property (4) of Lemma 7.I, $b \in d$. This means that $d \cap C_{\bar{j}_{0}} \neq \emptyset$. Similarly, we prove that if $D(\mathbb{E})_{\bar{j}_{0}}=(D(\mathbb{E}))_{\bar{i}_{0}} \cap\left(D(\mathbb{E}) \backslash U_{k_{0}}^{D(\mathbb{E})}\right)$, then $d \in(D(\mathbb{E}))_{\bar{J}_{0}}$ iff $d \cap C_{\bar{J}_{0}} \neq \emptyset$.

For the proof of the equalities

$$
S(\mathbb{E})=S(D(\mathbb{E}), \Sigma(\mathbb{E}))
$$

and

$$
D(\mathbb{E})=D(D(\mathbb{E}) \cdot \Sigma(\mathbb{E}))
$$

it is sufficient to prove that for every $d \in D(\mathbb{E})$ we have $\left(q(D(\mathbb{E}), \Sigma(\mathbb{E}))^{-1}(d)=\right.$ $d \subseteq S(\mathbb{E})$. Let $a \in S(D(\mathbb{E}), \Sigma(\mathbb{E}))$ and let $q(D(\mathbb{E}), \Sigma(\mathbb{E}))(a)=d$. Then,

$$
\{d\}=\bigcap\left\{(D(I E))_{\bar{i}(a, k)}: k \in N\right\} .
$$

By the above, $d \cap C_{\bar{i}(a, k)} \neq \emptyset$, for every $k \in N$, which means that $a \in d$. Conversely, let $a \in d$. Then, $d \cap C_{\bar{i}(a, k)}^{\prime} \neq \emptyset$, for every $k \in V$, that is,

$$
\{d\}=\bigcap\left\{(D(\mathbb{E}))_{\bar{i}(a, k)}: k \in N\right\}
$$

which means that $a \in(q(D(\mathbb{E}), \Sigma(\mathbb{E})))^{-1}(d)$. Thus, the pair $\zeta(\mathbb{E})$ is the representation of $D(\mathbb{E})$ corresponding to the basic system $\Sigma(\mathbb{E})$.
3. Lemma. Let \mathbb{E} be the family of representations of Lemma 2. Suppose that:
(1) For every subset $s \subseteq N$ with $|s|=t \leq n$ and for every $\zeta \in \mathbb{E}$ we have

$$
\bigcap\left\{\operatorname{Fr}\left(U_{k}^{D(\zeta)}\right) \in \mathbb{R}^{n-t}(M): k \in s\right\} .
$$

(We recall again that n is fixed).
(2) There exists a countable subset S^{0} of S such that for $\zeta \in \mathbb{E}$ and for every subset $s \subseteq N$ with $|s|=n$ we have

$$
\bigcap\left\{\operatorname{Fr}\left(L_{k}^{D(\zeta)}\right): k \in s\right\} \subseteq S^{0}
$$

Then, for every $s \subseteq N$ with $|s|=t \leq n$ we have

$$
\bigcap\left\{\operatorname{Fr}\left(C_{k}^{D(\mathbb{E})}\right) \in \mathbb{R}^{n-t}(M): k \in s\right\} .
$$

Proof. By Lemma 2 the pair $(S(\mathbb{E}), D(\mathbb{E}))$ is a representation. First we observe that for every $s \in N$ with $|s|=t \leq n$ we have

$$
\begin{equation*}
\bigcap\left\{\operatorname{Fr}\left(C_{k}^{D(\mathbb{E})}\right): k \in s\right\}=\bigcup\left\{\bigcap\left\{\operatorname{Fr}\left(U_{k}^{D(\zeta)}\right): k \in s\right\}: \zeta \in \mathbb{E}\right\} \tag{3}
\end{equation*}
$$

This follows immediately by the definition of the sets $\operatorname{Fr}\left(U_{k}^{D(\zeta)}\right)$ and $\operatorname{Fr}\left(U_{k}^{D(\mathbb{E})}\right)$.
We prove the lemma by induction on integer $n-t$. Let $n-t=0$, that is, $t=n$. Let $s \subseteq N$ and $|s|=n$. By property (2) and relation (3) it follows that

$$
\bigcap\left\{\operatorname{Fr}\left(U_{k}^{D(\mathbb{E})}\right): k \in s\right\} \subseteq S^{0}
$$

and hence

$$
\bigcap\left\{\operatorname{Fr}\left(U_{k}^{D(\mathbb{E})}\right): k \in s\right\} \in \mathbb{R}^{0}(I M) .
$$

Suppose that the lemma has been proved for all integers $n-t^{\prime}, 0 \leq n-t^{\prime}<n-t$. We prove the lemma for the integer $n-t$. Let $s \subseteq N$ and $|s|=t$. Consider the set

$$
D^{s}(\mathbb{E}) \equiv \bigcap\left\{\operatorname{Fr}\left(U_{k}^{D(\mathbb{E})}\right): k \in s\right\} .
$$

Since $D^{s}(\mathbb{E})$ is a subspace of $D(\mathbb{E})$ and the set $\left\{U_{k}^{D(\mathbb{E})}: k \in N\right\}$ is a basis for open sets of $D(\mathbb{E})$ (see the definition of the basic system and Lemma 2), the set $\left\{D^{s}(\mathbb{E}) \cap L_{k}^{D(\mathbb{E})}: k \in N\right\}$ is a basis for open sets of $D^{s}(\mathbb{E})$. For the proof of the lemma it is sufficient to prove that for every $r \in N$,

$$
\operatorname{Bd}_{D^{s}(\mathbb{E})}\left(D^{s}(\mathbb{E}) \cap U_{r}^{D(\mathbb{E})}\right) \in \mathbb{R}^{n-t-1}(\mathbb{M})
$$

Let $r \in N$. First we suppose that $r \in s$. Then $D^{s}(\mathbb{E}) \subseteq \operatorname{Fr}\left(U_{r}^{\top(I E)}\right)$ and hence

$$
D^{s}(\mathbb{E}) \cap U_{r}^{D(\mathbb{E})} \subseteq \operatorname{Fr}\left(U_{r}^{D(\mathbb{E})}\right) \cap U_{r}^{D(\mathbb{E})}=\emptyset
$$

Thus

$$
\operatorname{Bd}_{D^{*}(\mathbb{E})}\left(D^{s}(\mathbb{E}) \cap U_{r}^{D(\mathbb{E})}\right) \in \mathbb{R}^{n-t-1}(\mathbb{M}) .
$$

Now, let $r \notin s$. Let $s_{1}=s \cup\{r\}$. Then $\left|s_{1}\right|=t+1$ and by induction,

$$
\bigcap\left\{\operatorname{Fr}\left(U_{k}^{D(\mathbb{E})}\right): k \in s_{1}\right\} \in \mathbb{R}^{n-t-1}(M) .
$$

Since

$$
\operatorname{Bd}_{D^{s}(\mathbb{E})}\left(D^{s}(\mathbb{E}) \cap U_{k}^{D(\mathbb{E})}\right) \subseteq \operatorname{Bd}\left(U_{k}^{D(\mathbb{E})}\right) \subseteq \operatorname{Fr}\left(U_{k}^{D(\mathbb{E})}\right)
$$

for every $k \in N$, we have

$$
\operatorname{Bd}_{D^{*}(\mathbb{E})}\left(D^{s}(\mathbb{E}) \cap U_{r}^{-D(\mathbb{E})}\right) \subseteq \bigcap\left\{\operatorname{Fr}\left(U_{k}^{D(\mathbb{E})}\right): k \in s_{1}\right\} \in \mathbb{R}^{n-t-1}(\mathbb{M})
$$

4. Corollary. If \mathbb{E} is the family of Lemma 3, then $D(\mathbb{E})$ is an element of $\mathbb{R}^{n}(M)$ containing topologically every space D for every $\zeta \equiv(S, D) \in \mathbb{E}$.

Proof. Since the set $\left\{U_{k}^{D(\mathbb{E})}: k \in N\right\}$ is a basis for open sets of $D(\mathbb{E})$, by the relation

$$
\operatorname{Bd}\left(U_{k}^{D(\mathbb{E})}\right) \subseteq \operatorname{Fr}\left(U_{k}^{D(\mathbb{E})}\right) \in \mathbb{R}^{n-1}(I M)
$$

for every $k \in N$, we have that $D(\mathbb{E}) \in \mathbb{R}^{n}(\mathbb{M})$.
Let $\zeta \equiv(S . D) \in \mathbb{E}$. It is easy to see that the map $\epsilon_{\zeta}^{\mathbb{E}}$ of D into $D(\mathbb{E})$ for which $\epsilon_{\zeta}^{\mathbb{E}}(d)=d \in D(\mathbb{E})$, for every $d \in D$, is a homeomorphism of D into $D(\mathbb{E})$.

The map $e_{\zeta}^{\mathbb{E}}: D \rightarrow D(\mathbb{E})$ is called the natural embedding of D into $D(\mathbb{E})$.
5. Theorem. In the family of all spaces having rational dimension $\leq n$, $n=1,2, \ldots$, there exists a universal element.

Proof. For every element X of the family $\mathbb{R}^{n}(\mathbb{M})$ of all spaces having rational dimension $\leq n$, we denote by $\Sigma(X)$ a basic system for X with the property of boundary intersections. The existence of such a basic system follows by Theorem 5.I. Indeed, if $\mathbb{B}(X)=\left\{U_{0}^{X}, U_{1}^{X}, \ldots\right\}$ is a basis for open sets of X having the property of boundary intersections, then it is easy to see that the set $\Sigma(X) \equiv\left\{\sigma^{0}, \sigma^{1}, \ldots\right\}$, where $\sigma^{2}=\left\{\mathrm{Cl}\left(U_{i}^{X}\right), X \backslash U_{i}^{X}\right\}$, is a basic system for X having the property of boundary intersections. Let $(S(X, \Sigma(X)), D(X, \Sigma(X)))$ be the representation of X corresponding to the basic system $\Sigma(X)$ constructed in Section 1.I. The family of all such representations is denoted by $\mathbb{R} e^{n}(\mathbb{M})$.

In the family $\mathbb{R} e^{n}(\mathbb{M})$ we define an equivalence relation " \sim ". We say that two elements ζ_{1} and ζ_{2} of $\mathbb{R} e^{n}(\mathbb{M})$ are equivalent and we write $\zeta_{1} \sim \zeta_{2}$ iff for every $m \in N, \zeta_{1} \stackrel{m}{\sim} \zeta_{2}$ and $D\left(\zeta_{1}\right)(0)=D\left(\zeta_{2}\right)(0)$. It is easy to see that the cardinality of the set $E . C \cdot \mathbb{R} e^{n}(\mathbb{M})$ of all equivalence classes of the relation " \sim " is less than or equal to the continuum.

By \Re we denote the family of all representations of the form ($S(\mathbb{E}), D(\mathbb{E})$), where $\mathbb{E} \in E . C \cdot \mathbb{R} e^{n}(\mathbb{M})$. (See Lemma 2). If $\zeta \equiv(S(\mathbb{E}), D(\mathbb{E})) \in \mathbb{R}$, then by $X(\zeta)$ we denote the space $D(\mathbb{E}) \in \mathbb{R}^{n}(\mathbb{M})$ (see Corollary 4) and by $\Sigma(\zeta)$ we denote the basic system $\Sigma(\mathbb{E}) \equiv\left\{\sigma^{0}(\zeta), \sigma^{1}(\zeta), \ldots\right\}$ of $D(\mathbb{E})$, where $\sigma^{k}(\zeta) \equiv$ $\sigma_{k}(\mathbb{E})=\left\{\bar{U}_{k}^{D(\mathbb{E})}, D(\mathbb{E}) \backslash C_{k}^{\cdot D(\mathbb{E})}\right\}$. (See Lemma 2). By Lemma 2 the pair ζ is the representation of $X(\zeta)$ corresponding to the basic system $\Sigma(\zeta)$.

Let $T(\Re)$ be the space constructed in Section III. Since $\Sigma(\zeta)$ has the property of boundary intersections (see Lemma 3), by Corollary 12.IV we have $T(\mathbb{R}) \in$ $\mathbb{R}^{n}(\mathbb{M})$. We prove that the space $T(\Re)$ is the required universal element of $\mathbb{R}^{n}(M)$.

Let $\zeta \in \Re$. We construct a map e_{ζ} of $D(\zeta)$ into $T(\Re)$ as follows: if $d \in D(\zeta) \backslash$ $D(\zeta)(0)$, then by the definition of the set $T(\Re)$ we have $d \times\{\zeta\} \in T(\Re) \backslash T(R)(0)$.

In this case $\epsilon_{\zeta}(d)=d \times\{\zeta\}$. Let $d \in D(\zeta)(0)$. Then there exists an integer $k \in \mathcal{V}$ such that $d=d_{k}^{D(\zeta)}$. If $\bar{\alpha} \in \Lambda_{k+1}$ and $\zeta \in \Re(\bar{\alpha})$, then $d(\bar{\alpha}, k) \in T(\Re)(0) \subseteq T(R)$. In this case we set $\epsilon_{\zeta}(d)=d(\bar{\alpha}, k)$.

We prove that ϵ_{ζ} is an embedding of $D(\zeta)$ into $T(\Re)$. Obviously, ϵ_{ζ} is one-to-one. We prove the continuity of e_{ζ}. Let $e_{\zeta}(d)=d^{\prime}$ and $O(W), W \in \mathcal{U} \cup \mathcal{V}$, be an open neighbourhood of d^{\prime} in $T(\Re)$. If $d \in D(\zeta) \backslash D(\zeta)(0)$, that is, $d^{\prime} \in$ $T(\Re) \backslash T(\Re)(0)$, then we can suppose that $W=H(\bar{\alpha}, r)$, where $\bar{\alpha} \in \Lambda_{k+1}, \zeta \in \Re(\bar{\alpha})$. $k+1 \geq n(\Re)$ and $0 \leq r \leq n(\bar{\alpha})$. (See Corollary 7. III). Obviously, $d \in U_{r}^{D(\zeta)}$ and $d^{\prime} \notin T(R)(\bar{\alpha})$. Hence, the set

$$
U \equiv U_{r}^{D(\zeta)} \backslash e_{\zeta}^{-1}(T(\Re)(\bar{\alpha}))
$$

is an open neighbourhood of d in $D(\zeta)$. It easy to verify that $e_{\zeta}\left(U^{*}\right) \subseteq O(W)$.
If $d \in D(\zeta)(0)$, that is, $d^{\prime} \in T(\Re)(0)$, then we can suppose that $W^{-}=V^{\prime}(\bar{\alpha}, r)$, where $\bar{\alpha} \in \Lambda_{k+1}, \zeta \in \Re(\bar{\alpha}), k+r+1 \geq n(\Re)$. Let $\bar{\gamma} \in \Lambda_{k+r+1}$ and $\zeta \in \Re(\bar{\gamma})$. Then $d \in U_{n(\bar{\gamma}, k)}^{D(\zeta)}$ and it is easy to verify that $e_{\zeta}\left(U_{n(\bar{\gamma}, k)}^{D(\zeta)}\right) \subseteq O(W)$. Hence, e_{ζ} is continuous.

We prove the continuity of ϵ_{ζ}^{-1}. Let $U_{r}^{D(\zeta)}$ be an open neighbourhood of d. Let $d^{\prime} \in T(\Re) \backslash T(\Re)(0)$. Let $k \in N$ and $k+1 \geq \max \{r, n(\Re)\}$ and let $\bar{\alpha} \in \Lambda_{k+1}$ such that $\zeta \in \Re(\bar{\alpha})$. Then, $H(\bar{\alpha}, r)$ is an open neighbourhood of d^{\prime} in $T(\Re)$ such that $e_{\zeta}^{-1}(O(H(\bar{\alpha}, r))) \subseteq U_{r}^{D(\zeta)}$.

Let $d^{\prime} \in T(\Re)(0)$. There exists an integer $k \in N$ such that $d=d_{k}^{D(\zeta)}$. Let $r_{1} \in N$ such that $k+r_{1}>r, k+r_{1}+1 \geq n(\Re), \bar{\gamma} \in \Lambda_{k+r_{1}+1}$ and $\zeta \in \Re(\bar{\gamma})$. If $\overline{3} \in \Lambda_{k+r_{1}}$ and $\bar{\beta} \leq \bar{\gamma}$, then $0 \leq r \leq n(\bar{\beta})$. By property (19) of Lemma 2.II we have $U_{n(\bar{\gamma}, k)}^{D(\zeta)} \subseteq U_{r}^{D(\zeta)}$. It is easy to verify that

$$
\epsilon_{\zeta}^{-1}\left(O\left(V\left(\bar{\alpha}, r_{1}\right)\right)\right) \subseteq U_{r}^{D(\zeta)} .
$$

This means that e_{ζ}^{-1} is continuous and hence ϵ_{ζ} is an embedding of $D(\zeta)$ into $T(R)$.

Now, let $X \in \mathbb{R}^{n}(M)$. Then the map $(h(X, \Sigma(X)))^{-1}$ is an embedding of X into $D(X, \Sigma(X))$. (See Section I). Let $\mathbb{E} \in E \cdot C \cdot \mathbb{R} e^{n}(\mathbb{M})$ such that $\zeta(X) \equiv$ $(S(X, \Sigma(X)), D(X, \Sigma(X))) \in \mathbb{E}$ and let $e_{\zeta(X)}^{\mathbb{E}}$ the natural embedding of $D(X, \Sigma(X))$ into $D(\mathbb{E})$. (See Section 4). Let $\zeta \equiv(S(\mathbb{E}), D(\mathbb{E}))$ and let ϵ_{ζ} be the embedding of $D(\mathbb{E})$ into the space $T(\Re)$. The map $e_{X} \equiv e_{\zeta} \circ e_{\zeta(X)}^{\mathbb{E}} \circ(h(\mathbb{X}, \Sigma(\mathbb{X})))^{-1}$ is an embedding of \mathbb{X} into $T(\Re)$. Thus, $T(\Re)$ is a universal elemnt of the family $\mathbb{R}^{n}(M)$.
6. Definition. We say that a universal element T for a family Sp of spaces has the property of boundary intersections with respect to subfamily $(\mathrm{Sp})_{1}$ of Sp iff
for every $X \in S p$ there exists an embedding i_{X} of X into T such that if Y and Z are distinct elements of Sp and $Y^{\cdot} \in(\mathrm{Sp})_{1}$, then the set $i_{Y}(Y) \cap i_{Z}(Z)$ is finite. (See, for example, $\left[I_{3}\right]$).
7. Theorem. In the family $\mathbb{R}^{n}(\mathbb{M})$ there exists a universal element having the property of finite intersections with respect to a given subfamily of $\mathbb{R}^{n}(\mathbb{M})$ the cardinality of which is less than or equal to the continuum.

Proof. Let \mathbb{R} be a fixed subfamily of $\mathbb{R}^{n}(\mathbb{M})$. For every $X \in \mathbb{R}^{n}(\mathbb{M})$ let $\Sigma(\mathbb{X})$ and $(S(X, \Sigma(X)), D(X, \Sigma(X)))$ be the basic system for X and the representation of X, respectively, constructed in the proof of Theorem 5. As in Theorem 5, by $\mathbb{R}^{n}(I M)$ we denote the family of all representations $(S(X, \Sigma(X)) \cdot D(X, \Sigma(X)))$.

By R_{1} we denote the family of all representations of the form

$$
(S(\mathbb{E}) \cdot D(\mathbb{E}))
$$

where $\mathbb{E} \in E . C . \mathbb{R} e^{n}(\mathbb{M})$.(In the proof of Theorem 5 , this family is denoted by $\Re)$. By \Re_{2} we denote the family of all representations of the form

$$
(S(X, \Sigma(X)), D(X, \Sigma(X)))
$$

where $X \in \mathbb{R}$.
We set $\Re=\Re_{1} \cup \Re_{2}$. If $\zeta_{1} \in \Re_{1}$ and $\zeta_{2} \in \Re_{2}$, then ζ_{1} and ζ_{2} we consider as distinct elements of \Re. Obviously, the cardinality of \Re is less than or equal to the continuum.

For every $\zeta \equiv(S(\mathbb{X}, \Sigma(\mathbb{X})) \cdot D(X, \Sigma(X))) \in R_{2}$ we denote by $X(\zeta)$ the space X and by $\Sigma(\zeta)$ the basic system $\Sigma(X)$ for X.

If $\zeta \equiv(S(\mathbb{E}), D(\mathbb{E})) \in \Re_{1}$, then, as in the proof of Theorem 5 , by $X(\zeta)$ we denote the space $D(\mathbb{E}) \in \mathbb{R}^{n}(\mathbb{M})$ and by $\Sigma(\zeta)$ we denote the basic system $\Sigma(\mathbb{E})$ for $D(\mathbb{E})$.

Let $T(\Re)$ be the space constructed in Section III. If $X \in \mathbb{R}$, then the pair $\zeta \equiv$ $(S(X, \Sigma(X)), D(X, \Sigma(X))) \in R_{2} \subseteq R$. Hence the map $e_{X} \equiv e_{\zeta} \circ\left(h(X, \Sigma(X))^{-1}\right.$ is an embedding of X into $T(\Re)$, where e_{ζ} is the embedding of $D(\zeta)$ into $T(\Re)$ constructed in the proof of Theorem 5.

If $X \notin \mathbb{R}$, then by ϵ_{X} we denote the embedding of X into $T(R)$ constructed in the proof of Theorem 5.

For the proof of the Theorem it is sufficient to prove that $T(\Re)$ has the property of finite intersections with respect to subfamily $\mathbb{R} \subseteq \mathbb{R}^{n}(\mathbb{M})$.

Let Y and Z are distinct elements of $\mathbb{R}^{n}(M)$ such that $Y^{-} \in \mathbb{R}$. Let $\zeta_{1}=$ $\left(S\left(Y^{`} \Sigma\left(Y^{\prime}\right)\right) \cdot D\left(Y^{-} \Sigma\left(Y^{-}\right)\right)\right.$and $\zeta_{2}=(S(Z, \Sigma(Z)), D(Z, \Sigma(Z)))$ if $Z \in \mathbb{R}$ and $\zeta_{2}=$ $(S(\mathbb{E}) . D(\mathbb{E}))$ if $Z \notin \mathbb{R}$, where $(S(Z, \Sigma(Z)) . D(Z, \Sigma(Z))) \in \mathbb{E} \in E \cdot C \cdot \mathbb{R} e^{n}(M)$. Then ζ_{1} and ζ_{2} are distinct elements of \Re. There exists an integer $k \in N$ and elements $\bar{\alpha}_{1}, \bar{\alpha}_{2} \in \Lambda_{k+1}, \bar{\alpha}_{1} \neq \bar{\alpha}_{2}$, such that $\zeta_{1} \in \Re\left(\bar{\alpha}_{1}\right)$ and $\zeta_{2} \in \Re\left(\bar{\alpha}_{2}\right)$. It is easy to verify that

$$
\epsilon_{Y}(Y) \cap \epsilon_{Z}(Z) \subseteq T(R)\left(\bar{\alpha}_{1}\right) \cup T(R)\left(\bar{\alpha}_{2}\right) .
$$

Hence $T(R)$ has the property of finite intersections with respect to \mathbb{R}.

References

[H]. W. Hurewicz, Normalbereiche und Dimensionstheorie, Math. Ann. 96, 736764 (1927).
[$\left.I_{1}\right]$. S. D. Hiadis, Rim-finite spaces and the property of universality, Houston J. of Màth., 12 (1986), pp. 55-78.
[I_{2}]. S. D. Iliadis, The rim-type of spaces and the property of universality, Houston J. Math. 13 (1987), pp. 373-388.
$\left[\mathrm{I}_{3}\right]$. S. D. חiadis, Rational spaces of a given rim-type and the property of universality, Topology Proceedings, Vol. 11 (1986), pp. 65-113.
[$\left.I_{4}\right]$. S. D. Iliadis, Rational spaces and the property of universality, Fund. Math., 131 (1988), pp. 167-184.
$\left[\mathrm{I}_{5}\right]$. S. D. Diadis, Universal spaces for some families of rim-scattered spaces, Tsukuba J. of Math., No. 1(1992) pp. 123-160.
[I-Z]. S. D. Iliadis and S. S. Zafiridou, Planar rational compacta and universality, Fund. Math. 141 (1992), pp. 109-118.
[K]. J. L. Kelley, General Topology, Graduate Texts in Mathematics, No 27.
[Ku]. K. Kuratowski, Topology, Vol. I, II, New-York, 1966, 1968.
[Me]. K. Menger, Dimensionstheorie, Leipzig 1928.
M- T_{1}]. J. C. Mayer and E. D. Tymchatyn, Universal rational spaces, Dissertationes Mathematicae CCXCIII, Warszawa 1990.
M- $\left.\mathrm{T}_{2}\right]$. J. C. Mayer and E. D. Tymchatyn, Containing spaces for planar rational compacta, Dissertationes Mathematicae CCC, Warszawa 1990.
[N]. J. Nagata, Modern Dimension Theory, (Helderman Verlag, Berlin, revised and extented edition, 1983).
[Nö]. G. Nöbeling, ひ̈ ber regular-eindimensionale Räume, Math. Ann. 104, No. 1(1931), 81-91.

TMHMA MHXANIK M N X X (POTAEIA Σ KAI ПEPIФEPEIAKH工ANA TYYEHエ

ГEIPA EPEYNHTIK Ω N EPГA $\Sigma I \Omega N$ DISCUSSION PAPER SERIES

1995

APIOMOE	इYTГPAФEAE	TITAOE APOPOY
95-01	Δ. Orkovouov	
95-02	G. Petrakos	A European macro-region in the making? The Balkan trade relations of Greece
95-03	G. Perrakos	The regional structure of Albania, Bulgaria and Greece: Implications for cross-border cooperation and development
95-04	O. Maiovitaç	 $\pi \alpha p \alpha ́ \delta \varepsilon \gamma \gamma \mu \alpha$: Bónos
95-05	G. Petrakos	European integration and industrial structure in Greece: Prospects and possibilities for convergence

1997

APIOMOE	£ҮГГРАФЕАЕ	TITAOE APGPOY
97-01	Y. Pyrgiotis	Maritime transport in the Mediterranean Basin: conditions for improving East/South traffic, rationalisation and improvement of the infrastructure of ports
97-02	A. Sfougaris O. Christopoulou	Les effets environnementaux de defrichement et de la culture de l'olivier dans une region montagneuse de Grece (Pelion)
97-03	A. Δ. Пa $\alpha \alpha \delta$ ov́ η ¢	 $\pi \varepsilon \rho ı \beta \alpha ́ \lambda \lambda \alpha$ 。
97-04	Г. Пєтро́коя Г. $\Sigma \alpha \rho \alpha ́ \tau \sigma \eta \varsigma$	$\sigma \tau \eta v E \lambda \lambda \alpha \dot{\alpha} \alpha$.
97-05	A. Δ. Пaл $\alpha \delta$ оט́ η ¢	$\varepsilon \pi \imath \chi \varepsilon \varphi \eta \sigma^{\sigma} \varepsilon ા \varsigma$.
97-06	A. Гоблобív	 $\pi \varepsilon р і ́ \pi \tau \omega \sigma \eta$ тои Bóخov
97-07	D. N. Georgiou B. K. Papadopoulos	Convergence in Fuzzy Topological Spaces
97-08	Δ. Oıкоvófov	$\Sigma \chi \varepsilon \delta i \omega v$
97-09	H. Mertzanis	Cumulative Growth and Unequal Development
97-10	D. N. Georgiou S. D. Iliadis	Rational n-Dimensional Spaces and the Property of Universality

004000074196

 тๆ入. (0421) 62017, fax (0421) 63793

NOTE: The papers of this Series are released in limited circulation, in order to facilitate discussion and invite critism. They are only tentative in character and should not be refered to in publications without the permission of the authors. To obtain further information or copies of the Series, please contact the Secretary' s Office, Department of Planning and Regional Development, University of Thessaly, Pedion Areos, Volos 38334, Greece, tel. ++ 30421 62017, fax ++ 3042163793

[^0]: *University of Thessaly, Department of Planning and Regional Development and Department of Civil Engineering
 **University of Patras, Department of Mathematics

