ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ
ΑΘΛΗΤΙΣΜΟΥ

Η επίδραση της προπόνησης με έκκεντρες συστολές στη
dρομική οικονομία

ΠΑΣΧΑΛΗΣ Σ. ΒΑΣΙΛΕΙΟΣ

Διδακτορική Διατριβή που υποβάλλεται στο Τ.Ε.Φ.Α.Α. του Πανεπιστημίου
Θεσσαλίας για την ολοκλήρωση των απαιτήσεων απόκτησης του διδακτορικού
tίτλου

Ιανουάριος 2004

1ος Επιβλέπων καθηγητής
Κουτεντάκης Γιάννης (Αναπληρωτής καθηγητής Τ.Ε.Φ.Α.Α., Π.Θ.)

2ος Επιβλέπων καθηγητής
Μπαλτζόπουλος Βασίλειος (Professor of Manchester Metropolitan University, UK)

3ος Επιβλέπων καθηγητής
Μούγιος Βασίλης (Αναπληρωτής καθηγητής Τ.Ε.Φ.Α.Α. Α.Π.Θ.)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΥΠΗΡΕΣΙΑ ΒΙΒΛΙΟΘΗΚΗΣ & ΠΛΗΡΟΦΟΡΗΣΗΣ
ΕΙΔΙΚΗ ΣΥΛΛΟΓΗ «ΓΚΡΙΖΑ ΒΙΒΛΙΟΓΡΑΦΙΑ»

Αριθ. Εισ.: 2838/1
Ημερ. Εισ.: 08-06-2004
Δωρεά: Π.Θ.
Ταξινομικός Κωδικός: Δ
796.077
ΠΑΣ
Θέλω να ευχαριστήσω για τη στήριξη στην προσπάθεια ολοκλήρωσης της διατριβής αυτής

- την οικογένειά μου

- τους επιβλέποντες καθηγητές για τα πολύτιμα σχόλια και τις κατευθύνσεις τους

- τους φίλους και συνεργάτες μου στο Κέντρο Έρευνας και Αξιολόγησης της Φυσικής Απόδοσης του Τ.Ε.Φ.Α.Α. του Πανεπιστημίου Θεσσαλίας για τη βοήθεια στις μετρήσεις και την άψογη συνεργασία μας
Επίδραση της προπόνησης με έκκεντρες συστολές στη δρομική οικονομία...

1) Περίληψη...

2) Εισαγωγή...

3) Μεθοδολογία...
 i) Δοκιμαζόμενοι...
 ii) Διαδικασίες Μέτρησης...
 iii) Δείκτες Μυϊκής Καταστροφής...
 iv) Δείκτες Μυϊκής Απόδοσης...
 v) Δείκτες Δρομικής Οικονομίας...
 vi) Στατιστική Ανάλυση...

4) Αποτελέσματα...
 i) Δείκτες Μυϊκής Καταστροφής...
 ii) Δείκτες Μυϊκής Απόδοσης...
 iii) Δείκτες Δρομικής Οικονομίας...

5) Συζήτηση...
 i) Συμπεράσματα της διατριβής...
 ii) Προτάσεις για μελλοντικές μελέτες...
 iii) Βιβλιογραφία...
Λίστα Πινάκων

Κεφάλαιο δεύτερο

Πίνακας 1. Επί τις εκατό (%) τιμές των παραμέτρων της μυϊκής καταστροφής κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση μέγιστης (ΜΕΕ) και υπομέγιστης έντασης (ΥΜΕ) σε σχέση με την αρχική επίδοση (100%) εκφραζόμενη σε απόλυτες τιμές.

Πίνακας 2. Επί τις εκατό (%) τιμές των παραμέτρων της μυϊκής απόδοσης κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση μέγιστης (ΜΕΕ) και υπομέγιστης έντασης (ΥΜΕ) σε σχέση με την αρχική επίδοση (100%) εκφραζόμενη σε απόλυτες τιμές.

Κεφάλαιο τρίτο

Πίνακας 3. Επί τις εκατό (%) τιμές των παραμέτρων της μυϊκής καταστροφής κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση με μικρό μήκος (ΜΙΚΜ) και με μεγάλο μήκος (ΜΕΓΜ) μυός σε σχέση με την αρχική επίδοση (100%) εκφραζόμενη σε απόλυτες τιμές.

Πίνακας 4. Επί τις εκατό (%) τιμές των παραμέτρων της μυϊκής απόδοσης κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση με μικρό μήκος (ΜΙΚΜ) και με μεγάλο μήκος (ΜΕΓΜ) μυός σε σχέση με την αρχική επίδοση (100%) εκφραζόμενη σε απόλυτες τιμές.

Κεφάλαιο πέμπτο

Πίνακας 5. Τιμές των παραμέτρων αξιολόγησης της δρομικής οικονομία κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση.
Λίστα Γραφημάτων

Κεφάλαιο τέταρτο

Γράφημα 1: Συγκέντρωση γαλακτικού οξέος στο αίμα 5 λεπτά μετά το τέλος της έκκεντρης προπόνησης για τα χέρια και τα πόδια. Οι γραμμές σφάλματος υποδηλώνουν το τυπικό σφάλμα.

Γράφημα 2: Επί τις εκατό (%) τιμές της συγκέντρωσης της ΚΚ κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση σε ΜΚΑ (♦) και σε ΜΑΑ (■) σε σχέση με την αρχική επίδοση (100%). Οι γραμμές σφάλματος υποδηλώνουν το τυπικό σφάλμα.

Γράφημα 3: Επί τις εκατό (%) τιμές της συγκέντρωσης της ΓΑ κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση σε ΜΚΑ (♦) και σε ΜΑΑ (■) σε σχέση με την αρχική επίδοση (100%). Οι γραμμές σφάλματος υποδηλώνουν το τυπικό σφάλμα.

Γράφημα 4: Επί τις εκατό (%) τιμές της συγκέντρωσης της ΚΜΠ κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση σε ΜΚΑ (♦) και σε ΜΑΑ (■) σε σχέση με την αρχική επίδοση (100%). Οι γραμμές σφάλματος υποδηλώνουν το τυπικό σφάλμα.

Γράφημα 5: Επί τις εκατό (%) τιμές της συγκέντρωσης της ΕΚ κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση σε ΜΚΑ (♦) και σε ΜΑΑ (■) σε σχέση με την αρχική επίδοση (100%). Οι γραμμές σφάλματος υποδηλώνουν το τυπικό σφάλμα.

Γράφημα 6: Επί τις εκατό (%) τιμές της συγκέντρωσης της ΕΜΡ κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση σε ΜΚΑ (♦) και σε ΜΑΑ (■) σε σχέση με την αρχική επίδοση (100%). Οι γραμμές σφάλματος υποδηλώνουν το τυπικό σφάλμα.

Γράφημα 7: Επί τις εκατό (%) τιμές της συγκέντρωσης της ΟΜΡ κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση σε ΜΚΑ (♦) και σε ΜΑΑ (■) σε σχέση με την αρχική επίδοση (100%). Οι γραμμές σφάλματος υποδηλώνουν το τυπικό σφάλμα.
(■) σε σχέση με την αρχική επίδοση (100%). Οι γραμμές σφάλματος υποδηλώνουν το τυπικό σφάλμα.

Γράφημα 8: Επί τις εκατό (%) τιμές της συγκέντρωσης της IMP60 κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση σε ΜΚΑ (♦) και σε ΜΑΑ (■) σε σχέση με την αρχική επίδοση (100%). Οι γραμμές σφάλματος υποδηλώνουν το τυπικό σφάλμα.

Γράφημα 9: Επί τις εκατό (%) τιμές της συγκέντρωσης της IMP110 κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση σε ΜΚΑ (♦) και σε ΜΑΑ (■) σε σχέση με την αρχική επίδοση (100%). Οι γραμμές σφάλματος υποδηλώνουν το τυπικό σφάλμα.

Κεφάλαιο πέμπτο

Γράφημα 10: Συγκέντρωση Κρεατινικής Κινάσης (ΚΚ) στον ορό του αίματος πριν και 24, 48, 72 καθώς και 96 ώρες μετά από έκκεντρη προπόνηση. Οι γραμμές σφάλματος επισημαίνουν το τυπικό σφάλμα.

Γράφημα 11: Συγκέντρωση Γαλακτικής Αμφυδρογονάσης (ΓΑ) στον ορό του αίματος πριν και 24, 48, 72 καθώς και 96 ώρες μετά από έκκεντρη προπόνηση. Οι γραμμές σφάλματος επισημαίνουν το τυπικό σφάλμα.

Γράφημα 12: Ο καθυστερημένος μυϊκός πόνος (ΚΜΠ) πριν και 24, 48, 72 καθώς και 96 ώρες μετά από έκκεντρη προπόνηση. Οι γραμμές σφάλματος επισημαίνουν το τυπικό σφάλμα.

Γράφημα 13: Το εύρος της κίνησης (ΕΚ) πριν και 24, 48, 72 καθώς και 96 ώρες μετά από έκκεντρη προπόνηση. Οι γραμμές σφάλματος επισημαίνουν το τυπικό σφάλμα.

Γράφημα 14: Η έκκεντρη μέγιστη ροπή (ΕΜΡ) πριν και 24, 48, 72 καθώς και 96 ώρες μετά από έκκεντρη προπόνηση. Οι γραμμές σφάλματος επισημαίνουν το τυπικό σφάλμα.
Γράφημα 15: Η ομόκεντρη μέγιστη ροπή (ΟΜΡ) πριν και 24, 48, 72 καθώς και 96 ώρες μετά από έκκεντρη προπόνηση. Οι γραμμές σφάλματος επισημαίνουν το τυπικό σφάλμα.

Γράφημα 16: Η ισομετρική μέγιστη ροπή στις 60° (ΙΜΡ60) πριν και 24, 48, 72 καθώς και 96 ώρες μετά από έκκεντρη προπόνηση. Οι γραμμές σφάλματος επισημαίνουν το τυπικό σφάλμα.

Γράφημα 17: Η ισομετρική μέγιστη ροπή στις 110° (ΙΜΡ110) πριν και 24, 48, 72 καθώς και 96 ώρες μετά από έκκεντρη προπόνηση. Οι γραμμές σφάλματος επισημαίνουν το τυπικό σφάλμα.
Η επίδραση της προπόνησης με έκκεντρες συστολές στη δρομική οικονομία

Περίληψη

Εισαγωγή-Σκοπός: Η ασυνήθιστη άσκηση μπορεί να προκαλέσει μυϊκή καταστροφή τόσο στους αθλητές υψηλού επίπεδου όσο και στο γενικό πλήθος. Η μυϊκή καταστροφή διαρκεί για μικρό χρονικό διάστημα και κάνει ανθεκτικότερο το μυ στην άσκηση αυτή. Ο σκοπός της παρούσας μελέτης ήταν ερευνήσουμε διάφορες πλευρές της μυϊκής καταστροφής και την επίδρασή της στη δρομική οικονομία.

Μεθοδολογία: Η μελέτη αυτή χωρίστηκε σε τέσσερα μέρη. Τα αποτελέσματα του κάθε μέρους προσδιόρισαν το σχεδιασμό του επόμενου μέρους. Ο αριθμός των δοκιμαζόμενων ήταν 10-12 για κάθε μέρος της μελέτης και η έκκεντρη άσκηση χρησιμοποιήθηκε για την πρόκληση της μυϊκής καταστροφής. Η έκκεντρη άσκηση εκτελέστηκε σε ισοκινητικό δυναμόμετρο στο οποίο μπορούσαμε να ελέγξουμε την ένταση της άσκησης. Η μυϊκή καταστροφή και η μυϊκή απόδοση αξιολογήθηκαν για τέσσερις συνεχόμενες μέρες μετά την έκκεντρη άσκηση. Στο τελευταίο μέρος της μελέτης, αξιολογήθηκε επίσης η δρομική οικονομία.

Αποτελέσματα: Τα κύρια αποτελέσματα είναι τα ακόλουθα: 1) όμοιες ποσότητες μέγιστης και υπομέγιστης έκκεντρης άσκησης προκαλούν σχεδόν τον ίδιο βαθμό μυϊκής καταστροφής αλλά, η μυϊκή απόδοση επηρεάζεται σε μεγαλύτερο βαθμό από τη μέγιστη ένταση έκκεντρης άσκησης, 2) συγκριτικά με το μεγάλο μήκος μυών, το μικρό μήκος μυών προκαλεί μεγαλύτερη μυϊκή καταστροφή και σημαντικότερη μείωση της μυϊκής απόδοσης, 3) μεγαλύτερη μυϊκή καταστροφή και πιο αργή αποκατάσταση της μυϊκής απόδοσης είναι εμφανής σε μυϊκές ομάδες των κάτω άκρων σε σχέση με τις μυϊκές ομάδες των κάτω άκρων και 4) η μυϊκή καταστροφή δεν επηρεάζει τη δρομική οικονομία σε ελεύθερα αθλούμενους.

Συμπεράσματα: Η έκκεντρη άσκηση παρουσιάζει διαφορετική επίδραση στον μυϊκό ιστό ανάλογα με α) την ένταση της έκκεντρης άσκησης, β) το μήκος του μυών κατά τη διάρκεια της άσκησης, και γ) το ποιο βρίσκονται οι μύες που ασκούνται, στα άνω ή στα κάτω άκρα. Όμως, αν και η έκκεντρη άσκηση προκαλεί μυϊκή καταστροφή και μείωση της απόδοσης, αυτό δεν φαίνεται να επηρεάζει τη δρομική οικονομία των δοκιμαζόμενων.
The effect of eccentric exercise on running economy

Abstract

Introduction-Purpose: Unaccustomed exercise can cause muscle damage (MD) in both professional and recreational athletes. MD lasts for a short period of time and may protect the muscle from subsequent external loads. The purpose of the present study was to investigate different aspects of eccentric exercise on MD and its effects on running economy.

Methodology: The project was divided into four sections. The results from each section determined the design of the next one. The number of subjects was 10-12 for each studied section and eccentric exercise was the means to induce MD. This exercise was conducted on an isokinetic dynamometer, which was equipped with intensity-control facilities. MD and muscle performance were assessed for four consecutive days following the eccentrically induced exercise bout. In the last study, running economy was also assessed.

Results: The main results were as follows: 1) matching volumes of high and low intensity of eccentric exercise have almost similar effects on MD. However, high intensity has a more prominent role on muscle performance, 2) compared to long muscle length, short muscle length induced greater MD and caused significantly greater decline in muscle performance, 3) greater MD and slower recovery in muscle performance is evident in muscle groups of upper body compared to muscle groups of lower body and 4) MD does not affect running economy in recreational athletes.

Conclusions: Eccentric exercise demonstrates different effects on muscle tissue based on the a) intensity of eccentric exercise, b) length of muscle during exercise, and c) on whether the exercised muscles are located in the lower or upper body. However, although, eccentric exercise can cause MD and declines in muscle performance, it does not seem to affect subjects' running economy.
Εισαγωγή

Φυσιολογία μυϊκής συστολής

Η δομική μονάδα του σκελετικού μυός είναι η μυϊκή ίνα, ένα μακρύ κυλινδρικό κύτταρο με πολλές εκατοντάδες πυρήνες. Κάθε μυϊκή ίνα αποτελείται από πολλά μυοϊνίδια, τα οποία περιβάλλονται από μία λεπτή μεμβράνη, το σαρκείλημα. Το σαρκείλημα συνδέεται εκατέρωθεν με τις γραμμές Ζ, οι οποίες αποτελούν μέρος του εξωκυττάριου χώρου του μυοϊνίδιου. Το μυοϊνίδιο αποτελείται από σαρκομέρια που ορίζονται από τις γραμμές Ζ, τα οποία περιέχουν λεπτά (αποτελούμενα κυρίως από ακτίνη) και παχιά (αποτελούμενα από μυοσίνη) νημάτα. Το σαρκομέριο είναι η λειτουργική μονάδα του συστήματος συστολής του μυός (Stromer, 1998).

Η ακτίνη έχει σχήμα διπλής έλικας, βρίσκεται στα δύο άκρα του σαρκομερίου και συνδέεται απευθείας με τη γραμμή Ζ η οποία συνδέει τα λεπτά νημάτα γειτονικών σαρκομερίων και ορίζει τα όρια του κάθε σαρκομερίου. Η ακτίνη εκτείνεται από τη γραμμή Ζ προς το κέντρο του σαρκομερίου όπου γίνεται μερική επικάλυψη με την μυοσίνη. Δύο επιπλέον πρωτεΐνες, η τροπονίνη και η τροπομυοσίνη, είναι σημαντικά συστατικά της διπλής έλικας γιατί ρυθμίζουν την σύνδεση και την αποσύνδεση της ακτίνης και της μυοσίνης (Nordin and Frankel, 2001).

Τα παχιά νημάτα της μυοσίνης βρίσκονται στο κέντρο του σαρκομερίου και εφάπτονται στις γραμμές Ζ με το συνδετικό νημάτιο τετίνη. Η μυοσίνη φέρει μια σφαιρική κεφαλή προσδεμένη σε μια επιμήκη ουρά. Οι ουρές κείνται κατά μήκος των παχιών νηματίων και οι σφαιρικές κεφαλές προεξέχουν πλευρικά σχηματίζοντας τις εγκάρσιες γέφυρες (Vander, Sherman, Luciano, 2001).

Η πιο ευρέως γνωστή θεωρία για την μυϊκή συστολή είναι η θεωρία των συρόμενων νηματίων (Huxley, 1974). Σύμφωνα με τη θεωρία αυτή, όταν η
Δημιουργία δύναμης παράγει βράχυνση μιας σκελετικής μυϊκής ίνας, τα συμπλέκομενα παχιά και λεπτά νημάτια σε κάθε σαρκομέριο ολισθαίνουν το ένα πάνω στο άλλο, προωθούμενα από την κίνηση των εγκάρσιων γεφυρών. Αυτή η κίνηση των εγκάρσιων γεφυρών που συνδέονται με τα νημάτια της ακτίνης δημιουργεί την ολίσθηση των νηματίων της ακτίνης προς το κέντρο του σαρκομερίου. Κατά τη διάρκεια αυτής της κίνησης δεν μεταβάλλεται το μήκος των παχιών ή των λεπτών νηματίων.

Το κλειδί για τη λειτουργία του μηχανισμού της ολίσθησης των νηματίων είναι το ίόν του ασβεστίου (Ca²⁺), το οποίο ενεργοποιεί τη μυϊκή συστολή. Η μυϊκή συστολή ξεκινάει όταν το ασβέστιο είναι διαθέσιμο στα συσταλτά στοιχεία και σταματάει όταν το ασβέστιο απομακρύνεται από αυτά. Ο μηχανισμός που ρυθμίζει τη διαθεσιμότητα ίοντων ασβεστίου προς το μηχανισμό της συστολής εξαρτάται από τα ηλεκτρικά φαινόμενα που συμβαίνουν στην κυτταροπλασματική μεμβράνη (σαρκείλημα) (Nordin and Frankel, 2001).

Είδη μυϊκών συστολών

Κατά τη διάρκεια της μυϊκής συστολής, η δύναμη που ασκείται από το μυ που συσπάται προς το οστό στο οποίο είναι συνδεμένος ονομάζεται μυϊκή τάση, και η εξωτερική δύναμη που ασκείται στο μυ ονομάζεται αντίσταση ή φορτίο. Καθώς ο μυς ασκεί δύναμη, αυτή δημιουργεί στροφικό φαινόμενο ή ροπή, στην εμπλεκόμενη άρθρωση γιατί το σημείο εφαρμογής της μυϊκής δύναμης συνήθως βρίσκεται σε κάποια απόσταση από τον άξονα περιστροφής της άρθρωσης. Η ροπή είναι το γινόμενο της δύναμης επί την απόστασή της από τον άξονα περιστροφής της άρθρωσης. Οι μυϊκές συστολές και το παραγόμενο μυϊκό έργο μπορούν να κατηγοριοποιηθούν σύμφωνα με τη σχέση μεταξύ της μυϊκής τάσης ή της μυϊκής
ροπής και της αντίστασης που πρέπει να υπερνικηθεί (Kroemer, Marras, McGlothlin, 1990). Ο μύς για την παραγωγή δύναμης συσπάται ομόκεντρα, ισομετρικά και έκκεντρα.

Ομόκεντρη συστολή συμβαίνει όταν οι μύες αναπτύσσουν σημαντική τάση για να υπερκαλύψουν της αντίσταση του μέλους του σώματος. Οι μύες μικραίνουν σε μήκος και προκαλούν κίνηση στην άρθρωση. Η ροπή που παράγεται από τους μύες είναι της ίδιας διεύθυνσης με την αλλαγή της γωνίας της άρθρωσης. Ένα παράδειγμα ομόκεντρης συστολής είναι η συστολή των τετρακέφαλων κατά την έκταση του γονάτου όταν ανεβαίνουν σκάλες (Nordin and Frankel, 2001).

Έκκεντρη συστολή συμβαίνει όταν οι μύες δεν μπορούν να αναπτύξουν σημαντική τάση και να υπερνικήσουν το εξωτερικό φορτίο. Ο μήκος του μυός μεγαλώνει στην περίπτωση αυτή. Η ροπή που παράγεται από τους μύες είναι της αντίθετης διεύθυνσης με την αλλαγή της γωνίας της άρθρωσης. Ένας από τους σκοπούς της έκκεντρης συστολής είναι η επιβράδυνση της κίνησης μιας άρθρωσης. Για παράδειγμα, όταν ένα άτομο κατεβαίνει σκαλοπάτια, ο τετρακέφαλος συσπάται έκκεντρα για να μειώσει την ταχύτητα της άρθρωσης του γονάτου και έτσι να μειώσει την ταχύτητα του μέλους. Η τάση που εφαρμόζεται είναι μικρότερη από τη δύναμη της έλξης της Γης που τραβάει το σώμα προς τα κάτω, αλλά παρόλα αυτά είναι αρκετά σημαντική για τον έλεγχο της υποχώρησης του σώματος (Nordin and Frankel, 2001).

Ισομετρική συστολή συμβαίνει όταν οι μύες δεν συμμετέχουν πάντα άμεσα στην παραγωγή της κίνησης σε μια άρθρωση. Με τον τρόπο αυτό οι μύες λειτουργούν για συγκράτηση ή σταθεροποιήση όπως για την διατήρηση της ορθιάς θέσης του σώματος ενεργόντας αντίθετα προς την έλξη της Γης. Σε αυτή την περίπτωση ο μύς προσπαθεί να μειώσει το μήκος του (π.χ. μικραίνει το μήκος των
μυοϊνιδίων και με τον τρόπο αυτό διατείνουν τα ελαστικά στοιχεία στη σειρά αυξάνοντας την τάση), αλλά δεν υπερνικά το εξωτερικό φορτίο για να δημιουργηθεί κίνηση, αντίθετα, ο μυς δημιουργεί ροπή η οποία διατηρεί το εξωτερικό φορτίο σε μια σταθερή θέση γιατί δεν λαμβάνει χώρα καμία αλλαγή στην απόσταση μεταξύ των άκρων του μυώς (Nordin and Frankel, 2001). Παρόλο που δεν παράγεται καθόλου κίνηση ή μηχανικό έργο κατά τη διάρκεια ισομετρικής συστολής, παράγεται όμως μυϊκό έργο, η ενέργεια ξεδεδένεται κυρίως ως θερμότητα. Όλες οι δυναμικές συστολές περιλαμβάνουν μία αρχική ισομετρική φάση καθώς ο μυς αναπτύσσει τάση ίση με το φορτίο που πρέπει να υπερνικήσει.

Η τάση σε ένα μυς ποικίλλει ανάλογα με τον τύπο της συστολής. Οι ισομετρικές συστολές προκαλούν μεγαλύτερη τάση από ό,τι οι ομόκεντρες συστολές. Διάφορες μελέτες προτείνουν ότι η τάση έκκεντρης συστολής μπορεί να είναι μεγαλύτερη και από αυτή της ισομετρικής συστολής. Αυτές οι διαφορές φαίνεται να υπάρχουν ως ένα βαθμό από τα ποικίλα ποσοστά της συμπληρωματικής τάσης που παράγεται από τα ελαστικά στοιχεία του μυώς και σε διαφορές στο χρόνο της συστολής. Ο μεγαλύτερος χρόνος συστολής των ισομετρικών και των έκκεντρων συστολών επιτρέπει ένωση περισσότερων εγκάρσιων γεφυρών στα συσταλτά στοιχεία βοηθώντας στη δημιουργία μεγαλύτερης τάσης (Kroll, 1987). Περισσότερος χρόνος είναι επίσης διαθέσιμος για την τάση αυτή να μεταφερθεί στα ελαστικά στοιχεία καθώς η μιοτενόντια μονάδα διατείνεται. Ο μεγαλύτερος χρόνος συστολής επιτρέπει την ενεργοποίηση επιπλέον κινητικών μονάδων.

Έχει δειχθεί (Komi, 1986) ότι η ομόκεντρη, η ισομετρική και η έκκεντρη μυϊκή συστολή σπάνια συμβαίνουν μόνες τους στη φυσιολογική ανθρώπινη κίνηση. Αντίθετα, ένας τύπος συστολής προηγείται ενός άλλου τύπου συστολής. Επειδή οι μύες φυσιολογικά βραχύνονται ή επιμηκύνονται με διαφορετικές ταχύτητες και με
διαφορετικά ποσοστά τάσης, η απόδοση και η μέτρηση του ισοκινητικού έργου απαιτεί τη χρήση ισοκινητικού δυναμόμετρου. Αυτό το μηχάνημα παρέχει σταθερή γωνιακή ταχύτητα στην κίνηση της άρθρωσης και μέγιστη εξωτερική αντίσταση σε όλο το εύρος της κίνησης της συγκεκριμένης άρθρωσης. Το ισοκινητικό δυναμόμετρο χρησιμοποιείται για επιλεκτική προπόνηση και για αξιολόγηση.

Μηχανισμός πρόκλησης μυϊκής καταστροφής και προσαρμογής

Η καταστροφική φύση της ασυνήθιστης άσκησης για τους μύες, ειδικά όταν αυτή αποτελείται από έκκεντρες συστολές, είναι καλά τεκμηριωμένη (Friden, Segen, Sjostrom, Ekblom, 1983a; Newham, Jones, Clarkson, 1987). Οι αλλαγές που συμβαίνουν στο μυό είναι ελάχιστα εμφανείς το πρώτο 24ωρο μετά την άσκηση και καταλήγουν σε αποδιοργάνωση των γραμμών Z. Μετά από 10 με 15 μέρες ένας σημαντικός αριθμός μυϊκών ινών έχουν νεκρωθεί και υπάρχει σημαντική συγκέντρωση μονοπύρηνων κυττάρων στην περιοχή της φλεγμονής. Μετά από 2 με 3 εβδομάδες, το μεγαλύτερο μέρος της μυϊκής καταστροφής έχει αποκατασταθεί με την αναγέννηση των μυϊκών κυττάρων.

Κατά τη διάρκεια των έκκεντρων συστολών, τα σαρκομέρια, ειδικά αυτά που βρίσκονται στην κεντρική περιοχή των μυϊκών ινών, υπερδιατείνονται. Οι ερευνητές πιστεύουν (Jones, Jackson, McPhail, Edwards, 1984) ότι η είσοδος μεγάλης ποσότητας ιόντων ασβεστίου στη μυϊκή ίνα από το περικυττάριο υγρό είναι ένα σημαντικό βήμα στη δημιουργία της βλάβης. Στους μύες που έχουν εκτελέσει έκκεντρη άσκηση, θα μπορούσε να υποτθεί ότι οι ιόντα ασβεστίου, προάδει από μικρά σχισματά της κυτταρόπλασματικής μεμβράνης των περιοχών των μυϊκών ινών που υπερδιατάθηκαν. Μέσα στο κυτταρόπλασμα, τα ιόντα ασβεστίου ίσως ενεργοποιούν πρωτεάσες και φωσφολιπάσες, οι οποίες θα μπορούσαν
να αποσυνθέσουν δομικές πρωτεΐνες και τα λιπίδια των μεμβρανών αντίστοιχα. Από τα δύο ένζυμα που ενεργοποιούνται με την παρουσία ασβεστίου, προτείνεται (Jackson, Jones, Edwards, 1984) ότι η φωσφολιπάση ενέχεται περισσότερο στην πρόκληση καταστροφής. Επίσης, οι ίδιοι ερευνητές προτείνουν ότι επιπλέον καταστροφή προκύπτει από την απελευθέρωση λιπαρών οξέων και την οξείδωσή τους σε ελεύθερες ρίζες.

Την ίδια χρονική στιγμή που η κεντρική περιοχή του σαρκομερίου έχει υποστεί νέκρωση, στην περιοχή αυτή και στις γειτονικές περιοχές της μυϊκής ίνας έχει ξεκινήσει η διαδικασία της αποκατάστασης της βλάβης. Το πρώτο σημαντικό βήμα για τη διαδικασία αυτή είναι η ενεργοποίηση των δορυφορικών κυττάρων. Αυτά τα κύτταρα, που μπορούν να αναγνωριστούν με ηλεκτρονικό μικροσκόπιο, αποτελούνται από πυρήνα και πολύ λίγο κυτταρόπλασμα. Όπως οι πυρήνες των μυϊκών ίνων, έτσι και δορυφορικά κύτταρα βρίσκονται περιφερειακά των μυϊκών ίνων, αλλά έχουν δική τους κυτταρική μεμβράνη και χωρίζονται από την ίνα με δομική μεμβράνη. Αντιδράντας σε άγνωστο σήμα προερχόμενο από την τραυματισμένη περιοχή της μυϊκής ίνας, τα αδρανή ως τώρα δορυφορικά κύτταρα αρχικά πολλαπλασιάζονται και στη συνέχεια μεταναστεύουν στην περιοχή που έχει υποστεί νέκρωση πριν διαφοροποιηθούν σε μυοβλάστες. Με τον ίδιο μηχανισμό της ανάπτυξης των μυϊκών του εμβρύου, οι μυοβλάστες αρμόζουν σχηματίζοντας μυϊκά κύτταρα (McComas, 1996).
Δρομική οικονομία

Από τη στιγμή που οι παράγοντες που επηρεάζουν την απόδοση στα αγωνίσματα των δρόμων είναι δύσκολο να αναπαραγραφούν κάτω από ελεγχόμενες συνθήκες, η μηχανική της κίνησης συχνά μελετάται σε σχέση με άλλες περισσότερο ελεγχόμενες μετρήσεις, όπως είναι η δρομική οικονομία που ορίζεται ως η υπομέγιστη πρόσληψη οξυγόνου ανά χιλιόγραμμο σωματικής μάζας και σχετίζεται με το επίπεδο της δρομικής ικανότητας τη συγκεκριμένη χρονική στιγμή. Η ενεργειακή δαπάνη στα αγωνίσματα αντοχής μπορεί να επηρεάσει άμεσα την απόδοση, έτσι κάθε τι που θα βελτιώνε τη δρομική οικονομία θα είχε ωφέλιμα αποτελέσματα και στην απόδοση. Αν αλλαγές στην τεχνική δρόμου οδηγούσαν σε καλύτερη δρομική οικονομία ή αν μηχανήματα τεχνολογικά προηγμένα μπορούσαν να μειώσουν την ενέργεια που απαιτείται για ένα συγκεκριμένο επίπεδο απόδοσης, το μειωμένο ενεργειακό κόστος θα επέτρεπε σε κάποιο άτομο να διατηρήσει σταθερό το επίπεδο της απόδοσής του για μεγαλύτερο χρονικό διάστημα ή να βελτιώσει την απόδοσή του για συγκεκριμένη χρονική διάρκεια ή για συγκεκριμένη απόδοση (Williams, 2000).

Εκτός από την δρομική οικονομία και άλλες μετρήσεις έχουν χρησιμοποιηθεί για τη διερεύνηση της σχέσης μεταξύ μηχανικής απόδοσης και επίδοσης σε αγωνίσματα αντοχής. Ειδικότερα, σε μελέτες έχει βρεθεί ότι το λειτουργικό μηχανικό κόστος σχετίζεται άμεσα με το αντίστοιχο ενεργειακό μεταβολικό κόστος (Gonzalez and Hull, 1989; Gregor, Broker, Ryan, 1991; Broger and Gregor 1997). Σε μερικές περιπτώσεις, υπάρχουν σημαντικοί παράγοντες που μπορούν να αυξήσουν το μεταβολικό κόστος. Τέτοιες παράγοντες είναι η τοπική κόπωση, η τοπική πίεση των ιστών ή η μέγιστη ισχύς σε ειδικές φάσεις της κίνησης. Παρόλα αυτά, η δρομική οικονομία έχει αποδειχθεί ως πιο χρήσιμη μέτρηση για τον προσδιορισμό της σχέσης μεταξύ μηχανικών παραγόντων και αντοχής (Williams, 2000).
Κεφάλαιο πρώτο

Βιβλιογραφική ανασκόπηση
Μυϊκή καταστροφή

Παράγοντες που προκαλούν ή επιδεινώνουν την καταστροφή

Αρχικό αίτιο μυϊκής καταστροφής

Είναι γενικά αποδεκτό ότι υπάρχουν δύο χαρακτηριστικά σημάδια καταστροφής του μυώς αμέσως μετά από προπόνηση έκκεντρων συστολών. Το ένα είναι τα κατεστραμμένα σαρκομέρια στα μυονίδια και το άλλο είναι η δυσλειτουργία στο σύστημα διάτασης-βράχυνσης. Παραμένει σημείο διαφωνίας μεταξύ των ερευνητών ποια από τις δύο αυτές καταστάσεις συμβαίνει πρώτη. Ομάδα ερευνητών (Morgan and Allen, 1999) υποστηρίζουν ότι η διαδικασία της καταστροφής ξεκινάει με την υπερδιάταση των σαρκομερίων. Άλλοι ερευνητές (Warren, Ingalls, Lowe, Armstrong, 2001) ισχυρίζονται ότι το 75% περίπου της μείωσης της δύναμης μετά από έκκεντρη προπόνηση είναι αποτέλεσμα της δυσλειτουργίας του συστήματος διάτασης-βράχυνσης. Η καταστροφή του μυώς που κορυφώνεται μερικές μέρες μετά την άσκηση αποδόθηκε από τους ερευνητές (Morgan and Allen, 1999; Warren et al., 2001) στη φυσική καταστροφή των στοιχείων του μυώς που είναι υπεύθυνα για την παραγωγή δύναμης. Έτσι η υπόθεση της έρευνας είναι ότι η αρχική καταστροφή εμφανίζεται κυρίως στο σύστημα διάτασης-βράχυνσης και σε επίπεδο σαρκομερίου η καταστροφή φαίνεται να είναι μικρή (Warren et al., 2001). Αποδείξεις που ενισχύουν τη θεωρία αυτή έρχονται από παρατηρήσεις σε μύες επίμυων, όπου μείωση της δύναμης μετά από έκκεντρη προπόνηση μπορεί να αποκατασταθεί με την χορήγηση καφεΐνης (Warren, Hayes, Lowe, Armstrong, 1993; Balnave and Allen, 1995). Στην πρώτη από τις δύο προηγούμενες μελέτες, η δύναμη αποκαταστάθηκε με 50 mM καφεΐνης, που βοήθησε στην απελευθέρωση Ca²⁺ από το σαρκοπλασματικό δίκτυο αυξάνοντας τη συσταλτικότητα του μυώς. Στη δεύτερη μελέτη, 10 mM καφεΐνης χρησιμοποιήθηκαν και βοήθησαν στην ανάπτυξη δύναμης σε μία μυϊκή ίνα ως απάντηση σε ηλεκτρική διέγερση. Συμπεραίνεται ότι δυσλειτουργία στο σύστημα
διάτασης-βράχυνσης στις μυϊκές ίνες των ποντυαών μπορεί να είναι ένας σημαντικός παράγοντας στην πτώση της δύναμης μετά από έκκεντρες συστολές (Allen, 2001). Παρόλα αυτά, ακόμη παραμένει ανοιχτό το ερώτημα τι συμβαίνει πρώτα, δυσλειτουργία του συστήματος διάτασης-βράχυνσης ή καταστροφή του σαρκομερίου; Αναγνωρίζοντας την επίδραση των συμπληρωμάτων καφεΐνης και Ca²⁺, φαίνεται να υπάρχει διαφορά ανάμεσα στα ζώα. Σε μυϊκές ίνες βατράχου (Morgan, Claflin, Julian, 1996) και σε μύες χελώνας (Talbot, 1997; Allen, 2001) η μείωση στην απόδοση της δύναμης δεν μπόρεσε να αποκατασταθεί με την επιπλέον χορήγηση καφεΐνης με συνακόλουθη απελευθέρωση Ca²⁺.

Είναι γνωστό ότι το σκέλος όπου πέφτει η καμπύλη της σχέσης μήκους-δύναμης του σαρκομερίου είναι μια περιοχή όπου αναπτύσσονται ανομοιογένειες στο σαρκομέριο (Gordon, Huxley, Julian, 1966). Έχει υποστηριχθεί από τον Morgan (1990) ότι κατά την έκκεντρη συστολή του μυώς, περισσότερο θα διαταθούν τα πιο αδύναμα σαρκομέρια των μυοϊνιδίων. Στην καμπύλη πτώσης της σχέσης μήκους-δύναμης του σαρκομερίου, τα αδύναμα σαρκομέρια θα γίνονται σταδιακά ασθενέστερα και όταν φτάσουν στο οριακό τους σημείο, θα διαταθούν απότομα και ανεξέλεγκτα χωρίς να υπάρχει αλληλοκάλυψη ακτίνη-μυοσίνης. Στο σημείο αυτό η δύναμη παράγεται από τα διπλανά σαρκομέρια στα οποία υπάρχει αλληλοκάλυψη των νηματίων ακτίνης-μυοσίνης. Τα σαρκομέρια που έχουν υπερδιαταθεί είναι κατανεμημένα σε τυχαίες θέσεις μέσα στις μυϊκές ίνες. Στο τέλος της διάτασης, όταν ο μυς χαλαρώνει, η πλειοψηφία των σαρκομερίων που έχουν υπερδιαταθεί αναδιαργάνωνται ανακτώντας το φυσιολογικό τους μήκος. Μερικά από αυτά τα σαρκομέρια αποτυγχάνουν να επανέλθουν στο φυσιολογικό τους μήκος και καταστρέφονται (Talbot and Morgan, 1996). Κατά τη διάρκεια επαναλαμβανόμενων έκκεντρων συστολών ο αριθμός των καταστραμμένων σαρκομερίων μεγαλώνει μέχρι

22
το σημείο όπου έχουμε καταστροφή της κυτταρικής μεμβράνης. Σε αυτό το σημείο η καταστροφή του συστήματος διάτασης-βράχυνσης είναι εμφανής. Ως επακόλουθο αυτού, η μυϊκή ίνα καταστρέφεται.

Επιπλέον, οι παρατηρήσεις των Takekura, Fujinami, Nishizawa, Ogasawara, και Kasuga (2001), σε μια φυσιολογικό σαρκοπλασματικό δίκτυο μετά από έκκεντρη ύστηση θα μπορούσαν να αποτελέσουν τη βάση για την παρακάτω υπόθεση. Σε αυτήν την παρατήρηση το πρώτο αίτιο για την πρόκληση της καταστροφής είναι η βλάβη στο σαρκοπλασματικό δίκτυο. Τα σχισμένα άκρα του δικτύου αποφράζονται οδηγώντας σε απενεργοποίηση ορισμένων σαρκομερίων. Αν τέτοια σαρκομερία βρεθούν συγκεκριμένα στα ίδια μυοϊνίδια οδηγούμενα σε πτώση της παραγωγής δύναμης τους. Αυτή η απώλεια δύναμης θα μπορούσε να αποκατασταθεί μόνο με τη χορήγηση καφεΐνης. Αν τα ανεπιθύμητα σαρκομέρια είναι διασκεδασμένα τηγαία μέσα στα μυοϊνίδια, η κατάσταση αυτή θα ήταν σχεδόν όμοια με αυτή όπου το αρχικό αίτιο της καταστροφής ήταν η καταστροφή των σαρκομερίων. Στην περίπτωση αυτή μια μη ομοιόμορφη κατανομή της καταστροφής στα σαρκομερίων θα μπορούσε να παρατηρηθεί και μηχανικά όπου το βέλτιστο μήκος του μυών για την παραγωγή δύναμης, θα αυξάνοταν. Η κύρια δυσκολία με μια τέτοια υπόθεση είναι να εξηγηθεί γιατί το σαρκοπλασματικό δίκτυο θα μπορούσε να είναι η κύρια αιτία για την καταστροφή του μυών και γιατί αυτό να συμβαίνει μόνο σε μήκος μεγαλύτερο από το βέλτιστο. Η αντίθετη ακολουθία, ξεκινώντας με την καταστροφή των σαρκομερίων που οδηγεί στην καταστροφή του σαρκοπλασματικού δικτύου θα μπορούσε, εύκολα να είναι η αιτία για τις παρατηρήσεις του Takekura και των συνεργατών του (2001).

Οι Jones και Round (1997) παρατήρησαν ότι το τραύμα αποσηραγγοποίησης μετά από εγχείρηση σε αγγεία δημιουργεί αύξηση στη συγκέντρωση της κρεατινικής κινάσης (ΚΚ) στο πλάσμα του αίματος και ιστολογικές αλλαγές σε δείγματα μυϊκής
βιοψίας, κάτι που συμβαίνει και στην καταστροφή του μυός μετά από προπόνηση έκκεντρων συστολών. Το τραύμα αποσηραγγοποίησης προκλήθηκε από περιορισμό της κυκλοφορίας του αίματος ακολουθούμενο από αύξηση της. Αυτή η αύξηση της κυκλοφορίας του αίματος προκάλεσε μια μεγάλη αύξηση της οξειδωτικής φωσφωρυλίωσης και αύξηση των ελεύθερων ριζών προκαλώντας μυϊκή καταστροφή.

Όμως, οι Jones και Round (1997) υποστήριξαν ότι η μυϊκή καταστροφή σε τραύμα αποσηραγγοποίησης μπορεί να προκαλείται και από την καταστροφή των τριχοειδών αγγείων. Αφού η καταστροφή από τραύμα αποσηραγγοποίησης έχει τόσες ομοιότητες με τη μυϊκή καταστροφή που προκαλείται με την προπόνηση έκκεντρων συστολών, οι ίδιοι ερευνητές προτείνουν ότι ο μηχανικός τραυματισμός του μυός από τις έκκεντρες συστολές θα μπορούσε να οδηγήσει σε καταστροφή του ενδοθηλίου των τριχοειδών αγγείων. Τα κατεστραμμένα τριχοειδή θα προκαλούσαν οίδημα καθώς και αύξηση της αιματικής ροής προκαλώντας μεγαλύτερη καταστροφή των μυοϊνιδίων. Πραγματικά, έχουν βρεθεί (Hellsten, Frandsen, Orthenblad, Sjodin, Richter, 1997) αυξημένα επίπεδα οξειδώσεων της ξανθίνης, που είναι πηγή ριζών οξυγόνου, στα κύτταρα του ενδοθηλίου των τριχοειδών του έξω πλατύ που εκτέλεσε προπόνηση έκκεντρων συστολών. Ερευνητές (Crenshaw, Friden, Hargens, Lang, Thornell, 1993) βρήκαν ότι μετά από αγώνα υπερμαραθωνίου, όπου υπήρχε μυϊκός πόνος και καταστροφή μυϊκών ινών όπως φάνηκε από μυϊκές βιοψίες, μεγάλος αριθμός ενδοθηλιακών κυττάρων των τριχοειδών της καταπονημένης περιοχής είχε υποστεί καταστροφή.

Δημιουργία φλεγμονής

Η διαδικασία απομάκρυνσης των κατεστραμμένων κυττάρων και η προετοιμασία αναδιοργάνωσης του μυός μετά από προπόνηση έκκεντρων συστολών προκαλεί
φλεγμονή στην περιοχή αυτή. Η φλεγμονή που δημιουργείται μετά το αρχικό μηχανικό τραύμα χαρακτηρίζεται από εισχώρηση υγρών και πρωτεϊνών του πλάσματος στον τραυματισμένο ιστό και αύξηση του πληθυσμού των λευκών αιμοσφαιρίων (MacIntyre, Reid, McKenzie, 1995; Smith, 1991). Ο πολλαπλασιασμός των λευκών αιμοσφαιρίων μεγαλώνει τον αρχικό μυϊκό τραυματισμό αυξάνοντας την απελευθέρωση ενεργών στοιχείων οξυγόνου και ενεργοποιώντας φωσφολιπάσες και πρωτεάσες στην περιοχή του καταστραμμένου ιστού (MacIntyre et al., 1995).

Ο ακριβής χρόνος εμφάνισης της φλεγμονώδους αντίδρασης μετά την άσκηση ποικίλλει και εξαρτάται από το είδος της άσκησης, την ένταση και τη διάρκειά της, και από τις μυϊκές ομάδες που χρησιμοποιούνται (MacIntyre et al., 1995; Smith et al., 1989). Η φλεγμονώδης αντίδραση στους ανθρώπους μπορεί να μετρηθεί με πολλές μεθόδους. Μερικές από αυτές είναι η μέτρηση των λευκών αιμοσφαιρίων ή των φλεγμονώδων πρωτεϊνών (όπως οι κυτοκίνες) στον ορό του αίματος, η μελέτη της φλεγμονής σε μυϊκές βιοψίες ή η μελέτη του μυός με τη χρήση τεχνικών φωτογράφησης με ραδιοϊσότοπα. Η χρονική περίοδος κατά την οποία θα εμφανιστεί ο κάθε δείκτης της φλεγμονής εξαρτάται από το αν οι μετρήσεις θα γίνουν άμεσα στο μυό (βιοψίες ή μαγνητική απεικόνιση) ή έμμεσα (με αναλύσεις αίματος).

Στοιχεία από άμεσες μετρήσεις στο μυό
Ta ουδετερόφιλα είναι τα πρώτα κύτταρα που συγκεντρώνονται στην τραυματισμένη περιοχή του ιστού, καταστρέφοντας το νεκρό ιστό με τη διαδικασία της φαγοκυττάρωσης. Τα αυξημένα επίπεδα ουδετερόφιλων στο μυό απελευθερώνουν πρωτεολυτικά ένζυμα και ρίζες οξυγόνου που δημιουργούν αποσύνθεση του ιστού και αυξάνουν την διαπερατότητα της μεμβράνης επιτρέποντας τη μεγαλύτερη διαπέραση μυϊκών ενζύμων, όπως η ΚΚ, στο αίμα (Pizza et al., 1995; Cannon et al.,...
Η παρουσία ουδετερόφιλων στο μυέχει τεκμηριωθεί μετά από διάφορους τύπους έκκεντρης άσκησης (MacIntyre, Reid, Lyster, Szasz, McKenzie, 1996; Fielding et al., 1993; MacIntyre, Reid, 2000). Σε μελέτη (Fielding et al., 1993) βρέθηκε ότι τα ουδετερόφιλα αυξήθηκαν σημαντικά στο μυικό ιστό σε 45 λεπτά μετά από προπόνηση με κατηφορικό τρέξιμο και η συγκέντρωσή τους παρέμεινε αυξημένη για 5 μέρες μετά την άσκηση. Σε μια άλλη μελέτη (MacIntyre et al., 1996) παρουσιάστηκε αύξηση των λευκών αιμοσφαιρίων (χωρίς να αναγνωριστούν ειδικά τα ουδετερόφιλα) μετά από έκκεντρη άσκηση στους τετρακέφαλους. Η αύξηση του αριθμού των λευκών αιμοσφαιρίων παρατηρήθηκε περίπου 5 ώρες και συνεχίστηκε μέχρι και 24 ώρες μετά την άσκηση. Σε μία συνέχεια της έρευνας αυτής (MacIntyre et al., 2000) βρέθηκε αύξηση του αριθμού των λευκών αιμοσφαιρίων τόσο στους άνδρες όσο και στις γυναίκες 2 και 4 ώρες μετά από 300 επαναλήψεις έκκεντρων συστολών στον τετρακέφαλο.

Φαίνεται ότι η άσκηση οδηγεί σε πολλαπλασιασμό των ουδετερόφιλων μέσα στο μυέχει γρήγορα, μια διαδικασία που κορυφώνεται μερικές ώρες μετά την άσκηση, αν και τα ουδετερόφιλα μπορούν να ανηχευτούν στο μυικό ιστό αρκετές μέρες μετά την άσκηση. Μετά την μεγάλη συγκέντρωση λευκοκυττάρων και ουδετερόφιλων, υπάρχει μια δευτερεύουσα αύξηση της συγκέντρωσής των μονοπύρηνων στον μυό. Τα μονοπύρηνα και τα λεμφοκύτταρα παράγουν κυτοκίνες προκαλώντας αποδιοργάνωση στο μυό, που οδηγεί σε χημειοταξία των ουδετερόφιλων και των μονοπύρηνων και τελικά στην αποκατάσταση του τραυματισμένου ιστού. Οι κυτοκίνες απελευθερώνονται στην τραυματισμένη περιοχή και δρούν ως μεσόζοντες, είτε διευκολύνοντας είτε καθυστερώντας την εισροή των λευκών αιμοσφαιρίων στον τραυματισμένο ιστό. Η πορεία της φλεγμονής εξαρτάται από την ισορροπία μεταξύ των κυτοκινών πριν τη φλεγμονή και των αντιφλεγμονώδων κυτοκινών που είναι
υπεύθυνες για την πρόκληση στη συνέχεια ικανοποιητικής αλλά όχι υπερβολικής
φλεγμονώδους αντίδρασης για την πλήρη αποκατάσταση του τραυματισμένου ιστού
(Pedersen, 2000; Smith et al., 2000).

Άλλοι ερευνητές (Hellsten et al., 1997) εξέτασαν σε άτομα που εκτέλεσαν
έκκεντρη προπόνηση την δράση της οξειδάσης της ξανθίνης και άλλων δεικτών για
tην παρουσία φλεγμονής. Η οξειδάση της ξανθίνης χρησιμοποιεί το μοριακό οξυγόνο
ως αποδέκτη ηλεκτρονίων και παράγει ελεύθερες ρίζες που μπορούν να προκαλέσουν
μυϊκή καταστροφή (Hellsten, Hansson, Johnson, Frandsen, Sjodin, 1996). Οι Hellsten
et al. (1997) βρήκαν αυξημένη συγκέντρωση οξειδάσης της ξανθίνης στα
ενδοθηλιακά κύτταρα των μικροτριχοειδών και εισχώρηση λευκοκυττάρων τα οποία
ίσως περιέχουν οξειδάση της ξανθίνης, μέχρι 4 μέρες μετά την άσκηση. Οι ερευνητές
αυτοί πρότειναν ότι η δευτερογενής διαδικασία φλεγμονής που παράγει οξειδάση της
ξανθίνης μπορεί να συνεισφέρει στην έντονη φλεγμονή δραστικών τύπων οξυγόνου τις
μέρες μετά την έκκεντρη άσκηση επιδεικνύοντας την υπάρχουσα καταστροφή που
προκλήθηκε από το μηχανικό αίτιο. Αυτή η υπόθεση θα μπορούσε να εξηγήσει την
αύξηση της καταστροφής στον μυϊκό ιστό τις μέρες μετά την έκκεντρη προπόνηση.

Η χρόνια φλεγμονώδης φάση μπορεί να δώσει ιστολογικά ευρήματα
συγκέντρωσης μονοπύρηνων κυττάρων από μερικές μέρες μέχρι εβδομάδες μετά την
αρχικό ερέθισμα. Δείγματα μινού που αφαιρέθηκαν από το δικέφαλο μηριαίο μεταξύ 4
και 8 ημερών μετά από έκκεντρη προπόνηση έδειξαν μικρή αλλαγή στα επίπεδα των
κυττάρων αυτών σε σχέση με την συγκέντρωσή τους πριν την άσκηση. Ομως,
dείγματα που πάρθηκαν 9-14 μέρες μετά την έκκεντρη άσκηση έδειξαν
πολλαπλασιασμό στο μυό μονοπύρηνων κυττάρων με υψηλή δραστηριότητα οξινής
φωσφατάσης καθώς και μερικές ενδείξεις αναδιοργανωμένων μυϊκών ινών (Jones et
al., 1986). Τα κύτταρα με οξινή φωσφατάση υψηλής δραστικότητας μπορεί να είναι
μακροφάγα. Δείγματα που πάρθηκαν 12 μέρες μετά την άσκηση από τους
gαστροκνημίους μύες εδειξαν αύξηση στο μυ μονοπύρηνων κυττάρων με υψηλή
dραστηριότητα δέξινης φωσφατάσης όπως και στα προηγούμενα δείγματα. Στις 20
μέρες μετά την άσκηση, παρατηρήθηκαν μόνο λίγα μονοπύρηνα κύτταρα αλλά πολλά
μικρά αναδιοργανωμένα κύτταρα. Οι Round, Jones και Cambridge (1987), βρήκαν
αυξημένο αριθμό μονοπύρηνων κυττάρων στο μυϊκό ιστό από 9 μέχρι 14 μέρες μετά
tην άσκηση, με την πλειονότητα των κυττάρων αυτών να είναι μακροφάγα και Τ
λεμφοκύτταρα. Αυξημένα επίπεδα μονοπύρηνων και μακροφάγων που έχουν σχέση
με τη χρόνια φλεγμονώδη φάση συνήθως επιστρέφουν στις τιμές ηρεμίας μέσα σε 3
με 4 εβδομάδες μετά την άσκηση (MacIntyre et al., 1995).

Στοιχεία από έμμεσες μετρήσεις στο μυ

Οι έμμεσες μετρήσεις κατά τη διάρκεια της οξείας φλεγμονώδους αντίδρασης σε
dείγματα αίματος ή υώρων έχουν δώσει ποικίλα αποτελέσματα χρησιμοποιώντας
πρωτόκολλα άσκησης που περιείχαν από έντονη άσκηση αντοχής ως μικρής
dιάρκειας και μεγάλης έντασης έκκεντρη άσκηση. Η συγκέντρωση και η
dραστηριότητα των ουδετερόφιλων εξαρτάται από τον τύπο και από την ένταση της
άσκησης. Διάφορες μελέτες (Cannon, Fiatarone, Fielding, Evans, 1994; Smith et al.,
1998) έχουν αναφέρει περιόδους μεγάλης αύξησης ουδετερόφιλων στο αίμα που
κράτησε αρκετές ώρες μετά από έντονη άσκηση αντοχής (όπως κατηφορικό τρέξιμο).
Για παράδειγμα, έχουν αναφερθεί αυξημένα επίπεδα ουδετερόφιλων στο πλάσμα του
αίματος ως αντίδραση σε κατηφορικό τρέξιμο, αλλά μείωση της συγκέντρωσης
ουδετερόφιλων στο αίμα μετά από τρέξιμο στην ανηφόρα (Pyne, Smith, Baker,
Telford, Weidemann, 2000). Ως αποτέλεσμα έκκεντρης προπόνησης, παρατηρήθηκε
αύξηση του αριθμού των ουδετερόφιλων 6 ώρες μετά την άσκηση, αλλά όχι 24 και 48
όρες μετά (Malm, Lenkei, Sjordin, 1998). Αυτό αποδεικνύει ότι ένα ανάλογο φαινόμενο με την αύξηση του αριθμού των ουδετερόφιλων στην κυκλοφορία του αίματος συμβαίνει και στον μυϊκό ιστό, όπου μια περιφερειακή αύξηση των λευκοκυττάρων αναπόφευκτα οδηγεί σε αύξηση των ουδετερόφιλων στην τραυματισμένη περιοχή. Η εμφάνιση των μονοκύτταρων στο αίμα είχε την ίδια χρονική πορεία με αυτή των ουδετερόφιλων στην κυκλοφορία του αίματος και ίδια επίσης με την συγκέντρωσή των μονοκύτταρων που βρέθηκαν στον μυϊκό ιστό. Από την ίδια ομάδα παρατηρήθηκε δευτερεύοντα τον αίματος των μονοκύτταρων στο αίμα, με αρχική αύξηση που σχετίζεται με την κατανάλωση οξυγόνου κατά τη διάρκεια έκκεντρης ποδήλασίας και μια δεύτερη αύξηση 4 μέρες μετά την άσκηση (Malm et al., 2000).

Σημαντικές επίσης αλλαγές έχουν παρατηρηθεί για μερικές ή για όλες τις κυτοκίνες του αίματος μετά από έντονη άσκηση αντοχής ή μικρής διάρκειας και μεγάλης έντασης έκκεντρης άσκησης. Η πλειοψηφία των ερευνών έδειξαν αύξηση των επιπέδων της ενδολευκίνης-6 στο αίμα μετά από παρατεταμένη αύξηση αντοχής και έκκεντρη άσκησης (Hellsten et al., 1997; Smith et al., 2000; Ostrowsli, Rohde, Zacho, Asp, Pedersen, 1998; Croisier et al., 1999).

Χρησιμοποίηση ενέργειας

Για πρώτη φορά το 1987 ερευνητές (O’Reilly et al., 1987) δημοσίευσαν στοιχεία που δείχνουν ότι υπάρχει μια καθυστέρηση στην ανασύνθεση γλυκογόνου μετά από έκκεντρη άσκηση. Εξέτασαν τη συγκέντρωση γλυκογόνου με βιοψίες στον ορθό μυριαίο μετά από έκκεντρη άσκηση με ανάποδη ποδήλασία. Αμέσως μετά την άσκηση η συγκέντρωση γλυκογόνου ήταν στο 39% της αρχικής τιμής, και 10 μέρες μετά την άσκηση οι τιμές του γλυκογόνου ήταν μόνο στο 56% των αρχικών τιμών.
Άλλοι ερευνητές (Costill, et al., 1990; Doyle, Sherman, Strauss, 1993) επίσης αναφέρανε καθυστέρηση στην ανασύνθεση γλυκογόνου μετά από έκκεντρη άσκηση των εκτεινόντων του γονάτου. Μέχρι που σημείο αυτή η κατάσταση μπορεί να επηρεάσει την αποκατάσταση του μυός δεν είναι γνωστό, η κατανόηση όμως αυτών των αλλαγών μπορεί να δώσει απάντηση στο ερώτημα τι συμβαίνει στο μυό κατά τη διάρκεια της αποκατάστασης από τραυματισμό εξαιτίας έκκεντρης προπόνησης.

Ο Kirwan και οι συνεργάτες του (1992), εξέτασαν αν η έκκεντρη προπόνηση προκαλεί αντίσταση στην ινσουλίνη στα κύτταρα εξηγώντας έτσι την αργή αποκατάσταση των αποθηκών γλυκογόνου. Διατάξεις σταθερής γλυκόζης με υψηλή ινσουλίνη του αίματος χρησιμοποιήθηκαν σε δοκιμαζόμενους 48 ώρες μετά την ολοκλήρωση άσκησης που περιελάμβανε κατηφορικό τρέξιμο ή ομόκεντρη εργομετρική ποδηλασία και τα αποτελέσματα αυτά συγκρίθηκαν με ομάδα ελέγχου που δεν εκτέλεσε καμία μορφή άσκησης. Βρέθηκε ότι ο ρυθμός απορρόφησης της γλυκόζης μειώθηκε σημαντικά μετά την έκκεντρη άσκηση σε σύγκριση με το ρυθμό απορρόφησης της μετά την ομόκεντρη άσκηση και την ομάδα ελέγχου. Ερευνητές αναφέρανε (King, Feltmeyer, Baldus, Sharp, Nespor., 1993) ότι η συγκέντρωση της ινσουλίνης στο πλάσμα κατά την αρχική φάση της διάταξης σταθερής γλυκόζης με υψηλή ινσουλίνη του αίματος ήταν σημαντικά υψηλότερη στους δοκιμαζόμενους που εκτέλεσαν έκκεντρη άσκηση σε σχέση με αυτούς που εκτέλεσαν ομόκεντρη άσκηση. Συνοψίζοντας τις δύο αυτές μελέτες, η μειωμένη ανασύνθεση γλυκογόνου με την πιθανότητα υψηλότερης περιεκτικότητας ινσουλίνης στην κυκλοφορία και μείωση του ρυθμού διάθεσης της γλυκόζης, δείχνει μια έλλειψη ικανότητας στη μεταφορά της γλυκόζης μέσα στο μυό.
Δείκτες μυϊκής καταστροφής

Η άμεση αξιολόγηση της καταστροφής στους μύες του ανθρώπου είναι δύσκολη γιατί μπορεί να γίνει μόνο με μυϊκή βιοψία ή με μαγνητική απεικόνιση. Το πρόβλημα στη μυϊκή βιοψία είναι το μικρό δείγμα μυός που χρησιμοποιείται για την αξιολόγηση της καταστροφής σε ολόκληρο το μυ. Επιπλέον, επειδή η καταστροφή δεν είναι διάσπαρτη σε όλο το μυ αλλά τοπική, υπάρχει πιθανότητα υπερτίμησης ή υποτίμησης της καταστροφής. Οι τεχνικές της μαγνητικής απεικόνισης χρησιμοποιούνται για τον προσδιορισμό της καταστροφής σε ολόκληρο το μυ, αλλά δεν είναι ξεκάθαρο οι αλλαγές που παρουσιάζονται στη μαγνητική απεικόνιση αν την αντιπροσωπεύουν.

Εξαιτίας της φύσης και των λαθών που παρουσιάζονται στη μυϊκή βιοψία και της έλλειψης εμπειρίας για την αξιολόγηση των μαγνητικών απεικονίσεων, οι ερευνητές χρησιμοποιούν έμμεσες μετρήσεις για τον προσδιορισμό της μυϊκής καταστροφής. Έχει υπολογιστεί (Warren, Lowe, Armstrong, 1999) ότι οι πιο συνηθισμένοι δείκτες μυϊκής καταστροφής που χρησιμοποιήθηκαν σε ανθρώπους είναι ο μυϊκός πόνος, η αξιολόγηση των πρωτεϊνών στο αίμα και η μέγιστη εκούσια παραγωγή δύναμης.

Κυτταρικοί και υποκυτταρικοί δείκτες

Το 1981 δόθηκαν οι πρώτες αποδείξεις για την καταστροφή των μυϊκών ινών στον άνθρωπο μετά από άσκηση (Friden et al., 1981). Οι δοκιμαζόμενοι εκτέλεσαν κατεβάσματα σκαλοπατιών και υποβλήθηκαν σε μυϊκές βιοψίες στον υποκνημίδιο μετά από 2 και 7 μέρες άσκησης. Οι αναλύσεις των βιοψιών έδειξαν τραυματισμό των μυονιδίων και αποδιοργάνωση των γραμμών Ζ. Σε μια συνέχεια της έρευνας αυτής (Friden et al., 1983), εξετάστηκαν δείγματα μυός 1 ώρα, 3 μέρες και 6 μέρες μετά από έκκεντρη άσκηση (ανάποδη ποδηλασία) και βρέθηκε ότι το 32%, 52% και 12%,
αντίστοιχα, από τις μυϊκές ίνες που εξετάστηκαν εδειξαν στοιχεία τοπικής καταστροφής. Παρατηρήθηκε αποδιοργάνωση των γραμμών Ζ, απόλεια των νηματίων της μυοσίνης, απώλεια μιτοχονδρίων στις καταστραμμένες περιοχές και διαταραχή στην διάταξη της ζώνης Α. Οι μυϊκές ίνες τύπου ΙΙ ήταν αυτές που κυρίως επηρεάστηκαν από την έκκεντρη άσκηση (Friden et al., 1983). Αποτελέσματα μιας άλλης μελέτης (Newham et al., 1983b) επιβεβαίωσαν τα ευρήματα της προηγούμενης μελέτης ότι τα δείγματα μυϊκής βιοψίας που λήφθηκαν 24-48 ώρες μετά από άσκηση εδείξαν μεγαλύτερη καταστροφή από τα δείγματα που λήφθηκαν αμέσως μετά την άσκηση.

Πρόσφατα έγινε η παρατήρηση (Roth, Martel, Rogers, 2000) ότι οι ενδείξεις καταστροφής των μυϊκών ινών μπορεί να προκλήθηκαν από την ίδια την διαδικασία της μυϊκής βιοψίας, συμπεριλαμβανομένης και της τομής στον ιστό. Ομάδα ερευνητών (Malm et al., 2000) εξέτασαν την επίδραση των πολλαπλών μυϊκών βιοψιών (επτά) που έγιναν σε περίοδο 7 ημερών σε ομάδα ελέγχου και σε ομάδα που εκτέλεσε άσκηση έκκεντρης ποδηλασίας. Παρατηρήθηκε και στις δύο καταστάσεις ίδια συγκέντρωση ουδετερόφιλων και μακροφάγων στη μυϊκή ίνα. Έτσι, φαίνεται ότι η διαδικασία της μυϊκής βιοψίας μπορεί να προκαλέσει αλλαγές που από λάθος να χρησιμοποιηθούν ως δείκτες μυϊκής καταστροφής. Επιπλέον, το πολύ μικρό μέγεθος των δειγμάτων σε σχέση με τον μέγεθος του μυώς κάνει την αξιολόγηση της καταστροφής προβληματική, επειδή η καταστραμμένη περιοχή μπορεί να υπερτιμηθεί ή η λήψη του ιστού να μην γίνει από την καταστραμμένη περιοχή.

Επειδή η αποδιοργάνωση της γραμμής Ζ είναι χαρακτηριστική στον τραυματισμό του μυώς από έκκεντρη άσκηση, θεωρείται ότι ο αδύναμος κρίκος στην αλυσίδα των μυοϊνιδίων είναι η γραμμή Z (Friden et al., 1984). Οι ερευνητές αυτοί εξέτασαν την πιθανότητα της πρωτοβιβλικής δεσμίνης, η οποία ενώνει μεταξύ τους τις
γραμμές Z, να είναι η αιτία της καταστροφής του σαρκομερίου ως αποτέλεσμα της έκκεντρης άσκησης. Μυϊκές βιοψίες, σε δοκιμαζόμενους που εκτέλεσαν έκκεντρη άσκηση (ανάποδη ποδηλασία), εξετάστηκαν με τη χρησιμοποίηση αντισωμάτων κατά της δεσμίνης. Η δεσμίνη είχε υποστεί βλάβη σε δείγματα που λήφθηκαν 3 μέρες μετά την άσκηση. Επίσης, βρέθηκαν οργανίδια κάτω από το σαρκείλημα του μυός που εκτέλεσε έκκεντρη άσκηση, που είναι αποτέλεσμα λυσοσωμικής δραστηριότητας.

Οι Stauber, Clarkson, Fritz και Evans (1990), μελέτησαν τις αλλαγές στον εξωκυττάριο χώρο σε δείγματα μυϊκών βιοψιών από το δικέφαλο βραχίονιο 48 ώρες μετά από άσκηση με έκκεντρες συστολές. Κατεστράμμενα ιστικόκτταρα βρέθηκαν στην περιοχή του περιμύιου κοντά στα αιμοφόρα αγγεία και μονοπύρηνα κότταρα βρέθηκαν στις περιοχές του περιμύιου και του ενδομύιου. Επίσης ουσίες που φυσιολογικά βρίσκονται στα τριχοειδή αγγεία βρέθηκαν στις περιοχές του περιμύιου και του ενδομύιου. Τα αποτελέσματα της έρευνας αυτής δείχνουν καταστροφή στον εξωκυττάριο χώρο και πιθανή καταστροφή ή τραυματισμό των τριχοειδών αγγείων.

Από τα στοιχεία αυτά σε ανθρώπους φαίνεται ότι αρχικά η άσκηση τραυματίζει τις μυϊκές ίνες, οδηγώντας σε καταστροφή των στοιχείων της ίνας, του εξωκυττάριου χώρου και πιθανά των τριχοειδών αγγείων. Αυτή η διαδικασία αλλοιώσης των μυϊκών ινών ενεργοποιεί τη δημιουργία φλεγμονής η οποία είναι ισός κομμάτι της διαδικασίας αποκατάστασης και αναγέννησης του ιστού.

Μαγνητική απεικόνιση

Η μαγνητική απεικόνιση είναι ένα ισχυρό εργαλείο έρευνας του εσωτερικού ολόκληρου του μυός. Οι Shellock, Fugunaga, Mink και Edgerton (1991), ήταν από τους πρώτους ερευνητές που εξέτασαν τις αλλαγές στην ένταση του σήματος της μαγνητικής απεικόνισης (T2 χρόνος ηρεμίας) μετά από έκκεντρη άσκηση και
αναφέρουν μια παρατεταμένη αλλαγή στο Τ2 μετά την έκκεντρη άσκηση. Αυτό το εύρημα ήταν μοναδικό γιατί προηγούμενες μελέτες που χρησιμοποιούσαν για την πρόκληση κόπωσης, ομόκεντρες ασκήσεις (όχι όμως και μυική καταστροφή) βρήκαν αύξηση πολύ μικρής διάρκειας του Τ2 αμέσως μετά την άσκηση. Επειδή η αύξηση στην ένταση του σήματος αντιστοιχεί σε αύξηση της ποσότητας των υγρών σε μια περιοχή, η παρατεταμένη αύξηση μετά από έκκεντρη άσκηση θεωρήθηκε ως ένδειξη οιδήματος στον μυ.

Ακριβώς τι είναι αυτό που παράγει την αύξηση στην ένταση του σήματος δεν είναι ξεκάθαρο. Ερευνητές (Takahashi et al., 1994) βρήκαν ότι οι αλλαγές στον Τ2 χρόνο ημείς μετά από έκκεντρη προπόνηση στους εκτείνοντες του γονάτου έγιναν παράλληλα με αλλαγές στο μέγεθος εγκάρσιας διατομής του μυός, με κορύφωση και των δύο 12-24 ώρες μετά την προπόνηση. Αυτό το αποτέλεσμα επισημαίνει τη συγκέντρωση υγρών στον κατεστραμμένο μυ, εξαιτίας είτε του καταστραμμένου συνδετικού ιστού είτε της αύξησης της διαπερατότητας των τριχοειδών αγγείων, είτε της αποδόμησης των πρωτεΐνων των μυικών κυττάρων είτε συνδυασμού αυτών των παραγόντων. Για τη διερεύνηση του αν οι αλλαγές στο χρόνο ημείς Τ2 στο μυ έγιναν εξαιτίας της αυξημένης ένδοκυτταρικής ή εξωκυτταρικής ποσότητας υγρών, ερευνητές (Ploutz-Snyder, Nyren, Cooper, Potchen, Meyer, 1997) χρησιμοποίησαν μιχανή αρνητικής πίεσης των ποδιών για τη δημιουργία οιδήματος με την αύξηση της ποσότητας του εξωκυττάριου υγρού και το συγκρίνανε με τις αλλαγές που προκάλεσε η άσκηση. Αναλύσανε τρία συστατικά του Τ2, με το αξίωμα ότι το μεσαίο και το μεγάλο σήμα Τ2 αντιπροσωπεύουν τον όγκο του υγρού στο εσωτερικό του κυττάρου και στον εξωκυττάριο χώρο αντίστοιχα. Τα αποτελέσματα του Τ2 διαφέρανε μεταξύ της αρνητικής πίεσης των ποδιών και της άσκησης. Οι ερευνητές συμπεράνανε ότι η αλλαγή του Τ2 κατά τη διάρκεια μή καταστροφικής κόπωσης
πιθανώς συμβαίνει από τις αλλαγές στο εσωτερικό του κυττάρου. Αυτό δεν σημαίνει απαραίτητα ότι η μεγάλης διάρκειας αύξηση του Τ2 μετά από έκκεντρη άσκηση γίνεται εξαιτίας της αύξησης των υγρών στο ενδοκυττάριο περιβάλλον, καθώς τα συστατικά του Τ2 δεν έχουν εξεταστεί μετά από έκκεντρη άσκηση.

Η μαγνητική απεικόνιση είναι χρήσιμη για την αξιολόγηση των μυών που έχουν τραυματιστεί από την έκκεντρη άσκηση. Για παράδειγμα, μετά από προπόνηση των καμπτήρων του αγκώνα, οι δοκιμαστές διαφέρουν στην έκταση της καταστροφής στους αγωνιστές μύες, με κάποιους να έχουν αυξημένη ένταση σήματος στον δικέφαλο βραχιόνιο και κάποιους να έχουν αυξημένη ένταση σήματος στον σήματος στον πρόσθιο βραχιόνιο. Επιπλέον, μερικοί είχαν αυξημένης έντασης σήματος σήμα και στις δύο μυϊκές ομάδες (Nosaka and Clarkson, 1996). Μετά από έκκεντρη άσκηση των τετρακέφαλων, παρατεταμένη άσκηση παρατηρήθηκε στο Τ2 για τον έξω πλατύ, τον έσω πλατύ, τον μέσο μηριαίο, αλλά όχι για τον ορθό μηριαίο (Takahashi et al., 1994). Παρόμοια έρευνα έγινε με εγκάρσια διατομή του μυών μεταξύ των πρόσθιων μυών μέσω της τούμπας των μυών μετά από έκκεντρη άσκηση. Έρευνα αυτή βρήκε διαφορές στο έπερσμα των περιοχών του τρίτου μυών μετά από έκκεντρη άσκηση. Σε φωτογραφίες του μυών που τραβήχτηκαν 2,5 μέρες μετά από έκκεντρη άσκηση, έδειξε αυξημένης έντασης σήματος στον ημιτενοντώδη και στη μικρή κεφαλή του δικέφαλου μηριαίου και η πιο κοντινή έκταση σήματος στον ημιτενοντώδη και στον ισχνό προσαγωγού. Πρέπει να ξεκαθαριστεί ότι οι αλλαγές στο Τ2 μπορεί να μην αντιπροσωπεύουν αλλαγές στην ενεργοποίηση του μυών μετά από έκκεντρη άσκηση.

Τα καταστραμμένα σαρκομέρια που βρίσκονται δίπλα σε υγιή, αλλά μόνο τους δεν θα περιμέναμε να προκαλέσουν πτώση στην παραγωγή δύναμης, αλλά θα περιμέναμε να προκαλέσουν μόνο αλλαγή στο βέλτιστο μήκος ενεργοποίησης της μυϊκής ίνας, που προσαρμόζεται και γίνεται πιο μεγάλο. Αλλά καθώς η καταστροφή επεκτείνεται από το μυοϊνίδιο και στα γειτονικά μυοϊνίδια, οι δομές της κυταροπλασματικής μεμβράνης θα αρχίσουν να επηρεάζονται, οδηγώντας στην καταστροφή της και στην ανικανότητα να προχωρήσει ο κύκλος διάτασης-βράχυνσης. Κάθε μείωση της δύναμης στο σημείο αυτό θα μπορούσε να αποκατασταθεί με τη χορήγηση καφεΐνης. Όπως έχει πεθάνει, συνεπώς η διαδικασία αυτή οδηγεί σε καθυστέρημένη πτώση της δύναμης (Jones et al., 1989; Faulkner, Brooks, Opiteck, 1993; MacIntyre et al., 1995). Σε ανθρώπους παρατητημένης οι ταυτόχρονες πτώσεις της δύναμης και μετά από προπόνηση με έκκεντρες συστολές οι μειώσεις παρατηρήθηκαν μία αργή αποκατάσταση της επόμενες 2-4 ωρές, αποκατάσταση μάλλον από την μεταβολική.
εξάντληση. Μετά από 24 ώρες παρατηρήθηκε μια δεύτερη πτώση στην παραγωγή δύναμης (MacIntyre et al., 1995) εξαιτίας της καταστροφής μυϊκών ινών. Στο σημείο αυτό δεν προβλέπεται αποκατάσταση της απόδοσης της δύναμης με τη χορήγηση καφεΐνης.

Στις μετρήσεις για την αξιολόγηση της δύναμης μετά από έκκεντρη προπόνηση, τα αποτελέσματα δεν επηρεάζονται μόνο από τη μεταβολική κόπωση αλλά και από την επακόλουθη αλλαγή στο βέλτιστο μήκος του μυός για την παραγωγή δύναμης. Το βέλτιστο μήκος πριν την έκκεντρη άσκηση είναι μικρότερο σε σχέση με αυτό μετά την έκκεντρη άσκηση εξαιτίας της μεταβολής που υφίσταται ο μυς και έτσι οδηγούμαστε σε μείωση της παραγωγής δύναμης. Είναι επίσης πιθανό να επηρεάζεται η απόδοση της δύναμης του μυός από την παρατηρούμενη μετατόπιση προς τα δεξιά της καμπύλης δύναμης-συχνότητας (Newham et al., 1983).

Αύξηση της παθητικής δύναμης

Είναι γνωστό εδώ και αρκετό καιρό ότι μετά από μια περίοδο έκκεντρης προπόνησης υπάρχει μια αύξηση στην παθητική δύναμη του μυός. Για τους καμπτήρες του αγκώνα στον άνθρωπο, αυτό φαίνεται από μια ελαφριά κάμψη όταν το χέρι είναι χιλαρό (Jones et al., 1987). Όταν έγινε μέτρηση της δυσκαμψίας του μυός, αυτή ήταν περισσότερη από διπλάσια σε σχέση με αυτήν πριν την άσκηση και παρέμεινε αυξημένη για τις επόμενες 4 μέρες (Howell, Dhleboun, Conatser, 1993). Ερευνητές υποθέτουν ότι η άμεση αύξηση της δυσκαμψίας μετά την άσκηση οφείλεται στην, προκαλούμενη από την διάταση, απελευθέρωση ιόντων Ca2+ (Howell et al., 1993). Έρευνα συνεχίζει να καλύπτει ότι η άμεση αύξηση της δυσκαμψίας άφθαρε κατά την άσκηση στην παραγωγή δύναμης, παράλληλο μήκος ινών για την παραγωγή δύναμης (Newham et al., 1983).
στοιχείων της μυϊκής ίνας, ακολουθούμενη από μία αύξηση της εισόδου ιόντων Ca²⁺ στο κυτταρόπλασμα ως αποτέλεσμα καταστροφής της κυτταροπλασματικής μεμβράνης.

κυτταροπλάσματος και παρουσία μυϊκών ινών με συρρικνωμένες περιοχές σε πολύ μεγάλο βαθμό.

Κρεατινική κινάση στο αίμα

Πολλές μελέτες έχουν εντοπίσει την αύξηση της συγκέντρωσης πρωτεϊνών του μυού στο αίμα μετά από έκκεντρη προπόνηση ως αποτέλεσμα μυϊκής καταστροφής. Τα μυϊκά ένζυμα γαλακτική αφυδρογονάση, αμινοτρανφεράση του ασπαρτικού οξέος, και ΚΚ έχουν χρησιμοποιηθεί για το σκοπό αυτό (Sorichter et al., 1999). Άλλες μυϊκές πρωτεΐνες έχουν επίσης χρησιμοποιηθεί ως δείκτες μυϊκής καταστροφής, όπως η μυοσφαιρίνη, οι δεσμεύουσες λιπαρά οξέα πρωτεΐνες στην καρδιά, η τροπονίνη και η βαριά αλυσίδα μυοσινής (Sorichter et al., 1999). Παρόλο που όλες αυτές οι πρωτεΐνες φαίνεται να αυξάνονται μετά από μυϊκή καταστροφή που προκαλείται από την άσκηση, η ΚΚ έχει αποκομίσει τη μεγαλύτερη προσοχή, ίσως γιατί το μέγεθος της αύξησής της είναι πολύ μεγαλύτερο σε σχέση με τις υπόλοιπες πρωτεΐνες και το κόστος του προσδιορισμού είναι σχετικά μικρό. Παρόλο αυτά, είναι γεγονός ότι δύο τύποι άσκησης που χρησιμοποιούνται κυρίως για την μελέτη της μυϊκής καταστροφής, το κατηφορικό τρέξιμο και οι μεγάλες έντασες έκκεντρες συστολές, προκαλούν πολύ διαφορετικές συγκέντρωσες ΚΚ. Για παράδειγμα, μετά από κατηφορικό τρέξιμο η συγκέντρωση ΚΚ κορυφώνεται συνήθως 12-24 ώρες μετά την άσκηση, με αύξηση που κυμαίνεται μεταξύ 100-600 U/l (Byrnes et al., 1985; Schwane et al., 1983), ενώ μετά από προπόνηση έκκεντρες συστολών μεγάλης έντασης η αύξηση της ξεκινάει περίπου 48 ώρες μετά την άσκηση με τη μέγιστη δραστηριότητα (κυμαίνεται γενικά μεταξύ 2.000-10.000 U/l) να συμβαίνει 4-6 μέρες μετά την προπόνηση.
Η χρησιμοποίηση, οποιασδήποτε μυϊκής πρωτεΐνης του αίματος ως δείκτης μυϊκής καταστροφής είναι προβληματική, γιατί η συγκέντρωση στο αίμα φανερώνει τιέχει διαρρέεσαι από το μυ και τι καθαρίζεται από το αίμα. Η ομόκεντρη άσκηση που πραγματοποιείται μερικές μέρες μετά από έκκεντρη άσκηση μπορεί να οδηγήσει σε αυξημένα επίπεδα ΚΚ στο αίμα αλλά δεν υπάρχει καμία απόδειξη καταστροφής από κάποιον άλλο δείκτη όπως η μαγνητική απεικόνιση (Sorichter et al., 1995). Οι ιδίοι ερευνητές πρότειναν ότι η αυξημένη συγκέντρωση ΚΚ προκλήθηκε από πίεσή της έξω από την κατεστραμμένη περιοχή. Άλλοι όμως ερευνητές (Saxton and Donnelly, 1995) παρατήρησαν ότι η πραγματοποίηση ελαφριάς άσκησης στις μέρες μετά από προπόνηση έκκεντρου συστολών μεγάλης έντασης είχε ως αποτέλεσμα την μικρότερη αύξηση της συγκέντρωσης της ΚΚ από ό,τι αμέσως μετά από έκκεντρη προπόνηση. Σύμφωνα με την ερμηνεία των αποτελεσμάτων δεν μειώθηκε μόνο η απελευθέρωση της ΚΚ από τον κατεστραμμένο ιστό αλλά και επιταχύνθηκε η απομάκρυνσή της από το αίμα. Άλλοι ερευνητές (Nosaka and Clarkson, 1994) εξέτασαν την επίδραση μιας δεύτερης έκκεντρης προπόνησης όταν τα επίπεδα της ΚΚ ήταν ήδη αυξημένα από προηγούμενη έκκεντρη άσκηση, χρησιμοποιώντας το αντίθετο πόδι. Βρέθηκε ότι το ποσό της αύξησης της ΚΚ ήταν μικρότερο από ό,τι αναμενόταν όταν οι αρχικές τιμές ήταν ήδη υψηλές, φτάνοντας στο συμπέρασμα ότι η διαδικασία της απομάκρυνσής της ΚΚ είχε ήδη ξεκινήσει εξαιτίας της αυξημένης συγκέντρωσής της από την πρώτη προπόνηση, με αποτέλεσμα τη γρηγορότερη απομάκρυνσή της μετά τη δεύτερη προπόνηση.

Η ΚΚ από τον μυ εισέρχεται στο λεμφικό σύστημα από όπου μεταφέρεται στο θωρακικό πόρο και διοχετεύεται στην κυκλοφορία του αίματος. Έχει μελετηθεί (Havas, Komulainen, Vihko, 1997) αν η αύξηση της δραστικότητας της ΚΚ μετά την άσκηση επηρεάζεται από τις αλλαγές στο λεμφικό σύστημα. Μετά από 18 χιλιόμετρα
τρέξιμο οι δοκιμαζόμενοι χωρίστηκαν σε δύο ομάδες. Η μία έπρεπε να είναι στο κρεβάτι συνέχεια (για μείωση της λεμφικής κυκλοφορίας) και η άλλη είχε φυσιολογική δραστηριότητα. Βρέθηκε ότι η συγκέντρωση της ΚΚ ήταν σημαντικά χαμηλότερη στην ομάδα που υποβλήθηκε σε κατάκλιση. Ίδια αποτελέσματα αναφέρθηκαν από ερευνητές (Sayers, Clarkson, Lee, 2000) οι οποίοι ακινητοποίησαν για 4 μέρες το χέρι δοκιμαζόμενων που είχαν εκτελέσει έκκεντρη άσκηση στους καμπτήρες του αγκώνα: βρέθηκε μικρότερη συγκέντρωση ΚΚ στον ορό του αίματος σε σύγκριση με δοκιμαζόμενους που εκτέλεσαν την ίδια άσκηση αλλά δεν ακινητοποίησαν το μέλος.

Οι Nosaka και Sakamoto (1999) χορήγησαν βουπιβακάινη, ένα τοπικό αναισθητικό που προκαλεί μυϊκή νέκρωση, στο δικέφαλο βραχιόνιο. Ενέσεις των 2, 10 και 20 Mm σε δύο δοκιμαζόμενους οδήγησαν σε παρατεταμένη αλλαγή της συγκέντρωσης ΚΚ στο αίμα, με κορύφωση 12-24 ώρες με τιμές περίπου 200, 400 και 800 U/l αντίστοιχα. Οι αλλαγές αυτές ήταν ανάλογες με αυτές που παρατηρήθηκαν.
από τη μαγνητική απεικόνιση. Η μεταβολή στο χρόνο και η αύξηση της συγκέντρωσης KK στο αίμα σε αυτή τη μελέτη μοιάζουν πολύ με τα αποτελέσματα μετά από κατηφορικό τρέξιμο. Μετά από υψηλής έντασης έκκεντρη άσκηση, υπάρχει μια καθυστερημένη (με κορύφωση 4-6 μέρες μετά την άσκηση), μεγάλη αύξηση συγκέντρωσης KK, η οποία πιστεύουν οι ερευνητές ότι προκαλείται μέσω διαφορετικού μηχανισμού από ότι η νέκρωση του μυών στη ιδια μελέτη.

Οι μεγάλες διαφορές στη συγκέντρωση της KK που παρατηρούνται δεν μπορούν να εξηγηθούν και δεν φαίνεται να σχετίζονται με το φύλο, τη μυϊκή μάζα ή το επίπεδο δραστηριότητας των δοκιμαζόμενων. Μια πρόσφατη έρευνα έδειξε ότι η συγκέντρωση KK σχετίζεται με τη συγκέντρωση γλουταθειόνης, και οι ερευνητές πιστεύουν ότι είναι παράγοντας συντήρησης της KK κατά τη διάρκεια της ζωής της στην κυκλοφορία του αίματος (Gunst, Langlois, Delanghe, Debuyzere, Leroux-Roels, 1998). Αν αυτός ή κάποιοι άλλοι παράγοντες θα χρησιμοποιηθούν για να εξηγήσουν την μεγάλη διάφορα στη συγκέντρωση της KK στο αίμα έχει τελείως την έκκεντρης άσκησης μπορεί να διαλευκανθεί. Όμως, είναι ξεκάθαρο ότι η συγκέντρωση KK στο αίμα είναι μόνον ένας έμμεσος παράγοντας δείγματος καταστροφής και μπορεί να επηρεάζεται και από άλλους παράγοντες εκτός από τη μυϊκή καταστροφή, συμπεριλαμβανομένων και πιθανών γενετικών παραγόντων.

Καθυστερημένος μυϊκός πόνος

Είναι γνωστό από τις αρχές του προηγούμενου αιώνα ότι την επόμενη μέρα από έκκεντρη άσκηση υπάρχει δυσκαμψία και πόνος στους μύες (Hough, 1902). Νέοτερες μελέτες ενισχύουν την πρώτη αυτή παρατήρηση, έχουν δει ότι ο μυϊκός πόνος εμφανίζεται αρκετές ώρες μετά την εκτέλεση προπόνησης που προκάλεσε μυϊκή καταστροφή και κορυφώνεται 24-48 ώρες μετά την άσκηση (Newham et al, 1983;
Clarkson and Nosaka, 1992; Eddeling and Clarkson, 1989). Ο βαθμός έντασης του πόνου διαφέρει μεταξύ διαφορετικών τύπων άσκησης, κυρίως όμως εξαρτάται από το βαθμό της καταστροφής του μυός. Για παράδειγμα, ασκήσεις που προκαλούν μυϊκή καταστροφή όπως κατηφορικό τρέξιμο, προκαλούν τιμές πόνου 4-5 στην κλίμακα από 1 (καθόλου πόνος) μέχρι 10 (πάρα πολύς πόνος), ενώ μέγιστες έκκεντρες συστολές των καμπτήρων του αγκώνα προκαλούν τιμές πόνου περίπου 7-8. Η μεταβολή στις τιμές του πόνου συμπίπτει με την παρατεταμένη μείωση της παραγωγής δύναμης και την αύξηση της συγκέντρωσης ΚΚ στο αίμα, αν και η μέγιστη έκκεντρη προπόνηση των καμπτήρων του αγκώνα προκαλεί μεγαλύτερη ανταπόκριση και περισσότερο παρατεταμένη μείωση της απόδοσης και υψηλότερη συγκέντρωση ΚΚ από ό,τι έκκεντρη άσκηση από άλλες μυϊκές ομάδες. Παρόλο που η ένταση του πόνου διαφέρει από το κατηφορικό τρέξιμο σε σχέση με τη μεγάλης έκκεντρης έκκεντρη προπόνηση, η χρονική ανταπόκριση είναι ίδια.

Είναι πιθανό ο πόνος να είναι αποτέλεσμα οιδήματος και πίεσης μέσα στο μυό.

Ερευνητές (Friden, Sfakianos, Hargens, Akeson, 1988) παρατήρησαν το μέγεθος της μυϊκής ίνας και την ενδομυϊκή πίεση μετά από έκκεντρη προπόνηση στον πρόσθιο κνημιαίο. Σαράντα οκτώ ώρες μετά την άσκηση, με βιοψία αναλύθηκαν δείγματα μυϊκών ινών όπου βρέθηκε ότι οι μυϊκές ίνες ήταν μεγαλύτερες και με μεγαλύτερη ενδομυϊκή πίεση. Ως μεγαλύτερη ήταν η αύξηση του μεγέθους των μυϊκών ινών, τόσο περισσότερο χρειάστηκε η πίεση των υγρών του ιστού να επιστρέψει στο φυσιολογικό. Άλλοι ερευνητές (Crenshaw, Thornell, Friden, 1994) επιβεβαιώσαν ότι το οίδημα των μυϊκών ινών και η ενδομυϊκή πίεση εξαίτια της αύξησης των υγρών στους μύες των εκτεινόντων του γονάτου ήταν η αιτία της πρόκλησης πόνου μετά από έκκεντρη άσκηση.
Παρόλο που το οίδημα παρατηρείται μετά από έκκεντρη άσκηση, το οίδημα που εμφανίζεται στις μαγνητικές απεικονίσεις δεν έχει την ίδια χρονική πορεία με τον πόνο (Rodenburg et al., 1994). Μετά από έκκεντρη προπόνηση των καμπτήρων του αγκώνα, το οίδημα ξεκινάει σταδιακά περίπου στις 48 ώρες και κορυφώνεται μέχρι και 10 μέρες μετά την άσκηση (Clarkson, Nosaka, Braun, 1992). Ο πόνος κορυφώνεται πολύ πριν να κορυφωθεί το οίδημα. Ομως, ερευνητές (Nosaka and Clarkson, 1996) παρατήρησαν ότι το οίδημα εντοπίζεται μέσα στο μυϊκό ιστό μέχρι την 5η μέρα μετά την άσκηση και μετά μεταφέρεται στην υποδόρεια περιοχή. Είναι πιθανό ότι το οίδημα στις μυϊκές ίνες ερεθίζει τις τελικές νευρικές απολήξεις στο μυ, συνεισφέροντας στην αίσθηση του πόνου.

Η ισταμίνη, οι βραδυκινίνες και οι προσταγλαδίνες συμπεριλαμβάνονται στους παράγοντες που προκαλούν την δίσθηση του πόνου. Απελευθερώνονται όταν προκαλείται καταστροφή του μυϊκού ιστού και ενεργοποιούν τον τύπο III και τον τύπο IV κεντρομόλων νεύρων που μεταφέρουν μηνύματα πόνου από το μυ προς το κεντρικό νευρικό σύστημα (O'Connor and Cook, 1999). Εισαγωγή με ένεση ισταμινής, βραδυκινίνης ή προσταγλαδίνης E2 στο μυ προκαλεί υπεραλγησία (Badenko, Graven-Nielsen, Svensson, 1999; Fock and Mense, 1976). Παρόλο που αυτές οι ουσίες παρατηρούνται ότι προκαλούν μυϊκό πόνο, δεν υπάρχει καμία άμεση απόδειξη. Η διεγερτική δράση τους μπορεί να ενεργοποιήσει τους μυϊκούς νευροϋποδοχείς πόνου οι οποίοι κατεβάζουν το κατώφλι της διέγερσης. Με τον τρόπο αυτό, οι υποδοχείς ερεθισμάτων του πόνου μπορεί να ενεργοποιούνται από άλλα ερεθίσματα όπως η μηχανική παραμόρφωση των μυϊκών ινών ή οίδημα. Ερευνητές υποθέτουν (Howell et al., 1993) ότι η χρονική πορεία του πόνου αντικατοπτρίζει την παρουσία χημικών διαβιβαστών αλλά η ενδομυϊκή πίεση θα ήταν η φυσική πηγή πρόκλησης πόνου.
Ενεργητική διάταση του μυός

Πειραματικά στοιχεία δείχνουν ότι το μηχανικό τραβήγμα του μυός είναι μια από τις κύριες αιτίες πρόκλησης μυϊκής καταστροφής. Από ερευνητικά στοιχεία σε ζώα, παρατηρήθηκε ότι η διάταση του μυός πάνω από το 140% του βέλτιστου μήκους του κατά τη διάρκεια των έκκεντρων συστολών είναι ασυνήθιστο μηχανικό τραβήγμα του μυός, προκαλώντας μείωση της ικανότητας παραγωγής δύναμης μετά την άσκηση και αύξηση του μυϊκού τραυματισμού (Faulkner et al., 1993).

Μελέτες σε ζώα έχουν δείξει ότι το μέγεθος της απώλειας δύναμης μετά από έκκεντρη προπόνηση σχετίζεται με το αρχικό μήκος του μυός στο οποίο συνέβη η μεγαλύτερη απώλεια δύναμης όταν οι συστολές εκτελούνταν σε μεγαλύτερο μήκος μυός (Talbot and Morgan, 1998; Wood, Morgan, Proske, 1993). Ερευνητές μελέτησαν τη σχέση αυτή σε ανθρώπους (Jones et al., 1989; Newham, Jones, Ghosh, Aurora, 1988; Nosaka and Sakamoto, 2001) και βρήκανε παρόμοια αποτελέσματα, σύμφωνα με τα οποία περισσότερη δύναμη χάθηκε όταν οι δοκιμαζόμενοι ασκήθηκαν με μεγαλύτερο μήκος μυίου. Για παράδειγμα, δοκιμαζόμενοι εκτέλεσαν έκκεντρη προπόνηση στους καμπτήρες του αγκώνα με μικρό μήκος (η συστολή ξεκινούσε από την πλήρη κάμψη και τελείωνε στις 60° της έκτασης) και με μεγάλο μήκος (η συστολή ξεκινούσε από τις 45° κάμψη και τελείωνε στην πλήρη έκταση) μεταξύ των ασκήσεων (Newham et al., 1988). Αναφέρθηκε 10% μείωση της ισομετρικής δύναμης μετά την άσκηση με μικρό μήκος μυός και 30% μείωση της ισομετρικής δύναμης μετά την άσκηση με μεγάλο μήκος μυός. Αυτά τα αποτελέσματα επιβεβαιώνουν τα αποτελέσματα των ερευνητών στις μελέτες με τα ζώα όπου η άσκηση με μεγάλο μήκος μυός δημιουργεί μεγαλύτερο ποσό τραβήγματος στις μυϊκές ίνες. Αυτή η ενεργητική διάταση στο μυό προκαλεί γραμμική παραμόρφωση (αλλαγή θέσης ή
τράβηγμα) στα σαρκομέρια μέσα στο μυό πέρα από το φυσιολογικό τους μήκος. Επιπλέον, παρόλο που η άσκηση με μεγαλύτερο μήκος μυών παράγει λιγότερη συνολική δύναμη ανά συστολή από ό,τι η άσκηση με μικρό μήκος μυών, τελικά δημιουργεί μεγαλύτερη μυϊκή καταστροφή (Jones et al., 1989; Child, Saxton, Donnelly, 1998).

Επιπλέον στοιχεία που υποστηρίζουν την άποψη της παραμόρφωσης των σαρκομερίων μετά από άσκηση υψηλής έντασης βρίσκονται σε μελέτες που δείχνουν δυσανάλογη μείωση της δύναμης μετά από έκκεντρη άσκηση (Child et al., 1998; Saxton et al., 1996). Για παράδειγμα, οι δοκιμαζόμενοι (Saxton et al., 1996) εκτέλεσαν 70 μέγιστες έκκεντρες συστολές των καμπτήρων του αγκώνα και μετά την άσκηση μέτρησαν την ικανότητα παραγωγής της δύναμης σε διάφορες γωνίες (50, 90, και 160 μοίρες κάμψης του αγκώνα) μέχρι την 4η μέρα και τη 10η μέρα μετά την άσκηση. Τα αποτελέσματα εδείξαν ότι η παραγωγή δύναμης σε όλες τις μοίρες μειώθηκε σημαντικά σε όλα τα χρονικά σημεία αξιολόγησης μετά την άσκηση. Η παραγωγή δύναμης στις 50 και στις 90 μοίρες είχε σημαντικότερη μείωση από ό,τι η παραγωγή δύναμης στις 160 μοίρες, αμέσως μετά και μέχρι τις 4 μέρες μετά την άσκηση. Αν και η μεγαλύτερη δύναμη επιτεύχθηκε πριν την άσκηση στις 90 μοίρες της άρθρωσης του αγκώνα, μέχρι τη 10η μέρα μετά την άσκηση όπου οι τιμές επιστρέφουν σε αρχικά επίπεδα, η μεγαλύτερη δύναμη επιτεύχθηκε στις 160 μοίρες κάμψης της άρθρωσης του αγκώνα. Αυτά τα αποτελέσματα δείχνουν μια παροδική μεταβολή του βέλτιστου μήκους προς μεγαλύτερο μήκος μυών (προς το καθοδικό σκέλος της καμπύλης δύναμης-μήκους) τις μέρες μετά την έκκεντρη άσκηση.

Έχει υποστηριχθεί ότι τα σαρκομέρα που έχουν υποστεί υπερδιάταση οδηγούν σε αλλαγή της σχέσης μήκους-δύναμης του μυών προς την κατεύθυνση του μεγαλύτερου μήκους μυών (Morgan, 1990). Τέτοιοι είδους μεταβολή περιγράφηκε
για πρώτη φορά από το Katz (1939) και από τότε έχει ερευνηθεί σε απομονωμένες
μυϊκές ίνες βατράχου (Morgan et al., 1996), σε ολόκληρο μυ αμφίβιου (Wood et al.,
1993; Talbot and Morgan, 1996) και σε ανθρώπινο μυ (Jones et al., 1997; Brockett,
Morgan, Proske, 2001).

Αν δεχτούμε την υπόθεση ότι η αρχική αιτία για την απώλεια δύναμης μετά
από έκκεντρες συστολές είναι η δυσλειτουργία του κύκλου διάτασης-βράχυνσης
(Warren et al., 1993), τότε πρέπει να δεχθούμε ότι η δυσλειτουργία αυτή οδηγεί σε
μειωμένη αλλά ομοιόμορφη απελευθέρωση Ca\(^{2+}\). Οδηγούμαστε έτσι στην αλλαγή
στη σχέση μήκους-δύναμης που θα μπορούσε να ερμηνευτεί ως ένδειξη απλώς
μειωμένου επιπέδου ενεργοποίησης, έτσι ώστε ο μυς θα πρέπει να διαταθεί
περισσότερο για να επιτευχθεί η μέγιστη ενεργοποίηση (Endo, 1973). Μια τέτοια
υπόθεση έχει αδυναμίες. Για απομονωμένους μύες βατράχου (Morgan et al., 1996)
και για ολόκληρο μυ ποντικιού υπάρχουν παραδείγματα όπου οι καμπύλες μήκους-
δύναμης πριν και μετά από έκκεντρες συστολές περνάνε από την περιοχή του
μεγάλου μήκους (Katz, 1939; Brockett et al., 2001). Σε αυτά τα μεγάλα μήκη μυών, η
παραγωγή δύναμη μετά την άσκηση ήταν μεγαλύτερη απ’ ό,τι στην αρχική μέτρηση
έτσι ώστε η μειωμένη δραστηριότητα του μυών δεν μπορεί να χρησιμοποιηθεί ως
εξήγηση για την αλλαγή στην καμπύλη.

Η υπόθεση του ανομοιόμορφου σαρκομερίου προδικάζει ότι η καταστροφή θα
συμβεί μόνο αν τα σαρκομέρια διαταθούν ενεργητικά περισσότερο από το βέλτιστο
μήκος τους. Αν η καταστροφή του σαρκομερίου συμβαίνει ειδικά στο καθοδικό
σκέλος της καμπύλης μήκους-δύναμης του μυών, αυτό σημαίνει ότι οι δείκτες της
καταστροφής θα επηρεάζονταν από το μήκος του μυών κατά την άσκηση και αυτό
ακριβώς συμβαίνει. Για τους μύες του ποντικιού και της χελώνας η αλλαγή στο
βέλτιστο μήκος και η μείωση της ενεργητικής παραγωγής δύναμης μετά την άσκηση,
εξαρτώνται από το εύρος του μήκους στο οποίο γίνεται η έκκεντρη συστολή (Lynn and Morgan, 1994; Talbot and Morgan, 1998).

Η αλλαγή του βέλτιστου μήκους για την παραγωγή δύναμης, προς την κατεύθυνση των μεγαλύτερων μυϊκών μηκών, είναι ένας εμμέσως δείκτης αύξησης της μυϊκής ευαισθησίας, μετά την άσκηση. Στην αρχική του περιγραφή ο Katz (1939) παρατήρησε μέχρι 3 φορές μείωση της ισομετρικής τετανικής συστολής και πτώση της ενεργοποίησης του μυός: το ποσοστό του τετάνου ήταν αμετάβλητο με μια "μερική μετάλλαξη του ενεργού συσταλτού ιστού σε παθητικό ελαστικό ιστό". Σε μια πρόσφατη σειρά πειραμάτων στο γαστροκνήμιο μυ γάτας σε αναισθησία, βρέθηκε ότι μετά από μια σειρά έκκεντρων συστολών η αύξηση της δύναμης ως αντίδραση σε διάταση του μυός ήταν καθυστερημένη συγκριτικά με την αντίδραση πριν τις έκκεντρες συστολές (Whitehead et al., 2001). Η εξήγηση που θα μπορούσε να δοθεί είναι ότι οι έκκεντρες συστολές οδήγησαν σε υπερδιάταση και καταστροφή μερικών σαρκομερίων. Όταν ο μυς χαλαρώνει, μερικά σαρκομέρια που έχουν υπερδιαταθεί δεν ξαναγυρίζουν στο αρχικό τους μήκος (Talbot and Morgan, 1996) και αυτό σημαίνει ότι τα γειτονικά σαρκομέρια επιστρέφουν σε ένα πιο μικρό μήκος από αυτό που είχαν πριν τις συστολές. Για το λόγο αυτό ο μυς που περιέχει σαρκομέρια που έχουν μήκος μικρότερο του αρχικού τους, θα πρέπει να διαταθεί περισσότερο πριν η παθητική δύναμη αυξηθεί σε επίπεδα που να μπορούν να μετρηθούν.

Ο ακριβής μηχανισμός με τον οποίο έχουμε απώλεια δύναμης δεν έχει θεμελιωθεί ακόμη με ακρίβεια. Μια θεωρία υποστηρίζει ότι η απώλεια δύναμης συμβαίνει όταν τα σαρκομέρια διατείνονται με μη φυσιολογικό τρόπο για την παραγωγή δύναμης (Morgan, 1990). Όταν ο μυς διατείνεται αργά, τα σαρκομέρια διατείνονται ομοιόμορφα αυξάνοντας την τάση τους. Όμως όταν η διάταση είναι ξαφνική ή μέγιστης δύναμης, o Morgan (1990) θεωρεί ότι συμβαίνει ανομοιόμορφη

Institutional Repository - Library & Information Centre - University of Thessaly
01/11/2023 06:32:57 EET - 35.160.27.221
διάταση στα σαρκομέρια και ότι μερικά σαρκομέρια φτάνουν σε διάταση που οδηγεί στην καταστροφή τους. Ερευνητές (Morgan and Allen, 1999) υποστηρίζουν ότι, καθώς ο μυς διατείνεται, τα αδύναμα σαρκομέρια διατείνονται ως ένα σημείο στο οποίο συγκροτούνται από τα ελαστικά στοιχεία του μυών. Επίσης, η παροδική μείωση της δύναμης μετά την έκκεντρη άσκηση μπορεί να συμβαίνει εξαιτίας καταστροφής στους τένοντες ή στα ελαστικά στοιχεία του μυών (Saxton and Donnelly, 1996).

Κόπωση μικρής συχνότητας

Μια άλλη αξιόπιστη πηγή ελέγχου της μειωμένης ικανότητας του μυών για παραγωγή δύναμης την περίοδο μετά την έκκεντρη άσκηση είναι το φαινόμενο της κόπωσης χαμηλής συχνότητας. Μετά την έκκεντρη άσκηση, υπάρχει μειωμένη ικανότητα παραγωγής δύναμης με έρεθισματα χαμηλής συχνότητας, η οποία μπορεί και να κάνει μια εβδομάδα για να επανέλθει (Jones et al., 1989; Newham et al., 1987; Edwards, 1981; Hill, Thompson, Ruell, Thom, White, 2001). Για παράδειγμα, μια μείωση της δύναμης που παρατηρήθηκε στην τετανική ηλεκτρική διέγερση του μυών με 10 ή 20 Hz μετά την έκκεντρη άσκηση ήταν μεγαλύτερη σε σύγκριση με τη μείωση της δύναμης που μετρήθηκε στα 50 ή 100 Hz (Newham et al., 1987; Hill et al., 2001; Brown, Child, Donnelly, Saxton, Day, 1996). Οι Edwards et al. (1977) ήταν οι πρώτοι που αναφέρανε μια δυσανάλογη μείωση της ικανότητας παραγωγής δύναμης σε μύες ανθρώπων με έρεθισματα χαμηλής συχνότητας. Αυτοί οι ερευνητές εδώσαν επίσης στοιχεία που αντικρούουν τη μείωση ενώσεων φωσφόρου υψηλής ενέργειας και την κεντρική κόπωση ως παράγοντες που προκαλούν κόπωση χαμηλής συχνότητας. Προτείνουν (Edwards et al., 1977) λοιπόν ότι η κόπωση χαμηλής συχνότητας συμβαίνει εξαιτίας της μείωσης της ικανότητας λειτουργίας του κύκλου διάτασης-βράχυνσης. Μελέτες σε ζώα έχουν δείξει ότι η μείωση της ποσότητας εισροής
ασβεστίου στη μυϊκή ίνα από το σαρκοπλασματικό δίκτυο μετά από προπόνηση που
dημιούργησε μυϊκή καταστροφή θεωρείται ως πρωταρχική αιτία κόπωσης χαμηλής
sυχνότητας (Westerblad, Allen, Morgan, Proske, 1998) και δίνουν αποδείξεις ότι η
ανικανότητα του μυός να παράγει μέγιστη δύναμη μετά από έκκεντρη προπόνηση
eίναι αποτέλεσμα μείωσης της ικανότητας λειτουργίας του κύκλου διάτασης-
βράχυνσης (Armstrong, 1996; Warren et al., 1993).

Επιπλέον μελέτες σε ανθρώπους έχουν δώσει στοιχεία που υποστηρίζουν ότι ο
κύκλος διάτασης-βράχυνσης είναι το αίτιο της κόπωσης χαμηλής συχνότητας.
Ερευνητές (Deschenes et al., 2000) έχουν αναφέρει σημαντική μείωση της
νευρομυϊκής αποτελεσματικότητας (ροπή/ ολοκληρωμένο ηλεκτρομυογράφημα) για
10 μέρες μετά την άσκηση. Η νευρομυϊκή αποτελεσματικότητα αξιολογεί την
ικανότητα των συσταλτών στοιχείων να ανταποκρίνονται σε νευρικά σήματα
(Deschenes et al., 2000). Καθώς η ροπή στη συγκεκριμένη μελέτη επιστρέφει στα
αρχικά επίπεδα μετά από 7 μέρες, οι ερευνητές αποδίδουν αυτές τις συνεχείς
dιακυμάνσεις της νευρομυϊκής αποτελεσματικότητας στη δυσλειτουργία του κύκλου
dιάτασης-βράχυνσης. Άλλοι ερευνητές (Hill et al., 2001) βρήκαν ότι, μαζί με 33%
μείωση της μέγιστης εκούσιας παραγωγής δύναμης των εκτεινόντων του γονάτου
μετά την άσκηση, υπήρχε σημαντική μείωση στην παραγωγή ροπής σε ερεθίσματα
μικρής συχνότητας και αυτό συσχετίζοταν σημαντικά με τη μείωση στην
απελευθέρωση ασβεστίου.

Ο Jones (1996) πρότεινε ότι, επιπλέον με την μείωση της απελευθέρωσης
ασβεστίου, η κόπωση μικρής συχνότητας μπορεί να είναι άμεσο αποτέλεσμα της
καταστροφής των μυονιδίων. Ο Jones παρατήρησε ότι μια από τις ανεξήγητες
πλευρές του θέματος που αφορά την σχέση δύναμης-συχνότητας του μυός είναι η
εξάρτησή της από το μήκος του μυός, όπου με μικρό μήκος μυός υπάρχει μια αλλαγή

51
της καμπύλης προς τα δεξιά. Ομάδα όμως ερευνητών (Saxton and Donnelly, 1996) βρήκαν ότι η έκκεντρη άσκηση έχει ως αποτέλεσμα την μετακίνηση προς τα δεξιά την καμπύλη της σχέσης μήκους-δύναμης όπως στην περίπτωση της μεγάλης μείωσης της δύναμης όταν ο μυς ήταν σε μικρότερο μήκος από το βέλτιστο του.

Μείωση της δύναμης σε δύο χρονικές στιγμές

Μελέτες σε ζώα έδειξαν ότι η μείωση σε δύο χρονικές στιγμές της ικανότητας παραγωγής δύναμης μετά από έκκεντρη άσκηση, παρατηρήθηκε στην παραγωγή δύναμης τόσο με συμπλήρωμα καφεΐνης (Ingalls et al., 1998) όσο και με ηλεκτρική διέγερση (Faulkner, Jones, Round, 1989). Δύο φάσεις μείωσης της δύναμης παρατηρήθηκαν στα μοντέλα αυτά, η πρώτη και μεγαλύτερη μείωση της δύναμης συνέβη αμέσως μετά την άσκηση. Αυτή η πρώτη φάση ακολουθήθηκε από μια περίοδο αποκατάστασης της δύναμης μετά την άσκηση και από μια δεύτερη μείωση της δύναμης που συνέβη μερικές μέρες μετά. Ερευνητές ανέφεραν (MacIntyre et al., 1996) μια μείωση της έκκεντρης ροπής σε δύο χρονικές στιγμές μετά από 300 έκκεντρες συστολές στους τετρακέφαλους μιας ομάδας 10 ενήλικων νεαρών γυναικών. Παρατηρήσαν μια μείωση της ροπής αμέσως μετά την άσκηση, βελτίωση της παραγωγής ροπής 2-4 ώρες μετά την άσκηση και μια δεύτερη μείωση της ροπής, μικρότερη από την πρώτη, μεταξύ 20-24 ώρες μετά την άσκηση. Παρόλο που οι ερευνητές αυτοί (MacIntyre et al., 1996) ήταν οι πρώτοι που αναφέρανε μείωση της δύναμης σε δύο χρονικές στιγμές σε ανθρώπους, πρέπει να σημειωθεί ότι οι περισσότερες μελέτες στην περιοχή αυτή δεν αξιολογούν τη δύναμη μέχρι τις 24 ώρες μετά την άσκηση και χρησιμοποιούν για την αξιολόγηση της ισομετρικής συστολότητας παρά ομόκεντρες ή έκκεντρες.
Οι MacIntyre et al. (1996) προτείνουν ότι η δεύτερη πτώση της ροπής μπορεί να σχετίζεται με την επιδείνωση του τραυματισμού είτε εξαιτίας της εμφάνισης φλεγμονής είτε εξαιτίας του μυϊκού πόνου. Παρόλα αυτά, δεδομένου ότι η μεγαλύτερη μείωση της δύναμης συμβαίνει αμέσως μετά την άσκηση, πιθανός ο πόνος δεν παίζει κανένα ρόλο στην αρχική μείωση της δύναμης. Επίσης, έχουν βρεθεί στοιχεία (Newham et al., 1987) με αντίθετα ευρήματα, ότι δηλαδή οι δοκιμαζόμενοι δεν μπορούν να ενεργοποιήσουν πλήρως τους μύες τους εξαιτίας του πόνου. Οι ερευνητές αυτοί βρήκαν (Newham et al., 1987) ότι πολύ μεγάλη επιβάρυνση με ηλεκτρική διέγερση κατά τη διάρκεια μέγιστης εκούσιας συστολής δεν οδήγησε σε επιπλέον παραγωγή δύναμης. Οι δοκιμαζόμενοι παρά τον πόνο που αισθάνονταν, μπορούσαν να ενεργοποιήσουν πλήρως τους μύες τους.

Σημάδια μυϊκής καταστροφής στη δομή του μυοϊνιδίου

Έχει αποδειχθεί ότι η έκκεντρη άσκηση οδηγεί σε αλλοίωση των δομικών στοιχείων του μυοϊνιδίου (Friden et al., 1981; Newham et al., 1983a). Οι περισσότερες αποδειξές προέρχονται από εξετάσεις μυϊκού ιστού σε ηλεκτρονικό μικροσκόπιο που εμφανίζει σαρκομέρια επιδρόμενα σε αποδιοργάνωση ή σε υπερδιάταση, μισά σαρκομέρια, βλάβη στις γραμμές Ζ, κατά τόπους αποδιοργάνωση των νηματίων ακτίνης-μυοσίνης και καταστροφή του σαρκοπλασματικού δικτύου (Morgan and Allen, 1999).

Η ακριβής διαδικασία της καταστροφής του σαρκομερίου μετά από προπόνηση με έκκεντρες συστολές αποτελεί θέμα συζήτησης. Ίσως να παίζουν ρόλο τα ελαστικά νημάτια της τιτίνης, η οποία συγκρατεί τα νημάτια της μυοσίνης στις γραμμές Ζ ή η δομική πρωτεΐνη δεσμίνη, η οποία συνδέει διπλανές γραμμές Ζ (Allen, 2001). Ως αρχική αιτία της καταστροφής του σαρκομερίου μπορεί να είναι η τριβή των παχιών και των λεπτών νηματίων μεταξύ τους ως αποτέλεσμα της

Η παρουσία σαρκομερίων που έχουν υπερδιαταθεί κατά το ήμισυ, ενώ το άλλο μισό τους συστέλλεται σε κανονικό μήκος, είναι απόδειξη δομικής καταστροφής μετά από έκκεντρες συστολές (Brown and Hill, 1991; Talbot and Morgan, 1996; MacPherson, Dennis, Faulkner, 1997). Αυτό το στοιχείο μας βοηθάει να κατανοήσουμε τη θέση που έχουν τα ελαστικά νημάτια μέσα στο σαρκομέριο. Η τιτίνη ενώνει τις άκρες των παχιών νηματίων με τις γραμμές Z (Horowits, 1999).

Διαφορετικοί τύποι μυϊκών ινών

Πολλές μελέτες έχουν ασχοληθεί με την ευαισθησία διαφορετικών μυϊκών ομάδων στη καταστροφή μετά από προπόνηση έκκεντρων συστολών. Ενα θέμα που απασχολεί τους ερευνητές είναι η ευαισθησία των διαφορετικών τύπων μυϊκών ινών σε μύες που αποτελούνται από αργές και γρήγορες μυϊκές ίνες. Αναφορές έχουν γίνει για προδιάθεση στην καταστροφή των αργών μυϊκών ινών κατά τη διάρκεια της κίνησης (Armstrong et al., 1983; Mair et al., 1992). Στις αιτίες που ενίσχυσαν αυτήν την άποψη συμπεριλαμβάνονται το χαμηλό κατώφλι ενεργοποίησης και η σημασία του ρόλου των κινητικών αυτών μονάδων στη στάση του σώματος. Όταν μύες με σύσταση αργών και γρήγορων κινητικών μονάδων εκτέλεσαν άσκηση που
περιελάμβανε έκκεντρες συστολές, οι γρήγορες κινητικές μονάδες, ήταν περισσότερο
επιρρεπείς στην κόπωση εξαιτίας της έλλειψης οξειδωτικής ικανότητας (Friden and
Lieber. 1998), ή της μεγαλύτερης παραγωγής δύναμης (Appell, Soares, Duarte,
1992). Σε μια πρόσφατη μελέτη φαίνεται μια προτίμηση στην καταστροφή των
gρήγορων οξειδωτικών-γλυκολυτικών μυϊκών ινών μετά από προπόνηση έκκεντρων
συστολών (Vijayan, Thomson, Norenberg, Fitts, Riley, 2001). Άλλοι ερευνητές
προτείνουν ότι ένας συνδυασμός παραγόντων που περιλαμβάνουν τόσο τα συσταλτά
όσο και τα ελαστικά στοιχεία του μυούς οδηγούν στην καταστροφή των γρήγορων
οξειδωτικών-γλυκολυτικών μυϊκών ινών (MacPherson et al., 1996). Σε μια πρόσφατη
ανασκόπηση, οι Lieber και Friden (1999) προτείνουν ότι η μεγάλη ποσότητα
κατεστραμμένων γρήγορων γλυκολυτικών μυϊκών ινών μετά από έκκεντρη άσκηση
eίναι αποτέλεσμα της μεγάλης καταπόνησής τους και του τραυματισμού τους εξαιτίας
tου μικρού τους μήκους.

Μια σημαντική παράμετρος στην υπόθεση των μη ομοιόμορφων
σαρκομερίων είναι ότι η μυϊκή καταστροφή εξαρτάται από το εύρος της κίνησης στο
οποίο εκτελούνται οι έκκεντρες συστολές. Υπάρχει η πιθανότητα, το βέλτιστο μήκος
gια διαφορετικές μυϊκές ίνες να μην είναι το ίδιο έτσι ώστε σε μια με συνδυασμό
μυϊκών ινών τύπου I και τύπου II η διάταση ολόκληρου του μυού να οδηγεί μερικές
μυϊκές ίνες σε μεγαλύτερη διάταση από κάποιες άλλες και να οδηγούνται έτσι στο
καθοδικό σκέλος της σχέσης μήκους-δύναμης.

Πρόσφατα (Brockett et al., 2001) μελετήθηκαν οι αργές και οι γρήγορες
κινητικές μονάδες στο γαστροκνήμιο μυ γάτας. Βρέθηκε ότι η πλειονεστία των
gρήγορων κινητικών μονάδων είχε βέλτιστο μήκος για την παραγωγή δύναμης
μικρότερο από ό,τι ήταν το βέλτιστο μήκος για ολόκληρο το μυ. Όταν οι κινητικές
μονάδες υποβλήθηκαν σε μια σειρά έκκεντρων συστολών, χρησιμοποιούντας μήκος
που ξεκινούσε από το βέλτιστο μήκος του μυώς συνολικά, όλες οι κινητικές μονάδες παρουσίασαν αλλαγή στη σχέση μήκους-δύναμης, που είναι ένδειξη καταστροφής του μυώς. Παρόλα αυτά οι αργές κινητικές μονάδες παρουσίασαν μικρότερη αλλαγή από ό,τι οι γρήγορες κινητικές μονάδες. Η στατιστική ανάλυση έδειξε ότι το βέλτιστο μήκος για την παραγωγή δύναμης μιας κινητικής μονάδας σε σχέση με το βέλτιστο μήκος για την παραγωγή δύναμης ολόκληρου του μυώς, ήταν καλύτερος δείκτης μυϊκής καταστροφής, από ό,τι η ευαισθησία στην καταστροφή ενός τύπου κινητικής μονάδας σε σχέση με κάποιον άλλο τύπο. Η διαφορά στο βέλτιστο μήκος για την παραγωγή δύναμης μεταξύ των δύο τύπων κινητικών μονάδων υπάρχει εξαιτίας του διαφορετικού αριθμού των σαρκομερίων σε κάθε μυϊκή ίνα. Τα αποτελέσματα αυτά θα πρέπει να επιβεβαιωθούν και σε άλλους μύες που περιέχουν αργές και γρήγορες κινητικές μονάδες.

Αποτέλεσμα επαναλαμβανόμενης άσκησης

Η εκτέλεση μιας μόνο προπόνησης έκκεντρων συστολών που προκαλεί μυϊκή καταστροφή έχει ως αποτέλεσμα τέτοια προσαρμογή του μυώς ώστε η μυϊκή καταστροφή να είναι μικρότερη όταν η άσκηση επαναληφθεί στο διάστημα από μια εβδομάδα μέχρι 6 μήνες μετά την αρχική προπόνηση (Clarkson et al., 1992; McHugh, Connolly, Eston, Gleim, 1999). Για παράδειγμα, υπάρχει σημαντικά μικρότερος μυϊκός πόνος και γρηγορότερη αποκατάσταση της δύναμης μετά από μια δεύτερη προπόνηση σε σχέση με την πρώτη προπόνηση. Επίσης μετά τη πρώτη προπόνηση υπάρχει μια πάρα πολύ μεγάλη αύξηση στην συγκέντρωση ΚΚ στον ορό του αίματος, αλλά μετά τη δεύτερη προπόνηση ουσιαστικά δεν υπάρχει καθόλου αλλαγή στην συγκέντρωση ΚΚ (Clarkson and Tremblay, 1988; Balnave and Thompson, 1993). Αν η δεύτερη έκκεντρη προπόνηση εκτελεστεί 2 με 6 μέρες μετά την πρώτη προπόνηση
(όπου ο μυς ακόμη δεν έχει εντελώς επανέλθει), ο χρόνος αποκατάστασης από την πρώτη προπόνηση παραμένει ανεπηρέαστος, ώστε η δεύτερη έκκεντρη προπόνηση δεν καθυστερεί την αποκατάσταση (Nosaka and Clarkson, 1995; Paddon-Jones, Muthalib, Jenkins, 2000).

Ο μηχανισμός της επίδρασης της επαναλαμβανόμενης άσκησης δεν είναι πλήρως κατανοητός. Μπορούμε όμως να υποθέσουμε ότι η καταστροφή που προκαλείται στην πρώτη προπόνηση δημιουργεί προσαρμογή τέτοια που ο μυς μπορεί να αντισταθεί σε μια δεύτερη έκκεντρη προπόνηση. Επιπλέον, ακόμη και αν η πρώτη προπόνηση προκαλέσει ήπια βλάβη στο μυς, υπάρχει πάλι προφύλαξη στο μυς από μια δεύτερη πολύ πιο έντονη έκκεντρη άσκηση (Clarkson and Tremblay, 1988). Δοκιμαζόμενοι εκτελέσανε σε ερευνητική μελέτη (Brown, Child, Day, Donnelly, 1997) 10, 30 ή 50 μέγιστες έκκεντρες συστολές στην πρώτη προπόνηση και 3 εβδομάδες αργότερα κάθε ομάδα εκτέλεσε 50 μέγιστες έκκεντρες συστολές. Παρόλο που μετά την άσκηση με 10 συστολές ήταν μικρή η καταστροφή που παρατηρήθηκε (καμία αύξηση της συγκέντρωσης ΚΚ), υπήρξε προσαρμογή κατά τη δεύτερη μεγαλύτερης επιβάρυνσης άσκηση τέτοια ώστε δεν υπήρξε αύξηση της συγκέντρωσης ΚΚ.

Ερευνητές πρότειναν ότι η επίδραση της επαναλαμβανόμενης άσκησης μπορεί να εξηγηθεί από νευρικούς παράγοντες, όπως η αποτελεσματικότερη επιστράτευση των στοιχείων του μυς κατά τη διάρκεια της δεύτερης προπόνησης (Nosaka and Clarkson, 1995; Golden and Dudley, 1992). O Hough στις αρχές του προηγούμενου αιώνα (1902) πρότεινε ότι ο πόνος προέρχεται από καταστροφή των μυϊκών ινών εξαιτίας της ακανόνιστης ενεργοποίησης των διεγερμένων νευρώνων. Επιπλέον πρότεινε ότι οι προπονημένοι διαφέρουν από τους απροπόνητους μυες στους μηχανισμούς νεύρωσής τους. Σε έρευνα του Hortobagyi και των συνεργατών του
(1998), 12 δοκιμαζόμενοι εκτελέσαν δύο προπονήσεις 100 εκκεντρών συστολών των τετρακέφαλων με 2 εβδομάδες διαφορά μεταξύ τους. Μετά την πρώτη προπόνηση, η δύναμη των εκτεινόντων του γονάτου μειώθηκε 37% και η δραστηριότητα του ηλεκτρομυογραφήματος επιφάνειας μειώθηκε 28% τη δεύτερη μέρα. Μετά τη δεύτερη προπόνηση, δεν υπήρξαν σημαντικές διαφορές στην δύναμη και στη δραστηριότητα του ηλεκτρομυογραφήματος. Ωμως, η ικανότητα αντανακλαστικής διέγερσης, αυξήθηκε, που σημαίνει ή μεγαλύτερη κεντρική διέγερση ή αύξηση της ευαισθησίας των Ια υποδοχέων ή και τα δύο. Οι ερευνητές συμπέραναν ότι οι νευρικοί παράγοντες συμπεριλαμβάνονταν, έστω εν μέρει, στην διαδικασία της προσαρμογής. Ενδείξεις κατά της υπόθεσης των νευρικών παραγόντων ως εξήγηση για την επίδραση της επαναλαμβανόμενης άσκησης ήρθαν από μελέτες σε ζώα όπου βρέθηκε επίδραση της επαναλαμβανόμενης άσκησης όταν οι μύες υποβλήθηκαν σε συστολές με ηλεκτρικό ερέθισμα (McHough et al., 1999). Επιπλέον, οι ερευνητές αυτοί δεν βρήκαν διαφορές μεταξύ των επαναλαμβανόμενων προπονήσεων στο ηλεκτρομυογράφημα και στη ροπή, προτείνοντας ότι η μυϊκή επιστράτευση δεν ήταν διαφορετική μεταξύ των προπονήσεων.

Ο Armstrong (1990) πρώτος πρότεινε ότι η μυϊκή καταστροφή που παρατηρήθηκε μετά από έκκεντρη άσκηση μπορεί να συνέβη εξαιτίας της μόνιμης βλάβης των μυϊκών ινιδίων που ήδη βρίσκονται στο τέλος της ζωής τους και για το λόγο αυτό είναι ευαίσθητη στην καταπόνηση. Ερευνητές (Foley, Jayaraman, Prior, Meyer, 1999) εξετάσαν αν η καταστροφή των ευαίσθητων μυϊκών ινών ενισχύει τη μυϊκή καταστροφή μετά την πρώτη προπόνηση και, επειδή ακριβώς απομακρύνονται από τον μυ προπονήσεων, η δεύτερη προπόνηση που θα εκτελεστεί 8 εβδομάδες αργότερα θα δημιουργήσει μικρότερη καταστροφή. Οι ερευνητές αυτοί βρήκαν ότι μετά την πρώτη προπόνηση
έκκεντρων συστολών του καμπτήρων του αγκώνα, αυξήθηκε το Τ2 (μαγνητική
απεικόνιση) κατά 65%, ο όγκος των καμπτήρων του αγκώνα κατά 40%, η μέγιστη
συγκέντρωση KK ήταν 21.000 U/1 και η μέγιστη τιμή πόνου 8 στην κλίμακα από το 1
μέχρι το 10. Στις 14 μέρες μετά την άσκηση ο όγκος των μυών μειώθηκε κατά 10%
από τις αρχικές τιμές. Μετά τη δεύτερη προπόνηση έκκεντρων συστολών 8
eβδομάδες αργότερα, το T2 αυξήθηκε κατά 27%, η συγκέντρωση KK ήταν 2.600 U/1
και η μέγιστη τιμή πόνου 8 στην κλίμακα από το 1 μέχρι το 10. Αυτές οι αλλαγές
ήταν σημαντικά μικρότερες σε σχέση με την πρώτη προπόνηση. Ο πόνος ήταν ίδιος.
Το γεγονός ότι ο όγκος του μυός συστολικά μειώθηκε μετά την πρώτη προπόνηση
θεωρήθηκε από τους ερευνητές αποτέλεσμα της μόνης καταστροφής των
ευαίσθητων μυϊκών ινών. Στη συνέχεια, μετά τη δεύτερη προπόνηση, μόνο μικρές
αλλαγές βρεθήκαν στους έμμεσους δείκτες της μυϊκής καταστροφής, που οι
ερευνητές προτείναν ότι γίνανε εξαιτίας του παροδικού τραυματισμού των μυϊκών
ινών. Επιπλέον, δεν υπήρξε επιπλέον μείωση του όγκου του μυός μετά τη δεύτερη
προπόνηση.

Τα στοιχεία από την έρευνα του Foley και των συνεργατών του (1999)
μπορούν να θεωρηθούν ως αποδείξεις ότι η μικρότερη καταστροφή μετά τη δεύτερη
προπόνηση έκκεντρων συστολών συμβαίνει εξαιτίας της απώλειας των ευαίσθητων
μυϊκών ινών μετά την καταστροφή τους από την πρώτη προπόνηση έκκεντρων
συστολών. Αυτή η θεωρία υποδηλώνει ότι με το χρόνο οι μυϊκές ίνες γίνονται
eυαίσθητες στην καταπόνηση που είναι ένα φυσικό φαινόμενο και μπορούν εύκολα
tον όγκο του μυός

59
με το χρόνο, κάτι που φαίνεται μη ρεαλιστικό. Μια διαφορετική ερμηνεία των στοιχείων αυτών είναι ότι μέρη της μυϊκής ίνας είναι αδύναμα και αυτά τα μέρη καταστρέφονται κατά τη διάρκεια της πρώτης προπόνησης δημιουργώντας τη μείωση του όγκου του μυός. Με το χρόνο, η βλάβη αυτών των μυϊκών ινών αποκαθίσταται (μπορεί να διαρκέσει μέχρι και 6 μήνες), κάνοντας τις μυϊκές αυτές ίνες πιο ανθεκτικές στην καταστροφή. Άλλοι ερευνητές (Nosaka, Clarkson, McGuiggin, Byrne, 1991) βρήκαν ότι οι δοκιμαζόμενοι εκτέλεσαν την ίδια έκκεντρη άσκηση των καμπτήρων του αγκώνα 6 ή 10 εβδομάδες μετά την πρώτη φορά, παρουσίαστηκαν μικρότερες αλλαγές στο εύρος της κίνησης, στη δύναμη, στην ΚΚ και στον πόνο. Όταν οι δοκιμαζόμενοι εκτέλεσαν την ίδια έκκεντρη άσκηση 6 μήνες αργότερα, η συγκέντρωση της ΚΚ ήταν χαμηλή σε σχέση με την πρώτη άσκηση αλλά όχι τόσο χαμηλή όσο βρέθηκε μετά τις 6 ή 10 εβδομάδες.

Ερευνητές (Pizza et al., 1996) υποθέσαν ότι το ανοσοποιητικό σύστημα ως απάντηση στην μυϊκή καταστροφή μετά από προπόνηση αποδυναμώνεται ειδικά μετά από μια δεύτερη προπόνηση. Στη μελέτη αυτή, οι δοκιμαζόμενοι εκτέλεσαν δύο προπονήσεις έκκεντρων συστολών με διαφορά τριών εβδομάδων μεταξύ τους. Μετά τη δεύτερη προπόνηση, παρατηρήθηκε μια μείωση του αριθμού των ουδετερόφιλων στην κυκλοφορία του αίματος καθώς και μικρότερη δραστηριότητα των ουδετερόφιλων και των μονοκύτταρων. Από τη στιγμή που τα ουδετερόφιλα και τα μονοκύτταρα μπορεί να προκαλούν επιπλέον μυϊκή καταστροφή καθώς μπαίνουν μέσα στην μυϊκή ίνα, η χαμηλή τους δραστηριότητα θα οδηγούσε σε μικρότερη καταστροφή. Θεωρείται ότι οι κυτοκίνες απελευθερώνονται από τον κατεστραμμένο μυ ως αποτέλεσμα της πολύ έντονης φλεγμονής. Ομάδα ερευνητών (Croisier et al., 1999) εξέτασε τη συγκέντρωση κυτοκινών στο πλάσμα μετά από μεγάλης έντασης προπόνηση έκκεντρων συστολών των εκτεινόντων του γονάτου.
Μετά την προπόνηση αυτή οι δοκιμαζόμενοι εκτελέσανε πέντε προπονητικά προγράμματα υπομέγιστης έντασης σε μια περίοδο τριών εβδομάδων, ακολουθώντας από την εκτέλεση της αρχικής προπόνησης μέγιστων συστολών. Τα επίπεδα της μυοσφαιρίνης στον ορό του αίματος αυξήθηκαν δραματικά και αναπτύχθηκε μυϊκός πόνος μετά την πρώτη προπόνηση αλλά όχι μετά τη δεύτερη προπόνηση. Όμως, η αύξηση των κυτοκινών ήταν η ίδια μετά και τα δύο προπονητικά προγράμματα. Το συμπέρασμα της μελέτης αυτής είναι ότι, είτε οι κυτοκίνες δεν σχετίζονται με την έντονη φλεγμονή είτε η φλεγμονή δεν εμφανίζεται μειωμένη ως αποτέλεσμα της επίδρασης της επαναλαμβανόμενης άσκησης.

Βασιζόμενοι σε έρευνες που γίνανε σε ζώα, φαίνεται ότι η πρώτη προπόνηση έκκεντρων συστολών μπορεί να προκαλέσει αύξηση του αριθμού των σαρκομερίων. Οι Lynn και Morgan (1994) βρήκαν, προπονώντας ποντίκια με κατηφορικό τρέξιμο, αύξηση του αριθμού των σαρκομερίων. Η αύξηση του αριθμού των σαρκομερίων μπορεί να κάνει τον μυ βέλτιστη ανθεκτικό στο καταστροφικό αποτέλεσμα της έκκεντρης προπόνησης. Μελέτη ερευνητών (Whitehead, Allen, Morgan, Proske, 1998) έδωσε έμμεσες αποδείξεις ότι το μήκος του σαρκομερίου στους ανθρώπους μπορεί να συσχετίζεται με τον μυϊκό τραυματισμό. Οι δοκιμαζόμενοι τους εκτελέσανε με τους άκτινες μηριαίους προπονήσεις ομόκεντρων συστολών για 30 λεπτά τη μέρα για 5 μέρες. Οι δοκιμαζόμενοι στη συνέχεια εκτελέσανε έκκεντρη προπόνηση και με τους προπονημένους και με τους απροπόνητους μυές. Η έκκεντρη αύξηση δημιουργήσει μια αλλαγή στη βέλτιστη γωνία παραγωγής δύναμης, η οποία αλλαγή ήταν σημαντικά μεγαλύτερη για το προπονημένο πόδι. Επιπλέον, ο προπονημένος μυς με προπόνηση ομόκεντρων συστολών φάνηκε επιρρεπής στη μυϊκή καταστροφή. Η ερμηνεία που δώσανε οι ερευνητές (Whitehead et al., 1998) για τα στοιχεία αυτά ήταν ότι η προπόνηση με ομόκεντρες συστολές οδήγησε σε μια
μείωση του αριθμού των σαρκομερίων κάνοντας το μυ περισσότερο επιρρεπή στην μυϊκή καταστροφή κατά τη διάρκεια της έκκεντρης προπόνησης. Και άλλοι ερευνητές βρήκαν ίδια αποτελέσματα στην έρευνά τους (Ploutz-Snyder, Tesch, Dudley, 1998). Προεκτείνοντας τα αποτελέσματα αυτά στην επίδραση της επαναλαμβανόμενης προπόνησης, μπορούμε να συμπεράνουμε ότι η αύξηση του αριθμού των σαρκομερίων στο μυ μπορεί να τον προστατέψει από τραυματισμό.

Ένα σημαντικό ερώτημα που αφορά την επίδραση της επαναλαμβανόμενης προπόνησης είναι αν μπορεί τελικά να αποκατασταθεί η βλάβη στον τραυματισμένο μυ και να προσαρμοστεί στην άσκηση. Αν ο τραυματισμένος μυς έχει περισσότερες αδύναμες μυϊκές ίνες, θα προκληθεί μεγαλύτερη μυϊκή καταστροφή μετά από προπόνηση έκκεντρων συστολών, και ο μυς μπορεί να μην είναι ικανός να αποκατασταθεί από την επίδραση της προπόνησης. Η απάντηση στο ερώτημα αυτό θα μας εδίνει πληροφορίες που θα βοηθούσαν στις στρατηγικές θεραπείας των ασθενών που πάσχουν από νευρομυϊκές ασθένειες, που μπορεί να έχουνε μεγαλύτερο ποσοστό αδύνατων μυϊκών ινών.

Προσαρμογή

Είναι γνωστό (Hough, 1902; Friden et al., 1983; Schwane and Armstrong, 1983; Clarkson and Tremblay, 1988) ότι η δυσκαμψία και ο πόνος που ακολουθούν μια έκκεντρη προπόνηση γίνονται πολύ ασθενέστεροι ως αποτέλεσμα της προσαρμογής του μυός. Παρόλα αυτά, ο ακριβής μηχανισμός που οδηγεί στην προσαρμογή του μυός δεν είναι ξεκάθαρος. Στην αρχική του πρόταση για το μηχανισμό της καταστροφής από έκκεντρη άσκηση ο Morgan (1990) υποστήριξε ότι η διαδικασία της προσαρμογής που ακολουθεί περιλαμβάνει μία αύξηση του αριθμού των σαρκομερίων στις μυϊκές ίνες.

62
Ως αποτέλεσμα, για ένα συγκεκριμένο μήκος μυών, το μέσο μήκος του σαρκομερίου θα είναι μικρότερο. Για το λόγο αυτό μικρότερο εύρος λειτουργίας του μυός θα περιλαμβάνεται στην περιοχή της αστάθειας του, η οποία είναι το κατώτατο σκέλος της καμπύλης μήκους-δύναμης. Στοιχεία που στηρίζουν την υπόθεση αυτή προέρχονται από έρευνες στις οποίες ποντίκια ασκήθηκαν σε ανηφόρα ή σε κατηφόρα σε κυλιόμενο τάπητα (Lynn and Morgan, 1994; Lynn, Talbot, Morgan, 1998). Βρέθηκε ότι ο αριθμός των σαρκομερίων στον ορθό μηριαίο των ζώων που τρέχανε στην ανηφόρα ήταν κατά μέσο όρο 11% μεγαλύτερος από τον αριθμό των σαρκομερίων των ζώων που τρέχανε στην κατηφόρα.

Αυτή η υπόθεση αμφισβητήθηκε (Koh and Herzog, 1998; Koh and Brooks, 2001), όμως τα αντίθετα αποτελέσματα των ερευνών αυτών σε μύες λαγού είναι δύσκολα να αξιολογηθούν από την στιγμή που δεν δόθηκε προσοχή στο μήκος του εύρους της κίνησης, στο οποίο ο μυς εκτέλεσε έκκεντρη άσκηση, σε σχέση με το βέλτιστο μήκος. Επίσης, δεν επιστήθηκε αν το πρωτόκολλο των έκκεντρων συστολών που χρησιμοποιήθηκε προκάλεσε σημάδια καταστροφής των σαρκομερίων.

Οι McHugh et al. (1999) εξέφρασαν τον σκέπτικο για την προσαρμογή του μυάλου στη μηχανική της προσαρμογής του μυών που περιλαμβάνει την δημιουργία επιπλέον σαρκομερίων στα κέντρα των μυϊκών ινών. Αν οι μυϊκές ίνες πρόκειται να ανασυσταθούν μετά τον τραυματισμό από έκκεντρη προπόνηση, αυτή η διαδικασία θα πρέπει να γίνει πολύ γρήγορη για να ολοκληρωθεί με το τέλος μιας εβδομάδας μετά τον τραυματισμό. Μπορεί όμως να προχωρήσει σε μια τέτοια γρήγορη διαδικασία σε επίπεδο σαρκομερίων; Παλιότερη έρευνα όπου χρησιμοποιήθηκε ακινητοποίηση του μυών στη θέση της διάτασης έδειξε, αύξηση του αριθμού των σαρκομερίων στη μυϊκή ίνα μέσα σε 5 μέρες (Williams and Goldspink, 1973). Αυτή η αύξηση ήταν γρήγορη αναστρέψιμη. Δεν έχουν γίνει ακόμη κατανοητές οι ακριβείς
λεπτομέρειες, σε επίπεδο κυττάρου, των γεγονότων που οδηγούν στην προσαρμογή του αριθμού των σαρκομερίων. Η ταχύτητα της διαδικασίας αυτής είναι φανερά σημαντική για την προσαρμογή που παρατηρείται μετά από έκκεντρη προπόνηση (Goldspink, 1998; Wretman et al., 2001).

Η αλλαγή της καμπύλης μήκους-δύναμης χρησιμοποιείται ως δείκτης μυϊκής προσαρμογής στον τραυματισμό από έκκεντρη προπόνηση. Θα πρέπει όμως να διαχωρίσουμε τα δύο είδη της αλλαγής που συμβαίνουν σε συνδυασμό με την έκκεντρη προπόνηση. Μετά από ασυνήθιστη άσκηση για το μυ θα υπάρξει μια αλλαγή στο βέλτιστο μήκος του μυών ως αποτέλεσμα των κατεστραμμένων σαρκομερίων. Αυτή η κατάσταση ακολουθείται από μια δεύτερη καθυστερημένη αλλαγή στο βέλτιστο μήκος του μυών που αντιπροσωπεύει την προσαρμογή του μυών από την αύξηση του αριθμού των σαρκομερίων. Στους μύες των αμφίβιων, μέσα σε περίπου 6 ώρες από τον τραυματισμό από έκκεντρη προπόνηση η αλλαγή στο βέλτιστο μήκος έχει αντιστραφεί και το βέλτιστο μήκος επιστρέφει στις τιμές που είχε πριν την άσκηση (Jones, Allen, Talbot, Morgan, Proske, 1997). Μπορούμε να υποθέσουμε λοιπόν ότι μετά από έκκεντρη άσκηση, σε μερικές μυϊκές ίνες τα τραυματισμένα σαρκομέρια θα έχουν καταφέρει, με το χρόνο, να επανέλθουν στην φυσιολογική τους μορφή και στην προηγούμενη ικανότητά τους να παράγουν δύναμη (Talbot and Morgan, 1996). Σε άλλες μυϊκές ίνες, οι περιοχές που έχουν καταστραφεί μπορεί να είναι πολύ μεγαλύτερες και τέτοιες μυϊκές ίνες δεν μπορούν πλέον να συσταθούν και για το λόγο αυτό δεν μπορούν να συνεισφέρουν στην αλλαγή της καμπύλης μήκους-δύναμης.

Σε μελέτη στον τρικέφαλο βραχιόνιο του ανθρώπου, ήταν πιθανή η αναγνώριση της αλλαγής εξαιτίας της καταστροφής της βέλτιστης γωνίας παραγωγής ροπής προς την κατεύθυνση του μεγαλύτερου μήκους μυών μετά από έκκεντρη
προπόνηση, αλλά η κατάσταση αυτή αναστράφηκε στα επίπεδα ελέγχου 2 μέρες μετά την έκκεντρη άσκηση (Jones et al., 1997). Καμία άλλη αλλαγή εξαιτίας της προσαρμογής του μύος δεν παρατηρήθηκε. Σε άλλη μελέτη που χρησιμοποιήθηκαν οι μυϊκές ομάδες των προσαγωγών, παρουσιάστηκε μια σταθερή αλλαγή στη βέλτιστη γωνία παραγωγής ροπής (Brockett et al., 2001). Στη μελέτη αυτή, ενώ η επιδραση της προπόνησης ήταν ξεκάθαρη, δεν ήταν δυνατός ο προσδιορισμός του σημείου στο οποίο προκλήθηκε ο τραυματισμός και δεν υπήρχε καμία επαναφορά από την αλλαγή που προκάλεσε ο τραυματισμός. Πιθανώς σε καταστάσεις όπως αυτή, ο χρόνος της αποκατάστασης από την αρχική αλλαγή της καμπύλης μήκους-δύναμης και η αρχή της διαδικασίας προσαρμογής μπορεί να συμπίπτουν.

Μελέτες που γίνονται σε ζώα, δείχνουν ότι οι μυϊκές ίνες του ορθού μηριαίου στα ποντίκια, που προπονήθηκαν με κατηφορικό τρέξιμο για μία εβδομάδα, είχαν περισσότερα σαρκομέρια από την αντίστοιχη ομάδα που προπονήθηκε με ανηφορικό τρέξιμο. Στο τέλος της προπόνησης, σε απάντηση στις έντονες προπονήσεις έκκεντρων συστολών, ξεκινώντας από την ίδια γωνία γόνατος, η ομάδα που γυμνάστηκε με κατηφορικό τρέξιμο έδειξε μικρότερη αλλαγή στην βέλτιστη γωνία για την παραγωγή ροπής από ό,τι η αντίστοιχη ομάδα που προπονήθηκε με ανηφορικό τρέξιμο. Η μικρότερη αυτή αλλαγή λαμβάνεται ως δείκτης μικρότερης καταστροφής (Lynn et al., 1998).

Υπάρχουν επίσης περιορισμένες αποδείξεις για τη διαδικασία της προσαρμογής στην αντίθετη κατεύθυνση (Whitehead et al., 1998). Ζητήθηκε από μια ομάδα ανθρώπων να εκτελέσουν για μία χρονική περίοδο ομόκεντρη άσκηση με το γαστροκνήμι του ενός ποδιού, ενώ το άλλο πόδι χρησιμοποιήθηκε ως έλεγχος. Στην έκκεντρη αξιολόγηση που έγινε μια εβδομάδα αργότερα, οι μύος που προπονήθηκαν ομόκεντρα παρουσίασαν μεγαλύτερη αλλαγή στην βέλτιστη γωνία παραγωγής.
δύναμης, δείκτης μεγαλύτερης καταστροφής, από ό,τι οι μύες ελέγχου. Φαίνεται ότι κατά τη διάρκεια της ομόκεντρης άσκησης οι μυϊκές ίνες μάλλον έχασαν σαρκομέρια, οδηγούμενες σε μεγαλύτερη ευαισθησία στην καταστροφή μετά την έκκεντρη άσκηση.

Διαφορές μεταξύ των φύλων

Μελέτες σε ζώα έχουν περιγράψει τις διαφορές μεταξύ των φύλων ως αποτέλεσμα προπόνησης αντοχής και προπόνησης με έκκεντρες συστολές (Amelink and Bar, 1986; Tiidus and Bombardier E, 1999). Γενικά τα θηλυκά ζώα δείχνουν μικρή ανταπόκριση στην έκκεντρη άσκηση, με μικρότερη μυϊκή καταστροφή όπως φαίνεται από έμμεσους δείκτες όπως η ΚΚ (Amelink and Bar, 1986; Bar et al., 1985), οι ιστολογικές μετρήσεις (Komulainen, Koskinen, Kalliokoski, Takala, Vihko, 1999), και η εμφάνιση φλεγμονής (Schneider, Correia, Cannon, 1999).

Είναι καλά τεκμηριωμένο ότι οι γυναίκες έχουν μικρότερη συγκέντρωση ΚΚ τηρείας σε σχέση με τους άντρες (Harris, Wong, Shaw, 1991; Norton, Clarkson, Graves, Litchfield, Kirwan, 1985). Σε δύο μελέτες (Eston et al., 2000; Sorichter et al., 2001) δεν βρέθηκαν διαφορές μεταξύ των φύλων σε δείκτες της μυϊκής καταστροφής μετά από κατηφορικό τρέξιμο. Ενώ ερευνητές αναφέρουν υψηλότερη αρχική συγκέντρωση ΚΚ και μυοσφαιρίνης αλλά ίδια αρχική συγκέντρωση τμημάτων βαριάς αλυσίδας μυσόνης και σκελετικής τροπονίνης I στους άνδρες σε σχέση με τις γυναίκες (Sorichter et al., 2001). Και οι τέσσερις αυτοί δείκτες αυξήθηκαν μετά από 20 λεπτά κατηφορικό τρέξιμο, με τους άνδρες να έχουν σημαντικά υψηλότερες απόλυτες τιμές μετά την άσκηση σε σχέση με τις γυναίκες. Όμως, όταν οι συγκεντρώσεις εκφραζόταν σε σχετικές τιμές σε σχέση με τις αρχικές, η αύξηση των τεσσάρων αυτών μυϊκών πρωτεϊνών μετά την άσκηση δεν παρουσιάσαν καμία
διαφορά μεταξύ των φύλων. Επίσης, ερευνητές παρατήρησαν ότι οι άνδρες και οι γυναίκες είχαν παρόμοιες συγκέντρωσεις KK, αύξησης του πόνου, και μείωσης της δύναμης μετά από προπόνηση με κατηφορικό τρέξιμο (Eston et al., 2000).

Мόνο λίγες μελέτες που εξέτασαν δείκτες μυϊκής καταστροφής μεταξύ ανδρών και γυναικών μετά από μέτρια ή υψηλής έντασης προπόνησεις έκκεντρων συστολών βρήκαν αποτελέσματα παρόμοια με τις μελέτες που έγιναν σε ζώα. Ερευνητές εξέτασαν τη συγκέντρωση της ΚΚ σε αγώνα και γυναίκες και άνδρες που εκτέλεσαν 50 μέγιστες έκκεντρες συστολές με τους καμπτήρες μύες του αγκώνα (Miles, Clarkson, Smith, 1994). Οι γυναίκες είχαν χαμηλότερες αρχικές τιμές αλλά είχαν παρόμοιες μεγίστες και σχετικά συγκέντρωση ΚΚ σε σχέση με τους άνδρες. Σε μια άλλη μελέτη (Stupka et al., 2000), δεν βρέθηκε σημαντική διαφορά στη συγκέντρωση ΚΚ μεταξύ ανδρών και γυναικών μετά από έκκεντρη προπόνηση που περιελάμβανε πίεσεις και εκτάσεις των ποδιών, υπήρχε μια τάση για τη συγκέντρωση των ανδρών και γυναικών μετά από έκκεντρη προπόνηση. Σε μια άλλη μελέτη (Stupka et al., 2000), δεν βρέθηκε σημαντική διαφορά στη συγκέντρωση ΚΚ μεταξύ των ανδρών και των γυναικών μετά από έκκεντρη προπόνηση που περιελάμβανε πίεσεις και εκτάσεις των ποδιών, υπήρχε μια τάση για τη συγκέντρωση των ανδρών και γυναικών μετά από έκκεντρη προπόνηση. Σε μια άλλη μελέτη (Stupka et al., 2000), δεν βρέθηκε σημαντική διαφορά στη συγκέντρωση ΚΚ μεταξύ των ανδρών και των γυναικών μετά από έκκεντρη προπόνηση που περιελάμβανε πίεσεις και εκτάσεις των ποδιών, υπήρχε μια τάση για τη συγκέντρωση των ανδρών και γυναικών μετά από έκκεντρη προπόνηση. Σε μια άλλη μελέτη (Stupka et al., 2000), δεν βρέθηκε σημαντική διαφορά στη συγκέντρωση ΚΚ μεταξύ των ανδρών και των γυναικών μετά από έκκεντρη προπόνηση. Σε μια άλλη μελέτη (Stupka et al., 2000), δεν βρέθηκε σημαντική διαφορά στη συγκέντρωση ΚΚ μεταξύ των ανδρών και των γυναικών μετά από έκκεντρη προπόνηση. Σε μια άλλη μελέτη (Stupka et al., 2000), δεν βρέθηκε σημαντική διαφορά στη συγκέντρωση ΚΚ μεταξύ των ανδρών και των γυναικών μετά από έκκεντρη προπόνηση.
οι γυναίκες είναι περισσότερο επίρρεπες σε μέτριας ή μεγίστης έντασης έκκεντρη
προπόνηση. Ερευνητές (Borsa and Sauers, 2000) αναφέρανε ότι δεν υπήρξε
σημαντική διαφορά μεταξύ των φύλων στην μείωση της δύναμης μετά από
ομόκεντρη/ έκκεντρη προπόνηση των καμπτήρων του αγκώνα, ενώ άλλοι ερευνητές
(Rinard, Clarkson, Smith, Grossman, 2000) δεν βρήκαν διαφορές μεταξύ των φύλων
στο μυϊκό πόνο, στην απώλεια δύναμης ή στην αποκατάσταση της δύναμης την 7η
μέρα μετά από 70 μέγιστες έκκεντρες συστολές των καμπτήρων του αγκώνα. Όμως, οι
ιδίοι ερευνητές βρήκαν μεγαλύτερη μείωση στο εύρος της κίνησης για τις γυναίκες
ξεκινώντας από τις 72 ώρες και παραμένοντας μέχρι τις 168 ώρες μετά την
προπόνηση. Σε μια άλλη μελέτη (Sayers and Clarkson, 2001) για τη μείωση και την
αποκατάσταση της δύναμης μετά από έκκεντρη άσκηση, δεν βρέθηκαν διαφορές
μεταξύ ανδρών και γυναικών μετά από 50 έκκεντρες συστολές των καμπτήρων του
αγκώνα. Σε έναν αρχικό πληθυσμό 192 δοκιμαζόμενων, οι 24 από τους 32 που
παρουσιάσανε περισσότερα πως στο 70% μείωση της απόδοσης συνήθως μετά την άσκηση
ήταν γυναίκες. Αυτή η εμφανής μείωση της απόδοσης συνήθως σχετίζεται με μεγάλες
περιόδους εξασθένησης της δύναμης μέχρι και 26 μέρες μετά την άσκηση.

Δεν υπάρχει ξεκάθαρη απάντηση για το αν υπάρχουν διαφορές στους μύες
μεταξύ των φύλων είτε με υπομέγιστες είτε με μέγιστες προπόνησες. Όμως, η
πλειοψηφία των μελετών δείχνει ότι είτε δεν υπάρχουν διαφορές μεταξύ ανδρών και
γυναικών στην αντίδραση σε προπόνηση έκκεντρων συστολών είτε οι διαφορές είναι
μικρές και είναι οι γυναίκες που επηρεάζονται περισσότερο. Τα αποτελέσματα των
μελετών σε ανθρώπους δεν συμφωνούν με αυτά από μελέτες σε ζώα όπου τα θηλυκά
επηρεάζονται σημαντικά περισσότερο από τα αρσενικά.
Δρομική οικονομία

Η μηχανική της κίνησης είναι ένας από τους παράγοντες που επηρεάζουν την απόδοση των αθλητών στα αγωνίσματα αντοχής. Υπάρχουν διαφοροποιήσεις στην μηχανική της κίνησης που μπορούν να επηρεάσουν την μηχανική δαπάνη που σχετίζεται με την παραγωγή ενέργειας και που κατ’ επέκταση επηρεάζει την απόδοση. Ένα σημαντικό πρόβλημα στην προσπάθεια του προσδιορισμού της σχέσης μεταξύ της μηχανικής κίνησης και της απόδοσης είναι ότι μόνο περιγραφικές πληροφορίες μπορούμε να πάρουμε κατά τη διάρκεια του αγώνα. Για το λόγο αυτό οι περισσότερες βιομηχανικές μελέτες γίνονται σε ελεγχόμενες συνθήκες όπου ειδικές κινήσεις μπορούν να εξομοιωθούν και παράμετροι της μηχανικής μπορούν να μετρηθούν. Το κύριο πρόβλημα βρίσκεται στη δυσκολία να ενθαρρύνεις τους αθλητές να δώσουν την καλύτερη τους απόδοση σε ελεγχόμενη κατάσταση και επίσης αυτό που μετρείται στην ελεγχόμενη κατάσταση μπορεί να είναι διαφορετικό από αυτό που συμβαίνει στον αγώνα.

Από τη στιγμή που υπάρχει δυσκολία εξομοιώσης του αγώνα με ελεγχόμενες συνθήκες, η μηχανική της κίνησης συχνά μελετάται με άλλες εξαρτημένες μεταβλητές, όπως είναι η οικονομία της κίνησης. Ως δρομική οικονομία αναφέρεται η υπομέγιστη πρόσληψη οξυγόνου ανά μονάδα σωματικού βάρους σε σχέση με συγκεκριμένο επίπεδο φυσικής δραστηριότητας. Από τη στιγμή που η ενεργειακή δαπάνη σε ένα αγώνισμα αντοχής μπορεί να έχει άμεση επίδραση στην απόδοση, ο,τιδήποτε θα βελτιώνει την δρομική οικονομία θα είχε καλά αποτελέσματα στην απόδοση. Αν αλλαγές στο κινητικό πρότυπο έχουν ως αποτέλεσμα την καλύτερη δρομική οικονομία ή αν η τεχνολογική πρόοδος στα μηχανήματα μπορούν να μειώσουν την ενέργεια που απαιτείται για τη διατήρηση ενός συγκεκριμένου επιπέδου απόδοσης, το μειωμένο ενεργειακό κόστος θα βοηθούσε κάποιον ή να
διατηρήσει ένα συγκεκριμένο επίπεδο της απόδοσης για μεγαλύτερη χρονική περίοδο ή να αυξήσει το επίπεδο της προσπάθειας για συγκεκριμένο χρόνο ή απόσταση.

Από τη στιγμή που τα αγωνισματικά αντοχής διαρκούν μεγάλα χρονικά διαστήματα, μια μικρή βελτίωση στην αποτελεσματικότητα της δρομικής οικονομίας, μπορεί να διώσει σημαντικά πλεονεκτήματα (Frederick, Howley, Powers, 1983b; Williams 1990). Μια βελτίωση, για παράδειγμα, της τάξεως του 1% στη δρομική οικονομία, βελτιώνει την επίδοση δρομέα 10 χλ κατά 16 δευτερόλεπτα, επιτρέποντάς του να τερματίζει 100μ γρηγορότερα. Το γεγονός ότι αλλαγές τόσο σημαντικές για την εξέλιξη του αγώνα μπορούν είναι τόσο μικρές δημιουργούν πολλά προβλήματα για τους επιστήμονες, από τη στιγμή που οι μικρές αλλαγές στην μηχανική της κίνησης οι οποίες μπορούν να επηρεάσουν τη δρομική οικονομία είναι πολύ δύσκολο να αξιολογηθούν και να στηριχθούν στατιστικά.

Διαφοροποιήσεις στη δρομική οικονομία

Οι διαφοροποιήσεις στη δρομική οικονομία μεταξύ των αθλητών που έχουν τις ίδιες επιδόσεις, είναι σημαντικές και μπορούν να κυμαίνονται από 15% μέχρι και 30% (Costill and Fox, 1969; Conley and Krahenduhl, 1980; Williams and Cavanagh, 1983; Daniels, 1985). Οι ερευνητές Bailey και Pate (1991) βρήκαν λίγες άμεσες αποδείξεις ότι η δρομική οικονομία σε κορυφαίους αθλητές μπορεί να βελτιωθεί, αλλά παρέθεσαν τον αερισμό, την κατανομή της μάζας, το προπονητικό μοντέλο και το στιλ τρεξίματος ως παράγοντες που μπορούν να βελτιωθούν. Φαίνεται όμως ότι κάποιος που είναι οικονομικός στην εκτέλεση μιας συγκεκριμένης φυσικής δραστηριότητας μπορεί να μην είναι οικονομικός σε άλλες φυσικές δραστηριότητες.

Ερευνητές (Daniels, Scardina, Foley, 1984) μέτρησαν την κατανάλωση οξυγόνου δεκατριών δρομέων κατά την εκτέλεση 5 διαφορετικών φυσικών δραστηριοτήτων και
βρήκαν ότι οι δοκιμαζόμενοι δεν ήταν σταθερά οικονομικοί ή μη οικονομικοί στις δραστηριότητες αυτές.

Μηχανική ισχύς σε σχέση με τη δρομική οικονομία

Η μηχανική ισχύς είναι η μέτρηση του ρυθμού της παραγωγής έργου από έναν αθλητή που εκτελεί μια δραστηριότητα. Η μηχανική ισχύς του σώματος μετρείται ως σύνολο και επηρεάζεται από την κίνηση των μελών ολόκληρου του σώματος. Κατά τον ίδιο τρόπο, η πρόσληψη οξυγόνου είναι μια μέτρηση της κατανάλωσης ενέργειας για το σύνολο του σώματος. Είναι λογικό να σκεφτούμε ότι η μηχανική ενέργεια έχει άμεση επίδραση στην κατανάλωση ενέργειας, αλλά σημαντική συσχέτιση δεν έχει βρεθεί. Η έλλειψη συσχέτισης μπορεί να οφείλεται κατά ένα μέρος στις δυσκολίες μέτρησης της μηχανικής ισχύος. Μερικοί όμως ερευνητές (Biewener 1990; Baudinette 1991) εξέφρασαν την άποψη ότι άμεση σχέση μεταξύ της μηχανικής ισχύος και της μεταβολικής ενέργειας δεν μπορεί να αναμένεται εξαιτίας των σύνθετων λειτουργιών οι οποίες απαιτούνται από τους μύες.

Κύκλος διάτασης-βράχυνσης και δρομική οικονομία

Ο κύκλος διάτασης-βράχυνσης που περιλαμβάνει τα ελαστικά στοιχεία του μυών, τους τένοντες και την καμάρα ποδιού, έχει θεωρηθεί ως σημαντικός παράγοντας των ενεργητικών ρυθμικών κινήσεων όπως το τρέξιμο (Cavagna, Saibene, Margaria, 1964; Williams 1985; Ker, Bennet, Bibby, Kester, Alexander, 1987; McMahon 1987; van Ingen Schenau, Bobbert, Haan, 1997). Παρόλο που η παραγωγή έργου κατά τον κύκλο διάτασης-βράχυνσης αποδίδεται συνήθως στην αποθήκευση και την επαναχρησιμοποίηση της ελαστικής ενέργειας, και άλλοι παράγοντες έχουν προταθεί ως εξίσου ή περισσότερο σημαντικοί, συμπεριλαμβανομένων της αύξησης του
διαθέσιμου χρόνου για την παραγωγή δύναμης και της ισχυροποίησης του μηχανισμού της συστολής κατά τη διάρκεια της ομόκεντρης φάσης της κίνησης (Bosco, Tarkka, Komi, 1982; Bosco et al., 1987; Williams 1985; van Ingen Schenau et al., 1997). Υπάρχουν πολλές απόψεις για το αν η ελαστική ενέργεια μπορεί να αυξήσει την παραγόμενη ενέργεια, αλλά υπάρχει γενικά η άποψη ότι η δρομική οικονομία έχει πλεονεκτήματα από το μηχανισμό του κύκλου της διάτασης-βράχυνσης γιατί το μηχανικό έργο που παράγεται από τον κύκλο διάτασης-βράχυνσης μειώνει την ποσότητα της ενέργειας που καταναλώνουν οι λειτουργούντες μύες (Williams 1985; van Ingen Schenau and Cavanagh 1990; Alexander 1991; Taylor 1994).

Οι Dalleau, Belli, Bourdin, και Lacour (1998), κάνανε κινηματικές μετρήσεις σε δύσκαμπτο πόδι κατά τη διάρκεια τρεξίματος. Η σημαντική σχέση που βρήκαν ήταν ότι χαμηλότερο ενεργειακό κόστος σχετίζεται με μεγαλύτερη δυσκαμψία. Επιπλέον συγκρίνανε την ηχητική συχνότητα της μετατόπισης της μάζας του
μοντέλου τους με τη συχνότητα των βημάτων. Βρήκαν ότι όσο περισσότερο διαφέρει η συχνότητα των βημάτων από την ηχητική συχνότητα τόσο μεγαλύτερη σχέση υπάρχει με το μεταβολικό κόστος. Ο Taylor (1994) πρότεινε ότι για την επίτευξη μέγιστης αποθήκευσης και αποκατάστασης της ενέργειας οι μύες θα πρέπει να υποστούν πολύ μικρές αλλαγές στο μήκος τους.

Το αθλητικό παπούτσι έχει αναφερθεί ως ένας άλλος πιθανός παράγοντας αποθήκευσης ενέργειας κατά τη διάρκεια της πρόσκρουσης με το έδαφος και επιστροφή της κατά τη φάση της επαφής με το έδαφος κατά τη διάρκεια του τρεξίματος (McMahon 1987; Shorten 1993). Παρόλο που ο Shorten (1993) δεν μπορούσε να αποκλείσει την πιθανότητα ότι η δρομική οικονομία αυξάνεται από την ελαστικότητα του παπουτσιού, οι διαφορές μεταξύ των μοντέρνων παπουτσιών για τρέξιμο όσον αφορά την αποθήκευση και την επιστροφή ενέργειας ήταν πολύ μικρές για να έχουν άμεσο αποτέλεσμα στην κατανάλωση ενέργειας. Έτσι, καταλήγει ο συγγραφέας ότι το αθλητικό παπούτσι πιθανώς να μην είναι σημαντικός παράγοντας που να επηρεάζει τη δρομική οικονομία.

Дρομική οικονομία και ευλυγισία

Δεν είναι γνωστό αν η συνεισφορά από τον κύκλο διάτασης-βράχυνσης στην παραγωγή έργου και η επακόλουθη μείωση της μεταβολικής ενέργειας, μπορεί να βελτιωθεί με την προπόνηση. Απόψεις, ότι η προπόνηση ευλυγισίας βελτιώνει την ικανότητα αποθήκευσης ελαστικής ενέργειας (Wilson, Wood, Elliott, 1991; Wilson, Elliott, Wood, 1992) έχουν υποστεί κριτική και θεωρούνται λανθασμένες, ότι τα πλεονεκτήματα από τον κύκλο διάτασης-βράχυνσης δεν προέρχονται από την αποθήκευση και την απόδοση της ενέργειας αλλά από αύξηση του διαθέσιμου χρόνου για την παραγωγή της δύναμης (Goubel 1997; van Ingen Schenau et al., 1997).
Αρκετές μελέτες έχουν εξετάσει την επίδραση της ευλυγισίας των κάτω άκρων στην δρομική οικονομία. Σε μια μελέτη βρέθηκε ότι η αύξηση της ευλυγισίας μετά από μια περίοδο προπόνησης ευλυγισίας σχετίζεται με βελτίωση της δρομικής οικονομίας (Gogdes, Macrae, Londgon, 1989). Άλλες όμως μελέτες έδειξαν πολύ μεγαλύτερη δρομική οικονομία όταν οι δοκιμαζόμενοι δεν είχαν καλή ευλυγισία, με αύξηση της συνεισφοράς της ελαστικής ενέργειας ως πιθανότερο μηχανισμό (Gleim, Stachenfeld, Nicolas, 1990; Craib et al., 1996).

Δρομική οικονομία και μέγεθος του σώματος

Η υπομέγιστη ενεργειακή δαπάνη οξυγόνου συνήθως εκφράζεται σε σχέση με την σωματική μάζα (ml/kg/min), μιας και η επίδρασή της στην δρομική οικονομία είναι μεγάλη. Στο τρέξιμο, διάφορες μελέτες προτείνουν ότι μεγαλύτερη δρομική οικονομία σχετίζεται με μεγαλύτερη μάζα σώματος (Bergh, Sjorin, Forsberg, Svedenhad, 1991; Bourdin, Pastene, Germain, Lacour, 1993; Anderson 1996), όμως άλλες μελέτες δεν έχουν αναφέρει τέτοια συσχέτιση (Helgerud, 1994). Η μέγιστη πρόσληψη οξυγόνου φαίνεται να έχει την ίδια σχέση με την σωματική μάζα όπως αυτή που βρέθηκε με την υπομέγιστη πρόσληψη οξυγόνου (Bergh et al., 1991; Bergh and Forsberg 1992). Η μεγαλύτερη δρομική οικονομία που βρέθηκε σε βαρύτερους δρομείς μπορεί να μην προσφέρει κάποιο πλεονέκτημα από τη στιγμή που αυτοί οι δρομείς μπορεί να καταναλώνουν την ίδια σχετική (%) ποσότητα οξυγόνου όπως οι ελαφρύτεροι δρομείς. Άλλοι ερευνητές έχουν προτείνει ότι η κατανάλωση οξυγόνου θα πρέπει να μπαίνει σε κλίμακα στα δύο τρίτα ή στα τρία τέταρτα της σωματικής μάζας παρά στη συνολική σωματική μάζα (Bergh and Forsberg 1992; Martin and Morgan 1992; Brisswalter, Legros, Durand, 1996).
Η αντίστροφη σχέση μεταξύ δρομικής οικονομίας και σωματικής μάζας μπορεί να συμβαίνει εξαιτίας των διαφορών στην κατανομή της μάζας στα διάφορα μέρη του σώματος (Cavanagh and Kram 1985b; Bailey and Pate 1991; Pate, Macera, Bailey, Bartoli, Powell, 1992). Έρευνες όμως σε ζώα με πολύ διαφορετική κατανομή μάζας στα μέλη τους έδειξαν μικρή διαφορά στην κατανάλωση ενέργειας (Taylor, 1994). Έρευνες στις οποίες προστίθενται βάρη στα πόδια δρομέων έδειξαν αύξηση του ενεργειακού κόστους, κάνοντας σημαντική την επίδρασή της κατανομής της μάζας (Catlin and Dressendorfer, 1979; Martin 1985). Επίσης υπάρχουν μελέτες με ενδείξεις ότι το μεγαλύτερο μήκος ποδιών σχετίζεται με καλύτερη δρομική οικονομία στο τρέξιμο (Svedenhag and Sjorin, 1994; Brisswalter et al., 1996), κάποιες άλλες όμως δεν βρήκαν ανάλογη συσχέτιση (Pate et al., 1992; Svedenhag and Sjorin, 1994).

Σχέση μεταξύ δρομικής οικονομίας και βιομηχανικών παραμέτρων

Πολλές μελέτες έχουν δείξει τη γραμμική σχέση που υπάρχει μεταξύ της δρομικής οικονομίας και της ταχύτητας τρεξίματος (Daniels, 1985; Morgan, Martin, Krahenbuhl, 1989; Daniels and Daniels, 1992). Ενα από τα κύρια ενδιαφέροντα είναι το πώς οι βιομηχανικοί παράγοντες επηρεάζουν τη δρομική οικονομία σε συγκεκριμένη ταχύτητα. Το μήκος του διασκελισμού είναι ένας από τους παράγοντες που έχουν μελετηθεί περισσότερο στη βιομηχανική των μεγάλων αποστάσεων (Walt and Wyndham, 1973; Cavanagh and Williams 1982; Cavanagh and Kram, 1989; Bailey and Messier, 1991). Φαίνεται να μην υπάρχει σχέση μεταξύ της δρομικής οικονομίας και της ελεύθερης επιλογής μήκους διασκελισμού από τους δοκιμαζόμενους σε οποιαδήποτε ταχύτητα τρεξίματος (Svedenhag and Sjorin, 1994; Brisswalter et al., 1996), αλλά υπάρχει ένα μήκος διασκελισμού που είναι οικονομικότερο για κάθε αθλητή ξεχωριστά για μια συγκεκριμένη ταχύτητα, και αυτό...

Ένας μεγάλος αριθμός μετρήσεων της μηχανικής του τρεξίματος έχει αναγνωριστεί ότι σχέτιζεται με την δρομική οικονομία, αλλά υπάρχουν πολλές αντιφάσεις μεταξύ των μετρήσεων, με κάποια μέτρηση να σχετίζεται με άλλες σε κάποια μελέτη αλλά με διαφορετικές σε κάποια άλλη μελέτη. Η καλύτερη δρομική οικονομία σχετίζεται με: μικρότερη έκταση του ισχίου και μεγαλύτερη έκταση στο γόνατο κατά την απογείωση των δακτύλων, μεγαλύτερη κάμψη της ποδοκνημικής και στη συνέχεια αύξηση της επιτάχυνσης προς τα εμπρός στη φάση της στήριξης (Williams, Cavanagh, Ziff, 1987). Επίσης σχετίζεται με: υψηλότερη πρώτη κάθετη κορύφωση της δύναμης, μεγαλύτερη έκταση της κνήμης με την κάθετη επαφή του ποδιού, μικρότερη έκταση της ποδοκνημικής κατά την απογείωση των δακτύλων, μεγαλύτερη κλίση του κορμού προς τα εμπρός και χαμηλότερη οριζόντια ταχύτητα στη συμπλέγμενη φάση της στήριξης στο σημείο του γονάτου κατά τη διάρκεια της επαφής του ποδιού (Williams and Cavanagh, 1987). Επιπλέον σχετίζεται με: μεγαλύτερη φάση στήριξης, μικρότερη δύναμη αντίδρασης άμεσα από το έδαφος, μεγαλύτερη έκταση του ισχίου και του γονάτου κατά τη φάση της απογείωσης των δακτύλων και γρηγορότερη ελάχιστη ταχύτητα στο σημείο της στήριξης στην επαφή του ποδιού με το έδαφος (Williams and Cavanagh, 1987), καθώς και μικρότερες κινήσεις των χεριών (Anderson and Tseh, 1994). Μέχρι να οριστούν περισσότερο σταθερές σχέσεις, αυτά τα αποτελέσματα
δεν θα πρέπει να χρησιμοποιούνται ως βάση για την προσπάθεια αλλαγής της
technικής με σκοπό τη βελτίωση της δρομικής οικονομίας.

Σχέση μεταξύ δρομικής οικονομίας και εξοπλισμού

Ο εξοπλισμός που χρησιμοποιείται από τους αθλητές, συμπεριλαμβανομένων των
παπουτσιών και των ρούχων που χρησιμοποιούν στα αθλήματα, μπορούν επηρεάσουν
tη δρομική οικονομία με διάφορες τρόπους. Η μάζα των ρούχων δεν είναι συνήθως
παράγοντας που επηρεάζει τη δρομική οικονομία από τη στιγμή που ουσιαστικά δεν
προσθέτει επιπλέον μάζα στην μάζα του σώματος (Stevens, 1983). Τα παπούτσια
όμως μπορούν να επηρεάσουν τη δρομική οικονομία με σημαντική αύξηση της
υπομέγιστης πρόσληψη οξυγόνου ως αποτέλεσμα της αύξησης 75 g το κάθε παπούτσι
(Catlin and Dressendorfer 1979; Frederick, Daniels, Hayes, 1984). Το μεταβολικό
κόστος φαίνεται να αυξάνεται εξαιτίας της μεγαλύτερης μοικής δύναμης που
χρειάζεται για την επιτάχυνση και την επιβράδυνση του ποδιού κατά την κίνηση
καθώς και άλλα βάρη προστίθενται στο μέλος (Martin, 1985). Το μαλακό υπόστρωμα
του παπουτσιού επηρεάζει σημαντικά τη δρομική οικονομία, το παπούτσι που
παρέχει περισσότερη προστασία χαμηλώνει το ενεργειακό κόστος μέχρι και 2.6%
(Frederick et al., 1983b). Δεν υπάρχουν σημαντικές διαφορές στο ενεργειακό κόστος
μεταξύ του τρεξίματος στο τσιμέντο, μια επιφάνεια για οποιεσδήποτε καρικές
συνθήκες, και στο χωμάτινο στίβο (Pugh, 1970; Bonen, Gass, Kachadirian, Johnson,
1974). Ένας όμως κλειστός στίβος ενισχύει τη δυσκαμψία στα κάτω άκρα των
dρομέων, κάτι που μπορεί να βελτιώσει την απόδοση (McMahon and Greene, 1979).
Κεφάλαιο Δεύτερο

Σύγκριση έκκεντρων συστολών μέγιστης και υπομέγιστης έντασης όμοιου έργου ως προς την επίδραση στη μυϊκή καταστροφή και την απόδοση
Περίληψη

Ερευνάμε τις διαφορές στην πρόκληση μυϊκής καταστροφής και στην επίδραση στη μυϊκή απόδοση μεταξύ μέγιστης και υπομέγιστης έντασης έκκεντρης προπόνησης όμοιου έργου. Μη συστηματικά αθλούμενοι υγιείς άρρενες (n=12) εκτέλεσαν δύο ισοκινητικά προπονητικά πρόγραμματα έκκεντρων υστολών των εκτεινόντων του γονάτου, ένα για κάθε τυχαία επιλεγμένο πόδι, με διαφορά δύο εβδομάδων μεταξύ τους. Στο πρώτο προπονητικό πρόγραμμα οι δοκιμαζόμενοι εκτέλεσαν άσκηση μέγιστης έντασης, που περιελάμβανε 12 σειρές των 10 επαναλήψεων μέγιστης εκούσιας προσπάθειας. Στο δεύτερο προπονητικό πρόγραμμα, ζητήθηκε από τους δοκιμαζόμενους να εκτελέσουν συνεχόμενη άσκηση υπομέγιστης έντασης (50% της μέγιστης έκκεντρης ροπής τους) μέχρι η συνολική παραγωγή έργου να είναι σχεδόν ίδια με αυτή που επιτεύχθηκε κατά την έκκεντρη προπόνηση με μέγιστη ένταση. Οι δείκτες της μυϊκής καταστροφής (κρεατινική κινάση ορού, καθυστερημένος μυϊκός πόνος και εύρος της κίνησης) και της μυϊκής απόδοσης (έκκεντρη και ισομετρική ροπή) αξιολογήθηκαν πριν την άσκηση και 24, 48, 72 καθώς και 96 ώρες μετά την άσκηση. Σε σύγκριση με τις αρχικές τιμές, οι δείκτες της μυϊκής καταστροφής αλλοιώθηκαν σημαντικά (P<0.05) σε όλες τις δύο προπόνησες και τις δύο προπόνησες. Στο δεύτερο προπονητικό πρόγραμμα οι δείκτες της μυϊκής καταστροφής αλλοιώθηκαν σημαντικά (P<0.05) σε όλες τις δύο προπόνησες και τις δύο προπόνησες. Παρ’ όλα αυτά, η μείωση μετά την προπόνηση μέγιστης έντασης ήταν σημαντικά μεγαλύτερη (P<0.05) σε σχέση με την μείωση μετά την προπόνηση υπομέγιστης έντασης. Τα αποτελέσματα αυτά οδηγούν στο συμπέρασμα ότι σχεδόν όμοιες ποσότητες μέγιστης και υπομέγιστης έκκεντρης ροπής έχουν την ίδια επίδραση στην μυϊκή καταστροφή αλλά η μέγιστη ένταση επηρεάζει περισσότερο τη μυϊκή απόδοση.
Εισαγωγή

Μόνο μία μελέτη έχει εξετάσει το μέγεθος της μυϊκής καταστροφής και της μείωσης της απόδοσης μετά από μέγιστης έντασης (ΜΕΕ) και υπομέγιστης έντασης (ΥΠΕ) έκκεντρη άσκηση (Nosaka and Newton, 2002). Βρέθηκε ότι ο ίδιος αριθμός επαναλήψεων ΜΕΕ και ΥΠΕ προκάλεσε μεγαλύτερη αρχική μυϊκή καταστροφή και μείωση της απόδοσης μετά την πρώτη κατάσταση, ενώ ο βαθμός αποκατάστασης ήταν γρηγορότερος μετά τη δεύτερη κατάσταση. Όμως, δεδομένου ότι η συνολική παραγωγή έργου μεταξύ των δύο προπονήσεων ήταν διαφορετική, μπορούμε να πούμε ότι μάλλον η ποσότητα του παραγόμενου έργου παρά η ένταση της άσκησης επηρεάζει τα αποτελέσματα. Το ότι χρησιμοποιήθηκαν μύες των χεριών στην προηγούμενη μελέτη, που δεν επιβαρύνονται καθημερινά από την ανάγκη στήριξης
και μετακίνησης τους σώματος όπως οι μύες των ποδιών, μπορεί να επηρεάζει
επιπλέον τα αποτελέσματα γιατί. Για το λόγο αυτό, ο σκοπός της παρούσας έρευνας
ήταν η μελέτη των διαφορών στην μυϊκή καταστροφή και στη μείωση της απόδοσης
μετά από όμοιο έργο MEE και YPE έκκεντρη άσκηση των τετρακέφαλων.

Μεθοδολογία

Δοκιμαζόμενοι

Δώδεκα υγιείς άρρενες [ηλικίας 21 (±1) χρόνων, μάζας 78,6 (±2,1) kg και ύψους
179,5 (±1,4) cm] πήραν μέρος εθελοντικά στη μελέτη. Οι δοκιμαζόμενοι διάβασαν
και υπέγραψαν έντυπο πληροφόρησης και συναίνεσης σύμφωνα με τους κανόνες του
Πανεπιστημίου Θεσσαλίας και τη συνθήκη του Ελσίνκι για τη συμμετοχή ανθρώπων
σε ερευνητικές εργασίες. Οι δοκιμαζόμενοι δεν είχαν εμπειρία συστηματικής
προπόνησης με έκκεντρες συστολές τους τελευταίοι έξι μήνες και δεν έπαιρναν
αντιφλεγμονώδη φάρμακα. Τους δόθηκαν οδηγίες για αποφυγή κάθε έντονης
dραστηριότητας και συμπληρωμάτων που περιέχουν καφεΐνη πριν και κατά τη
διάρκεια της συμμετοχής τους στη μελέτη.

Διαδικασίες μέτρησης

Οι δοκιμαζόμενοι εκτελέσαν δύο ισοκινητικές έκκεντρες προπόνησεις των
tετρακέφαλων, μια για κάθε τυχαία επιλεγμένο πόδι, με ανάπαυση δύο εβδομάδων
μεταξύ τους, χρόνος επαρκής για την επιστροφή των δεικτών της μυϊκής
καταστροφής στα αρχικά τους επίπεδα (Nosaka and Clarkson, 1996). Η έκκεντρη
άσκηση ήταν είτε MEE είτε YPE, με την πρώτη να προηγείται πάντα της δεύτερης.
Κατά τη διάρκειά της άσκησης με MEE, οι δοκιμαζόμενοι εκτέλεσαν 12 σειρές των
10 επαναλήψεων χρησιμοποιώντας μέγιστη εκούσια προσπάθεια, με δύο λεπτά ξεκούραση μεταξύ των σειρών. Η προπόνηση ΥΠΕ αποτελούνταν από συνεχόμενη άσκηση στο 50% της έκκεντρης μέγιστης ροπής (ΕΜΡ) του κάθε δοκιμαζόμενου. Η άσκηση σταματούσε όταν η συνολική παραγωγή έργου ήταν σχεδόν ίση με αυτή που επιτεύχθηκε κατά τη διάρκεια της προπόνησης με ΥΠΕ. Η συνολική παραγωγή έργου υπολογίζόταν αυτόματα από το ισοκινητικό δυναμόμετρο.

Κάθε δοκιμαζόμενος, μετά από δύο επισκέψεις εξοικείωσης στο εργαστήριο εκτέλεσε δύο προπονήσεις των εκτεινόντων του γονάτου. Οι δείκτες της μυϊκής καταστροφής [ΚΚ ορού, καθυστερημένος μυϊκός πόνος (ΚΜΠ), και εύρος κίνησης (ΕΚ)] και οι δείκτες της μυϊκής απόδοσης των εκτεινόντων του γονάτου [ΕΜΡ, και ισομετρική μέγιστη ροπή (IMP)] αξιολογήθηκαν πριν την άσκηση και 24, 48, 72 καθώς και 96 ώρες μετά την έκκεντρη άσκηση. Πριν από κάθε προπονητικό πρόγραμμα, οι δοκιμαζόμενοι έκαναν ζέσταμα αποτελούμενο από οκτώ λεπτά ποδηλασία σε ποδηλατοεργόμετρο Monark (Vansbro, Σουηδία) με 70 στροφές/λεπτό και αντίσταση 50 W. Ακολουθούσαν διατατικές ασκήσεις 5 λεπτών.

Εκτός από την ΚΚ και τον ΚΜΠ, η αξιολόγηση όλων των παραμέτρων που μελετήθηκαν έγινε σε ισοκινητικό δυναμόμετρο (Cybex Norm Lumex, Ronkonkoma, NY, ΗΠΑ), το οποίο έχει χρησιμοποιηθεί σε παρόμοιες μελέτες (Paddon-Jones and Abenerthy, 2001; Prou, Guevel, Benezet, Marini, 1999). Η βαθμονόμηση του δυναμόμετρου γινόταν κάθε βδομάδα σύμφωνα με τις οδηγίες του κατασκευαστή, ενώ οι λεπτομέρειες για το πρωτόκολλο της αξιολόγησης περιγράφονται αλλού (Koutedakis, Frischknecht, Murthy, 1997). Η θέση της καρέκλας διαμορφώνταν σύμφωνα με τα ανθρωπομετρικά χαρακτηριστικά των δοκιμαζόμενων για να συμπίπτει ο άξονας έκτασης /κάμψης της άρθρωσης του γονάτου με τον άξονα
περιστροφής του δυναμόμετρου. Όλες οι έκκεντρες και οι ομόκεντρες δοκιμασίες εκτελούνταν με γωνιακή ταχύτητα 60°/s.

Δείκτες Μυϊκής Καταστροφής

1. **ΚΚ.** Λήψη αίματος γινόταν πριν την άσκηση και 24, 48, 72 καθώς και 96 ώρες μετά την άσκηση, σύμφωνα με προηγούμενα πρωτόκολλα (Dolezal, Potteiger, Jacobsen, Benedict, 2000; Jamurtas et al., 2000). Η λήψη αίματος γινόταν από τη βασιλική φλέβα του πήχη σε αποστειρωμένα σωληνάρια (venoject®). Το αίμα έπηζε σε θερμοκρασία δωματίου για 30 λεπτά και φυγοκεντρούνταν στις 1500 x g για 10 λεπτά. Ο ορός του αίματος αφαιρούνταν και τοποθετούνταν στους -20°C μέχρι την ανάλυσή του. Η ΚΚ υπολογίζοταν με διπλές μετρήσεις χρησιμοποιώντας καταστριτόριο (Megalab, Αθήνα, Ελλάδα). Οι φυσιολογικές τιμές της συγκέντρωσης ΚΚ στους άνδρες χρησιμοποιώντας τη μέθοδο αυτή ήταν 45 –130 U/1 στους 37 °C.

2. **ΚΜΠ.** Κάθε δοκιμαζόμενος προσδιόριζε τον πόνο πιέζοντας τη γαστέρα του μυός και τις άκρες του έσω πλατέος, του έξω πλατέος και του ορθού μηριαίου σε καθιστή θέση με τους μύες σε χάλαση. Η αίσθηση του πόνου βαθμολογούνταν σύμφωνα με κλίμακα με εύρος από 1 (φυσιολογικό) μέχρι 10 (πολύ, πολύ επώδυνος), σύμφωνα με προηγούμενη χρησιμοποιημένη κλίμακα (Clarkson and Trembley, 1988; Jamurtas et al., 2000).

3. **ΕΚ.** Η άρθρωση του γονάτου των δοκιμαζόμενων από την πρηνή κατάκλιση σταθεροποιούνταν στο μοχλό του δυναμόμετρου. Εκτελούνταν παθητική διάταση από τον ερευνητή με πολύ χαμηλή γωνιακή ταχύτητα (20°/s) και το σημείο όπου ο δοκιμαζόμενος αισθανόταν την παραμικρή δυσφορία χρησιμοποιούνταν ως δείκτης του χωρίς πόνο ορίου του ΕΚ.
Δείκτες Μυϊκής Απόδοσης

Υπολογιζόταν η καλύτερη από τρεις μέγιστες εκούσιες προσπάθειες EMP και IMP χρησιμοποιώντας το ισοκινητικό δυναμόμετρο που περιγράφηκε προηγουμένως. Το διάλειμμα μεταξύ των δοκιμασιών ήταν τρία λεπτά.

Στατιστική Ανάλυση

Οι παράμετροι που μελετήθηκαν εξισώθηκαν στις αρχικές τους τιμές όπου το 100% αντιπροσωπεύει τις αρχικές τιμές. Η αρχική αξιολόγηση κανονικής κατανομής (Kolmogonov-Smirnov test) για τους παράγοντες που εξετάστηκαν δεν χρειάστηκε λογαριθμική μετατροπή για να αποκτήσει κανονική κατανομή. Εξαιτίας της μεγάλης τους διασποράς, μη παραμετρική ανάλυση (Wilcoxon two related samples test) χρησιμοποιήθηκε για την KK και τον ΚΜΠ (Thomas and Nelson, 1996). Κανονική ANOVA με επαναλαμβανόμενες μετρήσεις και ζευγαρωτές συγκρίσεις με ανάλυση απλών κύριων επιδράσεων χρησιμοποιήθηκαν για την ανάλυση όλων, εκτός των KK και ΚΜΠ, των παραμέτρων της μελέτης. Το επίπεδο σημαντικότητας ορίστηκε στο Ρ<0.05. Τα δεδομένα αναφέρονται ως μέσος όρος (±τυπικό σφάλμα).

Αποτελέσματα

Η συνολική επιβάρυνση των τετρακέφαλων μυών κατά τη διάρκεια της έκκεντρης προπόνησης με ΜΕΕ και ΥΠΕ ήταν 31.002 (±1.764) και 30.957 (±1.768) Joule, αντίστοιχα. Οι τιμές αυτές δεν ήταν σημαντικά διαφορετικές μεταξύ τους (Ρ>0.05). Η ένταση της άσκησης ήταν 83,3 (±1,8) % και 50,0 (±0,7) % της EMP που
αξιολογήθηκε πριν την έκκεντρη προπόνηση για την ΜΕΕ και για την ΥΠΕ, αντίστοιχα. Στην προπόνηση με ΥΠΕ, οι δοκιμαζόμενοι εκτέλεσαν 202 (±7) συστολές. Δεν υπήρξαν σημαντικές διαφορές σε όλες τις παραμέτρους που αξιολογήθηκαν μεταξύ των προπονήσεων με ΜΕΕ και ΥΠΕ στις αρχικές τιμές.

Δείκτες Μυϊκής Καταστροφής (Πίνακας 1)
Η ΚΚ και ο ΚΜΠ αυξήθηκαν σημαντικά (P<0.05) σε όλες τις χρονικές στιγμές της αξιολόγησης μετά και τις δύο έκκεντρες προπόνησες. Αξίζει να σημειωθεί ότι και οι δύο αυτές παράμετροι παρέμειναν σημαντικά αυξημένες σε σχέση με τα αρχικά τους επίπεδα καθ’ όλη τη διάρκεια της μελέτης, υποδηλώνοντας διατήρηση της μυϊκής καταστροφής. Το ΕΚ μειώθηκε σημαντικά (P<0.05) στις 24 ώρες μετά την έκκεντρη άσκηση ΜΕΕ και ΥΠΕ και στις 48 ώρες μετά την ΜΕΕ. Παρόλα αυτά, εκτός από την άσκηση της ΚΚ στις 24 ώρες μετά την άσκηση ΜΕΕ (P<0.05), καμία άλλη σημαντική διαφορά δεν παρατηρήθηκε μεταξύ των δύο προπονήσεων (P>0.05).

Δείκτες Μυϊκής Απόδοσης (Πίνακας 2)
Οι δείκτες της μυϊκής απόδοσης επηρεάστηκαν σημαντικά μόνο από την έκκεντρη προπόνηση ΜΕΕ στις 24 ώρες μετά την άσκηση. Ωστόσο, αντίθετα με τους δείκτες της μυϊκής καταστροφής όπου δεν υπήρχαν διαφορές μεταξύ των προπονήσεων, η έκκεντρη προπόνηση ΜΕΕ προκάλεσε σημαντικά μεγαλύτερη μείωση της απόδοσης σε σύγκριση με την έκκεντρη προπόνηση ΥΠΕ (P<0.05) σχεδόν σε όλα τα σημεία αξιολόγησης. Αξίζει να σημειωθεί ότι, 96 ώρες μετά την έκκεντρη προπόνηση ΜΕΕ, οι δείκτες της μυϊκής απόδοσης ήταν μειωμένοι κατά 14% σε σχέση με τις αρχικές τιμές. Αντίθετα, στο ίδιο χρονικό σημείο αξιολόγησης μετά την έκκεντρη προπόνηση με ΥΠΕ, οι δείκτες επανήλθαν και ξεπέρασαν τις αρχικές τιμές κατά 8-15%.
Συζήτηση

Σκοπός της παρούσας μελέτης ήταν να εξετάσουμε τις διαφορές στην πρόκληση μυϊκής καταστροφής και μείωσης της απόδοσης μεταξύ παραπλήσιων ποσοτήτων ΜΕΕ και ΥΠΕ ύψους προπόνησης των εκτεινόντων του γονάτου. Τα αποτελέσματα έδειξαν ότι η ΜΕΕ και ΥΠΕ προκαλούν την ίδια σχεδόν μυϊκή καταστροφή. Παρόλα αυτά, η μυϊκή απόδοση επηρεάστηκε μόνο από την έκκεντρη προπόνηση ΜΕΕ.

Τα αποτελέσματα αυτά συμφωνούν κατά ένα μέρος με τη μόνη μελέτη που ασχολήθηκε σχεδόν με το ίδιο θέμα, όπου η έκκεντρη προπόνηση ΜΕΕ προκάλεσε μεγαλύτερη μυϊκή καταστροφή και επηρέασε σε μεγαλύτερο βαθμό την μυϊκή απόδοση σε σχέση με την ΥΠΕ (Nosaka and Newton, 2002). Η ασυμφωνία των δύο μελετών που έχει να κάνει με τη μυϊκή καταστροφή μπορεί να εξηγηθεί από τις μεθοδολογικές διαφορές. Αντίθετα με την παρούσα έρευνα, όπου η ίδια ποσότητα έργου χρησιμοποιήθηκε και για τις δύο έκκεντρες προπονήσεις, στην άλλη μελέτη χρησιμοποιήθηκαν διαφορετικές ποσότητες έργου για τις δύο προπονήσεις.

Η ΚΚ έχει ήδη χρησιμοποιηθεί ως δείκτης μυϊκής καταστροφής (Clarkson and Tremblay, 1988; Nosaka et al., 2001). Η σημαντική αύξηση της συγκέντρωσης ΚΚ σε όλα τα χρονικά σημεία αξιολόγησης μετά και τις δύο προπονητικές καταστάσεις υποδηλώνει την καταστροφική φύση της ΜΕΕ και της ΥΠΕ κατά την έκκεντρη προπόνηση. Ωστόσο, παρόλο που η συγκέντρωση της ΚΚ ήταν αριθμητικά υψηλότερη μετά την προπόνηση ΜΕΕ, δεν υπήρξαν σημαντικές διαφορές (εκτός από τις 24 ώρες) μεταξύ των δύο προπονητικών εξαιτίας της μεγάλης διαφοροποίησης στη συγκέντρωση του ενζύμου μεταξύ των δοκιμαζόμενων.

Ο ΚΜΠ (Hortobagyi et al., 1998; Prou et al., 1999) και το ΕΚ (Sayers et al., 2003) έχουν επίσης χρησιμοποιηθεί ως έμμεσοι δείκτες μυϊκής καταστροφής. Αυτοί
οι δείκτες έχουν συσχετιστεί μεταξύ των άλλων με φλεγμονή του μυός (Hikida, Staron, Hagerman, Sherman, Costill, 1983), πρήξιμο (Smith, 1991) και με δραστηριοποίηση των ενδομυϊκών υποδοχέων (McCloskey, Cross, Honner, Petter, 1983). Στην παρούσα μελέτη, ΚΜΠ και ΕΚ επηρεάστηκαν στον ίδιο βαθμό μετά και τις δύο προπονήσεις υποδηλώνοντας ότι η ΜΕΕ και η ΥΠΕ έκκεντρη προπόνηση οδηγούν σε όμοια επίπεδα μυϊκού πόνου και δυσκαμψίας. Δεδομένου ότι οι δοκιμαζόμενοι της μελέτης αυτής παρήγαγαν ίδια ποσότητα έργου για τις δύο προπονήσεις, μπορεί να υποστηριχθεί ότι είναι μάλλον η ποσότητα και όχι η ένταση της άσκησης που προκαλεί τις ανωμαλίες στο μυ.

Η έκκεντρη (Paddon-Jones and Abenerthy, 2001) και η ισομετρική (Saxton et al., 1995) μέγιστη ροπή έχουν χρησιμοποιηθεί για την αξιολόγηση της μυϊκής απόδοσης μετά τη θρήση διαφορετικών προπονητικών πρωτοκόλλων. Βρήκαμε στην παρούσα μελέτη ότι αυτοί οι δείκτες παρουσίαζαν μεγαλύτερη μείωση μετά την ΜΕΕ σε σχέση με την ΥΠΕ έκκεντρης προπόνησης. Αυτά τα αποτελέσματα μπορούν να δικαιολογηθούν από το γεγονός ότι η ΜΕΕ άσκηση επιστρατεύει περισσότερες μυϊκές ίνες τύπου II, οι οποίες είναι περισσότερο επιρρεπείς στη καταστροφή σε σύγκριση με τις μυϊκές ίνες τύπου I (Friden et al., 1983; Jones et al., 1986). Από τη στιγμή που οι αξιολογήσεις της μυϊκής απόδοσης μετά τις προπονήσεις περιλαμβάνουν προσπάθειες μέγιστης έντασης, μπορεί να υποτεθεί ότι τα αποτελέσματα θα επηρεάζονταν από την ακεραιότητα των μυϊκών ινών τύπου II. Καθώς οι δοκιμαζόμενοι της μελέτης αυτής ήταν απροπόνητοι και δεδομένου ότι η μειωμένη δραστηριότητα σχετίζεται με μικρότερη αριθμό και μέγεθος μυϊκών ινών τύπου II (Mujika and Padilla, 2001), μπορούν να επηρεάζουν οι παράγοντες αυτοί τα αποτελέσματα μας.
Αξίζει να σημειωθεί ότι τα αποτελέσματα της παρούσας μελέτης έρχονται σε αντίθεση με τις περισσότερες δημοσιευμένες μελέτες στις οποίες υπάρχει συσχέτιση της μυϊκής καταστροφής και της μυϊκής απόδοσης (Brown et al., 1997; Nosaka and Newton, 2002; Paddon-Jones and Abenerthy, 2001; Prou et al., 1999). Βρήκαμε ότι, ενώ σημαντική μυϊκή καταστροφή υπήρχε σε όλη τη διάρκεια της μελέτης, η μυϊκή απόδοση επηρεάστηκε μόνο στις 24 ώρες μετά την προπόνηση. Η παρούσα μελέτη δεν επιτρέπει μια ξεκάθαρη κατανόηση της συμπεριφοράς των δεικτών που περιέχει.

Όμως, η τάση των παραμέτρων της μυϊκής απόδοσης για γρηγορότερη αποκατάσταση σε σύγκριση με τις παραμέτρους της μυϊκής καταστροφής, ταιριάζει με την υπόθεση ότι η έκκεντρη προπόνηση καταστρέφει κυρίως τις αδύναμες μυϊκές ίνες (Jones and Round, 1990) και αυτές που βρίσκονται κοντά στο τέλος της ζωής τους (Armstrong, 1984), επηρεάζοντας τις πιο δυνατές και τις νεότερες σε μικρότερο βαθμό.

Το γεγονός ότι στην μελέτη μας προπονήσαμε τους μύες των ποδιών μπορεί να συμβάλει επιπλέον στην ασυμφωνία μεταξύ μυϊκής καταστροφής και μείωσης της μυϊκής απόδοσης. Υπάρχουν μελέτες όπου φαίνεται ότι η έκκεντρη προπόνηση των ποδιών (Brown et al., 1997; Child et al., 1998) προκαλεί μικρότερη μείωση της απόδοσης από ό,τι η έκκεντρη άσκηση των χεριών (Paddon-Jones and Abenerthy, 2001; Saxton et al., 1995). Η χρησιμοποίηση των ποδιών σε όλες τις καθημερινές δραστηριότητες που περιλαμβάνουν έκκεντρες συστολές μπορεί να συμβάλλει στα αποτελέσματα αυτά.

Τα αποτελέσματα της μελέτης αυτής υποδηλώνουν ότι ομοιες ποσότητες έκκεντρης προπόνησης ΜΕΕ και ΥΠΕ, μπορούν να προκαλέσουν σχέδον τον ίδιο βαθμό μυϊκής καταστροφής. Μπορεί να υποστηριχθεί ότι, η ποσότητα της προπόνησης και όχι η ένταση προκαλεί καταστροφή του μυώς. Παρόλο που ο ίδιος προπονητικός ύγιος χρησιμοποιήθηκε στην έκκεντρη προπόνηση ΜΕΕ και ΥΠΕ, τα
αποτελέσματα δείχνουν ότι η μυϊκή απόδοση επηρεάστηκε σε σημαντικά μεγαλύτερο βαθμό μετά την προπόνηση ΜΕΕ. Αυτό το αποτέλεσμα μπορεί να φανεί πολύ χρήσιμο στο σχεδιασμό της προπόνησης τόσο στους επαγγελματίες αθλητές όσο και στους ελεύθερα αθλούμενους. Με τη χρήση έκκεντρης προπόνησης ΥΠΕ στην αρχή, για παράδειγμα, της περιόδου προετοιμασίας, μπορούν να έχουν προσαρμογή των ασκούμενων μυϊκών ομάδων στην έκκεντρη άσκηση, με μικρή αρνητική επίδραση στην απόδοσή τους.

Συμπεράσματα

• Όμοια ποσότητα ΜΕΕ και ΥΠΕ έκκεντρη προπόνηση, μπορούν να προκαλέσουν σχεδόν τον ίδιο βαθμό μυϊκής καταστροφής.
• Η μυϊκή απόδοση επηρεάστηκε σε σημαντικά μεγαλύτερο βαθμό μετά την έκκεντρη άσκηση ΜΕΕ σε σχέση με την έκκεντρη άσκηση ΥΠΕ.
Πίνακας 1. Επί τις εκατό (%) τιμές των παραμέτρων της μυϊκής καταστροφής κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση μέγιστης (ΜΕΕ) και υπομέγιστης έντασης (ΥΜΕ) σε σχέση με την αρχική επίδοση (100%) εκφραζόμενη σε απόλυτες τιμές.

<table>
<thead>
<tr>
<th>Παράμετροι</th>
<th>Αρχικές τιμές (n=12)</th>
<th>24 ώρες (n=12)</th>
<th>48 ώρες (n=12)</th>
<th>72 ώρες (n=12)</th>
<th>96 ώρες (n=12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KK ΜΕΕ</td>
<td>182.2 ±34.4 U/l</td>
<td>671.9 ±123.6%*</td>
<td>568.7 ±203.4%*</td>
<td>1693.6 ±1246.7%*</td>
<td>1512.8 ±1086.9%*</td>
</tr>
<tr>
<td>KK ΥΜΕ</td>
<td>140.6 ±25.5 U/l</td>
<td>233.6 ±39.9%*</td>
<td>401.9 ±180.6%*</td>
<td>456.1 ±214.9%*</td>
<td>464.6 ±241.6%*</td>
</tr>
<tr>
<td>ΚΜΠ ΜΕΕ</td>
<td>1 ±0</td>
<td>4.8 ±0.5 %*</td>
<td>5.8 ±0.6 %*</td>
<td>5.1 ±0.8 %*</td>
<td>3.5 ±0.8 %*</td>
</tr>
<tr>
<td>ΚΜΠ ΥΜΕ</td>
<td>1 ±0</td>
<td>4.2 ±0.6 %*</td>
<td>4.8 ±0.8 %*</td>
<td>3.8 ±0.5 %*</td>
<td>2.3 ±0.4 %*</td>
</tr>
<tr>
<td>ΕΚ ΜΕΕ</td>
<td>135 ±0°</td>
<td>90.5 ±1.4 %*</td>
<td>84.6 ±3.5 %*</td>
<td>89.1 ±3.4 %*</td>
<td>92.6 ±2.9 %*</td>
</tr>
<tr>
<td>ΕΚ ΥΜΕ</td>
<td>135 ±0°</td>
<td>88.6 ±3.2 %*</td>
<td>89.1 ±5.2 %*</td>
<td>89.9 ±5.3 %*</td>
<td>95.3 ±2.3 %*</td>
</tr>
</tbody>
</table>

σημαντική διαφορά σε σχέση με τις αρχικές τιμές (P<0.05), #: σημαντική διαφορά μεταξύ των δύο προπονήσεων (P<0.05), KK: κρεατινική κινάση, ΚΜΠ: καθυστερημένος μυϊκός πόνος, ΕΚ: εύρος της κίνησης.
Πίνακας 2. Επί τις εκατό (%) τιμές των παραμέτρων της μυϊκής απόδοσης κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση μέγιστης (ΜΕΕ) και υπομέγιστης έντασης (ΥΜΕ) σε σχέση με την αρχική επίδοση (100%) εκφραζόμενη σε απόλυτες τιμές.

<table>
<thead>
<tr>
<th>Παράμετροι</th>
<th>Αρχικές τιμές (n=12)</th>
<th>24 ώρες (n=12)</th>
<th>48 ώρες (n=12)</th>
<th>72 ώρες (n=12)</th>
<th>96 ώρες (n=12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMP ΜΕΕ</td>
<td>306.1 ± 15 Nm</td>
<td>72.1 ± 3.9%*#</td>
<td>81.9 ± 6.7%</td>
<td>77.9 ± 6%#</td>
<td>86.8 ± 6%#</td>
</tr>
<tr>
<td>EMP ΥΠΕ</td>
<td>289.5 ± 11.1 Nm</td>
<td>92 ± 4.1%</td>
<td>94.8 ± 7.1%</td>
<td>100.6 ± 4.8%</td>
<td>107.9 ± 5.3%</td>
</tr>
<tr>
<td>IMP ΜΕΕ</td>
<td>196.9 ± 14.4 Nm</td>
<td>86.4 ± 3.7%*#</td>
<td>84.3 ± 7.2%#</td>
<td>84.8 ± 8.6%#</td>
<td>86.8 ± 8.7%#</td>
</tr>
<tr>
<td>IMP ΥΠΕ</td>
<td>187.4 ± 12.7 Nm</td>
<td>103 ± 4.1%</td>
<td>107 ± 8.1%</td>
<td>109.2 ± 5.3%</td>
<td>114.4 ± 4.6%</td>
</tr>
</tbody>
</table>

*: σημαντική μείωση σε σχέση με τις αρχικές τιμές (P<0.05), #: σημαντική διαφορά μεταξύ των δύο προπονήσεων (P<0.05), EMP: έκκεντρη μέγιστη ροπή, IMP: ισομετρική μέγιστη ροπή.
Κεφάλαιο Τρίτο

Μυϊκή καταστροφή και μυϊκή απόδοση μετά από έκκεντρη προπόνηση με διαφορετικά μήκη μυών.
Περίληψη

Στη μελέτη αυτή ερευνήσαμε την επίδραση της έκκεντρης προπόνησης με μικρό (ΜΙΚΜ) και με μεγάλο μήκος (ΜΕΓΜ) μυών σε επιλεγμένους δείκτες μυϊκής καταστροφής και μυϊκής απόδοσης. Χρησιμοποιώντας ισοκινητικό δυναμόμετρο σε γωνιακή ταχύτητα 60°/s, 12 υγιείς νεαροί εθελοντές εκτέλεσαν δύο προπονητικά προγράμματα των εκτεινόντων του γονάτου, ένα για κάθε πόδι, με διαφορά 14 ημέρες μεταξύ τους. Κατά τη διάρκεια κάθε προπόνησης, οι δοκιμαζόμενοι εκτέλεσαν 12 σειρές των 10 μέγιστων εκούσιων επαναλήψεων από την καθιστή θέση και από την πρηνή κατάκλιση για να πετύχουμε ΜΙΚΜ και ΜΕΓΜ του ορθού μηριαίου, αντίστοιχα. Οι δείκτες της μυϊκής καταστροφής (ΚΚ, ΚΜΠ και ΕΚ) και της μυϊκής απόδοσης [(ΕΜΡ, ΟΜΡ και ισομετρική μέγιστη ροπή στις 60° (ΙΜΡ60) και 110° (ΙΜΡ110)] μεταξύ μηρού και κνήμης] αξιολογήθηκαν πριν την άσκηση και 24, 48, 72 καθώς και 96 ώρες μετά την άσκηση. Σε σύγκριση με τις αρχικές τιμές, όλοι οι δείκτες της μυϊκής καταστροφής παρουσίασαν σημαντικές αλλαγές σε όλα τα ημερομηνιακά σημεία αξιολόγησης μετά και από τις δύο προπονήσεις (P<0.05). Η έκκεντρη άσκηση με ΜΙΚΜ παρουσίασε μεγαλύτερες αλλαγές (P<0.05) σε αυτούς τους δείκτες μυϊκής καταστροφής απ' ό,τι η αντίστοιχη άσκηση με ΜΕΓΜ μυών. Όσον αφορά την μυϊκή απόδοση, 10 από τους 16 και μόνο δύο από τους 16 δείκτες άλλαξαν σημαντικά μετά την έκκεντρη προπόνηση με ΜΙΚΜ και με ΜΕΓΜ μυών, αντίστοιχα. Σημαντικές διαφορές (P<0.05) μεταξύ των δύο προπονήσεων παρατηρήθηκαν όταν η αξιολόγηση έγινε ομόκεντρα και ισομετρικά αλλά όχι (P>0.05) όταν η αξιολόγηση έγινε έκκεντρα. Συμπερασματικά, η έκκεντρη προπόνηση των τετρακέφαλων με ΜΙΚΜ μυών προκαλεί μεγαλύτερη μυϊκή καταστροφή από ό,τι η αντίστοιχη προπόνηση με ΜΕΓΜ μυών. Η μυϊκή απόδοση επηρεάζεται μόνο από την έκκεντρη προπόνηση με ΜΙΚΜ μυών.
Εισαγωγή

Χρησιμοποιώντας ζώα για την μελέτη τους οι Hunter και Faulkner (1997) βρήκαν ότι το αρχικό μήκος της μυϊκής ίνας και η παραγωγή έργου κατά τη διάρκεια της διάτασης είναι δύο παράγοντες που μπορούν να δικαιολογήσουν καλύτερα τη μείωση της δύναμης μετά τη μέγιστη συστολή του στο συστήματος-καταστροφή του συστήματος. Όμως η παρατηρήσεις ότι τα σαρκομέρια με μεγάλο μήκος είναι περισσότερο επιρρεπή στον τραυματισμό (MacPherson et al., 1997) και οι Morgan et al. (1990) προτείνουν ότι όταν το μήκος της μυϊκής ίνας είναι μεγάλο τότε συμβαίνει μια μεγάλη ένταση

94
ανομοιογένεια οδηγώντας σε μεγαλύτερη καταστροφή των αδύναμων σαρκομερίων και αυτών που βρίσκονται σε μεγάλη διάταση. Έτσι φαίνεται ότι η μυϊκή ίνα, και, κατά συνέπεια, το μήκος του μυός είναι σημαντικοί παράγοντες στην πρόκληση μυϊκής καταστροφής. Παρόλα αυτά, υπάρχουν σχετικά λίγες μελέτες που εξέτασαν την επίδραση του μήκους του μυός στην πρόκληση της μυϊκής καταστροφής χρησιμοποιώντας ανθρώπους δοκιμαζόμενους. Για παράδειγμα, οι καμπτήρες του αγκώνα, όταν ασκήθηκαν με έκκεντρη άσκηση μεγάλου μήκους (ΜΕΓΜ) μυός, παρουσίαζαν μεγαλύτερο μυϊκό πόνο, μεγαλύτερη αύξηση ΚΚ στο αίμα και μεγαλύτερη μείωση του ΕΚ (Jones et al., 1989; Newham et al., 1988; Nosaka and Sakamoto, 2001). από ό,τι όταν ασκήθηκαν με έκκεντρη άσκηση μικρού μήκους (ΜΙΚΜ) μυός. Υπάρχει μόνο μία μελέτη που εξετάζει την επίδραση του MIKM και του ΜΕΓΜ μυός στην μυϊκή καταστροφή χρησιμοποιώντας μυϊκές ομάδες των ποδιών (Child et al., 1998). Οι ερευνητές αυτοί βρήκαν μεγαλύτερη μυϊκή καταστροφή με παράλληλη μείωση της ισομετρικής μέγιστης ροπής μετά από έκκεντρη προπόνηση με ΜΕΓΜ μυός σε σύγκριση με ΜΙΚΜ μυός. Μόνο ο Child και οι συνεργάτες του (1998) χρησιμοποίησαν τους εκτείνοντες του γονάτου, αλλά χρησιμοποίησαν διαφορετικό ΕΚ για την έκκεντρη προπόνηση με ΜΕΓΜ μυός και με ΜΙΚΜ μυός και η μυϊκή απόδοση αξιολογήθηκε μόνο με ισομετρικές μυϊκές συστολές. Έτσι, ο σκοπός της παρούσης μελέτης ήταν να εξετάσουμε την επίδραση της έκκεντρης προπόνησης των τετρακέφαλων με ΜΙΚΜ και με ΜΕΓΜ μυός με ίδιο ΕΚ, σε επιλεγμένους δείκτες μυϊκής καταστροφής χρησιμοποιώντας έκκεντρες, ομόκεντρες και ισομετρικές συστολές για την αξιολόγηση της μυϊκής απόδοσης.
Μεθοδολογία

Δοκιμαζόμενοι
Δώδεκα υγιείς άρρενες [ηλικίας 21 (±1) χρόνων, ύψους 179,5 (±3) cm και μάζας 78,6 (±3) kg] πήραν μέρος εθελοντικά. Οι δοκιμαζόμενοι δεν είχαν εμπειρία συστηματικής προπόνησης με έκκεντρες συστολές για τουλάχιστον έξι μήνες και δεν έπαιρναν αντιφλεγμονώδη φάρμακα. Τους δόθηκαν οδηγίες για αποφυγή κάθε έντονης δραστηριότητας και συμπληρωμάτων που περιέχουν καφεΐνη πριν και κατά τη διάρκεια της συμμετοχής τους στη μελέτη. Οι δοκιμαζόμενοι διάβασαν και υπέγραψαν έντυπο πληροφόρησης και συναίνεσης σύμφωνα με τους κανόνες του Πανεπιστημίου Θεσσαλίας.

Διαδικασίες Μέτρησης
Σε δύο διαφορετικές προπονήσεις των τετρακέφαλων, ερευνήσαμε την επίδραση της έκκεντρης προπόνησης με MIKM και με ΜΕΓΜ μυός σε επιλεγμένους δείκτες μυϊκής καταστροφής και μυϊκής απόδοσης. Οι δοκιμαζόμενοι εκτέλεσαν δύο προπονήσεις έκκεντρων συστολών, μία σε κάθε πόδι, με διαφορά 14 ημερών μεταξύ τους. Κατά τη διάρκεια και των δύο προπονήσεων, οι δοκιμαζόμενοι θα έπρεπε να εκτελέσουν 12 σειρές των 10 μέγιστων εκούσιων επαναλήψεων από την καθιστή θέση (γωνία 90° μεταξύ του μηρού και του κορμού) και από την πρηνή κατάκλιση (γωνία 180° μεταξύ του μηρού και του κορμού) για να επιτύχουμε MIKM και ΜΕΓΜ του ορθού μηριαίου, αντίστοιχα. Δύο λεπτά διάλειμμα χρησιμοποιήθηκε μεταξύ των σειρών. Πριν από κάθε προπονητικό πρόγραμμα και κάθε αξιολόγηση, οι δοκιμαζόμενοι έκαναν ζέσταμα οκτώ λεπτών σε ποδηλατοεργόμετρο Monark (Vansbro, Σουηδία) με 70 στροφές/λεπτό και αντίσταση 50 W. Ακολουθούσαν διατατικές ασκήσεις 5 λεπτών.
Οι δύο προπονήσεις έκκεντρων συστολών και η αξιολόγηση των παραμέτρων που μελετήθηκαν, εκτός από την ΚΚ και τον ΚΜΠ, έγιναν στο ισοκινητικό δυναμόμετρο που περιγράφηκε στο προηγούμενο κεφάλαιο (σελ. 82).

Δείκτες Μυϊκής Καταστροφής

Οι δείκτες της μυϊκής καταστροφής (ΚΚ, ΚΜΠ και ΕΚ) που αξιολογήθηκαν πριν την άσκηση και 24, 48, 72 και 96 ώρες μετά την έκκεντρη άσκηση περιγράφονται στο 2ο κεφάλαιο (σελ. 83).

Δείκτες Μυϊκής Απόδοσης

Οι περισσότερες από τις δημοσιευμένες πληροφορίες που αφορούν τη μυϊκή απόδοση, σε σχέση με την μυϊκή καταστροφή, στηρίχτηκαν στην ισομετρική δυναμομέτρηση (Newham et al., 1987; Saxton et al., 1995; Sayers et al., 2001). Παράλληλα, οι καθημερινές κινήσεις που αποτελούν στοιχείο της ισομετρικής δυναμομέτρησης έχουν διαφορετικό φυσιολογικό προφίλ. Οι ισομετρικές συστολές χαρακτηρίζονται κυρίως από αυξημένη ενδομυϊκή πίεση ή αυξημένη συγκέντρωση μεταβολιτών που σχετίζονται με την κόπωση (Vollestad, Sejersted, Bahr, Woods, Bigland-Ritchie, 1988) ενώ η χρησιμοποίηση των ελαστικών στοιχείων και η φυγόκεντρη νευρική δραστηριότητα είναι κύριοι ιδιότητες των έκκεντρων (Komi and Bosco, 1978) και των ομόκεντρων συστολών (Kay, Clair Gibson, Mitchell, Lambert, Noakes, 2000), αντίστοιχα. Για το λόγο αυτό, θα ήταν περισσότερο αντιπροσωπευτική η χρησιμοποίηση και των τριών τύπων μυϊκής συστολής στη μελέτη των αλλαγών της μυϊκής απόδοσης.
Χρησιμοποιώντας το ίδιο ισοκινητικό δυναμόμετρο (Cybex Norm), οι δείκτες της μυϊκής απόδοσης των εκτεινόντων του γονάτου [έκκεντρη μέγιστη ροπή (EMP), ομόκεντρη μέγιστη ροπή (OMP), ισομετρική μέγιστη ροπή σε γωνία μηρού-κνήμης 60° (IMP60) και 110° (IMP110)] προσδιορίστηκαν πριν την άσκηση και 24, 48, 72 καθώς και 96 ώρες μετά την άσκηση. Η καλύτερη από τρεις μέγιστες εκούσιες προσπάθειες EMP, OMP, IMP60 και IMP110 υπολογίστηκε. Το διάλειμμα μεταξύ των δοκιμασιών ήταν τρία λεπτά.

Στατιστική Ανάλυση
Οι παράμετροι που μελετήθηκαν εξειδίκευτα στις αρχικές του τιμές όπου το 100% αντιπροσωπεύει τις αρχικές τιμές. Η αρχική αξιολόγηση φυσιολογικής κατανομής (Kolmogonov-Smithov test) για τους παράγοντες που εξετάστηκαν δεν χρειάστηκε λογαριθμική μετατροπή για να αποκτήσει κανονική κατανομή. Εξαιτίας της μεγάλης τους διασποράς, μη παραμετρική ανάλυση (Wilcoxon two related samples test) χρησιμοποιήθηκε για την KK και τον ΚΜΠ (Tomas and Nelson, 1996). 2 x 4 (ένταση x χρόνος) ANOVA με επαναλαμβανόμενες μετρήσεις και ζευγαρωτές συγκρίσεις με ανάλυση απλών κύριων επιδράσεων χρησιμοποιήθηκαν για την ανάλυση όλων, εκτός των KK και ΚΜΠ, των παραμέτρων της μελέτης. Το επίπεδο σημαντικότητας ορίστηκε στο P<0.05. Τα δεδομένα αναφέρονται ως μέσος όρος (±τυπικό σφάλμα).
Άποτελέσματα

Έκκεντρη Ασκηση Μικρού και Μεγάλου μήκους μυών

Η μέση παραγωγή έργου κατά την προπόνηση με MIKM μυός ήταν 30.740 (±1.446) Joule, η οποία ήταν σημαντικά χαμηλότερη (Ρ<0.01) από τη μέση παραγωγή έργου κατά την προπόνηση με MEGM μυός 32.321 (±1.298) Joule. Η ένταση που χρησιμοποίησαν οι δοκιμαζόμενοι ήταν 85,2 (±4,1) % και 88,6 (±3,5) % της EMP κατά τη διάρκεια της έκκεντρης προπόνησης με MIKM και με MEGM μυός, αντίστοιχα.

Δείκτες Μυϊκής Καταστροφής

Οι δείκτες της μυϊκής απόδοσης που μελετήθηκαν παρουσιάζονται στον πίνακα 3. Σε σύγκριση με τις αρχικές τιμές οι δείκτες της μυϊκής καταστροφής μεταβλήθηκαν σημαντικά μετά και από τις δύο προπονήσεις με MIKM και με MEGM μυός σε όλα τα χρονικά σημεία αξιολόγησης (Ρ<0.05). Η έκκεντρη άσκηση με MIKM προκάλεσε μεγαλύτερες αλλαγές στην ΚΚ στις 48 ώρες και στον ΚΜΓΙ με το ΕΚ στις 48, 72 και 96 ώρες μετά την προπόνηση απ’ ό,τι η αντίστοιχη άσκηση με MEGM μυός (Ρ<0.05).

Δείκτες Μυϊκής Απόδοσης

Οι δείκτες της μυϊκής απόδοσης που μελετήθηκαν παρουσιάζονται στον πίνακα 4. Δέκα από τους 16 και μόνο δύο από τους 16 δείκτες άλλαξαν σημαντικά σε σχέση με το χρόνο μετά την έκκεντρη άσκηση με MIKM και με MEGM μυός, αντίστοιχα. Δεν υπήρξε σημαντική διαφορά των αρχικών τιμών (Ρ<0.05) μεταξύ των δύο προπονήσεων σε κάποιο από τους δείκτες της μυϊκής απόδοσης.

Σε σχέση με τις αρχικές τιμές, η EMP παρέμεινε μειωμένη σημαντικά (Ρ<0.05) μέχρι τις 72 και τις 48 ώρες μετά την προπόνηση με MIKM και με MEGM.
μυών αντίστοιχα. Ο ίδιος δείκτης μυϊκής καταστροφής δεν παρουσίασε καμία διαφορά (P>0.05) μεταξύ των δύο προπονήσεων σε κάποιο από τα χρονικά σημεία αξιολόγησης. Η ΟΜΡ επηρεάστηκε σημαντικά (P<0.05) μόνο μετά από την έκκεντρη προπόνηση με MIKM μυών σε όλα τα χρονικά σημεία αξιολόγησης σε σχέση με τις αρχικές τιμές. Η ΟΜΡ μειώθηκε σε σημαντικά (P<0.05) μεγαλύτερο βαθμό μετά την προπόνηση με MIKM σε σχέση με το ΜΕΓΜ μυών μέχρι τις 48 ώρες μετά την άσκηση.

Η ΟΜΡ μειώθηκε σημαντικά (P<0.05) μόνο στις 24 ώρες μετά την προπόνηση με MIKM μυών σε σχέση με τις αρχικές τιμές. Μεταξύ των δύο προπονήσεων η ΟΜΡ μειώθηκε σε σημαντικά (P<0.05) μεγαλύτερο βαθμό μετά την προπόνηση με MIKM σε σχέση με το ΜΕΓΜ μυών στις 48 ώρες μετά την προπόνηση. Η ΟΜΡ μειώθηκε σημαντικά μέχρι τις 48 ώρες μόνο μετά την έκκεντρη προπόνηση με MIKM μυών σε σχέση με τις αρχικές τιμές. Μεταξύ των δύο έκκεντρων προπονήσεων, η ΟΜΡ μειώθηκε σε σημαντικά (P<0.05) μεγαλύτερο βαθμό μετά την προπόνηση με MIKM μυών σε σχέση με το ΜΕΓΜ μυών στις 48 και 72 ώρες μετά την έκκεντρη προπόνηση.

Συζήτηση

Σε δύο διαφορετικές προπονήσεις των τετρακέφαλων, ερευνήσαμε την επίδραση της έκκεντρης προπόνησης με μικρό (MIKM) και με μεγάλο μήκος (ΜΕΓΜ) μυών σε επιλεγμένους δείκτες μυϊκής καταστροφής και μυϊκής απόδοσης. Βρήκαμε ότι η έκκεντρη προπόνηση με MIKM μυών προκαλεί μεγαλύτερη μυϊκή καταστροφή και μείωση της απόδοσης από ό,τι η έκκεντρη προπόνηση με ΜΕΓΜ μυών.

Οι δύο προπονητικές μονάδες προκάλεσαν τα κλασικά αποτελέσματα που παρατηρούνται μετά από προπόνηση με έκκεντρες συστολές, επιβεβαιώνοντας την ύπαρξη μυϊκής καταστροφής. Ειδικότερα, η σημαντική αύξηση του ΚΜΠ και η...
σημαντική μείωση του ΕΚ διατηρήθηκε μέχρι τις 96 ώρες μετά και τις δύο προπόνησεις. Η συγκέντρωση ΚΚ είχε την ίδια αντίδραση αλλά μέχρι τις 48 ώρες μετά την προπόνηση. Αυτό μπορεί να οφείλεται στη σημαντική διαφοροποίηση στην συγκέντρωση του ενζύμου μεταξύ των δοκιμαζόμενων, κάτι που έχει ήδη αναφερθεί σε δοκιμαζόμενους παρόμοιους μελέτης (Newham et al., 1983) και σε μελέτες που έγιναν σε ζώα (Friden and Lieber, 2000).

Ένα από τα κύρια ευρήματα ήταν, ότι σε σύγκριση με το ΜΕΓΜ μυός, η προπόνηση με ΜΙΚΜ μυός οδήγησε σε μεγαλύτερες αλλοιώσεις αλλοιώσεις τον ΚΜΠ και το ΕΚ σε όλα σχεδόν τα χρονικά σημεία της αξιολόγησης. Μηχανικοί και φυσιολογικοί παράγοντες που σχετίζονται με τη μυϊκή λειτουργία μπορούν να δικαιολογήσουν αυτά τα αποτελέσματα. Είναι καλά τεκμηριωμένο ότι όταν ο μυς συσπάται στο φυσιολογικό του μήκος, η δύναμη αναπτύσσεται κυρίως από τα συσταλτά του στοιχεία. Αντίθετα όταν ο μυς υπερβαίνει το φυσιολογικό του μήκος κατά τη συστολή τότε η περισσότερη δύναμη αναπτύσσεται από τα ελαστικά του στοιχεία (Chapman, 1985; Crawford and Jones 1980). Όμως, απαιτούνται μεγαλύτερα επίπεδα δύναμης για τον τραυματισμό των ελαστικών σε σχέση με τα συσταλτά στοιχεία του μυώς (Kennedy, Hawlins, Willis, Danylchuk, 1976). Γίνεται αντιληπτό για το λόγο αυτό ότι η έκκεντρη προπόνηση με ΜΙΚΜ μυός μπορεί να προκαλέσει μεγαλύτερη μυϊκή καταστροφή από ό,τι η αντίστοιχη προπόνηση με ΜΕΓΜ μυός. Τα αποτελέσματα της μελέτης αυτής που αφορούν την μυϊκή καταστροφή που προκαλείται από την άσκηση, έρχονται σε αντίθεση με δημοσιευμένες πληροφορίες όπου μεγαλύτερη μυϊκή καταστροφή παρατηρήθηκε μετά από έκκεντρη προπόνηση με ΜΕΓΜ μυός σε σύγκριση με ΜΙΚΜ μυός (Child et al., 1998; Jones et al., 1989). Οι ερευνητές αυτοί πρότειναν ότι κατά τη διάρκεια της έκκεντρης προπόνησης με ΜΕΓΜ μυός, η κατάθλιψη και η μυϊκή καταστροφή απομακρύνονται τόσο πολύ μεταξύ τους που
πολύ λίγες ή καθόλου εγκάρσιες γέφυρες ενώνονται μέσα στο σαρκομέριο, κατάσταση που μπορεί να οδηγήσει στην διάσπαση του σαρκειλήματος ή του σαρκοπλασματικού δικτύου σαν επακόλουθο, οδηγώντας στην καταστροφή του σαρκομερίου (Armstrong et al., 1991). Όμως το ποσοστό του 26% περίπου των κατεστραμμένων σαρκομερίων (Lieber et al., 1991) μπορεί να μην είναι αρκετό για να επηρεάσει τον ΚΜΠ και το ΕΚ που μελετήθηκαν εδώ.

Ένα άλλο αποτέλεσμα της μελέτης αυτής ήταν ότι 10 από τους 16 και μόνο δύο από τους 16 δείκτες της μυϊκής απόδοσης μειώθηκαν σημαντικά στο χρόνο μετά την έκκεντρη προπόνηση με MIKM και με MEGM μυός, αντίστοιχα. Οι απόψεις που σχετίζονται με τη μυϊκή λειτουργία που περιγράφηκαν προέκυψαν επίσης να χρησιμοποιήθηκαν για την εξήγηση των αποτελεσμάτων που αφορούν την μυϊκή απόδοση. Ειδικότερα, η συμμετοχή των συσταλτών και των ελαστικών στοιχείων του μυός συνδέονταν με το MIKM και το MEGM μυός, αντίστοιχα (Chapman, 1985; Crawford and Jones 1980), όμως, απαιτούνται μεγαλύτερα επίπεδα δύναμης για τον τραυματισμό των ελαστικών σε σχέση με τα συσταλτή στοιχεία του μυός (Kennedy et al., 1976). Είναι για το λόγο αυτό εύλογη η υπόθεση ότι η έκκεντρη προπόνηση με MIKM μυός μπορεί να προκαλέσει μεγαλύτερη μείωση της μυϊκής απόδοσης από ό,τι η αντίστοιχη έκκεντρη προπόνηση με MEGM μυός.

Όπως και με τους δείκτες της μυϊκής καταστροφής, τα αποτελέσματα της μελέτης μας έρχονται σε αντίθεση με τα δημοσιευμένα στοιχεία όπου μεγαλύτερη μείωση της μυϊκής απόδοσης παρατηρήθηκε μετά την έκκεντρη προπόνηση με MEGM μυός σε σύγκριση με την έκκεντρη προπόνηση με MIKM μυός (Newham et al., 1988; Nosaka and Sakamoto, 2001; Child et al., 1998; Jones et al., 1989).

Όμως, η παρούσα μελέτη είναι η δεύτερη που μελέτησε την επίδραση του διαφορετικού μήκους μυός κατά την έκκεντρη προπόνηση στην μυϊκή καταστροφή.
και απόδοση σε ανθρώπους που ασκήθηκαν με μυϊκές ομάδες των κάτω άκρων. Προηγούμενοι ερευνητές (Newham et al., 1988; Nosaka and Sakamoto, 2001) χρησιμοποίησαν τους δικέφαλους βραχιόνιους και από τη στιγμή που οι μυϊκές ομάδες των χεριών δεν είναι μύες που χρησιμοποιούνται για τη στήριξη και τη μετακίνηση του σώματος ο ρυθμός αποκατάστασής τους μπορεί να είναι διαφορετικός. Επιπλέον, μεθοδολογικές διαφορές που περιλαμβάνουν ομοιογένεια του δείγματος (Rinard et al., 2000) και του αριθμού των συστολών που χρησιμοποιήθηκε (Newham et al., 1988) μπορεί να έχουν συμβάλει στις διαφορές μεταξύ των προηγούμενων μελετών και της παρούσης μελέτης.

Ειδικότερα, έχει βρεθεί ότι η αύξηση του αριθμού των έκκεντρων συστολών δημιουργεί μεγαλύτερη μυϊκή καταστροφή (Hesselink et al., 1988). Στην παρούσα μελέτη ο αριθμός των έκκεντρων συστολών που εκτελέσαν οι δοκιμαζόμενοι ήταν 120, ενώ στην μόνη μελέτη που προσπάθησε να απαντήσει στην ίδια ερώτηση (Child et al., 1998) οι δοκιμαζόμενοι εκτέλεσαν 75 μέγιστες έκκεντρες συστολές. Επιπλέον, το ΕΚ της παρούσης μελέτης ήταν 120°, ενώ στη μελέτη του Child και των συνεργάτων του (1998) ήταν 80° και το μήκος του μυών ελεγχόταν από την αλλαγή του ΕΚ της γωνίας του γονάτου, (για παράδειγμα, αλλαγή του μήκους του ορθού μηριαίου και του έξω και εσω πλατέος, ενώ στη μελέτη μας το ΕΚ παρέμενε σταθερό αλλά άλλαξε η γωνία της λεκάνης). Ως αποτέλεσμα είχε να επηρεάσει μόνο τους διαρθρικούς μύες όπως ο ορθός μηριαίος και ο ραπτικός. Επιπρόσθετα, στην παρούσα μελέτη χρησιμοποιήθηκε η πρηνής κατάκλιση και όχι η ύπτια κατάκλιση για να επιτυγχάνεται ΜΕΓΜ μυών κατά την έκκεντρη άσκηση και τις αξιολογήσεις της μυϊκής απόδοσης.

Ερευνητές (Maffiuletti and Lepers, 2003; Pavol and Grabiner, 2000) διαπίστωσαν ότι η παραγωγή δύναμης είναι μεγαλύτερη όταν το μήκος των
εκτεινόντων του γονάτου είναι μικρό παρά όταν είναι μεγάλο. Οι ερευνητές αυτοί προτείνουν ότι η μεγαλύτερη νευρική δραστηριότητα που παρατηρήθηκε για τους εκτεινόντες του γονάτου στο μικρό μήκος του μυών παρέχεται από υψηλή επιστράτευση των κινητικών μονάδων. Επίσης τα αποτελέσματα αυτά μπορούν να αντικατοπτρίζουν μια έλλειψη εξοικείωσης των δοκιμαζόμενων με κινήσεις που δεν τις χρησιμοποιούν συχνά, όπως η παραγωγή δύναμης από τη θέση της κατάκλισης. Τα αποτελέσματα των μελετών αυτών μπορούν να περιγράψουν και τα αποτελέσματα της παρούσης μελέτης όπου μεγαλύτερες αλλοιώσεις της δύναμης και μεγαλύτερη καταστροφή εμφανίζονται μετά την προπόνηση με μικρό μήκος μυών.

Συμπερασματικά, η έκκεντρη προπόνηση με ΜΙΚΜ τετρακέφαλων προκαλεί μεγαλύτερη μυϊκή καταστροφή απ’ ό,τι η αντίστοιχη έκκεντρη προπόνηση με ΜΕΓΜ μυός. Η μυϊκή απόδοση επηρεάζεται από την μυϊκή καταστροφή που συμβαίνει μετά από έκκεντρη προπόνηση με ΜΙΚΜ μυός. Επιπλέον έρευνα απαιτείται σε αυτή την σημαντική ερευνητικά περιοχή, δίνοντας έμφαση στον ακριβή προσδιορισμό του μήκους του μυών σε επίπεδο σαρκομερίου.

Συμπεράσματα

- Η έκκεντρη προπόνηση με ΜΙΚΜ τετρακέφαλων προκαλεί μεγαλύτερη μυϊκή καταστροφή απ’ ό,τι η αντίστοιχη έκκεντρη προπόνηση με ΜΕΓΜ μυός.
- Η μυϊκή απόδοση επηρεάζεται σε σημαντικό βαθμό από την μυϊκή καταστροφή που συμβαίνει μετά από έκκεντρη προπόνηση με ΜΙΚΜ μυός απ’ ό,τι η αντίστοιχη έκκεντρη προπόνηση με ΜΕΓΜ μυός.
Πίνακας 3. Επί τις εκατó (%) τιμές των παραμέτρων της μυϊκής καταστροφής κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση με μικρό μήκος (ΜΙΚΜ) και με μεγάλο μήκος (ΜΕΓΜ) μυός σε σχέση με την αρχική επίδοση (100%) εκφραζόμενη σε απόλυτες τιμές.

<table>
<thead>
<tr>
<th>Παράμετροι</th>
<th>Αρχικές τιμές (η=12)</th>
<th>24 ώρες (n=12)</th>
<th>48 ώρες (n=12)</th>
<th>72 ώρες (n=12)</th>
<th>96 ώρες (n=12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΚΚ-ΜΙΚΜ</td>
<td>300.1</td>
<td>± 34.4 U/l</td>
<td>± 81.2 %*</td>
<td>± 88 %*</td>
<td>± 435.6 %**#</td>
</tr>
<tr>
<td>ΚΚ-ΜΕΓΜ</td>
<td>212.6</td>
<td>± 56.6 U/l</td>
<td>± 47.4 %*</td>
<td>± 66.5 %*</td>
<td>± 157.7 %*</td>
</tr>
<tr>
<td>ΚΜΠ-ΜΙΚΜ</td>
<td>1</td>
<td>± 0</td>
<td>± 41.7 %*</td>
<td>± 43.5 %**#</td>
<td>± 74.3 %**#</td>
</tr>
<tr>
<td>ΚΜΠ-ΜΕΓΜ</td>
<td>1</td>
<td>± 0</td>
<td>± 49 %*</td>
<td>± 56.4 %*</td>
<td>± 49 %*</td>
</tr>
<tr>
<td>ΕΚ-ΜΙΚΜ</td>
<td>150</td>
<td>± 0</td>
<td>± 4.2 %*</td>
<td>± 4.8 %**#</td>
<td>± 6.4 %**#</td>
</tr>
<tr>
<td>ΕΚ-ΜΕΓΜ</td>
<td>150</td>
<td>± 0</td>
<td>± 2.9 %*</td>
<td>± 2.7 %*</td>
<td>± 3.4 %*</td>
</tr>
</tbody>
</table>

*: σημαντική διαφορά σε σχέση με τις αρχικές τιμές (P<0.05), #: σημαντική διαφορά μεταξύ των δύο προπονήσεων (P<0.05), ΚΚ: κρεατινική κινάση, ΚΜΠ: καθυστερημένος μυϊκός πόνος, ΕΚ: εύρος της κίνησης.
Πίνακας 4. Επί τις εκατό (%) τιμές των παραμέτρων της μυϊκής απόδοσης κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση με μικρό μήκος (ΜΙΚΜ) και με μεγάλο μήκος (ΜΕΓΜ) μυός σε σχέση με την αρχική επίδοση (100%) εκφραζόμενη σε απόλυτες τιμές.

<table>
<thead>
<tr>
<th>Παράμετροι</th>
<th>Αρχικές τιμές (n=12)</th>
<th>24 ώρες (n=12)</th>
<th>48 ώρες (n=12)</th>
<th>72 ώρες (n=12)</th>
<th>96 ώρες (n=12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMP-ΜΙΚΜ</td>
<td>319.4</td>
<td>± 17.7 Nm</td>
<td>± 5.4 %*</td>
<td>± 4.9 %*</td>
<td>± 7.2 %*</td>
</tr>
<tr>
<td>EMP-ΜΕΓΜ</td>
<td>346.1</td>
<td>± 15.2 Nm</td>
<td>± 5.7 %*</td>
<td>± 5.2 %*</td>
<td>± 6.3 %</td>
</tr>
<tr>
<td>OMP-ΜΙΚΜ</td>
<td>237.8</td>
<td>± 11.2 Nm</td>
<td>± 4.5 %**#</td>
<td>± 5.5 %**#</td>
<td>± 6.5 %*</td>
</tr>
<tr>
<td>OMP-ΜΕΓΜ</td>
<td>192.3</td>
<td>± 11.7 Nm</td>
<td>± 5.4 %</td>
<td>± 6.4 %</td>
<td>± 8.7 %</td>
</tr>
<tr>
<td>IMP₆₀°-ΜΙΚΜ</td>
<td>241.9</td>
<td>± 19.7 Nm</td>
<td>± 6.4 %*</td>
<td>± 6.8 %#</td>
<td>± 6.8 %</td>
</tr>
<tr>
<td>IMP₆₀°-ΜΕΓΜ</td>
<td>197.5</td>
<td>± 15.4 Nm</td>
<td>± 6.3 %</td>
<td>± 7.5 %</td>
<td>± 6.5 %</td>
</tr>
<tr>
<td>IMP₃₀°-ΜΙΚΜ</td>
<td>219.8</td>
<td>± 14.4 Nm</td>
<td>± 5.5 %*</td>
<td>± 5.4 %**#</td>
<td>± 8 %#</td>
</tr>
<tr>
<td>IMP₃₀°-ΜΕΓΜ</td>
<td>240.5</td>
<td>± 20.7 Nm</td>
<td>± 7 %</td>
<td>± 7.2 %</td>
<td>± 8.3 %</td>
</tr>
</tbody>
</table>

*: σημαντική διαφορά σε σχέση με τις αρχικές τιμές (P<0.05), #: σημαντική διαφορά μεταξύ των δύο προπονήσεων (P<0.05), EMP: έκκεντρη μέγιστη ροπή, OMP: ομόκεντρη μέγιστη ροπή, IMP₆₀°: ισομετρική μέγιστη ροπή σε γωνία γόνατος 60°, IMP₃₀°: ισομετρική μέγιστη ροπή σε γωνία γόνατος 110°.
Κεφάλαιο Τέταρτο

Μυϊκή καταστροφή και μυϊκή απόδοση μετά από έκκεντρη προπόνηση σε μυϊκές ομάδες των άνω και κάτω άκρων σε υγιείς άρρενες
Περίληψη

Σε δύο διαφορετικές προπονήσεις, ερευνήσαμε την επίδραση της έκκεντρης προπόνησης σε μυϊκές ομάδες των άνω (ΜΑΑ) και των κάτω άκρων (ΜΚΑ) σε επιλεγμένους δείκτες μυϊκής καταστροφής και μυϊκής απόδοσης. Χρησιμοποιώντας ισοκινητικό δυναμόμετρο στις 60°/s, 12 υγιείς νεαροί εθελοντές εκτέλεσαν δύο προπονητικά προγράμματα έκκεντρων συστολών, στο ένα από τα οποία χρησιμοποίησαν τους καμπτήρες του πήχη και στο άλλο τους εκτείνοντες του γονάτου με τυχαία σειρά, με διαφορά 14 ημερών μεταξύ τους. Κατά τη διάρκεια κάθε προπόνησης, οι δοκιμαζόμενοι έπρεπε να εκτελέσουν 6 σειρές των 12 επαναλήψεων στο 75% της μέγιστης έκκεντρης ροπής τους. Οι δείκτες της μυϊκής καταστροφής [ΚΚ και γαλακτική αφυδρογονάση (ΓΑ) στον ορό του αίματος, ΚΜΠ και ΕΚ] και της μυϊκής απόδοσης [ΕΜΡ, ΟΜΡ και ΙΜΡ60 και ΙΜΡπο μεταξύ μηρού/ κνήμης και βραχίων/ πίτη μέγιστη ροπή] αξιολογήθηκαν πριν την άσκηση και 24, 48, 72 καθώς και 96 ώρες μετά την άσκηση. Η συγκέντρωση ΚΚ αυξήθηκε σημαντικά (Ρ<0.05) σε όλες τις χρονικές στιγμές μετά και τις δύο προπονήσεις. Η προπόνηση των ΜΑΑ παρουσίασε σημαντικά υψηλότερη συγκέντρωση ΚΚ στις 72 και 96 ώρες σε σύγκριση με την προπόνηση των ΜΚΑ. Η ΓΑ παρουσίασε σημαντική (Ρ<0.05) αύξηση σε σχέση με τις αρχικές τιμές 72 ώρες μόνο μετά την προπόνηση των ΜΑΑ, αλλά δεν παρουσίασε σημαντική διαφορά μεταξύ των δύο μυϊκών ομάδων. Ο ΚΜΠ αυξήθηκε σημαντικά (Ρ<0.05) σε όλες τις χρονικές στιγμές μετά και τις δύο προπονήσεις. Το ΕΚ διατηρήθηκε σημαντικά μειωμένο (Ρ<0.05) ως τις 48 ώρες μετά και τις δύο προπονήσεις. Ο ΚΜΠ και το ΕΚ δεν παρουσίασαν σημαντικές διαφορές μεταξύ των ΜΑΑ και των ΜΚΑ (Ρ>0.05). Όσον αφορά την μυϊκή απόδοση, η EMP και η OMP μειώθηκαν σημαντικά (Ρ<0.05) μέχρι τις 48 ώρες μόνο μετά την έκκεντρη προπόνηση με τους ΜΑΑ. Η έκκεντρη προπόνηση προκάλεσε σημαντικότερη αλλοίωση στην απόδοση των ΜΑΑ σε σχέση με τους ΜΚΑ στην EMP, IMP60 και IMP110 και 96 ώρες μετά την άσκηση. Συμπερασματικά, η έκκεντρη προπόνηση υπομόνευσης ύπαρξης προκαλεί τον ίδιο περίπου βαθμό μυϊκής καταστροφής στους ΜΑΑ και στους ΜΚΑ, ενώ η μυϊκή απόδοση των ΜΑΑ επηρεάζεται περισσότερο από ό,τι αυτή των ΜΚΑ.
Εισαγωγή

Ο μυϊκός τραυματισμός μετά από έκκεντρες συστολές (Brown et al., 1997) είναι συνηθισμένη εμπειρία τόσο στους αθλητές όσο και στους ελεύθερα αθλούμενους, ειδικά όταν η φύση της άσκησης είναι πρωτόγνωρη για τους μύες. Ο τραυματισμός της κυτταροπλασματικής μεμβράνης μετά από προπόνηση έκκεντρων συστολών συνοδεύεται τις περισσότερες φορές από καταστροφή των σαρκομερίων στην περιοχή της γραμμής Z (Friden et al., 1981). Το φυσικό επακόλουθο, που ονομάζεται αποδιοργάνωση της γραμμής Z, είναι η διακοπή της σύνδεσης των γραμμών Z μεταξύ τους. Η έκκεντρη άσκηση έχει καταστροφικά αποτελέσματα στο ενδιάμεσο νημάτι της δεσμίνης, το φυσικό κρίκο μεταξύ των γραμμών Z (Friden et al., 1981).

Για τη μελέτη της μυϊκής καταστροφής οι ερευνητές εφαρμόζουν έκκεντρες προπονήσεις σε διάφορες μυϊκές ομάδες και παρακολουθούν την πορεία των συμπτώματος για μερικές μέρες μετά την άσκηση (Lee and Clarckson, 2003; Gleeson et al., 1995). Οι μυϊκές ομάδες που χρησιμοποιούνται περιοσότερο από τους ερευνητές είναι οι καμπτήρες του αγκώνα (Sayers and Clarckson 2001; Saxton et al., 1995) και οι εκτείνοντες του γονάτου (Child at al., 1998; Prou et al., 1999). Από τις μελέτες αυτές φαίνεται ότι η προπόνηση με έκκεντρες συστολές τόσο των άνω όσο και των κάτω άκρων επηρεάζει τους δείκτες της μυϊκής καταστροφής και της μυϊκής απόδοσης (Sayers and Clarckson 2001; Prou et al., 1999).

Δεν έχει γίνει καμία έρευνα μέχρι σήμερα που να συγκρίνει τες μυϊκές ομάδες των άνω και των κάτω άκρων. Στις καθημερινές μας κινήσεις οι μύες των χεριών δουλεύουν για να φέρουν εις πέρας λεπτές δουλειές που χρειάζονται ακρίβεια και όχι μεγάλη δύναμη. Αντίθετα, οι μύες των ποδιών εκτελούν κινήσεις με μεγάλη εφαρμογή δύναμης και πολλές από τις κινήσεις αυτές είναι έκκεντρης φύσης (π.χ. κατέβασμα σκαλοπατιών) δημιουργώντας κάποιες ίσως μικρές προσαρμογές. Σκοπός
λοιπόν της έρευνας αυτής ήταν να μελετήσουμε τις διαφορές που τυχόν θα παρουσιαστούν σε μυϊκές ομάδες των άνω και των κάτω άκρων μετά την εφαρμογή προπόνησης με έκκεντρες συστολές.

Μεθοδολογία

Δοκιμαζόμενοι

Δώδεκα υγιείς άρρενες [ηλικίας 21 (±1) χρόνων, ύψους 179,5 (±3) cm και μάζας 78,5 (±3) kg] πήραν μέρος εθελοντικά στην μελέτη. Οι δοκιμαζόμενοι δεν είχαν εμπειρία συστηματικής προπόνησης με έκκεντρες συστολές τους τελευταίους 6 μήνες και δεν υπήρχαν αντιφλεγμονώδεις φάρμακα. Τους δόθηκαν οδηγίες για αποφυγή κάθε έντονης δραστηριότητας και συμπληρωμάτων που περιέχουν καφεΐνη τρεις μέρες πριν και κατά τη διάρκεια της συλλογής των δεδομένων. Οι δοκιμαζόμενοι διάβασαν και υπέγραψαν έντυπο πληροφόρησης και συναίνεσης σύμφωνα με τους κανόνες του Πανεπιστημίου Θεσσαλίας.

Διαδικασίες μέτρησης

Οι δοκιμαζόμενοι, μετά από δύο επισκέψεις εξοικείωσης στο εργαστήριο, εκτέλεσαν δύο προπονήσεις έκκεντρων συστολών, στους καμπτήρες του αγκώνα και στους εκτείνοντες του γονάτου, με 14 μέρες διαφορά μεταξύ των προπονήσεων. Οι δύο προπονήσεις έκκεντρων συστολών ήταν υπομέγιστης έντασης (75% της EMP) και εκτελούνταν με τυχαία σειρά. Η κάθε έκκεντρη προπόνηση αποτελούνταν από 6 σειρές των 12 επαναλήψεων, με δύο λεπτά ξεκουράση μεταξύ των σειρών.

Οι δείκτες της μυϊκής καταστροφής (ΚΚ, ΓΑ, ΚΜΠ, και ΕΚ) και οι δείκτες της μυϊκής απόδοσης των εκτεινόντων του γονάτου (EMP, OMP, ισομετρική μέγιστη
ροπή σε γωνία μητρώ/ κνήμης και βραχιώνα/ πήχη 60° (IMP₆₀) και 110° (IMP₁₁₀)]

αξιολογήθηκαν πριν την άσκηση και 24, 48, 72 καθώς και 96 ώρες μετά την άσκηση.

Πριν από κάθε προπονητικό πρόγραμμα οι δοκιμαζόμενοι έκαναν ξέσταμα που αποτελούνταν από 2 σειρές των 10 επαναλήψεων με μικρή ένταση.

. Πέντε λεπτά μετά το τέλος της κάθε προπόνησης γινόταν λήψη αίματος από τη ρόγα του δαχτύλου για τον προσδιορισμό της συγκέντρωσης του γαλακτικού οξέος. Η ανάλυση έγινε σε φωτόμετρο (Dr. Lange, LP60, Βερολίνο) χρησιμοποιώντας έτοιμα αντιδραστήρια (Dr. Lange Kuvvenet-Test® LKM 140, Βερολίνο). Εκτός από την ΚΚ, το γαλακτικό οξύ και τον ΚΜΠ, η αξιολόγηση όλων των παραμέτρων που μελετήθηκαν έγινε σε ισοκινητικό δυναμόμετρο που περιγράφηκε στο 2^ο κεφάλαιο (σελ. 82).

Δείκτες Μυϊκής Καταστροφής

Οι δείκτες της μυϊκής καταστροφής ΚΚ, ΚΜΠ και ΕΚ αξιολογήθηκαν με την ίδια διαδικασία όπως περιγράφονταν στο 2^o κεφάλαιο (σελ. 83).

ΓΑ. Λήψη αίματος γινόταν πριν την άσκηση και 24, 48, 72 καθώς και 96 ώρες μετά την άσκηση, σύμφωνα με υπάρχοντα πρωτόκολλα (Newham et al., 1988; Nosaka et al., 2002). Η λήψη αίματος γινόταν από τη βασιλική φλέβα του πήχη σε αποστειρωμένα σωληνάρια (venoject®). Το αίμα έπηζε σε θερμοκρασία δωματίου για 30 λεπτά και γινόταν φυγοκέντρηση στις 1500 x <i>g</i> για 10 λεπτά. Ο όρος του αίματος αφαιρούνταν και τοποθετούνταν στους -20°C μέχρι την ανάλυσή του. Η ΓΑ υπολογίζοταν με διπλές μετρήσεις χρησιμοποιώντας αντιδραστήριο του εμπορίου (Randox, LD526, UK). Οι φυσιολογικές τιμές της συγκέντρωσης ΓΑ στους άνδρες χρησιμοποιώντας τη μέθοδο αυτή ήταν 120-240 U/I στους 37°C.
Δείκτες Μυϊκής Απόδοσης

Υπολογιζόταν η καλύτερη από τρεις μέγιστες εκούσιες προσπάθειες EMP, OMP, IMP₁₀₀ και IMP₁₁₀ χρησιμοποιώντας ισοκινητικό δυναμόμετρο τόσο για τις μυϊκές ομάδες των χεριών όσο και για των ποδιών. Το διάλειμμα μεταξύ των δοκιμασιών ήταν τρία λεπτά.

Στατιστική Ανάλυση

Οι παράμετροι που μελετήθηκαν εξισώθηκαν στις αρχικές του τιμές όπου το 100% αντιπροσωπεύει τις αρχικές τιμές. Η αρχική αξιολόγηση φυσιολογικής κατανομής (Kolmogorov-Smirnov test) για τους παράγοντες που εξετάστηκαν δεν χρειάστηκε λογαριθμική μετατροπή για να αποκτήσει κανονική κατανομή. Εξαιτίας της μεγάλης τους διασποράς, μη παραμετρική ανάλυση (Wilcoxon two related samples test) χρησιμοποιήθηκε για την KK, την GA και τον KMP (Thomas and Nelson, 1996). 2 x 4 (ένταση x χρόνος) ANOVA με επαναλαμβανόμενες μετρήσεις και ζευγαρωτές συγκρίσεις με ανάλυση απλών κύριων επιδράσεων χρησιμοποιήθηκαν για την ανάλυση όλων, εκτός των KK, GA και KMP, των παραμέτρων της μελέτης. Το επίπεδο σημαντικότητας ορίστηκε στο P<0.05. Τα δεδομένα αναφέρονται ως μέσος όρος (±τυπικό σφάλμα).
Αποτελέσματα

Η ένταση που χρησιμοποίησαν οι δοκιμαζόμενοι ήταν 75.2 (±4.1)% και 76.6 (±3.5)% της ΕΜΡ κατά τη διάρκεια της έκκεντρης προπόνησης με ΜΑΑ και ΜΚΑ, αντίστοιχα. Η συγκέντρωση γαλακτικού οξέος μετά την προπόνηση με έκκεντρες συστολές ήταν 3.6 (±0.5) mmol/L και 5.1 (±0.7) mmol/L για την προπόνηση των ΜΚΑ και των ΜΑΑ αντίστοιχα. Η διαφορά της συγκέντρωσης γαλακτικού οξέος δεν ήταν σημαντική μεταξύ των δύο προπονήσεων (Εικ. 1).

Δείκτες Μυϊκής Καταστροφής

Σε σύγκριση με τις αρχικές τιμές, η ΚΚ (Εικ. 2) αυξήθηκε σημαντικά (Ρ<0.05) σε όλες τις χρονικές στιγμές αξιολόγησης μετά και τις δύο προπονήσεις έκκεντρων συστολών. Παρατηρήθηκε επίσης σημαντική μεγαλύτερη (Ρ<0.05) συγκέντρωση ΚΚ στις 72 και 96 ώρες μετά την προπόνηση με ΜΚΑ σε σχέση με την προπόνηση με ΜΑΑ. Η ΓΑ (Εικ. 3) παρουσίασε σημαντική αύξηση συγκέντρωσης στις 72 ώρες μόνο μετά την έκκεντρη προπόνηση με ΜΑΑ σε σχέση με τις αρχικές τιμές (Ρ<0.05). Μεταξύ των προπονήσεων δεν παρουσιάστηκε σημαντική διαφορά σε κάποιο χρονικό σημείο αξιολόγησης.

Ο ΚΜΠ (Εικ. 4) και το ΕΚ (Εικ. 5) δεν παρουσίασαν σημαντικές διαφορές μεταξύ των ΜΑΑ και των ΜΚΑ (Ρ>0.05). Ο ΚΜΠ παρέμεινε σημαντικά αυξημένος (Ρ<0.05) σε όλες τις χρονικές στιγμές αξιολόγησης μετά και τις δύο προπονήσεις έκκεντρων συστολών. Το ΕΚ διατηρήθηκε σημαντικά μειωμένο (Ρ<0.05) ως τις 48 ώρες μετά και τις δύο προπονήσεις.
Δείκτες μυϊκής απόδοσης

Σε σύγκριση με τις αρχικές τιμές, η EMP (Εικ. 6) ήταν μειωμένη σημαντικά μέχρι τις 48 ώρες μόνο μετά την προπόνηση με ΜΑΑ (P<0.05). Παράλληλα, η EMP ήταν σημαντικά μειωμένη (P<0.05) στις 72 και 96 ώρες μετά την προπόνηση των ΜΑΑ σε σχέση με τους ΜΚΑ. Η OMP (Εικ. 7) παρουσίασε σημαντική μείωση (P<0.05) μέχρι τις 48 ώρες μετά την προπόνηση των ΜΑΑ. Μεταξύ των δύο προπονήσεων δεν παρατηρήθηκε καμία σημαντική διαφορά (P>0.05).

Η IMP₆₀ (Εικ. 8) και η IMP₁₁₀ (Εικ. 9) δεν αλλοιώθηκαν σημαντικά (P>0.05) σε καμία χρονική στιγμή αξιολόγησης μετά και τις δύο προπονήσεις. Οι δύο αυτοί δείκτες παρουσίασαν σημαντικότερη μείωση (P<0.05) στις 72 και 96 ώρες μετά την προπόνηση των ΜΑΑ σε σχέση με τους ΜΚΑ.

Συζήτηση

Σκοπός της μελέτης αυτής ήταν να ερευνήσουμε τις διαφορές που ίσως υπάρχουν μεταξύ των μυϊκών ομάδων των άνω και των κάτω άκρων στη μυϊκή καταστροφή και στην απόδοση μετά από προπόνηση έκκεντρων συστολών. Βρέθηκε ότι η έκκεντρη προπόνηση υπομέγιστης έντασης έκκεντρων συστολών προκαλεί τον ίδιο περίπου βαθμό μυϊκής καταστροφής στους ΜΚΑ και στους ΜΑΑ, αλλά η μυϊκή απόδοση των ΜΑΑ επηρεάζεται περισσότερο από ό,τι αυτή των ΜΚΑ.

Από την μεταβολή των δεικτών της μυϊκής καταστροφής φαίνεται ότι τόσο οι ΜΚΑ όσο και οι ΜΑΑ είναι επιρρεπείς στην υπομέγιστη άσκηση έκκεντρων συστολών. Η έλλειψη σημαντικών διαφορών μεταξύ των δύο προπονήσεων επισημαίνει ότι η μυϊκή καταστροφή είναι της ίδιας έντασης για τις μυϊκές αυτές ομάδες. Ο ΚΜΠ αυξήθηκε σημαντικά σε όλες τις χρονικές στιγμές αξιολόγησης τους ΜΑΑ και στους ΜΚΑ. Επίσης η σημαντική αύξηση της ΓΑ των ΜΑΑ στις 72
ώρες μετά την έκκεντρη προπόνηση, υποδηλώνει μια τάση εντονότερης μυϊκής καταστροφής για τους ΜΑΑ σε σχέση με τους ΜΚΑ.

Η τάση αυτή φαίνεται να υπάρχει και στη βιβλιογραφία. Σε μελέτες που χρησιμοποίησαν τους ΜΚΑ (Dolezal et al., 2000; Prou et al., 1999), η KK, και ο ΚΜΠ παρουσιάζουν μέγιστη μεταβολή μία με δύο μέρες μετά την έκκεντρη άσκηση. Αντίθετα, σε μελέτες που χρησιμοποίησαν τους ΜΑΑ (Lee and Clarkson. 2003; Nosaka and Newton 2002; Nosaka and Sakamoto, 2001), οι δείκτες της μυϊκής καταστροφής παρουσιάζουν την κορύφωσή τους σε διπλάσιο τουλάχιστον χρόνο από ό,τι οι ΜΚΑ. Με τις παρατηρήσεις αυτές μπορούμε να υποθέσουμε ότι τα αποτελέσματα της έκκεντρης άσκησης, όταν αυτή πραγματοποιηθεί με ΜΑΑ διαρκούν, περισσότερο με πολύ πιο αργό ρυθμό αποκατάστασης σε σχέση με τα αποτελέσματα της έκκεντρης άσκησης ΜΚΑ.

Όλοι οι δείκτες της μυϊκής απόδοσης, εκτός από την ΟΜΡ, επηρεάστηκαν σε σημαντικό μεγαλύτερο βαθμό από την προπόνηση με τους ΜΑΑ σε σύγκριση με την προπόνηση με τους ΜΚΑ. Παρόλο που η ΟΜΡ δεν παρουσίασε σημαντική διαφορά μεταξύ των δύο προπονήσεων, παρουσίασε σημαντική μείωση μέχρι τις 48 ώρες μόνο μετά από την έκκεντρη προπόνηση με τους ΜΑΑ.

Τα αποτελέσματα αυτά φαίνεται να υποστηρίζουν και μελέτες έκκεντρης προπόνησης που χρησιμοποίησαν τους ΜΚΑ (Brown et al., 1997; Hortobagy et al., 1988) και τους ΜΑΑ (Newham et al., 1988; Nosaka et al., 1991; Paddon-Jones and Abermethy, 2001). Στις μελέτες που χρησιμοποίησαν τους ΜΚΑ η μυϊκή απόδοση μειώνεται σημαντικά δύο μέρες περίπου μετά την άσκηση κατά περίπου 40%, ενώ οι αντίστοιχες τιμές στις μελέτες που χρησιμοποίησαν τους ΜΑΑ ήταν 24 ώρες και περίπου 50%. Η υπόθεση που μπορούμε να κάνουμε είναι ότι η έκκεντρη προπόνηση
επηρεάζει σε μεγαλύτερο βαθμό και γρηγορότερα την απόδοση, όταν εφαρμόζεται στους ΜΑΑ σε σύγκριση με τους ΜΚΑ.

Οι ΜΚΑ χρησιμοποιούνται σε πολύ μεγαλύτερο βαθμό για τις καθημερινές μας κινήσεις που απαιτούν την εφαρμογή δύναμης και αυτή ακόμη την στήριξη του σώματος. Πολλές από τις κινήσεις αυτές οδηγούν τους μύες να εκτελούν έκκεντρες συστολές, όπως το κατέβασμα σκαλοπατιών. Αντίθετα, οι ΜΑΑ εκτελούν περισσότερο κινήσεις που χρειάζονται επιδεξιότητα και όχι δύναμη με αποτέλεσμα να μην είναι εξουσιοδοτημένοι με δυναμικές κινήσεις. Η διαφοροποίηση αυτή στη χρήση τους ίσως οδηγεί τους ΜΚΑ σε γρηγορότερο ρυθμό αποκατάστασης της δύναμης μετά από έντονη προπόνηση, επηρεάζοντας με τον τρόπο αυτό τα αποτελέσματα της μελέτης αυτής.

Συμπερασματικά, τα ευρήματα της μελέτης αυτής υποστηρίζουν ότι η έκκεντρη προπόνηση υπομέγιστης έντασης προκαλεί τον ίδιο περίπου βαθμό μυϊκής καταστροφής στους ΜΚΑ και στους ΜΑΑ, ενώ η μυϊκή απόδοση των ΜΑΑ επηρεάζεται περισσότερο από ό,τι αυτή των ΜΚΑ.

Συμπεράσματα

• Η έκκεντρη προπόνηση υπομέγιστης έντασης προκαλεί τον ίδιο περίπου βαθμό μυϊκής καταστροφής στους ΜΚΑ και στους ΜΑΑ

• Η έκκεντρη προπόνηση υπομέγιστης έντασης επηρεάζει σε σημαντικότερο βαθμό τη μυϊκή απόδοση των ΜΑΑ απ’ ό,τι επηρεάζει τη μυϊκή απόδοση των ΜΚΑ.

• Ο ρυθμός αποκατάστασης της μέγιστης δύναμης είναι πιο αργός στους ΜΑΑ σε σχέση με τους ΜΚΑ.
Εικόνα 1: Συγκέντρωση γαλακτικού οξέος στο αίμα 5 λεπτά μετά το τέλος της έκκεντρης προπόνησης για τα χέρια και τα πόδια. Οι γραμμές σφάλματος υποδηλώνουν το τυπικό σφάλμα.
Εικόνα 2: Επί τις εκατό (%) τιμές της συγκέντρωσης της ΚΚ (U/l) κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση σε ΜΚΑ (♦) και σε ΜΑΑ (■) σε σχέση με την αρχική επίδοση (100%). Οι γραμμές σφάλματος υποδηλώνουν το τυπικό σφάλμα.

* P<0.05 σημαντική διαφορά σε σχέση με την αρχική επίδοση (100%)

P<0.05 σημαντική διαφορά μεταξύ των δύο προπονήσεων
Εικόνα 3: Επί τις εκατό (%) τιμές της συγκέντρωσης της ΓΑ (U/l) κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση σε ΜΚΑ (♦) και σε ΜΑΑ (■) σε σχέση με την αρχική επίδοση (100%). Οι γραμμές σφάλματος υποδηλώνουν το τυπικό σφάλμα.

* P<0.05 σημαντική διαφορά σε σχέση με την αρχική επίδοση (100%)
Εικόνα 4: Επί τις εκατό (%) τιμές της μεταβολής του ΚΜΠ κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση σε ΜΚΑ (♦) και σε ΜΑΑ (■) σε σχέση με την αρχική επίδοση (100%). Οι γραμμές σφάλματος υποδηλώνουν το τυπικό σφάλμα.

* P<0.05 σημαντική διαφορά σε σχέση με την αρχική επίδοση (100%)
Εικόνα 5: Επί τις εκατό (%) τιμές της μεταβολής της ΕΚ (°) κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση σε ΜΚΑ (♦) και σε ΜΑΑ (■) σε σχέση με την αρχική επίδοση (100%). Οι γραμμές σφάλματος υποδηλώνουν το τυπικό σφάλμα.

*Ρ<0.05 σημαντική διαφορά σε σχέση με την αρχική επίδοση (100%)
Εικόνα 6: Επί τις εκατ (‰) τιμές της μεταβολής της EMP (Nm) κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση σε ΜΚΑ (♦) και σε ΜΑΑ (■) σε σχέση με την αρχική επίδοση (100%). Οι γραμμές σφάλματος υποδηλώνουν το τυπικό σφάλμα.

* P<0.05 σημαντική διαφορά σε σχέση με την αρχική επίδοση (100%)

P<0.05 σημαντική διαφορά μεταξύ των δύο προπονήσεων
Εικόνα 7: Επί τις εκατό (%) τιμές της μεταβολής της OMP (Nm) κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση σε ΜΚΑ (*) και σε ΜΑΑ (■) σε σχέση με την αρχική επίδοση (100%). Οι γραμμές σφάλματος υποδηλώνουν το τυπικό σφάλμα.

* P<0.05 σημαντική διαφορά σε σχέση με την αρχική επίδοση (100%)
Εικόνα 8: Επί τες εκατό (%) τιμές της μεταβολής της IMP_{60} (Nm) κατά τς χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση σε ΜΚΑ (♦) και σε ΜΑΑ (■) σε σχέση με την αρχική επίδοση (100%). Οι γραμμές σφάλματος υποδηλώνουν το τυπικό σφάλμα.

P<0.05 σημαντική διαφορά μεταξύ των δύο προπονήσεων
Εικόνα 9: Επί τις εκατό (%) τιμές της μεταβολής της IMP110 (Nm) κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση σε ΜΚΑ (♦) και σε ΜΑΑ (■) σε σχέση με την αρχική επίδοση (100%). Οι γραμμές σφάλματος υποδηλώνουν το τυπικό σφάλμα.

P<0.05 σημαντική διαφορά μεταξύ των δύο προπονήσεων
Κεφάλαιο Πέμπτο

Η επίδραση της προπόνησης με έκκεντρες συστολές στη δρομική οικονομία
Σκοπός της μελέτης μας ήταν να ερευνήσαμε την επίδραση της έκκεντρης προπόνησης στη δρομική οικονομία. Χρησιμοποιώντας ισοκινητικό δυναμόμετρο με γωνιακή ταχύτητα 60⁰/s, 12 υγιείς νεαροί εθελοντές εκτέλεσαν προπονητικό πρόγραμμα έκκεντρων συστολών χρησιμοποιώντας τους εκτείνοντας του γονάτου. Κατά τη διάρκεια της προπόνησης, οι δοκιμαζόμενοι έπρεπε να εκτελέσουν 12 σειρές των 10 επαναλήψεων μέγιστης εκουσίας έντασης και για τα δύο πόδια. Για την αξιολόγηση των παραμέτρων της δρομικής οικονομίας (πρόσληψη οξυγόνου, αναπνευστικό πηλίκο, πνευμονικός αερισμός και αριθμός αναπνοών) χρησιμοποιήθηκαν δύο ταχύτητες τρεξίματος (133 και 200 μέτρα / λεπτό) σε κυλιόμενο τάπητα. Οι δείκτες της μυϊκής καταστροφής (ΚΚ, ΓΑ, ΚΜΠ και ΕΚ), της μυϊκής απόδοσης (EMP, OMP, IMP60 και IMP110) μεταξύ μηρού και κνήμης και της δρομικής οικονομίας αξιολογήθηκαν πριν την άσκηση και 24, 48, 72 καθώς και 96 ώρες μετά την άσκηση. Ολο» οι δείκτες της μυϊκής καταστροφής εκτός από την ΓΑ παρουσίασαν σημαντική μεταβολή σε όλες τις χρονικές στιγμές αξιολόγησης (P<0.05). Η EMP και την IMP110 παρέμειναν σημαντικά μειωμένες (P<0.05) μέχρι τις 96 ώρες, ενώ η OMP και η IMP60 παρέμειναν σημαντικά μειωμένες μέχρι τις 72 και τις 48 ώρες αντίστοιχα. Κανένας από τους δείκτες της δρομικής οικονομίας δεν επηρεάστηκε σημαντικά (P>0.05) σε κάποιο σημείο από τα χρονικά σημεία αξιολόγησης μετά την έκκεντρη άσκηση. Συμπερασματικά, η προπόνηση έκκεντρων συστολών που προκαλεί μυϊκή καταστροφή δεν φαίνεται να επηρεάζει τη δρομική οικονομία σε τρέξιμο υπομέγιστης έντασης.
Εισαγωγή

Η δρομική οικονομία που ορίζεται ως η κατανάλωση οξυγόνου (VO_{2}) μετρημένη σε σταθερή υπομέγιστη ταχύτητα, έχει αναγνωριστεί ως μία από τις πολλές φυσιολογικές παραμέτρους που σχετίζονται με την επίδοση σε δρομικά αγωνίσματα μεταξύ δρομέων με ομοιόμορφη κατανέμηση αντοχής (Conley, Krahenbuhl, Burkett, Millar, 1984; Morgan and Craib, 1992). Επιπλέον αυτές οι μελέτες επισημαίνουν ότι με την βελτίωση της δρομικής οικονομίας (χαμηλότερη χρησιμοποίηση οξυγόνου με σταθερή ταχύτητα), βελτιώνεται ταυτόχρονα και η δρομική απόδοση.

Σε μια πρόσφατη μελέτη (Braun and Dutto, 2003) οι ερευνητές με τη χρήση κατηφορικού τρεξίματος που προκάλεσε καθυστερημένο μυϊκό πόνο βρήκαν σημαντική αλλοίωση των παραμέτρων της δρομικής οικονομίας καθώς και σημαντική αύξηση των επιπέδων του γαλακτικού οξέος. Αντίθετα, σε μια παλιότερη μελέτη (Hamill, Freedson, Clarkson, Braun, 1991) οι ερευνητές παρατήρησαν ότι μετά από κατηφορικό τρέξιμο, δεν επηρεάστηκε καθόλου η δρομική οικονομία των δοκιμαζόμενων.

Οι αθλητές όμως που ασχολούνται με αγωνίσματα συμπεριλαμβάνουν στο πρόγραμμά τους προπονητικές μονάδες με αντιστάσεις για την βελτίωση και ανάπτυξη της δύναμης τους. Σκοπός λοιπόν της μελέτης αυτής ήταν να επιτύχωντες την επίδραση μιας έντονης προπόνησης μέγιστων έκκεντρων συστολών των εκτεινόντων του γονάτου στην δρομική οικονομία.

Μεθοδολογία

Δοκιμαζόμενοι

Δώδεκα υγιείς άρρενες [ηλικίας 23 (±1) χρόνων, ύψους 175 (±0,5) cm και μάζας 74 (±0,5) kg] πήραν μέρος εθελοντικά στην μελέτη. Οι δοκιμαζόμενοι δεν είχαν εμπειρία συστηματικής προπόνησης με έκκεντρες συστολές για τους τελευταίους 6 μήνες και δεν χρησιμοποίησαν αντιφλεγμονώδη φάρμακα. Μετέπειτα, δεν διεξήχθησε προπόνηση κάθε έντονης δραστηριότητας και συμπληρωμάτων που περιέχουν καφεΐνη τρεις μέρες πριν και κατά τη διάρκεια της συλλογής των δεδομένων. Οι δοκιμαζόμενοι διαβάζονταν και υπέγραφαν έντυπο πληροφόρησης και συναίνεσης σύμφωνα με τους κανόνες του Πανεπιστημίου.
Διαδικασίες Μέτρησης

Μία εβδομάδα πριν την αρχή της διαδικασίας συλλογής δεδομένων αξιολογήθηκε η μέγιστη πρόσληψη οξυγόνου (VO₂max) των δοκιμαζόμενων. Η αξιολόγηση της VO₂max έγινε με τη χρήση αναλυτή αερίων (Sensormedics, Vmax29, Yorba Linda, California, USA), σε κυλιόμενο τάπητα (Powerjog, GXC200, UK). Σύμφωνα με το πρωτόκολλο οι δοκιμαζόμενοι ξεκινούσαν από τη ταχύτητα των 167 m/min η οποία αυξανόταν κάθε δύο λεπτά κατά 17 m/min μέχρι την εξάντληση των δοκιμαζόμενων. Η βαθμονόμηση και ο έλεγχος της σωστής λειτουργίας του αναλυτή αερίων γινόταν σύμφωνα με τις οδηγίες του κατασκευαστή.

Κάθε δοκιμαζόμενος, μετά από δύο επισκέψεις εξοικείωσης στο εργαστήριο, εκτελούσε προπόνηση έκκεντρων συστολών των εκτεινόντων του γονάτου, και στα δύο πόδια. Κατά τη διάρκεια της προπόνησης, κάθε δοκιμαζόμενος εκτέλεσε 12 σειρές των 10 μέγιστων εκούσιων επαναλήψεων όπως έδειξαν τα αποτελέσματα της 1ης μελέτης, με δύο λεπτά διάλειμμα μεταξύ των σειρών. Η προπόνηση εκτελούσαν από τη καθιστή θέση με γωνία 90ο μεταξύ του μηρού και του κορμού όπως έδειξαν τα αποτελέσματα της 1ης μελέτης. Πριν από κάθε προπονητικό πρόγραμμα, οι δοκιμαζόμενοι έκαναν ζέσταμα αποτελούμενο από οκτώ λεπτά ποδηλασία σε ποδηλατοεργόμετρο Monark με 70 στροφές/λεπτό και αντίσταση 50 W ενώ ακολουθούσαν διατατικές ασκήσεις 5 λεπτών. Για την έκκεντρη προπόνηση, την αξιολόγηση της δύναμης και το ΕΚ χρησιμοποιήθηκε το ισοκινητικό δυναμόμετρο που περιγράφηκε στο 2ο κεφάλαιο (σελ. 82).

Για την αξιολόγηση της δρομικής οικονομίας χρησιμοποιήθηκε ο ίδιος με την αξιολόγηση της VO₂max αναλυτή αερίων και κυλιόμενος τάπητας. Οι δοκιμαζόμενοι έτρεχαν σε δύο διαφορετικές ταχύτητες (με τυχαία σειρά) 133 και 200 m/min για 7 min, με διάλειμμα πέντε λεπτά μεταξύ τους στον ίδιο κυλιόμενο τάπητα.
Το διάλειμμα των πέντε λεπτών καθορίστηκε σε προσανατολιστική μελέτη όπου οι σφιγμοί των δοκιμαζόμενων έπεφταν στους 90 ανά λεπτό περίπου. Από το τέταρτο ως το έκτο λεπτό γινόταν μέτρηση των φυσιολογικών παραμέτρων της δρομικής οικονομίας για τις δύο αυτές ταχύτητες. Γνωρίζοντας ότι η δρομική οικονομία μπορεί να επηρεαστεί από τη θερμοκρασία του περιβάλλοντος (MacDougall, Reddan, Layton, Dempsey, 1974; Saltin and Stenberg, 1964), προσπαθήσαμε να διατηρήσουμε τη θερμοκρασία στο χώρο της αξιολόγησης σταθερή. Επιπλέον, οι δοκιμαζόμενοι χρησιμοποιούσαν τα ίδια παπούτσια (Morgan and Craib, 1992) και τους δόθηκαν οδηγίες να είναι ξεκούραστοι και να έχουν κοιμηθεί καλά το προηγούμενο βράδυ (Pierce, McGowan, Barkett, Fry, 1993).

Deίκτες Μυϊκής Καταστροφής

Οι δείκτες της μυϊκής καταστροφής ΚΚ, ΓΑ, ΚΜΠ και ΕΚ αξιολογήθηκαν με την ίδια διαδικασία όπως περιγράφονται στο 2° (σελ. 83) και στο 4ο κεφάλαιο (σελ. 111).

Deίκτες Μυϊκής Απόδοσης

Οι δείκτες της μυϊκής απόδοσης ΕΜΡ, ΟΜΡ, IMP60 και IMP110 αξιολογήθηκαν με την ίδια διαδικασία όπως περιγράφονται στο 3ο κεφάλαιο (σελ. 97).

Deίκτες Δρομικής Οικονομίας

Ως δείκτες δρομικής οικονομίας χρησιμοποιήθηκαν η πρόσληψη οξυγόνου (VO2), ο πνευμονικός αερισμός (Ve), το αναπνευστικό πηλίκο (RQ) και ο αριθμός των αναπνοών ανά λεπτό (BPM). Παράλληλα γινόταν μέτρηση της καρδιακής συχνότητας (KS) με τη μέθοδο της τηλεμετρίας (Polar S610TM, Electro Oy, Finland).
Οι δείκτες αυτοί προσδιορίστηκαν πριν, 24, 48, 72 καθώς και 96 ώρες μετά την άσκηση.

Στατιστική Ανάλυση
Η αρχική αξιολόγηση φυσιολογικής κατανομής (Kolmogonov-Smirnov test) για τους παράγοντες που εξετάστηκαν δεν χρειάστηκε λογαριθμική μετατροπή για να αποκτήσει κανονική κατανομή. Εξαιτίας της μεγάλης τους διασποράς, μη παραμετρική ανάλυση (Wilcoxon two related samples test) χρησιμοποιήθηκε για την KK, την GA και τον KMP (Thomas and Nelson, 1996). 2 x 4 (ένταση x χρόνος) ANOVA με επαναλαμβανόμενες μετρήσεις και ζευγαρωτές συγκρίσεις με ανάλυση απλών κύριων επιδράσεων χρησιμοποιήθηκαν για την KK και KMP, των παραμέτρων της μελέτης. Το επίπεδο σημαντικότητας ορίστηκε στο P<0.05. Τα δεδομένα αναφέρονται ως μέσος όρος (±τυπικό σφάλμα).

Αποτελέσματα
Η μέση παραγωγή έργου κατά την προπόνηση και για τα δύο πόδια ήταν 27.160 (±928) W χωρίς να υπάρχει σημαντική διαφορά (P>0.05) μεταξύ των μελών. Η μέση ένταση που χρησιμοποιήσαν οι δοκιμαζόμενοι ήταν 83.4 (±3.8) % της μέγιστης έκκεντρης ροπής. Η μέση μέγιστη πρόσληψη οξυγόνου και η μέγιστη καρδιακή συχνότητα των δοκιμαζόμενων ήταν 52.5 (±2.4) ml/kg/min και 197.5 (±5.5) beats/min αντίστοιχα.

Δείκτες Μυϊκής Καταστροφής
Σε σύγκριση με τις αρχικές τιμές, η KK (Εικ. 10) αυξήθηκε σημαντικά (P<0.05) σε όλα τα χρονικά σημεία αξιολόγησης αντίθετα με τη GA (Εικ. 11) που δεν
μεταβλήθηκε σημαντικά (P>0.05) σε κανένα χρονικό σημείο αξιολόγησης μετά από την προπόνηση με έκκεντρες συστολές.

Για τη στατιστική ανάλυση του ΚΜΠ (Εικ. 12) και του ΕΚ (Εικ. 13) χρησιμοποιήθηκε ο μέσος όρος των δύο άκρων αφού δεν παρουσίασαν καμία σημαντική διαφορά μεταξύ τους (P>0.05). Οι δύο αυτοί δείκτες παρέμειναν σημαντικά αλλοιωμένοι (P<0.05) σε όλα τα χρονικά σημεία της αξιολόγησης.

Δείκτες Μυϊκής Απόδοσης

Δεν υπήρξε σημαντική διαφορά (P>0.05) στην απόδοση μεταξύ των δύο τετρακέφαλων για κανέναν από τους δείκτες της μυϊκής απόδοσης. Για την αξιολόγηση της μυϊκής απόδοσης χρησιμοποιήθηκε ο μέσος όρος του δεξιού και του αριστερού ποδιού. Σε σύγκριση με τις αρχικές τιμές, η EMP (Εικ. 14) και η IMP_{10} (Εικ. 17) παρουσίασαν σημαντική μείωση (P<0.05) σε όλες τις χρονικές στιγμές αξιολόγησης. Η OMP (Εικ. 15) παρέμεινε σημαντικά μειωμένη (P<0.05) μέχρι τις 72 ώρες, ενώ η IMP_{60} (Εικ. 16) μειώθηκε σημαντικά (P<0.05) μέχρι τις 48 ώρες μετά την έκκεντρη προπόνηση.

Δείκτες Δρομικής Οικονομίας

Σε όλες τις παραμέτρους που αξιολογήθηκαν η διαφορά μεταξύ των δύο ταχυτήτων (133 και 200 μέτρα /λεπτό) ήταν σημαντική (P<0.05) σε όλα σχεδόν τα χρονικά σημεία αξιολόγησης. Κανένας όμως από τους δείκτες της δρομικής οικονομίας (Πίνακας 5) δεν επηρεάστηκε σημαντικά (P>0.05) από την έκκεντρη προπόνηση.
Συζήτηση

Σκοπός της παρούσας μελέτης ήταν να ερευνήσουμε το βαθμό επίδρασης της προπόνησης έκκεντρων συστολών που προκαλεί μυϊκή καταστροφή στη δρομική οικονομία. Όλοι οι δείκτες της μυϊκής καταστροφής, εκτός από την GA, και της μυϊκής απόδοσης παρουσίασαν σημαντική μεταβολή σε όλες τις χρονικές στιγμές αξιολόγησης. Κανένας όμως από τους δείκτες της δρομικής οικονομίας δεν επηρεάστηκε σημαντικά σε κάποιο από τα χρονικά σημεία αξιολόγησης μετά την έκκεντρη άσκηση.

Τα αποτελέσματα της παρούσας μελέτης έρχονται σε αντίθεση με τα αποτελέσματα μελέτης (Braun and Dutto, 2003), που δείχνει ότι η προπόνηση με κατηφορικό τρέξιμο προκάλεσε σημαντική αλλοίωση της δρομικής οικονομίας των δοκιμαζόμενων. Συμφωνούν όμως με τα αποτελέσματα μιας άλλης μελέτης (Hamill et al., 1991), που δείχνει ότι 30 λεπτά κατηφορικό τρέξιμο με ένταση 80% της VO2max και με κλήση -26% δεν επηρέασε τη δρομική οικονομία των δοκιμαζόμενων. Η πρόκληση της μυϊκής καταστροφής με διαφορετικό τρόπο στις προπονούμενες μελέτες (Braun and Dutto, 2003; Hamill et al., 1991) και στην παρούσα ήσως οδήγησε στα διαφορετικά αποτελέσματα. Οι δοκιμαζόμενοι στις δύο προπονούμενες μελέτες, τρέχοντας σε κατηφόρα, καταπόνησαν τις μυϊκές τους ομάδες με τον ίδιο ακριβώς τρόπο και στην προπόνηση και στην αξιολόγηση. Αντιθέτα στην παρούσα μελέτη η προπόνηση έγινε σε ισοκινητικό δυναμόμετρο, που διαφέρει πάρα πολύ ως κίνηση από το τρέξιμο που χρησιμοποιήθηκε για την αξιολόγηση της δρομικής οικονομίας.

Το διαφορετικό φύλο των δοκιμαζόμενων μεταξύ της μελέτης του Hamill και των συνεργατών του (1991) και της παρούσας μελέτης δεν φαίνεται να έχει επίδραση στα αποτελέσματα γιατί δεν έχουν παρατηρηθεί διαφορές στη δρομική οικονομία μεταξύ των φύλων τόσο μετά από προπονήσεις κατηφορικού τρεξίματος (Eston et al.,

Με τη χρησιμοποίηση της μυϊκής βιοψίας ομάδες ερευνητών (Friden et al., 1983; Newham et al., 1983) βρήκανε ότι οι κατεστραμμένες μυϊκές ίνες μετά από προπόνηση έκκεντρων συστολών αντιπροσωπεύουν το 25% των συνολικών μυϊκών ινών και μέχρι περίπου τις 6 μέρες μετά την προπόνηση ο αριθμός των κατεστραμμένων μυϊκών ινών έχει υποδιπλασιαστεί. Δεδομένου ότι στο τρέξιμο χρησιμοποιούνται μεγάλες μυϊκές ομάδες, το ποσοστό των κατεστραμμένων μυϊκών ινών μπορεί να μην είναι αρκετό για να προκαλέσει αλλοίωση της δρομικής οικονομίας των δοκιμαζόμενων.

Σε μία παραπλήσια μελέτη (McHugh et al., 1994) ερευνήθηκε η επίδραση που έχει η δυσλειτουργία του πρόσθιου χιαστού στην δρομική οικονομία. Οι ερευνητές αυτοί βρήκανε ότι τα άτομα αυτά χρειάζονται μεγαλύτερες ποσότητες οξυγόνου για να εκτελέσουν υπομέγιστη άσκηση (161 m/min) από ό,τι τα υγιή άτομα. Η εξήγηση που δόθηκε ήταν ότι η ένταση της άσκησης είχε αρνητική επίδραση στη δρομική οικονομία. Οι ερευνητές υποστήριξαν αυτή την θέση, γιατί σε ταχύτητες μικρότερες από 161 m/min δεν παρατηρήθηκε διαφορά μεταξύ των δύο ομάδων που αξιολογήθηκαν. Για την παρούσα μελέτη χρησιμοποιήσαμε δύο ταχύτητες για την αξιολόγηση της δρομικής οικονομίας σύμφωνα με προηγούμενους ερευνητές (Brisswalter et al., 1996; Lake and Cavanagh, 1996). Οι ταχύτητες αυτές αντιπροσωπεύονταν για μεν τα 133 m/min το 55% της VO2max, για δε τα 200 m/min το 75% της VO2max. Ίσως η σχετικά μικρή ένταση που χρησιμοποιήθηκε για την αξιολόγηση της δρομικής οικονομίας της άσκησης έκκεντρων συστολών να οδήγησε στην έλλειψη σημαντικών διαφορών στην παρούσα μελέτη.

Σε μια πρόσφατη μελέτη βρέθηκε ότι η δρομική οικονομία επηρεάζεται θετικά από την προπόνηση ανάπτυξης της εκρηκτικής δύναμης (Paavolainen, Hakkinen, Hamalainen, Nummela, Rusko, 1999). Οι δοκιμαζόμενοι προσθέτοντας στην
προπόνηση τους εκρηκτικού τύπου ασκήσεις δύναμης μπόρεσαν και βελτίωσαν την
επίδοσή τους στο δρόμο 5 χιλιομέτρων με υπομέγιστη ένταση. Οι ερευνητές αυτοί
(Paavolainen et al., 1999) υποστήριζουν ότι η βελτίωση αυτή οφείλεται στη βελτίωση
tων νευρομυϊκών χαρακτηριστικών, τα οποία με τη σειρά τους βελτιώνουν τη
dρομική οικονομία. Σε μια άλλη μελέτη (Lake and Cavanagh, 1996) βρέθηκε ότι
προπόνηση έξι εβδομάδων που περιελάμβανε τρέξιμο, δεν άλλαξε την δρομική
οικονομία των δοκιμαζόμενων. Στην ίδια μελέτη οι ερευνητές παρατήρησαν μείωση
tου αναπνευστικού πηλίκου και της συγκέντρωσης γαλακτικού οξέος, κάτι που είχε
ήδη επιβεβαιωθεί (Hurley et al., 1984) και συμβαίνει εξαιτίας της αύξησης της
αερόβιας ικανότητας των μυϊκών ινών (Ramsbottom, Williams, Fleming, Nute, 1989). Άλλοι ερευνητές (Kyrolainen et al., 2003) παρατήρησαν διαφορές στη
δρομική οικονομία σε διαφορετικές ταχύτητες μεταξύ ομοιογενώς ομάδας δρομέων
μεσαίων μεταστάσεων. Σύμφωνα με τους ερευνητές, αν και όλοι δρομείς είχαν
μεγαλύτερα αριθμό μυϊκών ινών τύπου I, η διαφορετική περιεκτικότητα μυϊκών ινών
tύπου I μεταξύ των δοκιμαζόμενων μπορούν να δικαιολογήσουν τα αποτελέσματα
tης παρούσης μελέτης.

Συμπερασματικά, τα αποτελέσματα της παρούσης μελέτης υποδεικνύουν ότι
η προπόνηση έκκεντρων συστολών, που προκαλεί μυϊκή καταστροφή δεν επηρεάζει
tην υπομέγιστη έντασης αξιολόγηση της δρομικής οικονομίας. Η επιπλέον μελέτη
gια την κατανόηση των θεμάτων που αφορούν την επίδραση της μυϊκής
καταστροφής στη δρομική οικονομία κρίνεται απαραίτητη, μιας και δεν έχει
ξεκαθαριστεί ο ακριβής μηχανισμός σύμφωνα με τον οποίο οι μυϊκές ομάδες, αν και
τραυματισμένες, δεν επηρεάζουν τις συγκεκριμένες φυσιολογικές λειτουργίες του
οργανισμού, που εξετάστηκαν στην παρούσα μελέτη.
Συμπεράσματα

- Η προπόνηση έκκεντρων συστολών, που προκαλεί μυϊκή καταστροφή, δεν επηρεάζει την υπομέγιστης έντασης αξιολόγηση της δρομικής οικονομίας.
Τον πίνακα 5 δίνουμε τις αξιολογημένες τιμές των παράμετρων αξιολόγησης της δρομικής οικονομία κατά τις χρονικές στιγμές της αξιολόγησης μετά από έκκεντρη προπόνηση.

<table>
<thead>
<tr>
<th>Παράμετροι</th>
<th>Αρχικές τιμές</th>
<th>24 ώρες</th>
<th>48 ώρες</th>
<th>72 ώρες</th>
<th>96 ώρες</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=10)</td>
<td>(n=10)</td>
<td>(n=10)</td>
<td>(n=10)</td>
<td></td>
</tr>
<tr>
<td>VO_2 - 133 μ/λ</td>
<td>27,9 ± 0,8*</td>
<td>28,6 ± 1,3*</td>
<td>28,3 ± 1,2*</td>
<td>27,4 ± 1*</td>
<td>27,1 ± 1*</td>
</tr>
<tr>
<td>(ml/kg/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VO_2 - 200 μ/λ</td>
<td>37,8 ± 0,6</td>
<td>39,2 ± 1,2</td>
<td>39,3 ± 1,4</td>
<td>38,8 ± 1</td>
<td>38,4 ± 1,2</td>
</tr>
<tr>
<td>(ml/kg/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΚΣ - 133 μ/λ</td>
<td>138,8 ± 6*</td>
<td>142,2 ± 10,7*</td>
<td>138 ± 8*</td>
<td>135,4 ± 9,2*</td>
<td>136 ± 9,1*</td>
</tr>
<tr>
<td>(beats/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΚΣ - 200 μ/λ</td>
<td>166,4 ± 6,6</td>
<td>166,6 ± 6,5</td>
<td>165,8 ± 6,3</td>
<td>164,2 ± 6,1</td>
<td>161 ± 7,9</td>
</tr>
<tr>
<td>(beats/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VE - 133 μ/λ</td>
<td>50 ± 1,5*</td>
<td>53,4 ± 2,3*</td>
<td>54,9 ± 3*</td>
<td>54,9 ± 2,5*</td>
<td>55,6 ± 2,9*</td>
</tr>
<tr>
<td>(l/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VE - 200 μ/λ</td>
<td>75 ± 2,6</td>
<td>81,1 ± 4,9</td>
<td>79,7 ± 4,6</td>
<td>77,1 ± 4,7</td>
<td>78,1 ± 5,1</td>
</tr>
<tr>
<td>(l/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ - 133 μ/λ</td>
<td>0,909 ± 0,02*</td>
<td>0,905 ± 0,02*</td>
<td>0,923 ± 0,02*</td>
<td>0,929 ± 0,02*</td>
<td>0,915 ± 0,02*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQ - 200 μ/λ</td>
<td>0,956 ± 0,02</td>
<td>0,973 ± 0,02</td>
<td>0,966 ± 0,02</td>
<td>0,956 ± 0,02</td>
<td>0,962 ± 0,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPM - 133 μ/λ</td>
<td>27 ± 2,7*</td>
<td>30,8 ± 2,8*</td>
<td>35,2 ± 2,6</td>
<td>34,1 ± 3*</td>
<td>35,2 ± 2,9*</td>
</tr>
<tr>
<td>(No/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPM - 200 μ/λ</td>
<td>38,5 ± 2,9</td>
<td>39,7 ± 2,6</td>
<td>40,1 ± 3,2</td>
<td>40,8 ± 3,3</td>
<td>41,9 ± 3,2</td>
</tr>
<tr>
<td>(No/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: σημαντική διαφορά μεταξύ των δύο ταχυτήτων (P<0.05), VO_2: πρόσληψη οξυγόνου, ΚΣ: καρδιακή συχνότητα VE: πνευμονικός αερισμός, RQ: αναπνευστικό πηλίκο, BPM: αναπνοές ανά λεπτό.
Εικόνα 10: Συγκέντρωση Κρεατινικής Κινάσης (ΚΚ) στον ορό του αίματος πριν και 24, 48, 72 καθώς και 96 ώρες μετά από έκκεντρη προπόνηση. Οι γραμμές σφάλματος επισημαίνουν το τυπικό σφάλμα.

* Ρ<0.05 σημαντική διαφορά σε σχέση με τις αρχικές τιμές
Εικόνα 11: Συγκέντρωση Γαλακτικής Αμφυδρογονάσης (ΓΑ) στον ορό του αίματος πριν και 24, 48, 72 καθώς και 96 ώρες μετά από έκκεντρη προπόνηση. Οι γραμμές σφάλματος επισημαίνουν το τυπικό σφάλμα.
Εικόνα 12: Ο καθυστερημένος μυϊκός πόνος (ΚΜΠ) πριν και 24, 48, 72 καθώς και 96 ώρες μετά από έκκεντρη προπόνηση. Οι γραμμές σφάλματος επισημαίνουν το τυπικό σφάλμα.

* P<0.05 σύγκριση σε σχέση με τις αρχικές τιμές
Εικόνα 13: Το εύρος της κίνησης (ΕΚ) πριν και 24, 48, 72 καθώς και 96 ώρες μετά από έκκεντρη προπόνηση. Οι γραμμές σφάλματος επισημαίνουν το τυπικό σφάλμα.

* P<0.05 σύγκριση σε σχέση με τις αρχικές τιμές
Εικόνα 14: Η έκκεντρη μέγιστη ροπή (EMP) πριν και 24, 48, 72 καθώς και 96 ώρες μετά από έκκεντρη προπόνηση. Οι γραμμές σφάλματος επισημαίνουν το τυπικό σφάλμα.

* P<0.05 σύγκριση σε σχέση με τις αρχικές τιμές
Εικόνα 15: Η ομόκεντρη μέγιστη ροπή (ΟΜΡ) πριν και 24, 48, 72 καθώς και 96 ώρες μετά από έκκεντρη προπόνηση. Οι γραμμές σφάλματος επισημαίνουν το τυπικό σφάλμα.

*Ρ<0.05 σύγκριση σε σχέση με τις αρχικές τιμές
Εικόνα 16: Η ισομετρική μέγιστη ροπή στις 60⁰ (IMP₆₀) πριν και 24, 48, 72 καθώς και 96 ώρες μετά από έκκεντρη προπόνηση. Οι γραμμές σφάλματος επισημαίνουν το τυπικό σφάλμα.

* P<0.05 σύγκριση σε σχέση με τις αρχικές τιμές
Εικόνα 17: Η ισομετρική μέγιστη ροπή στις 110° (IMP₁₁₀) πριν και 24, 48, 72 καθώς και 96 ώρες μετά από εκκεντρή προπόνηση. Οι γραμμές σφάλματος επισημαίνουν το τυπικό σφάλμα.

* P<0.05 σύγκριση σε σχέση με τις αρχικές τιμές
Συμπεράσματα της διατριβής

1. Η προπόνηση μέγιστης και υπομέγιστης έντασης έκκεντρων συστολών προκαλεί ίδιας έντασης μυϊκή καταστροφή, όμως η μείωση της απόδοσης είναι σημαντικά χαμηλότερη μετά την έκκεντρη προπόνηση υπομέγιστης έντασης από ό,τι η αντίστοιχη προπόνηση μέγιστης έντασης, όταν η συνολική παραγωγή έργου είναι ίδια και για τις δύο προπονήσεις. Αυτή η διαπίστωση μπορεί να φανεί χρήσιμη στην αρχή της προπονητικής περιόδου αθλητών και μη, αποκτώντας τις απαραίτητες προσαρμογές στην έκκεντρη προπόνηση χωρίς να επηρεάζεται σε μεγάλο βαθμό η απόδοση της δύναμής τους.

2. Αποτελέσματα μελετών αποδεικνύουν ότι μεγαλύτερη νευρική δραστηριότητα εμφανίζεται στους εκτείνοντες του γονάτου όταν συσπώνται με μικρό μήκος σε αντίθεση με το μεγάλο μήκος οδηγώντας σε βελτιωμένη επιστράτευση των κινητικών μονάδων. Τα αποτελέσματα της παρούσας μελέτης, όπου η προπόνηση με έκκεντρες συστολές που εκτελείται με μικρό μήκος μυός προκαλεί μεγαλύτερη μυϊκή καταστροφή και μεγαλύτερη μείωση της απόδοσης απ’ ό,τι η προπόνηση με μεγάλο μήκος μυός, μπορούν να εξηγηθούν από τα ευρήματα των προηγούμενων μελετών.

3. Η καθημερινή χρήση των μυϊκών ομάδων των κάτω άκρων σε πλήθος κινήσεων, στις οποίες περιλαμβάνονται και έκκεντρες συστολές, ίσως τις κάνει περισσότερο ανθεκτικές κύρια στην μείωση της απόδοσης, σε προπονήσεις με ιδιαίτερες απαιτήσεις σε σχέση με τις μυϊκές ομάδες των άνω άκρων. Η υπόθεση αυτή μπορεί να υποστηριχθεί από τα αποτελέσματα της
παρούσας μελέτης, όπου η προπόνηση με έκκεντρες συστολές αν και προκάλεσε μυϊκή καταστροφή ήταν ίδιας σχεδόν έντασης για τις μυϊκές ομάδες των άνω και των κάτω άκρων, η μυϊκή απόδοση των άνω άκρων παρουσίαζε σημαντικότερα μεγαλύτερη μείωση απ’ ότι η μυϊκή απόδοση των κάτω άκρων.

4. Η μυϊκή καταστροφή που προκαλείται στους εκτείνοντες του γονάτου μετά από προπόνηση που περιλαμβάνει έκκεντρες συστολές δεν επηρεάζει την δρομική οικονομία των μη συστηματικά αθλούμενων, όταν αυτή αξιολογείται με υπομέγιστη ένταση. Φαίνεται ότι η ένταση της άσκησης δεν ήταν ικανή να επηρεάσει τις φυσιολογικές παραμέτρους των δοκιμαζόμενων, στους οποίους ήταν έντονα τα συμπτώματα της μυϊκής καταστροφής.

Επίλογος

Από τα αποτελέσματα της διατριβής αυτής επιβαιβάζεται η μυϊκή καταστροφή που προκαλεί η προπόνηση που περιλαμβάνει έκκεντρες συστολές. Η καταστροφή αυτή είναι πιο έντονη όταν η προπόνηση με έκκεντρες συστολές γίνεται με μεγάλη ένταση σε σχέση με την υπομέγιστη ένταση, με μικρό μήκος μυών σε σχέση με τι μεγάλο μήκος μυών και όταν εκτελείται με μυϊκές ομάδες των άνω άκρων παρά όταν εκτελείται με μυϊκές ομάδες των κάτω άκρων. Η εμφάνιση όμως μυϊκής καταστροφής σε δοκιμαζόμενους μετά από προπόνηση έκκεντρων συστολών δεν φαίνεται να επηρεάζει τη δρομική τους οικονομία.
Προτάσεις για μελλοντικές μελέτες

Τα αποτελέσματα της παρούσας μελέτης ξεκαθαρίζουν κάποια ερωτήματα που υπήρχαν γύρω από θέματα που αφορούν την μυϊκή καταστροφή και την επίδρασή της στην δρομική οικονομία. Παρόλα αυτά, μέσα από αυτή την έρευνα έχουν προκύψει άλλες σημαντικές υποθέσεις και ερωτήματα που χρειάζονται επιπλέον έρευνα.

1. Με τη χρησιμοποίηση της μυϊκής βιοψίας θα μπορούσαμε να γνωρίζουμε τον τύπο των μυϊκών ινών που επηρεάζονται περισσότερο από την προπόνηση με έκκεντρες συστολές υπομέγιστης έντασης.

2. Η μελέτη της δρομικής οικονομίας μετά από έκκεντρη προπόνηση και σε άλλες μυϊκές ομάδες εκτός από τους εκτείνοντες του γονάτου, όπως οι καμπτήρες του γονάτου ή οι καμπτήρες και οι εκτείνοντες της ποδοκνημικής άρθρωσης, θα μας είναι περισσότερες πληροφορίες σχετικά με τον σχεδιασμό της προπόνησης και την πρόληψη τραυματισμών των αθλητών.

