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Abstract

One of the most significant sources of failure in adhesive joints, thin films and com-
posite materials is the propagation of interfacial cracks between the constituent materials. In
the last few decades significant progress has been made towards the understanding of the me-
chanics of the interface crack within the framework of linear elasticity. The oscillatory char-
acter of the singular elastic crack-tip stress field and the coupling ofthe opening and shearing
modes are important features that distinguish fracture mechanics from the mechanics of
cracks in homogeneous media. The elasto-plastic analysis of the interface cracks has also at-

tracted a lot of attention recently.

In the context of this thesis an elastic-plastic asymptotic solution of the problem of a
plane strain crack lying along the interface between an incompressible elastic-plastic power-

law hardening material and a rigid substrate is developed. The elastoplastic asymptotic stress

field expansion which is assumed to be separable in r and#, where (r,#) are polar coordi-

nates at the crack tip, consists oftwo terms and is ofthe general form

The leading and second order terms in the stress and displacement field expansions are de-
rived from the solution of two eigenvalue problems, non-linear and linear respectively. The
elastoplastic asymptotic solution of the interfacial crack problem is studied via a perturbation
of the elastic solution, i.e., for n=\+¢& where € is a small parameter and n the strain hard-
ening exponent. It is shown that both the leading and second order terms in the stress expan-
sion are singular and branch from the mode-I and mode-Il ofthe linear elastic solution respec-

tively.
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Chapter 1 Basic Concepts of Fracture Mechanics

1. BASIC CONCEPTS OF FRACTURE MECHANICS

1.1 Introduction

The mechanical design of engineering structures involves usually an analysis of the stress and
displacement fields in conjunction with a criterion for the prediction of failure. Accidents, in-
volving both human and material losses, showed that the failure of a broad class of structures
made of high-strength materials cannot be predicted accurately by conventional design crite-
ria. A plausible explanation of these failures is that material deficiencies in the form of pre-
existing flaws could initiate cracks that lead to failure of the structure. In cases of low tem-
perature and in conditions oftriaxial stress that may exist at a sharp flaw, the plastic deforma-
tion is suppressed and fracture can be truly brittle, resulting in low stress fracture even in high
strength materials. The occurrence of low stress fracture was the major reason that gave impe-

tus to the development of a new philosophy in structural design based on Fracture Mechanics.

In order to put the subject of this thesis on a theoretical basis, this chapter is devoted to
presenting a brief overview ofthe most related topics of fracture mechanics. Basic concepts of
Linear-Elastic and Elastic-Plastic Fracture Mechanics are presented. Furthermore, a theoreti-

cal correlation ofthe fracture in homogeneous media with interfacial fracture is attempted.

1.2 Linear Elastic Fracture Mechanics (LEFM)

The notion of the stress concentration at the vicinity of a flaw, resulting in a propagating
crack and eventually in failure set the ground for linear elastic fracture mechanics (LEFM).

For the case ofa traction-free crack of length 2a in an infinite plate loaded by a uniax-

ial stress o in the direction normal to the crack, the stress components near the crack tip are

given by
5 06 | 30 .
°A\?,0) K, (—cos ——————— cos ) +h.ot. inr, (1.1
yjiinrU 2 4 2]
3 0 1 30 .
°ee{r™) K, (—cos—+—cos ) 4-h.o.t. inr, (1.2)
yilnrU 2 4 2)
1 .06 1, 391 .
K, (—sin—l—sm L +h.ot. inr, 1.3)
yjlnr U 2 4 2
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Chapter | Basic Concepts of Fracture Mechanics

where (r,0) are crack tip polar coordinates as shown in Fig. 1, h.o.t. means “higher order

terms”, and K, = afna is the so-called “mode-I stress intensity factor”.

Similarly, the corresponding crack tip stress field when the plate is subjected to a mac-

roscopic shear stress 1 is ofthe form

K, 5 .0 3. 30 _
M- —sin—+—sin— +h.o.t. inr, (1.4)
V2nr 4 2 4 2.
K. T 3. 03, 30 |
e M) —Sin--—----- sin— +h.ot inr, (1.5)
V2nry 4 2 4 2
K, Tl © 3 30 .
a M) = -cos—+—cos- _ +h.ot inr, (1.6)
vanr .4 2 4 2.

where now K, =t*1ta is the so-called “mode-Il stress intensity factor” (Westergaard, 1939
Williams, 1952, 1957).
The value of the out of plane stress o,, depends on whether plane stress or plane strain

is assumed, i.e., o,, =0 in plane stress and o:: =v'(cr(t +crn ) in plane strain. Equations (1.1)

-(1.6) apply to all crack-tip stress fields and the stress intensity factors depend on the magni-
tude and type of the applied loads as well as the geometry under consideration. The terms
shown in these equations are the leading terms in an infinite series which describes the solu-

tion in the near tip region.

Fig. 1. Definition of stress components and coordinate systems

The quantity K: which appears in (1.1)-(1.3) plays a central role in “Linear Elastic
Fracture Mechanics (LEFM)”. Note that

Kj =\nn~ob (r,9=0)"2 nr and K, =Iin‘&'ore{r,e = 0)yj2nr
m
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Chapter 1 Basic Concepts of Fracture Mechanics

As mentioned above, the K - fields are not the full solution to the problem, but the leading
(and dominant) term in asymptotic crack tip solution. Ifthe K - field describes accurately the
exact solution in the crack tip region over a distance that is larger than the “fracture process
zone™l, then we can talk about “K-dominance”. On the other hand, in a ductile metal, plastic
deformation takes place in the crack tip region. When the size of this plastic zone is much
smaller than the region of K - dominance, the asymptotic elastic K - solutions are still valid

and LEFM can be used (Broek, 1984, Gdoutos, 1993).

t>: SHEADING’ "ODE 11

Fig. 2 Independent modes of crack displacements.

There are three “modes” of fracture as shown in Fig. 2, which are distinguished form
one another by the relative motion of the upper and lower crack surfaces. The corresponding

elastic stress intensity factors are denoted by K,, Ku and Km. The K ’s are proportional to

the magnitude of the applied load and depend on the type of loading and the geometry of the
structure under consideration.

When a crack advances, the total potential energy Il ofthe structure decreases and the
“energy release rate” is defined as

b on
' da
where a is the crack length. In the presence of crack tip K - fields, the energy release rate is
related to the stress intensity factors by the following equation
Kj+KI Ky

P- B 26

| The region over which the microstructural fracture processes take place.

10
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Chapter 1 Basic Concepts of Fracture Mechanics

where G is the elastic shear modulus, E the Young’s modulus, v the Poisson’s ratio, E'=E

E
for plane stress, and E' :—1———— - for plane strain (Irwin, 1957).
-v

In LEFM mode | crack growth initiation takes place when the energy release rate reaches a
critical value, say pc. This is equivalent to the mode | stress intensity factor reaching a criti-
cal value
klc=4p™,
which is the “fracture toughness” ofthe material.
In some cases, more than one term are needed in the asymptotic expansion of the crack
tip solution in order to have an accurate description of the crack tip stresses. The mode | crack

tip solution can be written as

<r,="f,,(ehhT7™S"+0(rm)- 0-7)

where T is the magnitude ofthe second order term and &: is the Kronecker delta. Like K,,

the parameter T is proportional to the magnitude of the applied load and depends on the type
of loading and the geometry of the structure under consideration. Note that the second order

term in (1.7) is a constant stress oy =T parallel to the crack line. From a classical fracture

mechanics point of view the first singular term is assumed to control the behaviour at the
crack tip, and is the only term necessary to consider. However, as will be discussed in the fol-

lowing, this is not always the case and the T - stress can play also an important role.

1.3 Non-linear Fracture Mechanics

LEFM works well in ductile materials when the size of the crack tip plastic zone is smaller
than the crack size and all specimen dimensions, and well embedded within the region of
K -dominance (“small scale yielding” SSY). This is usually the case in materials for which
fracture occurs at stresses well below the yield stress.

When the size of the plastic zone is large compared to the crack size or the dimensions
of the specimen Elastic-Plastic Fracture Mechanics (EPFM) must be used. Wells (Wells,
1961) proposed that the opening of the blunted crack due to plastic strains could be used as an
alternative fracture mechanics parameter in the cases where the LEFM is not applicable. The

idea behind this proposal is that fracture would occur once the opening reached a critical

11
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Chapter ! Basic Concepts of Fracture Mechanics

value. This value would then represent the fracture toughness of the material and replace the
critical stress intensity factor.

Another major contribution to the elastic-plastic fracture mechanics was Rice’s (Rice,
1968) proposal ofthe J - integral as a parameter to characterise the crack tip loading for the

case of non-linear material behaviour. The J - integral is defined for a hyperelastic material

as:
J= iudy-J-—ds" (1.8)
v fix
: : : du(s) : :
where U is the strain energy density o = . , T and u are the traction and displacement
€

vectors respectively, and I is the integration path that starts on lower crack face, goes

through the materials and ends on the upper crack face as shown in Fig. 3.

Fig. 3. Arbitrary contour I for the evaluation ofthe J-integral.

Rice showed that J is independent of the particular path I" used for its evaluation and equals

. 5/7
the energy release rate, i.e., J=p=— d
a
We consider next a nonlinear elastic material with a constitutive equation of the form
f \«-1
A s 5
SuU=——+ P o +—aegl (1.9
26 3K U 2 0. ., <n

where ey is the strain tensor, o0 a reference stress usually taken to be equal the yield stress, n

the strain hardening exponent, a a dimensionless constant, ae=J—si-si the von Mises

equivalent stress, and sy the deviatoric stress tensor, p the hydrostatic pressure, €0 = ol / E,

K and G the bulk and shear modulus respectively. The first two terms on the right hand side

12
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Chapter | Basic Concepts of Fracture Mechanics

of the above equation are the usual “elastic” strains and the last term corresponds to a “plas-

tic” strain with “power law hardening” (J? - deformation theory of plasticity). Equation (1.9)

cannot be inverted analytically to determine the stress tensor ¢ in terms ofthe strain tensor €;

of course, numerical inversion is always possible. Using (1.9), we can determine the comple-
mentary elastic strain energy density Uc (o) as follows:

2 2 ( \"'+1

1 cr
Uc (o) = fe (a)do =—+ *—+-"A—ae00l 1.10
\52 ()IJ 6G 2K n+l 0 0 ( )

wvoo J

The corresponding elastic strain energy density U (€) is determined from the relationship

0o = |o,7(e)i/™. =o(g):e-0'(o(g)). (1.11)
N

However, since the relation o = o(€) is not known analytically, the above calculation of U in

terms of € is not possible. However, it is indeed possible to find U in terms of o as follows:
n+l

Ula) = o U (6) = A+ 1.12
(o1= 0 efa)-Ue(Q) 6G 2K n+l 0 0 (1.12)

wvoo J

Hutchinson (Hutchinson, 1968) and Rice and Rosengren (Rice and Rosengren, 1968) showed

that, for a material that obeys (1.9), the near tip fields ofa mode | crack are ofthe form

( J \/j-il-l
=i (T; (M,«)+hot inr, (1.13)

vaegooo I, rj

J I+1
& (O,n)+h.ot inr, (1.14)
agy  KaeboO01nk j

and
f J

rnl+' u© 5 +hot inr, (1.15)
aegl

VvV, a o0 In Jd

where (0,€,0) are known dimensionless functions, and /, a dimensionless constant that de-

pends on n, determined so that max ¢, = max, —s, s, —1.
6e{0, T\ L O[O, TT\2 J 1

The asymptotic solution (1.13)-(l. 15) is known as the HRR solution and can be used as an

approximate asymptotic mode | crack tip solution for an elastoplastic material that obeys the

13
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Chapter ! Basic Concepts of Fracture Mechanics

usual J? - flow theory of plasticity (as opposed to J? - deformation theory). This approxima-
tion is possible because in the crack tip region i) there is no unloading, and ii) the loading is
almost “proportional”, as has been shown by detailed finite element calculations based on
J?2 - flow theory.

Equations (1.13)-(1.15) show that the J - integral is essentially a “plastic stress inten-
sity factor” that controls the magnitude of the crack tip fields and, therefore, can be used as a
“fracture parameter” in the sense crack growth initiation occurs when it reaches a critical

value, say J,c. In general, the value of J depends on the applied loads and the specimen ge-

ometry, and the fracture criterion takes the form

J=J.C

The HRR solution determines the leading term in the asymptotic expansion ofthe crack
tip solution (Mianny, 1998). However, in certain cases more terms are needed for an accurate
description of the crack tip fields. Higher order terms were calculated by Li and Wang (Li and
Wang, 1986) and Sharma and Aravas (Sharma and Aravas, 1991). The last two authors (§ poew«'lq

showed that the crack tip fields can be written in the form

H+l

af{o,n)+Q ~?@©,n) (1.16)
v agooolifJ Oy
n-\
J H+ f \ I1+1
sf(O,N)+Q f J . 1.17
\<*e000 Inr; yijlo0> {aaOcOInI’3 T (M + ( )
n-\
J W | r / [ i A
r'+ uf* (9,n) +Q r' wi{2)(N,«) +--+, (1.18)

as, vyasloolnj yJ'!'ol, yaeoollin;

where (0<2),£*2\0(2*j are known dimensionless functions, and the parameter Q that controls

the magnitude of the second term in the expansion of the solution depends on the applied
loads and the specimen geometry. Sharma and Aravas showed that in the special cases where
l<n<16,
t=—7<0 and Q=(asl/, ™.
n-—1
Details on the calculation of the above asymptotic expansions are presented in Chapter 2 of

this Thesis.
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Chapter ! Basic Concepts of Fracture Mechanics

1.4. Interfacial Fracture Mechanics
One ofthe most significant sources of failure in adhesive joints, thin films and composite ma-
terials is the propagation of interfacial cracks between the constituent materials. In the last
few decades there has been significant progress made towards an understanding of the me-
chanics of the interface crack within the framework of linear elasticity. The concept of the
stress intensity factor (SIF) has proved to be very successful for the homogeneous crack in
linear-elastic fracture mechanics (LEFM), and has motivated the development of a similar ap-
proach for the interfacial crack.

Williams (Williams, 1959) was the first to develop the asymptotic crack tip solution for
a crack lying along the straight interface of two linear elastic materials. He showed that the
asymptotic crack tip solution is non variable-separable in (r,6) and involves “oscillatory sin-

gularities” ofthe form

Y2 (sin,cos)(Inr), (1.19)

where r is the radius from the crack tip and ¢ is the oscillation index defined as:

<rg,eg—r v (sin, cos)(£Tnr),

rGj+x, C2A
g=—1in ) (1.20)
2n  vG2 +/c2G\y

where k} =3-4v; for plane strain, Kj —-h-—~sxiQ\+v~ for plane stress, and G: and vj
(y =1, 2) are the shear moduli and Poisson's ratios ofthe constituent materials.

By introducing an intrinsic material length scale £0, Rice (Rice, 1988) defined a com-

plex stress intensity factor K = K| +iK2 that has the usual units as

f\E
ey = V2nr-+ h.o.t inr, (1.21)
so that
¢ S-lE
K= Irlgdl (eryy +i cyy,j<9:0 yijlnr ¢ (1.22)

Note that in plane strain problems, if both materials are incompressible (v, =v2 =1/2), then

Kx-k2—1, € =0, the crack tip oscillations disappear and the crack tip stresses have the usual
—j= singularity.
yir

Under conditions of plane strain, in the case of two incompressible materials, or one

incompressible and the other rigid, the asymptotic crack tip solution is ofthe form:

15
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Chapter ! Basic Concepts of Fracture Mechanics

1 f. 0 507 . 86 . 50
Kl + Kn € ) (1.23)
A2t I 2 2) | 2 2)
| A .. 6 . 50
K, (c 0 50 +Kn (—sm—hsm 59) (1.24)
WooAnnr T 2 2 j I 2 2 33
! f e .50 ' '
Xy K, ) +Ka J coso—l- cosﬂ)) (1.25)
A'dlnr | 2 2) 2 2)

A different approach to the interfacial crack problem was presented by Comninou
(Comninou, 1977), who considered the possibility of contact of the crack faces (crack clo-
sure) near the tip. The “contact zone model” as it is known, predicts the usual square root
stress singularity and its magnitude is completely defined by a shearing mode stress intensity
factor. The size of the contact zone is strongly dependent to the remote type of loading, being
small compared to the crack size (small-scale contact) when remote tension is applied, but
approaching the crack length in the case of remote shear. In the former case, Comninou’s so-
lution is valid for distances from the tip smaller than the contact zone size, whereas beyond
this distance the traditional solution ofthe complex stress intensity factor gains validity.

Generally, it was early understood that the elastoplastic analysis of the interface crack
seamed more promising.

Finite element numerical results showed that the influence of plastic effects would
dominate close to the crack tip and the structure of the resulting stress fields was of a more
complex character than for the HRR fields for a homogeneous material due to a coupling be-

tween the angular and radial dependence ofthe stress component.

The corresponding solution for an interfacial crack along the straight interface between
two nonlinear materials was considered by Sharma and Aravas (Sharma and Aravas, 1993),
who developed a two-term asymptotic expansion of the solution of the HRR-type. In the pre-
sent thesis, a description of the derivation of the above elastoplastic asymptotic solution is
presented. The solution is examined for values ofthe hardening exponent n near n=1 (linear
elastic solution). The methodology, along with the corresponding results and conclusions re-

main to be presented in the next chapters.
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Chapter 2 Asymptotic Elastoplastic Solution for Interfacial Cracks

2. ASYMPTOTIC ELASTOPLASTIC SOLUTION FOR INTERFACIAL

CRACKS

2.1 Introduction

In this chapter is given the formulation of the problem of a plane strain crack lying on the in-
terface between an elastic-plastic power-law hardening material and a rigid substrate as de-
scribed in Sharma and Aravas (Sharma and Aravas, 1991, 1993). The asymptotic solution is
derived from a set of five non-linear differential equations and a linear eigenproblem, which
in the next chapter will be used in order to analyze the solution for values of the hardening

exponent n near n — 1 about the linear problem.
2.2 Problem Formulation

The problem under consideration is that of a crack lying along the surface of a homogeneous
deformable matter and a rigid substrate. The constitutive law governing the deformation of
the matter is that of the J? deformation theory for a Ramberg- Osgood uniaxial stress-strain

behavior, namely

/-1
l+v 1-2v a, g
= g “kkdj+-ass (2.2)

voo J

where the two first terms on the right-hand side correspond to the elastic part of the deforma-
tion and the third part represents the strain hardening of the material.
The equilibrium equations corresponding to plain problems using polar coordinates are

dar,,_+_1 da, L2 -ag

0, 22
dr r do (22)
day +_1__dam +_2a,re _g 2.3)

dr r doé

The kinematical equations of the problem in terms of strains and displacement are

(2.4)
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Chapter 2 Asymptotic Elastoplastic Solution for Interfacial Cracks

u, 1 dua 2.5)
£e0 —' r @@ .
I (ldu, dyg u,"
— 2.6
ko 2 roe dr  r) (26)
Finally, the compatibility equation resulting from (2.4)-(2.6) is
ri d 1da f2d d? /2d 2 d2 A

J bee

SIT + 1 €0
Iy del rdr) yr dr "dr? M~ 30 rdrdO

2.3 Asymptotic solution and hierarchy of the problem

The problem is formulated considering a polar coordinate system which is centred at the crack
tip as shown in Fig. 2.1, and looking for an asymptotic solution to the problemas r —» 0 .

The expansion of the asymptotic solution in terms of stresses is in the form
a(r,0) (0O)+Qr' o) (#) +--as r-» 0, (2.8)

where o(0* and of)) are normalized angular functions, s <t <im, J is the J - integral, and Q

is a parameter that controls the magnitude of the second term and depends on the type and

magnitude ofthe applied loads and on the geometry under consideration.

Fig. 2. Schematic representation ofthe crack tip region.
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Chapter 2 Asymptotic Elastoplastic Solution for Interfacial Cracks

The corresponding expansion for the Mises equivalent stress is

= o, (2.9
o0
where
°Uo
[y — 3 (0 (0 @ A S osii
O 2wy and o T (2.10)

Plain strain conditions are assumed and the plain of deformation is described by crack-tip po-
lar coordinatesr and © .

The boundary conditions of the problem turn to be
M,.(r,0) = O, ue(r,0) =0, (2.11)
<Tee(r,n) =0, off(,m)=0. (2.12)
For the solution to be variable-separable, the J - integral argument results in the leading order
exponent s being equal to -1/(« +1) while for elasticity to enter the asymptotic solution no
sooner than the third term the second order exponent must be less than (n-2)/(n+\) and

remains to be determined from the eigenproblem in the next chapter.

The corresponding to the stress expansion (2.8) strain and displacement expansions are

E(r@)=tmO) (&) + Fhi AR (0 )—as r — 0, (2.13)
agl
u(r,0)
= rA,Hu(0) (0) + rv("_+'+Hu(l) (®) + —as r -> 0. (2.14)
OE.

After the J-integral argument is applied the dimensionless stress expansion can be writ-

ten in the normalized form as

( fi+1
aro) 3(0)(0) + p . (2.15)

\ £0CT(InJ JioOy

and the corresponding displacement expansion is ofthe form

>>-|

u r’o J W+1 J "Antl n~',,,i
(r.0) rm+ u(0) (0) +- rnl  O{H(B)+--, (2.16)

aen vaioff) J (J/ao) \C(€0001n j

where 1. is defined in Cartesian coordinates as
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Chapter 2 Asymptotic Elastoplastic Solution for Interfacial Cracks

' o 1. n® ,
—————— cos® - otV W,(0) cos#-- -sin#  @46. 2.17
W Yoo 0 @17

The expansions (2.15) and (2.16), are next substituted into the governing equations (2.2)

-(2.6), the strains are eliminated and terms having like powers of r are collected and the hier-

archy of the problem is obtained. The leading order problem defines <I(0)and u(0) and consists

offive non-linear ordinary differentials equations of the form

(»e O-~—aff+"-o. (2.18)
—~ + (*+2)4t£>=0, (2.19)
(Sh + OII!O’ -2§T<(6)>' (220)
W) L4y a0 w=o0, (2.21)
a0 2
) 2.22
o Ui (222)
with boundary conditions
r. ()i0) = «W(0) = 0, (2.23)
and
0060)(1T) = “0)(1T) = °- (2.24)

The second order problem turns to be a linear eigenvalue problem from the solution of

which the corresponding eigenvalue t and eigenfunctions o) and u*!' are defined and is of

the form
,~()

i+NDoN-oZ2+"-=0, 2.25
\§ 17 0 ao ( )
ad-” +(, + 2)o"=0, (2.26)

ao

l ?(0) ~ @

i(fn-D+f+IIM» - —on =0, (2.27)

LiC ) ] o 2K T NO)
o 7 ~(0) ~(1
ain, OOB] 3 cor ) | 3(n akl ~(
= 2.2
Ol + a0 2 e 300 6(0)5 S(ge) 0 (2.28)
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Chapter 2 Asymptotic Elastoplastic Solution for Interfacial Cracks

du” .o TO)A()
,u + [y («<-1) +tw” -3 o,v+T(«-1) )G\’\(A d,%) = o, (2.29)
~00 ool

with the corresponding boundary conditions
wr(l) (0) =u}) (0)=0 (2.30)
and

096" {11) = W =01 (2.31)

It is important to notice that the linear eigenproblem (2.25)-(2.29) corresponds to the condi-

tions </<<(«-2)/(rz +1) < O, which is the case for the second term being singular and be de-
termined to within the constant Q.
For s<t = («-2)/(>7 + I)<Othe corresponding second order eigenproblem is of differ-

ent form and can be found in detail in Sharma and Aravas (Sharma and Aravas, 1991). Fi-
nally, the condition s =t corresponds to the linear elastic and perfectly plastic case (i.e., n=1
and n = co) respectively.

As already mentioned, the leading term describing the stress field derives from the solu-
tion of (2.18)-(2.22) and involves only the J - integral as an arbitrary constant, the mode-mix
on the interface can then be determined by the asymptotic solution and is found to be of
Mode-I tension. The second term is also singular for all values of the hardening exponent ex-
hibiting a Mode-II like stress field on the crack tip. The analytical form of the two terms in
the stress expansion, for values of the hardening exponent slightly greater than the linear elas-

tic case, is obtained in the next chapter.
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Chapter 3 Asymptotic Solution via a Perturbation Method

3. ASYMPTOTIC SOLUTION VIA A PERTURBATION METHOD

3.1 Introduction

In this chapter a methodology is developed for the analytical determination of the asymptotic

solution discussed in Chapter 2 for small deviations from linearity, i.e., for values ofthe hard-

ening exponent n slightly larger than unity.

3.2 The Leading order eigenproblem

As discussed in Chapter 2, the leading order problem in the crack tip asymptotic expansion of

the solution for crack along the interface between a nonlinear material and a rigid substrate is

ofthe form
(* + D)<1<?-0<5>+—"~ =0, (3.1)
+ +2)o«=0, (3.2)
(sn+Nwj;0t o™ =0, (3.3)
ST +iW 3 (s (3.4)
e r 21 60 '
0., snilf) -5501 &R=b, (3.5)
aob ()
with boundary conditions
(0)=S«(0)=0 (3.6)
° A O _I:: =0 (37)

It should be noted that (3.3) is an algebraic equation whereas the rest of the above are differ-

ential equations.

The plane strain condition €{{=0 ofan incompressible material (p=I/2) implies that sB =0,

sothat o2 =(cH + )/2 and sir = -seg = (arr —-ocov)/2. Therefore,

AM=-30 = igh)-a@yz (3.8)
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Chapter 3 Asymptotic Solution via a Perturbation Method

In order to simplify the system of equations, we replace (3.4) by the sum (3.3)+(3.4):
33)+@B4) = (5,n+ 2)A0)+'/9\ =0. (3.9
a

We can now eliminate o”} from the system of equations as follows. Solving (3.3) for sf) we

find =—(sn +1) . Combining this result with (3.8), we conclude that
0 -(0)
=25(0)+o()) . *)y=-fj/i+n Ur 3.10
giN=25(0+o() o I=gfilien U (3.10)

Also, substituting (3.10) into (3.1), we find
— ANy + B+ (sw D) T (fe: (3.11)

In summary, we have the following system of equations for

35 = dq%ﬂ rsny-3607 R (3.12)
(3.9) => N4 (s» + 2)5<0)=0. (3.13)
32) = i +(5+2)0e>=0. (3.14)
(3.11) . . o (3.15)

together with the boundary conditions (3.6) and (3.7). The stress component o’} is deter-

mined from (3.10).

The above system of ordinary differential equations can be written in matrix form as

T o 0 0 0 30O 4,

i 4> sz 00O 4 g g g g Vo @16
a0y 0 O-O 5+2 ) 4 (54 (s 1) ol
o, 0 03 0 . ep 000 oo

where the right hand side is the non-linear part ofthe equation.
The perturbation of the leading term is next performed by letting the hardening expo-

nent n be n=\+&. For n=1+¢ we find

oMN)” | = o[ =1+ e\no™ +—&2NInc™j +o(f3),
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Chapter 3 Asymptotic Solution via a Perturbation Method

T(fM = T(W=*e°h* =1~¢eln &> + =~ (In0))2+0(s3),

4(s+1(sh+1) 4

(o) G +D(s+1+ffi) I-eInc™ +—£271nc"| +O(e3)
a'

3

4 ,
=~3{s+12 +£j(5+O[(5+ Olnoi0) -+l /}(s + OlndFig) | S————INCW0™

Substituting the above expressions in (3.16), we find

0 s 0 3 40)
o 5+2) 0 0 0 a9
56 - 0 0 0 -(5+2)
A A
0 -s 0
oB\ Pm.
0 -s 0 3Ino(")
-s 0 0
:8 0 O O ( qJ
fgg)
<
i + (B4+Dn<Tg)-s 0 0 0 )
0 00 _ inoio) 1gp)
0 0 0
40)
+ & >+ o
pat
0 00 0 o (
a4/ ~(0) F v+ o
(s+D\naY s hofl 0 0 0 af)
4 VoA y 12 (3.17)

In general, the leading order non-linear eigenproblem (3.1)-(3.7) has a solution to within a

“multiplicative” constant in the sense that, if is a solution, then ~c"u”,cd?j is a
solution as well.

There is also the possibility of a degenerate case, in which the solution has more than
one arbitrary constants (e.g., simultaneous mode-lI and mode-Il solutions leading to an arbi-

trary mode mix at the crack tip). To allow for this possibility, we set
aogt (°)=A and &$(0) = AU, (3.18)
where A, and Au are the aforementioned two arbitrary constants that control the magnitude

ofthe leading order solution and define the so-called “mode mix”.

We can normalize the solution by dividing through by A, and end up with the normal-

ized problem for (u™,o(0)) (without tilde) that corresponds to
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Chapter 3 Asymptotic Solution via a Perturbation Method

o (0)=! and  oO$(0)="- = Aff, (3.19)
Ai

provided that Al = (0) @ O.

Remark: We treat separately the special case in which 0% (0)=0 and o~(0)=A, *0. Us-

ing the methodology described in the following, it is shown in Appendix A that it is impossi-

ble to find a solution in that case. O

The corresponding complete solution j can be written as
=A an and =A" : (3.20)
For n =1+ g, the normalized (i.e., without tilde) solution and u(0" can be written as

o() =2() +eg() +el g2 + O () and u®) = v(0) + e U(l) + R2UQ) + B(£2)
Note also that
| 2
A" =N)+e= A, Ac = A, 1+elnA, +—e2(\nAN +0"E-3j

Then, equations (3.20) become
-0 -A 00 («) = afl) =A,Z(0)+eA,Z()+e2 A,Z{2)+0O(&3)
and

=A" ) =A, l+elhA +-gl(inA F+0O(g2) [LO) +eU(l) +£2U(2) +B(g3)

=A, +eA, [ (NTHLO) +UQN) +&2A, i(InA)2U(0) +(nTHu(l) + UQ) +O(U

3.3 Asymptotic solution of the leading order problem

Equation (3.17) can be written in a compact form as

Ni—F(i)-x (i) = £EG(X(),i)-x(f), (3.21)

where
X_Y*?) w() gl) g (3.22)
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Chapter 3 Asymptotic Solution via a Perturbation Method

are the normalized unknown stress and displacement components ofthe asymptotic solution,

0 5 0 3
-(5+2) 0 0 0
F(s) = 0 0 0 -(5+2) , (3.23)

y(*+D 0 =5 0

and
0 -5 0 3In
-5 0 0 0
G(x(0),s) = 0 0 0 0 +

—5+1) s+0DIno™-5 0 0 0

(3.24)
0 0 0 -(Inaf)
0 0
TE 0 0 o 0 A*2).

o
“5+)inc®® s_° “hoir 0 o

The differential equation (3.21) can be written in an integral equation form as (Boyce and Di

Prima, 1977)
9
x(0) =¥ (©,5) - W' (0,5)1X(0) + iP(™,5)- [W~"' (*,5)-G(x("),5)-x(i1Z2))<7", (3.25)

where
asin(s0) -acos(sO) cos [(2 + 5)#] sin [(2 +5)0]
bcos(5#)  6sin(5%) -sin [(2 + €)0] cos[(2 + 5)#]
WM= _qin5<9) ccos(#) -dcos[(2+5)#] -dsin[(2 +5)0]
cos(5#) sin (€B) -r/sin [(2+5)6*] t/cos[(2 +5)6%]
with a= , C= - ,b=ac ,and d=—

2(1 +5)

The first term in the right hand side is the solution of the linear homogeneous problem
d*'?' -F(5)x(6) =0, and the second term is a partial solution of the non-homogeneous prob-

lem (3.21). The columns of matrix T are the fundamental solutions of the homogeneous ver-
sion of equation (3.21) (Boyce and Di Prima, 1977).

The integral equation form (3.25) of the problem is convenient for the development of

an asymptotic expansion ofthe solution x(6*) in €.
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Chapter 3 Asymptotic Solution via a Perturbation Method

The corresponding boundary conditions are
u{?1(0) =40 (0)=0, afj(m) - afj(m)=0.

The solution is normalized so that

p(o) t'a} = O'i?(o) =A, (326)

We look for an asymptotic expansion ofthe solution in the form

X=EXN+HEXNM+ELY 2 +0 (&), (3.27)
or, equivalently,
o) =) +£X(1) +£2%(2) +O(f3) and u(0) =U(0) +eU(l) +f2U(2) + B(£3). (3.28)
Then
40) = 1150) 40) = Zi°)+& c®+0 (£2), A0) =—=40)40) = Kia? + Ay |- (3.29)
34°)a°  3(40)4? +4?4*>) r()
4° - IN40) = In +E-"N+0(€2),
2 e 27(0)
where and are the deviatoric parts of Land X** respectively.

Also, the normalization conditions (3.26) become

47 (0)=47? (0)+*45 (0)+*1 472 (0)+c("3)=i

and 472 (0) = 4%} (0) + F47? (0) + N 4*2) (0) + O("3) = >,
so that

420 =1, 4?() =" )(©)=—=0
and 4+0)(°) = A,,, 4~(0) = 4?2 (0)--=0-

The matrix G(x(<9),4 on the right hand side of (3.21) becomes

G = G(0)+£G(1)+O(f2), (3.30)

where %) (x(0)=) = 0 0 O 0
j(s+ D[(s+DINn4°)-s 0 0 0

and
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Chapter 3 Asymptotic Solution via a Perturbation Method

‘0

2
0 0 -(inzio)) +3 o

c

?) (x(0),8) = 0 0 0

o 0 00 0

0)
1(5 + 1)1n40)i——InJE<0pi 44—V(i+§r/§a)_ 0 0
The leading order stress exponent s =----- " _l_Can be written as
n
= — = —t_g--g) ;. , |

’ 7+ Q+48 §8 +°Qf' SP (3.31)

Substituting(3.27), (3.30) and (3.31) into (3.25), and collecting terms having like powers of €,

we have arrive at the following sequence of problems:
!
0(1): x(0)(0)=A]O, (0), (3.32)

where A(0,))=¥(0,0)-W![(0,s), and xNO)={6 0 | A,}

dA(0,s) - , e
6(e): x{10)=- x(0)(0)+ |B|] ©,p-= XO)M’=T -\(\@)d®, (3.33)
ds gy 2y

where  B(0,<M) = W(0,%)-W*1((M),

1 dA(0,s) | 52A(#,s)
M= g ds 32 d?-~

—lv=—1/2

) ®) (o)

a
0(&2): + " (;js_ Jb(0,7,s)1G(() (X(0) (N),s) - x(0) (p)ae (3.34)

s—1/2

GO)[ x(0) (<2>).= 3 X() (@) + Gl () (). —5] - x() {@) licp.

Also, equation (3.10) that determines «> implies

- / °© [} o H o
su°>-°;> YO 920 1Y) (3.35)
60 =5 L(H-LO firinst> Y9 -2c01¥0 (3.36)
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Chapter 3 Asymptotic Solution via a Perturbation Method

A f NO
QD _1 Lu-u" 1+ IN=?) 1+1 i,,r(»)+i(i|l|;m)2_A(\
"3 2 / 4 2 6 2' 4§ ﬁﬁy
><?=25<? + T« (3.37)
Equations (3.32)-(3.34) are evaluated by using Mathematica®
The solution x”(i9) ofthe O(l) problem is found to be
[%s‘ingsino) iS'il’le— (1 +3cos0)
3600 sindsino
)= 2 y4Aa< 202 (3.38)
cos® 0 —3cosLdind
2 2 2
N\
1 cos9dind l—cosgl—l + 3c0s0)
12 2 2 2v
and no the boundary conditions (/r)=0 and x®)(m) =0 are automatically satisfied for all

values of Au.

The solution x~(0) ofthe O(g) problem is very involved and is the boundary condi-

tions on 0 =1t take the following form:

T

L)gn=0 = A:‘ + 3 sti M +3A/l cos26" + sin261)In27t 00 = 0, (3.39)
where ’\=?-E 1 +5alj -1 -3Afj)cos20 + 4T}/ sin 20
C v
.0) Y —+— Ml A, cosO + 9T/; cos30-sin0 + 3sin30)In27f°) 00 = 0. 3.40
00 - SETE { ) ) (3.40)

It is found numerically that equations (3.39) and (3.40) have the common solution A, =0 . For

A, =0, the solutions x** (0) and x(l) (O) can be written as
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Chapter 3 Asymptotic Solution via a Perturbation Method

, and (3.41)

The stress component <r,“can now be determined by (3.35) and (3.36) as

oP=>}°Ke4) + 6(g2),
: . e
where =—cos—(3-cos<9) and =-—sin—sin#- —cos—(3-cos#)In cos—
2 2 2 2 2 2 v 2
The solution x(2* (©), as defined in (3.34), is even more involved and the boundary conditions
on 6=m

N)(m=0 and xfl (1) =0

are satisfied automatically.
3.4 The second order eigenproblem

The second order linear eigenproblem as derived in the previous chapter is

da0
(f+1)o«- 0«+") =0, (3.42)
o
9, t+2)alg -0, (3.43)
ae
T ~0) ~()
[S(N-D +i+w?)-]of) =0, (3.44)
~(0) ~{1)
(O dull 340" 20)+2(~-1)~ ol 50) — o (3.45)
0(9 2 PGLE] 2 _(0)2 ee
. T 0) ~(1)
WO 4 [i(<«<-1) +/14")-301) <J,Tc2+2( 1,)’£ ou ) -0 (3.46)
G +2[
The corresponding boundary conditions are
fi<(0) =fi,(1)(0) = 0 (3.47)
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Chapter 3 Asymptotic Solution via a Perturbation Method

and M = °J)) {m) =0. (3.48)
It should be noted that (3.44) is an algebraic equation whereas the rest of the above are differ-
ential equations.

In order to simplify the system, we replace (3.45) by (3.44)+(3.45):

df'glw [s(n-1)+1+2] =o0. (3.49)
o

The plane strain condition yields

P -a-706% (3.50)
so that
) g)=2v(0) g@)+2v(0) s(1) . (3.51)

We can now eliminate o® from the system of equations as follows. Using (3.51) into (3.44)
and solving for sj™, we find

2 tt-D) +t+1 ~(i AV o
S«=- [scee=h ] O SCEH=D0 )(O)z a(%)el (3.52)
30©" L@ +3(«-Di0) oil) +3(/i-D;

Then, o® is found from (3.50):

gl =2ih+al . (3.53)
Finally, substituting (3.53) and (3.52) into (3.42) and (3.46) we find

der® | 4@+D[BUr-D+t+1] | _ _
iAo ainN1TH << | =0, (3.54)

30~ (on +3(n-Ns” oP +3(«-) AT
n 6(n-1) sk R
du -+ [v(n-D) +tw*) + < [y(A-D +t+ 1] — (-1 8 >uy +
~16 ol0) +3(«-I) SCr
and oy (3.55)
o T (3(«-DMN)o2}) | foj
— 380" 1+3(n—1° =0.
™ +3(<«<-1)3(Or "
In summary, the second order eigenproblem that defines ,0®,0%,08}j is
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slf.if . «- ~(0)
) AT (= D)+ 1+]'] («—i)+/+i]—6f( I): S%'irra!l) +
do LV } J~ LV —~ +3(/i-DSf*
(3.56)
of* [3(A7-DMN)c™_
-30CF |+3(w-|p*-] m4)=o,
o) +3(n-Di© Fv-IRget
ANC 4 Tj(<=D) +i+ 2jf/I~ = O, (3.57)
da~ (/+2)ajj -0, (3.58)
df§4$_+_ A0+ DO/ “ UE!) Il ogg 6(/.-2'1-_.0(«_-0/\0).0;“) c ;Sg T (3.59)
a®  35(CP giy) +3(n-D)iO) +3 (<<=l

The stress component o;” is computed by (3.52) and (3.53).

In general, the second order linear eigenproblem has a solution to within a multiplica-

tive constant, i.e., if i0”,0”) is a solution, then j is a solution as well.

There is also the possibility of a degenerate case, in which the solution has more than
one arbitrary constants (e.g. simultaneous mode-I and mode-Il solutions). To allow for this

possibility, we set
4*(0) =B, and Aa°(°) =s» (3-60)
The constants B, and Bn control the magnitude ofthe second order solution.
The solution depends on the leading order solution e*0*, on the hardening ex-
ponent n, and on the parameters B, and B, as follows

fid j and =g\ >\bi,Bii . (3-61)

Also, if is replaced by cd** in the coefficients of the second order linear eigenproblem,

then its solution is changing

from a(1), (3:62)

j=fid~e(®),5/,5//j and n™ca”°\BlBll'j-en!  (o”™,B,,Bnj. (3.63)
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Chapter 3 Asymptotic Solution via a Perturbation Method

Let (without tilde) be the solution (6~,c”) that corresponds to the normalized so-
lution (without tilde), i.e.,
=0™N"a™°*, 57,5/ § and o() =~{ts™M\BI,BIl j, (3-64)

where we recall that o$ (0) =1 and afj (0)=A, = —.
A

Now, we can identify A, with the aforementioned “multiplicative” constant ¢ of the
leading order problem, and write its solution in the form
(6(0),0(0)) = [A1 u(0),A, (0)). (3.65)

According to (3.63), the corresponding solution ofthe second order problem is

fid = o”B,,Buj=fi(*[o™MNB1,BnJ = fiO = un), (3.66)
and

oC) =d(D1j/o(®),57,5/1 A~ {g”™\b,,Buj => =4""10". (3.67)
For n =1+ g, the solution can be written as

oll) = Z(MH+i=()+2=(D+6(?3) and ul) = U(©0) + £13(1) + €21.(2) + B[€2).
Note that

A" 1=A] =1+ InAt +-ifl (inA,) +o(f3].
Therefore, (3.66) and (3.67) become
0(1) = U(0) +eU(l) + €1 O2) + O(i3) (3.68)
And

= 1+ fin A, +-g1(\nAl)2 +0(g*) [£(0) + €x(} +€2 X(2) + ©(™3)

o) = S+ [ (NN)=0) + =) +e2 -(NA,)2Z(0) + (inADEQY + 32 (3.69)

+= N

3.5 Asymptotic solution ofthe second order problem

Recall that for n =1+ €, we write the leading and second order normalized (i.e., without tilde)

solution as

o(0)=Z(0)+ =(1)+i2=(2) + 0(*3)  and a(l) = Z(0)+e=(l) + £23(2)+O(€3).
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Chapter 3 Asymptotic Solution via a Perturbation Method

Then
oil) = J-40)49) + 5~ +0(£2), of = | =0 _3 5 %)
2 20
o(’)e =1+5:Incn® +-~M2 [inoii'j +O(£3), INOA =\NS" + £~ +O(e27,
where

() _ ™ S®=§ U[T-UI[0) -+ 1nZ(0)A
Ir

Substituting the above expansions into the eigenproblem (3.56)-(3.59) and performing some

algebra, the normalized problem can be written in the form

OI3(3’((9‘*)-|:(/)-y(0) = 5G(0./).y(0), (3.70)
where
o vw0) .afd.gen.
and
0 -tO 3
-(f+2) 0 0 0
F(/)= 0 0 0 -(t+2) (3.71)
_._.(' + 02 0 —t O
G(0,t) = G(0) (8,4 +G(l) (6,1 + O(£2), (3.72)
6(/+ )X ; 0 3R
[ §
() (¢(0)y0) = 2 00 °
0 0 0 0
-(+D[2t+DZ+1] 0 0 6(t+)X
where

©)y(0) A% (of
XCEO)D)=-"T" s(s(0)=M+3~P Z(Eid)=""+3"~T"
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Chapter 3 Asymptotic Solution via a Perturbation Method

3X[2(/+D7-1] _4I' 0 3T
and 1)(c(0),l1).) = o0
0 0 0
t+ D[ +2Z-4G+1DP] 0 0 6ft+\)XY
with

2'0) &) YAy oty
T(cO,cy= o 2 e 2

5B 'siy "o ")
) i} 2 =~ f50 9 m’
i(E<,»E"™>)="-+ | y+6 (o} 50 =(0) + 2

Vv orr c

2 iff ffO)% fEf) 20) m
d E«<U(,,) ="-+-"+6 o o
" " (= sorT v KO3

Equation (3.70) can be written in an integral equation form as in the case ofthe leading order

problem as

(o2

y(8) =W(B,i) w-1(0O,i) y(0) +eW(0,n- IVI(9,1-6(P.Ny(®)ap (3.73)

0

with boundary conditions
(0) = wff (0) = 0, off W=4)\W="> (3.74)
and normalization conditions

o8 (0) = Bt, <ff(0) = B,,. (3.75)

We look for an asymptotic expansion ofthe solution in the form

y =y(0) + ey(l) + € y(2) + 6>(£13), (3.76)
or, equivalently,
o(l) = Z(°)+iX(l) + i2Z(2) + 6>(i3) and u@) =U(0) +Ti(l) +€2 U(2) + 6("3). (3.77)
Then, the normalization conditions ofthe second order problem become

(0) = iFF (0) + £ iFF (0) + F iFF (0) + O(*) = B, =>

4?2(0)=B,  iff(0)=iff(0)=1 *=0,
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Chapter 3 Asymptotic Solution via a Perturbation Method

(0) = iss} (0)+*iff (0)+s2i;(2) (0O)+o(*3) =bu =>
40)(0)=5/I5 iff)(o)=ig)(0o)=-=o0.
The stress exponent t ofthe second order term in the expansion is written as

i =——+fC+f2t) + O(£3). (3.78)

Substituting the expansions (3.76) and (3.78) into the integral equation (3.73), and collecting

terms having like powers of €, we find

¥ 1A
01) : vy (#)=AVG)— ~yw(0). (3.79)

where  A(8,1=W(0,)-WI(0,), and y®(@©)={0 0 B, Bu),

3\(6,0) @ ¢ N ,
O(e): y@)(0)=cC my(0)(0)+ [b[6,9,—— ') y(0)(P)ay, (3.80)
dt _p gy vy

where B(6,0,n=W¥(6,i)-W [ (p,n,

T8A(g,<) | 1c28;A(g,<)

y(\V) = y(0,(0)+
8 2 8 o
u
°C) +c  Ib(®,0,01G(0) (@.8- Y() L (3.81)
=112
—~ i) Ay==]_ N - A
+ |B| 8,9, y AI\ y(I)( )+G(|)V A yOw op

Also, equations (3.52) and (3.53) that determine off imply

o 1 (o] (e) (e} o
OB K -RE K (382)
s® =1i/()__If/(°) A—¢ LI '%((6);/\ _350 RVAD. y(0 _96(0 i yo) (3.83)
Vz A- Yy
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Chapter 3 Asymptotic Solution via a Perturbation Method

4i RN
& =-ul]?) 1+INl0)+3%- +
3 r 32 YO |
f 2 A
+ U0 1 s<p | sj02 | 202 sp° | 3sj0d 2S(Vs)? l In <o) lr.SAZ 1nzf0) , (Inzio))
8 330 23(0)2 >(0)3 (0)4 (02 6 V(42
\Y)
o o o o [} (¢) 3 o
2ypy AR 13 1 CoRP X YD LS AP Y vy o0 o) vy
A°)2 H®) 0)2 n? °rr °rr
‘e \"

EM=2S<,) + £«.  (3.84)

Equations (3.79)-(3.81) are evaluated again by using Mathematical

The solution ofthe O(l) problem is

73 -0 . I 3 . 92 ) It
—sm—sint —sin—(l + jcost’)
2 2

-3sin3 — —gs'ings‘in#
2 2 2
y(O) (E) =£/¢ "+ Bl ’ (3.85)
iB 3 © . 0Q
cos — ——cos—sint
2 2
1cosedint ——cos—(l —3cos#)
12 2 L2 2V ]

The solution y”™(0) ofthe ©(g) problem is very involved and the boundary conditions

on 6 =1 take the following form:

0 — ﬁg 1-'B_O
y.3° (1) =0 |éVC_£II-, =0,
i0 (*) = " B,=0
ki0 (*) =0 16 N1, B-=0-

The only non-trivial solution ofthe above equations is
C-i.

For this value of C, the solution ofthe O(g) problem takes the form
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Chapter 3 Asymptotic Solution via a Perturbation Method

, f Q\
3 inS sintin 3sin?— 36in2 1 cos<g+ (I +3cos0) In “8sln 287
4 2 | 2] 4 2 2
3sin’ e - in Bein? 8N §S|'n9§,int/ 4-3In 3sin2l
V)=£ , 23] 4 2 2y
y =£, T"// (
—cos3 an (cosg)‘ —1cosgsine/> 1-6In cos—
1 2] 4 2 v 2
1 o .
——Ccos—sinef [+21n fCOSQYI 1—cos2 L -cost? + (I -3 cost?) In (cos®
, 4 2 | 2JJ 2 2 | 2]

The solution y~(6>), as defined in (3.81), is even more involved and the boundary conditions

on 6= are
- = ( Mg _g 3.86
y?1(*)=0 T g0 (3.86)
and y? () =0 T T+E B,=0- (3.87)

If B, =0, then the second order eigenvalue problem has the obvious solution
t=s, uN=cu”™ and ol'=co{' In,
which cannot be accepted since it violates the condition s <t < 0. Therefore, equations (3.86)

and (3.87) have the solution

D-—  and B.=0. (3.88)
16 1

For the values of C="-, £5= —— and - 0>the O(l) and O(g) solutions take the from

The stress component CT”can now be determined by (3.82) and (3.83) as

ON=>"+e>" +0O(£2),
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Chapter 3 Asymptotic Solution via a Perturbation Method

where
Q= sm?\gl + 3cos@),——.co —sin ©
and
- A (o f (Y
o) =LsinZ —1+21n ‘cos~" -cos# 17+6In ‘cos—
4 2 2] I 2))

Finally, for the same values of the constants C, D and B, the second hardening exponent t

take the form

t=-——+e—€2—+06(g’)
24 16
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Chapter 4 Conclusions

4. CONCLUSIONS

4.1 Introduction
The stress and displacement field at the crack tip of a plain strain crack lying on the interface

of an elastic-plastic material and a rigid substrate were assumed to be ofthe form

0 \i+ vV
a0 J Ko)(e)te —F— dBrt.--.
yOC €0 oO1n j yJ/crQj
II-1
n+ n+l -i-ittl
<MD_ J BN + Q J r>+rTul)(O) + ...,
ag) \ (C €0001n j (T/o0) ya£oal /.y

where ol0) (#) is normalized so that max J s;° =1
v M«,n-]vV2 1

4.2 The leading order problem

For values of « near unity , i.e., n -1 + g, the first order solution is written in the form

o(0) = A, o(0) = A, (Z(0) +£X(1) + B[€2)), (4.2)
fi(0) = A" u(0) = A, {U© *+7¢in A,)u(0) + u] + B(g2)3, (4.2)

where o(0) is normalized so that o$ (0) = 1. The above solution is ofthe form

| . . ! o, f (S}
—cos—(.3 —cos @) —sin—sin ® —cos—13 - cos 60 In cos—
Zﬁg) 2 2 I’O) 2 2 2 2 \Y 2 J
<(0) =. ,';(9? cos’ — , =) = ,r\?e) -cosgg'ln fcos-e
9 ”
/{{é) 1 /yr 1
é—cos—g—sin 6 L cosQsmB 1+21n Ccos2
4 2 I 2j
and
3 . 0. —35'ingsin€7 2-1In f, 1271
<oy Esm?sm 6 UO> PR | 2\
uo = 1)
u -3sinj — is'inSg 3-In 3sinl —
2 2 1 2i\
Note that on <=0 we have =1 and =0 (or o$=A,, anJ-0), i.e., the leading term

in the stress expansion branches from the mode | linear elastic solution.

Also, ¢i°> =/A<°>40) - 2i0) + 4° + B(g2)
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Chapter 4 Conclusions

2i0)=j3(~0)2+4F) s© ='52’3 sin® 4.3)
and

) 3sjpsM ~S+3ZAZA)
Y>=-

2 29 -(0)

Yl

(0 =---fé\-s|mg 3 —cos@+2(l +cos#)In ::cosg)\ —2(1 - cos#) In Ty <7 (4.4)
j I

2]

Figure 4.1 shows the angular variation of the stress and displacement components as well as

the variation of the equivalent stress for both the linear elastic case U~J and the cor-

rection term i=”, U't j. It is interesting to note that the components =~ and Z® ofthe von

Mises equivalent stress both vanish along the interface and on the crack face (i.e., on © =0

and # = 711). Also, the stress component > approaches zero on 6 = 1t with an infinite slope,

di0
i.e., = -00,

a0

Fig. 4.1. Angular variation ofthe leading order stress and displacement components.
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Chapter 4

4.3 The second order problem

For values of n near unity , i.e., n =1+ €, the first order solution is written in the form

o() = B5IJI0)+f (in™H=© +=© +¢ : (nA)E=0) + (inA)D)ED* =(2) + O[&)

0(1) =By U(0)+ffU(1)+f2 U(2) + O(T3)
The above solution is ofthe form

si ng(i +3cos Q) —300$gs'in t)
2V v2 2

£
L) = L@ —3cosOding
o 2 2
r(°)
-~mc°s™N(l -3c°s?N)
' i /
1—sin9 -1 +21n fcos-e -cos# 17 +6In cos—
o) 4 2 v I 2yy
£6) =. I’GQ —100$9$'in# 1—61In cos 0
4 2
X L o (o
—cos— 1 -cos# + (I -3cos#)Inl*cos—
3.0 :
~msin’(l + 3cos#) £2)( ] Zsm— | -cos# + (I + 3cos#)Inf 3sinl —
1300) = s o u« :\'/r =
—s'in?s'in 0 H»‘ )) is'inZEs'mg 4-31nj~3sin2 |
4
Ao) U(O)
1
u;’)
0. % 1
5 © - T N
05 7 A
1 \ \ 7
-1.3 29 u?
Elll
2 TE -§
40 L0
y(0
. - 6
wy-
40
-06
Fig.4.2 Angular variation ofthe second order stress and displacement components.
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(4.5)

(4.6)
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Note that on © - 0 we have =0 and<7%$ =Bu, i.e., the second order term in the stress ex-

pansion branches from the mode Il linear elastic solution.

Figure 4.2 shows the angular variation of the stress and displacement components of both

the linear elastic case ~>”,0*0)) and the correction term (1", . Note that the stress
component is singular on the crack face (6 =), i.e.,

Ij)m =-00.

<

This suggests that a boundary layer may develop near 6 = 1t. This behavior can be attributed

to the fact that the von Mises equivalent stress vanishes on 6 = 11, whereas the above solution

is developed on the assumption that whole range [O,11] is “at yield”.

Fig. 4.3 Variation of Sand t near N = 1.

We note also that the leading and second order stress exponents can be written as

S:---—:——+—8——82+OQ/V) and t:——+—e——32+ogs3), (4.7)
n+1.2 4 8 ' 2 4 16

i.,e., t <s with

t=s+ <0.

Fig. 4.3 shows the variation of the leading and second order exponent nearn = 1. The open

circles are the results of the numerical solution of the second order eigenproblem developed

bg Sharma and Aravas (1993) and T = ) + Zg_ESZ is the variation ofthe second order ex-
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Chapter 4 Conclusions

ponent as predicted by the asymptotic solution (4.7) up to ©O(g2y The fact that

t=5+ shows that the second order term is singular in r and cannot be ignored as

r—>0.
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APPENDIX A

Here we examine the possibility of finding a solution such that <r*(0) =0 and

(0) = An ¢ 0. We can normalize the solution by dividing through by Au and end up with

the normalized problem for j (without tilde) that corresponds to
472(°) =1 and 4?2(°)=0 (L1)
For n =1+ g, the normalized solution ¢*0) and is written in the form

1(°) = Z(0) + € 20) + €2 Z(2) + 0 (€3) and u(’) =xj() + V() + €2 0(2) + B(3)  (1.2)

Note that
A < A < A = Ay \+enAn+—ez (nanY +e(e2!
Then
=Amta™Mn) o(0) = A, Z(0) + FA, Z{H)4F2Rn ¥() }-O[E£3)
and

6(0) - A" u0) () =Ajj 1+elA, +-g2(inA,)2 +0(€2) [L(0) +€U(l) + U2 + B(€2)

=A, +eAu (INTW)U(0) + UQ) +€2Au —(inA,, )2 U0) + nams )U(l) +UQQ) +0

We use again the compact form ofthe leading order problem as
N-F(s)-x(1) =iG(x(1).j)™*(0), (1.3)

where F(s), G(x(#),s), Xx(0) are given in Chapter 3. The differential equation can be

written in an integral equation form as
]
XM)-W(*,5)-P-1(0,5)-X(0) + *P(6»,5)- | T“1L("s)-G(X((2)),s)-x(1)"™ (1.4)
0
where W (#,.?), G(x(<9),i) are also given in Chapter 3. The corresponding boundary
conditions are
“f0(0)=400)=0 4?2 (*)=aip (*)=0-

The normalization (1.1) requires that
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42(0)=4f(0)=4%(0)=--=0 (15)

and A40)(°H> 4'Q)(O) m-4Ho)=-=-0 (1.6)
The leading order stress exponent v =------- Ican be written as
n-+
s= L 18 1a+ (1.7)
n+l 2 4 8 “IVE- v

Substituting the expansions (1.2) and (1.7) into the integral equation (1.4) and collecting
terms having like powers of &, we arrive at the following sequence of problems:
r i A

o <9 (S)=A O-- (0). (1.8)
v J

where  A(O,i) = W(0,5)-W"1(B,i), and x(0)®)={6 0 0 1},

ff
SA(#,J) i(o)
O(f) :xN(<9) =- *x(0)(0)+ JB| ©,¢p,~ X(O)M’_TIN0)(O<#, (i.9)
ds J.V--1/2
where  B(#",.1) = W({?,$)-¥ '(,)),and as defined in Chapter 3.
We notice that the boundary conditions xf (11)=0 and () =0 are automatically

satisfied by the solution (1.8), which takes the form
3 .6 N
—sin—(1 + 3cos6'J

—gsllngsin 8

*y 22 and (1.10)
—g—cos?gn I@ a

!

—00596—]’_ + BcoscM
12 2 ’

The corresponding boundary condition ofthe ofthe ©(g) problem are (M= (mo=0.

Substituting the expressions (1.10) in (1.9), we conclude that

n
-0) (M) = — +- [sin6(1+3c0s20)In  &4B=-—,
0

L

and ,0) (1) = 4 J(7cos6>+ 9cos30)In 4B =0.
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i.e., it is impossible to satisfy the condition x~(11) =0. In other words, a solution that
satisfies the conditions
4°)(°) =° and o$(0)=A,

does not exist.
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