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Abstract

One of the most significant sources of failure in adhesive joints, thin films and com­

posite materials is the propagation of interfacial cracks between the constituent materials. In 

the last few decades significant progress has been made towards the understanding of the me­

chanics of the interface crack within the framework of linear elasticity. The oscillatory char­

acter of the singular elastic crack-tip stress field and the coupling of the opening and shearing 

modes are important features that distinguish fracture mechanics from the mechanics of 

cracks in homogeneous media. The elasto-plastic analysis of the interface cracks has also at­

tracted a lot of attention recently.

In the context of this thesis an elastic-plastic asymptotic solution of the problem of a 

plane strain crack lying along the interface between an incompressible elastic-plastic power- 

law hardening material and a rigid substrate is developed. The elastoplastic asymptotic stress 

field expansion which is assumed to be separable in r and#, where (r,#) are polar coordi­

nates at the crack tip, consists of two terms and is of the general form

where s =---------- < t.
n +1

The leading and second order terms in the stress and displacement field expansions are de­

rived from the solution of two eigenvalue problems, non-linear and linear respectively. The 

elastoplastic asymptotic solution of the interfacial crack problem is studied via a perturbation 

of the elastic solution, i.e., for η = \ + ε where ε is a small parameter and n the strain hard­

ening exponent. It is shown that both the leading and second order terms in the stress expan­

sion are singular and branch from the mode-I and mode-II of the linear elastic solution respec­

tively.
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Chapter 1 Basic Concepts of Fracture Mechanics

1. BASIC CONCEPTS OF FRACTURE MECHANICS

1.1 Introduction

The mechanical design of engineering structures involves usually an analysis of the stress and 

displacement fields in conjunction with a criterion for the prediction of failure. Accidents, in­

volving both human and material losses, showed that the failure of a broad class of structures 

made of high-strength materials cannot be predicted accurately by conventional design crite­

ria. A plausible explanation of these failures is that material deficiencies in the form of pre­

existing flaws could initiate cracks that lead to failure of the structure. In cases of low tem­

perature and in conditions of triaxial stress that may exist at a sharp flaw, the plastic deforma­

tion is suppressed and fracture can be truly brittle, resulting in low stress fracture even in high 

strength materials. The occurrence of low stress fracture was the major reason that gave impe­

tus to the development of a new philosophy in structural design based on Fracture Mechanics.

In order to put the subject of this thesis on a theoretical basis, this chapter is devoted to 

presenting a brief overview of the most related topics of fracture mechanics. Basic concepts of 

Linear-Elastic and Elastic-Plastic Fracture Mechanics are presented. Furthermore, a theoreti­

cal correlation of the fracture in homogeneous media with interfacial fracture is attempted.

1.2 Linear Elastic Fracture Mechanics (LEFM)

The notion of the stress concentration at the vicinity of a flaw, resulting in a propagating 

crack and eventually in failure set the ground for linear elastic fracture mechanics (LEFM).

For the case of a traction-free crack of length 2 a in an infinite plate loaded by a uniax­

ial stress σ in the direction normal to the crack, the stress components near the crack tip are 

given by

°Λ?,Θ)

°ee{r^)

K,
yjlnr

K,
yjlnr

K,
yjlnr

(5 θ 1 30)
—cos-------cos —

U 2 4 2 J + h.o.t. in r,

(3 θ 1 3Θ)
—cos—+—cos — 

U 2 4 2 ) 4-h.o.t. in r,

(1 . θ 1 . 3(9^1 
— sin—l—sin — 

U 2 4 2 j + h.o.t. in r,

(1.1)

(1.2)

(1.3)
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Chapter 1 Basic Concepts of Fracture Mechanics

where (r,0) are crack tip polar coordinates as shown in Fig. 1, h.o.t. means “higher order 

terms”, and K, = a^fna is the so-called “mode-I stress intensity factor”.

Similarly, the corresponding crack tip stress field when the plate is subjected to a mac­

roscopic shear stress τ is of the form

Ml·
K„

V2nr

' θθ

' rd

M)=

M) =

K„
V2nr

K,

V2nr

f

v

fl

5 . Θ 3 . 3Θ
—sin —+—sin — 
4 2 4 2 .

3 . Θ 3 . 3Θ
—sin------- sin —

4 2 4 2

+ h.o.t. in r ,

+ h.o.t. in r,

Θ 3 
-cos—+—cos-

3Θ
+ h.o.t. in r ,

(1.4)

(1.5)

(1.6)
.4 2 4 2 .

where now K„ =τ^πα is the so-called “mode-II stress intensity factor” (Westergaard, 1939 

Williams, 1952, 1957).

The value of the out of plane stress σ„ depends on whether plane stress or plane strain

is assumed, i.e., σ„ =0 in plane stress and σ:: =v'(cr(.t +crn ) in plane strain. Equations (1.1)

-(1.6) apply to all crack-tip stress fields and the stress intensity factors depend on the magni­

tude and type of the applied loads as well as the geometry under consideration. The terms 

shown in these equations are the leading terms in an infinite series which describes the solu­

tion in the near tip region.

Fig. 1. Definition of stress components and coordinate systems

The quantity K: which appears in (1.1)-(1.3) plays a central role in “Linear Elastic 

Fracture Mechanics (LEFM)”. Note that

Kj = \ηη^σθθ (r,9 = 0)^2 nr and K„ =lim["σΓθ{τ,θ = 0)yj2nr
mOL
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Chapter 1 Basic Concepts of Fracture Mechanics

As mentioned above, the K - fields are not the full solution to the problem, but the leading 

(and dominant) term in asymptotic crack tip solution. If the K - field describes accurately the 

exact solution in the crack tip region over a distance that is larger than the “fracture process 

zone”1, then we can talk about “K-dominance”. On the other hand, in a ductile metal, plastic 

deformation takes place in the crack tip region. When the size of this plastic zone is much 

smaller than the region of K - dominance, the asymptotic elastic K - solutions are still valid 

and LEFM can be used (Broek, 1984, Gdoutos, 1993).

t>: SHEADING’ "ODE II

Fig. 2 Independent modes of crack displacements.

There are three “modes” of fracture as shown in Fig. 2, which are distinguished form 

one another by the relative motion of the upper and lower crack surfaces. The corresponding 

elastic stress intensity factors are denoted by K,, Ku and Km . The K ’s are proportional to 

the magnitude of the applied load and depend on the type of loading and the geometry of the 

structure under consideration.

When a crack advances, the total potential energy Π of the structure decreases and the 

“energy release rate” is defined as

P-
δΠ 

' da

where a is the crack length. In the presence of crack tip K - fields, the energy release rate is 

related to the stress intensity factors by the following equation

P-
Kj+Kl _ K111

E' 2 G

1 The region over which the microstructural fracture processes take place.
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Chapter 1 Basic Concepts of Fracture Mechanics

where G is the elastic shear modulus, E the Young’s modulus, v the Poisson’s ratio, E' = E
E

for plane stress, and E' =----- - for plane strain (Irwin, 1957).
1-v

In LEFM mode I crack growth initiation takes place when the energy release rate reaches a 

critical value, say pc. This is equivalent to the mode I stress intensity factor reaching a criti­

cal value

kIc=4p^,

which is the “fracture toughness” of the material.

In some cases, more than one term are needed in the asymptotic expansion of the crack 

tip solution in order to have an accurate description of the crack tip stresses. The mode I crack 

tip solution can be written as

<r,=^f,,(ehT^S"+0(rm)· 0-7)

where T is the magnitude of the second order term and δ:ι is the Kronecker delta. Like K,,

the parameter T is proportional to the magnitude of the applied load and depends on the type 

of loading and the geometry of the structure under consideration. Note that the second order 

term in (1.7) is a constant stress σχχ = Τ parallel to the crack line. From a classical fracture 

mechanics point of view the first singular term is assumed to control the behaviour at the 

crack tip, and is the only term necessary to consider. However, as will be discussed in the fol­

lowing, this is not always the case and the T - stress can play also an important role.

1.3 Non-linear Fracture Mechanics

LEFM works well in ductile materials when the size of the crack tip plastic zone is smaller 

than the crack size and all specimen dimensions, and well embedded within the region of 

K -dominance (“small scale yielding” SSY). This is usually the case in materials for which 

fracture occurs at stresses well below the yield stress.

When the size of the plastic zone is large compared to the crack size or the dimensions 

of the specimen Elastic-Plastic Fracture Mechanics (EPFM) must be used. Wells (Wells, 

1961) proposed that the opening of the blunted crack due to plastic strains could be used as an 

alternative fracture mechanics parameter in the cases where the LEFM is not applicable. The 

idea behind this proposal is that fracture would occur once the opening reached a critical

11
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Chapter 1 Basic Concepts of Fracture Mechanics

value. This value would then represent the fracture toughness of the material and replace the 

critical stress intensity factor.

Another major contribution to the elastic-plastic fracture mechanics was Rice’s (Rice, 

1968) proposal of the J - integral as a parameter to characterise the crack tip loading for the 

case of non-linear material behaviour. The J - integral is defined for a hyperelastic material 

as:

J= iudy-J- — ds^
rV fix

(1.8)

where U is the strain energy density σ =
dU(s)

5ε
, T and u are the traction and displacement

vectors respectively, and Γ is the integration path that starts on lower crack face, goes 

through the materials and ends on the upper crack face as shown in Fig. 3.

I u,

Fig. 3. Arbitrary contour Γ for the evaluation of the J-integral.

Rice showed that J is independent of the particular path Γ used for its evaluation and equals

5/7the energy release rate, i.e., J = p = —
da

We consider next a nonlinear elastic material with a constitutive equation of the form

A p s 5su = —— + o + - a ε0
" 2G 3K u 2 0

f \

νσο J

«-I

<7n
(1.9)

where ey is the strain tensor, σ0 a reference stress usually taken to be equal the yield stress, n

the strain hardening exponent, a a dimensionless constant, ae=J—si-siJ the von Mises

equivalent stress, and sy the deviatoric stress tensor, p the hydrostatic pressure, ε0 = σ0 / E, 

K and G the bulk and shear modulus respectively. The first two terms on the right hand side
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Chapter 1 Basic Concepts of Fracture Mechanics

of the above equation are the usual “elastic” strains and the last term corresponds to a “plas­

tic” strain with “power law hardening” (J2 - deformation theory of plasticity). Equation (1.9) 

cannot be inverted analytically to determine the stress tensor σ in terms of the strain tensor ε; 

of course, numerical inversion is always possible. Using (1.9), we can determine the comple­

mentary elastic strain energy density Uc (σ) as follows:

2 2

Uc (σ) = fε (α)άσ = — + -^— + —^—αε0σ0 
V ' ’ IJ 6G 2K n +1 0 0

The corresponding elastic strain energy density U (ε) is determined from the relationship

ε

ϋ(ή = |σ,7(ε)ί/^. =σ(ε):ε-ϋ'(σ(ε)). (1.11)
η

However, since the relation σ = σ(ε) is not known analytically, the above calculation of U in 

terms of ε is not possible. However, it is indeed possible to find U in terms of σ as follows:

1 ( \"+1cr

νσο J

(1.10)

U(g) = σ : e(g)-Uc (σ) = —^— + ——ι——αεα ση 
V ’ V ' W 6G 2K n + l 0 0 νσο J

n+l

(1.12)

Hutchinson (Hutchinson, 1968) and Rice and Rosengren (Rice and Rosengren, 1968) showed 

that, for a material that obeys (1.9), the near tip fields of a mode I crack are of the form
1

ai.i
( J \

ναεοσο I„ r j

/j+1

(T,; (^,«) + h.o.t. in r , (1.13)

αεη
J

Καεϋσ01ηκ j

//+1
εή (0,n) + h.o.t. in r ,

and

f J 1
αεη V, a σ0 In J

rn+' uj (Θ,+ h.o.t. in r ,

(1.14)

(1.15)

where (σ,έ,ΰ) are known dimensionless functions, and /„ a dimensionless constant that de­

pends on n, determined so that max σ„ = max , — s,, s„ -1.
θε{0,π\ L θε[0,π]\2 J 1

The asymptotic solution (1.13)-(l. 15) is known as the HRR solution and can be used as an 

approximate asymptotic mode I crack tip solution for an elastoplastic material that obeys the
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Chapter 1 Basic Concepts of Fracture Mechanics

usual J2 - flow theory of plasticity (as opposed to J2 - deformation theory). This approxima­

tion is possible because in the crack tip region i) there is no unloading, and ii) the loading is 

almost “proportional”, as has been shown by detailed finite element calculations based on 

J2 - flow theory.

Equations (1.13)-( 1.15) show that the J - integral is essentially a “plastic stress inten­

sity factor” that controls the magnitude of the crack tip fields and, therefore, can be used as a 

“fracture parameter” in the sense crack growth initiation occurs when it reaches a critical 

value, say J,c. In general, the value of J depends on the applied loads and the specimen ge­

ometry, and the fracture criterion takes the form

J = J,C.

The HRR solution determines the leading term in the asymptotic expansion of the crack 

tip solution (Mianny, 1998). However, in certain cases more terms are needed for an accurate 

description of the crack tip fields. Higher order terms were calculated by Li and Wang (Li and

Wang, 1986) and Sharma and Aravas (Sharma and Aravas, 1991). The last two authors (§ p.oew«'1q 

showed that the crack tip fields can be written in the form

J

V αεοσο1 if J

H+l
af{0,n) + Q

J / σ,
— (2) (θ,η) (1.16)

ο

J
\<*ε0σ0 lnr;

H+l
sf(0,n) + Q

f Vr
f J )

yj / σ0 > {αε0σ0ΙηΓJ

n-\
//+1

f (M+· (1.17)

as„
J W 1

y a ε0 σο In j
r"+' uf* (9,n) + Q

r
/ r j λ

y J ! σ0 , y a εο σ0 In ;

n-\
n+1

r"+1 w,{2)(^,«) + ···, (1.18)

where (σ<2),έ*2\ύ(2* j are known dimensionless functions, and the parameter Q that controls

the magnitude of the second term in the expansion of the solution depends on the applied 

loads and the specimen geometry. Sharma and Aravas showed that in the special cases where 

1 <n < 1.6 ,

t = ——7 < 0 and Q = (a s0 /„ ^.
η — 1

Details on the calculation of the above asymptotic expansions are presented in Chapter 2 of 

this Thesis.
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Chapter 1 Basic Concepts of Fracture Mechanics

1.4. Interfacial Fracture Mechanics

One of the most significant sources of failure in adhesive joints, thin films and composite ma­

terials is the propagation of interfacial cracks between the constituent materials. In the last 

few decades there has been significant progress made towards an understanding of the me­

chanics of the interface crack within the framework of linear elasticity. The concept of the 

stress intensity factor (SIF) has proved to be very successful for the homogeneous crack in 

linear-elastic fracture mechanics (LEFM), and has motivated the development of a similar ap­

proach for the interfacial crack.

Williams (Williams, 1959) was the first to develop the asymptotic crack tip solution for 

a crack lying along the straight interface of two linear elastic materials. He showed that the 

asymptotic crack tip solution is non variable-separable in (r,6) and involves “oscillatory sin­

gularities” of the form

<rg,eg~r
-1/2 (sin, cos)(£Tnr), 1/2 (sin,cos)(^lnr),

where r is the radius from the crack tip and ε is the oscillation index defined as:

ε = —In 
2n

r Gj + X-, C2 Λ 
vG2 + /c2G,y

(1.19)

(1.20)

where k} =3-4v; for plane strain, Kj -h-vλΐ(\+ν^ for plane stress, and G: and vj

(y =1, 2) are the shear moduli and Poisson's ratios of the constituent materials.

By introducing an intrinsic material length scale £0, Rice (Rice, 1988) defined a com­

plex stress intensity factor K = K] + iK2 that has the usual units as

(Tyy+l(Txy =

f \IEr

\^0

K
V2

- + h.o.t. in r,
nr

so that

(1.21)

( „ > -ιε
K = lim (er . + i σν„) yjlnr

r
r-»0 \ yy *y J <9=0 £ (1.22)

Note that in plane strain problems, if both materials are incompressible (v, = v2 =1/2), then 

κχ-κ2-1, ε = 0 , the crack tip oscillations disappear and the crack tip stresses have the usual

—j= singularity. 
yjr

Under conditions of plane strain, in the case of two incompressible materials, or one 

incompressible and the other rigid, the asymptotic crack tip solution is of the form:
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Chapter 1 Basic Concepts of Fracture Mechanics

yy

xy

1 f. θ 5Θ^ + Kn ( _ . θ . 5Θ)
4\ΐ2πτ KI l 2 2 ) l 2 2 )

1
K,

(c θ 5Θ^
+ Kn

( . θ . 50)-sin—hsin —
A^llnr l 2 2 j l 2 2 JJ

1
K,

f . Θ .50)
+ Ka

' Θ 50)'J cos—I- cos —
A'Jlnr l 2 2 ) 2 2)

(1.23)

(1.24)

(1.25)

A different approach to the interfacial crack problem was presented by Comninou 

(Comninou, 1977), who considered the possibility of contact of the crack faces (crack clo­

sure) near the tip. The “contact zone model” as it is known, predicts the usual square root 

stress singularity and its magnitude is completely defined by a shearing mode stress intensity 

factor. The size of the contact zone is strongly dependent to the remote type of loading, being 

small compared to the crack size (small-scale contact) when remote tension is applied, but 

approaching the crack length in the case of remote shear. In the former case, Comninou’s so­

lution is valid for distances from the tip smaller than the contact zone size, whereas beyond 

this distance the traditional solution of the complex stress intensity factor gains validity.

Generally, it was early understood that the elastoplastic analysis of the interface crack 

seamed more promising.

Finite element numerical results showed that the influence of plastic effects would 

dominate close to the crack tip and the structure of the resulting stress fields was of a more 

complex character than for the HRR fields for a homogeneous material due to a coupling be­

tween the angular and radial dependence of the stress component.

The corresponding solution for an interfacial crack along the straight interface between 

two nonlinear materials was considered by Sharma and Aravas (Sharma and Aravas, 1993), 

who developed a two-term asymptotic expansion of the solution of the HRR-type. In the pre­

sent thesis, a description of the derivation of the above elastoplastic asymptotic solution is 

presented. The solution is examined for values of the hardening exponent n near η = 1 (linear 

elastic solution). The methodology, along with the corresponding results and conclusions re­

main to be presented in the next chapters.
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Chapter 2 Asymptotic Elastoplastic Solution for Interfacial Cracks

2. ASYMPTOTIC ELASTOPLASTIC SOLUTION FOR INTERFACIAL 

CRACKS

2.1 Introduction

In this chapter is given the formulation of the problem of a plane strain crack lying on the in­

terface between an elastic-plastic power-law hardening material and a rigid substrate as de­

scribed in Sharma and Aravas (Sharma and Aravas, 1991, 1993). The asymptotic solution is 

derived from a set of five non-linear differential equations and a linear eigenproblem, which 

in the next chapter will be used in order to analyze the solution for values of the hardening 

exponent n near η - 1 about the linear problem.

2.2 Problem Formulation

The problem under consideration is that of a crack lying along the surface of a homogeneous 

deformable matter and a rigid substrate. The constitutive law governing the deformation of 

the matter is that of the J2 deformation theory for a Ramberg- Osgood uniaxial stress-strain 

behavior, namely

1 + v
£·,, =------ S„ + -

l-2v 
3 E °kkdj+-as o

a„
y/-l

νσ0 J

(2.1)

where the two first terms on the right-hand side correspond to the elastic part of the deforma­

tion and the third part represents the strain hardening of the material.

The equilibrium equations corresponding to plain problems using polar coordinates are

dar„ 1 da
dr

da

- + - ιθ

r d0
+ -

a. .. - a,

rd +---
1 dam 2 a,

dr r d6
+ - re

ΘΘ _

= 0.

0, (2.2)

(2.3)

The kinematical equations of the problem in terms of strains and displacement are

(2.4)
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u, 1 dua
£θθ ~' r ΘΘ

1 ( 1 du„ dua u, ^
£ro 2

_______r,_____Ιθ “Θ

r ΰθ dr r )

Finally, the compatibility equation resulting from (2.4)-(2.6) is

(2.5)

(2.6)

Γ i d2 1 d λ f 2 d d2 ^ /

ly de2 r dr)
srr +

yr dr "dr2 J bee
V

2d 2 d2 Λ 
■ + -

r~ 3Θ r drdO
ε,ο = 0 · (2.7)

2.3 Asymptotic solution and hierarchy of the problem

The problem is formulated considering a polar coordinate system which is centred at the crack 

tip as shown in Fig. 2.1, and looking for an asymptotic solution to the problem as r —» 0 .

The expansion of the asymptotic solution in terms of stresses is in the form

a(r,0) (0) + Qr' σ(ι) (#) + ---as r-» 0, (2.8)

where σ(0* and σ(ι) are normalized angular functions, s < t < ■ ■■, J is the J - integral, and Q 

is a parameter that controls the magnitude of the second term and depends on the type and 

magnitude of the applied loads and on the geometry under consideration.

y

Fig. 2.1 Schematic representation of the crack tip region.
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Chapter 2 Asymptotic Elastoplastic Solution for Interfacial Cracks

The corresponding expansion for the Mises equivalent stress is

= r^O,
σο

where

(2.9)

r(°) - 3 (0) (0)
2 v v and σ

, ,(°U0
,(i) _ d sii sii 

? «-(°)
(2.10)

Plain strain conditions are assumed and the plain of deformation is described by crack-tip po­

lar coordinates r and Θ .

The boundary conditions of the problem turn to be

M,.(r,0) = 0, ue(r,0) = 0, (2.11)

<Tee(r,n) = 0, σΓθ(Γ,π) = 0. (2.12)

For the solution to be variable-separable, the J - integral argument results in the leading order 

exponent s being equal to -l/(« + l) while for elasticity to enter the asymptotic solution no

sooner than the third term the second order exponent must be less than (n-2)/ (n + \) and

remains to be determined from the eigenproblem in the next chapter.

The corresponding to the stress expansion (2.8) strain and displacement expansions are

= r ε'
αεα

' (0) + r'^n '*+/ε^ (θ') λ—as r —> 0,

αε.

E(r’@)----mJO) (^) + r'(«-1)+,£(|) (

= rA,,+lu(0) (0) + rv("_1)+'+lu(l) (Θ) + —as r -> 0.
u (r,0)

(2.13)

(2.14)

After the J-integral argument is applied the dimensionless stress expansion can be writ­

ten in the normalized form as

a(r,0) ( J
\ £0 CT(j In J

/i+1

σ(ο)(0) + ρ
J i σ.

+ · (2.15)
o y

and the corresponding displacement expansion is of the form

u (r,0)
αεη

J

Vaioff0 J

A7 + 1

rn+' u(0) (0) + -
(J/ao)'

where I., is defined in Cartesian coordinates as

J
\C( ε0σ01 n j

»-1
"^n+1 n~',,, i

r n+1 ύ{ή(θ) + ···, (2.16)

19
Institutional Repository - Library & Information Centre - University of Thessaly
15/06/2024 04:52:54 EEST - 18.116.42.133



Chapter 2 Asymptotic Elastoplastic Solution for Interfacial Cracks

ji

W
^ ~(0)rt + l r\ ~ (0)------σν ' cos Θ - Π: σί;ν'

« + 1 7
1 .w,(0) cos#--

n +1 7

n (°)

<1Θ
-sin# άθ. (2.17)

The expansions (2.15) and (2.16), are next substituted into the governing equations (2.2) 

-(2.6), the strains are eliminated and terms having like powers of r are collected and the hier­

archy of the problem is obtained. The leading order problem defines <T(0)and u(0) and consists 

of five non-linear ordinary differentials equations of the form

(»♦ O-^-aff+^-o.

^ + (* + 2)4t£>=0,

(sh + Ο"!0’ -2<τ<°>' 
2 6

άύfj°)
+ 40) <τ<0)·

άθ 2

;(°) 7 A
άθ <? J(T<

W=0,

with boundary conditions

r. (°) i(0) = «W(0) = 0,
and

σθθ0)(π) = ^0)(π) = °·

(2.18)

(2.19)

(2.20) 

(2.21) 

(2.22)

(2.23)

(2.24)

The second order problem turns to be a linear eigenvalue problem from the solution of

which the corresponding eigenvalue t and eigenfunctions σ(ι) and u*1’ are defined and is of 

the form
, ~(i)

(ί + ΐ)σ(^-σ2+^- = 0, 
v ’ " θθ άθ

αά·’· + (, + 2)σ"=0,
άθ

(2.25)

(2.26)

[i(n-l) + f + l]M^ - —σ^
Ί ?(ο) ~(ι)

rr 2Κ ’ ^(°)
^~(0) = 0, (2.27)

ΰI.1’ + άΰβ] 3 _{ΰΓ 

άθ 2 e

7 ~(0) ~(1)
-0) I 3 (π akl ~(°)
3ΘΘ ~(0)' σ ’

2 see = 0, (2.28)
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du^
~άθ

+ [y(«-l) + t]w^ - 3
,. i. ϊ(ο)λ(')

σ,ν+τ(«-1) u σΜ -(0)
σ(ο)2

σγΘ = ο,

with the corresponding boundary conditions

wr(1) (0) = u}l) (0) = 0
and

σθθ'] {π) = W = 0 ■

(2.29)

(2.30)

(2.31)

It is important to notice that the linear eigenproblem (2.25)-(2.29) corresponds to the condi­

tions </<(«-2)/(rz +1) < 0, which is the case for the second term being singular and be de­

termined to within the constant Q.

For s<t = («-2)/(>7 + l)<0the corresponding second order eigenproblem is of differ­

ent form and can be found in detail in Sharma and Aravas (Sharma and Aravas, 1991). Fi­

nally, the condition s = t corresponds to the linear elastic and perfectly plastic case (i.e., η = 1 

and n = co) respectively.

As already mentioned, the leading term describing the stress field derives from the solu­

tion of (2.18)-(2.22) and involves only the J - integral as an arbitrary constant, the mode-mix 

on the interface can then be determined by the asymptotic solution and is found to be of 

Mode-I tension. The second term is also singular for all values of the hardening exponent ex­

hibiting a Mode-II like stress field on the crack tip. The analytical form of the two terms in 

the stress expansion, for values of the hardening exponent slightly greater than the linear elas­

tic case, is obtained in the next chapter.
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Chapter 3 Asymptotic Solution via a Perturbation Method

3. ASYMPTOTIC SOLUTION VIA A PERTURBATION METHOD 

3.1 Introduction

In this chapter a methodology is developed for the analytical determination of the asymptotic 

solution discussed in Chapter 2 for small deviations from linearity, i.e., for values of the hard-

ening exponent n slightly larger than unity.

3.2 The Leading order eigenproblem

As discussed in Chapter 2, the leading order problem in the crack tip asymptotic expansion of

the solution for crack along the interface between a nonlinear material and a rigid substrate is

of the form

(* + 1)<τ<?-σ<5>+^ = 0, (3.1)

+ + 2)σ«=0, (3.2)

(sn + l)wj;0* σ^"”1 = 0 , (3.3)

</“T+iW 3 (.,
άθ r 2 L θθ

(3.4)

άΰ, , -(ο) ~(o)„-i -(o) n—— + snu\ -5σ\’ σν=0,
άθ θ

(3.5)

with boundary conditions

(0) = S«(0) = 0, (3.6)

O

II > o 'ϊΓ II o (3.7)

It should be noted that (3.3) is an algebraic equation whereas the rest of the above are differ­

ential equations.

The plane strain condition εζζ=0 of an incompressible material (p=l/2) implies that sB = 0, 

so that σΖ2 = (σΗ + )/2 and srr = -seg = (arr -σου)/2. Therefore,

5(0)=-5(0) = ίσ(0)-σ(0)ν2*rr Λθθ (u/r u ΘΘ y Δ · (3.8)
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Chapter 3 Asymptotic Solution via a Perturbation Method

In order to simplify the system of equations, we replace (3.4) by the sum (3.3)+(3.4):

(3.3) + (3.4) => (5n + 2)^0)+^ = 0. (3.9)
άθ

We can now eliminate σ^} from the system of equations as follows. Solving (3.3) for sf) we 

find = —(sn +1) . Combining this result with (3.8), we conclude that

σ(0)=25(0)+σ(0)υ rr ΘΘ ’

Also, substituting (3.10) into (3.1), we find

o -(o)
g(°)=-fj/i+n Ur 
" 3[ )a^ '

(3.10)

-^+^y + 3^ + i)(sw + 1)T(fe: (3.11)

In summary, we have the following system of equations for

(3.5) => duf1 ~(o) , ~„-i -(o)—— + snuy- 3 σ„ σν. 
αθ

(3.9) => ^+(s» + 2)5<0)=0.

(3.2) => ί^ + (5 + 2)σ£>=0.

(3.11)
άσ/β

.(o)

σ.

(3.12)

(3.13)

(3.14)

(3.15)

together with the boundary conditions (3.6) and (3.7). The stress component σ^} is deter­

mined from (3.10).

The above system of ordinary differential equations can be written in matrix form as

0 0 0 3σ<0)"“1
0 0 0 0
0 0 0 0

4 (s + l)(s« +1)

d_
άθ

4°>
y(°)
’ ΘΘ

(0) 
κθ Jσ

0 sn 0 0
sn+2 000 

0 00 5+2
0 0 j 0

-1 [4°Ί

1

40)
σ(0)σθβ

- σ(0>1° γΘ

1

3
0 0 0

4»)

V
(o)ee
(0)
re

σ,

σ

, (3.16)

where the right hand side is the non-linear part of the equation.

The perturbation of the leading term is next performed by letting the hardening expo­

nent n be η = \ + ε. For η = 1 + ε we find

σ^0)” 1 = σ[°^ε = 1 + ε\ησ^ + —ε2 ^Ιησ^ j +o(f3),
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Chapter 3 Asymptotic Solution via a Perturbation Method

T(ifM = T(W= *e°h‘ =1~ε1η ά*0> + ^ (ln ^0) )2+0(s3),

4 (s + 1)(sh +1) 4

3 σ'.
4 
3

(o)»-i (j + l)(s + l + ffi) l-ε Ιησ^ +—£·2^1ησ^| + θ(ε3)

= ~~{s +1)2 + ε j(5 + θ[(5 + 01ησίΟ) +ε2 ^(s + 0lndFiO)

Substituting the above expressions in (3.16), we find

—Ιησί0^ 
3 l 2

s--

0 -s 0 3 40)'

d 40)
-(5 + 2) 0 0 0

40)
άθ

> — 0
A Λ

0 0 -(5 +2) <

σ$\
0 -s 0

Pm.

= ε

0 -s 0 3 In σ·(°)
-s 0 0 0
0 0 0 0 <

1

u>
 I 4̂

 

+ (5 -1- l)ln<Tg°) -s 0 0 0

Φ
f(«)'θθ

t(°)

+ ε

0 0 0
f

1ησί0)) r -to) ) u\ ’

0 0 0 0 40)
0

In of1
y

0 0 0 σ(0)σβθ
4/ ~(o) f -ϊ + 1(s + l)\nay s

.4 V ^
0 0 0 σ(°)1°*? J

> + °(4

(3.17)

In general, the leading order non-linear eigenproblem (3.1)-(3.7) has a solution to within a 

“multiplicative” constant in the sense that, if is a solution, then ^c"u^,cd^j is a

solution as well.

There is also the possibility of a degenerate case, in which the solution has more than 

one arbitrary constants (e.g., simultaneous mode-I and mode-II solutions leading to an arbi­

trary mode mix at the crack tip). To allow for this possibility, we set

άθβ} (°) = Λ and &$(0) = AU, (3.18)

where A, and Au are the aforementioned two arbitrary constants that control the magnitude 

of the leading order solution and define the so-called “mode mix”.

We can normalize the solution by dividing through by A, and end up with the normal­

ized problem for (ιι^,σ(0)) (without tilde) that corresponds to
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σθθ (Ο) = 1 and σ$(0) = ^- = Aff, (3.19)
Ai

provided that AI = (0) φ 0.

Remark: We treat separately the special case in which σ$ (0) = 0 and σ^(0) = A„ *0. Us­

ing the methodology described in the following, it is shown in Appendix A that it is impossi­

ble to find a solution in that case. □

Chapter 3__________________________________ Asymptotic Solution via a Perturbation Method

The corresponding complete solution j can be written as

= A, a^ and = A" .

For η = 1 + ε, the normalized (i.e., without tilde) solution and u(0^ can be written as

and

(3.20)

σ(°) = Σ(°) + ε ς(') + ε2 ς(2) + Ο (f3) u(°) = υ(0) + ε U(l) + f2 U(2) + θ(ε2)

Note also that

Α" =λ)+ε= A, Αε = A,
1 2

1 + ε In A, + — ε2(\ηΑ^ +0^£-3j

Then, equations (3.20) become

-(0) - A, σ(0) («) => a{0) =Α,Σ(0)+ εΑ,Σ(·ι)+ε2 Α,Σ{2)+θ(ε3)

and

= A" (η) = Α, 1 + ε 1η Α, + -ε2 (in A, f + θ(ε2) [υ(0) + εU(l) + £2 U(2) + θ(ε3)

= A, + ελ, [ (ΐηΤ7)υ(0) + U(1) + ε2 A, i(ln A,)2 U(0) +(lnT/)u(1) + U(2) +0(U

3.3 Asymptotic solution of the leading order problem

Equation (3.17) can be written in a compact form as

^i-F(i)-x(i) = £G(x(i),i)-x(fl),

where

x_y°) w(°) σ(°) σ(0)1A — ,υθθ ,Ur0

(3.21)

(3.22)
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Chapter 3 Asymptotic Solution via a Perturbation Method

are the normalized unknown stress and displacement components of the asymptotic solution,

0 -5 0 3
-(5 + 2) 0 0 0

0 0 0 -(5 + 2) , (3.23)

0

F(s) =

-y(* + l)! 0 -S

and

G(x(0),s) =

0
-5
0

-5 0 3 In 
0 0 0
0 0 0

+ ε

— (5 + 1) (5 + ΐ)1ησ^-5

0

0 0 0

+

0 0 -(lnaf)

0
0

-(5 + I) In σ'.(ο) 5 + 1
5 -- In σί°*

0 0
0 ο

ο ο

ο
ο

(3.24)

A*2)·

The differential equation (3.21) can be written in an integral equation form as (Boyce and Di 

Prima, 1977)
θ

x(0) = Ψ (^,5) · Ψ'1 (0,5) ■ χ(θ) + ίψ(^,5)· |ψ~' (^,5)-G(x(^),5)-x(iZ))<7^, (3.25)

where

ψ(Μ=

with a =
2(1 + 5)

, c =

asin(s0) -acos(sO) cos [(2 + 5)#] sin [(2 + 5)0]

bcos(5#) 6sin(5$) -sin [(2 + ε)θ] cos[(2 + 5)#]

-csin(5<9) c cos (λ#) -dcos [(2 + 5)#] -d sin [(2 + 5)0]

cos(5#) sin (εθ) -r/sin [(2+ 5)6*] t/cos[(2 +5)6*]

2 + 5 ,------,b=ac , and d = —

The first term in the right hand side is the solution of the linear homogeneous problem 

d*'?' -F(5)x(6>) = 0 , and the second term is a partial solution of the non-homogeneous prob­

lem (3.21). The columns of matrix T are the fundamental solutions of the homogeneous ver­

sion of equation (3.21) (Boyce and Di Prima, 1977).

The integral equation form (3.25) of the problem is convenient for the development of 

an asymptotic expansion of the solution x(6*) in ε .
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The corresponding boundary conditions are

u{°] (0) = 40) (0) = 0 , a{gj (π) - afj (π) = 0.

The solution is normalized so that

p(°) tnt -(0) = '. σί?(°) = Λ„·

We look for an asymptotic expansion of the solution in the form

x = x^ + ε x^ + ε2 χ*2^ + Ο (ε3 ),

or, equivalently,

σ(0) = Σ(0) + £ Σ(ι) + £2 Σ(2) + Ο (f3) and u(0) =U(0) +ε U(1) +f2U(2) + θ(ε3).

Then

40) = 115(°) 40) = ζί°)+ε ς®+o (f2), 40)=40) 40) = * k Iί 4? + 40)'rff I ’

4° -
3 4°)4° 3(4r0)4? + 4?4*>) r(i)

ln40) = ln + ε-^ + θ(ε2),
2 27(0)"e c?

where and are the deviatoric parts of L^and Σ*1* respectively. 

Also, the normalization conditions (3.26) become

4? (o)=4? (o)+*45 (o)+*2 4? (o)+c(^3)=i 

4? (o) = 4*} (o) + f 4? (o) + ^2 4*2) (o) + o(^3) = λ ,and 

so that

and

4?(0) = 1, 4?(o) = ^)(o) = - = o

4*0)(° ) = A„, 4^(0) = 4?(0)-- = 0·

The matrix G(x(<9),4 on the right hand side of (3.21) becomes

G = G(0)+£G(1)+O(f2),

where :(°) (x(0)a) = 0

-5 0 3 In 4°}

0 0 0 
0 0 0

j(s + I)[(s + 1)ln4°)-s 0 0 0

and

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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Chapter 3 Asymptotic Solution via a Perturbation Method

:(>) (x(0),s) =

0 0 -(ΐηΖί0)) +3
2 Σ'(1)

ς:(0)

0
0

0 0 
0 0

ο
ο

1(5 + Ι)1η40)ί^-—lnJE<0)>i 4
0)

+-(i+ir^f- ο ο
3 ν ' Σ{0)

The leading order stress exponent s =--------can be written as
η +1

= -— + — ε--ε2 +o(fi·3).9 4 8 V /s = — 4 , (3.31)
7? + l 2 4 8 v ’

Substituting(3.27), (3.30) and (3.31) into (3.25), and collecting terms having like powers of ε,

we have arrive at the following sequence of problems:

0(1): x(o)(0) = A[0, 1
(0), (3.32)

where Α(0,ί) = Ψ(0,.ϊ)·Ψ 1 (0,s), and χ^(θ) = {θ 0 1 A,,},

θ(ε): x{1)(0) = -
dA(0,s)

ds
•x(0)(0)+ |B| Θ,φ-Σ

J.V--1/2
:(o) x(0)M’-T ·\(°\φ)άφ, (3.33) 

2 y

where Β(0,<Μ) = Ψ(0,.ϊ)·Ψ“1((Μ),

,(2)

0(ε2):

(*) =

+ — 
4

1 dA(0,s) 1 52A(#,s)
8 ds 32 d?~

r(°) (0)
—l.v=—1/2

d_
ds

a
Jb(0,^,s) ■ G((l) (x(0) (^),s) · x(0) (φ)άφ

s—1/2

G(0) [ x(0) (<2>),“1 · x(l) (φ) + G(l) fx(0) (^),—~l · x(n) {φ) 
2) \ 2J

ίίφ.

(3.34)

Also, equation (3.10) that determines σimplies

si°)-
c/(°)r

3
y(°) _ 9 c(°) i y(°)
L‘rr ~ Z Ar + ^θθ ’

c(0 _ 1 o —rr 3 υ(ή-υ(0) fi+lnSf»
u

yO) _ 9 c(0 i y(0
L‘rr ~ Z ύη + L‘ΘΘ ’

(3.35)

(3.36)
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0(2) _ 1O —
" 3

uu-u" Ι + ΙηΣ?) 
2

Λ f

/
I+Ii„r(»)+i(illl;m)2_A
4 2 6 2' 6 ’ Σ[°

Σ<?=25<? + Σ« (3.37)

^(0 A
y(°)
^ y

Equations (3.32)-(3.34) are evaluated by using Mathematica 

The solution x^(i9) of the O(l) problem is found to be

®

(*) =

[3 · Θ )
—sin—sin0 
2 2

, ■ 3 0-3 sin —
2

3 0
cos — 

2

■ + A„<

1 9 ■ a—cos—sin0
12 2

and no the boundary conditions (/r) = 0 and x'P (π) = 0 are automatically satisfied for all

3 . Θ , ·.—sin- (1 + 3cos0)

9 - Θ .—sin—sin 0 
2 2

3 9 ■ a—cos—sint/
2 2

1 Θ, , „ ^—cos—l-l + 3cos0)
2 2v ’

(°),

(3.38)

values of Au.

The solution x^(0) of the Ο(ε) problem is very involved and is the boundary condi­

tions on 0 = π take the following form:

,(>)
π

(;τ) = 0 => ^- + — fsin+3A/I cos26^ + sin261)In27t^ 00 = 0, (3.39)
4 8 J

where Σ^=—.— 
c 2 v 2

.0) 00 = °

1 + 5 aJj -(l -3Afj )cos20 + 4T;/ sin 20

—+ — \{l A„ cos0 + 9T/; cos30-sin0 + 3sin30)ln27f°) 00 = 0. (3.40)
6 16 J

It is found numerically that equations (3.39) and (3.40) have the common solution A„ = 0 . For 

A„ = 0 , the solutions x*0^ (0) and x(l) (0) can be written as
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Chapter 3 Asymptotic Solution via a Perturbation Method

, and

The stress component <r,^can now be determined by (3.35) and (3.36) as

σΡ=Σ}°Κε4) + θ(ε2),

where =— cos—(3-cos<9) and =-—sin—sin#- — cos—(3-cos#)ln
2 2 2 2 2 2

' θ' cos—
V 2 ,

(3.41)

The solution x(2* (Θ), as defined in (3.34), is even more involved and the boundary conditions 

on θ = π

Λ2) (π) = 0 and xf1 (π) = 0

are satisfied automatically.

3.4 The second order eigenproblem

The second order linear eigenproblem as derived in the previous chapter is

(f+1)σ«-σ«+^- = 0,
da.*0)
άθ

da,
άθ

+ (t + 2)alg - 0,

[s(n-l) + i + l]w?)-|of)
τ ~(0) ~(l)

= 0,

~(0 , du(g] 3 _(o)"·' 
u:1H----- --------a\ ’

άθ 2 β

, ~(0) ~(1)
^0)+2(^-1)^ σΗ 5(0) 
λθθ ^ 2^ / _(0)2 θθ

= 0.

άΰ[^
άθ

£- + [ί(«- ΐ) + /]4')-3σι(0)
Τ ~(ο) ~(1)

<jT)+2( 1)^ σα ^(ο)
σ'°+2[ ’ 'γΘ = 0.

The corresponding boundary conditions are

fi«(0) = fi,(l)(0) = 0

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)
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Chapter 3 Asymptotic Solution via a Perturbation Method

and M = °J]) {π) = 0. (3.48)

It should be noted that (3.44) is an algebraic equation whereas the rest of the above are differ­

ential equations.

In order to simplify the system, we replace (3.45) by (3.44)+(3.45):

dHa'1
άθ

■ + [s (η -1) +1 + 2] = 0. (3.49)

The plane strain condition yields

j(P- Μ-ά-~ά$ ■V — λθθ ~ 2

so that

(3.50)

(3.51)j(°) σ(1)=2ν(0) σ0)+2ν(ο) s(1)Λkl °k\ U r9 n Arr ·

We can now eliminate σ® from the system of equations as follows. Using (3.51) into (3.44) 

and solving for sj^, we find

S«=·
2[s(tt-l) + t + l] ~(i) 3(tt-l )^0)σ<°) ,(1)

3 σ'(Of σί0) +3(/i-l);Li +3(«-l)i0)

Then, σ® is found from (3.50):

σ(ι) = 2ί(1)+σ(ι)υ rr Δ ύ rr τ u θθ '

Finally, substituting (3.53) and (3.52) into (3.42) and (3.46) we find

(o),2 σΓθ ■ (3.52)

(3.53)

dcr® | 4(t + l)[5(/r-l) + t + l]

3σ^ (σ^ + 3(n-l)s (o)
,ιί+(41.ίΜΗ«ί = 0, (3.54)

σ[Ρ +3(«-l) ?(°r

du^
~1θ

- + [v(n-l) + t]w*11) + < [y(A-l) + t + l] —
6(n-1) (0)^(0)sl'a,re

σ!0) +3(«-l) scr
>u(y +

and — (oY σ ’Γ (3(«-ΐ)^0)σ2})

<xf°* +3(«-l)vs(or
rr

— 3σλ(οΓ' l + 3(n —l)
σ(0)2υ ιθ 

~(0)2σ.
= 0.

In summary, the second order eigenproblem that defines ,ΰ® ,σ$ ,σ§} j is

(3.55)

31
Institutional Repository - Library & Information Centre - University of Thessaly
15/06/2024 04:52:54 EEST - 18.116.42.133



Chapter 3 Asymptotic Solution via a Perturbation Method

6(«-l) (o) ~(o)si/σ.slf.i1) ,.
—— -+-Γλ·(λ7 — ι)+/Ί+ ["j(«-i)+/+i]—f—: - ■ 2 ~
dO L V } J ^ L V ^ + 3(/i-l)Sf*

of* [3(Α7-Ι)^0)σ^_

±—dl)u; ’ +

σ|0) +3(n-l)i,r(o)
-3σcr

^^- + [j(«-l) + i + 2jf/^ = 0, 

dd^

l + 3(w-lp*-2V > -(of ■4)=o,

+ (/ + 2) aj!j - 0,

d&($ 4(i + l)[j(«-l) + / + l] (!) p) 6(/ + ΐ)(«-ΐ)^0)σί“) (0 _
“I U „ I l O QA .1 . 2 C' pQ ·

άθ
- + -

3 σ'(°P σί0) +3(/ι-ΐ)ί,;(ο)2 00
+3(«-ΐ)ί(or

The stress component σ;^ is computed by (3.52) and (3.53).

(3.56)

(3.57)

(3.58)

(3.59)

In general, the second order linear eigenproblem has a solution to within a multiplica­

tive constant, i.e., if ίΰ^,σ^) is a solution, then j is a solution as well.

There is also the possibility of a degenerate case, in which the solution has more than 

one arbitrary constants (e.g. simultaneous mode-I and mode-II solutions). To allow for this 

possibility, we set

4*(0 ) = B, and 4’(°) = s»· (3-60)

The constants B, and Bn control the magnitude of the second order solution.

The solution depends on the leading order solution e^0*, on the hardening ex­

ponent n , and on the parameters B, and B„ as follows

fid j and =g^^°\bi,Bii j. (3-61)

Also, if is replaced by cd*°* in the coefficients of the second order linear eigenproblem, 

then its solution is changing

from σ(ι)), (3·62)

i.e.,

j = fid^e(°),5/,5// j and n^^ca^°\B1,BII'j-cn 1 (σ^,Β,,Bn j. (3.63)
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Chapter 3 Asymptotic Solution via a Perturbation Method

Let (without tilde) be the solution (ΰ^,σ^) that corresponds to the normalized so­

lution (without tilde), i.e.,

=ΰ^ι^σ^°*,5/,5// j and σ(') =^{ts^>\BI,BIl j, (3-64)

where we recall that σ$ (0) = 1 and afj (0) = A„ = ~.
A

Now, we can identify A, with the aforementioned “multiplicative” constant c of the 

leading order problem, and write its solution in the form

(ΰ(0),σ(0)) = [A1 u(0),A, σ(0)). (3.65)

According to (3.63), the corresponding solution of the second order problem is

fid = σ^,Β,,Βυ j = fi(^ [σ^\Βι,Βη J => fiO = u^1), (3.66)

and

oC) =d(1)|j/σ(°),5/,5// A"~x {g^\b,,Bu j => =4"'ισ^. (3.67)

For η = 1 + ε, the solution can be written as

(1) = Σ(0)+ίΣ(ι)+ε2Σ(2)+θ(?3) and u(1) = U(0) + £lJ(1) + ε21(2) + θ[ε2).σ

Note that

A" 1 = Aj = 1 + ε In At + -if2 (in A,) + o(f3 j.

Therefore, (3.66) and (3.67) become

ΰ(1) = U(0) + ε U(1) + ε2 ϋ(2) + θ(ί3)

And

= 1 + ffln Α, +-ε1(\ηΑΙ)2 +θ(ε*) [£(0) + ε±('} +ε2 Σ(2) + θ(^3)

σ(1) = Σ(0)+ε·[ (ΐη^,)Σ(0) + Σ(1) + ε·2 -(in Α, )2 Σ(0) + (in A, )t(1) + Σ(2) +°Μ

(3.68)

(3.69)

3.5 Asymptotic solution of the second order problem

Recall that for η = 1 + ε, we write the leading and second order normalized (i.e., without tilde) 

solution as

σ(0)=Σ(0)+^Σ(1)+ί2Σ(2) + θ(^3) and σ(1) = Σ(0)+εΣ(1) + ε2Σ(2)+θ(ε3).
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Then

σί0) = J-40)40) + εΣ^+θ(ε2), xf = ,
τ c(°) cO) (l) _3 by byΣν> =
2 Σ(0)

σ(°)ε = 1 + 5:Incrt° + -^f2 |ΐησ6ί' j +θ(£3), Ιησ^ = \ηΣ^ + ε^^ + θ(ε2^,

where

:(ο) _ u:(°)
s®=-

rr 3
U[']-U[0) - + 1ηΣ(0)Λ

Substituting the above expansions into the eigenproblem (3.56)-(3.59) and performing some 

algebra, the normalized problem can be written in the form

dy(e)

where

and

άθ
-F(/)-y(0) = sG(0,/).y(0),

Uo w0) σ(0 σοη\ur ,Uq ,U00,Ur0 ,

F (/) =

0 -tO
-(f + 2) 0 0

0 0 0

~(' + 02 0 -t

3
0

-(t + 2)

0

(3.70)

(3.71)

where

G(0,t) = G(0) (θ,ή + ε G(1) (θ,ή + θ(ε2),

1

:(°) (ς(0)τ) =

6(/ + l)X

ι
2
0

0 3 R
2

0 0 0

0 0 0

-(/ + l)[2(t + l)Z + l] 0 0 6(t + l)X

(o)y(o) Α°ϊ (of

(3.72)

χ(Σ(ϋ,)=-^Τ’ s(s(0))=M+3^P ζ(Σίδ))="'+3^Γ’
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and

with

-(1)(ς(0),ς(1),/) =

3X[2(/ + l)7-l] -I o
4

0 0 

0 0

3 T

0

0

(t + l)[l + 2Z-4(i + l)P] 0 0 6{t + \)XY

τ(ς(0),ς(1)) =
?(') o(°)22^0) c(')

$ ' siy ' ς<ο) " Σ(°)2

cm yW cl
■‘re _|_ °tr _ 2 e 3 °n

i(£<,»,E">) = ^- + |y+6
r(o)2

Σ;/' m
5(0) Σ(ο) + 2

V rr c

and r(E«“U(,,) = ^-+-^+6

2 Σ^ f 50) V(’) m ^
}

2

2 Σ(0)Τ

-Z2

2 iff ff0)2 f ff1) Σ0)Vi m 
+ —

c(°) y(°) 9V“\<? A· z
-9X2.

Equation (3.70) can be written in an integral equation form as in the case of the leading order 

problem as
σ

γ(θ) = Ψ(θ,ί) · ψ-1 (Ο,ί)· y(0) + εΨ(θ,ή· JV1 (φ,ή ·6(φ,ή■ y(φ)άφ
ο

with boundary conditions

(3.73)

(0) = wff (0) = 0, off W=4)W=°> (3.74)

and normalization conditions

σβθ (0) = Bt, <ff(0 ) = B„. (3.75)

We look for an asymptotic expansion of the solution in the form

y = y(0) + ε y(l) + ε2 y(2) + 6>(έτ3),

or, equivalently,

σ(1) = Σ(°)+ίΣ(1) + ί2Σ(2) + 6>(ί3) and u(1) = U(0) +ε ΐΐ(ι) +ε2 U(2) + θ(^3). 

Then, the normalization conditions of the second order problem become 

(0) = iff (0) + ε iff (0) + f2 iff (0) + θ(ε*) = B, =>

4?(0 ) = B„ iff (o) = iff (0) = ■

(3.76)

(3.77)

•=o,
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(o) = i$} (ο)+* iff (o)+s2 i;(2) (o)+o(*3) = bu =>

40)(o)=5//5 iff)(o)=ig)(o)=- = o.

The stress exponent t of the second order term in the expansion is written as

i = -- + fC + f2t) + 0(£3). (3.78)

Substituting the expansions (3.76) and (3.78) into the integral equation (3.73), and collecting 

terms having like powers of ε, we find

0(1) : y(0) (#) = A Θ— -yw(0).
f 1 Λ

v

where Α(θ,ή = Ψ(0,ί)·Ψ_Ι (0,f), and y(0> (0) = {0 0 B, Bu),

Ο(ε): y(1)(0) = C
δ\(θ,ί)

dt
■y(0)(o)+ [b [θ,φ,-- 

,=-1/2 0J V
rd°)

( i \

v ^y
y (0)(Φ)άφ, (3.80)

where B(θ,φ,ή = Ψ(θ,ί)·Ψ 1 (φ,ή,

(3.79)

y(!V) =
f8A(g,<) | lc28;A(g,<)

8, 2 8r
y(0,(o)+

-I,=-1/2

°C): +c
u
Jb (θ, Φ, t) ■ G(0) (φ,ή· y(0)

+ |B| θ,φ,~ i(°)

!· + 

,=-1/2

^»“l-y(l)(^) + G(l) -y(0)W 
v A v A

άφ.

(3.81)

Also, equations (3.52) and (3.53) that determine σff imply 

1(°) _ _ ry(°) y (°) _ ο c(°) . y(°)
rr —~,Ur ’ Ά ~A^rr + A# ’

s® =Ii/(i)_If/(°) A ,, e(°)2 Λ—+ 1ηΣ69 i 1 "jz_+ lnze +J (0)2 
Vz A- y

-3Σ1
c(°) y(°) 

(o) Av_Af_ y(0 _ 9 6(0 i yO)

(3.82)

(3.83)
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& =-u[2)

+ U

3 r 3
f

(o)

4 i c(°)2 ̂
1 + lnI0)+3%-
2 y(0)2

vz ■ J
+

1 Σ<1} | sj0)2 | 2 ^0)2 Σ(β° | 3 sj0)4 2 S(V sj? t In ς[0) | S^2 1ηΣ(β0) _ (1ηΣί.0))
2 Λ

+ -
8 3Σ(0) 2Σ(0)2 Σ(0)3 Σ(0)4 Σ(0)2 6

- + -
γ(«)2 - + -

ν
ο(°) y(°) y(°) ( ο(°) y(°) yP) ο(°)3 y(°)

2 yp) ZJL L‘re I 3 L‘re O^rr ^re ~ Ά' 2-ί-α
A°)2 
■‘e V

r(®)
+ 3- rd__ y(°) o(0 _ o(°) y (1)

(0)2 rt? °rr °rr

£M=2S<,!) + £«. (3.84)

Equations (3.79)-(3.81) are evaluated again by using Mathematical 

The solution of the O(l) problem is

y(0) (£) = £/

f3 - Θ . 1—sm—sint' 
2 2

3 . θ ( κ
—sin—(l + jcost'j

9 . Θ .-3 sin3 — —sin—sin#
2< ’ + BII '

2 2 >
3 B cos —

3 Θ . Q—cos—sint'
2 2 2

1 θ ■ P—cos—sint' 
12 2

-—cos—(l -3cos#)
L 2 2V ’]

(3.85)

The solution y^(0) of the θ(ε) problem is very involved and the boundary conditions 

on θ = π take the following form:

7T ( 1
B,= 0,y.3° (π) =0

ki0 (*) =0

π
Ιό

π
16

'c-i'
ν 4,

ΜI 4 J
Β„=0.

The only non-trivial solution of the above equations is

C-i.

For this value of C, the solution of the 0(ε) problem takes the form
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y(V)=£,

3 . 6* .
—sin—sint/ln

f Q\
3sin2 —

4 2 l 2 J
3 . 3 Θ 
—sin — 1 - In % ■ 2 θ\\ 3sin —
2 2 , 2 JJ

3 Θ-cos —In 
2

1 Θ . _ f 0ΥΙ—cos—sine/ 1 + 2 In cos—
4 2

V l 2 JJ

3 . Θ —sin —
4 2

1 -cos<9 + (l + 3 cos Θ) In\ ■ 2θλ3sin —
2

3.0. —sin—sint/ 
4 2

4-3In 2^3sin“ — 
2

( θλ
T "//

1 0 . Λ (
cos— —cos—sine/ 1 -6 In
l 2 J 4 2 V

y

cos —
2 J

1 0 —cos— 
2 2

1 -cost? + (l -3 cost?) In ( θ\cos—
l 2 J

The solution y^(6>), as defined in (3.81), is even more involved and the boundary conditions 

on θ = π are

and

y?] (*) = o 

y? (π) = 0

π

π

( Π 
I 8J

Τ+—
16

5,=0,

Β„= Ο-

(3.86)

(3.87)

If Β„ = 0, then the second order eigenvalue problem has the obvious solution

t = s, u^=cu^ and σ(1^ = co(u' In,

which cannot be accepted since it violates the condition s <t < 0. Therefore, equations (3.86) 

and (3.87) have the solution

D- —— and B. = 0 .
16 7

(3.88)

For the values of C = ^-, £> = -— and - 0 > the 0(l) and Ο(ε) solutions take the from

The stress component CT^can now be determined by (3.82) and (3.83) as

σ^=Σ^+εΣ^ + θ(ε2),
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where

= sin—(l + 3cosΘ) -—cos—sin Θrr 2 V ’ll
and

f(') 1 · ^Zl' =—sin —
4 2

( θλ f ( θλy
-l + 21n cos— -cos# 17+ 6 In cos—

l 2 J l 2 J ) _

Finally, for the same values of the constants C, D and B, the second hardening exponent t 

take the form

t = -— + ε—-ε2 — + θ(ε’) 
24 16 ' '
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4. CONCLUSIONS

4.1 Introduction

The stress and displacement field at the crack tip of a plain strain crack lying on the interface 

of an elastic-plastic material and a rigid substrate were assumed to be of the form

a{r,0) _ J \i+l

yOC εο σ01n j
d<0)(e)+e -f- sl»+···.

V
yJ/crQj

;(>),

«M)_
II-1

αεη
J

\ CC ε0σ01 n j

n+l
,n+l ύ{0\θ) + Q

(Τ/σ0)'
J

ya£0a0 /„ y

n+l -i-i+,+1
r“»+iT’T‘u(1)(0) + ...,

where σ10) (#) is normalized so that max J—s;° = 1.
V ’ M«,n-]V2 7

4.2 The leading order problem

For values of « near unity , i.e., η -1 + ε, the first order solution is written in the form

σ(0) = A, σ(0) = A, (Σ(0) + £ Σ(1) + θ[ε2)), (4.1)

fi(0) = A" u(0) = A, {U(0) + /(in A, )u(0) + U(1)] + θ(ε2)}, (4.2)

where σ(0) is normalized so that σ$ (0) = 1. The above solution is of the form

ς(0) =.

r(°)Zjrr
r(°) 
^θθ

r(°)^τθ

1—cos—(.3 — cos Θ) 
2 2

,θ
cos —

1 9 ' P—cos—sin Θ
2 2

, Σ(1) =

rO)

rO) 
^ΘΘ

yO)^r0

3 . θ 1 Θ,
—sin—sin Θ —cos—13 - cos 60 In 
2 2 2 2

f θ'
cos—

V 2 j

30.-cos —In

1 9 · a—cos—smt/
4 2

f Θ'
cos­

2)

■ ( θ\1 + 2 In cos—
l 2j J

and

U(0) =
I u\

<oy
(0)

3 . Θ . 
—sin—sin 6 
2 2

-3 sin3 —
2

t(>)
U0)'

3 . θ . a —sin—sin fc/
4 2

2-In f, ■ 2^1
l 2j\

3 · 3 Θ —sin — 3-In
(
3sin2 —

2 2 l 2j\

Note that on <9 = 0 we have =1 and =0 (or σ$ = Α,, a^J-0), i.e., the leading term 

in the stress expansion branches from the mode I linear elastic solution.

Also, σί°> = Ά<°> 40) - 2ί0) + 4° + θ(ε2)
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and

2i0)=j3(^0)2+4f)

(1) 3 sjpsM ^S^+Σ^Σ^)

~(o) -s/3 . ΩΣ' ’ =—sin# 
2

ΣΥ>=-
2 2;(°) -(ο)

(4.3)

r(0 ^ ■ QΣ' ’ =------- sin#
8

3 - cosΘ + 2 (l + cos #) In
f θλ
cos—
l 2j

-2(l - cos#) In f,. <?Y|3 sin —
l 2)\

(4.4)

Figure 4.1 shows the angular variation of the stress and displacement components as well as 

the variation of the equivalent stress for both the linear elastic case U^J and the cor­

rection term ίΣ^, U'1* j. It is interesting to note that the components Σ^ and Σ® of the von

Mises equivalent stress both vanish along the interface and on the crack face (i.e., on Θ = 0 

and # = π). Also, the stress component Σ” approaches zero on θ = π with an infinite slope,

i.e.,
dl<0

άθ
= -oo,

θ=π

Fig. 4.1. Angular variation of the leading order stress and displacement components.
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4.3 The second order problem

For values of n near unity , i.e., η = 1 + ε , the first order solution is written in the form

o(l) = 5Ji(0)+f (ΐη^)Σ(0) + Σ(O' + ε
1
(in A, )* 2 Σ(0) + (in A, )£(1) * + Σ(2) + θ[ε5

ΰ(1) = Βη U(0)+ffU(1)+f2 U(2) + 0(f3)

The above solution is of the form

(4.5)

(4.6)

L(0) = ·

Ft0)
^rr

r(°)
^ΘΘ 

r(°)

' . θ ,, „ 3 θ . .
sin—(1 + 3 cos Θ) —cos—sin t)

2V ’ 2 2

3 θ ■ n —cos—sin#
2 2

-^■c°s^(l -3c°s^)

£6) =.
fO)
^rr

f’(')
^ΘΘ
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Fig.4.2 Angular variation of the second order stress and displacement components.
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Chapter 4 Conclusions

Note that on Θ - 0 we have = 0 and<7$ = Bu, i.e., the second order term in the stress ex­

pansion branches from the mode II linear elastic solution.

Figure 4.2 shows the angular variation of the stress and displacement components of both

the linear elastic case ^Σ^,ϋ*0)) and the correction term ^Σ(ι^, . Note that the stress

component is singular on the crack face (θ = π), i.e.,

lim = -oo .
<?->*·

This suggests that a boundary layer may develop near θ = π. This behavior can be attributed 

to the fact that the von Mises equivalent stress vanishes on θ = π, whereas the above solution 

is developed on the assumption that whole range [Ο,π] is “at yield”.

Fig. 4.3 Variation of s and t near η = 1.

We note also that the leading and second order stress exponents can be written as

s =---— = -— + — ε--ε2 + 0(V) and t = -— + —e-—s2+o(s3),
n +12 4 8 V ' 2 4 16 V ’

i.e., t <s with

t = s + <0 .

(4.7)

Fig. 4.3 shows the variation of the leading and second order exponent near n = 1. The open 

circles are the results of the numerical solution of the second order eigenproblem developed

by Sharma and Aravas (1993) and T = -- + -ε-—ε2 is the variation of the second order ex- 
3 2 4 16
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Chapter 4 Conclusions

ponent as predicted by the asymptotic solution (4.7) up to 

t = 5 + shows that the second order term is singular in r

r —> 0 .

θ(ε2γ The fact that 

and cannot be ignored as
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APPENDIX A

Here we examine the possibility of finding a solution such that <r^(0) = 0 and

(0) = An φ 0. We can normalize the solution by dividing through by Au and end up with 

the normalized problem for j (without tilde) that corresponds to

4?(°) = 1 and 4?(°) = 0· (L1)

For η = 1 + ε, the normalized solution σ^0) and is written in the form

andτ(°) = Σ(ο) + ε Σ0) + ε2 Σ(2) + ο (ε3) u(°) = xj(°) + ε υ(1) + ε2 ϋ(2) + θ(ε3) (1.2)

Note that

A" _ Α+ε _ ~Λ ~Λε - A ΛΙ1 - ΛΙ1 - ΛΙΙ ΛΙΙ - Λ1Ι
1 2

\ +ε\ηΑη+—ε2 (\ηΑη^ + θ(ε2^

Then

=Απα^{ιι) σ(0) = Α„ Σ(0) + f Α„ Σ(1) + f2 Απ Σ(2) + θ[ε3)·,.(1)4-£·22 ν.(2) j-n(r3'

and

ΰ(0) - λ" ιι(0) (η) = Ajj 1 + ε 1η Α„ + -ε2 (ΐη Α„ )2 + θ(ε2) [υ(0) + εU(1) + ε2 U(2) + θ(ε2)

= A„ + ε Au (lnTw)u(0) + U(1) + ε2 Au —(in A,, )2 U(0) + [\x\Ajj )u(1) + U(2) + 0

We use again the compact form of the leading order problem as

^i-F(s)-x(i) = iG(x(i),j)'x(0), (1.3)

where F(s), G(x(#),s), χ(θ) are given in Chapter 3. The differential equation can be 

written in an integral equation form as
θ

χ(^)-ψ(^,5)·ψ·1(0,5)·χ(0) + ^ψ(6»,5)- |T“1(^s)-G(x((z)),s)-x(ii)^ (1.4)
0

where Ψ (#,.?), G(x(<9),i) are also given in Chapter 3. The corresponding boundary 
conditions are

“f0 (0) = 40) (0) = 0> 4? (*) = σΐβ (* ) = 0 ·

The normalization (1.1) requires that
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4?(ο)=4ί/( ο)=4^(ο)=-·=ο-(Ο (2) -

and 40)(°Η> 4^(ο)-0), ■·4Ηο)= ••■ = 0.

(1.5)

(1.6)

The leading order stress exponent .v =--------can be written as
n +1

1 1 1 1s =--------= — + — ε—ε + °Μ·, , (1.7)
η +1 2 4 8 v ' v '

Substituting the expansions (1.2) and (1.7) into the integral equation (1.4) and collecting

terms having like powers of ε, we arrive at the following sequence of problems:

O(I) : ,<«) (S) = A
r i λ
Θ-- (0). (1.8)

v J

where Α(0,ί) = Ψ(0,5)·Ψ"ι(θ,ί), and χ(0)(θ) = {θ 0 0 1},

O(f) :x^(<9) = -
SA(#,j)

ds
J.V--1/2

tf
•x(0)(0)+ J]B| θ,φ,~ i(°) χ(ο)Μ’_τΜο)(((0<#, (i.9)

where Β(#,^,.ϊ) = Ψ(ί?,$)·Ψ '(^,j),and as defined in Chapter 3.

We notice that the boundary conditions xf* (π) = 0 and (π) = 0 are automatically

satisfied by the solution (1.8), which takes the form

3 . θ , N
—sin—(1 + 3cos6'J

9 ■ θ · a —sin—sin Θ
2 2

3 θ ■ a —cos—sin Θ
2 2

1 Θ, , „-cos—(-1 + 3coscM 
12 2V ’

The corresponding boundary condition of the of the θ(ε) problem are (π) = (π) = 0.

Substituting the expressions (1.10) in (1.9), we conclude that

(*)’ and (1.10)

and

.0)

,0)

π
(π) = ~ + - [sin 6(1 + 3 cos 2Θ) In άθ = -~,

0 

π

(π) = 4 J(7cos6> + 9cos30) In άθ = 0.
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i.e., it is impossible to satisfy the condition χ^(π) = 0. In other words, a solution that 

satisfies the conditions

4°)(°) = ° and σ$(0 ) = A„

does not exist.
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