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“Ye Méva TO aioBnua eivar otnv opxXn XwPEIC OPICUEVO Kol OCOa@EG
OVTIKEIUEVO, 0OULTO oxnuartiletal apyotepa. [lMponyeital  pio  KATOIA

MOUOIKN d1d0g0n Kal ETIEITA YOL TIOPOULCIALETAl N TIOINTIKN 10€a.”

EmiotoAn tou Schiller tpog tov Goethe, 18 Maptiouv 1796

Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 05:22:47 EEST - 18.216.241.64



EuxaploTtieg

H emutuxnuévn OAOKANPWGN MHIOC OOUAEIAC OTOV CUYKEKPIPEVO
XWPO KOl OTO0 OEOOPEVO ETUTIEDD (UETATITUXIOKO OITTAWUO €E10iKELONG)
gival ouvnBwg aTTOTEAECUA 1IOAVIKIC GLUVEPYATIOG.

Kupiapxo otoixeio tng mapolooag epyaciog eival n ouvepyaaoia
HOU pE TOV KABNynt) pouv BaoiAn MrovioloyAouv. ©OEAw va Tov
ELXOPIOTNOW Oeppd ylia TNV TIOAUTIAELPN ULTIOCTAPIEN TOL, YiO TNV
eUTiIoTOCUVN TOUL, YIO TO PABAUOTO TIOL TTAPEOWOE €ite KAT 1diav, Eite
péoa otnv aibouvoa, €IOIKA yia TO MPETATITUXIOKO TOU MPABNUa: Otwpia
EVLOTABEING BEPUODOPAUVAIKWV CUOTNPATWY, YIO TO KEPI TIOU EVETTIVEUCE
Kal TO KivnTpo Yyio ETUCTNMOVIKA  €PELVa, Yia TNV OadIAAEITIN  Kal
OULCIOCTIKY TIAPOLCIa TOU OTIC WPEC TNE OOUAEINC.

Euvxopiotie¢ o@eidw ota PEAN TNG TPIMEAOUVC HOL ETUTPOTING K.
MoAapatdapn kol k. Balouyswpyn yia TI¢ Kaiplieg uTtodeiéelc tToug Kal
TIOPATNPAOEIC. ZEXWPIOTA €LUXAPIOCTW TOV K. MoAAUOTAPN YIO TIC WPEC
ou §OdePe pali pouv pabaivovidg pou Tov KWK TIOU €KEivog eixe
OOUAEYEL.

[dlaitepa evxapIOTW TOV K. Apdfa Kai otov K. Kapaudvo, yia ta
METATITUXIOKA TOLG MOBNPATA, N YVWON TwV OTIoIWwV ATIOTEAECE BaCIKN
TIPOUTIOBEDN yIa TNV EKTIOVNON KOl OAOKANPWON TNG pyaaiag .

Euxapiotw emiong tov k. MeAekdon kai tov K. Marmadnuntpiov,
TO0O0 YyIO TA PETATITUXIOKA TOUG poBruata 6co Kal yio v dl1abear] Toug
VO CUVEICPEPOLV OTIOTE TO XPEIACTNKA.

O k. Avdpitooc eival pEAOC TNCG TIEVIOUEAOUC €EETAOCTIKIG HOUL

ETUTPOTING. TOV ELXAPIOCTW IBIAITEPA.

BoAog, Mdaiog 2004
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MEPIAHWH

To @aIvOUEVO TNC YETAPOPAC BEPUOTNTOC ATIO TO TOIXWHO OTO LYPO
TIOL PEEl TIAVW ATIO OUTO HE TN PopPEn AETTTOV LPEvVa PBpiokel TTANBWpPA
EQAPUOYWV, KUPIWG PIOPUNXAVIKWY OAANG Kol TI0  KaBnuepivwv. O
OLVOUOOHOC  EVOIOPEPOVCOG PEVCTOOUVAMIKNG  CUUTIEPIPOPAC  Kal
TIANBWPAC EQPAPUOYWV KABIOTOUV TO @OIVOPEVO OVTIKEINEVO €VTOVNC
MEAETNC TOOO LTIOAOYICTIKNC OGO Kal TIEIPAMOTIKIC.

H  UTIOAOYIOTIKI)  HEAETN NG €midpacng €voC  TIARPWC
OlOOPPWHEVOL Kal YyVWOToU POoiKoU TIESIOL OTn PETAPOPA BepUOTNTOC
OTTt0 TO TOoiXWMO €ival TO0 BACIKO AVTIKEIYEVO NG Ttapovoacg epyaciog. To
10000YI10 EVEPYEIOG HE KOATAAANAEC OULVOPIOKEC OULVONKEG TIPOOTEBNKE OF
Ol0OECIYO  KWOIKO  TIETIEPOCUEVWY  OTOIXEIWV. Davopeva  @QUOIKNAG
oLVaYWYNg ayvooUVTal Kol CUVETIWE TO POIKO TIPORANUO Kal TO TIPOBANUa
petadoong BeppotnTag AVvovtal dlodoXIKA.

E&etddetal AeTITOMEPWC N ETIOPACH Miag OEIPAC  HPOVOXIKWV
KUPATWY OTNV HPETAQOPA BePUOTNTAC aTIO TO TOiXwua. Eva evdla@épov
OTIOTEAECHO €ival OTI avamTtOOCETAl [ia OTACIUN Katoavour Bepuoppong
KOTA MNAKOC TOU TOIXWMHATOC, TIOU OKOAOULBOEi tnv Kivnon tou KOpatoc.
MeAetdtal n emidpacn Tov apiBuol Peclet otnv évtacn ¢ Beppoppong
WOTE VO OIEVKPIVIOTEL N OXETIKI] CUVEICPOPA TWV OPwWV CLVOYWYNC Kal
aywyng. MNa éva evpv acua aplBpwv Peclet, n cuvaywyn €Xel GCNUOVTIKA
OULVEICEOPA OTNV KOPUPN KOl TNV 0oupd TOU MPOVOXIKOU KOpotoC. H
OULVEICEOPA AUTK, G€ CULUVOUOOUO WPE TNV AETITUVGN TOU UTTOCTPWMHOTOC
METOEL  OIAdOXIKWY  HOVOXIKWV  KUPATWVY, TIPOKOAEI gvioxuon 1ng

METOPOPAC BepUOTNTAC TIEPO OTIO TO OPIO TNG KABAPNG aywyng.
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ABSTRACT

The phenomenon of heat transfer from a wall to a liquid film
which flows along it is encountered not only in idustrial applications, but
also in every day life. The combination of interesting fundamental fluid
mechanics and of numerous applications has made film flow the subject
of intense experimental and theoretical/computational study.

The goal of the present work is the computational study of heat
transfer from an isothermal wall to a cold film with fully developed flow
characteristics. A finite-element numerical scheme is modified with the
inclusion of the energy equation and appropriate boundary conditions.
Natural convection is ignored and the flow and heat transfer problems
are solved consecutively.

The effect of a regular solitary wavetrain on heat transfer
characteristics from the wall is investigated.One interesting result is
that a stationary periodic flux distribution develops that follows the
waves. The effect of Peclet number is studied in order to clarify the
relative contributions of conduction and convection to the variation of
wall heat transfer. For a wide range of Peclet numbers, on the
convection is found to have a significant influence on the crest and tail
of the solitary humps. This effect, in combination with the thinning of the
substrate between successive waves, results in  heat transfer

enhancement above the conduction limit.
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1.INTRODUCTION

A film flow is defined as a liquid draining under the effect of
gravity, with at least one free boundary. Liquid films have a number of
peculiarities. They are, therefore, assigned to a separate class of flows.
First of all one should note the small thickness (0.1-1 mm) of the films
compared to the characteristic sizes which are usually encountered in
nature and patterns of liquid flows. Since typical range of Reynolds
numbers is 1-1000, the effect of viscosity forces is almost always
essential. On the other hand, the presence of a free surface with scales
comparable to the film thickness and to capillary constant means a
strong influence of surface perturbations on the film flow. For these
reasons the mathematical description of the perturbed motion of a liquid
film, even in the simplest statement, is extremely complicated. An
essential simplification is, however, possible for long-wave perturbations
when the boundary layer approximation seems rather appropriate.

Figure 1 illustrates the typical geometries of several types of film
flows. These geometries are encountered in many pieces of industrial
equipment, such as heat exchangers, wetted-wall columns, distillation
equipment, liquid-liquid extraction towers, evaporators, gas-liquid
separators. The gravitational flow of a film over an inclined plane or
over the ouside surface of a vertical tube has been systematically
studied though surfaces of any profile, are encountered in practice,
including the rough ones. In particular the cases of film falling down in
moving bodies, vibrating and rotating ones, are the most complicated
examples. (Alekseenko et al, Wave flow of liquid film,1994)

A combined flow of the liquid film and a gas phase, i.e. two-
phase (annular) flow, is frequently realized in engineering. An annular
flow is one of the patterns adopted by the vapor-liquid mixture moving in

a vapor generating channel. The relative motion of phases results in the
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appearance of additional shear and normal stresses at the interface and
affects essentially the structure of interface.

In this study, however, attention will be given to the purely
gravitational motion of films. To be more specific, the work aims at
simulating the heat transfer from the wall to the main mass of fluid.
There is urgent interest in the study of the effect of the configuration of
a flow field in the heat transfer coefficient, as well as to clarify the
mechanism on which this process is based. This means that we want to

find out why film flow waves enhance the rate of the heat transfer.

Figure 1. Geometry of film flows: (a) film falling down an inclined
surface, (b) flow past a cylinder, (c) film flow along the internal surface
of a tube, (d) falling down a curvilinear surface, (e) flow along the

internal surface of a cone, (f) jet spreading along the surface

-2-
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2. THEORETICAL BACKGROUND

In this chapter, the classical falling film theory is reviewed in brief
along with modern numerical and experimental studies on the film flow

down an inclined wall are presented and discussed.

2.1 Flat film: the flow problem

There have been a number of studies of falling films over the past
several decades. One of the earliest of these is that of Nusselt [Nusselt,
1916] dealing with steady laminar flow in a smooth condensate film
flowing down a vertical wall under the action of gravity. He obtained the
following expressions for the film thickness (hN), average liquid velocity
in the film (U) and the average heat transfer coefficient (A) in terms of Q,

the volumetric liquid flow rate per unit wetted perimeter:

r3V" 1/3 o0 9 P—:il/3
K = Om=  Re™ 2.1.1)
u . LglJ
/3 -\
uz 9 os. V8 Re> (2.1.2)
3vJ 31
|’H3A'|l/3 -
- - Re'1/3 213
3v Q-m 3v ( )

where ¢ is the acceleration due to gravity, Kk the thermal conductivity of

the fluid, v its kinematic viscosity, and Re is the film Reynolds number

defined as The above relations are valid for a smooth film.

However, it is well-known that waves form on the surface of the film,
ever for small liquid flow rates.

The solution that follows is the Nusselt solution for inclined wall.
We consider two-dimensional film flow with characteristic length L
(Figure 2). The velocity in the x direction does not depend on the length

X. We consider constant density and viscosity, as well.

-3-
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Figure 2. Inclined film flow with waves, physical picture

We consider an elementary volume. The x-momentum enters in
that volume by convection with the flow and by the action of viscosity.

The balance of x-momentum can be written as follows:
[/ 7Q(>M)|x-(IXM) (/7<) [xH.] + [C, T ly-Lryx \y+dy- +Lypg sing = 0, of unit

width, which by dividing dy Ly at the limit dy------ »O:

+pgsing -0 (2.1.4)

where: r =-u—
A VIN¢)Y

The boundary conditions are:
y=0 => u(0)=0 1!
y=hn => \/=0 ] (2.1.5)

Solving the equation (2.1.4) subject to the boundary conditions (2.1.5)

the following velocity profile is obtained :

' h” si '
«00_ pgh™_sirup y&hf-y) (2.1.6)

The thickness of the film, hNi is associated to the volumetric flow rate,Q,
through the relation:

3Qm (2.1.7)
pgsin @
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The usual dimensional analysis leads to the Reynolds and Weber

numbers or Reynolds and Kapitza ones, which are defined as follows:

Vv Vv
we=  °
(p-U2-hN)
Ka - a/ 1/
(P'vi'g 3

where: U it is the mean velocity, p the density of fluid, o the surface
tension. Several combinations are possible, but we prefer to use the
Reynolds number, the inclination angle and a unique Kapitza number
that depends only on the physical properties of the fluid and not on the
flow rate. The more conventional Weber number can be related to these
three parameters.

The mathematic analysis of the general problem of flow with
surface waves is nonlinear and difficult enough due to the fact that the
shape is unknown and should be introduced as a parameter in the

calculations.

2.2 Stability theory of inclined thin sheets

An analysis of the propagation of waves on the surface of a body
of water usually leads to a relationship between phase velocity c, liquid
depth h, wave amplitude A, wavelength y, gravity g, and possibly
surface tension o. In the classical linear theory of inviscid water waves,
two of the main simplifying assumptions are that the wave amplitude is
small compared to the mean depth of the liquid and that the wavelength

is large compared to the amplitude. This leads to the dispersion relation

Fgr=N i gnn T2 2.2.1)
2T y

-5-
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for gravity waves. We can see that waves with different wavelengths
propagate at different phase velocity, but the amplitude of the wave
does not affect the wave velocity, the waves are dispersive but linear.
Thus, if we introduce some kind of disturbance in the inclined film
flow, it is well known that this will develop downstream and lead to the
appearance of waves. Because of the fact that two-dimensional
disturbances are more unstable than three-dimensional ones, the study
of linear stability is restricted to two-dimensional disturbances (Squire’s
theorem). Following the appropriate steps of linear analysis and taking
into account the periodicity of the flow, we derive a fourth-order linear

homogeneous ordinary differential equation for the amplitude, /, of the
streamfunction g = Zexp[iS(x-ct)], where S is the wavenumber and c is

the phase velocity.

The equation, derived independently by Orr and Sommerfeld, is

£-2rr+/f=i| (U -C)(F-yh)-u"f (222)

where ¢=— is the complex phase velocity, m is a complex constant
r

called complex growth rate or complex cyclic frequency.

Nondimensionalizing all variables wusing as characteristic length,
velocity, and time L,U, and L/U, respectively, we recast the Orr-

Sommerfeld equation into the dimensionless form

frr-2d2f + d*f = iReS[(U-c)(f'~52f)-U ] (2.2.3)
where we have defined the following dimensionless variables and

_C X i
constants / =— ﬂ — :i A=3LRe==
U’ L v
The primes indicate differentiations with respect to the dimensionless
position vector *.

In the temporal stability problem we specify the real wave number

k and supply proper boundary conditions for /to obtain an eigenvalue

-6-
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problem for c. The boundary conditions of inclined film flow problem
are:

1. Non-slip and no-penetration condition on the solid wall :

Aty=0, u =v=0—-»/(0)=/'(0)=0

f o\ f \
2.Balance of forces on the free surface: tn =0 and tn
7

where n is the curvature.
The real part of cis the phase velocity of the perturbation. Having
obtained c, we compute the complex growth rate r = £cand decompose

it into its real and imaginary parts 1= 1tk+it, to obtain the growth rate of
the perturbation T, At neutral stability 1, =0 and both candrare real. In

dimensionless variables, the solution of the temporal stability problem
depends upon the magnitude of the Reynolds number Re and

dimensionless wave number&£.

If the imposed disturbance (el5(x~ct)) has wavelength much larger
than the film thickness and if we consider a regular perturbation

expansion (Yih, 1963), then from the zero order solution we obtain c0=3.

This means that the first wave which appear have infinite wavelength
and the phase velocity of its motion is three times faster than the mean
film velocity.

From the first order solution, we reach the conclusion that there

exists a critical Reynolds number Rec below which the flow is stable for

all wave numbers: Re =-g:ot(p - This relation of critical Reynolds number
C

with the angle of inclined wall was confirmed experimentally by Liu et
al. (1993). Figure 3 illustrates the critical Re related to the angle for two

different fluids (Liu et al,1993). The data are compared with the

theoretical prediction Rec=ycot(p, given by the solid Iline. The
agreement is quite satisfactory, and this implies that physical
-7-

Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 05:22:47 EEST - 18.216.241.64



approximations made in the formulation of the stability theory are

correct at least near the critical point.

Angle (deg.)

Figure 3. The critical Reynolds number Rc as a function of inclination

angle. Results from both water (O0) and glycerin-water solutions (x) are

shown. The solid line is Re :-Scot<p.
C

The experimental measurements were taken with water and
solution of water- glycerin 26%. The two lines of data coincide proving
that the instability depends only on the Reynolds number and the kind
of the fluid does not affect it

In the spatial stability problem we set & =3dk+id,, where SR is the
real number of the perturbation and -0, is the corresponding spatial
growth rate, and t=1k, where tw is the real cyclic frequency of the
perturbation. We then specify tr and supply proper boundary conditions

for / to obtain an eigenvalue problem for & and dR. At neutral stability

-8-
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£,=0 and 90 is real. In dimensionless variables, the solution of the spatial

stability problem depends upon the magnitudes of the Reynolds number
Re and dimensionless real cyclic frequency, w, of the flow. (Pozrikidis,

Introduction to theoretical and computational fluid dynamics, 1997)

2.3 Non linear wave evolution on a falling film

The downstream evolution of film flow along an inclined wall can
be categorized depending on the Reynolds number. Thus, at very large
Reynolds numbers (Re>1000), the waves observed on the film flow are
of the shear-wave variety with wavelengths comparable to or shorter
than Nusselt film thickness hN. Such high-flow-rate conditions typically
yield turbulent films (turbulent in the classical sense) dominated by
internal Tollmien-Schlichting disturbances. The interfacial dynamics is
simply enslaved by the internal turbulence. At moderately high
Reynolds numbers (300<Re<1000), long interfacial waves characteristic
of gravity-capillary instabilities begin to appear (Chu & Dukler 1974).
However, the wave dynamics is extremely nonstationary, especially for
the persisting short waves which seem to de generated by a vortex
shedding mechanism from the long waves. At extremely low flow rates
(Re«1), the film becomes so thin that intermolecular forces and
contact line dynamics become important as the film ruptures. In the
intermediate region (1<Re<300) the instability consists of long
interfacial waves dominated by gravity-capillary effects. Among others
Chang (1994) has recognized four distinct regions in the development

of inclined film flow (Figure 4).
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Figure 4. Schematic of the four waves regimes in a naturally excited
evolution on a film flow. The wave spectra from localized prodes at the
four regions are also shown. The parameter w is the wave frequency.

For higher Re values (R>50), region lll may not be preset.

In the inception region (region l), infinitesimal disturbances at the
inlet are amplified downstream to form a monochromatic wave at the
end of the region, indicating that the instability is a convective one and
not of the absolute variety. If the initial disturbance is sufficiently
monochromatic in frequency, the emerging wave inherits the forcing
frequency. If the disturbance has a wide band of frequency, as is true
with natural noise, a highly selective linear filtering process in region |
yields a unique monochromatic wave filed for all wide-band
disturbances. In particular, transverse disturbances are selectively
damped in this inception region. Within this region, the amplitude of the
monochromatic wave grows exponentially downstream as in all linear
excitation processes of convectively unstable systems. Beginning in
region |l however, the exponential growth is arrested by weakly
nonlinear effects as the amplitude of the monochromatic wave saturates

to a finite value dependent on the wave number, Reynolds number and

- tO-
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Kapitza number. Due to this weakly nonlinear interaction between an
unstable fundamental Fourier mode and a stable second harmonic, the
monochromatic wave of region | begins to develop a finite overtone in
region Il as its sinusoidal shape steepens downstream. There is also a
negative nonlinear correction to the wave speed of the inception region
such that the waves actually slow down as they grow (Lin 1983). Some
experimental evidence indicates that even the wave number of the
saturated periodic wave exiting from region I, which is still a very
uniform wave field, is different from that of the monochromatic wave
emerging from region | due to a nonlinear selection mechanism. In
periodically forced experiment with sufficiently large forcing amplitude,
both region | and region Il may be bypassed and the first uniform wave
field that emerges contains large-amplitude waves whose wave
frequencies are close to the forcing frequency except at very low values
(Kapitza & Kapitza 1949, Alekseenko et al 1985). The periodic finite-
amplitude disturbances in a forced experiment can hence entrain
waves that would not have been selected by the linear and nonlinear
selection mechanisms of region | and Il. For small-amplitude and broad-
banded natural or artificially introduced disturbances, however, the
uniform wave fields emerging from regions | and Il are independent of
the disturbances present. They are uniquely selected by the linear and
nonlinear mechanisms in region | and Il

Both finite-amplitude wave fields generated by periodic forcing
and naturally excited wave fields emerging from region Il travel a long
distance (~ 10 wavelengths) in a stationary manner, e.g. without visible
changes in their shape or speed, before they undergo another slow
evolution in region lll. Here, two dominant instabilities of the finite-
amplitude waves have been observed. The best data are recorded by
Liu & Gollub (1994) for inclined films. Neighboring waves coalesce at
intermittent locations due to a subharmonic instability (Prokopiou et al

1991) or long-wave modulation appears characteristic of sideband
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instabilities (Cheng & Chang 1992a). These two instabilities create
intermittent patches of defects to the otherwise uniform field of waves.
Within these patches, the distorted waves grow in wavelength,
amplitude and speed and evolve into characteristic spatially localized
teardrop humps. These humps have steep fronts which are relaxed by a
series of front-running bow waves whose wavelength is close to the
monochromatic waves at inception. These larger and faster humps
begin to expand the patches in the downstream direction as they
overtake the original slower waves, so much so that all of latter may
vanish eventually. The wave frequency or wave number spectrum now
becomes very broad, in contrast to the monochromatic spectrum in
region | and the fundamental-overtone pair in region Il. This, however,
does not imply that continuous band of dispersive waves dominate the
interface as in turbulent channel flow. Instead, a large portion of the
band is locked into the characteristic hump of the evolved waves and
travels in synchrony. The broad-banded spectrum is due mostly to the
localized shape of the humps which is strikingly identical. These robust
humps have a characteristic length that is much shorter that the typical
separation between humps where the film is essentially flat. They are
hence referred to as solitary waves, or solitary humps. The separation
between the individual humps are typically nonuniform and time-
varying, indicating nonstationary interaction among them and reflecting
the spatio-temporal irregularity of their births. However, the humps
themselves remain nearly identical and do not alter their shape
significantly during the interaction within region lII.

Finally, in region IV, transverse variation begins to develop on the
wave crests of the solitary humps. The dynamics of the transverse
variation is nonstationary and these transverse variations grow to such
amplitude (not in height but in the direction parallel to the wall) that
adjacent crests merge at various points and pinch off. However, the

wave shape in the flow direction (x in Figure 4) retains the solitary
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shape except near the pinch points. For vertical water films at low
Reynolds numbers, regions | and Il occupy 30 to 40 inception
wavelengths with each region spanning about 10 wavelengths. (The
wavelength selected at inception as about 1 cm for water at the
Reynolds number of interest.) Region IV seems to persist indefinitely
downstream. If the introduced disturbance at the feed, or elsewhere in
the channel, contains significant transverse variation such that it is not
entirely filtered in the inception region |, then region Il may be
negligible in length or may be skipped entirely.

The former have been confirmed experimentally by Liu and
Gollub (1994).To provide a comprehensive view of their work we show
in Figure 5 a phase diagram in frequency and Reynolds number that
pulls together interesting experimental results.

The circles are measurements of the neutral stability

frequency fc, below which the free surface is unstable. The upper solid
line is calculated from linear stability theory. The triangles show
measurements of the maximum amplified frequency /m,and the solid

line through them is also the result of linear theory. We see that the
linear stability theory is quite successful.

The bifurcation phase boundary denoted fs separating two types

of nonlinear evolution is given by the diamonds in Figure 5, with a
smooth dashed line drawn through them. Between fs andft we find
saturated finite-amplitude waves with one maximum per period. Below

fs, waves evolve into multi-peaked waveforms, including solitary waves,

by strongly nonlinear mechanisms.
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Figure 5. Phase diagram in frequency Zand Reynolds number Re

showing various regimes of linear stability, nonlinear evolution, and

secondary instabilities. The inclination angle is <¢=6.4°, and the

aqueous solutions of glycerin is 54% by weight

Secondary instabilities: Another phase boundary f2 shown by

squares separates the sideband and subharmonic two-dimensional
secondary instabilities of periodic waves. The sideband instability of the

primary waves predominates above f2, and the subharmonic instability
at frequencies below the boundary [and close to /J. These secondary

Instabilities are convective and hence sensitive to noise.

An example of nonlinear periodic wave (solitary wave) evolution
is given in Figure 6, where the forcing frequency is 1.5 Hz (Liu & Gollub,
1994). Three wave profiles are taken at increasing distances from the
source to show the spatial evolution. Initial sinusoidal waves near the
inlet (not shown) become separated, developing steep fronts and
stretched tails as the waves move downstream. Subsidiary wave fronts
nucleate while primary peaks grow larger [Figure 6 (a)]. Further
downstream, the primary waves gradually saturate [Figure 6 (b)].
Eventually, the solitary waves reach a stationary state in which

successive pulses are nearly identical [Figure 6 (c)]. The generation of
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subsidiary waves may be viewed as a buckling of the surface as it is
compressed by rapidly moving solitary humps. When the frequency
becomes larger, the primary wavefronts are closer together and the
solitary waves cannot be clearly separated. The significant overlap of
the front and tail may lead to strong interactions of these approximate

solitary waves.

Downstream Distance (cm)

Figure 6. The evolution of solitary waves forced at /=1.5 Hz and

Reynolds number, Re=29.

As the frequency is increased further in the mulitipeaked wave
regime, the interactions become very pronounced and separate pulses

are not formed. An example is shown in Figure 7 for a wave at / =4.5
Hz. When the subsidiary wave front is initially generated, a small
depression appears on the primary peak and moves faster [Figure 7
(@)]. The velocity of a small depression is about 25.4 cmls while the

primary wave travels at 23.8 cm/s. The small depression passes the
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primary peak, and appears to form a subsidiary peak of that primary
wavefront [Figure 7 (b),(c)]. It is worth mentioning here that the waves
are always periodic in time before losing their stability, even though they

may appear nonperiodic in space (Liu & Gollub, 1994).

Figure 7. The evolution of multipeaked waves forced at / =4.5 Hz with

Reynolds number, Re=29

The experimental results of Liu &Gollub have been expanded
recently by Vlachogiannis & Bontozoglou (2001), who investigated
experimentally the interactions between solitary waves. They have
systematically observed a large number of coalescence events and
recorded their detailed characteristics. The time duration of the merging
process was found to be inversely proportional to the height difference
of the interacting humps, supporting the conclusion that humps of

similar size do not coalesce but may form double-hump structures. They
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have witnessed the temporary recession of the front-running ripples and
the formation of the an elevated back-substrate. The size of the
substrate was found to scale with the height of the wave, and its decay
with time was found to obey an exponential law. Measurements of the
characteristics and evolution of the elevated back-substrate provide the
first experimental confirmation of the predictions of Chang et al.(1995).

In most experiments with water, the elevated substrate yielded to
an instability producing an oscillatory tail. This tail was observed to lag
behind as isolated hump and eventually decay. On the contrary, if the
excited hump was followed closely by another solitary wave, the tail
might be trapped in between and result in the nucleation of a new
hump. This tail modulation appears not to have been previously noted in
the falling-film literature, though it has long been known as an
adjustment mechanism of inviscid solitons of the Korteweg-de Vries
equation.

A qualitative description of wave-wave interactions and of the
decay of excited solitary humps may be accomplished in terms of
simple mass conversation arguments. Extending the mechanicm
described by Chang et al (1995), Vlachogiannis & Bontozoglou (2001)
view both the elevated back substrate and the outcome of its instability,
the tail modulation, as effective means of draining liquid from the back
of the tail. These mechanisms operate in parallel with the front-running
ripples, which stabilize all solitary humps (normal or excited) by draining
liquid out from the crest. A coalescence event is recorded in Figure 8.

In view of the above, a key parameter of wave-wave interaction
seems to be the degree of excitation of the preceding wave, as
represented by the elevation of its back substrate or the intensity of its
tail oscillation. In particular, when the preceding wave is not excited it
may be approached by a larger (i.e. faster) following wave. Then, the

liquid draining out from the front of the second solitary wave raises the
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substrate between the two crests leading to the formation of a single

hump.

On the contrary, a preceding excited wave resists coalescence
with a bigger hump approaching from behind. If the difference in height
is small, the two crests do not approach very closely. Liquid released
from the tail of the preceding excited wave is then augmented by liquid
drained from the front of the following wave and nucleation of a new
hump between the interacting waves may occur. Even when the
following wave is much larger and sweeps the distance towards the first

hump, it may be decelerated by the liquid draining from the tail of the

- 18 -
Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 05:22:47 EEST - 18.216.241.64



excited preceding wave. The resulting structure then involves a quasi-
stationary two-humps pulse.

Malamataris, Vlachogiannis, and Bontozoglou (2001) compared
the above experimental results with simulations. Based on these
simulations, the picture of solitary hump interaction seems to agree

with the (relatively limited) experimental information.

2X

27
26

25
MNAT &

2N

2 %
2<J

1o

18
17
16
15 -/\\/ /-
14 __VW_
LA
|2 S
i RAVAVARSTCVAVAVIVE
io ~"V o eeeeee M\Ww—
‘i
7
at
4
3
o
o 300 600 VOO 1200 1 500 1 KOO

Figure 9. Downstream evolution of the flow for initial disturbance 1 Hz.

We can notice the coalescence of solitary humps.

Ramaswamy et al (1996), carried out numerical simulations in
order to study interfacial instabilities in thin-film flow. They develop an
extensive numerical scheme based on the direct solution of the Navier-
Stokes equations. In concurrence with what is known about thin-film
instability based on linear and approximate non-linear theories, finite-
amplitude waveforms are the stable solution for wavenumbers smaller

than the linear critical wavenumber. For wavenumbers close to critical,
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the waveforms are nearly sinusoidal. For wavenumbers much smaller
than critical, the wave forms are solitary. This transition from nearly
sinusoidal waveforms to solitary seem to pass through a quasi-steady
regime, in which the spatial harmonic coefficients are in a state of
constant fluctuations. Comparison between the full-scale computations
and approximate nonlinear theories indicates that these theories are
accurate in the parametric regimes for which they are derived. Since
only a very small number of comparisons have been made it was not
possible to derive definite boundaries delineating the regimes where the
approximate nonlinear theories are accurate. Both the Reynolds
number and the surface tension influence the accuracy of the
approximate nonlinear theories. In the event of large wave amplitude
and/or wave steepening, none of the approximate nonlinear theories
can be used, and experiments or full-scale computations based on the
solution of the complete Navier-Stokes equations will need to de used.
The spatial stability analysis of the thin-film instability has been studied
by considering a very long domain with periodic forcing at the inlet and
absorbing boundary conditions at the exit. Very good agreement with
the experiments of Liu & Gollub (1994) has been obtained. Depending
on the frequency of excitation, the waves formed downstream are either
nearly sinusoidal or solitary or quasi-periodic. Owing to the amplitude
dependence of the wave speed, complex wave interactions are likely to
occur on the gas-liquid interface. Waves with larger amplitude travel
faster and coalesce with smaller waves. This wave interaction is found
to de completely inelastic and the resultant wave grows further in
amplitude and travels downstream leaving behind a nearly flat interface.
However, there appears to be a natural wavelength that the system tries
to achieve in the solitary wave regime. The resultant wavelength
downstream is also weakly dependent on the initial condition. A
powerful numerical technique has been developed and applied to the

study of surface wave instability on thin-film flow.
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2.4 Heat transfer problem

The dynamics of the free surface significantly affect the heat
transfer between the wall and the falling liquid film. The heat transfer
from the free surface itself is less significant. It has actually been shown
(Gimbutis,1988) that the heat transfer through the free surface can be

neglected if g™lgm <0.15, where (IS is the heat flux at the interface
and qw is the specific heat flux at the wall.

Nusselt (1916) was the first to perform the theoretical analysis of
heat transfer from the wall for laminar liquid film under the boundary

conditions Tw= const and TS=0. He has calculated the heat transfer in

both thermally developing and fully developed regions, which is
described by the following expressions for the local heat transfer

coefficient A\ and local Nusselt number Nu*:

dT
A=—K /(Tw-TT) = 1.88K/hN (2.4.1)
dy
Nu* ="— =188 (2.4.2)
K

Here Tfis the temperature averaged over the mass flow rate in the
given section of the film.K is thermal conductivity, w/(m-K), hN s
thickness of liquid film.

The heat transfer in a fully developed smooth laminar film is well
described by the formula (2.4.2) The solutions (Limberg, 1973; Sobin,

1980; Gimbutis, 1988) which are more rigorous as compared with the

Nusselt calculation, are obtained for a thermal inlet region. Since the

Prandtl numbers, ( Pr=—,v is the kinematic viscocity and a is the the
a

thermal diffucivity) are usually large, then the development of the
thermal boundary layers takes place at the background of a
hydrodynamically fully developed flow. Therefore the heat transfer
problem in the film becomes equivalent to the problem by Graetz (1885)

concerning the heat transfer in a plane slot with two-sided heating or
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cooling. But this case has been studied in detail in the literature
(Zhukauskas & Zhyugzhda,1969). For practical purposes Gimbutis
(1988) recommends the following generalized equations for local
Nusselt number which generalize quite well the experimental data in the

case of the laminar flow of smooth films

-4

Nu :§ 1+0.00072(16Pe 2L)*3 (2.4.3)
X
at Tw = const,
-11/4
Nu =2.06 1+0.0011(106/B—)*° (2.4.4)
X

at qTW=const.

where Pe is the Peclet number.
When x->00 from equation (2.4.4) we obtain the known expression for

fully developed heat transfer at qTW=const.  Nu* = 2.06

The mean heat transfer was studied in most experimental works
(Bays, McAdams, 1937, Sexauer,1939; Chernobylsky
&Vorontsov,1968; Vorontsov & Tananaiko, 1972). The derivation of
empirical formulae for the calculation of the average heat transfer
coefficient depending on the flow conditions is presented in the book by
Tananaiko & Vorontsov (1975).

The most interesting experimental data on local heat transfer
were obtained by Wilky (1962) and Gimbutis (1988). It has been noted
that the wave effect is virtually absent at the inlet region that agrees with
mass transfer data and it is accounted for by a slight penetration of
perturbations into the wall neighborhood where the thermal boundary
layers develops. Wilke (1962) was the first to discover the wave effect
on the heat transfer. He has shown that a noticeable augmentation of
heat transfer from the wall to a laminar wavy film occurs only in the fully
developed zone at rather large Prandtl numbers attaining 100%, for
example, at Pr=104 and Re* 150. These results are presented in Figure
10. Wilke has accounted for the wave effect by the presence of
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additional convective heat transfer and he has introduced the notion of
wave thermal diffusivity for its quantitative account. Then the heat flux

will be written in the most general form as:
: dT
cjr ——Cpp(a+aw + ot()TJI (2.4.5)
y
where a,aw,at are the molecular, wave and turbulent thermal diffusivity

coefficients, respectively, CP is the specific heat, J/(kg K)and p the

density.

*N u*

Figure 10. Wave effect on the heat transfer in fully developed region in
a laminar-wavy film (local values) at Tw=const. Experiment by Wilke
(1962): 1-Pr=210, 2-Pr=104, 3-Pr=43,4-Pr=9.4. Calculations by Gimbutis
(1988) with allowance for waves : |-Pr=210,ll-Pr=104,lll-Pr=42,1V-formula
(2.4.2)

Gimbutis (1988) has developed a technique for calculating the
coefficient aw using the empirical data. In this scheme it is sufficient to
know the wave parameters without information on the surface structure.
As a result calculation formulae were obtained, whose predictions are
shown in Figure 10 in comparison to experimental data by Wilke (1962).

Jayanti and Hewitt (1995) studied the hydrodynamics and heat
transfer of wavy thin film flow using computational fluid dynamics

techniques. They investigated the effect of sinusoidal and solitary
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waves on the heat transfer across the film. Three types of wave shapes
commonly found in falling films were included in the study, and the
emphasis was on the role of the interfacial waves on heat transfer
across the film. In as much as the wavy flow hydrodynamics are not
defined entirely by the mean film thickness (wave parameters such as
amplitude, shape and wavelength also affecting the mean flow velocity),
the concept of equivalent Reynolds number has been proposed as the
basis for comparing a smooth film and a wavy film: The heat transfer
enhancement in wavy film flow is determined by comparing its heat
transfer coefficient with that expected (from Nusselt's theory) in a
smooth film having the same film Reynolds number. The calculations
were performed for steady state, and no account was taken for any
evolution of the shape of the wavy film either with distance or time. The
underlining assumption is that any time-dependent evolution of the
wave shape is slow enough so that the hydrodynamics are not severely
affected by it.

The calculations by Jayanti and Hewitt (1995) have shown that
for small-amplitude sinusoidal waves, there is no recirculation under the
wave crests, and that the mean flow velocity is not much different from
that of a smooth film of the same mean film thickness. In the case of
large-amplitude sinusoidal wave, the mean flow velocity, and thus the
Reynolds number of the flow, increase for the same mean film
thickness. Although the heat transfer coefficient still corresponds to that
given by the local film thickness, this decrease in the effective film
thickness gives rise to an enhancement in the heat transfer coefficient.
In the case of solitary waves, their large amplitude has two
consequences: firstly, a large recirculation zone develops under these
waves, and secondly, since the flow cross-sectional area is much higher
under the wave than in the substrate, the mean velocity and the
recirculation velocity are small. The contribution of recirculation to heat

transfer rate is small, and the overall heat transfer coefficient is still

-24-
Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 05:22:47 EEST - 18.216.241.64



dominated by the conduction process through the inter-wave substrate
region. Since most of the fluid is transported in these large waves, the
substrate film is thinner and the effective heat transfer coefficient
therefore higher. The effect of waves on heat transfer in thin films is
therefore an indirect one, and is due to the effective thinning of the film
rather than to enhanced convection within the waves. The table below
summarize the overall effect of convection in the heat transfer
coefficient by calculating the average heat transfer coefficient in the

wave and comparing it with that obtained due to conduction alone, for

A A A
three cases corresponds to: )\—5:2, )T:4 and )T:G , where A is the

peak height of the wave and A the substrate thickness.

A under wave only A under wave and substrate
W m*] K.-] [Wm-1K-1
theory theory
Case calculated -  (conduction) calc/theory calculated (conduction) calc/theory
! 4.912 4.916 0.999 6.109 6.108 1.000
2 3.537 3.471 1.019 5.540 5.507 1.006
3 3.145 2.829 1111 5.378 5.241 1.026

Figure 11. Heat transfer coefficients in the solitary wave calculations

When averaged over the wave region only, there is virtually no
enhancement due to convection in the first case while it is more than
10% in the third case. When considered over the wave and the
substrate film, the recirculation-induced enhancement is very small, of
the order of a few per cent, even in the third case. This shows that the
overall heat transfer rate in thin film flow is not improved significantly by
recirculation under the waves. (Jayanti & Hewitt, 1995)

Miyara et al (1995), Miyara et al (1999), Miyara et al (2001),
Miyara et al (2002) carried out extensive simulations, in order to study
the effect of waves occurring on a falling condensate film (vertical wall)
on heat transfer. They investigate the relation between the film flow
dynamics and the heat transfer coefficient and partly confirm the results
of Hewitt (1995). The enhancement of heat transfer is attributed mainly
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to the decreasing time average film thickness due to waves, and the
disturbance effects of the waves are small. Miyara verifies that a small
amplitude disturbance generated as inflow boundary develops to a
solitary wave which consists of a large amplitude hump and small
amplitude capillary waves. A circulation flow occurs in the hump that
affects temperature distributions, especially for high Prandlt number
liquids (low thermal diffusivity). More specifically, the heat transfer
enhancement mechanisms by the interfacial waves have been clarified
by showing the temperature fields for different Prandtl number liquids.
The interfacial waves enhance the heat transfer by two kinds of effects
which are the film thinning effect and the convection effect. For low
Prandlt number, the convection effect may be neglected and for high
Prandlt number both the effects are dominant. Spatial distributions of
the time averaged heat transfer coefficient at the wall surface are shown
in  Figure 12 for different Prandtl number. The time averaged
dimensionless heat transfer coefficient (heat flux) is calculated from the
time averaged temperature gradient at the wall, as follows:

- AX _5T
K dy 0

where A' is the dimensional heat transfer coefficient and « is thermal
conductivity of the liquid. The time-averaged reciprocal of the film
thickness h~' represents the heat transfer coefficient for the case of the
linear temperature distribution, which corresponds to that for Pr->0 and
indicates the heat transfer enhancement rate by the local film thinning,
A includes both the effects of the film thinning and the circulation zone.
In the fully developed region, x>200, A increases with increase of

Prandtl number.
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Figure 12. Time averaged heat transfer coefficient

The time averaged heat transfer coefficient increases
downstream. In the fully-developed region of the waves, the heat
transfer coefficient at higher Prandlt numbers also increases. In the
developing region, however, the higher Prandtl number liquid has the
lowest heat transfer coefficient (Miyara 1999). Recently, Miyara (2002)
has studied numerically and experimentally the effect of wave frequency
on heat transfer enhancement. The enhancement rates depend on
wave frequency and have a maximum at a certain frequency. Figure 13
shows the variations of the heat transfer coefficient A, with wave
frequency for different Prandtl numbers. It is evident from the plot that
the heat transfer coefficient tends to a maximum value at certain

frequency and increases with increasing Prandtl number.
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Figure 13. Variation of heat transfer enhancement with wave frequency
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3. PROBLEM DEFINITION

In the present chapter we define the hydrodynamic problem of the
development of nonlinear waves along the free surface of the film flow,
as well as the thermal problem of heat transfer from the wall to the film.
Among others we present the equations of the problems and the

boundary conditions.

3.1 The flow problem

Two-dimensional, gravity-driven flow down a plane with inclination
@ relative to the horizontal is considered. The mean volumetric flow rate
per unit span is denoted by Q and the Re number is defined as Re=Ql/v,
where v is the kinematic viscosity, v=p/p. Coordinate x is in the
streamwise direction and coordinate y is normal to the plane. The
location of the free surface and the magnitude of the instantaneous
volumetric flow rate per unit span generally vary with x and t and are
described by the functions g(x,t) and q(x,t) respectively. For reference
we recall the classical Nusselt solution (developed in 82.1) for uniform

flow with thickness, hN =(3v2 Re/gsirup)1} .where g is the magnitude of

gravity,and parabolic x-velocity profile given by

Figure 14. Sketch of the flow system considered
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The mean Nusselt velocity in the x-direction is thus

U = gsincphN212v and Q=UhN.

A complete description of the flow is provided by the continuity and
the Navier-Stokes equations, together with a set of boundary conditions.
We use U as the characteristic velocity and hN as the characteristic
length and nondimensionalize time and pressure with the magnitudes

hN /U and pU2 respectively. The resulting equations in dimensionless

form are:
V-w =0 (3.1.2)
N +Uu-VU = -Vp +—V2u +— 3.1.3
dt P Re Fr 9 ( )

Here u=(u,v) is the dimensionless velocity vector in the fluid, with u
and v its components in the x- and y-direction, respectively, p is the

dimensionless pressure and g is the unit vector in the direction of

gravity. Re is the Reynolds number as defined above and Fr=U/Jdg”

is the Froude number. Because of the way the equations are
nondimensionalized, the Froude number is not independent but is
related to the Reynolds number by the expression

Br? —F;—esin©

We further apply the no-slip and no-penetration boundary condition
for the velocity along the flat wall,

u=v=0 (3.1.4)

and the kinematic condition and the balance of forces along the free

surface:.
dn, g _, (3.1.5)
dt dx
n-T = We2Hcn (3.1.6)

The Weber number in eq. (3.1.6) is defined as We=a/pU2 hN, with ¢ the

surface tension of the fluid, 2HC =hxxHy+ h]fl the mean free surface
curvature, n the unit vector normal to the free surface and
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T=-pDi+— V V' 3.1.7
=-R ReL—W+$—W2 ( )

the dimensionless stress tensor of the fluid, with x the identity matrix.

We apply the following boundary conditions at the inlet in order to
introduce a small, periodic disturbance of frequency fand amplitude A
in the film thickness:

h(0,t)=1+Acos2nft (3.1.8)

T (3.1.9)

u(0,y,t) h(0,t) h(0,t) 2 h2(0,t)

Equation (3.1.8) prescribes the oscillations of the free surface at the
inlet of the computational domain and equation (3.1.9) imposes a
parabolic velocity profile in the x-direction at the entrance. We will
present, in a following paragraphs more details about the inflow
boundary conditions, which are still the subject of study. The parabolic
velocity profile is expected to be an excellent approximation for the
entrance conditions, given the small magnitude of the disturbances. The
corresponding inlet velocity, v(O,y,t), in the y-direction is found by
integration of the continuity equation using equation (3.1.9). ( Lee &
Mei, 1995)

At the outflow, we apply the free boundary condition in order to let
the fluid leave the computational domain freely without any distortion of
the flow in the interior (Malamataris & Papanastasiou,1991) Finally, the
steady state solution of the undisturbed free surface flow is used as the

initial condition for the computation.

3.2 The thermal problem

Describing the thermal problem we consider the same field as in
the flow problem. The heat transport takes place from the heated wall to
the thin film which flows above it. A schematic view is in the Figure 15

below.
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The flow is considered isothermal, with temperature Ta, up to a
streamwise distance x=x0 from the inlet, and then the wall is kept at a
constant higher temperature, Tw where Tw > Ta The free surface is
thermally characterized by considering a uniform air temperature, Ta
and constant heat transfer coefficient, A, from surface to air. The effect
of temperature on the physical properties is neglected (passive scalar
transport) and thus the flow and the heat transfer problems are solved
consecutively.

A complete description of the thermal problem is provided by the

energy equation and appropriate boundary conditions.

As the flow is two-dimensional, incompressible, and there is no

heat generation, the energy equation is:
"+(«-v)F-ovT=0 (3.2.1)

Here (« Vv)r accounts for heat convection with the flow and avir for

molecular diffusion.
The boundary conditions are:
(1) The prescription of the imposed temperature on the wall:
y=0, x< x0 => T=Ta
y=0, x>Xo =>T= Tw
(2) The energy balance at the interface. To be more specific this is the
thermal energy balance in an infinitesimally thin control volume

containing the interface. Given that the energy accumulation rate is
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proportional to the volume, and thus goes to zero in the above control

volume, we may write:

=A(T-Ta) => ™~-+wT =wTa (3.2.2)
oy oy

where w:A and K is the thermal conductivity of the fluid ["WR]
K m-

(3) The free outflow boundary condition at x=L, which is similar to the
outflow condition of the flow problem.

As we want to nondimensionalize the above equations, we use
(Tw-Tg) as the characteristic temperature scale and the Nusselt film
thickness, hNas thecharacteristic length. Symbolizing the

dimensionless temperature by 0= (T-Ta)/(Tw —Ta)and keeping for

brevity thesame symbols for thedimensionless space and time

variables, we obtain:

—+ m-V0 = ———V2# (3.2.3)
adt—-—-- Re: Pr

where Pe = RePr is the Peclet number.

The equation (3.2.2) in dimensionless form is:

dy

where Bi is the Biot number, Bi=AhN/K.

. Uh . .
The Peclet number is Pe =——, where U is the mean velocity of
a

the fluid [—],a the thermal diffucivity [——],hN is the Nusselt film
sec sec

thickness [m]. We can notice that Pe represents the ratio of heat
transfer by convection to heat transfer by diffusion, and in this sence, is

analoguous to the Reynolds number for momentum transfer. Pr is the

Prandlt number Pr=— | with v the kinematic viscocity of the fluid.
a

According to the nondimensionalization adopted for the

temperature, OW=1 and 6oa=0. The trivial solution for a thermally
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developed flat film with thermal conductivity, K, is a linear temperature
distribution with free-surface value

Ts = {Tw + BiTa) /(I + Bi) (3.2.5)
(or, equivalently 65 =1/(1 +A")). The linear temperature distribution is

established because heat transfer occurs only in the vertical direction

and only by diffusion. The steady heat transfer through this flat
(T -T)

thermally developed film is: gO=ic and if we introduce equation

(3.2.5) we obtain:

Bi ;AL-Ta)
(1+Bi)

(3.2.6)

The value q0 is used to nondimensionalize heat transfer through the
wavy film. The problem is described in terms of the Pe and Bi
dimensionless numbers. As initial condition we normally use a uniform
temperature, Ta, throughout the film. This is equivalent to the physical
situation where the heat source that sets the wall temperature is

suddenly set on at t=0.

3.3 The inflow boundary conditions

The boundary condition at the entrance of the computational
domain is the subject of continuing study which lies beyond the needs
of the present work. As it has been mentioned, this boundary condition
is time-dependent and introduces the disturbances that grow into free
surface waves. Trying to simulate the conditions of experiments more
closely, we use different forms of disturbances. This investigation leads
to very interesting results regarding how the form of disturbance
influences downstream evolution.

The sinusoidal perturbation h(0,t) =-asin2uft has been used

many times in our computational efforts and it is known to perform

excellently. The new form of perturbation presently introduced consists
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of a series of influx surges, each corresponding to an inlet film thickness
variation of Gaussian shape. Thus, the form of the perturbations is :
« -(t-t0+——)2/ 202

h(O,t) = 2_,ae T (3.3.1)

n=0
where / is the frequency of the disturbance and o is a parameter
indicating the sharpness of the flow surge. Advantages of the present
form of disturbance are (a) that it corresponds to positive mass surges
and thus simulates more closely the experimental conditions, and (b)
that it permits independent variation of the frequency and the steepness
of the inlet waves.

In order to apply the above (or any other) inlet disturbance as a
boundary condition at the liquid film inlet (boundary condition in x=0), it

is necessary to know not only h(0,t) but also u(0,y,t) and v(0,y,t) i.e.

the local values of the components of the velocity in the -x and -y
direction, respectively.

The function h(0,t) has the form that we want to introduce, for

example sinusoidal or Gaussian distribution. In the x=0 position the
distribution of x-component of the velocity is considered parabolic
according to the exact solution given by Nusselt theory. Thus:

u@,y,y °39@QO0f y__i 7 (3.3.2)

A(0,0 U(°T) 2A2(0,0,

The velocity component in the y-direction, v(0,y,t) is obtained by
substituting (3.3.2) in the continuity equation, integrating in the vertical
direction from y=0 up to an arbitrary location y and applying the no-slip

boundary condition at the wall. The resulting expression is

. 30(0, 1 al2(00 Mo 30(0,0 ! 3/2(00 mo
V(dyJ)__ ( /) _3 ( y _ ( ( y )
dx  2/3(0,/) dx 22 (0,) dx 22 (0,)) dx 212 (0,/)
0<y<h (3.3.3)
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In order to apply equations (3.3.2) and (3.3.3) we need to know
the functions h(xt), Q(x,t) and their spatial derivatives at x=0. The
missing unknowns are found by considering that: (a) inlet disturbances
initially travel with the phase velocity of small-amplitude waves, c=3,
and (b) grow slowly enough at the inlet so that to a very good
approximation their characteristics remain stationary for an observer
traveling in the x direction with velocity c.

Considering the time variation of liquid film thickness in the above
reference frame is equivalent to riding on a crest of the surface wave

and following the flow. The result may be expressed as:

folowng =0  or, according to the definition of the time derivative for a

d thewave
crest

moving observer:

dh, 9 (3.3.4)

The phase velocity, as we mentioned above is equal to 3, as found

from linear stability analysis (82.2). Equation (3.3.4) is used for the

o . L dh .
determination of the spatial derivative of the free surface, o given that
X

the temporal derivative, Z—T, is readily found by differentiation of eq.

(3.3.2).
Describing the flow rate in a similar way, we observe that its

temporal and spatial derivatives are related by the expression:

dQ
- following = O => — - + C (335)
d thewave

By integrating the continuity equation in the vertical direction from
the wall, y=0, to the free surface, y=h(0,t), and using the Leibnitz

formula for differentiating an integral we obtain the relation for Q(0,t):
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h(x,i) h(x,t)

dV(X’t)cp (3.3.6)
dy
Eor the first term we have: {de—u-(ﬂ dy = _d u(x,y)dy-u(h(x, t))—h(X Y
0 dx ax | dx

and taking in account the definition of the flow rate is:

3.7
dx dx (3.3.7)
From the second term of the equation (3.3.6) is:
h(x,t) p, . , J hx.p
i -~x=dy=—f v(x,y)dy = v(h(x,t))-v(0) (3.3.8)
0 fy dy 1
From the relations (3.3.7), (3.3.8) we obtain that:
d 50(x
Q(X 2 ugnex, ))— Y = (i) = — ng----— u(hifx t))— X2 (i)

However, according to the kinematic boundary condition, which holds at
the position y=h(x,t) 1

dh(x,t) , h(x,t)
E0 s ue )T v y)

Thus, we are led to the final result:

dQ(x,t) _  dh(x,t) 30\
dx dt

Equations (3.3.4) and (3.3.9) permit determination of all the remaining
unknowns.

Equation (3.3.9) is the integral expression of mass conservation.
We can justify this key expression with a different way of thinking. If we
make the mass balance in the thin control volume of the figure below
(Figure 16), we recognize that the net flow rate into the control volume
(inflow - outflow), accumulates mass and thus results in the variation of
the position of the free surface. In mathematical terms, the above mass

balance is described by the expression:

dQ(x,t) dh(x,t)
dx

[Q{x,t) - Q(x + dx, D]dt = [n(x,t + dt)- h(x, )]dx =i> M
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h(x,1)

Q(x.1)

Figure 16. Differential mass balance in a thin control volume.

As we know the relation between h(x,t) and Q(x,t) we can
introduce the temporal distributions of the inlet velocity components
according to their expression (number of equations).The expected
distributions of velocity components are evidently related to the kind of

the initial disturbance h(x,t) which we choose.
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4. METHOD OF SOLUTION

This chapter describes the solution of the flow and the heat
transfer problems by the Galerkin finite element method. We will
explain, giving the appropriate details where necessary, the
computational strategy and the actual implementation of the boundary
conditions. Among others we present tips on which we are based for

the development of key parts of the code.

4.1 Computational domain and solution grid

At the beginning we define the computational field as the
geometrical domain in which the flow develops. The selection of
computational field has to do with the problem definition and boundary
conditions. We note at first that the physical domain extends from the
inlet to the outlet in the x direction and from the wall to the free surface
in the y direction. As the location of the free surface varies in time, it is
convenient to nondimensionalize the y-distance in such a way that
leaves the nodes of the elements unchanged. This is accomplished by

nondimensionalizing the distance in the y direction by the local film

thickness, h(x,t), according to : j>:F . Thus, j>=0 means that we are

on the wall and > =1 corresponds to the free surface position.

Figure 16 shows a schematic view of the computational domain
with the finite elements grid, according to the above definition. Thus, the
location of each element in the computational domain is fixed in the
transformed coordinates X,y, though the physical domain varies in time.
As we will see later, the elements are nine-point isoparametric
elements. The figure also shows the way of numbering of the elements.
It should be noted that the grid density varies in the x direction, being
denser at the beginning of the domain in order to rigorously simulate the

start of the phenomenon.
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Figure 17. Computational domain and finite element’s grid .

The nodes are numbered in three different ways: local,
coordinate, global. The way of numbering that we call local, is shown
below (Figure 18), and it concerns the arrangement of nodes in each
element. It is used extensively in the solution of the equations
(computation of residual functions) because in the implementation of the
finite element methodology the computation is performed in each
element consecutively.

The global way of numbering is the absolute numbering of the
nodes of mesh following the same concept as with the numbering of
the elements, i.e. starting from the inlet and the wall and moving first
towards the surface and then in the next x position. It is used in the
storage of the unknown values (x, y, u, v velocities, pressure,
temperature) in the respective arrays, with the global number providing
the location in the array.

In the initial definition of the computational mesh, it is convenient
to use the discretization in the x and y directions. Thus, we determine
the location of each node by its x and y coordinates. We build up in this
way a matrix of nodes, for example, the place (i,j) corresponds to the

node that is found in the line i and in the column j. This constitutes the

coordinate numbering.
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Very often in the computational process, we need to switch from
one to another system of numbering. Subroutine NODNOR (1,J) gives
out the global number of a node, using as inlet the coordinate

numeration. NODNOR = (I-1)*NY+J, where NY is the number of nodes in

y-axes.
0y -<kn
3 6 9
2 2 8 E})
| 4 7
0D

Figure 18. The pattern element and the local numeration of the nodes.

If we have the local number, J, of a node in the element NELL
(the numbering of elements is shown in Fig. 15), then the function
NOP(NELL,J) provides the global humber of the node and permits the
retrieval of node values, as in the following lines of code:
DO 102J =1,9
LN = IABS(NOP(NELL,J))
XE@) = X(LN)
YEQJ) = Y(LN)
102 CONTINUE

4.2 Finite-element discretization of the unknowns

The problem is separated in two parts, flow and thermal, that are
solved independently by the same code. To be more specific, the flow
part is solved first, and then, using the latest results for the velocity field,

we find the temperature field and the distribution of heat flux along the

wall.
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The primary unknowns of the problem, which are the velocities u
and v, the pressure p and the temperature G(dimensionalized), along

with the unknown location of the free surface h,are expanded as follows

<=/ »V=>v«/ Sh=> N/ p==py’' O66==3/ 4-2-1)
1=1 i=l

i=I /'=1 i=I

where < are biquadratic and ! bilinear basis functions. This is a

standard choice of basis functions in the application of the Galerkin
finite element method in flow problems.

In the Galerkin finite elements method the equations for any
given problem are solved in the pattern element, which has a local
system of coordinates. Figure 16 shows the model element in the
system of local coordinates (¢,n). The coordinates x,y change Tt0 &,n in
the same way that the unknowns of the problem are expanded, based

on Galerkin basis function:

)==>T/ > y4r?) =21,/ (4.1.2)

=1

Equation (4.1.2) constitute the basic concept of isoparametric
mapping, which is the process on which we are based in order to
expand the unknowns of the problem in terms of Galerkin basis
functions. Equation (4.1.2), as well as the exact form of the basis
functions are provided by the following analysis.

We work on the pattern element (Figure 17) and we consider a
type of interpolation with so many unknown coefficients as are the

nodes of the element. Thus,

w(&,n) =a, +a2&+a2n+aA&n+as&2 +abrf +al&2n+ah&ry +"2rf (4.2.2)
By applying the interpolating expression (4.2.2) to each of the nodes,
we create an algebric system of 9 equations which may be solved for

the 9 unknown coefficients a,, /=1,9. The system is :ue u =Ca, where
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-1-1 ! 131-12 -1 |
-10 0 10 O 0
-11-231131 1 -1 1|

o

!
!
!
I O-1001L o0 o0 o

c=1 0 0 0 0O0 O 0 0
1 0 1 0 0 10 0 0
11 -1A-1211-1 | |
I 10 0 10 0 0 0
(11 A1a1ax | 1

Thus, a=C~'"-ue (4.2.3)

Substituting equation (4.2.3) into (4.2.2), we obtain for a random point

fa'

EnN\ u@E&n)=N\én,.....&n) a —B-9.~(B-0 )-ue and by defining :

e=PRB-Cl=>¢ =Bi-Cyl then u@,n)=ce-u*= (&,n). The basis

functions are thus given by the expression
N=A-c! (4-2.4)
The values of the unknowns u{ vary continuously from element to

element because the values of the basis functions at the nodes satisfy
the identity:@\¢,n,) = VW(¢,n,) =0,j*I.

Expanding equation (4.2.4) we obtain the explicit dependence of
the basis functions on & and n. A similar analysis may be followed for
the 4-point element, and the final expressions for all the basis functions
are the following:

@(1) = .25T(&-1-rr*n-1.)
P(2) = -5**(€-1.)*(L.-mr*m)
P(3) = .25*¢*(&-1.)*mr*(T+1.)
¢®(4) = .5%(1.-8*¢)*n*(n-1.)
W(5) = (1-8)*(1--n*n)
@(6) = ,5*(1 .-&*&)*n*(n+1.)
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@(7) = .25*¢*(&+1.)*n*(n-1)
@(8) = .5*¢*(§+1.)%(1.-n*n)
@®(9) = .25%¢*(&+1 ,)*'n*(n+1.)
are the diquadratic basis function and :
Y(1) = .25%(1.-)*(1.-n)
P(2) = .25%(1 .-9*(1 ,+n)
PY(3) = .25%(1 .+&)*(1 .-n)
P(4) = .25%(1.+§)*(1.+n)

are the bilinear basis functions.
The derivatives with respect to ¢ and n, are:
®¢(1) = n*(n-1.)*(.5*¢-.25)
®&(2) = (1.-n"n)*(¢--5)
®&(3) = n*(n+1.)*(.5*¢-.25)
O (4) = -& M*(N-1.)
@¢(5) = -2.%&*(1.-1*n)
Pg(6) = -EM(M+1)
®E(7) = M*(n-1:)*(-5*¢+.25)
®E(8) = (1--n*n)*(&+-5)
®&(9) = M*(n+1.)*(.5*¢+.25)
on(1) = £%(&-1.)*(5*n-.25)
o) = (1.-§*8)*(M--5)
®n(7) = &(&+1.)*(.5"n-.25)
®n(2) = -n*€¢*(&-1)
on(s) = -2.n*(1.-¢*¢)
®n(8) = -n*&*(&+1)
on(3) = &(&-1 .)*(.5*n+.25)
en(6) = (1.-§*¢)*(n+.5)
on(9) = &*(&+1 .)*(.5*n+.25)

If the unknown functions are interpolated in terms of the original

spatial coordinates, we obtain expressions like
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ux,y) =r, +/2x+ N+ Ta™ + - (4.2.5)
Switching between the (,n) and the (x,y) coordinate systems imposes

some consistency relations. More specifically, if we consider that

>(i,"D==“/\(&,n) and take in account that the nodes remain, in

reality, the same:

u(x,y) = ZNiig(x,y).n(x.v)) (4.2.6)
So, if xi,yi are the nodes then: u.=y| +/xi+y3yi+.. (4.2.7), and if we
combine equations (4.2.5), (4.2.6), (4.2.7) then:
DdA) = Z (A +rXxi+r,yi+-)<Pi . which means:
A HF2X+H/ N+ -=AZPi+"'2Z)iPi+ K EKPIi+---0or :

S VSUX=S (&N =2 ViPi (4.2.8)
These are the equations of isoparametric mapping as we introduced

them above.

4.3 The integrally weighted governing equations
The governing equations of the flow, weighted integrally with the

basis functions, result in the following continuity, R'c, momentum, R'n ,

and kinematicR'K residuals:

4 = £V uilldV (4.3.1)

— f (—+ WV «<-V-r—-qg)(pidV 4.3.2

K = X(Glt + WV «-V-r Frg)(pl ( )
r dh dh

=@ e ds 4.3.3

K = h(dt dx ) ( )

By applying the divergence theorem, in order to decrease the order of

differentiation, equation (4.3.2)) reduces to:

Yiu VW----Lg ' -T-YP* dV — (a-TeldS (4.3.4)
At Fr-J

where T the dimensionless stress tensor of the fluid (see § 3.1).
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Since essential boundary conditions for u and v are applied to all
boundaries of the domain except at the outflow and along the free
surface, equation (4.3.4)) will be replaced by equations (3.1.4), (3.1.8)
and (3.1.9). Along the free surface of the computational domain, the
surface integrand of equation (4.3.4) will be replaced by equation
(3.1.6). An interesting point in the implementation is the evaluation of
equation (4.3.4) along the outflow. Instead of imposing some sort of
boundary conditions (e.g. periodic), we extend the range of the Galerkin
expansion up to and including the outflow. As a result, the outflow
conditions come as part of the solution. This allows description of the
developing flow without reflections caused by less efficient boundary
conditions (Malamataris,1991).

The governing equation of the heat transfer problem, weighted

integrally with the basis functions, results in the following residuals:

° } dt ~ RePr

By applying the divergence theorem, in order to decrease the

order of differentiation, equation (4.3.5) reduces
- N N\ ——— _
s dt + oo Pr\Ne \\V/ RoPr !J(YO «)«MS  (4.3.6)

The surface integral of equation (4.3.6) along the free surface is
replaced by the boundary condition:

d=-kvB-1n = A\(8,-60) (4.3.7)
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4.4 Space and time integration algorithms

Implementation of the finite element methodology necessitates
the computation of various spatial and temporal derivatives of the
unknown functions and the incorporation of these computations in the
evaluation of the residuals. The result is a nonlinear algebraic system of
equations in terms of the node values of the unknown functions, which
iIs numerically inverted to produce the solution.

Spatial derivatives are computed by applying the chain rule to

move from the (x,y) to the (&,n) coordinate system. Thus:

5Z_5Z3E 5Z.5n.

(4.4.1)
0X O& dx dn ox
dZ_ 3Z_ 8% 8Z.dn (4.4.2)
oy O& oy on dy
The derivatives Po—— etc are evaluated from the transformation
X ay
expressions:
oX o0& dx dn dx
ox . ox 6 ox on . (4.4.4)
dy o0& dy on dy
\ — —S/\ /\ N —
= 1=>"ON+ N b7 =1 (4.4.5)
dy o0& dy ondy
fy=0"%%L?I+"N?IL =0 (4.4.6)
oX o0& dx  0on dx

The equations (4.4.3), (4.4.6) consist an algebraic system of two

. The solution is:

equations, to which the unknowns are:

ox Ox
8¢ _dy/dn &n  -dy/dE (4.4.7)
OX J OX J
where J =—Q--——-s the Jacodian determinant.

553n 8n of
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According to the former method, equations (4.4.4) and (4.4.5) form a
similar system and have as solution the following expressions for

o¢_ on..
dy ' dy

0f _-dx/dn 3n_Jx/3E

(4.4.8)
dy J "dy J

The derivatives ~-,0 etc are computed directly by the

expressions (4.2.8) for isoparametric mapping. Thus:

dx _yx 0o, dy y 00,

(4.4.9)
0 N'OEDE Ty“oE

5 = . 5 g% =Tv %(gl- (4.4.10)

Evaluation of temporal derivatives needs to take into account the

variation of the physical grid with time. In particular, the partial derivative

in time at a given location cannot be simply computed as — n—+’(;
t

because during the time step/\ the node has moved in physical space.
Using the expression for the time derivative in a moving coordinate
system, we obtain

dz _dz -~ _dz dzdx dzdy

(4.4.11)
d dt dt dx dt dy dt
The velocity of the point in question is found from the time variation
of the physical location of the nodes. More specifically, we note that the

regriding during each time step displaces the nodes only in the y

direction. Thus,u = ot - and the partial time derivative is found
equal to
du = du__ du dy_ 44 121

dt dt dy dt

The residuals are evaluated numerically using nine-point Gaussian
integration. A system of non-linear algebraic equations results, which is

solved with the Newton-Raphson iterative method according to the
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scheme: q{nt])) = g(n) -I—~IRA(n)) where qT = [ux,vx,p\,hx,..uN,vN,pN,hN] is
the vector of the unknowns and J = dR/dq is the Jacobian matrix of the

residuals R with respect to the nodal unknowns g. The banded matrix of
the resulting linear equations is solved with a frontal solver (at each
iteration. The Newton iteration of all efforts converged quadratically in 3-
6 iterations, independent of the mesh resolution.

Time marching has been performed with the Crank-Nicolson
scheme. More specifically, for an equation of the form Z—i: F(z), we use
the implicit scheme:

—+2t~ z(n) = %[F(Z(,,)) + F(z(,+1)) (4.4.13)

which transforms the above differential equation into an implicit

equation of differences.
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5. RESULTS AND DISCUSSION

The results of our study are presented in this chapter. We apply
the previously developed computational methodology to study the effect
of waves on heat transfer from the wall. We first consider a flat film as a
preliminary validation case. Then, we concentrate on the effect of a fully

developed solitary wave train.

5.1 Heat transfer in flat film

In order to testify the validity of the code, we first carry out
simulations for the case where the film is flat. For this simple case we
can estimate the flow of the heat, just trusting our natural intuition. The
results corresponds to four Pe numbers, namely 10,50,200,1000. For
each Pe number, a diagram is presented, which describes the
temperature profile across the film at different downstream locations.

As a general remark figures 19a-19d are quite similar. The slope
of the lines on the wall gives the heat flux at the specific position x.
Sharper slope indicates higher heat flux. In each case the last straight
line represents the thermally full-developed field. This corresponds to
steady state conditions, where the quantity of heat which enters in the
fluid, leaves the film through the surface. The other lines indicate how
the temperature profile varies through the fluid as the thermal field is
developing.

It is noted that, the heat flux has been nondimensionalized with
respect to the heat flux, q0 corresponding to the thermally fully
developed flat film. The value q0 has previously been derived

analytically (equation 3.2.6).
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Figure 19a. The distribution of the temperature for Pe=1000, at four

different x-positions.

Figure 19b. The distribution of the temperature for Pe=200, at four

different x-positions.

Figure 19c. The distribution of the temperature for Pe=50, at four

different x-position.
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Film thickness

Figure 19d. The distribution of the temperature for Pe=10, at four

different x-positions.

The next figure (Figure 20) shows the spatial variation of the wall

heat flux for the different Pe numbers .

Figure 20. The heat flux from the wall for 4 Peclet number: 10, 50, 200
and1000

From Figures 19a-19d, it is confirmed that the higher the Pe number
the longer distance needed for the development of the thermal profile.
Second, the slope of the curves becomes sharper as the Pe
decreases. This impicates that the heat transfer from the wall to the

liquid very close to the wall is more efficient for smaller Pe.
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5.2 Wavy film: The flow field

In this section we present computer simulations of transient wave
growth according to the finite-element methodology outlined in chapter
4. We report computer results under conditions (54% by weight glycerol
in water, ¢=6.4°, Re=19.33, sinusoidal inlet disturbances with frequency
1.5) that simulate the experiments of Liu & Gollub (1994).

The following figure (Figure 21) shows the free surface profile at
four different time instants. Five consecutive solitary crests are
contained in each instant. We can notice, that the nonlinear evolution of
the disturbance occurs through a gradual bending-forward of the crest,
which triggers the development of front-running ripples. The number of

ripples increases with the height of the crest.

Rim thickness

Figure 21. The formation of a series of a stationary solitary waves.

The first solitary crest is in the initial stages of development, while the
last two appear to have reached the stationary stage, and thus travel at
constant phase velocity, without further change in shape. The flow field
imposed by the stationary waves is the one on which we are based in

order to solve the thermal problem.
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5.3 Heat transfer to the wavy film: transient phenomena

We note at first that, though the present flow problem is fully
developed, the thermal is not. If we consider the wall heat source turned
on at time zero, we first have a strong temporal transient because of the
very high temperature gradients close to the wall. Representative
results are shown in Figure 22, where the dimensionless heat flux from
the wall is plotted as a function of spatial position for four consecutive
time instants. We observe the expected drastic decrease of the mean
spatial heat flux with time, which is characteristic of the initial transient.
It is also interesting to observe that the passage of a wave has a very

strong effect at the initial time instants.

Figure 22. The heat flux from the wall for Pe=10 in four consecutive

time instants.

The time needed for the initial transient to fade out is expected to
depend on Pe number. Thus, to compare the results for different Pe, it
IS necessary to take into account the pertinent time-scale of transient
effects.

If heat transfer was taken place purely by conduction, the
characteristic time would be determined by the thermal diffusivity and

would be equal to to=hN2/a. Thus, we use to in order to compare in
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Figure 23 results for two very different Pe numbers, 10 and 1000. More
specifically, we plot the respective heat flux distributions at respective
instants which correspond to the same dimensionless time when

nondimensionalized with to.

in two different time instants.

Figure 23 shows that there is perfect coincidence of the results
for the two different Pe numbers over the flat portion of the film. This
was to be expected given the local lack of convection, and simply
confirms the correct selection of characteristic time to. As convection is
provided only by the velocity component normal to the wall, we expect it
to become significant only under the high-slope regions of the solitary
wave profile, where the v-component of velocity is non-negligible.
Indeed, the differences in each pair of curves of Figure 23 are a

manifestation of the effect of convection.

5.4 Wavy film: The thermally quasi-developed flow

Next we consider the thermal behavior after sufficient time for the
transient behavior to fade. The flow corresponds to the conditions of the
experiment of Liu & Gollub, ie. Re=19.33, We=5.43, cp=6.4° and f=1.5
Hz. Note that the flow is created so that it has become stationary before
point x0, ie the solitary waves have attained a permanent shape and

move with constant phase speed. In general, the downstream location
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where the system becomes hydrodynamically fully developed is easily
modified by controlling the amplitude of inlet disturbances.The flow
conditions tested (small Re and inclination angle) do not produce waves
with internal recirculation [Malamataris et al, 2002]. The enhancement
of wall heat transfer under such conditions has previously been
attributed [Jayanti & Hewitt, 1995] mainly to the thinning of the liquid
film, which is caused by the accumulation of mass in the solitary humps.
The present rigorous simulation provides a means of investigating in
detail the relative effects of conduction and convection under the mild
flow conditions imposed. It is recalled that vertical films at higher Re
show significant enhancement, which was shown [Miyara,1999] to be

related to the recirculating region developing under the crests.

Dimensionless downstream distance, x/H

Figure 24. The spatial distribution of the wall heat flux for Pe=50, at two

different time instants separated by 20 dimensionless time units.

Once the initial transient has faded away, the spatio-temporal
evolution is only dictated by the passage of the solitary waves. Figure
24 shows such an example, which refers to the distribution of the wall
heat flux for Pe=50, at two different instants separated by 20

dimensionless time units.A striking observation is that-beyond a rather
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short development region- a spatially periodic distribution of the heat
flux appears, which is in correspondence to the instantaneous location
of the solitary waves and moves with their constant phase velocity. This
flux distribution indicates that the thermal problem reaches a quasi-
steady state, an observation that should be expected because of the
large thickness of the wall thermal boundary layer (Pr=0.5-10)
compared to the thickness of the liquid film.

In order to investigate the effect of Peclet number, we consider a
range of values (Pe=5-200). Figure 25 shows one period of the spatial
distribution of the wall heat flux (in the quasi steady-state) for three

representative cases.

Dimensionless downstream distance, x/H

Figure 25. The spatial distribution of the wall heat flux for different Pe

numbers.

Also included is the hypothetical distribution, where the heat flux
at each location corresponds to a thermally developed flat film with the
local thickness. The latter is considered a satisfactory approximation of
the effect of pure conduction in the long-wave Ilimit. Figure 25
demonstrates the effect on wall heat flux of two different time (or length)

scales associated with the passage of solitary waves. The shortest

Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 05:22:47 EEST - 18.216.241.64



scale corresponds to the oscillations of the front-running ripples. It is
seen to affect heat transfer significantly less than in the conduction limit,
and its net effect appears to be low. The longer scale corresponds to
the wavelength of the solitary train, and it affects all the Peclet number
values considered. In particular, for Peclet number<50 the thermal
behavior of the thin substrate between crests is roughly equivalent to
pure conduction. These predictions can be explained by considering
that the passage of each wave temporarily forces fluid parcels to
approach the wall, while at the same time decelerates and elongates
them in the streamwise direction. The extent of additional transient
conduction taking place under these conditions is evidently dictated by
the relation of the characteristic thermal diffusion time to the
aforementioned flow oscillation scales.

In addition to the above, Figure 25 demonstrates a nonlinear
phenomenon associated with the crest of the waves. In the conduction
limit, the crest offers the highest resistance to heat transfer, and thus
mitigates the positive effect of the thin substrate. However, we presently
observe that, with increasing Peclet number, the minimum of the wall
heat flux is raised significantly and is also shifted behind the wave crest.
This behavior is associated with the thermal inertia of the fluid masses
transported by the solitary humps and is also manifested in the
temperature field below the wave, which is depicted in Figure 26a-d.
More specifically, the temperature iso-contours -which at small Peclet
number are roughly self-similar to the shape of the free surface-
gradually become convection-dominated, with a sharp peak at the front

of the solitary hump and a weak maximum under the tail.

Institutional Repository - Library & Information Centre - University of Thessaly
12/06/2024 05:22:47 EEST - 18.216.241.64



Dimensionless downstream distance. x/H

Figure 26. Quasi-steady temperature distribution below the wave for
different Pe numbers, (a) Pe=5, (b) Pe=25, (c) Pe=50 and (d) Pe=200.

The mean heat flux through the wall (resulting from a combination
of all the above contributions) is shown as a function of Peclet number
in Figure 27. The value for Peclet number 0.01 corresponds to the
conduction limit of Figure 25. It is interesting to note that a significant
enhancement beyond the conduction limit is predicted for a wide range
of Peclet numbers. Thus, the present computation supports the
conclusion that convection contributes significantly to the wall heat
transfer even when the solitary waves do not have a strong

recirculation.
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Figure 27. The mean wall heat flux along one wavelength as a function

of Pe number.
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6. CONCLUDING REMARKS

The main conclusions from the present work are the following:

- The thermal energy balance has been incorporated in a Galerkin finite-
element scheme, and the code has been used to study heat transfer
from an isothermal wall to an inclined liquid film.

- Validation results for a flat film agree with the analytic solution in the
steady-state limit. They also demonstrate the effect of Peclet number
on the heat flux from the wall and on the extent of the thermally
developing length.

- Detailed results are derived on the effect of a regular solitary
wavetrain on heat transfer from the wall. More specifically, it is found
that:

- A stationary, spatially periodic flux distribution develops, which
follows the waves.

- The smaller the Peclet number the stronger the oscillation of the
heat flux around the mean value.

- Convection, imposed by the vertical wavy motions has an non-
negligible impact on heat transfer, particularly at the crest and the tail
of the solitary waves.

- For a wide range of Peclet numbers, the effect of convection, in
combination with the thinning of the substrate between successive
waves, results in heat transfer enhancement significantly above the

conduction limit.
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Appendix

List of the main subroutine of the thermal problem

SUBROUTINE TH FIND
C

PARAMETER (NXNP=313000,ND=145000,NL=31000,NCRIT=39,NG=19999)
C

IMPLICIT REAL*8 (A-H.O-Z)

COMMON /DERMAP/ DXDH(9,3),DYDH(9,3)

COMMON /JACOB/ XC,XEDA,YC,YEDA,Y1,AY1,CX,CY,EX,EY

COMMON /INDATB/ ERRMAX.IFPRNT.MAXITE

COMMON /MESH/ NEX1,NEX4,NEX,NEY,NX,NY,NX1,NX14,NX2,NXFR,NXP

COMMON /INOUT/ NCR,NLP,NCO,NSA,NPP,NLI,NHI,NTR,NSH

COMMON /GSPNT/ GPX(9),GPY(9),GWEI(9),GPT(3), GWE(3)

COMMON /INOT/ TSTEP,TIME,TMAX, TIMEL ,ICONT,NSTEP,IPRD,|PERT,ISTEP

COMMON /FRON1/ NP,NH,NHADD,NE,NOP(NL,12),ND1,NELL,NTRA

COMMON /TH_FRON2/ TH_NOPP(ND), TH_MDF(ND), TH_NBN(NL), TH_NCN(NL),

* TH_NCOD(NXNP)

COMMON /FRON3/ R1(NXNP),SK(NXNP),AA(25,25)

COMMON /XNDVAR/ X(ND),Y(ND),U(ND),V(ND),P(ND), T(ND)

COMMON /OLDVAR/ HOLD(ND),YOLD(ND),UOLD(ND),VOLD(ND),POLD(ND),

* TOLD(ND)

COMMON /SHPFCT/ PHI(9),PHIX(9),PHIY(9),PHIC(9),PHIE(9),PHIP(4)

COMMON /BDYEL/ NBL(NL),NBO(NL),IQ,LB

COMMON /NODCOO/ XE(9),YE(9),YE1 (9)

COMMON /PAR/ RE,FR,CA ALPHALAMP FREQ XLDIM.WANU,BETANSTP1
COMMON /TH_PAR/ DIFF,CONV_H,T_0,T_1,T_INF

COMMON /PRES/ NNPRES(4),IL

COMMON /RES1/ RF(NXNP)

COMMON /XYWGT/ XWGHT(NG),XAGHT(NG),YAGHT(NG),YWGHT(NG)

COMMON/SHPF1/ PHX1(9),PHY1(9)

COMMON /JACB1/ XC1 XEDAL YC1 YEDA1, Y1l

DIMENSION R(31,31)
DIMENSION 1U(9),1V(9),IP(4),IH(3),NNFRSF(3),IT(9)
DIMENSION DXX(3),DYY(3),DXY(3),DYX(3),DYTDH(3)

DATAIT /1,2,3,4,5,6,7,8,9/
DATAIU /1,4,6,9,11,13,15,18,20/
DATA IV  /2,5,7,10,12,14,16,19,21/
DATA IP  13,8,17,22/

DATA IH  /23,24,25/

DATA NNPRES /1,3,7,9/

DATA NNFRSF /10,11,12/

NGP =9
Q =9

L =4

EEU  =0.
EEOLD =0.

XIM=1./2.
o Initialize Jacobian ,R, and remember residual ,R1, is initialized in FRONT

31

DO 1011 =
=131

DO 101 J
R(.J) =0,
01 CONTINUE

1
1,

o
o Give global coordinates to the master element for isoparametric mapping

o
DO 102J =1,1Q
LN = IABS(NOP(NELL,J))
XE@J) = X(LN)
YEJ) =Y(LN)
YE1(J) = YOLD(LN)
02 CONTINUE
o
o Implement steady or Crank-Nicholson transient
o
IF (ICONT .LE. 1) THEN
XIM =1.
ELSE
XIM =172
END IF

o
o Assembly of R and R1
o
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DO 103K = 1, NGP

C  =GPX(K)

E = GPY(K)

CALL TFUNC(C.E)

CALL DER(C.E)

TEVX = FEVX(T,NELL,EEU)
TEVY = FEVY(T,NELL,EEU)

TEV = FEV(T,NELL,EEU)
UEV = FEV(U,NELL,EEU)
VEV = FEV(V,NELL,EEU)
WE = GWEIKK)*Y1

WEI = GWEI(K)

IF (ICONT GE. 2) THEN

CALL DERI(C.E)

TEVOLD = FEV(TOLD,NELL,EEOLD)

TOVX = FEVX1(TOLD,NELL,EEOLD)

TOVY = FEVY1(TOLD,NELL,EEOLD)

UEVOLD = FEV(UOLD,NELL,EEU)

VEVOLD = FEV(VOLD.NELL.EEU)

YEV = FEV(Y,NELL,EEU)

YEVOLD = FEV(YOLD,NELL,EEU)
DTDTT = (TEV-TEVOLD)/TSTEP
DYDTT = (YEV-YEVOLD)/TSTEP
DTDTP = DTDTT-TEVY*DYDTT
ENDIF

—
o Compute -R1 (load term)
—
DO 104 Kl =1, 1Q
1X = TH_NOPP(IABS(NOP(NELL,KI)))
R1(IX) = R1(IX) - XIM*WE*(DIFF*(PHIX(KI)*TEVX+PHIY(KI)*TEVY) +
* (UEV*TEVX+VEV*TEVY)*PHI(KI))
IF (ICONT ,GE. 2)
*R1(IX) = R1(IX) - XIM*WE*(DIFF*(PHX1(KI)*TOVX+PHY1(KI)*TOVY) +
. (UEVOLD*TOVX+VEVOLD*TOVY)*PHI(KI))
IF (ICONT GE. 2)
*R1(IX) = R1(IX)-WE*DTDTP*PHI(KI)
o
o Compute the derivatives of R1 wrt T
o
DO 105KJ =1, 1Q
KKI = IT(KI)
KKJ = IT(KJ)
R(KKI,KKJ) = R(KKI.KKJ) + XIM*WE*(DIFF*(PHIX(KI)*PHIX(KJ) +
. PHIY(KI)*PHIY(KJ)) +
* (UEV'PHIX(KJ) +
. VEV*PHIY(KJ))*PHI(KI))
IF (ICONT .GE. 2)
'R(KKI.KKJ) = R(KKI,KKJ) +  WE*(PHI(KJ)7TSTEP
* PHIY(KJ)*DYDTT)*PHI(KI)
< 05 CONTINUE
o
04 CONTINUE
o
CONTINUE
o
o Free boundary condition at the outflow
o
IF (NBO(NELL) .EQ. 1) THEN
o
DO 108 K =1,3
C =1.
E = GPT(K)
CALL TFUNC(C.E)
CALL DER(C.E)
TEVX = FEVX(T,NELL,EEU)
IF (ICONT GE. 2) THEN
CALL DERI (C,E)
TOVX = FEVX1(TOLD,NELL,EEOLD)
ENDIF
o
WT = GWE(K)*YEDA
o
o Add the appropriate contribution to -R1
o
DO 109 Kl =7,9
1X = TH_NOPP(IABS(NOP(NELL,KI)))
R1(IX) = R1(IX) + XIM*WT*DIFF*PHI(KI)*TEVX
IF (ICONT .GE. 2)
*R1(IX) = R1(IX) + XIM*WT*DIFF*PHI(KI)*TOVX
o
=—Computation of derivatives for volume integrals
o

DO 110KJ =1,1Q
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KKI = IT(KI)

KKJ = IT(KJ)

R(KKI.KKJ) = R(KKI.KKJ) - XIM*WT*DIFF*PHI(KI)*PHIX(KJ)
110 CONTINUE
C
109 CONTINUE
C
108 CONTINUE
C

END IF
C
C Convection boundary condition along the free surface
C ATTENTION: CONV_H=Bi because of nondimensionalization
C T_INF=0 when Tair=To
C

IF (NBL(NELL) .EQ. 1) THEN
C

DO 600 K =1,3

E =1.

C = GPT(K)

CALL TFUNC(C.E)

CALL DER(C.E)

TEV = FEV(T,NELL,EEU)

IF (ICONT .GE. 2) THEN

CALL DERI (C.E)

TEVOLD = FEV(TOLD,NELL,EEU)

ENDIF

SQT2  =XC*XC+YC*YC
SQT  =SQRT(SQT2)

SQT1  =SQRT(XC1*XC1+YC1*YC1)

WE = GWE(K)

DO 601 KI =3,9,3

IX = TH_NOPP(IABS(NOP(NELL KI)))

RI(IX) = RI(IX) - XIM*WE*PHI(KI}*CONV_H*(TEV-T_INF)*SQT

IF (ICONT GE. 2)

*R1(IX) = R1(IX) - XIMWE*PHI(KI)*CONV_H*(TEVOLD-T_INF)*SQT1

DO 601 KJ =1,9
KKI = IT(KI)
KKJ = IT(KJ)
R(KKI,KKJ) = R(KKI,KKJ) + XIM*WE*PHI(KI)*CONV_H*PHI(KJ)*SQT
601 CONTINUE
C
600 CONTINUE
C
END IF
C
C Tranfer the Jacobian to the Frontal solver
C
DO 1721 =1,25
DO 172J =1,25
AAQl) =R@Q,
172 CONTINUE
C
RETURN
END
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