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Περίληψη

Η μεταφορά φορτίων αποτελεί ουσιώδες στοιχείο μιας οικονομίας. Υποστηρίζει κάθε 
εμπορική δραστηριότητα εξασφαλίζοντας τη μετακίνηση και την έγκαιρη διαθεσιμότητα 
πρώτων υλών και ολοκληρωμένων αγαθών. Τα μεταφορικά έξοδα αποτελούν ένα σημαντικό 
τμήμα του τελικού κόστους ενός προϊόντος και αντιπροσωπεύουν ένα μεγάλο ποσοστό των 
εθνικών εξόδων μιας χώρας. Η πρόβλεψη της ροής φορτίων σε ένα δίκτυο μεταφορών μπορεί 
να φανεί πολύ χρήσιμη στη διαδικασία λήψης αποφάσεων ενός συστήματος μεταφοράς 
φορτίων.

Σε αυτή την μεταπτυχιακή εργασία παρουσιάζεται η θεωρία χωρικής ισορροπίας σε 
δίκτυα μεταφορών και μελετάται η θεωρία των variational inequalities, η οποία αποτελεί 
ισχυρό εργαλείο για τη μελέτη καταστάσεων ισορροπίας. Οι θεωρίες αυτές εφαρμόζονται 
αρχικά σε δίκτυα πολλαπλών βαθμιδών και στη συνέχεια σε δίκτυα πολλαπλών κλάσεων, 
όπου οι παράγοντες κάθε κλάσης λαμβάνουν υπόψη τους πολλαπλά κριτήρια.

Τέλος, περιγράφουμε ένα δίκτυο για τη μελέτη, ανάλυση και υπολογισμό λύσεων σε 
προβλήματα, όπου για τη λήψη αποφάσεων σε κάθε μία από τις δύο βαθμίδες του δικτύου, 
λαμβάνονται υπόψη πολλαπλά κριτήρια. Συγκεκριμένα, κάθε ένας από τους αποστολείς 
αγαθών και τους καταναλωτές των αγαθών αυτών στις διάφορες αγορές, αντιμετωπίζει 
πολλαπλά κριτήρια όσον αφορά αποφάσεις για την παραγωγή και κατανάλωση των αγαθών 
αντίστοιχα. Διατυπώνονται οι συνθήκες ισορροπίας με τη μορφή των variational inequalities, 
η επίλυση των οποίων δίνει τις ροές των φορτίων και τις αντίστοιχες τιμές σε ισορροπία.

Καθώς ο χρόνος και το κόστος που σχετίζονται με τις μεταφορές προϊόντων έχουν 
ιδιαίτερη σημασία, τα αποτελέσματα του μοντέλου που κατασκευάζουμε σε αυτή την 
εργασία, μπορούν να βοηθήσουν μία εταιρία στην αξιολόγηση των πραγματικών ροών και 
τιμών των προϊόντων.
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Abstract

Freight transportation is a vital component of the economy. It supports production, 
trade and consumption activities by ensuring the efficient movement and timely availability of 
raw materials and finished goods. Transportation accounts for a significant part of the final 
cost of products and represents an important component of the national expenditures of any 
country. The prediction of freight flows over a multimodal network can be very helpful in the 
decision-making process in a freight transportation system.

In this postgraduate work, the theory of spatial equilibration in transport networks is 
first presented and the study of the variational inequalities (VI) theory, which is a powerful 
tool for the study of the equilibrium states, follows. These theories are applied first to 
multitiered networks and then to multiclass networks, in which the decision-makers consider 
multiple criteria.

Finally, we describe a network framework for the formulation, analysis and 
computation of solutions to problems in which the decision-makers on each of the two tiers of 
the network consider multiple criteria. In particular, the shippers, which are spatially 
separated and the consumers located at the demand markets, each face multiple criteria in 
making their production / consumption decisions. The variational inequality formulation of 
the governing equilibrium conditions is derived. Resolving this variational inequality 
problem, using known algorithms for variational inequalities, we get the product shipment 
pattern, as well as the demand price pattern in equilibrium.

Since time and cost associated with product deliveries are of particular importance, the 
outputs of the model we construct in this research, provide a benchmark against which an 
industry can evaluate both real prices and product flows.
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Chapter 1 Introduction

1.1 Motivation and Background

Freight transportation is a vital component of the economy. It supports production, 

trade and consumption activities by ensuring the efficient movement and timely availability of 

raw materials and finished goods. Transportation accounts for a significant part of the final 

cost of products and represents an important component of the national expenditures of any 

country.

The freight transportation industry must achieve high performance levels in terms of 

economic efficiency and quality of service. The former, because a transportation firm must 

make a profit while evolving in an increasingly open, competitive, and still mainly cost- 

driven market. The latter, because transportation services must conform to the high standards 

imposed by the current paradigms of production and management such as small or no 

inventory associated with just-in-time procurement, production and distribution, on-time 

personalized services, and customer-driven quality control of the entire logistics chain. For 

the transportation firm, these standards concern particularly total delivery time and service 

reliability, which are often translated into objectives such as “be there fast but within the 

specified limits” or “offer high quality service and consistent performance”.

The political evolution of the world impacts the transportation sector as well. The 

emergence of free trade zones together with the opening of new markets due to political
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changes and the resulting globalization of the economy have tremendous consequences for the 

evolution of transportation systems, not all of which are yet apparent or well understood. For 

example, open borders generally mean that firms are no longer under obligation to maintain a 

major distribution center in each country. In consequence, distribution systems are 

reorganized around fewer but bigger warehouses and transportation services are operated over 

longer distances. A significant increase in road traffic is a normal consequence of this process, 

as may be observed in Europe.

Changes to the regulatory environment have an equally powerful impact on the 

operation and competitive environment of transportation firms. The deregulation drive of the 

1980s has seen governments remove numerous rules and restrictions, especially with regard to 

the entry of new firms in the market and the fixing of tariffs and routes. This resulted in a 

more competitive industry and in changes to the number and characteristics of transportation 

firms. A number of new policies and regulations resulting from quality-of-life concerns 

started to significantly impact the operations of the freight transportation-related firms. Two 

major examples: (i) more stringent safety regulations; (ii) policies aimed towards increasing 

the volume of inter (and multi) modal freight movements while decreasing the utilization of 

trucks. The latter results from environmental and energy efficiency concerns that are 

particularly important in Europe. The evolution of technology is another major factor that 

modifies how freight transportation is organized and operated. This is not a new trend. Indeed, 

transportation has followed the industrial innovations and adapted, for example, to advances 

in traction technologies and fuels. What is new is that the major technological factor inflecting 

the evolution of transportation has to do with information and software rather than the 

traditional hardware. The tremendous expansion of Internet and the electronic-society, 

eloquently illustrated by the growing importance of electronic market places and business-to-
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business exchanges, dramatically alters the interactions of carriers and shippers. More 

complex planning and operating procedures are a direct result of all new policies, 

requirements, technologies, and challenges.

Freight transportation must adapt to and perform within these rapidly changing 

political, social, and economic conditions and trends. In addition, freight transportation is 

itself in a complex domain: many different firms, organizations, and institutions, each with 

their own set of objectives and means, make up the industry; infrastructure and even service 

modifications usually require long implementation delays; important decision processes are 

often strongly interrelated. It is thus a domain where accurate and efficient methods and tools 

are required to assist and enhance the analysis, planning, operation, and control processes.

Demand for freight transportation derives from the interplay between producers and 

consumers and the significant distances that usually separate them. Producers of goods require 

transportation services to move raw materials and intermediate products, and to distribute 

final goods in order to meet demands. Carriers supply transportation services. Railways, 

shipping lines, trucking companies, and intermodal container and postal services are examples 

of carriers. Considering the type of service they provide, ports, intermodal platforms, and 

other such facilities may be described as carriers as well. Shippers, which may be producers 

of goods or some intermediary firm, attribute demand to supply. Governments contribute the 

infrastructure: roads and highways, as well as a significant portion of ports, internal 

navigation, and rail facilities. Governments also regulate (e.g. dangerous and toxic goods 

transportation) and tax the industry.

From all the above, one can say that transportation systems appear as rather complex 

organizations that involve a great deal of human and material resources and that exhibit 

intricate relationships and tradeoffs among the various decisions and management policies
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affecting their different components. It is convenient to classify these policies according to the 

following three planning levels:

1. Strategic (long-term) planning at the firm level typically involves the highest level 

of management and requires large capital investments over long-term horizons. Strategic 

decisions determine general development policies and broadly shape the operating strategies 

of the system. These include the design of the physical network and its evolution, the location 

of major facilities (e.g., terminals), the acquisition of major resources such as motive power 

units, and the definition of broad service and tariff policies.

Strategic planning also takes place at the international, national and regional levels, 

where the transportation networks or services of several carriers are simultaneously 

considered. National or regional transportation departments, consultants, international 

shippers and forwarders, for example, engage in this type of activity.

2. Tactical (medium-term) planning aims to determine, over a medium-term horizon, 

an efficient allocation and utilization of resources to achieve the best possible performance of 

the whole system. Typical tactical decisions concern the design of the service network and 

may include issues related to the determination of the routes and types of service to operate, 

service schedules, vehicle and traffic routing, repositioning of the fleet for use in the next 

planning period.

3. Operational (short-term) planning is performed by local management, yard masters 

and dispatchers, for example, in a highly dynamic environment where the time factor plays an 

important role and detailed representations of vehicles, facilities and activities are essential. 

Important operational decisions concern: the implementation and adjustment of schedules for 

services, crews, and maintenance activities; the routing and dispatching of vehicles and crews; 

the dynamic allocation of scarce resources.
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This classification highlights how data flows among decision-making levels and how 

policy guidelines are set. The strategic level sets the general policies and guidelines for 

decisions taken at the tactical level, which determines goals, rules and limits for operational 

and real-time decisions. The data flow follows the reverse route, each level of planning 

supplying information essential for the decision making process at a higher level. This 

hierarchical relationship emphasizes the differences in scope, data, and complexity among the 

various planning issues, prevents the formulation of a unique model for the planning of 

freight transportation systems, and calls for different model formulations that address specific 

problems at particular levels of decision making.

Strategic planning issues involve the evolution of a given transportation system and its 

response to various modifications in its environment: changes to existing infrastructure, 

construction of new facilities, evolution of the “local” or international socio-economic 

environment resulting in modifications to the patterns and volumes of production and 

consumption, variations in energy prices, changes to labour conditions, new environment- 

motivated policies and legislation, carrier mergers, introduction of new technologies, and so 

on.

The prediction of freight flows over a multimodal network is an important component 

of transportation science and has attracted significant interest in recent years. One notes, 

however, that, perhaps due to the inherent difficulties and complexities of such problems, the 

study of freight flows at the national or regional level has not yet achieved full maturity, in 

contrast to passenger transportation where the prediction of car and transit flows over 

multimodal networks has been studied extensively and several of the research results have 

been transferred to practice.
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A strategic planning tool appears as a set of models and procedures. Other than data 

manipulation (e.g., collection, fusion, updating, validation, etc.) and result analysis (e.g., cost- 

benefit, environmental impacts, energy consumption policies, etc.) tools, the main 

components are: (i) Supply modelling representing the transportation modes, infrastructure, 

carriers, services, and lines; vehicles and convoys; terminals and inter-modal facilities; 

capacities and congestion; economic, service, and performance measures and criteria, (ii) 

Demand modelling that captures the product definitions, identifies shippers and intermediaries 

and represents production, consumption, and zone-to-zone (region-to-region) distribution 

volumes, as well as mode choices, (iii) Assignment of multi-product flows (from the demand 

model) to the multi-mode network (the supply representation). This procedure simulates the 

behaviour of the transportation system and its output forms the basis for the analysis of the 

strategic plan. Therefore, it has to be both precise in reproducing current situation and general 

to produce robust analysis of future scenarios based on forecast data.

In this postgraduate work we focus on demand modelling and specifically on a class of 

models that is well studied for the prediction of interregional commodity flows, the spatial 

price equilibrium model and its variants. This class of models determines simultaneously the 

flows between producing and consuming regions, as well as the selling and buying prices that 

satisfy the spatial equilibrium conditions. Simply stated, a spatial equilibrium is reached 

provided that for all pairs of supply and demand regions with a positive commodity flow, the 

unit supply price plus the unit transportation cost is equal to the unit demand price; the sum is 

larger than this price for all pairs of regions with no exchanges. The transportation network 

used in these models is usually represented in a simplistic way (bipartite networks). These 

models deal mostly with specific products which have a particular importance, such as crude 

oil, coal or milk products.
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The main contribution of the research reported in this work is that we describe a 

network framework for the formulation, analysis and computation of solutions to problems in 

which the decision-makers on each of the two tiers of the network consider multiple criteria. 

The model we construct, brings together multicriteria decision-makers on the production side 

and on the consumption side in a network framework. In particular, the shippers, which are 

spatially separated and the consumers located at the demand markets, each face multiple 

criteria in making their production / consumption decisions. The variational inequality 

formulation of the governing equilibrium conditions is derived. Resolving this variational 

inequality problem, using known algorithms for variational inequalities, we get the product 

shipment pattern, as well as the demand price pattern in equilibrium.

1.2 Literature Review

Freight transportation has always played an important role in both regional and 

national economics by being a vital link between the supply and demand in the supply chain. 

However, in contrast to the research on urban transportation, freight transportation assignment 

modeling has received little attention because of the inherent difficulties and the complexities 

of the interactions among the components of the system.

The earlier freight transportation models achieved system optimal equilibrium using 

shortest path calculations. One of the first such multimodal predictive freight models was 

introduced by Kresge and Roberts [15]. Bronzini [5] developed a non-linear programming 

formulation based on non-linear cost and delay functions obtained by simulating different 

railway and waterway operating environments. It was a fixed demand, multicommodity, 

multimodal freight network model where freight routing results were exclusively from the 

decisions of shippers seeking the minimum cost paths.
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The first approach that took into consideration the roles of both shippers and carriers 

was by Friesz, Gottfried and Morlok [13]. They proposed a sequential network equilibrium 

model for predicting freight flows. A survey of optimization models for long-haul freight 

transportation was presented by Crainic [7].

The foundations of the equilibration of transport networks were laid by Wardrop [31], 

Beckmann, McGuire and Winsten [1] and Samuelson [26]. Dafermos and Sparrow [12] 

invented the terms user-optimized (U-O) and system-optimized (S-O) transportation networks 

to distinguish between two distinct situations in which respectively, users act unilaterally, in 

their own self-interest in selecting their routes, and in which users select routes according to 

what is optimal from a societal point of view, in that the total cost in the system is minimized. 

In case of network models with asymmetric link costs, variational inequalities (VI) theory is 

used to formulate the equilibrium conditions. VI theory was introduced by Hartman and 

Stampacchia [14] and with the contribution of Smith [29] and Dafermos [9], many 

applications have been studied using this methodology.

The topic of supply chain analysis has been the subject of a growing body of literature 

(Stadtler and Kilger [30]). Nagumey, Dong and Zhang [21] proposed a supply chain network 

equilibrium model and gave its finite-dimensional variational inequality formulation. Later, 

Nagumey and Liu [22] developed a fixed demand version of that model and also gave its 

variational inequality formulation.

Schneider [27] and Quandt [25] studied multicriteria network equilibrium models by 

identifying travel cost and travel time as criteria in route selection. These ideas were further 

developed by Nagumey [19], who proposed a multiclass, multicriteria network equilibrium 

model in which each class of travellers perceive its travel disutility associated with a route, as 

a subjective weighting of two criteria given by the travel time and the travel cost. Nagumey
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and Dong [20] developed also a multiclass, multicriteria network equilibrium model, but with 

elastic demand.

1.3 Structure of Postgraduate Work

The rest of this postgraduate work is divided into five chapters. Specifically:

In Chapter 2, we study the foundations of spatial equilibration in transport networks. 

After introducing some basic decision-making concepts, considering system - optimization 

versus user - optimization, we present network models in which the user cost on a link is no 

longer dependent solely on the flow on that link. We introduce the variational inequalities 

(VI) theory and we make the variational inequality formulations of fixed and elastic demand 

problems.

In Chapter 3, we apply the theory of spatial equilibration in transport networks to the 

field of supply chain networks. A supply chain network equilibrium model, which consists of 

distinct tiers of decision-makers, is examined. We consider the manufacturers and the retailers 

and develop their optimality conditions. Then, we focus on the consumers and form their 

equilibrium conditions. Finally, the variational inequality formulation of the equilibrium 

conditions of the entire supply chain network is given.

In Chapter 4, we focus on multiclass, multicriteria network equilibrium models. We 

examine two multiclass traffic network equilibrium models considering two criteria. In the 

first model, the demand is considered fixed and the weights associated with the criteria are 

fixed and only class-dependent. In the second model, the demand is considered elastic and the 

weights associated with the criteria are fixed, but class- and link-dependent. The variational 

inequality formulations of the governing equilibrium conditions of both models are also 

given.
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In Chapter 5, we construct a model that brings together multicriteria decision-makers 

on the production side and on the consumption side in a network framework. We describe the 

network defining the nodes and links of its structure. We first consider the shippers and 

develop their optimality conditions and then we focus on the consumers and we derive their 

equilibrium conditions. Finally, the integrated model is constructed and we derive the 

variational inequality formulation of the governing equilibrium conditions, giving also two 

numerical examples.

In Chapter 6, this postgraduate work is summarized and directions for further research 

are given.
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Chapter 2 Spatial Equilibration in Transport Networks

2.1 Introduction

Models of freight networks are closely related to transport network equilibrium 

models. Transport networks are complex, large-scale spatial systems, and come in a variety of 

forms, ranging from road networks to air, rail, and waterway networks. They provide the 

foundation for the functioning of our economies and societies through the movement of 

people, goods, and services, and allow for the connectivity of residential locations with places 

of employment, schools, leisure activities, etc. From an economic perspective, the supply in 

such network systems is represented by the underlying network topology and the cost 

characteristics, whereas the demand is represented by the users of the transportation system. 

Before making any policy decisions on transport networks one needs to identify the 

underlying behavioral mechanisms regarding route selection. For example, in the case of 

urban transport networks, travelers select their routes from an origin to a destination so as to 

minimize their own travel cost or travel time, which although optimal from a user’s 

perspective (user-optimization) may not be optimal from a societal one (system-optimization) 

where a decision-maker or central controller has control of the flows on the network and seeks 

to allocate the flows so as to minimize the total cost in the network.

This chapter is structured as follows: In Section 2.2 we introduce some basic decision 

- making concepts, considering system - optimization versus user - optimization. In Section 

2.3 we consider network models in which the user cost on a link is no longer dependent solely 

on the flow on that link. In this section we introduce the variational inequalities theory and 

we make the variational inequality formulations of fixed and elastic demand problems. 

Finally, in Section 2.4, we conclude this chapter.

11
Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 21:34:40 EEST - 3.135.182.100



2.2 Basic Decision - Making Concepts and Models

Half a century ago, Wardrop [31] explicitly recognized alternative possible behaviors 

of users of transport networks, notably, urban transport networks and stated two principles, 

which are commonly named after him:

First Principle: The journey times of all routes actually used are equal, and less than those 

which would be experienced by a single vehicle on any unused route.

Second Principle: The average journey time is minimal.

The first principle corresponds to the behavioral principle in which travelers seek to 

(unilaterally) determine their minimal costs of travel whereas the second principle 

corresponds to the behavioral principle in which the total cost in the network is minimal.

Beckmann, McGuire and Winsten [1] were the first to rigorously formulate these 

conditions mathematically, as had Samuelson [26] in the framework of spatial price 

equilibrium problems in which there were, however, no congestion effects. Specifically, 

Beckmann, McGuire, and Winsten [1] established the equivalence between the traffic network 

equilibrium conditions, which state that all used paths connecting an origin/destination (O/D) 

pair will have equal and minimal travel times (or costs) (corresponding to Wardrop’s first 

principle), and the Kuhn-Tucker [16] conditions of an appropriately constructed optimization 

problem, under a symmetry assumption on the underlying functions. Hence, in this case, the 

equilibrium link and path flows could be obtained as the solution of a mathematical 

programming problem. Their approach made the formulation, analysis, and subsequent 

computation of solutions to traffic network problems based on actual transportation networks 

realizable.

Dafermos and Sparrow [12] invented the terms user-optimized (U-O) and system- 

optimized (S-O) transportation networks to distinguish between two distinct situations in
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which, respectively, users act unilaterally, in their own self-interest, in selecting their routes, 

and in which users select routes according to what is optimal from a societal point of view, in 

that the total cost in the system is minimized. In the latter problem, marginal total costs rather 

than average costs are equilibrated. The former problem coincides with Wardrop’s first 

principle, and the latter with Wardrop’s second principle. In Table 2.1, one can distinguish the 

two behavioral principles underlying transportation networks.

User - Optimization

Equilibrium Principle:

User travel costs on 
used paths for each O/D 
pair are equalized and 
minimal.

System - Optimization

Optimality Principle:

Marginals of the total 
travel cost on used paths 
for each O/D pair are 
equalized and minimal.

Table 2.1: Distinct Behavior on Transportation Networks

The concept of “system-optimization” is also relevant to other types of “routing 

models” in transportation, as well as in communications, including those concerned with the 

routing of freight and computer messages, respectively. Dafermos and Sparrow [12] also 

provided explicit computational procedures, that is, algorithms, to compute the solutions to 

such network problems in the case where the user travel cost on a link was an increasing (in 

order to handle congestion) function of the flow on the particular link, and linear.
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In Subsections 2.2.1 and 2.2.2 we present the basic transport network models that are 

due to Beckmann, McGuire and Winsten [1] and Dafermos and Sparrow [12]. First we 

consider the system - optimized network model and then the user - optimized network model.

2.2.1 The System - Optimized Problem

To present the system - optimized network model, we consider a general network 

G=[N, L], where N denotes the set of nodes, and L the set of directed links. Let a denote a 

link of the network connecting a pair of nodes, and let p denote a path consisting of a 

sequence of links connecting an O/D pair. In transportation networks, nodes correspond to 

origins and destinations, as well as to intersections. Links, on the other hand, correspond to 

roads/streets in the case in the case of urban transportation networks and to railroad segments 

in the case of train networks. A path in its most basic setting thus, is a sequence of “roads” 

which comprise a route from an origin to a destination.

Let Pw denote the set of paths connecting the origin/destination (O/D) pair of nodes w. 

Let P denote the set of all paths in the network and assume that there are J origin/destination 

pairs of nodes in the set Ω. Let xp represent the flow on path p and let fa denote the flow on 

link a. The path flows on the network are grouped into the column vector x e , where np 

denotes the number of paths in the network. The link flows, in turn, are grouped into the 

column vector f e 5K" , where n denotes the number of links in the network.

The following conservation of flow equation must hold:

fa= ΣΧΑ’ vaeL> C2·1)
ρεΡ

where δαρ= 1, if link a is contained in path p, and 0, otherwise. Expression (2.1) states that 

the flow on a link a is equal to the sum of all the path flows on paths p that traverse link a.
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Moreover, if one lets dw denote the demand associated with O/D pair w, then one must

have that

dw = ΣΧΡ ’ Vwe Ω’ (2.2)

where xp> 0, \/p e P; that is, the sum of all the path flows between an origin/destination pair 

w must be equal to the given demand dw.

Let ca denote the user link cost associated with traversing link a, and let Cp denote the 

user cost associated with traversing the path p.

Assume that the user link cost function is given by the separable function

where ca is assumed to be an increasing function of the link flow fa in order to model the 

effect of the link flow on the cost.

The total cost on link a, denoted by ca(fa), is given by:

that is, the total cost on a link is equal to the user link cost on the link times the flow on the 

link. Here the cost is interpreted in a general sense. From a transportation engineering 

perspective, however, the cost on a link is assumed to coincide with the travel time on a link.

In the system - optimized problem, there exists a central controller who seeks to 

minimize the total cost in the network system, where the total cost is expressed as

Ca = ca(fa) , VaeL, (2.3)

Ca(fa) = Ca(fa) X fa , VaeL, (2.4)

(2.5)

where the total cost on a link is given by expression (2.4).

The system - optimization problem is, thus, given by:

Minimize Σ w (2.6)

subject to:
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(2.7)Σχρ =dw, Vwe Ω,
p*p„

/-=Σ*Α· VfleZ' (2·8)
ρεΡ

χρ > Ο , \/ρ e Ρ. (2.9)

The constraints (2.7) and (2.8), along with (2.9), are commonly referred to in network 

terminology as conservation of flow equations. In particular, they guarantee that the flow in 

the network, that is, the users don’t “get lost”.

The total cost on a path, denoted by Cp, is the user cost on a path times the flow on a 

path, that is:

Cp = CpXp, Vp e P, (2.10)

Where the user cost on a path, Cp, is given by the sum of the user costs on the links that 

comprise the path, that is:

cP=ZcAfJK- (2")
aeL

In view of (2.8), one may express the cost on a path p as a function of the path flow 

variables and, hence, an alternative version of the above system - optimization problem can 

be stated in path flow variables only, where one has now the problem:

Minimize ^Cp(x)xp (2.12)
P*p

subject to constraints (2.7) and (2.9).

System - Optimality Conditions

Under the assumption of increasing user link cost functions, the objective function in 

the System - Optimized problem is convex, and the feasible set consisting of the linear 

constraints is also convex. Therefore, the optimality conditions, that is, the Kuhn - Tucker

16
Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 21:34:40 EEST - 3.135.182.100



conditions are: For each origin/destination pair weQ, and each pathpePw, the flow pattern* 

and (link flow pattern f), satisfying (2.7) - (2.9) must satisfy:

r

Pw , if X/P* 0

(2.13)

^ > pw , if xp= 0,

where C' denotes the marginal of the total cost on path p, given by:

(2.14)

and in (2.13) it is evaluated at the solution.

As we can see, in the System - Optimized problem, according to the optimality 

conditions (2.13), it is the marginal of the total cost on each used path connecting an 

origin/destination pair which is equalized and minimal. Indeed, conditions (2.13) state that a 

system - optimized flow pattern is such that for each origin/destination pair the incurred 

marginals of the total cost on all used paths are equal and minimal (Table 2.1).

2.2.2 The User - Optimized Problem

At this subsection we describe the user - optimized network problem, also commonly 

referred to in the transportation literature as the traffic assignment problem or the traffic 

network equilibrium problem. Again, as in the system - optimized problem of the previous 

subsection, the network G = [N,L], the demands associated with the origin/destination pairs, 

as well as the user link cost functions are assumed as given. As we have already stated, user - 

optimization follows Wardrop’s first principle.
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Network Equilibrium Conditions

In the user - optimized problem, one seeks to determine the path flow pattern x* (and 

link flow pattern f) which satisfies the conservation of flow equations (2.7), (2.8), and the 

nonnegativity assumption on the path flows (2.9), and which also satisfies the network 

equilibrium conditions given by the following statement:

For each origin/destination pair we Ω and each path pePw:

( =XW, if xp>0

CP <

> Xw , if x = 0.

(2.15)

Hence, in the user - optimization problem there is no explicit optimization concept, 

since now users of the network system act independently, in a noncooperative manner, until 

they can’t improve on their situations unilaterally and, thus, an equilibrium is achieved, 

governed by the above equilibrium conditions. Indeed, conditions (2.15) are simply a 

restatement of Wardrop’s first principle mathematically and mean that only those paths 

connecting an origin/destination pair will be used which have equal and minimal user costs. 

In (2.15) the minimal cost for a given origin/destination pair is denoted by Xw and its value is 

obtained once the equilibrium flow pattern is determined. Otherwise, a user of the network 

could improve upon his situation by switching to a path with lower cost. User - optimization 

represents decentralized decision - making, whereas system - optimization represents 

centralized decision - making (Table 2.1).

In order to obtain a solution to the above problem, Beckmann, McGuire, and Winsten 

[1] established that the solution to the equilibrium problem, in the case of user link cost
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functions in which the cost on a link only depends on the flow on that link could be obtained 

by solving the following optimization problem:

Minimize ΣΓ ca(y)dy (2.16)
aeL

subject to:

Yx =dw, VweQ, (2.17)

fa = ΣχΛρ’ VfleL’ (2.18)
peP

xp>0 ,VpeP. (2.19)

We observe that the conservation of flow equations are identical in both the user - 

optimized network problem (see (2.17) - (2.19)) and the system - optimized problem (see 

(2.7) - (2.9)). The behavior of the individual decision - makers termed “users”, however, is 

different. Users of the network system, which generate the flow on the network now act 

independently, and aren’t controlled by a centralized controller.

The objective function given by (2.16) is simply a device constructed to obtain a 

solution using general purpose convex programming algorithms. It doesn’t possess the 

economic meaning of the objective function encountered in the system - optimization 

problem given by (2.6), equivalently, by (2.12).

2.3 Models with Asymmetric Link Costs

In the previous section we presented network models where we assumed separable 

user link cost functions. In this section, we consider network models in which the user cost on 

a link is no longer dependent solely on the flow on that link.
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Hence, we assume that user link cost functions are now of a general form, that is, the 

cost on a link may depend not only on the flow on the link but on other link flows on the

network:

Ca = Ca(0 > VfleZ,. (2.20)

In the case where the symmetry assumption exists, that is,

links a,beL, one can still reformulate the solution to the network equilibrium problem 

satisfying equilibrium conditions (2.15) as the solution to an optimization problem, although 

again, with an objective function that is artificial and simply a mathematical device. However, 

when the symmetry assumption is no longer satisfied, such an optimization reformulation no 

longer exists and one must appeal to variational inequality theory. Models of traffic networks 

with asymmetric cost functions are important since they allow for the formulation, qualitative 

analysis, and, ultimately, solution to problems in which the cost on a link may depend on the 

flow on another link in a different way than the cost on the other link depends on that link’s 

flow. Such a generalization allows for the more realistic treatment of intersections, two-way 

links, multiple modes of transport as well as distinct classes of users of the network.

The system - optimization problem in the case of nonseparable user link cost 

functions becomes:

subject to (2.7) - (2.9), where ca(f) = ca(f)xfa, Vae L .

The system - optimality conditions remain as in (2.13), but now the marginal of the 

total cost on a path becomes, in this more general case:

Minimize £ce(/), (2.21)

(2.22)
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The user - optimization problem in turn, in the case where the user link cost functions 

are no longer symmetric, can’t be solved using standard optimization algorithms. We 

emphasize again, that such general cost functions are very important from an application 

standpoint since they allow for asymmetric interactions on the network. For example, 

allowing for asymmetric cost functions, permits one to handle the situation when the flow on 

a particular link affects the cost on another link in a different way than the cost on the 

particular link is affected by the flow on the other link.

In this section we make an introduction to the theory of finite - dimensional 

variational inequalities and then we present variational inequality formulations of both fixed 

demand and elastic demand traffic network equilibrium problems. In these formulations we 

provide the variational inequality of the network equilibrium conditions in path flows, as well 

as in link flows.

2.3.1 The Variational Inequality Problem

Variational inequalities were introduced by Hartman and Stampacchia [14], mainly for 

the study of problems arising in the field of mechanics. The research focused on infinite - 

dimensional variational inequalities, rather than on finite - dimensional variational 

inequalities, which are the kind utilized in this postgraduate work. Smith [29] presented a 

formulation of the equilibrium conditions of the traffic network equilibrium problem that 

were then identified as a finite - dimensional variational inequality by Dafermos [9]. From 

this connection, much research has been conducted on such variational inequality problems 

and many applications, ranging from oligopolistic market equilibrium problems to general 

economic and financial equilibrium problems, have been studied, both qualitatively and 

computationally, using this methodology.
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Variational inequality theory is a powerful tool for the study of many equilibrium 

problems, since the variational inequality problem contains, as special cases, important 

problem classes which are widely utilized in economics and in engineering, such as systems 

of nonlinear equations, optimization problems and complementarity problems. In this 

subsection, we first present the formal definition of a variational inequality problem and then 

the relationship between the variational inequality problem and optimization problems.

The finite - dimensional variational inequality problem, VI (F,K), is to determine a 

vector X* e K such that

(F(X'),X-X*)>0, MX e K, (2.23)

where F is a given continuous function from K to RN, K is a given closed convex set and 

denotes the inner product in RN.

Variational inequality (2.23) is referred to as being in standard form. Hence, for a 

given equilibrium problem, one must determine the function F that enters the variational 

inequality problem, the vector of variables X, as well as the feasible set K.

The variational inequality problem has a geometric interpretation. In particular, it 

states that F(X*) is “orthogonal” to the feasible set K at the point X*. In Figure 2.1, the 

geometric interpretation is provided.
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Figure 2.1: Geometric Interpretation of VI (F,K)

In order to emphasize the relationship between the variational inequality problem and 

optimization problems, we now present without proofs, the following results:

Proposition 2.1

LetX* be the solution to the following optimization problem:

Minimize f(X) (2.24)

subject to:

XeK,

where f is a continuously differentiable function and K is closed and convex. Then X* is a 

solution of the variational inequality problem:

(vf(X'),X-X*)> 0, VXeK, (2.25)

where Vf(X*) denotes the gradient of f with respect to X with components:
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mxf = 'of(x') mx') mx')'
v dX, ’ cLT2 dXN ,

Proposition 2.2

a|e %
Iff(X) is a convex function and X is a solution to VI (Vf K) given by (2.25), then X 

is a solution to the optimization problem (2.24).

In the special case, when K=RN, then the above optimization problem (2.24) is an 

unconstrained problem.

On the other hand, if a certain symmetry condition holds, the variational inequality 

problem can also be reformulated as an optimization problem.

Theorem 2.1

Assume that F(X) is continuously differentiable on K and that the Jacobian matrix:

VF{X) =

dF{ 8FX λ
3Xx dXN

5Fn sfn

dX, axj

(2.26)

is symmetric and positive semidefinite, so that F is convex. Then, there exists a real - valued 

function f: K i-> R satisfying

V/ (X) = F (X) (2.27)

with X* the solution of VI (F, K) also being the solution of the optimization problem (2.24).

Hence, one can see that the variational inequality problem encompasses the 

optimization problem and that the variational inequality problem can be reformulated as a
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convex optimization problem only when the symmetry and the positive semidefmiteness 

conditions hold.

Therefore, the variational inequality problem is a more general problem in that it can

also handle a function F(X) with an asymmetric Jacobian, that is, when in (2.26):
dE dF 
dXj Φ dXt '

Hence, the appeal of the use of the variational inequality formulation and associated theory, as 

it can adequately handle asymmetric cost functions as well as multiple modes and multiple 

classes on the networks realistically.

Another result that demonstrates how a class of constrained optimization problems 

over specific types of constraints can be formulated as a variational inequality problem, is 

presented at Bertsekas and Tsitsiklis [2] as follows:

Consider the convex constrained optimization problem:

m

Minimize
1=1

(2.28)

subject to:

a]X <b .
J J ■ j= 1,···, r (2.29)

XjeKj, i=1,...,»j,

where f \ Rn‘ h-> R is a convex differentiable function and aj is a row vector of coefficients 

corresponding to the y-th constraint and X is vector consisting of the vectors {Xi, Xm}.

Then, this problem is equivalent to the variational inequality problem of finding X* e Kt and

Uj > 0, such that

Σ +Σ (bj -a]x*)x (uj ~u])~ o.
j=i

(2.30)

VX e K, Uj> 0, vy,
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where w* is the Lagrange multiplier in the solution associated with inequality constraint j in 

the minimization problem. The coefficient αβ corresponds to the zth component of the vector

ar

2.3.2 Variational Inequality Formulations of Fixed Demand Problems

In Subsection 2.2.2 we described the user - optimized network problem. As we stated 

there, in the case of the user - optimization problem, one seeks to determine the path flow 

pattern x* (and link flow pattern f) which satisfies equations (2.7), (2.8), (2.9) and (2.15). In 

these problems, dw, the demand associated with origin/destination pair w, is considered to be 

given and fixed. In this subsection we present without proof, the variational inequality 

formulation of network equilibrium with fixed demands, in path flows, as well as in link 

flows.

Theorem 2.2 Variational Inequality Formulation of Network Equilibrium with Fixed 

Demands - Path Flow Version

A vector x* e K] is a network equilibrium path flow pattern, that is, it satisfies 

equilibrium conditions (2.15) if and only if it satisfies the variational inequality problem:

ΣΣ Cp{ **)χ(χ-χ*)>0, VxeK', (2.31)
wgQ pePw

or, in vector form:

(C(x'\x-x')> 0, \/xeK1 (2.32)

where C is the np-dimensional column vector of path user costs and K1 is defined as: 

K1 = {x>0, such that (2.17) holds}.
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Theorem 2.3 Variational Inequality Formulation of Network Equilibrium with Fixed

Demands - Link Flow Version

A vector /* e K2 is a network equilibrium link flow pattern if and only if it satisfies 

the variational inequality problem:

Zc.(/')x(/«-/.'>20' v/£^· <2·33)
aeL

or, in vector form:

(c(/‘),/-/*)> 0, V/ e K2, (2.34)

where c is the n-dimensional column vector of link user costs and K2 is defined as: K2 = (f \ 

there exists ax>0 and satisfying (2.17) and (2.18)}.

We observe that we may put variational inequality (2.32) into standard form (2.23) by 

letting F=C, X=x and K=K'. Also, we may put variational inequality (2.34) into standard 

form, where now F=c,X=f and K=K2.

The presentation of the variational inequality formulations of the fixed demand models 

given above was in the context of single mode (or single class) transport networks. We 

emphasize, however, that in view of the generality of the functions considered (see equation 

(2.20)), the modeling framework described above can also be adapted to 

multimodal/multiclass problems in which there are multiple modes of transport available 

and/or multiple classes of users, each of whom perceives the cost on the links of the network 

in an individual manner. Dafermos [8] demonstrated how, through a formal model, a 

multiclass traffic network could be cast into a single-class network through the construction of 

an expanded network consisting of as many copies of the original network as there were 

classes.
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2.3.3 Variational Inequality Formulations of Elastic Demand Problems

In this subsection we describe a general network equilibrium model with demands, 

which are no longer fixed, but are now variables and we present without proof, the variational 

inequality formulations of the network equilibrium conditions in this case of elastic demand.

Specifically, it is assumed that one has associated with each origin/destination pair w 

in the network a travel disutility function (inverse demand function) Aw, where here the 

general case is considered in which the disutility may depend upon the entire vector of 

demands, which as we stated, are variables, that is,

K = K(d), Vwe Ω, (2.35)

where d is the ./-dimensional column vector of the demands.

The notation, otherwise, is as described earlier in this chapter, except that here we also 

consider user link cost functions which are general, that is, of the form of equation (2.20). The 

conservation of flow equations are given by:

fa Σ X ifap > Va <= L, (2.36)
peP

J = 7 x.w p ' Vwe Ω, (2.37)

IV o \/p e P. (2.38)

Hence, in the elastic demand case, the demands in equation (2.37) are now variables 

and no longer given, as was the case for the fixed demand expression in (2.2).

In the elastic demand case, the network equilibrium conditions take on the following 

form: For every origin/destination pair w e Ω and each path p e P , a vector of path flows

and demands {x, d*) satisfying (2.37) and (2.38) (which induces a link flow pattern/ through 

(2.36)) is a network equilibrium pattern if it satisfies:
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r = Xw(d*) , if x*>0

CP(x) <

> kw(d ), if xp=0.

(2.39)

Equilibrium conditions (2.39) state that the costs on used paths for each 

origin/destination pair are equal and minimal and equal to the disutility associated with that 

origin/destination pair. Costs on unutilized paths can exceed the disutility. Hence, this model 

allows one to ascertain the attractiveness of different origin/destination pairs based on the 

ultimate equilibrium demand associated with the specific origin/destination pairs.

Also, as described in the case of fixed demands, the elastic demand traffic network 

model can be adapted to multimodal/multiclass problems. In that case, in equilibrium, the 

used paths for a given mode and origin/destination pair must have minimal and equal user 

path costs, which in turn, must be equal to the travel disutility for that mode and 

origin/destination pair at the equilibrium demand.

In the next two theorems, both the path flow version and the link flow version of the 

variational inequality formulations of the network equilibrium conditions (2.39) are presented.

Theorem 2.4 Variational Inequality Formulation of Network Equilibrium with Elastic 

Demands - Path Flow Version

A vector (x*,d*) e K3 is a network equilibrium path flow pattern, that is, it satisfies 

equilibrium conditions (2.39) if and only if it satisfies the variational inequality problem: 

ΣΣαΧχ>(χ-χ')-Σλ.Ο')*(<1.-<ΐΙ)ϊΟ, V(*,</)eK\ (2.40)
weQ pePw WGΩ

or, in vector form:

(f(x),x-x)-(X{d*),d-d*)> 0, \/{x,d)tK3, (2.41)
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where λ is the J-dimensional vector of disutilities and K3 is defined as: K3 = {x>0, such that 

(2.39) holds}.

Theorem 2.5 Variational Inequality Formulation of Network Equilibrium with Elastic 

Demands - Link Flow Version

A vector (f\d*) e K4 is a network equilibrium link flow pattern if and only if it 

satisfies the variational inequality problem:

V(/,rf)sr, (2.42)
aeL wgQ

or, in vector form:

{c(f ),f-f)-{X(<r\d-<C)>0. V(f,d)eK‘ (2.43)

where K4={(f, d), such that there exists ax>0 satisfying (2.36) and (2.38)}.

2.4 Conclusions

In this chapter, we have presented the foundations of the equilibration of transport 

networks and we have introduced the variational inequality theory. Finite - dimensional 

variational inequality theory permits formulation and computation of network equilibrium 

models in which the cost on a link may depend on the flow on another link in a different way 

than the cost on the other link depends on that link’s flow. Variational inequality formulations 

of both fixed demand and elastic demand traffic network equilibrium problems were also 

presented.

As demonstrated by Dafermos and Nagumey [11] in the context of a single 

commodity, and subsequently, by Dafermos [10] in the case of multiple commodities, spatial 

price equilibrium problems are isomorphic to traffic network equilibrium problems over
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appropriately constructed networks. Hence, the discussed in this chapter theory of traffic 

networks can be transferred to the study of commodity flows in the case of spatial price 

equilibrium in which the equilibrium production, consumption, and commodity trade flows 

are to be determined satisfying the equilibrium conditions that there will be a positive flow (in 

equilibrium) of the commodity between a pair of supply and demand markets if the supply 

price at the supply market plus the unit cost of transportation is equal to the demand price at 

the demand market.
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Chapter 3 Multitiered Network Equilibrium Modeling

3.1 Introduction

In this chapter, we will apply the theory of spatial equilibration in transport networks, 

provided in Chapter 2, to the field of supply chain networks. Supply chain networks are 

considered to be multitiered, since they consist of distinct tiers of decision-makers, whose 

behavior affects the variables on the networks in the form of flows, as well as prices. As we 

have already noted, spatial price equilibrium problems are isomorphic to traffic network 

equilibrium problems over appropriately constructed networks. Hence, the development of an 

equilibrium model of a competitive supply chain network has attracted researchers’ interest.

The topic of supply chain analysis involves manufacturing, transportation, logistics, as 

well as retailing and marketing. It has been the subject of a growing body of literature 

(Stadtler and Kilger [30]), with the associated research being both conceptual in nature 

(Mentzer [17], Bovet [3]), due to the complexity of the problem and the numerous agents such 

as manufacturers, retailers and consumers involved in the transactions, as well as analytical 

(Slats et al. [28], Bramel and Simchi-Levi [4], Miller [18]). Nagumey, Dong and Zhang [21] 

proposed a supply chain network equilibrium model and gave its finite-dimensional 

variational inequality formulation. In this chapter, we study a fixed demand version of that 

model, that was developed by Nagumey and Liu [22],

This chapter is organized as follows: In Section 3.2, we describe the network defining 

the nodes and links of its structure. In Section 3.3, we consider the manufacturers and develop 

their optimality conditions and in Section 3.4, we examine the behavior of the retailers and 

give their optimality conditions. In Section 3.5, we focus on the consumers and form their 

equilibrium conditions. In Section 3.6, the variational inequality formulation of the
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equilibrium conditions of the supply chain is given and finally, in Section 3.7, we conclude 

this chapter.

3.2 The Supply Chain Network Model

The supply chain network structure, proposed by Nagumey and Liu [22], is depicted 

in Figure 3.1.

Manufacturers 

Retailers 

Demand Markets

Figure 3.1: The Network Structure of the Supply Chain

Specifically, there are considered m manufacturers, who are involved in the production 

of a product, which can then be purchased by n retailers, who in turn, make the product 

available to consumers located at o demand markets. A typical manufacturer is denoted by i, a 

typical retailer by j and a typical demand market by k. In Figure 3.1, the manufacturing firms 

are located at the top tier of nodes in the network, the retailers are located at the middle tier, 

whereas the demand markets are located at the bottom tier. The links in the supply chain 

network denote transportation / transaction links.
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In this model, manufacturers are assumed to be involved in the production of a 

homogeneous product, which is then shipped to the retailers. Manufacturers obtain a price for 

the product (which is endogenous) and seek to determine their optimal production and 

shipment quantities, given the production costs, as well as the transaction costs associated 

with conducting business with the different retailers. Retailers, in turn, must agree with the 

manufacturers as to the volume of shipments, since they are faced with the handling cost 

associated with having the product in their retail outlet. In addition, they seek to maximize 

their profits, with the price that the consumers are willing to pay for the product being 

endogenous. Consumers take into account the prices charged by the retailers and the unit 

transaction costs incurred to obtain the product, in making their consumption decisions. It is 

assumed that the demand for the product at each demand market, is fixed and known.

In the following four sections, it is first described the behavior of the manufacturers 

and the retailers. Then, the behavior of the consumers at the demand markets is discussed and 

the equilibrium conditions for the supply chain network are stated. Finally, the finite­

dimensional variational inequality, governing the equilibrium, is given. The equilibrium 

solution is denoted by

3.3 The Behavior of the Manufacturers and their Optimality Conditions

In this section, the focus is on the behavior of the manufacturers and their optimality 

conditions.

Let qt denote the nonnegative production output of the product by manufacturer i. The 

production outputs of all manufacturers are grouped into the column vector q&R™. It is
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assumed that each manufacturer i, is faced with a production cost function f., which can 

depend in general, on the entire vector of production outputs, that is,

vt. (3.1)

A manufacturer may ship the product to the retailers, with the amount of the product 

shipped (or transacted) between manufacturer i and retailer j denoted by qtj. A transaction

cost denoted by c.. is associated with each manufacturer and retailer pair (i, j). The 

transaction cost includes the cost of shipping the product. The product shipments between the 

manufacturers and the retailers are grouped into the m«-dimensional column vector Q]. The 

transaction cost between a manufacturer and a retailer is given by:

cii=cM^' v/,./. (3·2)

Manufacturer Vs transactions with retailers are depicted in Figure 3.2.

Figure 3.2: The Network Structure of Manufacturer i’s Transactions with Retailers

The quantity produced by manufacturer i must satisfy the following conservation of 

flow equation:
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(3.3)4, = Σ^ >
7=1

which states that the quantity produced by manufacturer i is equal to the sum of the quantities 

shipped from the manufacturer to all retailers.

The total costs incurred by a manufacturer i, thus, are equal to the sum of his 

production cost plus the total transaction costs. His revenue, in turn, is equal to the price that 

the manufacturer charges for the product (and the retailers are willing to pay) times the total 

quantity obtained / purchased of the product from the manufacturer by all the retail outlets. 

Since equation (3.3) holds, the production cost function f: can be reexpressed as a function of

the flows Ql, that is,

(3.4)

Let p\j denote the price charged for the product by manufacturer / in transacting with retailer

j. This price is an endogenous variable and will be determined once the entire supply chain 

network equilibrium model is solved.

Hence, assuming that the manufacturers are profit - maximizers, the optimization 

problem faced by manufacturer i is:

Maximize idPijqj-fl(Ql)-'Zc„(qu), (3-5)
7=1 7=1

subject to: qtj > 0, for all j.

It is assumed that the manufacturers compete in a noncooperative manner in the sense 

of Cournot [6] and Nash [23], [24], seeking to determine their own optimal production and 

shipment quantities. According to what we have examined in Chapter 2, if the production cost 

functions and the transaction cost functions for each manufacturer are continuously
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differentiable and convex, then the optimality conditions for all manufacturers 

simultaneously, can be expressed as the following variational inequality:

Determine Q]* e R”n, satisfying

ΣΣ
<=i J=i

mo"), ■
3% ~P'“

:[«7s-?-]>0, VQ'eK (3.6)

The optimality conditions as expressed by (3.6) have an economic interpretation, 

which is that a manufacturer will ship a positive amount of the product to a retailer (and the 

flow on the corresponding link will be positive) if the price that the retailer is willing to pay 

for the product is precisely equal to the manufacturer’s marginal production and transaction 

costs associated with that retailer. If the manufacturer’s marginal production and transaction 

costs exceed what the retailer is willing to pay for the product, then the flow on the link will 

be zero.

3.4 The Behavior of the Retailers and their Optimality Conditions

The retailers are involved in transactions both with the manufacturers since they wish 

to obtain the product for their retail outlets, as well as with the consumers, who are the 

ultimate purchasers of the product. Hence, the network structure of retailer /s transactions is 

as depicted in Figure 3.3. Thus, a retailer conducts transactions both with the manufacturers as 

well as with the consumers at the demand markets.

A retailer j is faced with a handling cost, which may include, for example, the display 

and storage cost associated with the product. This cost is denoted by c. and, in the simplest

case, it is a function of , that is, the handling cost of a retailer is a function of how

much of the product he has obtained from the various manufacturers. However, for the sake of
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generality, it is allowed the function to depend also on the amounts of the product held by 

other retailers and, therefore, it is

Cj=Cj(Q') V/. (3.7)

The amount of product shipped (or transacted) between retailer j and demand market k 

is denoted by qjk. The product shipments between the retailers and the demand markets are

grouped into the «ο-dimensional column vector Q2. The retailers associate a price with the 

product at their retail outlet, which is denoted by p*2j for retailer j. This price will also be

determined endogenously after the model is solved.

Hence, assuming that the retailers are also profit - maximizers, the optimization 

problem faced by retailer j is given by:

o m

Maximize £p\flJk -c p^q,, (3.8)
k=1 i=l

subject to:
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(3-9)
4=1 ί=1

and the nonnegativity constraints: qtj > 0 and qjk > 0, for all i,k.

Objective function (3.8) expresses that the difference between the revenues minus the 

handling cost and the payout to the manufacturers should be maximized. Constraint (3.9) 

simply expresses that consumers cannot purchase more from a retailer than is held in stock.

It is assumed that the retailers also compete in a noncooperative manner, seeking to 

determine not only the optimal amounts purchased by the consumers from their specific retail 

outlet but also, the amount that they wish to obtain from the manufacturers. In equilibrium, all 

the shipments between the tiers of network agents will have to coincide. Assuming that the 

handling cost for each retailer is continuous and convex, the optimality conditions for all the 

retailers coincide with the solution of the variational inequality:

Determine (Q'’,Q2‘,/) e R’™+no+n f satisfying

ΣΣ
;=i j=\

dcXQ'*) . .
■+Puj-rj x h· - ] ■+ Σ Σ[-plj + r'j]x W - Qjk ]

j=1 4=1

j=1 L 1=1 4=1

(3.10)

x[^-r;]ao v(e',Q\r)eK

where the term γ is the Lagrange multiplier associated with constraint (3.9) for retailer j and

γ the «-dimensional column vector of all the multipliers.

Retailers’ optimality conditions, as expressed by (3.10), have also an economic 

interpretation. From the second term in inequality (3.10), we have that, if consumers at 

demand market k purchase the product from a particular retailer j, that is, if the qjk is positive,

then the price charged by retailer j, p'2j, is precisely equal to γ’, which, from the third term in

the inequality, serves as the price to clear the market from retailer j. Also, from the second
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term, we see that if no product is sold by a particular retailer, then the price associated with 

holding the product can exceed the price charged to the consumers. Furthermore, from the 

first term in inequality (3.10), we can conclude that, if a manufacturer transacts with a retailer 

resulting in a positive flow of the product between the two, then the price γ* is precisely

equal to the retailer f s payment to the manufacturer, p*Uj, plus its marginal cost of handling 

the product.

3.5 The Consumers at the Demand Markets and the Equilibrium 

Conditions

In this section, the behavior of the consumers located at the demand markets is 

examined and their equilibrium conditions are derived.

The consumers take into account the prices charged by the retailers and the transaction 

costs incurred to obtain the product, in making their consumption decisions. The transaction 

cost associated with obtaining the product by consumers at demand market k from retailer j is 

denoted by cjk. This transaction cost is assumed to be continuous, positive and of the general

form:

cjk=cjk{Q2) Vj,k (3.11)

where, as it has already been stated, Q2 is the «ο-dimensional column vector of product flows 

between the retailers and the demand markets.

In Figure 3.4, the network of transactions between the retailers and the consumers at 

demand market k is depicted. The n retailers and demand market k are represented by nodes 

and the transactions by links, as previously.
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Retailers

Figure 3.4: The Network Structure of Consumers’ Transactions at Demand Market k

In this model, it is assumed that the demand for the product at each demand market is 

fixed and known. Specifically, the demand for the product at demand market k is denoted by 

dk and all the demands are grouped into the o-dimensional column vector d. The following 

conservation of flow equation must hold:

<*.=£»,. * = 1.....0 (3.12)
7=1

Let now p\k denote the price that the consumers pay for the product at demand

market k. The consumers take the price charged by the retailers for the product {p2j) plus the

transaction cost associated with obtaining the product (cjk (Q2)), in making their consumption

decisions. According to what we have examined in Chapter 2, the equilibrium conditions for 

consumers at demand market k take the form:

For each retailer j:
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r
=Pu , ^ q]k >0

(3.13)

^ Pw > if 4y* = 0.

Conditions (3.13) state that in equilibrium, if the consumers at demand market k 

purchase the product from retailer j, then the price the consumers pay is exactly equal to the 

price charged by the retailer plus the transaction cost. However, if the sum of the price 

charged by the retailer and the transaction cost exceeds the price that the consumers are 

willing to pay at the demand market, there will be no transaction between this retailer / 

demand market pair.

Conditions (3.13), that in equilibrium must hold simultaneously for all demand 

markets, can be expressed as the following variational inequality:

Determine Q2* e K], such that

where K' = {Q2 \Q2 s Rn+° and (3.12) holds}.

3.6 Variational Inequality Formulation of the Equilibrium Conditions of 

the Supply Chain

In equilibrium, the optimality conditions of all the manufacturers, the optimality 

conditions of all the retailers and the equilibrium conditions for all the demand markets must 

be simultaneously satisfied, so that no decision-maker has any incentive to alter his 

transactions.

η o

(3.14)
7=1 Jfc=l
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The shipments of the product that the manufacturers ship to the retailers must be equal 

to the shipments that the retailers accept from the manufacturers. In addition, the amounts of 

the product purchased by the consumers at the demand markets must be equal to the amounts 

sold by the retailers. Furthermore, the equilibrium shipment and price pattern in the supply 

chain must satisfy the sum of inequalities (3.6), (3.10) and (3.14).

The summation of inequalities (3.6), (3.10) and (3.14) yields, after algebraic 

simplification, the following variational inequality:

Determine (Q'*, Q2*, y*) e K2, satisfying

ΣΣ
.=1 y=l

dMQ'') , dcij^hj) , ^(g1*) γ·

d<lj d(lij dchj

+Σ Σ I?# (Q2' ) ·+ r'j ]x h* - <i\ ]+Σ
7=1 k=I

V(Q\Q\Y)eK2

Σΐ~Σ^
7=1 L i=l k=\

X [f7 — fy ] — °> (3-15)

where K1 Ξ {{Q\Q2,γ) \ {Q\Q2,γ) e <m+no+" and (3.12) holds}.

The above inequality is the variational inequality formulation of the governing 

equilibrium conditions of the entire supply chain network.

3.7 Conclusions

In this chapter, we studied multitiered networks which consist of distinct tiers of 

decision-makers, whose behavior affects the variables on the networks in the form of flows, 

as well as prices. We applied the theory of spatial equilibration in transport networks to the 

field of supply chain networks.

The supply chain network equilibrium model that was studied, assumed that the 

demand for the product at each demand market was fixed and known. It also assumed
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imperfect competition between manufacturers and between retailers. The production cost 

associated with a manufacturer could depend not only on the amount that he produced, but 

also on the amounts produced by the other manufacturers. Respectively, the handling cost 

associated with a retailer could depend not only on the amount that he handled, but also on the 

amounts handled by the other retailers.

In this chapter, we saw how the variational inequalities theory is used to formulate the 

governing equilibrium conditions of an entire supply chain network.
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Chapter 4 Multiclass, Multicriteria Network Equilibrium

Modeling

4.1 Introduction

In this chapter we focus on multiclass, multicriteria network equilibrium models. The 

term “multiclass” means that we allow in our models, more than one class of decision-makers 

in the network. The term “multicriteria” captures the multiplicity of criteria that decision­

makers are often faced with in making their choices. Criteria which can be considered as part 

of the decision-making process include cost minimization, time minimization, profit 

maximization etc. Each class of decision-maker is allowed to have weights associated with 

the criteria under consideration. Hence, the models that we present in this chapter are 

important since they allow for the individual weighting of distinct criteria associated with 

decision-making on networks and especially transport networks. Moreover, as we have 

already seen in this work, spatial price equilibrium problems are isomorphic to traffic network 

equilibrium problems over appropriately constructed networks. For this reason, the theory of 

multiclass, multicriteria traffic networks can be transferred to the study of the freight network 

model that we will construct later in this postgraduate work.

This chapter is organized as follows: In Section 4.2 we present a bicriteria fixed 

demand traffic network equilibrium model in which the weights are fixed and only class- 

dependent and in Section 4.3 we formulate the governing traffic network equilibrium 

conditions of this model as a finite - dimensional variational inequality problem. In Section 

4.4 we present an elastic demand traffic network problem with two criteria and weights which 

are fixed but class- and link-dependent. In Section 4.5 we give the finite - dimensional
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variational inequality formulation of the above problem. Finally, in Section 4.6, we conclude 

this chapter.

4.2 The Fixed Demand, Multiclass, Multicriteria Network Equilibrium 

Model

In this section, we present the multiclass, multicriteria traffic network equilibrium 

model that was developed by Nagumey [19].

We consider a general network G=[N, LJ, where N denotes the set of nodes in the 

network and L the set of directed links. Let a denote a link of the network connecting a pair of 

nodes and let p denote a path, assumed to be acyclic, consisting of a sequence of links 

connecting an origin/destination (O/D) pair of nodes. Let W denote the set of O/D pairs. The 

set of paths connecting the O/D pair w is denoted by Pw and the entire set of paths in the 

network by P. There are n links in the network and np paths.

We assume that there are k classes of travellers in the network with a typical class 

denoted by i. Let fla denote the flow of class i on link a and let x' denote the nonnegative

flow of class i on path p. The relationship between the link flows by class and the path flows 

is:

Λ' = Σ*Ά.. Vi’a (41>pzP

where δ - 1, if link a is contained in path p, and 0, otherwise. Hence, the flow of a class of

traveller on a link is equal to the sum of the flows of the class on the paths that contain that 

link.

Let d'w denote the demand of class i for O/D pair w, where one must have that
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Vz, w (4.2)< = Σ 4 ·
that is, the travel demand of a class of traveller for an O/D pair is equal to the sum of the 

flows of that class on paths that connect the O/D pair and is assumed to be fixed and given.

In addition, let fa denote the total flow on link a, where

/.=ΣΛ· Vasi· (43>i=l

We group the class link flows into the Avt-dimensional column vector f with 

components: /n',...,yj*,„.,//} and the total link flows: into the n-

dimensional column vector f Also, we group the class path flows into the ^-dimensional 

column vector x with components: {x'...,xk }. Further, we define the feasible set
Pi Pnp

K = {£ 13x > 0, and satisfying (4.1) and (4.2)}.

We are now ready to describe the disutility functions associated with the links. We 

assume, as given, a travel time function ta associated with each link a in the network, where

ta=ta{f), \/a e L (4.4)

and a travel cost function ca associated with each link a, that is

ca=cAf) VaeL (4.5)

with both these functions assumed to be continuous. We notice that here we allow for the 

general situation in which both the travel time and the travel cost can depend on the entire link 

flow pattern.

We associate with each class of traveller i, the weights w[ and W2, which are assumed 

to be nonnegative, but not both equal to zero, where w\ denotes the weight associated with
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class /’s travel time and w' denotes the weight associated with its travel cost. We then 

construct the disutility of class i associated with link a, and denoted by u'a, as:

u‘a = w\ta + W2ca, \/i,a. (4.6)

From all the above, we may write

<=<(/), Vi, a (4.7)

and group the link disutilities into the ^«-dimensional column vector u with components:

( \ 1 k k\(«1 ,..., Un ,..., M[ ,···,«„/·

A possible weighting scheme would be w[ = ψ' and w‘2 ~(\-ψι) with ψ' lying in the 

range from zero to one with ψ1 =1 denoting a class of traveller which is only concerned with 

the travel time, and with ψ' =0 denoting a class of traveller only concerned about travel cost. 

Let u‘p denote the travel disutility of class i associated with travelling on path p, where

Κ=Σ<(/Κ· νί·ρ <4·8)
aeL

Hence, the disutility, as perceived by a class, associated with travelling on a path is its 

weighting of the travel times and the travel costs on links which comprise the path.

Here, we have finished the development of the bicriteria, fixed demand traffic network 

equilibrium model. In the next section, we formulate the governing traffic network 

equilibrium conditions and give their variational inequality formulation.
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4.3 Variational Inequality Formulation of the Fixed Demand, Multiclass,

Multicriteria Network Equilibrium Model

The traffic network equilibrium conditions, following the theory provided in the 

previous chapters of this work, in the generalized context of the multiclass, multicriteria 

traffic network equilibrium problem, take on the form:

For each class i, for all O/D pairs w, and for all paths p^Pw, the flow pattern x is

said to be in equilibrium if the following condition holds:

r =a;, if <>o

KCf) <

^ >i:,if<=o,

(4.9)

where X‘w is an indicator, whose value is not known a priori. In other words, all utilized paths 

by a class connecting an O/D pair, have equal and minimal travel disutilities.

We now present without proof, the variational inequality formulation of the 

equilibrium conditions (4.9) in link flows.

Theorem 4.1 Variational Inequality Formulation of Network Equilibrium with Fixed 

Demands - Link Flow Version

A multiclass, link flow pattern f e K is a traffic network equilibrium, that is, it 

satisfies equilibrium conditions (4.9), if and only if it satisfies the variational inequality 

problem:

ΣΣ":ό')*(/:-/:')20, v/e* <4.io)
i=\ aeL

or, in vector form:
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VfeK (4.11)(«σ’),/-/*)* ο

where denotes the inner product in kn-dimensional Euclidean space.

4.4 The Elastic Demand, Multiclass, Multicriteria Network Equilibrium 

Model

In this section, we present the multiclass, multicriteria traffic network equilibrium 

model with elastic demand that was developed by Nagumey and Dong [20].

A significant feature of this model is that it includes weights associated with the two 

criteria of travel time and travel cost which are not only class-dependent, but also, explicitly, 

link-dependent. These weights may incorporate such subjective factors as the relative safety 

or risk associated with particular links, the relative comfort etc. The model also treats demand 

functions (rather than their inverses) which are very general and not separable functions. 

Specifically, the demand associated with a class and origin/destination pair can depend not 

only on the travel disutility of different classes travelling between the particular 

origin/destination pair, but can also be influenced by the disutilities of the classes travelling 

between other origin/destination pairs.

We also here consider a general network G=[N, L], where N denotes the set of nodes 

in the network and L the set of directed links. Let a denote a link of the network connecting a 

pair of nodes and let p denote a path, assumed to be acyclic, consisting of a sequence of links 

connecting an origin/destination (O/D) pair of nodes. There are n links in the network and np 

paths. Let Ω denote the set of J O/D pairs. The set of paths connecting the O/D pair w is 

denoted by Pw and the entire set of paths in the network by P.
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We assume that there are k classes of travellers in the network with a typical class 

denoted by i. Let f‘a denote the flow of class i on link a and let x‘p denote the nonnegative

flow of class i on path p. The relationship between the link flows by class and the path flows 

is:

Λ=ΣΧΆ’ V‘,a (4.12)
peP

where δ = 1, if link a is contained in path p, and 0, otherwise. Hence, the flow of a class of

traveller on a link is equal to the sum of the flows of the class on the paths that contain that 

link.

In addition, let fa denote the total flow on link a, where

f.-tf.. VaeL. (4.13)
1=1

We group the class link flows into the ^«-dimensional column vector f with components: 

{/J1,fk,—,fk} and the total link flows: into the «-dimensional column

vector f Also, we group the class path flows into the ^«p-dimensional column vector it with 

components: {x'...,xk }.
Pi Pnp

We are now ready to describe the functions associated with the links. We assume, as 

given, a travel time function ta associated with each link a in the network, where

ta=ta(f), VacL (4.14)

and a travel cost function ca associated with each link a, that is

ca=ca(f) VaeL (4.15)

with both these functions assumed to be continuous. We notice, as in the fixed demand case, 

that here we allow for the general situation in which both the travel time and the travel cost 

can depend on the entire link flow pattern.
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We assume that each class of traveller i has his own perception of the trade-off 

between travel time and travel cost which are represented by the nonnegative weights w[a and

w‘2a. Here w[a denotes the weight associated with class Vs travel time on link a and w‘2a

denotes the weight associated with class Vs travel cost on link a. The weights w\a and w‘2a are

link-dependent and, hence, can incorporate such link-dependent factors as safety, comfort, 

and view. For example, in the case of a pleasant view on a link, travellers may weight the 

travel cost higher than the travel time on such a link. However, if a link has a rough surface or 

is noted for unsafe road conditions such as ice in the winter, travellers may then assign a 

higher weight to the travel time than the travel cost. Link-dependent weights provide a greater 

level of generality and flexibility in modeling travel decision-making than weights that are 

identical for the travel time and for the travel cost on all links for a given class.

We then construct the generalized cost/disutility of class i associated with link a and 

denoted by u‘a, as:

K = Wija + W2aCa > Vb«· (4-16)

From all the above, we may write

<=<(/), Vi, a (4.17)

and group the link generalized costs into the ^«-dimensional column vector u with 

components: {u\,...,u\,...

A possible weighting scheme would be w[a -ψ'α and W2a =(\-ψια) with ψ'α lying in 

the range from zero to one with ψ'α =1 denoting a class of traveller who is only concerned 

with the travel time on a particular link a, and with ψ'α =0 denoting a class of traveller only
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concerned about travel cost on link a\ with weights within the range reflecting classes who 

perceive travel time and travel cost as per the disutility functions accordingly.

Let u‘ denote the generalized cost of class i associated with travelling on path p,

where

<=Σ<(Μ.. ν'·.ρ <4·18)
aeZ.

Hence, the generalized cost, as perceived by a class, associated with travelling on a path is the 

sum of the generalized link costs on links comprising the path.

Let d‘w denote the travel demand of class i traveller between origin/destination pair w

and let A'w denote the travel disutility associated with class i traveller, travelling between the 

origin/destination pair w. We group the travel demands into a LA-dimensional column vector d 

and the origin/destination pair travel disutilities into a LA-dimensional column vector λ.

The path flow vector x induces the demand vector d with components

<=Σ<> Vi>. (4.19)
pePw

We assume that the travel demands are determined by the origin/destination travel disutilities, 

that is

d‘w=dUX), V/, w (4.20)

and denote the LA-dimensional row vector of demand functions by d(X).

We must note that the travel demand function (4.20) is quite general as it allows the 

demand for a class associated with an O/D pair to depend not only on the travel disutilities of 

different classes associated with that O/D pair, but also on those associated with other O/D 

pairs.
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Here, we have finished the development of the bicriteria, elastic demand traffic 

network equilibrium model. In the next section, we formulate the governing traffic network 

equilibrium conditions and give their variational inequality formulation.

4.5 Variational Inequality Formulation of the Elastic Demand, Multiclass, 

Multicriteria Network Equilibrium Model

The traffic network equilibrium conditions, following the theory provided in the 

previous chapters of this work, in the generalized context of the multiclass, multicriteria 

traffic network equilibrium problem, take on the form:

For each class i, for all O/D pairs weW and for all paths p^Pw, the flow pattern x

is said to be in equilibrium if the following conditions hold:

Λ =K, if <>0

<Cf) \

*K , if <=o,

(4.21)

and

= V x‘* if λ!* > 0
Δ~ΙρεΡ„ P ’ w

<y xT„, if =o.
l—j pePw P ’ w

(4.22)

In other words, all utilized paths by a class connecting an O/D pair have equal and 

minimal generalized path costs. Meanwhile, if the travel disutility associated with travelling 

between O/D pair w of class i is positive, then the market clears for this O/D pair and this 

class. That is, the sum of the path flows of this class of travellers on paths connecting this O/D
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pair is equal to the demand associated with this O/D pair. If the travel disutility is zero, then 

the sum of the path flows can exceed the demand of this class of travellers.

Hence, in the elastic demand framework, different classes of travellers can also choose 

their O/D pairs, in addition to their paths. Thus, this model allows one to capture the relative 

attractiveness of different O/D pairs as perceived by the distinct classes of travellers through 

the travel disutilities.

We now present without proof, the variational inequality formulation of the 

equilibrium conditions (4.21) and (4.22) in link flows.

Theorem 4.2 Variational Inequality Formulation of Network Equilibrium with Elastic 

Demands - Link Flow Version

A multiclass, multicriteria link flow, travel demand and O/D travel disutility pattern

{j ,d\λ*) e K is a traffic network equilibrium, that is, satisfies equilibrium conditions 

(4.21) and (4.22) if and only if it satisfies the variational inequality problem:

1=1 αεί. z=1 weW 1=1 weW

V(f,d,A)eK (4.23)

where we define the feasible set K as: K = {(/", ά,λ) \ λ > 0 and > 0, such that (4.12), 

(4.13) and (4.19) hold}.

4.6 Conclusions

In this chapter, we have described two multiclass, multicriteria network equilibrium 

models. In both these models we have used as criteria associated with the decision-making, 

travel time and travel cost. About the type of demand, in the first model we considered fixed
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demand and in the second, elastic. After the development of the two models, the variational 

inequality formulations of the governing traffic network equilibrium conditions were given.

A remark that can be made on the subject of this chapter, is that the elastic demand 

model of Section 4.4 reduces to the fixed demand, multiclass, multicriteria model of Section 

4.2, in the case that the travel demands are fixed and the weights are not link-dependent but 

are class-dependent (specifically, if w[a = w\ and W2a = w'2 for all links ae L and classes i).

The theory of multiclass, multicriteria traffic networks provided in this chapter, will be 

used in the construction of the freight network model in the next chapter of this postgraduate 

work.
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Chapter 5 Development of a Multicriteria Shippers and

Consumers Network Equilibrium Model using 

Variational Inequalities Theory

5.1 Introduction

In this chapter, we will use the theory provided in the previous chapters of this 

research, in order to construct a multicriteria shippers and consumers network equilibrium 

model and formulate it as a variational inequality problem.

In Chapter 1, we point out the important role of freight transportation in both regional 

and national economics by being a vital link between the supply and demand in the supply 

chain. Due to the trend of globalization in the world economic development, logistics 

management has recently become a major issue for many companies in their effort to secure 

an edge over their competitors. At the same time, higher labor and energy costs, coupled with 

increasing congestion on the road networks have increased the proportion of the 

transportation cost to total cost of a finished product. Transportation time has also become an 

important factor in logistics as a component of the “lead time”, which represents the time 

between ordering and receiving finished goods. The variance in transportation time has 

assumed importance as it leads to higher inventory cost. Furthermore, deregulation in some 

transportation industries and the strategic alliance between different transportation service 

providers has allowed more competitive prices and more intermodal options becoming 

available to users.

All the above, create the need to the industries for tools that will help the decision­

making process. Here, we consider a network consisting of shippers, who produce a certain
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product and consumers, who want to buy that product. A model, which in equilibrium, 

outputs a product shipment and demand price pattern is constructed using the VI theory.

This chapter is organized as follows: In Section 5.2 we describe the network defining 

the nodes and links of its structure. In Section 5.3 we consider the shippers and develop their 

optimality conditions and in Section 5.4 we focus on the consumers and we derive their 

equilibrium conditions. In Section 5.5 the integrated model is constructed and we derive the 

variational inequality formulation of the governing equilibrium conditions. In Section 5.6, we 

present two numerical examples. Finally, in Section 5.7 we conclude this chapter.

5.2 The Network Structure

In this chapter, we describe a network framework for the analysis and computation of 

solutions to problems in which the shippers and the consumers are multicriteria decision­

makers. Here, the problem consists of two tiers of decision-makers, the shippers and the 

consumers, in contrast to the multitiered network studied in supply chains in Chapter 3, which 

consists of three tiers. Moreover, in this chapter, the decision-makers consider multiple 

criteria.

In particular, the shippers, which are spatially separated and are assumed to produce a 

certain product and the consumers, located at the demand markets, each face multiple criteria 

in making their production / consumption decisions. It is assumed that each shipper seeks to 

maximize its profit, where profit is the difference between the revenue and costs, which 

include not only production cost but also the total processing costs associated with selecting 

different shipment options to each demand market. The shipment alternatives to each demand 

market are represented by links characterized by specific transportation cost and 

transportation time functions. Hence, a specific shipment option or link, may have a low
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associated transportation time but a high transportation cost, whereas, another may have a 

high associated transportation time and a low cost. Each shipper also seeks to maximize its 

output (market share). An individual shipper assigns its own weights to the two criteria of 

profit maximization and output maximization.

The consumers, in turn, correspond to different classes and weight the transportation 

time and transportation cost associated with obtaining the product from each shipper in an 

individual manner. Thus, one class of consumers may be more time-sensitive in obtaining the 

product, whereas, another may be more cost-sensitive. The consumers of each class, therefore, 

base their consumption decisions not only on the price set by the producers, but also on the 

generalized cost, which includes the transportation time and cost associated with obtaining 

the product at a particular demand market, from a specific shipper.

The shipment alternatives associated with shipper i and demand market j are depicted 

as links in Figure 5.1.

Shipper i

Shipment Alternatives 1

Figure 5.1: Network Structure of Shipment Alternatives for Shipper i to Demand Market j
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The whole network is a bipartite one with multiple links connecting the top-tier nodes 

corresponding to the shippers and the bottom-tier nodes denoting the demand markets, with 

the links representing different shipment alternatives (Figure 5.2 in Section 5.5).

5.3 The Behavior of the Shippers and Their Optimality Conditions

In this section, we describe the behavior of the shippers and we develop their 

optimality conditions.

As we have explained in the previous section, we consider m shippers that produce a 

certain homogeneous product, which is consumed by consumers located at n demand markets. 

We denote a typical shipper by i and a typical demand market by j. Let <7, denote the 

nonnegative production output of shipper i and group the production outputs of all shippers 

into the column vector q eR™. Assume that each shipper i is faced with a production cost

function f, which depends on the entire vector of production outputs, that is:

f=f(q), V/. (5.1)

We consider this dependence in order to show that the production cost function of a shipper i 

is affected not only by its own output level qt, but also reflects the impact of the other

shippers production patterns on shipper fs cost. This impact is about competition for the 

resources, consumption of raw materials, etc.

Each shipper can ship the product to each demand market using one or more of o 

possible shipment alternatives, which can represent mode/route alternatives. Denote a typical 

shipment alternative by /. Associated with shipper i selecting shipment alternative / to demand 

market j is the total shipment processing cost, denoted by tcyi, and given by:

tcij, =col(qvl)qyl, (5-2)
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where £ίβ denotes the unit cost of processing the shipment of the product from shipper i to

demand market j using alternative l and qyi denotes the quantity of the product produced by 

shipper i and shipped to demand market j using alternative /.

The quantity produced by shipper i must satisfy the following conservation of flow 

equation:

* = (5·3)
j=1 /=1

which states that the quantity produced by shipper i is equal to the sum of the quantities 

shipped from the shipper to all demand markets via all the shipment alternatives.

The total costs incurred by a shipper i, thus, are equal to the sum of the shipper’s 

production cost plus the total cost of processing the shipments of the product along all 

shipment links to all demand markets. The shipper’s revenue, in turn, is equal to the price 

charged for the product times the total quantity consumed of the product from the shipper at 

all the demand markets. Let ptjl denote the price charged for the product by the shipper i for

shipment to demand market j via alternative l (the supply price). Then, the criterion of profit 

maximization for shipper i can be expressed as:

Maximize Σ Σ ~ ft (?) ~ Σ Σ'% %)fy/ (5·4)
j=\ 1=1 7=1 1=1

subject to:

*=ΣΣ*«» (5·5)
7=1 /=1

qyi ^ 0, \/j,l (5.6)

In addition, since multicriteria decision - making is being considered, assume that 

each shipper seeks to maximize its production output, that is, shipper i seeks to also:
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Maximize (5.7)ΣΣ^/
7=1 '=1

subject to qiji > 0 for all j,l.

We now describe how to construct a value function associated with the two criteria 

facing each shipper, which are profit and output maximization, based on the analysis in the 

previous chapters. As we have seen in Chapter 4, each shipper can associate a nonnegative 

weight with every criterion under consideration. In this case, we associate a nonnegative 

weight w. with the output maximization criterion and we set the weight associated with the

profit maximization criterion equal tol, for purposes of easier model development. 

Consequently, we can express the optimization problem faced by shipper i as:

Maximize ΣΈ^υ' ~+ ^ΣΣ^ζ » (5·8)
7=1 '=1 7=1 1=1 7=1 /=1

subject to qtji > 0 for all j,l, and satisfying (5.3).

According to (5.8), each shipper has its own production cost function, its own total 

shipment processing cost function, as well as its weight associated with the output 

maximization criterion.

As in the case of the supply chain network model of Chapter 3, the shippers are 

assumed to behave in a noncooperative manner in the sense of Cournot [6] and Nash ([23], 

[24]), seeking to determine their own optimal production and shipment quantities. According 

to what has been examined in Chapter 2, if the production cost function and the total shipment 

processing cost function for each shipper, are continuously differentiable and convex, then the 

optimality conditions take the form of a variational inequality problem as follows:

Determine (q*,Q*) e K, such that

(=1

df,(q)
dq,

- w.
m η o

:[«.-«;>ςςς
i=1 j=1 /=1

dCyiiqyi ) * . , . . *

ijl
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V{q,Q)eK, (5.9)

where Q denotes the mno - dimensional column vector of product shipments, and K= {(q,Q) \ 

Q>0, and satisfies (5.3)}.

Here, with the variational inequality formulation of the shippers’ optimization 

problem, we have finished the part of the model that has to do with the production side. In the 

next sections of this chapter, the consumption side is addressed and the variational inequality 

formulation of the governing equilibrium conditions is derived.

5.4 The Behavior of the Multiclass, Multicriteria Consumers and the 

Equilibrium Conditions

In this section, we describe the behavior of the consumers located at the demand 

markets and we derive their equilibrium conditions.

We assume that there are k classes of consumers, with a typical class denoted by r, at 

each of the n demand markets. Each class of consumer takes into account in making 

consumption decisions not only the prices charged for the product by the shippers, but also 

the transportation time and transportation cost to obtain the product. Hence, they, as are the 

shippers, are multicriteria decision makers.

Let cyi denote the transportation cost associated with shipping the product from

shipper i to demand market j along link /. Assume that the transportation cost is continuous 

and of the form:

ciji = cijMiji)> V/,7,/. (5.10)

In addition, let ti}l denote the transportation time associated with shipping the product from 

shipper i to j via /, where the function is continuous and of the form:

63
Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 21:34:40 EEST - 3.135.182.100



(5.11)

We also let qjjlr denote the quantity of the product shipped from i to j via / and going to class 

r, where:

Qiji = Σ V ’ V/J,/, (5.12)
r=1

that is, the total amount of the product shipped between a shipper and a demand market along 

a link, is equal to the sum of all the class product shipments shipped on that link.

In Chapter 4, we studied two multiclass, multicriteria network equilibrium models in 

order to understand how the individual weighting of distinct criteria associated with decision­

making on networks is implemented. Hence, in this model, we assume that members of a 

class of consumers at each demand market perceive the transportation cost and the 

transportation time associated with obtaining the product in an individual manner and weight 

these two criteria, which they wish to minimize, accordingly. In particular, we let w\r denote 

the nonnegative weight associated with the transportation cost as perceived by class r at 

demand market j and we let w2jr denote the nonnegative weight associated with the

transportation time as perceived by class r at demand market j. Thus, the generalized cost, as 

perceived by class r at demand market j, of obtaining the product from shipper i via shipment 

alternative / is given by the expression:

W'jrCij, (<Ljl ) + Wjrtyi (q,ji) · (5-13)

We let now Xjr denote the generalized demand price of the product as perceived by 

class r at demand market j and group the generalized demand prices into the column vector 

λ e Rn+k. Further, we denote the demand of class r at demand market j by djr and we assume 

as given, the continuous demand functions:

till
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d„=dJX), y/,r. (5.14)

The classes of consumers located at the demand markets take the price charged by the 

producers for the product, which was denoted by p*,, plus the generalized cost as perceived

by the class associated with shipping the product to the demand market, in making their 

consumption decisions. In equilibrium, we know that this sum must be equal to the demand 

price that the consumers of that class are willing to pay to obtain the product. Hence, the 

equilibrium conditions take the form:

For all i,j, l, r.

' = 4 ’ if dllr > 0

" * K , if q]jlr = 0

(5.15)

and

r

djM') {

=ZZv’if 4>0
i= I 1=\

(5.16)

l 4=°·
i=l 1=1

Conditions (5.15) and (5.16) have the form of conditions (4.21) and (4.22) 

respectively, since we also here develop an elastic demand, multiclass, multicriteria network 

equilibrium model. Condition (5.16) state that if the demand price for the product of a class at 

a demand market is positive, then the sum of the product shipments for that class from the 

shippers along all shipment alternatives, is precisely equal to the demand for that class and 

demand market at the equilibrium demand price vector. If the equilibrium demand price for
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that class and demand market is zero, then there may be an excess of product shipments over 

the demand for that class and demand market.

According to Theorem 4.2, equilibrium conditions (5.15) and (5.16) can be expressed 

as the following variational inequality problem:

Determine (0*,/L*) e K, such that

m η o k

ΣΣΣΣ[4+ W)rCW (<hl) + rfAjl till ) - K ] :X ['<hjlr - q'iflr ]
i=1 7=1 /=1 r=l 

n k

+ΣΣ
y'=l r=1

m υ

ΣΣν-^>^')
ι=1 /=1

:[A.r-4]>0 ,V(Q,X)eK,

(5.17)

where Q is the AM«cA-dimensional vector of class product shipments with components ijlr

given by qijlr and K = \{Q, λ) \ (Q, X) e Rmnok+nk

By giving the variational inequality formulation of the equilibrium conditions (5.15) 

and (5.16), we have finished the second part of the model, that of the consumption side. In the 

next section, we combine the two parts to construct the integrated model and we give the 

variational inequality formulation of the governing equilibrium conditions.

5.5 The Integrated Model and the Variational Inequality Formulation of 

the Governing Equilibrium Conditions

In this section, we construct the integrated model, which synthesizes the optimality 

conditions of the multicriteria shippers and the equilibrium conditions of the multiclass, 

multicriteria consumers on the bipartite network.

As in the case of the supply chain network model that we studied in Chapter 3, in 

order to obtain an equilibrium of the spatial network system, the sum of the optimality
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conditions of the shippers as given by (5.9) and the equilibrium conditions of the consumers 

as in (5.17) must be satisfied.

In Figure 5.2, we depict the network structure, consisting of all the shippers, all the 

demand markets and classes of consumers and all the shipment alternatives. We note again 

that the network is bipartite, except that there are multiple links connecting each top-tier node 

with each bottom-tier node to represent shipment alternatives.

Shippers

Now, we construct a single variational inequality problem governing both the 

production and the consumption sides. First, we note that the shipper production output 

quantities ((?,.), their product shipments to the demand markets (qijt) and the class product

shipments (qiJlr) are related by equations (5.3) and (5.12). As we considered in Chapter 3,

f.(q) = ft{Qx) (see (3.4)), here, we let for the marginal production costs --- --, — —-:
d(h Sqijlr
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(5.18)

We also let:

(5.19)

which, using (5.2) becomes:

The term mtciJlr denotes the marginal cost of processing the shipment of the product from i to 

j via / for class r. In addition, we define the generalized cost gcijlr(Q) for obtaining the 

product by class r, at demand market j, from shipper i, using shipment alternative /, as:

using expression (5.13).

As we have already stated, an equilibrium of the spatial network system consisting of 

multicriteria shippers and consumers is attained when the sum of the optimality conditions for 

all shippers, as denoted by inequality (5.9), and the spatial equilibrium conditions, as 

represented by inequality (5.17), is satisfied by the class product shipment variables and the 

demand price variables. The sum of inequalities (5.9) and (5.17), using identities (5.18), 

(5.20) and (5.21), gives the following inequality:

(5.22)

k m o

y=l r=\ Li=l 1=1

68
Institutional Repository - Library & Information Centre - University of Thessaly
02/06/2024 21:34:40 EEST - 3.135.182.100



From the above inequality, according to the variational inequalities theory, we can 

easily recover the supply prices p‘tjl, once we have obtained the solution. In equilibrium, from

Λ/’ //v* \

the first term in (5.22) we get that if qijlr is positive, then p* =—----- -+mtcijlr(Q)-wr
^jlr

Also, from the second term in (5.22) we have that if qijlr is positive, then

Pijl=£jr-gCiJlXQ')·

Further simplification of (5.22), gives us the following variational inequality problem:

Λ * *

Determine (Q ,λ ) e K , such that

m η o k

ΣΣΣΣ
1=1 j=\ /=1 r-\

dfXQ')

dq.
+ mtcijlr (Q*) - w,. + gcijlr (Q') - Λ

Jr
ijlr

χ[ν-4]

η λ

-ΣΣ
m u

ΣΣ4-^(^*)
j=1 r=1 L 1=1 /=!

(5.23)

:[A.r-A;]>O,V(0,A)e^

where ^Ξ{(ρα)|(ρ,Α)£^;"}.

The above inequality is the variational inequality formulation of the governing 

equilibrium conditions of the model we constructed in this chapter of the postgraduate work.

5.6 Numerical Examples

In this section, two numerical examples are presented. We consider a network 

consisting of two shippers, two demand markets and with two available shipping alternatives 

from each shipper to each demand market. We also consider two classes of consumers. This 

network structure is depicted in Figure 5.3.
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Shippers

Shipping
Alternatives

Demand Markets

Figure 5.3: The Network Structure for the Examples

5.6.1 Example 1

In the first example, the production cost functions of the two shippers are given by:

/i(?) = 01+0,?2»

Λ(^) = ^2 +^1^2·

The unit shipment processing cost functions and the transportation cost and time 

functions are as given in Table 5.1.

The class demand functions are: 

άη(λ) = 1000-2^,-1.5^,,

dn (λ) = 1000 - 2/1,2 -1.5/^2, 

ά2[(λ) = 1000-2^, -1.5Λ,,,

J22 (/l) = 1000-2^2-l. 5V
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i,j, l Sz cui hi

1,1,1 <7111 + 1 #111 + 5 2#m +10

1,1,2 0.5gn2 +0.5 2#i 12 + 15 #112 +3.5

1,2,1 #121 + 1 #121 + ^ 2#i2i +10

1,2,2 0.5g122 +0.5 3qm +15 #122 +3.5

2,1,1 #211 + 1 #211 + 5 2#211 + 10

2,1,2 0.5<7212 +0.5 2#212 +15 #212 +3.5

2, 2,1 #221 + 1 #221 + 5 2#221 +10

2, 2,2 0.5 q222 + 0.5 5#222 + 15 #222 + 3.5

Table 5.1: The Unit Shipment Processing Cost, Transportation Cost and Transportation Time 

Functions

The weights are: 

w, = w2 = 1,

W11 = W12 = W2\ = W22 = W\\ = W12 = W2\ = W22 = 1 ■

From Table 5.1, it is obvious that shipment alternative 2 is faster than shipment 

alternative 1, but it has a higher transportation cost.

Solving the system of equations that results from inequality (5.23), we have the 

product shipment pattern reported in Table 5.2.
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Shipment Class r=l Class r=2

#111. 14.1612 14.1612

#112 r 13.8612 13.8612

#121r 14.1612 14.1612

#122. 13.8612 13.8612

#211. 14.1612 14.1612

*

#212. 13.8612 13.8612

#2*21. 14.1612 14.1612

*

#222. 13.8612 13.8612

Table 5.2: The Equilibrium Product Shipment Pattern for Example 1

The computed equilibrium class demand prices at the two demand markets are:

4* =4*2 =^‘1 =^*2 =269·7015

and the computed equilibrium production outputs of the shippers, using equations (5.3) and 

(5.12), are: 

q\=q\ = 112.0896.

Using equation ρ]β = A*r - gcijlr (Q* ), we have for the prices ρ*β that the shipper i

charges to the consumers at demand market j for the product, if delivered through shipment

alternative 1 or 2:

p*. = 169.7342 ViJ,

p*2 = 140.3119 Vil,j.
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5.6.2 Example 2

In the second example, we kept all the data as in Example 1, except that now we 

assumed that shipper 1 has altered his market share weight from 1 to 10, that is, w, =10.

Solving the system of equations that results from inequality (5.23), we have the 

product shipment pattern reported in Table 5.3.

Shipment Class r=l Class r=2

#111/· 16.6463 16.6463

#112 r 16.3463 16.3463

#121 r 16.6463 16.6463

#122 r 16.3463 16.3463

#211 r 12.1463 12.1463

#212 r 11.8463 11.8463

*

#221/· 12.1463 12.1463

*

#222/· 11.8463 11.8463

Table 5.3: The Equilibrium Product Shipment Pattern for Example 2

The computed equilibrium class demand prices at the two demand markets are:

4* = Λ,] = ^ = /£ = 269.4328

and the computed equilibrium production outputs of the shippers, using equations (5.3) and 

(5.12), are:
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q\ = 131.9704, 

q\ =95.9704.

Using equation p', = Λ*. -gcijlr{Q*), we have for the prices p*7 that the shipper /

charges to the consumers at demand market j for the product, if delivered through shipment 

alternative /:

for shipper 1, p[n = p*m = 154.555 and p*u2 - p\22 - 120.1624,

for shipper 2, p2u = p*m =181.555 and p\l2 = p*222 =156.1624.

Comparing the two examples, we observe that in Example 2, each shipper charges a 

different price, according to the shipment alternative, to both demand markets. We also 

observe that in Example 2, the total output of shipper 1 increased in comparison to its output 

in Example 1, whereas that of shipper 2 decreased. Finally, the change in the class demand 

prices is negligible.

5.7 Conclusions

In this chapter, we examine a bipartite network with shippers and consumers, that both 

are assumed to be multicriteria decision-makers. Using variational inequalities theory, we 

developed a model that outputs the equilibrium production, consumption and product flows.

Inequality (5.22), where the variables are the product shipments and the class demand 

prices, can also be seen from an economic perspective. From the first term in (5.22), we can 

conclude that the price p*, charged by a shipper i for the product to consumers at demand

market j using shipment along l, must be precisely equal to the shipper’s marginal cost of 

production plus the marginal of the total cost of shipment processing along / minus the weight 

associated with the output maximization criterion (if the product shipment is positive between
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the shipper/demand market pair along the link and for that class). Otherwise, if the marginal 

costs associated with that combination of production / shipment alternative / class / demand 

market exceed the supply price that the consumers are willing to pay for the product, then 

there will be zero of that product shipped on that link from that shipper to the class at that 

demand market.

We emphasize again that time and cost associated with product deliveries are of a 

particular importance in today’s economy regarding decision-making, not only for shippers, 

but also for consumers. The model developed in this chapter can be very helpful in that 

decision-making process.
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Chapter 6 Concluding Remarks

In this postgraduate work, we studied network equilibrium models. Networks provide 

the infrastructure for business, science, technology and education. Transportation networks 

give us the means to cross physical distance in order to see clients and conduct business, as 

well as to visit colleagues and friends. They enable manufacturing processes through the 

supply of the necessary input components and the ultimate distribution of the finished 

products to the consumers. Freight transportation is a vital component of the economy. It 

supports production, trade and consumption activities by ensuring the efficient movement and 

timely availability of raw materials and finished goods.

The decision-making process in a freight transportation system is a very complicated 

procedure, since it involves many agents with conflict of interests. The network framework 

allows us to formalize the alternatives available to decision-makers, to model their individual 

behavior (characterized by particular criteria, which they wish to optimize) and ultimately to 

compute the flows on the network, as well as the associated prices. The theory of spatial 

equilibration in transport networks is first presented and the study of the variational 

inequalities (VI) theory, which is a powerful tool for the study of the equilibrium states, 

follows.

These theories are then applied to multitiered networks that consist of distinct tiers of 

decision-makers. A supply chain network model is studied, with the emphasis given to the 

equilibrium conditions and their VI formulation. An equilibrium approach is necessary and 

valuable since it provides a benchmark against which one can evaluate both prices and 

product flows. Moreover, it captures the independent behavior of the various decision-makers, 

as well as the effect of their interactions.
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After multitiered networks, we study two multiclass, multicriteria network equilibrium 

models. In these models, we allow more than one class of decision-makers in the network that 

consider multiple criteria in making their choices. A fixed demand network equilibrium model 

is first presented and it is formulated as a variational inequality problem. Then, en elastic 

demand network problem is addressed and its variational inequality formulation is also given.

The main contribution of the research reported in this work is that we described a 

network framework for the formulation, analysis and computation of solutions to problems in 

which the decision-makers on each of the two tiers of the network consider multiple criteria. 

The model we constructed, brings together multicriteria decision-makers on the production 

side and on the consumption side in a network framework. In particular, the shippers, which 

are spatially separated and the consumers located at the demand markets, each face multiple 

criteria in making their production / consumption decisions. The variational inequality 

formulation of the governing equilibrium conditions is derived. Resolving this variational 

inequality problem, using known algorithms for variational inequalities, we get the product 

shipment pattern, as well as the demand price pattern in equilibrium.

The network equilibrium model constructed in this research can be very helpful to the 

industries involved in freight transportation, in their decision making process. Since time and 

cost associated with product deliveries are of particular importance, the outputs of this model 

provide a benchmark against which an industry can evaluate both real prices and product 

flows. For example, an industry can compute the impact to product shipments and prices of 

changes to its market share weight or changes to consumers’ time-sensitivity, etc.

Such a sensitivity analysis can be done as a further research on the constructed 

network equilibrium model. The adjustment of this model, in order to allow time-varying 

demands, can also be a topic of further research.
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