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CRACK IDENTIFICATION IN STRUCTURES USING OPTIMAL

SENSOR LOCATIONS

Abstract

A Bayesian system identification methodology is presented for estimating the crack 

location, size and orientation using strain measurements. The Bayesian statistical 

approach combines information from measured data and analytical or computational 

models of structural behavior to predict estimates of the crack characteristics along with 

the associated uncertainties, taking into account modeling and measurement errors. An 

optimal sensor location methodology is proposed to maximize the information that is 

contained in the measured data for crack identification problems. For this, the most 

informative, about the condition of the structure, data are obtained by minimizing the 

information entropy measure of the uncertainty in the model parameter estimates 

provided by the above statistical system identification method. Both crack identification 

and optimal sensor location formulations lead to highly non-convex optimization 

problems in which multiple local and global optima may exist. A hybrid optimization 

method based on evolutionary strategies and gradient based techniques is used to 

determine the global minimum. The effectiveness of the proposed methodologies is 

illustrated using simulated data from a single crack in a thin plate subjected to known and 

unknown static loading. The effects of modeling and measurement error on the 

effectiveness of the crack detection method, as well as the methodology’s limitations are 

investigated.
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CHAPTER 1

INTRODUCTION

The problem of crack detection in structures has received much attention over the years 

because of its profound importance in structural health monitoring. Early detection of 

cracks is a key element for preventing catastrophic failure and prolonging the life of 

structures. Crack identification information can be used for developing cost-effective 

maintenance procedures for structures, improving their safety and reducing their 

maintenance and rehabilitation costs, in a whole-life cost basis. Current inspection 

techniques, based on vibration analysis and wave propagation, involve complex, time- 

consuming procedures, which can be very labor-intensive and expensive. Therefore, a 

fast, low cost built-in structural health monitoring system involving a sensor array along 

with fast processing techniques is needed to overcome the shortcomings of the current 

inspection techniques.

Damage detection is generally approached by several techniques. One category of 

them is based on the changes in the global vibrational properties of a structure caused by 

damage [1-6]. However, this approach is only effective in dealing with larger defects for 

the obvious reason that the effects of small flaws on the global vibrational properties are 

often below the noise level in large structures. Other techniques use changes in the 

characteristics of ultrasonic waves propagating across existing defects [7-10]. Ultrasonic 

approaches, although highly effective in detecting very small defects, require a dense 

network of sensors that is impractical to implement in larger structures and raises 

significantly the cost of the equipment. Techniques based on strain measurements from
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optical fibers for identifying cracks have also been pursued experimentally [11-13], 

Based on the experimental results, this method has been shown to be promising for 

detecting cracks. Limited studies have shown that the method effectiveness depends on 

the location and number of sensors with respect to the crack. Other limitations of the 

current defects detection methodologies are the presence of ambient noise and more 

importantly the need for manual analysis of the signals resulting in extremely time- 

consuming inspection procedures and strong operator-dependent conclusions.

This thesis investigates the problem of identifying cracks using an array of strain 

measurements. It presents analytical methods and computational tools that are required to 

identify cracks from strain measurements. It also addresses the experimental design 

problem related to finding the optimal location, orientation, number and density of 

sensors for reliable detection, along with the computational difficulties involved.

The objective of the present study is twofold. Firstly, a methodology for the 

estimation of the crack parameters based on a statistical system identification 

methodology is presented. The crack parameters may include crack location, size and 

orientation. Their values are estimated using measured data from a structure subjected to 

static loading. The Bayesian approach to statistical modeling uses probability as a way of 

quantifying the plausibilities associated with the various models and the values of the 

parameters of these models given the observed data [14-19], Probability distributions are 

used to quantify the various uncertainties in the values of the crack parameters and these 

distributions are then updated based on information contained in the measured data. The 

location and size of damage is inferred from the most probable values of the crack

8
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parameters obtained as the ones that maximize the posterior probability distribution of the 

parameters, given the measured data.

Secondly, a formulation for the optimal design of sensor configuration for crack 

identification is presented based on the information entropy measure. Previous work 

addressing the issue of optimally locating a given number of sensors in a structure has 

been carried out by several investigators. In particular, information theory based 

approaches (e.g. [20-23]) have been developed to provide rational solutions to several 

issues encountered in the problem of selecting the optimal sensor configuration. These 

approaches are closely correlated with the problem of identification and damage 

detection using vibrational or modal properties. Herein, the information entropy is used to 

measure the quality of information that can be extracted from the data used to detect a 

crack. The optimal strain sensor configuration (position and orientation of strain sensors) 

is obtained as the one that minimizes the information entropy. An important advantage of 

the information entropy measure is that it allows us to make comparisons between sensor 

configurations involving a different number of sensors in each configuration [23-25], The 

information entropy is particularly useful for trading-off cost of instrumentation with 

information gained from additional sensors about the condition of the structure, thus 

making cost-effective decisions regarding optimal instrumentation.

The presentation in this work is organized as follows. In Chapter 2 the crack 

parameter identification methodology is presented for the general case of a cracked 

structure and strain measurements. In Chapter 3 a formulation for the design of the 

optimal sensor configuration for crack identification based on the information entropy 

measure is presented. Both the crack estimation problem and the optimal sensor

9
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configuration problem are formulated as highly non-convex optimization problems. 

Chapter 4 briefly reviews a hybrid optimization algorithm combining evolutionary and 

gradient-based algorithms for the estimation of the global optima in both problems of 

crack identification and optimal sensor location. In Chapter 5 the effectiveness of the 

proposed identification methodology and computational algorithms is illustrated for the 

case of crack in a thin plate subjected to uniform biaxial tension. The simulated data are 

generated by a computational mechanics problem simulating the behavior of a bounded 

plate with crack, adding noise in the predictions in order to simulate the effect of 

measurement error. In order to simulate modeling error the model used to predict the 

strain field is based on analytical solutions for the strain field available for the case of 

infinite plate dimensions. In addition, optimal sensor configurations using the proposed 

computational algorithms are derived and their effectiveness in improving crack 

detectability is explored. Finally, the conclusions are summarized in Chapter 6.

10
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CHAPTER 2

BAYESIAN FORMULATION FOR IDENTIFYING CRACK PARAMETERS 

(LOCATION, SIZE AND ORIENTATION)

Consider one or more cracks on a structure subjected to far field static loading (e.g. 

distributed stress, force, etc.). The objective is to identify the crack locations, sizes and 

orientations using measured data such as strain measurements. For this, a vector of 

parameters Θ e RN° defining the crack locations, sizes, and orientations is introduced and 

the problem of crack identification is equivalent to the problem of estimating the value of 

the parameter set Θ.

aY

Figure 1. Case of a crack of length 2a in a plate subjected to biaxial tension
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Specifically, consider the case of a single crack of length 2a in a bounded plate, 

shown in Figure 1, subjected to biaxial tension. This plate could model a part of a larger 

structure as in Figure 2. Let the crack have an orientation of angle φ and its center be

located at (jc0,_y0) with respect to a coordinate system. A parameter vector Θ that 

completely defines the crack and is to be identified, involves crack location(jc0,y0), 

length 2a and orientation φ so as # = {x0,y0,o,^}. In the case of unknown loading, far 

field stresses σχ,σ should be included in Θ so that the parameter set 

i. = {xQ,y0,a^,ax,ay].

Figure 2. Plate as a part of a larger structure
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A Bayesian statistical system identification methodology is used to estimate the 

values of the parameter set Θ and their associated uncertainties using the information

provided from test data as follows. Let Z) = (>,,/?,), i- 1,..N0,m = 1,..N} be

the measured data, where r(. is the position vector indicating the location of the z'-th 

measurement, /?, is the angle indicating the direction of the z'-th measurement, N0 is the

number of sensors in a sensor array and N is the number of data sets available from 

measurements at different time instants. Let M be a class of models parameterized by the 

parameter set Θ, simulating the behavior of the structure with cracks. Let also

q<"m'1 (>; β;θ) be the response prediction at location r and direction β from a model in 

the class M corresponding to a particular value of the parameter set Θ. Herein, the model 

class is associated with the solution of the stress and strain field model around a crack tip. 

These solutions can be provided by analytical expressions available for infinite plates or 

can be given from computational finite element models for bounded plates. Thus, each 

model class corresponds to different modeling assumptions that can affect the reliability 

of the methodology for detecting cracks.

The measured response and the model response predictions satisfy the prediction 

error equation

y{m\r_nP,) = q(m\Lnfi^) + n(n'\r_,^-e) i = \,...,N0 ,m = \,...,N (1)

where β,',θ) is model prediction error that is due to modeling error and

measurement noise. The prediction error in the r/ location with orientation βί is
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assumed to be a zero-mean Gaussian variable, w^(av,βί;θ) ~ N(0,sf), with variance

*,2·

According to the Bayesian system identification methodology [15], the values of 

crack parameters Θ and the prediction error parameters s_ = (st,s2,...,sN) are modeled by 

probability density functions (PDF) that quantify the plausibility of each possible value of 

the crack parameter set Θ and prediction error parameter set s_. Applying the Bayes’ 

theorem and assuming independence of the prediction errors, the updating posterior PDF 

p(0,sjD) of the set of parameters (0,s_) given the measured data D takes the form [19]:

p(d,s\D) = ( \---- \W()N
(V2/r) p(s)

-exp (2)

1 Ά 1
where J{0,s) = — J — ./,(#), is the overall weighted measure of fit between measured 

Λ^Ο /=! si

and model predicted responses for all measurement locations,

’ m=1

is the measure of fit between measured and model predicted response at the i measured

No
location, P(i.) = ]~[^ is a scalar function of the prediction error parameter set s,

7=1

π(θ,δ) is the prior distribution for the parameter sets Θ and s_ and c, is a normalizing 

constant chosen such that the PDF in (2) integrates to one. Assuming that Θ and s_ are 

independent prior to the collection of data, the prior distribution n(Q_,s) takes the form 

π(θ>ΐ)= πθ(@)π.Χΐ) > where πθ{θ) and ns(y) are the prior distribution for the

parameter sets Θ and s_, respectively.

14
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Using the total probability theorem, the marginal probability distribution p{9\ D) 

for the structural model parameters Θ is given by ρ(θ_ \ D) = ^p(9,s_ \ D) ds_. For a non-

informative (uniform) prior distribution πχ (s) the integration with respect to s_ can be 

carried out analytically to yield [16,18]

PiO I D) = cjfoj'iBr''-''*.® (4)
/=!

where c2 is a normalizing constant ensuring that the PDF in (4) integrates to one. The 

updated PDF ρ(θ | D) describes completely the uncertainty in the parameter set Θ given 

the data. In the next section, the updated PDF will be used for designing the optimal 

sensor configuration.

The optimal value £ of the parameter set Θ is obtained by maximizing 

p{9_ | D) in (4). Equivalently, using (4), and assuming a uniform prior distribution for Θ, 

the optimal values £ is given by

LP, = arg min ^ in J^ff) (5)
N0 i=|

In the special case for which sx= s2 =...·= sN , i.e. the values of the prediction error

parameters are assumed to be the same, independently of the measured location, the 

updated PDF ρ(θ \ D) of the model parameters Θ takes the form

Ρ(θ | D) = c3[ J(έ?;Ι)Γ<Λ,',ΛΜ>/2 (6)

while the optimal value θφι of the parameter set ^ is given by

4,=argminfy,(g) (7)
No i=1
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The optimal value ίρι ={x0op„y0ορ„αΰρηΦορ] of the parameter set θ = {χ0,γ0,α,φ} 

specifies the most probable location (x0opl,y0opl) of the crack, the most probable half 

crack length aopl, and the most probable orientation φ of the crack. The uncertainties in 

these values is completely defined by the probability distribution ρ(θ \ D) given in (4) or 

(6).
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CHAPTER 3

OPTIMAL SENSOR CONFIGURATION METHODOLOGY

3.1 Information Entropy

The updated PDF ρ(θ \ D) in (4) specifies the plausibility of each possible value of the 

crack parameters. It provides a spread of the uncertainty in the parameter values based on 

the information contained in the measured data. A unique scalar measure of the 

uncertainty in the estimate of the crack parameters Θ is provided by the information 

entropy, defined by [23]:

H(S,D) = Εθ [-In/?(i?|D)] = -J ln/?(0|£>) ρ(θ\ΰ)άθ (8)

where Εθ denotes mathematical expectation with respect to #, and δ e R3Λ,° is the sensor

configuration vector, with elements the sensors’ coordinates and orientations. The 

information entropy depends on the available data D = D(S_) and the sensor 

configuration vector δ.

An asymptotic approximation of the information entropy, valid for large number 

of data (AW0 —»oo), is available [24] which is useful in the experimental stage of 

designing an optimal sensor configuration. The asymptotic approximation is obtained by 

substituting (4) into (8) and observing that the resulting integral can be re-written as 

Laplace-type integrals which can be approximated by applying Laplace method of 

asymptotic expansion [26]. Specifically, it can be shown that for a large number of 

measured data, i.e. N0N -» oo , the following asymptotic results hold for the information 

entropy [25]
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(9)Η {δ, D) ~ Η (δ; θ, 1) = i iVe 1π(2λ·) - ln[det Λ(£; θ, |)]

where θ = θ(δ, D) = arg min J(#; D) is the optimal value of the parameter set Θ that
θ

minimizes the measure of fit J(0-,D) given in (3), h(S',0,s) is an ΝθχΝθ positive 

definite matrix defined and asymptotically approximated by [25]

h(S&i) = -VXln[J(0;D)]-N°N\ ~ Q{S,§,s_) as N0Noo (10)— — Iσ=2

in which Vff =
δ d 

δθχ δθΝβ
is the usual gradient vector with respect to the parameter

set Θ, and s_ is the optimal prediction error variance. The matrix Q(S;0,s_) appearing in 

(10) is a positive semi-definite matrix of the form

β(Μ^) = Σ^Ο)(0 (Π)

known as the Fisher information matrix [21] and containing the information about the 

values of the crack parameters Θ based on the data from all measured positions specified

in δ, while the optimal prediction error variances are given by (&). The

matrix Pu) (Θ) in (11) is a positive semi-definite matrix given by

1

m=1

(12)

containing the information about the values of the parameters Θ based on the data from 

one sensor placed at the location r . and having orientation /? . The matrix Ρω(θ) 

depends only on the response of the optimal model at the measurement location j, while 

it is independent of the sensor configuration vector δ.
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It should be noted that the resulting asymptotic value of the information entropy, 

given in (10), does no longer depend explicitly on the measured response data D. The 

only dependence of the information entropy on the data comes implicitly through the

optimal values θ = θ{δ_,Ώ) and s2 =J(S;,D). Consequently, the information entropy is

completely defined by the optimal value Θ of the model parameters and the optimal 

prediction error s_ expected for a set of test data.

Using the positive semi-definiteness of the matrices and the structure of

ζ)(δ:θ, s_), it can be readily shown [25] that the value of the information entropy 

decreases as additional sensors are placed in a structure. Given the interpretation of the 

information entropy as a measure of the uncertainty in the parameter estimates, this 

should be intuitively expected since adding one or more sensors in the structure will have 

the effect of providing more information about the system parameters. Moreover, it can 

be shown [24] that the minimum (maximum) information entropy value corresponding to 

the optimal (worst) sensor configuration for L sensors is a decreasing function of the 

number of sensors L.

3.2 Design of Optimal Sensor Configuration

In damage detection techniques the aim is to design sensor configurations such that the 

resulting measured data are most informative about the model parameters. Since the 

information entropy, introduced in (8) as a measure of the uncertainty in the crack 

parameters, gives the amount of useful information contained in the measured data, the 

optimal sensor configuration is selected as the one that minimizes the information 

entropy [23]. That is,
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djKS, = arg min Η(δ;θ,±) (13)

However, in the initial stage of designing the experiment, the data are not available and 

thus an estimate of the optimal crack parameters Θ and s_ cannot be obtained from 

analysis. In order to proceed with the design of the optimal sensor configuration, this 

estimate has either to be assumed or its uncertainty has to be accounted for. In practice, 

the optimal sensor configuration designs are based on user-selected nominal values of the

optimal model parameters Θ and s_ that are representative of the structure under study. It 

is worth pointing out that, as a result of the asymptotic approximation of the information 

entropy, the selection of the optimal sensor configuration is based solely on a nominal 

model, ignoring details from the measured data that are unavailable in the initial stage of 

experimental design.

3.3 Prediction Error Variance Model

An analysis of the prediction error variance sf,i = 1,...,N0 is next presented. For the 

prediction error, it holds that

measurement error. Assuming independence between the measurement error and model 

error, the variance sf of the total prediction error is given in the form

where n, accounts for the model error and , β,; &) accounts for the

-4- V
^ ‘w ,model (15)
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where sfmeas is the variance of the measurement error and sf modd is the variance of the

model error. In order to proceed with the optimal sensor configuration design, the 

designer has to assume values for the individual variances in (15). Such assumptions may 

depend on the nature of the problem analyzed. Most studies on optimal sensor location 

assume that the variance of the measurement and model errors are constant, independent 

of the response. However, in the crack problems considered in this study, it may be 

reasonable to assume that the variance of the model error is proportional to the response. 

In addition, the response may be extremely sensitive to very small variations of the 

measurement location as in the case of measuring strains close to the crack tip.

Specifically, due to 1/Vr variation of the strain distribution, where r is the distance 

from the crack tip, small variations in the sensor location, due to inaccurate sensor 

location, may result in extremely high variations in the response close to the crack tip. 

Thus, the sensitivity of the measured response to sensor location may play an important 

role in defining the measurement and model error. To properly account for these 

variations, it is reasonable to assume that the error is a function of the sensitivity of the 

response to variations in the sensor positions. Usually this error and the corresponding 

prediction error variance may be considered to be a function of the measured response or 

its spatial derivatives.

Adding all these errors together, one can derive the following expression for the 

variance of the prediction error

si = cl + CW (T,, Pi; &) + c2 (q) (16)

where the first term accounts for constant errors, independent of the response, the second 

term accounts for prediction errors that depend on the strength of the response predicted
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by the model, and the third term accounts for prediction errors that depend on the details 

of the response q. Further analysis and estimation of this variance for the specific case of 

a single crack in a thin plate is presented in Chapter 5.
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CHAPTER 4

OPTIMIZATION - COMPUTATIONAL ISSUES

4.1 Hybrid Optimization Algorithm

Both optimization problems (5) or (7) and (13), related to the estimation of the crack 

parameters and the estimation of optimal sensor configuration, result in multiple 

global/local optima. Conventional gradient-based local optimization methods are unable 

to handle efficiently multiple local optima and may present difficulties in estimating the 

global minimum. They lack reliability in dealing with the optimization problem since 

convergence to the global minimum is not guaranteed. Evolutionary algorithms [27] are 

more appropriate and effective to use in such cases. Evolutionary algorithms are random 

search algorithms that explore better the parameter space for detecting the neighborhood 

of the global optimum. They are based on a randomly initialized population of search 

points in the parameter space, which by means of selection, mutation, and recombination 

evolves towards better and better regions in the search space. Details on theoretical 

developments of evolution strategies (ES) can be found in Beyer [28]. A disadvantage of 

ES is their slow convergence in the neighborehood of the global optimum since they do 

not exploit the gradient information. For this, a hybrid optimization algorithm is used that 

exploits the advantages of evolutionary and gradient-based methods. Specifically, an 

evolution strategy is first used to explore the parameter space and detect the 

neighborhood of global minimum. Then the method switches to a gradient-based 

algorithm starting with the best estimate obtained from the evolutionary algorithm and 

using gradient information to accelerate converge to the global optimum. Due to the
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random nature of the initial population used in ES, the proposed hybrid optimization 

algorithm is effective of determining multiple global minima by running the algorithm 

several times and storing the optimal solution of each run into an optimal set of solutions. 

Depending on the initial population in each run, the algorithm may converge to a 

different global optimum in the parameter space. As the number of runs increases, the 

optimal set of solutions usually contains all optima solutions for the problem.

4.2 Heuristic Algorithm for Optimal Sensor Configuration

A more systematic and computationally very efficient approach for obtaining a good 

sensor configuration for a fixed number of N0 sensors is to use a sequential sensor 

placement algorithm as follows. The positions of N0 sensors are computed sequentially 

by placing one sensor at a time in the plate, starting with a minimum number of Nmin 

sensors, at a position and orientation that results in the highest reduction in information 

entropy. The minimum number of sensors Nmin used is the one that corresponds to an 

identifiable crack parameter set. This is investigated through the determinant of the 

matrix Q in (12), since when det(0 -> 0 then the number of sensors used is not enough 

to create an array of sensors whose measurements will result in an identifiable model. So 

the positions of the first Nmin sensors are chosen as those that give the highest reduction

in the information entropy for Nmm sensors. Given the optimal positions of the first Nmin 

sensors, the position of the next sensor is chosen as the one that gives the highest 

reduction in the information entropy computed for (Nmm +1) sensors with the positions 

of the first Nmm sensors fixed at the optimal ones already computed in the first step.
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Continuing in a similar fashion, given the positions of z -1 ( i > Nmm +1) sensors in the

structure computed in the previous /-I steps, the position of the next zth sensor is 

obtained as the one that gives the highest reduction in the information entropy for z 

sensors with the positions of the first i -1 sensors fixed at the optimal ones already 

obtained in the previous i -1 steps. This procedure is continued for up to N0 sensors.

This algorithm is referred to as the sequential sensor placement algorithm and has been 

first introduced in [25] to handle the discrete optimization problem. The sequential sensor 

placement algorithm, when applied to discrete-variable optimization problems, was 

shown to give sensor configurations with corresponding information entropies that are 

extremely close to the minimum information entropy. Its effectiveness to continuous- 

variable optimization problem arising in the present study will be investigated in the 

application section.
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CHAPTER 5

APPLICATIONS

The effectiveness of the proposed methodology is demonstrated using simulated strain 

measurements έ for the mode I crack problem of Figure 3 representing a bounded plate 

with dimensions Lx and L2, under uniform biaxial tension (σ x = σν =σ). Since there

are no experimental data available, simulated measured data are generated from a finite 

element model of the corresponding problem created with COMSOL Multiphysics [29] 

for the various crack configuration assumed and for specimen size Lx = L2=ea . Details

for generating the strain field using finite element modeling are given in Appendix B. 

Zero-mean Gaussian white noise errors are added to the finite element model results in 

order to simulate the effect of measurement error. So the “measured data” έ are 

generated as follows:

έ = Zffm 0 + v) (17)

where sFEM are the strain values obtained from the finite element model for a given 

value of e, and η is a Gaussian variable with zero mean and standard deviation s.

Model predictions of the strain field s(x,y) near and far from the crack tip are 

provided for various crack configurations by an analytical solution [30] available for this 

stress state, provided that the dimensions Lx and L2 of the plate are infinite, or for 

practical applications much larger than the crack length, i.e. e » 10.
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σ

Figure 3. Case of a crack of length 2a in a bounded plate subjected to uniform biaxial 

tension at far field

Specifically, the stresses for an infinite plate can be determined as 

σχ = ReZ-y^ImZ'

σ -ReZ + ylmZ' (18)

where the stress function Z is given by

Z =
σζ

\Jz2 - a2

where z = x + iy and

(19)

Z =
dZ_
dz

Consequently, for plane stress problem the strains are given by

(20)
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(21)

1 + v
------ ylvnZ

E

s.V ]—ylmZ
EE

where E is Young’s modulus and v is Poisson’s ratio. Finally, model predictions of

The two different models, the computational model used for simulating measured 

strain data from a bounded square plate with dimension ea, and the analytical model 

used for predicting the strain field of an infinite plate structure, are purposely chosen to 

introduce modeling error always present in structural modeling. One of the purpose of the 

analysis is to investigate the effect of modeling error on the effectiveness of identification 

methodology. The size of modeling error depends on the value of the variable e. The 

smaller the value of e, the less accurate the analytical solution is for describing the strain 

field in a bounded plate, the higher the size of modeling error is.

In the results presented in this thesis, the material properties are Young’s modulus 

E = 70GPa and Poisson ratio v = 0.33 . In all cases examined the simulated data were 

generated for these values of material properties and the following values of crack 

parameters: position of crack x() = 0.06, y0 = 0.06, half crack length a = 0.005 and crack 

orientation φ - 0. The modeled plate was subjected to uniform far field stress 

σ = lOOMPa.

normal strains at an element oriented along a particular direction β (see Fig. 3) on the

plate can be readily obtained using the well-known transformation formulas

(22)
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5.1 Existence of multiple local/global optima

In order to demonstrate the existence of multiple local optima, and therefore the necessity 

of an efficient global optimization algorithm, we consider the case of small model error 

(e = 100), no measurement error (// = 0%) and known far field stresses so as the 

parameters to be identified in this case are cracks location (x0,y0), size (half crack 

length) a and orientation φ . Figure 4 shows the contour plots of the measure of fit in (3), 

for the sensor configuration shown in Figure 5, as a function of the crack position x0, yQ 

holding the values of the other parameters a and φ constant. It is observed from these 

figures that a highly nonlinear, non-convex, objective function is obtained which involves 

multiple local optima. The global optimum is in the area around x = 0.6, y - 0.6 and 

corresponds to the crack position in the finite element model that produced the measured 

data έ. A gradient-based optimization method with an initial estimate chosen in one of 

the neighborhoods of the local optima will fail to converge to the global optimum, 

leading to a sub-optimal solution corresponding to a local optimum.

Specifically, the proposed hybrid optimization algorithm is shown to be effective 

in avoiding local optima and locating the global one. Evolutionary algorithms are used in 

these cases in order to estimate the neighbourhood of the global optimum, and then the 

algorithm is switched to a gradient-based optimization algorithm that can converge 

quickly to the global optimum. However, in order to find the neighbourhood of the global 

optimum, evolutionary algorithms require a relatively large number of function 

evaluations and this makes the proposed approach computationally time consuming.
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0.75

x

Figure 4: Contour plots of the total mean-square prediction error as a function of the 

coordinates x, y of the crack center

5.2 Crack Identification Results

At first, results are shown for the same case of small model error (e = 100), no 

measurement error (η = 0%) and crack parameters set θ_ = {χ0,γϋ,α.,φ\. A grid of 18 

sensors was used to measure strains εχ,ε in 9 locations as shown schematically in Fig. 

5. The optimal values £, of the cracks parameter set Θ are given in Table 1. The far

field uniform stress σ is assumed to be given. The crack location, orientation and size 

predicted by the proposed methodology is also shown in Figure 5 (black line) and is 

compared to the nominal values of crack location, size and orientation (red line) used to 

generate the simulated data. It is clear that all parameters for this case were estimated 

with great accuracy resulting in a complete identification of the location, size and 

orientation of the crack.
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Figure 5: Crack identification using strain measurements εχ,ε at 9 locations and 
considering small model error (e = 100) and no measurement error (η = 0%)

The problem of estimating the crack parameters set that includes as unknown the far field 

uniform stress σ is investigated next. The same finite element model is used to produce 

the simulated data. The 18 sensors array measuring strains εχ,ε in 9 locations as shown

in Figures 6(a) and (b) is assumed. In the presence of measurement error, simulated data 

are produced more than once so as to obtain three data sets N = 3 comprised of strain 

measurements εχ,ε in the same locations. Figure 6(a) shows results for the case of small

modeling error and no measurement error (e = 100 ,η = 0%). Figure 6(b) shows results 

for same model error but non-zero measurement error of η = 2% in all measured strains. 

The optimal values of the crack parameters set Θ are shown in Table 1.

32
Institutional Repository - Library & Information Centre - University of Thessaly
05/07/2024 21:31:37 EEST - 3.144.37.85



Ο 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Figure 6a: Crack identification using strain measurements from 18 sensors considering

small model error (e = 100 ) and no measurement error (η = 0% )
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Figure 6b: Crack identification using strain measurements from 18 sensors considering 

small model error ( e = 100) and η = 2% measurement error
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The additional parameter (far field stress σ) and the presence of 2% noise in 

measurements do not affect the accuracy of the identified parameters as seen from the 

results in Table 1 and the predictions of the crack configurations (black lines) in Figures 

6(a) and (b).

5.2.1 Sensitivity to Model Error

Next, the effect of model error on the effectiveness of the methodology is investigated. 

For this, the crack detection problem is considered for the following cases: (a) the case of 

plate dimensions L = 100a corresponding to small model error (e = 100) , (b) the case of 

plate dimensions L = \0a corresponding to medium model error (e = 10), and (c) the 

case of plate dimensions L = la corresponding to large model error (e = 7). The 

respective sizes of model error are due to the fact that the analytical solutions used to 

predict the strain field in the identification method hold only for infinite dimensions and 

tend to be inaccurate as the ratio LI a -e decreases. An additional η = 2% noise in the 

measurements is assumed. The crack identification results for the case of L - 100a was 

already shown in Figure 6b. Results for the cases of L - 10a (e = 10) and L = la (e - 7) 

are shown in Figures 7 and 8 respectively. The optimal values of the parameter set Θ are 

given in Table 2 for the three cases considered. From the results in Table 2 we observe 

that the increase of the model error from e = 100 to e = 7 results in a certain loss of 

accuracy in the identified parameters. Specifically, for medium model error (e = 10) 

there is a 7% relative error in the estimation of cracks half-length, while in the case of 

large model error (e = 7) there is a 12% relative error in the estimation of the size of the 

crack combined with an error of 3% in the estimate of cracks location. Also, the
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orientation of the crack predicted by the methodology, is slightely missed by 

approximately 3° to 4°.

Figure 8: Crack identification using strain measurements from 18 sensors considering 

medium modeling error and white noise measurement error n = 2%.

Figure 9: Crack identification using strain measurements from 18 sensors considering 

large modeling error and white noise measurement error n = 2% .
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5.2.2 Parametric Analysis

Results show that the proposed methodology can efficiently detect a crack in a thin plate, 

and accurately estimate its size and orientation, as well as the unknown load to which the 

plate is subjected to. Next, the limits on which this methodology tends to or completely 

fails to identify the crack are examined. These limits depend on several parameters such 

as the sensor configuration, the density of the sensors array with respect to the crack size, 

the measurement direction of the strain sensors, the orientation of the crack etc. The 

following analysis investigates the effect of these parameters on the accuracy of the 

identification algorithm.

First, let γ be the distance of the sensor locations in the 3x3 uniform grid of 

sensors measuring εχ, εν shown in Figure 10. We introduce the parameter px -yia, 

where a is the half crack length, and examine the relative errors in the estimation of 

crack parameters for different values of /?,.
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In all results shown next we consider the case of small model error e = 100 and

measurement error η = 2%. The far field uniform stress σ is considered to be unknown. 

Results for px = 5 were already shown in Figure 6b, while for px < 5 the methodology 

identifies accurately all crack parameters. Although this can be understood intuitively, 

since smaller values of px correspond to denser sensor configuration or equivalently 

larger crack, it is also confirmed by results.

In Figure 11 the relative error in the estimation of the cracks location and size for 

larger values of px is presented. It is observed that for px = 10 the methodology has

failed to detect the crack since the relative error in the coordinates estimation reaches a 

value of 50% in addition to a 13% relative error in determining the half cracks length.

Figure 11: Relative errors in the estimation of x0, y0 and a as a function of px
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For the crack size shown in Figure 10 the value p, = 10 corresponds to a sensor array 

with distance γ two times the distance shown in Figure 10. It must be noted here that 

even in this case, the crack orientation φ and the far field stresses σ were accurately 

estimated.

Of great importance is also the method’s dependence on the crack location and 

especially its distance from the central sensor with respect to the cracks size. For this 

reason we consider the parameter p2 =xc/a, where xc is the distance of the cracks 

center from the central sensor along the x-axis as shown in Figure 12. Values of the 

relative errors in the estimated values of cracks location coordinates x0, y0 and half

crack length a are presented in Figure 13 for value of the ratio p, - γ I a = 5.
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Figure 13: Relative errors in the estimation of x0, y0 and a as a function of p2

It is observed that as the crack moves far from the central sensor, errors in the crack 

location estimation slightly increase while there is a larger error of about 9% in the 

estimated half crack length. For p2> 4, the crack approaches another sensor and these

errors decrease with the accuracy of the methodology to improve significantly. Despite 

the errors, it is important that the algorithm identifies the crack parameters in other 

positions within the grid apart from the one initially considered, as long as the other 

parameters in the crack problem remain constant.
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Figure 14: Crack orientation φ and measurement direction β

In all results presented before an array of sensors measuring strains in x, y direction was 

used while the crack had an orientation φ = 0°. This means that strain measurements 

were obtained simultaneously in parallel and perpendicular directions with respect to the 

cracks orientation. We examine next the case where 9 instead of 18 sensors are used to 

measure strains in a direction β, while the crack has an orientation φ as shown in Figure 

14. The parameter p3= β-φ is introduced and for the values p3-0 and p3 = πΙ2 

identification results are examined as a function of px. The value of p3 - 0 corresponds 

to the case where the strain measurements are parallel to the crack, while the value of 

p3 = π 12 corresponds to strain measurements perpendicular to the crack. A comparison 

of the relative errors on the estimation of cracks location coordinates x0, y0 and half 

crack length a for the two values of the parameter p3 are presented in Figure 15, 16 and 

17 respectively. It is clear that when measuring strains in a direction parallel to the crack,
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the methodology fails to estimate crack parameters for smaller values of the ratio γ I a 

than the case of strains obtained perpendicular to the crack. This conclusion will be 

reinforced by the results of the optimal sensor location methodology shown next where 

for the crack orientation φ = 0° the methodology results in an optimum measurement 

direction β = 270° for all sensors. We should note here that the use of 9 instead of 18 

sensors and one single direction instead of two resulted in a loss of accuracy in the 

estimation of cracks orientation of approximately 9°. Moreover, the error in the 

estimation of half cracks length is large even for small values of pl = γ / a.

Figure 15: Relative errors in the estimation of xn for p3 = π 12 and p3 = 0 as a function

of pl
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Figure 16: Relative errors in the estimation of y0 for p3 = π 12 and p3 = 0 as a function
of px

Figure 17: Relative errors in the estimation of a for p3 = π 12 and p3 = 0 as a function
of px
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5.3 Optimal Sensor Configurations

Next we estimate the optimal sensor configuration for a given number of sensors using 

the theoretical analysis presented in Chapter 3. Two cases are considered: in Case A the 

variables to be estimated are the locations of strain sensors measuring εχ and sy in a

measurement location, so the search of the optimal sensor configuration for n sensors 

corresponds to w/2 optimal locations. In Case B in each optimal location corresponds 

one sensor measuring strain at the direction of β . Thus, the variables to be estimated in 

the search of the optimal configuration include the location and the direction of 

measurements as well. In this case the sensor configuration vector δ e Rif*° includes not 

only coordinates of each sensor, but angles β of measurement direction as well.

5.3.1 Selection of the Prediction Error

As mentioned in Chapter 3 the estimation of the optimal sensor configuration depends on 

the selection of the prediction error parameters involved in the prediction error in the 

prediction error equation (16). In all results presented here, the value of the prediction 

error variance s2 is chosen as follows.

First we will define the third term in prediction error equation (16) that depends 

on the nature of the response. For the strain ε near the crack tip, it holds

a _ a(Kj, E, v)

•Jr Jr
(23)

where r is the distance from the crack tip, K, is the stress intensity factor, E is Young’s

modulus and v is Poisson’s ratio. Due to the 1 /Jr variation of the strain distribution, 

small variations in the sensor location may result in extremely high variations in the
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response close to the crack tip. To properly account for these extreme variations, it is 

reasonable to assume that the error is a function of the response’s spatial derivatives with 

respect to r. Considering an inaccurate sensor placement of about Ar, using (23), and 

selecting the standard deviation of the error to be proportional to the local change As of 

the strain, for the measurement error’s standard deviation is

ds . d ( a ^
s ~ As ~----- Ar = —meas r idr dr \4r J

■ Ar = - a
2r\[r

■Ar (24)

Substituting (24) into the general form of the measurement error’s variance (16) and 

neglecting the first term (constant errors), the model prediction error variance is given by

2 ,s2
A model °r ^

a
2 ■r-yfr

■ Ar' (25)

where smodei and Ar are user selected values.

Near the crack tip (r—»0), the second term in (25) dominates the overall 

prediction error variance, while far from the crack tip it is the first term in (25) that 

dominates the prediction error variance. The extend of these regions of domination 

depend on the value of the ratios .vmodel / Ar. Herein, in all results presented, this ratio is

selected to be ,vmodel Mr - 0.5 .

5.3.2 Results of optimal sensor locations and information entropy for Case A

First, the Case A is considered with 2 strain sensors at an optimal location measuring 

strains sx and s . A comparison between two different optimal sensor configurations 

using 6 sensors is made in Figure 18. The first one (red cross) corresponds to sensors
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Figure 18: Comparison of 3 optimal sensor locations providing information about the 

crack parameter set Θ = {x0, y0, a, φ] and Θ = {x0, y0, a, φ, σ]

providing information about the crack parameters set θ = {χϋ,γ0,α,φ}, while the other

one (blue cross) corresponds to sensors providing information about the unknown far 

field stress as well. As expected, the sensor configuration that provides additional 

information about the unknown far field stress is in larger distance from the crack tip.

In all results shown next, the optimal sensor configurations correspond to sensors 

providing information about the crack parameters set θ = [χ0,γ0,α,φ,σ]. The optimal

sensor configurations for Case A are illustrated in Figure 19(a)-(d) for 6, 8, 10, and 12 

sensors respectively. These configurations were estimated using the hybrid optimization 

algorithm for optimizing the information entropy. Comparing the results in Figures 18 

and 19(a), it can be clearly seen that, due to symmetry, there are more than one global
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solution to the optimal sensor configuration problem. The application of the hybrid 

optimization algorithm converges to one of the global solutions. Repeating applications 

of the hybrid optimization algorithm will eventually result in the estimation of all global 

solutions.

The sequential sensor placement (SSP) algorithm also provides optimal sensor 

configurations with a minimum computational effort and little loss of information. A 

comparison between the information entropy of the optimum configurations estimated 

with the hybrid optimization algorithm and the corresponding ones estimated with the 

SSP algorithm is shown in Figure 20.
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Figure 19: Optimal sensor locations for (a) 6, (b) 8, (c) 10 and (d) 12 sensors.
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Figure 20: Information entropy-number of sensors for the cases of hybrid optimization 

and SSP algorithm

+ direct
o SSP

?

Φ

Φ

Φ

10 12 14 16
Number of sensors

18 20 22

Existence of multiple slobal/local optima

Consider again the estimation of the optimal sensor location of 12 sensors measuring in 

εχ and ε directions. Let the 5 optimal locations to be known using the direct method

and we want to use the SSP algorithm to find the sixth location for the 11th and the 12th 

sensor. The contour plots of the information entropy as a function of the coordinates x 

andy of the sensor location is illustrated in Figure 21. It is seen that at least eight local 

optima exist. The 6th optimal location found with the direct method is shown with the 

cross. It is clear that the optimization method for estimating the optimal sensor location 

should be able to identify the global optimum from the local ones. Thus, the proposed 

optimization algorithm is required to be used since it can locate global optima in the
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Figure 21: Contour plots of the information entropy as a function of the sensor location

expense of high computational effort. It is worth pointing out that even in the SSP 

algorithm, the use of the hybrid optimization is necessary. This increases significantly the 

computational time for estimating the optimal sensor configurations.

Uncertainty in crack parameter estimates

Consider the case of an optimal sensor configuration of 12 sensors for Case A and a 

corresponding arbitrary grid, as shown in Figure 22. The arbitrary grid is chosen 

purposely to be closest to the crack. Crack identification results are carried out with these 

two sensor configurations and the probability distribution ρ(θ_ \ D) of the crack 

parameters is obtained. Simulated data were generated from a finite element model of a 

plate with dimension L = 100a and measurement error n = 2% was added to the
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Figure 22: Optimal and arbitrary sensor configurations for the case of 12 sensors

computed strains. Figures 23 and 24 show the contour plots of the probability distribution 

ρ(θ | D)lcpte(ff) of the parameter set 0 as a function of the crack parameters x0 and a, 

holding the rest of the crack parameters y0, φ and stress σ constant. The global 

optimum is in the area around x0 = 0.5, a = 0.05 and corresponds to the chosen values of

these parameters in the finite element model that generated the measured data έ.

The probability distribution in Figure 24 corresponds to the arbitrary grid of 

sensors used, while the probability distribution in Figure 23 corresponds to the optimal 

sensor configuration. It is observed from these figures that in spite of the grid of sensors 

chosen to be closest to the crack, the use of an optimal sensor configuration resulted in a 

narrower distribution especially in the direction of x0 compared to the much wider 

distribution obtained from the arbitrary grid. This demonstrates that the uncertainty in the

crack
optimal sensor locations 
arbitrary grid of sensors
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parameter values, quantified by ρ(θ \ D), is less for the optimal configuration than it is 

for an arbitrary grid of sensors.

xo

Figure 23: (a) Contour plots of probability distribution as a function of the the crack 

center x0 and the crack’s half-length a, and (b) zoom in the neighbourhood of the 

optimum, for the case of optimal sensor configuration
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Figure 24: (a) Contour plots of probability distribution as a function of crack center x0

and the crack’s half-length a and (b) zoom in the neighborhood of the optimum, for the 

case of an arbitrary grid of sensors

5.3.2 Results of optimal sensor configuration and information entropy for Case B 

Next, results for the Case B are obtained. The optimal sensor configurations for 6, 8, 10 

and 12 sensors are illustrated in Figure 25(a)-(d). In this case the direction in which 

sensors are placed to measure strains is not prespecified. Instead, it is considered as a 

variable to be optimized. For this case where the direction β of strain measurements is 

optimized, the problem of finding the global optima for both sensor location and the 

measurement angle becomes computationally more difficult. Results showed that the 

optimal angle of measurement for all sensors is β = 3π / 2 = 270°.
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Figure 25: Optimal sensor locations for (a) 5, (b) 6, (c) 7 and (d) 8 sensors. Optimal 

measurement direction β = 270° for all sensors

The minimum values of the information entropy as a function of the number of 

sensors placed at the optimal location in the structure is shown in Figure 25 for Cases A 

and B. In case B all sensors placed at optimal locations measure strains in optimal 

direction β = 270°. Case B results to configurations with less information entropy, i.e. 

providing more informative data, for the same number of sensors than case A, as it is 

shown in Figure 26.
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Figure 26: Information entropy-number of sensors for cases A (red) and B (blue)
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CHAPTER 6

CONCLUSIONS

A methodology was presented for the estimation of cracks in structures using strain 

measurements. A Bayesian system identification methodology was used to estimate the 

location, size and orientation of cracks using the information provided from strain 

measurements of a cracked thin plate subjected to unknown uniform stress. The analysis 

showed that the proposed identification methodology can efficiently detect and 

completely define an existing crack and far field stresses using a simple grid of sensors, 

even in the presence of measurement and model errors, provided that the model error is 

sufficiently small.

A parametric analysis was performed with variables (1) the density of the sensor 

configuration with respect to the crack size, (ii) the distance of cracks center from the 

central sensor of a uniform 3x3 grid of strain sensors with respect to the crack size and 

(iii) the difference between the crack orientation and the direction of the strain 

measurements. This analysis provided useful insight about the effect of these variables to 

the method’s accuracy, as well as the limits on which this methodology fails to identify 

the crack. Results showed that for γ / a < 10, where γ is characteristic of the sensor grid 

and a is the half crack length, the methodology can completely identify a crack and the 

external static load for both cases of strain measurements £ , εν in each sensor location

and that of strain measurements perpendicular to the crack. For the case of strain 

measurements in a direction parallel to the crack, the values of γ I a for estimating the 

crack parameters are significantly smaller.
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Optimal sensor configurations using the information entropy measure were also 

derived. A comparison between the case of optimal sensor configurations using sensors 

measuring strains εχ and εΎ in an optimal location and the case of configurations with

sensors placed at optimal locations measuring strains in an optimal direction β was 

made. The latter case resulted in configurations that provided more informative data for 

the same number of sensors than the first case. Results also showed that the optimal 

measurement direction for all strain sensors, when a crack with orientation φ - 0 is 

considered, is β = 270°. This means that most of the information about the crack 

parameters is derived by strain measurements in a perpendicular direction with respect to 

the crack, a result also reinforced by the parametric analysis results.

Both optimization problems involved in crack identification and optimal sensor 

configuration methodologies were proven to have multiple local and global optima. Thus, 

the use of an effective optimization algorithm is necessary. Evolutionary algorithms are 

used in order to estimate the neighbourhood of the global optimum, and then the 

algorithm is switched to a gradient-based optimization algorithm that can converge 

quickly to the global optimum. The proposed hybrid optimization algorithm is shown to 

be effective in avoiding local optima and locating the global one. However, in order to 

find the neighbourhood of the global optimum, evolutionary algorithms require a 

relatively large number of function evaluations and this makes the proposed approach 

computationally time consuming.

Despite the computational effort needed and the limitations as far as model and 

measurement errors are considered, the proposed identification methodology was proven
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to be able to detect a crack in a thin plate subject to unknown far field static load that was 

also estimated, as well as to accurately identify the crack size and orientation.
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APPENDIX A

WESTERGAARD METHOD FOR STRESS FIELD AROUND CRACK TIPS

(a) Description of the method

The Westergaard semi-inverse method [] constitutes a simple and versatile tool for 

solving a certain class of plane elasticity problems. It uses the Airy stress function 

representation, in which the solution of a plane elasticity problem is reduced to finding a 

function U

Ψν'υΑ 2J2L+£^»0
ox dx2dv2 dy‘

which satisfies the biharmonic equation and the appropriate boundary conditions. 

The stress components are given by

d2U
~d/

d2U 
dxdy'

(1)

(2)

If we choose the function U in the form

υ = ψλ+χψ2 + νψ3. (3)

where the functions ψ,,(ί = 1,2,3) are harmonic, that is,

V V, = ·72,„ _ δ2ψ{ δ2ψ, 
dx2 δν2

= 0. (4)

U will automatically satisfy Equation (1). Following the Cauchy-Riemann conditions for 

an analytic function of the form

Z(r) = Re Z + i Im Z (5)

where z = x + iy, i = Ί--Ϊ, and Re and Im denote real and imaginary parts of the 

function, respectively, we have
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dZ dReZ dlmZ 
dz d.x δ)'

T dZ dlmZ dReZ ...Im— =---------=------------ (6)
dz d.x dy

and therefore,

V2 Re Z = V2 Im Z = 0. (7)

Thus, the functions the functions ψί, (/ = 1,2,3) in Equation (3) can be considered as the

real or imaginary part of an analytic function of the complex variable z. Introducing the 

notation

zJl.z-Ji Ϊ-*
dz dz dz

(8)

where bars over Z represent integrations with respect to z, Westergaard defined an Airy 

function UI for symmetric problems by

Uj = Re Z, + y Im Z, (9)

that automatically satisfies Equation (1). Using Equations (4) we find the stresses from 

Uj to be

σ . = Re Z, - y Im Z] 

σν = ReZ; + jImZ)

= -yRsZj (10)
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(b) Crack problems

Consider a crack of length 2 a which occupies the segment -a <x<a along the x-axis 

in an infinite plate subjected to uniform equal stresses a along the y and x directions at 

infinity (Figure 17). If the origin of the coordinate system is defined at the center of the 

crack, the boundary conditions of the problem may be stated as follows:

σν + ίτΧΎ - 0 for y = 0, -a < x < a (11)

and

σ =0, σ =σ, rTV =0 for (x2+y2)' 2 -»qo (12)

The function defined by

Z, = σζ

1 ^
(13)

where σ is the remote stress and a is the half crack length, as defined in Figure 17, 

satisfies the boundary conditions (11) and (12) and therefore is the Westergaard function 

for this problem. Note that the imaginary part of the stresses vanishes when y = 0. In 

addition, the shear stress vanishes when y = 0, implying that the crack plane is a 

principal plane. Thus the stresses are symmetric about θ = 0 and Equations (10) imply 

Mode I loading.

Consider the crack plane where y = 0. For -a<x <a, Z is pure imaginary, while Z is

real for |x| > |c/|. The normal stresses on the crack plane are given by

σ ..-σ = ReZ =
σχ

y/x2-a2
(14)
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I_______________________________ J

1.
Figure 27. Case of a crack of length 2a in an infinite plate subjected to uniform biaxial 

tension at infinity

Let us now consider the horizontal plane from each crack tip, x* = x-a; Equation 

becomes

σ4α *
σ . - σ,... - ,.. for x* « a.xx xr

4Ϊ; . ijc
(15)

Thus, the Westergaard approach leads to the expected inverse square-root singularity'. 

One advantage of this analysis is that it relates the local stresses to the global stress and 

crack size. The Westergaard stress function, in its original form, is suitable for solving a 

limited range of Mode I crack problems. Subsequent modifications generalized the 

Westergaard approach to be applicable to a wider range of cracked configurations.
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APPENDIX B

FINITE ELEMENT MODELS

All finite element models of the square bounded plate producing the simulated data were 

created with COMSOL Multiphysics 3.2. In Figure 28 the model with dimensions 

L = 100a is shown near the area of the crack. The plate was meshed with a large number 

of finite elements near the crack area and fewer elements at far field as shown in Figure 

28. The dimensions were chosen so as to obtain a minimum model error since the 

solution providing the model predictions was for a plate of infinite dimensions. In order 

to examine the efficiency of the method with larger model error a plate with smaller 

dimensions L = l0a (Fig. 29) was used to produce the simulated data of strain 

measurements. Plots of the normal stresses sx in front of the crack tip are shown in 

Figure 30 for the analytical solution and the two computational models.

Figure 28. Finite element mesh of the plate (one quarter) with dimensions ΙΟΟα-ΙΟΟα 

near the region of the crack
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Figure 29. Finite element mesh of the plate (one quarter) with dimensions 10a ■ 10a

x 108

x
Figure 30. Normal stress sx as a function of x in front of the crack-tip

/
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