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RAREFIED GAS FLOW BETWEEN MOVING PLATES 
WITH HEAT TRANSFER

SERAFEIM G. MISDANITIS

University of Thessaly, Department of Mechanical and Industrial Engineering, 2009

Abstract

The state of a single-species monatomic gas under rarefied conditions remains a 

fundamental research problem with important applications. The most powerful 

approaches to handle this type of flows is the Direct Simulation Monte Carlo method and 

the kinetic theory. Here, we apply the latter one.

In particular, we apply the non-linear Bhatnagar-Gross-Krook (BGK) and Shakhov 

(S) kinetic model equations, subject to Maxwell diffuse boundary conditions, to solve the 

one dimensional compressible Couette flow problem coupled with heat transfer. The 

intermolecular collisions are modeled by the inverse power law model. The 

computational scheme is based on finite differencing in the physical space and on the 

discrete velocity method in the molecular velocity space..

The numerical solution is valid in the whole range of the Knudsen number. Its 

accuracy has been tested in several ways including the recovery of the corresponding 

analytical solutions at the free molecular and hydrodynamic regimes and the successful 

comparison with previous results. In all cases excellent agreement has been 

demonstrated. In addition, a detailed comparison between the simple BGK model with 

the more sophisticated Shakhov model, clearly indicates that the BGK model remains a 

reliable choice at least for engineering purposes. Also, the application of the hard sphere 

and Maxwell molecular models for intermolecular interaction shows that the 

intermolecular potential model does not significantly influence the flow properties and 

characteristics.

Results for the bulk quantities of velocity, temperature, vertical and horizontal heat 

flux, density, pressure and shear stress have been presented in terms of the three
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dimensionless parameters describing the flow configuration, namely the rarefaction 

parameter, the temperature ratio and the relative velocity of the plates.

Several interesting issues related to the combined momentum and heat transfer effects 

have been studied. It has been found that the velocity slip and the temperature jump are 

larger at the hot plate compared to the ones at the cold plate. Moreover, the pressure 

distribution is a function of the spatial variable in the transition regime. This is also due 

to the rarefaction of the flow. Even more, the flow is characterized by the presence of an 

horizontal axial heat flux, which increases as the rarefaction of the gas is increased and 

which is present only when both velocity and temperature gradients exist in the flow. 

This is a non-equilibrium cross effect and it vanishes at the hydrodynamic limit.
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NOMENCLATURE

c, dimensionless molecular velocity vector 

/ distribution function

f° absolute Maxwellian

fM the local Maxwellian

g distribution function, dimensionless 

H characteristic length

h perturbed distribution functions

k Boltzmann constant, [ J / K]

Kn Knudsen number, dimensionless

m mean molecular mass, [&g]

Ma Mach number, dimensionless

n0 equilibrium number density [number of particles /

P pressure of the gas, \Pa\

Pu stress tensor, [Pa]

P0 equilibrium pressure, [Pa\

q heat flux vector, dimensionless

q heat flux vector, [iV / m2 J

R gas constant, [j I (kg

Re Reynolds number, dimensionless

T temperature of the gas, [A-]

T0 equilibrium temperature, [AT]

Tx temperature of the lower wall, [A^]

T2 temperature of the upper wall, [AT]
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u0 Maxwellian equilibrium velocity [m / sec] 

u macroscopic velocity vector, dimensionless 

u macroscopic velocity vector, [m / sec]

U0 velocity at the walls, dimensionless 

U velocity at the walls, [m / sec] 

v collision frequency, [sec-1 J 

(p). mean thermal velocity, [m / sec] 

υ0 most probable molecular velocity, [m/sec] 

x, y coordinates, dimensionless 

x,y,z coordinates, [m]

Greek

a accommodation coefficient, dimensionless 

β temperature parameter at the walls, dimensionless 

γ ratio of specific heats, dimensionless 

δ gas rarefaction parameter, dimensionless 

Θ mean intermolecular spacing, [m]

λ0 mean free path of the mixture molecules, [m] 

μ viscosity of the gas, \Pa sec] 

ξ average molecular velocity, [m / sec] 

ξι molecular velocity vector, / sec]

p number density, dimensionless

p, parameter at the lower wall needed for the evaluation of the boundary conditions

p2 parameter at the upper wall needed for the evaluation of the boundary conditions

σ molecular diameter, [m] 

σ0 diffusion slip coefficient, dimensionless
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cr. stress tensor, dimensionless 

&j stress tensor, [Pa = N / m2 J

viscous slip coefficient, dimensionless 

crr thermal slip coefficient, dimensionless 

r temperature of the gas, dimensionless

ω intermolecular model, dimensionless
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1

Introduction

1.1 Introduction

The ability of mankind to develop and manufacture tools to deal with daily needs was 

something that characterized the early stages of evolution. This has led people to develop 

a "self-centered" theory regarding the size of these devices, within a range of two orders 

of magnitude bigger or smaller than its size (Figure 1.1). However, there were many 

efforts for the construction of buildings and equipment outside this range. A typical 

example is, in the one hand, the competition for the construction of the highest building 

and, on the other hand, the construction of small-sized mechanisms by the watchmakers. 

The need to reduce the size, weight and energy savings coupled with increased needs for 

credibility and proper functioning of conventional-sized machines led humans shift to the 

microcosm. The invention of the microscope brought this need even closer to reality. 

Smaller and smaller in size devices continued to be manufactured reaching to a peak with 

the construction of integrated circuits (lOnm).

Only few people envisioned from the very beginning the evolution of technology in 

such small dimensions [Feynman, 1977]. Yet, today's technology comes to confirm them. 

Micro-and nano-devices with dimensions less than 100mm are now a reality. This 

evolution of technology with applications in micro fluid-dynamics [Gad-el Hak, 2002] in 

vacuum devices [Umrath, 1998; Reese & Gallis, 2003], in micro- (MEMS) and nano­

electro-mechanical systems (NEMS) [Reese & Gallis, 2003; Ho & Tai, 1998] and in 

devices used at high altitudes and in space technology [Ho & Tai, 1998; Kamiadakis & 

Beskok, 2000] (> 50 Km) raised the need for better and more detailed understanding of 

the phenomena that are developed in such conditions.
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Figure 1.1: Travelling to the microcosm [Gad-el Hak, 2002],

The development of such devices has opened up an entirely new field of research 

where the behaviour of flows far from equilibrium conditions is very important. The 

traditional methods of dealing respective problems (Euler equations and Navier-Stokes 

[White, 2002]) do not apply, since the theory of continuous medium collapses.

To deal with these cases, several approaches are used depending on the application 

under study. The different methodologies for flow modelling are shown in Figure 1.2. To 

deal with the new phenomena occurring within the flows, slip boundary conditions 

[Kamiadakis & Beskok, 2000] of first or higher order are applied to the already known 

Euler and Navier-Stokes equations, or new advanced equations are developed such as 

Burnett, super Burnett and others. However, the results in many cases are not satisfactory 

leading to the need of modelling the flow in molecular level, where the approaches are 

either deterministic, through the application of molecular dynamics (MD), or 

probabilistic, through the implementation of the Boltzmann equation or the DSMC 

method. Given the vast computational effort required by the MD method, the statistical 

study and the development and application of relative methodologies have attracted a lot 

of attention.

The probabilistic approach is based on a statistical study of the behaviour of particles 

that consist the fluid and the macroscopic properties arise as secondary quantities. Part of 

this effort focuses on determining the distribution function, which obeys the well- 

known Boltzmann equation and through which all the macroscopic

2
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Figure 1.2: Molecular and continuum flow models [Gad-el Hak, 2002],

quantities can be evaluated [Boltzmann, 1995; Ferziger & Kaper, 1972; Huang, 1987; 

Cercignani, 1975; 1988; 1969; Chapman & Cowling, 1952; Kogan, 1969]. The 

Boltzmann equation is based on the kinetic theory of gases used to describe transport 

phenomena, with emphasis on dilute gas systems. Like all methods, so the statistical 

approach through the Boltzmann equation is characterized by its respective advantages 

and disadvantages. However, the solution of this equation, though painful, is widely used 

today and leads to a good approach for a larger number of problems with satisfactory 

results.

1.2 Knudsen number and gas rarefaction

Rarefied gas flows are mainly found in small devices and low-pressure applications. 

The characteristic number that determines the degree of rarefaction and the area in which 

continuum model equations are valid is the number Knudsen (Kn), which is defined by 

the relationship [Kamiadakis & Beskok, 2000]

(1.1)
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where L is a characteristic dimension of the problem, λ the mean free path of the 

particles, y the ratio of specific heats, Ma the Mach number and Re the Reynolds 

number. The mean free path is defined as the average distance travelled by molecules 

between collisions and can be expressed mathematically by multiplying the average 

molecular velocity ξ to the mean free time, i.e.

λ = ξτ.

The average molecular velocity is given by [Kamiadakis & Beskok, 2000]

F= l3kuT
= J3RT.

m

(1.2)

(1.3)

where kB is the Boltzmann constant (kB =1.3805x10 23 J/k), m the molecular mass 

and R the specific gas constant. If v is the collision frequency, which is determined by 

dividing the number of collisions N that occur in time unit to the total number of 

molecules n in a unit volume, then the mean free time between collisions equals

T v N '
(1.4)

The mean free path cannot be measured directly and may be calculated on the basis of 

measured macroscopic quantities in accordance to the relationship [Sharipov & Seleznev, 

1998]

4πμ
λ = ·

2 P
-υη (1.5)

where P is the local pressure, μ the dynamic viscosity at local temperature T, and

(1.6)

the most probable molecular velocity. The quantity u0 is often used to non- 

dimensionalise the molecular velocity. Another molecular velocity of some interest is the

/ \ 2mean thermal velocity (u) = —f=o0 .
\Ιπ

Also, the gas rarefaction parameter δ is frequently used, which is linked to the 

Knudsen number as follows [Sharipov & Seleznev, 1998]:

4
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(1.7)
δ _ yfn L _ \[π 1 _ LP I m _ LP 

2 λ 2 Kn μ y2kBT μυ0

The Kn number (or rarefaction parameter δ) is characteristic for any problem and its 

value characterizes the flow of gas. The local value of the Knudsen number in a particular 

flow determines the degree of rarefaction and the degree of validity of the continuum 

model. The different Knudsen number regimes are determined empirically and they are 

therefore only approximate for a particular flow geometry and they have been specified in 

the pioneering experiments conducted by Knudsen in 1909. In the limit of zero Knudsen 

number, the mean free path is zero, i.e. for P* 0 the viscosity is zero and then the 

Navier-Stokes equations reduce to the inviscid Euler equations. The equivalent molecular 

viewpoint is described by the local Maxwellian distribution. As Kn increases, rarefaction 

effects become more important, and eventually the Navier-Stokes equations break down. 

The different Knudsen number regimes are depicted in Figure 1.3, and can be 

summarized as follows:

L Kn = 0,(δ ->ccy. Hydrodynamic Limit, in which the Euler equations are 

valid.

ii. Kn< ΚΓ3 (j >103): Hydrodynamic Regime, in which the Navier- Stokes 

equations coupled with no-slip boundary conditions are valid.

Hi. ΚΓ3 <A«<10“'(l03 <£<1θ): Slip regime, in which the Navier-Stokes

equations coupled with no-slip boundary conditions are valid.

iv. 10_l <A>7<1θ(ΐΟ<<5<10_l): Transition regime, in which the Boltzmann

equation is valid. It is noted that the validity of the Boltzmann equation is 

extended well outside the transition regime.

v. A>z > 1 θ(<5 < 10_1): Free molecular regime, in which there are no collisions

between the molecules.

5
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Figure 1.3: Knudsen number regimes [Gad-el Hak, 2002],

The logarithmic chart shown in Figure 1.4 [Bird, 1994] presents the limits of various 

theories. On the horizontal axis the number density n/n0 (or the mass density p/p0) varies 

from 10”10 up to 102, while on the vertical axis the characteristic dimension L of the 

problem varies from 10“8 (m) up to 102. The reference densities p0 and n0 are computed at 

standard conditions. Additional quantities that are used are the Knudsen number (Kn), the 

average spacing Θ between molecules and the average molecular diameter a. In the 

context of a double logarithmic plot of L versus p/p0 the three limits may be defined by 

straight lines, as shown in Figure 1.4. The dilute gas assumption requires that θ/σ »1 

and θ/σ =7 has been chosen as the limit. Since both Θ and σ are independent of L, the line 

is vertical and a scale for θ/σ has been set along the upper edge of Figure 1.4. The validity 

of the continuum approach has been identified with the validity of the Navier-Stokes 

equations. This requires that the Knudsen number should be small compared with unity, 

and Kn=0.1 has been chosen as the limit. So, the dilute gas approximation is valid for θ/σ 

<7, the continuum approach for Kn<0.1 and the neglect of statistical fluctuations for 

Z/0>1OO.

The lines describing the three limits very nearly intersect at a single point. This result 

would not be substantially altered by any reasonable changes in the typical dimensions 

and the criteria that define the limits. As density or characteristic dimension is reduced in 

a dilute gas, the Navier-Stokes model breaks down before the level of statistical 

fluctuations becomes significant. In a dense gas, on the other hand, significant 

fluctuations may be present even when the Navier-Stokes model is still valid. For

6
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θ I σ

Figure 1.4: Effective limits of different flow models [Bird, 1994],

example, the theory of Brownian motion is partially based on these equations although 

the phenomenon is, itself, a manifestation of significant statistical fluctuations. It is noted 

that kinetic theory may provide a unified solution in the whole range of the Kn number.

1.3 Scope of the present work

In the present work we investigate some transport phenomena far from equilibrium. 

We apply classical kinetic model equations to investigate the rarefied gas flow between 

two parallel plates maintained at different temperatures and moving with different 

velocities.

7
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Our objective is to determine the macroscopic distributions in the whole range of the 

Knudsen number in terms of arbitrary large relative velocity and the temperature ratio of 

the two plates. This is accomplished by using non-linear kinetic equations. In particular, 

the flow is modeled by implementing the nonlinear BGK [Bhatnagar, Gross, Krook, 

1945; Welander, 1954] and Shakhov [Shakhov, 1947; Sharipov & Seleznev, 1998] 

kinetic equations coupled to Maxwell diffuse boundary conditions [Maxwell, 1879]. It is 

pointed out that this is one of the first efforts of our group work with non equilibrium 

transport phenomena to implement non-linear kinetic equations. Through the present 

work, the developed numerical scheme is validated by solving this relatively simple flow 

configuration, investigating at the same time some very interesting phenomena which 

appear as the Knudsen number is increased. The contents of this thesis are as follows:

In the 2nd Chapter a literature review of the kinetic theory and kinetic models 

developed to approximate the flows is presented. Also, available research work solving 

the specific problem under consideration is discussed. Chapter 3 includes the problem 

description and the corresponding kinetic equations based on the implemented BGK and 

Shakhov models. In Chapter 4 the implementation of various projection procedures to 

reduce the computational effort is described. The numerical scheme is described in 

Chapter 5. Analytical results for both the free molecular and the hydrodynamic regimes 

are provided in Chapter 6. Also, basic conservation principles and flow properties valid 

for the whole range of the Knudsen number are derived. Chapter 7 provides extensive 

computational results. In particular, comparisons between the two kinetic models, the 

corresponding analytical solutions for both the free molecular and the hydrodynamic 

regimes and the intermolecular potential for the whole range of the Knudsen number are 

presented. Finally, in Chapter 8, a brief outline of the present work, followed by some 

concluding remarks and the description of the future work is presented.

8
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2
Literature Review

2.1 Basic concepts on kinetic theory

One of the most important theories which counts more than a century of life, is the 

kinetic theory of Maxwell and Boltzmann related to dilute gases. A particle at the time t 

is characterized by its position vector r = (.x,j>,z) and its molecular velocity vector

ξ = (ξχ,ξγ,ξζ), £e(-w , oo). The basic unknown is the function /, which is called 

distribution function of the particles and it is defined so that the quantity f (r ,ξ ,t)d' rd' ξ 

is the expected number of particles contained in the volume d'r around r with 

molecular velocity in ά 'ξ around ξ at the time t. The distribution function / satisfies 

the Boltzmann transport equation

fr + i —= ·/(/./■)· (2-1)ot dr

The left hand side of Eq. (2.1), represents the material derivative, is linear and it is treated 

with techniques from partial differential equations. The right-hand side of Eq. (2.1) 

represents the balance between molecules «lost» or «gained» during the binary molecular 

collisions. The term ·/(/,/’) is the nonlinear collision integral that describes the net 

effect of populating and depopulating particles through collisions on the distribution 

function. The collision integral is the source of difficulty in obtaining analytical or even 

numerical solutions of the Boltzmann equation. This term depends on the model of 

intermolecular potential, which is the way the particles interact during the collisions.

Equation (2.1) is therefore a non-linear integro-differential equation and describes the 

evolution of the distribution function in a state far from equilibrium thermodynamics. In 

the case where we have absolute thermodynamic equilibrium, the distribution function

9
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takes the form of the famous Maxwell equilibrium distribution, which is the solution of 

Eq. (2.1), without changes in time and space. The absolute Maxwellian is given by the 

relationship

/*0
/ =«0

m
3/2 f

\ 2nktiT0 J exp

< 2^fl^0 J
(2.2)

where n0 the number density, T0 the temperature and u0 the macroscopic velocity

vector, which is usually zero since we refer to absolute thermodynamic equilibrium 

conditions.

The macroscopic properties of the gas, with practical interest, calculated from the 

moments of distribution function are:

Number density

n(r,t)=\f(r£,t)d%, (2.3)

Velocity

Mr,t) = ~r— (2.4)Mr.I) 1

Stress tensor

P0 (r,t) = mfa-ui)-(£J-uJ)f(r^,t)d3£, (2.5)

Pressure

P(r,l) = j j(f - u)1 /(r,i,r)d3i, (2.6)

Temperature

Γ(γ)=—(2.7) 
3n(r,t)k J

Heat flux

q(r)= γ JjJ(£ “ uf (£ “ ") Ar> & » (2·8)
Here, k = 1.3806503x1 O'23 mrkg s'2 K'] is the Boltzmann constant and R = k/ m is the 

gas constant with molecular mass m. The mass density of the gas is computed via the 

equation ρ = ιηη, while density, pressure and temperature are related by the equation 

P = nkT.

10
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To simplify the solution of the Boltzmann equation, the collision term is approximated by 

introducing simplified collision models.

2.2 The BGK and Shakhov models

One of the first models presented was the BGK model (Bhatnagar-Gross-Krook) 

[Bhatnagar, Gross, Krook, 1945; Welander, 1954], described by

df , , df (2.9)
dt dr

where / the distribution function, fM the local Maxwellian and v the collision 

frequency. The local equilibrium distribution fM , is expressed as

,3/2

fM=n
m

2 nkBT j
exp

f ηι(ξ - uf ^
2 kBT

(2.10)

This model constitutes the simplest possible approach of the collision term, but also the 

basis on which other more advanced subsequent models have been developed. It is used 

extensively for a single component flow until today, yielding satisfactory results in the 

case of isothermal flows.

An improved version, was presented in 1974 by Shakhov, known as the S model 

[Shakhov, 1947; Sharipov & Seleznev, 1998]. The S model is described by the equation

dt dr μ fu 1 + -
2m

15 n(kBT}
-q'(Z-u)

-uf 5
2kBT ~f · (2.11)

The diversification of the BGK model presented in the distribution equilibrium which 

now includes the heat flux terms, making possible the export of results with sufficient 

precision for non-isothermal flows. The Shakhov model is capable to estimate 

simultaneously both the transport coefficients of viscosity and thermal conductivity 

correctly, yielding the correct Prandtl number of 2/3, while the BGK yields the wrong 

Prandtl number of 1.
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2.3 Boundary conditions
In determining the boundaries, our main concern is the correlation between the 

distribution function of particles emitted from the wall (/+) and that of particles arriving 

to the wall (/“). In general, this behaviour can be expressed mathematically as 

[Cercignani, 1988]

r =-\η^-ψ(ξ,ξ')Γ(ξ·)ά'ξ'. (2.12)
>ξ·η

where W (ξ,ξ') is the so called scattering kernel describing the type of interaction. In most 

cases we assume that the particles departing from the wall may be described by a 

Maxwellian based on the wall temperature [Cercignani, 1975]. This hypothesis was first 

described by Maxwell and referred to as diffuse scattering boundary condition (Figure 

2.1) [Cercignani, 1975]. However, the results are not always consistent with the 

corresponding experimental. To deal with this phenomenon, it was considered necessary 

to amend the diffusion boundary conditions. Under this amendment, a percentage a of 

particles, reflects on the wall and continues with the same and symmetrical speed in a 

plane perpendicular to the wall. The coefficient a is called tangential momentum 

accommodation coefficient and represents the percentage of particles that are absorbed by 

the wall and reemitted according to the wall properties, while 1 - a is the percentage of 

particles reflected from the wall without interacting with it. This factor is a characteristic 

feature of the gas-wall interaction and is obtained from experimental data [Cercignani, 

1975]. Then the kernel, which describes the diffuse-specular reflection, takes the form

2 e, mt2
Ψ{ξ' -> ξ) = (1 - α)δ{ξ'-ξ + 2η[ξ'·η\) +α ™ ^- -■ e 2*Λ . (2.13)

2πψΒΤw)

It was also described by Maxwell [Maxwell, 1879] and is known as specular-diffuse 

reflection (Figure 2.1).

The Maxwell boundary conditions are rather simple and commonly used, while the 

computed results are consistent in most cases with the corresponding experimental. 

Nevertheless, the Maxwell gas-wall interaction is not complete from physical aspect of 

view and there are problems where significant errors have been observed. In such cases
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more complex boundary conditions are used, (Cercignani-Lampis [Sharipov, 2002; 

2003]), which offer better accuracy.

2.4 Nonlinear Couette flow with heat transfer

The gas flow between parallel plates maintained in relative motion and at different 

temperatures may be considered as a prototype problem for more complicated flow 

patterns with many applications in the MEMS industry. When the flow is in the slip 

regime then the problem may be solved based on the Navier-Stokes-Fourier equations 

subject to slip and jump boundary conditions [Kamiadakis & Beskok, 2002]. However, 

when the flow is far form equilibrium, well inside the transition regime, which is the case 

in several microfluidic devices and systems, then this approach is not adequate to provide 

reliable results. In these cases the problem may be tackled in a very efficient manner 

based on kinetic theory [Cercignani, 1988].

In kinetic theory of gases this specific problem, namely the nonlinear Couette flow 

with heat transfer, has been examined by several researchers [Ziering, 1960; Huang & 

Hartley, 1968; Srivastava, 1971]. In addition, exact analysis of the this problem described 

by the nonlinear BGK model equation has been provided [Brey et al., 1987; Santos et 

al.,1989; Kim et al., 1989]. The imposed boundary conditions produce combined 

momentum and heat transport phenomena and their investigation provides some insight 

into the behavior of more complex non-equilibrium systems. One of the most interesting 

issues is the presence of a heat flux parallel to the plates, induced by the shear flow [Tij & 

Santos, 1995]. This is a cross effect, which is absent in the hydrodynamic limit. In most 

cases the implemented techniques include the moment-hierarchy method applied to the
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Boltzmann equation or to kinetic model equations or alternatively the DSMC method [Tij 

& Santos, 1995; Garzo & Haro, 1994; Reitebuch & Weiss, 1999; Marques et al., 2000; 

Gallis et al., 2006].

Although a lot of work has been performed on this problem still there are some open 

issues of some interest. In the present work we investigate and comment on some of them 

by providing an accurate, detailed and complete numerical solution. In addition, by 

comparing with existing results we validate and benchmark our fresh-built non-linear 

kinetic code.

14
Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 16:21:45 EEST - 3.146.34.55



3
Problem description and formulation

3.1 Flow configuration
A monoatomic gas is confined between two infinite parallel plates at y - +H / 2, 

which are moving with constant velocities +U0, while they are maintained at constant 

temperatures Zj and T2 respectively. Then, the temperature ratio is defined as 

TJT2=(\ + β)/(\-β), where β = ΑΤ/2Τ0, AT = T,-To>0 with T0=(T,+T2)/2

denoting a reference temperature (Figure 3.1). The hot plate, denoted by 1, is in the 

bottom and it is moving to the left, while the cold plate, denoted by 2, is in the top and it 

is moving to the right (Figure 3.1). The flow domain is considered as fully developed in 

the x direction and unbounded in the z direction. The only component of the 

macroscopic velocity, which is non-zero, is the velocity in the x direction of the flow and 

it is a function of y.

When the flow is in the hydrodynamic limit (Kn < 10“3), analytical solutions may be

deduced both for incompressible and compressible flow. These solutions may be found in 

several fluid mechanics textbooks [White, 2002], In this limit the incompressible solution 

is trivial, while the compressible one is more complicated and requires the introduction of 

an intermolecular model to relate the transport coefficients to temperature variation. The 

solution of the problem becomes considerably more complicated when the flow is in the 

transition and free molecular regimes. In this area, a kinetic approach or the DSMC 

algorithm are required. Here, we implement the former one. For small relative velocity 

and temperature differences of the wall plates, linearization of the kinetic equation is 

allowed. Then the problem is decoupled into the so called “Couette Flow” and “Heat 

Transfer” problems between parallel plates. Over the years, these problems have been
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solved using various analytical and numerical solutions. For arbitrary large relative 

velocities and temperature differences the non-linear kinetic equation must be 

implemented and then the problem may be solved only in a computational manner.

U2=+U0

u, = -u0

Figure 3.1: Flow configuration and qualitative velocity profile.

3.2 Governing equations
For the simulation of the problem both the BGK (Bhatnagar-Gross-Krook) and S 

(Shakhov) models are used. The BGK model reads [Bhatnagar, Gross, Krook, 1945; 

Welander, 1954]

where / = / (yf) is the distribution function, y is the spatial coordinate vertical to the 

plates and ξ = [ζχ,ζγ,ζζ) is the molecular velocity vector, P is the local pressure and μ

the gas viscosity at local temperature T. Also, fM 

described by the equation

r ... V/2
r=n

m
2 nkBT j

exp ( m(f-u)2 ^ 
2k.BT

denotes the local Maxwellian

(3.2)

where
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(3.3)n(y)= \\\βξχάξγάξχ

Λ, (S’) = i (y) = \ IJ\ξίάξ/1ξ&, (3.4)

Γ(ί) = 3^Π/(ί-ί)!^<,ί/ί- <3-5>

are the macroscopic (bulk) distributions of local number density, velocity and 

temperature respectively. The pressure between the plates is given by

P{y) = nkT=^\\\(ξ-ΰ)2/άξ,άξ/ξ,. (3.6)

Finally, m denotes the molecular mass of the gas and kH the Boltzmann constant. This 

model represents the simplest possible approach of the Boltzmann collision integral, but 

also the basis on which most subsequent models have developed.

Such a more advanced model is the Shakhov model, first introduced in 1974 

[Shakhov, 1947; Sharipov & Seleznev, 1998] which reads

2mQf_.* __P_) fu
dt dy μ 1 J

1 + -
\5n(kBT)

-ή(ξ-ιι) m(J; -u) 5
2k HT ~2 ~f (3.7)

where / again is the distribution function and fM the local Maxwellian given by Eq. 

(3.2). The bulk quantities of density, velocity, temperature and pressure are given by Eqs. 

(3.3-3.6), while the heat flux vector is given by

i(y)·= f Ji J(i ■-;ί )(i ■- i«ΐ /«Λ <3·8)

The Shakhov model provides the correct Prandtl number for monoatomic gases and it is a 

suitable model for non-isothermal problems as the present one.

Taking into account that the flow is fully developed and one dimensional, the initial 

BGK model equation Eq. (3.1) is simplified to

= «)-/(/,»·,£)} (3.9)
oy μ

Similar the Shakhov model is reduced to

■ dy μ
f

•M 1 + -
2m

15 n{kBT)

m(q-u)2

2 kBT
5
2 -/ (3.10)
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The extra terms, namely qx and qy, included in this kinetic model described by

<L (S’)= JI iJ(i-·5)! (ξ, -:i,) ίάξΜΛ, (3.11)

«, (j>)=? JJ /(i-")3 (3.12)

refer to the axial and normal heat fluxes of the flow respectively. A macroscopic quantity 

of practical interest for the flow, apart from the ones described by Eqs. (3.3-3.6, 3.11, 

3.12), is the shear stress

K(y)=m\\ jte - ) $yfdSMyd$z · (3.13a)

and the normal stresses

(y) = m J{\(ξχ - ux )2 /άξχάξ^ξ:. (3.13b)

&yy(y) = m\\\%2yfdt*dtyd& ■ (3.13c)

(y) = m J j \ξ)βξΜ/ΐξ' ■ (3.13d)

In the following sections it will be shown that the shear stress σχν (y) is always constant, 

i-e· &xy(y) = c0.

At this stage it is convenient to introduce the non-dimensional quantities

(3.14a)y-lc-t-
H v,Ό

g =
«η

η ύ T 
P = —, u = —, τ = — , q =

nn vn ‘o

q A °xyand σ = —-
Ρυ ^ 2 P2ouo

(3.14b)

(3.14c)

where -\/2< y<\/2 is the dimensionless spatial variable, c = (cx,cy,c) is the

dimensionless molecular velocity vector, υ0 = yj2kBT0 I m is the most probable molecular 

velocity, g = g(y,c) is the reduced distribution function, p, u, τ, q and σ are the 

dimensionless number density, velocity, temperature, heat flux and shear stress 

respectively, while P0 = n0kBT0 is a reference pressure and n0 a reference density.

Even more, we define the reference rarefaction parameter
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(3.15)=
P0H _ \[π 1 
μ0υ0 2 Κη0

which is proportional to the inverse reference Knudsen number, while μ0 is the gas 

viscosity at temperature T0. At this point we have to define also the local rarefaction 

parameter defined by 

PH
δ =

μυ

In order to relate the local rarefaction parameter to the reference one we have

(3.16)

δ _ Ρμ0υ0 _ η Τ 
δ0 Ρ0μυ η0 Tc

ί τ \ ,1/2

ο ν1 y

ί rr\1/2-ω

■*0
Τ τVlo

= ρτ
Μ2-ω (3.17)

For the derivation of Eq. (3.17) we have assumed that viscosity is proportional to 

temperature according to the inverse power law

JL
Mo

( j \

\Tq j
(3.18)

The parameter ω describes the molecular model being implemented. For the hard sphere 

intermolecular model ω -1 / 2, while for the Maxwell intermolecular model ω -1.

Then, we non-dimensionalize Eqs. (3.9) and (3.10) accordingly, to yield

c,^- = — (*"-g) = -g) = 50pr'-(g" -g)
dy μο0 v ’ P0 μ μ0υ0 v

(3.19)

and

dg s l-a>
Cv — = -?>oPTdy

M
g-g

{ | 4 qx{cx-ux) + qycy
f / \2 2 2 Λ

15
(3.20)

where

/ \3/2
exp

(c-w)‘
(3.21)

The corresponding moments of the distribution function for the computation of the non- 

dimensional macroscopic quantities are described by the equations

P — \gdcxdcydc: (3.22a)
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u*=~\\\c*gdc*dcydcz (3.22b)

uy=~\\\c*Zdc*dcydc: (3.22c)

r = yp\\\{*~*fgdcxdcydcz (3.22d)

= J JJ(C“U)2 (c- ~“*)Sdcxdcydc: (3.22e)

qy = JJJ(C_U)2 cygdcxdcydc. (3.22f)

= J j \{c* -ux)cygdcxdcydc: (3.22g)

= J { \{cx - ux )2 gdcxdcydc2 (3.22h)

°yy = \\\c]gdcxdcydcz (3.22i)

σζζ = J j \c:gdcxdcvdc: (3.22J)

which refer to the density, * and y velocity components, temperature, x and y heat 

fluxes, shear stress and three normal stresses respectively.

3.3 Boundary conditions
For the closure of the problem we have to define the boundary conditions. The 

interaction between the particles and the walls is modeled according to Maxwell diffuse 

boundary conditions [Maxwell, 1879]:

( Η λ ( \m
3/2 f m(£-u)2'

9V 4 9 ~n\ \2nkBTXj (. 2kHTx ,
and

( H
/;

,3/2

= «-,
m

2nkBT2 j
exp f - u)2 λ 

2kHT2 j

, for ξ>0

, for ξ < 0

(3.23)

(3.24)

In Eqs. (3.23) and (3.24), the subscript i = 1,2 denotes the quantities at the lower and the 

upper wall respectively, f* denote departing particle distributions at the corresponding

wall and nl are two parameters to be specified by the condition of no gas penetration at 

each wall. At this point we should remind that the temperature ratio is defined as
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Τι/Τ2=(\ + β)/(\-β), where β = ΑΤ/2Τ0, ΑΤ = Τ]-Τ0>0 with Τ0=(Τι+Τ2)/2

denoting a reference temperature. By introducing the dimensionless quantities the 

corresponding boundary conditions become

f [(Cx+U0 )2+C'+Cr]A
g

1
~2’C = 2>+=--------y exp

ΙΧι+ΛΓ 0+Λ
>0 (3.25)

and
/ r.

f\ ' 
2,C = g 2 =

Pi
-------- —vexP <0 (3.26)

{Cx~Uo) + Cy + Cz ]

The variables p,(+l/2), / = 1,2 are two parameters to be specified by the condition

of no penetration at each wall. According to this condition, the normal velocity at the 

upper and lower wall is equal to zero. For the case of the lower wall we deduce

f n
V

- +O0 +oo +oo

= 0^JJJc,g
+oo +O0 +oo f 1 ^

~~,c

0 +00 +00 /1 u -t-«J

Cyg

—00 —00 —00

1 x 
-~,C

\
dcxdcydc, = 0:

/

V

^ -fjj -t-w -t-co

dcxdc:dcy+- \ \ \cyg
P 0 —oo -oo

-~,c
V

dcxdc2dcy = 0 (3.27)

arriving departing

1
According to Eq. (3.25) the quantity g+ I —,c for the departing molecules is already

l 2

known. By introducing this information into Eq. (3.27) we deduce

-i 0 +00+CO / 1

-oo-oo-oo

dcrdc7dcv +- P

P,=~ 2 

Pi —2

arriving

I 0 +oo +00yj7T

ρ[π(\+β)]/

-t-ou

iff
0 -oo-oo

cq)
V

k+i-'ol'+y+y]

(i+7)
dcrdc7dcv = 0=x z y

departing

Wp)

\[π

ί i h*
—00 —00 —00

\/0T0)

+00 +00 +00

IJ K
0 -oo -00

g

-?c
dc dc.de v■* * Λ

dedede' ,x z y c > 0. (3.28)

In order to compute the corresponding parameter for the case of the upper wall we follow 

the exact procedure as described above, i.e.,
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(3.29)

'V
,2,

-κο -κο +Q0 { ^ ^

v2’Cy

1 -t-wj

= 0=>- J J i°yS
Γ —00 —00 —OO

dcdcdc. = 0;■* y -

1 0 +co +co / i \ .. +oo +oo +oo

“ j J \cyg[ T’c dcxdc2dcy+- J J \cyg
—00 —oo —oo

1
2,C

_Λ__/
departing

+00 +00 +oo ^ | \

J J J ^ T,C
0 -00 -oo V ^ /

dcxdczdcv - 0 .

arriving

According to Eq. (3.26) the quantity g f\ ^ 

vi’Cy
for the departing molecules is already

known. By introducing this information into Eq. (3.29) we deduce

Pi
0 +00+00

ρ[π(\+β)]
i J \C> eXP

-oo-oo-oo

[k-c/.)1+Cl>+Ci!

{'-0)

| +00+00+00 / | '

dcxdc,dc +— f f \c g[-,c
' Poll v2 .

dcrdcTdc„ = 0=·* z y

departing

Pi = 2
+00 +00 +co

111
λ

CyS\ ~,C dcdc.dc„ cy, > 0 (3.30)

The problem is described by the kinetic Eqs. (3.19) and (3.20), coupled by the 

moments Eqs. (3.22a-3.22i) and subject to boundary conditions described by the Eqs.

(3.28) and (3.30). It is seen that-the problem is specified, in terms of three dimensionless 

parameters, namely the reference rarefaction parameter δ0, the temperature ratio β and

the velocity U0.
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4
Projection procedure

4.1 Introduction

The projection procedure has been extensively used over the years in solving flow 

and heat transfer problems using kinetic equations. The main idea is to eliminate, 

depending upon the problem geometry and physics, one or two components of the 

molecular velocity vector and as a result to reduce significantly the required 

computational effort. This can be achieved through a formal mathematical procedure. The 

governing equations are integrated accordingly over the space of the appropriate 

component of the molecular velocity yielding a reduced set of equations, which do not 

include the component of the molecular velocity upon which the integration has been 

performed. It is important to note that this procedure is not invertible. Therefore, some 

information, which however is not significant, may be lost. This mathematical procedure 

is explicitly provided for the specific problem under consideration for both the BGK and 

Shakhov models.

4.2 Elimination of the z component of the molecular velocity

In order to proceed with the projection procedure we introduce the corresponding 

reduced distribution functions which read
-t-oo

(4.1)

and
+oo

(4.2)
-oo
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We integrate Eqs. (3.19) and (3.20) by c. in the interval (-οο,οο). After some routine 

mathematical manipulation we yield

dY
c,-r=s»p*'~‘ ft"-1') (4.3)

and

Cy ~ ~ &oPT■ dy

(

V

, , 4 -«,) + 9a]<1h-------------------- ---------- -
15 ρτ~

(cx~ux)2+c2y
-2

\

>-Y
y

• (4-4)

For the next reduced moment, we multiply Eqs. (3.19) and (3.20) by c] and integrate by 

c. in the interval (-00,00). By following the exact steps as in the former case we deduce

ct^ = SaPr'-(0"-Φ) 

for the BGK model and

(4.5)

8Φ
cy^~ = ~δϋρτ dy

f

1-ω Φ-ΦM 1 | 4 [g,(c,-«x) + ^y]
15 pr

Λ
■

_ )
(4.6)

for the S model respectively, where YM and ΦΜ the non-dimensional Maxwellian 

distributions given by

YM = — exp
f / \2 2 "\

(Cx~Ux) +C>
7ΓΓ

(4.7)

and

ΦΜ =-^-exp 
2tt

_yAY J_ (4.8)

respectively. The macroscopic quantities in terms of Y(y,cx, cy ) and Φ (y, cx, cy ) after 

applying the projection procedure for both models are
+00 +00

p{y) = J I Ydcxdcy (4.9a)

1 +00 +00

“,W = - j \cxYdcxdcy
Γ -00 —CO

(4.9b)
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(4.9c)
1 +oo +oo

Uy(y) = ~ J JCyYdc dCy = 0
P —00 —00

ry +00 +00 ry

T(y) = TZ J ]{[Cx+Cl]Y + °} dc*dcy - T ·
P -00 -00 

+00 +00

?*M = i j {[C* “ 3wxc' + CX “ UA ] Y + K " Ux ]Φ) dC-rdCv + 2<P
-00 -00

+00 +00

4>(y)= { J {[(Cx + ) s “ 2UxCxCy ] 7 + CvΦ} dcxdcy
—oo —oo

+00 +00 +00 +00

C7xy(y)= j \(Cx~Ux)CyYdCxdCy = f {CxCyYdcdCy
—00 —00 —00 —00

+00 +00

°~{y)= J \ClYdcxdCy~UlP
-00 -00

+00 +00

°Ay)= J \ClYdCxdCy
-oo -oo 

+00 +00

σ=Μ = J jc]Ydcxdcy
-00 -00

For the definition of the boundary conditions describing the problem 

consideration we apply the same mathematical projection to Eqs. (3.29) and 

respectively. For the lower wall at y = -1 / 2 we yield

~\’cx>cy
Pi

7Τ(1 + /?)
exp (c,+tfo) + £>^

0 + /?)
cy >0

/

and

Φ 1
V

’ ’ ’ C>' Pi_
2π·

exp
0+A)

c, >0

For the upper wall at y = 1 / 2 we yield 

Y(Ί Ί Pi f (cx-i/o)2+cil
π(\-βγ P 1

1 cy> 0

and

(4.9d)

(4.9e)

(4.9f)

(4.9g)

(4.9h)

(4.9i)

(4-9j)

under

(3.30)

(4.10)

(4.11)

(4.12)
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φ
\

2,c*’ cy
Pi= V" exp 
2π

f

\

{cx-U0)2+cl

0-Λ
cy>0 (4.13)

The variables pt (+1/2), /—1,2, are two parameters to be specified by the condition

of no penetration at each wall. According to this condition, the normal velocity at the 

upper and lower wall is equal to zero. At the lower wall we deduce
{ | \ | +CO +O0 +CO / 1 \ +00+00

~~Z j = 0 => — j* | fcyg -~,cx,cy,cz jdcxdcydcz= 0=> j jc/(y,cx,cy)dcxdcy =0 =
P 00^0 V ^

+oo 0 / i \ +00+00

J Jc/ dc>dc*+ J JV
ο V

f i >1 
~2,Cx,cy \dcydc*=0· (4.14)

departing

According to Eq. (4.12) the quantity t(-1/2,cx,c>j) for the departing molecules is 

already known. By introducing this information into Eq. (4.14) and we deduce

+oo 0

IE/
f _\

v~2’Cx’Cy
P,

'r"x^ π{\ + β)
dc„dcr + ——| jcy exp

-oo 0

f

v

(c,+t/0)+cf
\+p

dcdcr = 0 :y *

arriving departing

Pi=~ 2
\[π +oo 0 /

Jiwnli'·'·

/ +00 +00

Λ^ΤΤ^τίΚ1,
λ/(1 + /^) -® 0

2
dc dcy.v

2 ;
dcydcx, cv' > 0 (4.15)

In order to compute the corresponding parameter for the case of the upper wall we follow

the exact procedure as described above, i.e.
/ \ -.+00 +00+00 /

l = 0=>- f f fc.e
\2

w.

| +C0 +00 +00 / -y \ +00 +00

= 0=>- J i jcv^( T’c,’c>’c- \dc dcdc:=()^> J \cyY(y,cx,cy)dcxdcy = 0:
—00 —00 —00

+00 0-oo υ / 1 \ +00 +0Q / 1 \

J iC/ lW’C*’Cy dcydcx+ I \CyY -Z’Cx’Cy\dCydCx=0 (4.16)
-oo 0

departing arriving

The quantity Y(l / 2, cx, cy), given by Eq. (4.12) for the departing molecules is substituted 

into Eq. (4.16) and after some routine manipulations we deduce
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departing arriving

(4.17)

Thus, initially we have one integro-differential equation for / which is a function of 

four independent variables. All bulk quantities are given by moments of /. Now, 

following the above described projection procedure, we obtain a set of two coupled 

integro-differential equations for the two unknowns Y and Φ. The coupling is present 

through the bulk quantities, which are given as moments of Y and Φ. It is noted that 

these reduced distributions depend only on three (instead of four) variables and therefore 

the computational effort is significantly reduced.

4.3 Elimination of the z and x components of the molecular

For this specific problem it is possible to eliminate two and not only one components 

of the molecular velocity vector, as presented in Section 4.2. However, in order not to 

lose information regarding the bulk quantities of the flow which are of theoretical and 

practical interest, we must obtain additional reduced distribution functions, which will 

now depend on two independent variables, namely the spatial variable y and the cy 

component of the molecular velocity. In order to achieve this, we integrate Eqs. (3.19) 

and (3.20) in both x and z directions in the interval (-co,oo). To proceed, we introduce 

the corresponding reduced distribution functions which read

velocity

(4.18)

+00 +00

(4.19)
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(4.20)

and

-t-αυ -t-αϋ

x(y>cy)= J \[cl+c]\g{y,cx,cy,cz)dcxdc2
-00 -O0 

+O0 +00

9'(y>cy) = J \c]g(y,cx,cy,c:)dcxdc:
—CO —CO 

+00 +00

J \cx\cl+c]\g{y,cx,cy,cz)dcxdcz.
—00 —00

Operate on Eq. (3.19) using the following integral operators: 

\\{¥cxdcz 

\\{-)cxdcxdc:

\\{-){Cl+C])dC:<dc:

J \{Υααζ

\\{.)cx(c]+c])dcxdcx

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

After some mathematical manipulation we find the following system of reduced kinetic 

equations for the BGK model:

r)

c,^ = SoPr'-(4>“-Φ) 

c,^ = S„pr'-(Xu-X) 

Cy — = δ0ρτ'-ω(ψΜ-Ψ) 

°χ™=δοΡτ'-ω{°Μ-Ω)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

Operating on a similar manner on Eq. (3.20) we find the corresponding reduced kinetic 

equations for the case of the S model:

dY x Cy — = d0pT
dy

\-ω rM 1 , 2cyqy(2c2y-3T)

\5pr
-Y (4.33)
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(

(4.34)δφ ο \-C0c., — = S0 ρτ
dy

Φ Μ 1 +
4clqyux + 2cy (cyqx - 3qyux ) τ - qxT2

15 puxr
-Φ

cr — = \pr'-(X“[ l+%x]-X)

ο^ = δ„ρχ'-’{ψ"[ \ + %,]-ψ)

ον~ = δ,ρτ'-“(ΩΜ[ΐ+%η\-Ω)

where

Ar ~ 2clxuy + 4c\,qy [u] + r)-2cyqyz[3ul + r)

15 p[u] + r)r3

%c-yqxuxz-4qxu/-+4c]qy(2u2x +r)-2c^r(6»; + r)

\5p[2u2x + r)r3

VS2 (~3^ + 2r) + 4clqyux [u] + 2r) + (2c^tr - 2c^),^r)(3^; + 2r)

15pwx(u2 +2r)r3

For both the reduced BGK and Shakhov equations, the reduced Maxwellians are:

yM _ exp
πτ

A
τ >

φΜ = ux exp
v r y

= YMu

XM =

lf/M _ ^

i2" =

-7= [«*+*] exp 
νπτ

2ν-,[2„ί+τ>χρ

' c2^r
V T J

v T y

= Yu[«l+ τ]

[2»2+τ]= F

'(=ux\u2x+2z~\exp —- = ΦΛ/Γίρ+2τ1 
πτ L J ^ r J L J

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)
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The reduced expressions for the evaluation of the macroscopic quantities in terms of 

Υ,Φ,Χ,Ψ and Ω after applying the projection procedure are described by the 

equations
+oo

p(y)= \Y{yXy)dCy
-oo

(4.43a)

1 +00
«,M=- \0{yxy)dc>

P -00
(4.43b)

-J +00
Uy(y) = - \CyY(y’Cy)dCy= 0

Γ -00
(4.43c)

9 +0° 9
τ(τ) = — j[Yc2y+x]dcy--u2x(y). (4.43d)

+00
«, W = J(o - toy+W,0 -u]Y+ήφ - u,c)Y-u,x)icy

-oo
(4.43e)

+00
«,W= \(c]X+crX-2u,c>g>ycr

-00
(4.43f)

+00 +00
σ,ν (y)= f (Φ - uj) CydCy = { Ocydcy

-00 -00
(4.43g)

+00
dcy-u\p

-00
(4.43h)

+00

σ*Μ = iCv^S
-00

(4.43i)

+00
σζζ (f) = (4.43j)

-oo

and refer to density, axial velocity, normal velocity, temperature, axial heat flux, normal 

heat flux, shear stress and normal stresses in x, y and z directions respectively.

For the definition of the boundary conditions describing the problem under 

consideration we apply the same mathematical projection to Eqs. (3.28) and (3.30). At the 

lower wall (y = -1/2) we yield

( 1 _Ί Pi <1 )
o,Cyv 2 ; /-----------

^π(\ + β) 0+A)J
cy>0 (4.44)
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φ

X

ψ

Ω

-X’

-~Χ

-χ>

, = (~U0) exp
ΧΧΤ)

c; '

0 + /0

Δ------r(-t/0)2+(l + /))]exp
ν';π (I + /?)

χχ

0+«,

( „2 λ
, Δ [~2(-ί70)~ +(1 + /S)lexp ii—

>7^jL 1 k p'i P( (1 + A)
f „2 Λ

7^,-ί/„)[(^)2+2,1 + ,)]6χρ^

c>0 (4.45)

c > 0 (4.46)

c>0 (4.47)

, cv>0. (4.48)

At the upper wall (_y = 1/2) we yield

x r
(i Λ

p2
x/^rxpi ο-/*)

4 Λ

Φ
~2,C 

\.z

Pi

f\ ^
9 ,C y

Vπ{\-β)

Pi

(+t/0)exp
M)

V*(l-^)L
(+t/0)2+(l-/?) exp 4 Λ

Ο-/*)

i \
Ψ

Ω

ve v : y ^=[2(+ί/0)2+(1-Αψχρ^

2,C y
' c2 '

^){+Uo)[(+Uof+2 (.-.)]exP[-^

C < o (4.49)

cv< 0 (4.50)

c<0 (4.51)

c<0 (4.52)

c<0 (4.53)

As already mentioned, the variables p, (+1/2), z = 1,2, are the two parameters to be

specified by the condition of no penetration at each wall. For the case of the double 

projection scheme and for the lower wall we deduce

V *y
= 0:

Λ +OJ -t-«J -t-w

\ 11XPi: 

0 (

■00 —00 —00

1
' 2 ’Cx’Cy’Cz

+O0 /

1 +°o / -I

dcxdc2dcy = 0 => - Jc/ -~,c
—00 ^

dcy=0-

\c/ ^ + JVi v £ ; 0J
arriving

-X
dcy = 0. (4.54)

departing
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The quantity Y[~\!2,cy) is substituted by Eq. (4.44) into Eq. (4.54) and we deduce

JV \dcv + P,
*Q+fl) o

c exp 4 '
v 1 + /?

dcy = 0

arriving departing

Pi=~ 2 

Pi =2

\[π

4π

fy
•oo

1
~2^

dc„

f _\

V-2’^
dcy , cy > 0 (4.55)

TiT .J

In order to compute the corresponding parameter for the case of the upper wall we follow 

the exact procedure as described above to find

uy 2,

1 +co -t-oo +oo

—00 —00 —00 v4 y
| +00

dcxdc,dcy = 0 => — | cY
(\ λ

2 ,cy y dcy = 0:

0
j· fi Ί— ,C„

+00 (\ j—,c=> fcT dc„ + 1 cYJ y
-oo

Ί y J y Jr
0 ί y (4 y

= 0. (4.56)

departing arriving

The quantity f(l / 2,cy) is substituted by Eq. (4.49) into Eq. (4.56) to find 

Pi ( d ^ +00 / 

V
7 2 fc.exp----- — dc + fcT

■YYyYil ’ l 1 r_

\[π

1 ^
dCy = 0 :

P2 = 2 E/

departing

(\ j
2,CyV4 y

arriving

dcy,cy> 0 (4.57)

4.4 Some remarks on the projection procedure

The problem may be solved using either the cz or the cx and cz projection procedure. 

In the first case we have two coupled equations to be solved for the two unknown 

distribution functions and three independent variables. In the second case, we have five 

coupled equations to be solved for the five unknown distribution functions and two 

independent variables. The computational effort for solving the reduced kinetic equations 

produced by the double projection scheme, is several orders of magnitude less than the 

corresponding one for solving the reduced equations produced by the single projection 

scheme. A thorough discussion on this issue is presented in the following section.
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5
Numerical Scheme

The implemented computational scheme has been extensively applied to solve linear 

kinetic equations describing several non-equilibrium systems in a very efficient and 

accurate manner [Valougeorgis, 1988; Sharipov, 1998; Naris et al, 2004]. Here, it is 

accordingly extended to the case of non-linear kinetic equations. This is a task, which has 

been initiated recently in order to solve a wider range of problems and to study non-linear 

phenomena.

5.1 Iteration procedure

The problems to be solved numerically are described by Eqs. (4.28-4.32) for the BGK 

model and by Eqs. (4.33-4.37) for the Shakhov model respectively. To solve these 

equations, an iterative procedure is needed between the kinetic equations and the 

moments of the distribution function which appear in the expressions of the equilibrium 

distribution. We demonstrate this iterative process by working only with the reduced 

BGK kinetic equations produced by the double projection procedure. Then, an identical 

procedure may be applied to the single projection kinetic equation. The kinetic equations 

under investigation may be written as

where h may be any of the reduced distribution functions Y, Φ, X, Ψ and Ω, while 

hM may be any of the corresponding Maxwellians YM ,ΦΜ ,XM, ΨΜ and ΩΜ given 

by Eqs. (4.38-4.42). The bulk quantities involved in the computations are

dh^/2) (5.1)

(5.2a)
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ux
P

J 0{k+{,2)dcy (5.2b)
-00

τ (5.2c)

The indexes k, k+1/2 and k+1 indicate the steps needed in the iteration process. Initially, 

assumptions of the macroscopic quantities p, ux, τ as well as of the parameters px and

p2 are introduced. In all cases independent of β, U0 and δ() the initial guesses are fixed 

at p = 0.1, ux=0 and r=l. In contrary, parameters at the walls are computed via the 

corresponding expressions for the free molecular solution, which depend on β and U0 

(see Section 6.1).

Based on these assumptions, the equilibrium distributions hM are computed. Then, 

the kinetic equations are solved for the unknown distributions h. In the next step, 

updated estimates of the macroscopic quantities and the density parameters at the walls 

are computed based on the moments of the distribution functions h. The iterative 

procedure is repeated until the termination criterion applied on the macroscopic quantities 

is satisfied.

The number of iterations needed for convergence in terms of β, U0 and δ0 are 

shown in Table 5.1. It is seen that the number of iterations increases rapidly as δ0 is

increased. This behavior is well known from the corresponding linear results. It is 

emphasized that in general the weak point of the discrete velocity solver is the large 

computational time at the hydrodynamic regime. It is also seen that for δ0<\0 the 

number of iterations does not depend strongly on β and U0, while for δ0 = 100 the 

number of iterations is increased as β is increased

5.2 Discretization in the physical space

In the physical space, the distance ye[-1/2,1/2] is divided in equal intervals 

(Figure 5.1) and the discretization at each interval z = l,2,...,7 is performed by the 

diamond difference scheme [Lewis & Miller, 1984], This is a second order central
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Table 5.1: Number of iterations for hard spheres BGK model (ω=0.5) and various values 
of β and U.

β U0
0 0.1

^0
1 10 100

0.1 2 104 49 410 19241
0 0.3 2 104 49 411 19303

0.5 2 103 49 413 19411
0 2 107 49 409 21576

0.1 0.1 2 107 49 414 22008
0.3 2 105 49 434 23278
0.5 2 104 49 469 24773
0 2 105 50 436 26671

0.5 0.1 2 107 50 454 27045
0.3 2 105 50 496 28312
0.5 2 103 50 538 29966
0 2 95 53 516 32686

0.9 0.1 2 95 53 525 32941
0.3 2 94 52 566 34071
0.5 2 91 50 619 35803

difference scheme, which has been used in solving elliptic integro-differential equations. 

A typical example based on Eqs. (4.3) and (4.5) is demonstrated. Let

Y(y>cx’cy)[ =Y{y,’cx,cy) = Yn 4>(y,cx,cy)\i=0(yl,cx,cy) = 0i, 

yM (y’c*'Cy)[=γΜ (y,-cx.cy)·= vr, ΦΜ (y>cx,cy)l = φμ (y„cx,cy)=<t>?, 

p(y) = p(y,) = Pi> u(y) = «00 = *(y) = T(y,) =τ,

and discretize the kinetic equation at the nodes i = 1,2,..., /

gy(* + l/2)

5Φ(*+1/2)
+ ^0pi(/:)r;-,a(t,^("+,/2) = φ,μ{.(*) )

(5.3)

(5.4)

The macroscopic quantities in terms of T and Φ after applying the projection procedure 

are

/>r>= 1 ft1
■(*+1/2) dcdcv (5.5a)
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Figure 5.1: Physical space discretization scheme.

i +00 +00

Γ I —00 —oo

. (*+D _
,(*+1)3 P\

By approximating

+00 +00 ^

ar
ay

3Φ
dy

yA
' 2

Φ = ■

f \
Y -Y1 i -* 1

H— /------V 2 2 J

f \
Φ.Χ-Φ 1

v ,+2 ' 2y

+ θ[/?2] 

+ 6>[/r]

Λ
Y x+Y ./+— /— v 2 2y

φ , +Φ.
v ,+2 ' 2y

+ o[/j2]

+ o[/72]

y*i _

ΦΜ = —

/+— /—V 2 2 J

r \
Φκ\ +ΦΑ\ /+— /—V 2 2 7

+ 0[h2] 

+ 0[h2]

(5.5b)

(5.5c)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)
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Pi 2 Pl+Pl
/+— /—V 2 2j

Tj 2
r , +r ,

V 2
+

fO[/22] (5.12)

(5.13)
2 z

we deduce
y(£+l/2) _y(£+l/2)
7 1 1 1
/+- /—

2___________ 2

h
■Λ

\(k)
P 1 +P 1

/+- i—V 2 2/

/
Γ , +Γ 1

V ,+2 ' 2j

\Χ~ω ( \ 
y(£+l/2) + y(Ar+l/2)

/+— /-—V 2 2 /

\«/
P 1 +P I

/+— I------V 2 27

s !-«“> λ
r , +r ,

V '+2 ‘ 2 J

\

and
φ(*+1/2)_φ(*+1/2)

/+- i-- §
2__________2 !

8

\(*)/
P 1 +P 1

/+— I—v 2 2y
τ.ι+τ.ι

V ,+2 ' 2J

γΜ ^ γΜ ^

/+-V 2 2

λ

φΝ,2)+φ(“2)
V '+2 /_2 J

= 5l
8

\M
P 1 +P 1

V ,+2 '27

/ ν-ω(*·> x
Γ , +Γ 1

V '+2 '27

-A/ (*) , AT (*)Φ , + Φ\
/+- V 2

;—
2 y

(5.14)

(5.15)

The Maxwellians are computed using the macroscopic quantities at the corresponding 

nodes. The above system of Eqs. (5.14) and (5.15) coupled with the corresponding 

equations for the evaluation of the macroscopic quantities is solved by following the 

particle trajectories.

5.3 Discretization in the (cx,cv) space

The set of kinetic equations for the BGK and the Shakhov models are now discretized 

in the physical space. In the molecular velocity space, the discretization is performed by 

the discrete velocity method, where the continuum spectrum cx,cy e (-co,oo) is replaced

by a suitable set of discrete velocities px,py , m = \,2,...,M. We choose px,py to be 

the roots of the Legendre polynomials of order M. Since the initial set of Legendre 

polynomials is from l-i.i]. a transformation is necessary in order to compute the

correct values in the interval [0,00). This is achieved by introducing the new variable
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r 1 + Ρν , Α ^ + Py ·,ι_ jr 2φ , j r 2dPvζχ = ------ - and ζ, = ------ - with άζχ = ----- and άζν =
'-Λ " 1-Λ· " Ο-Ρ,Υ " (l-p,)'

which defines a set of discrete velocities 4"m, m = 1,2,..., M, in [0, oo) .By letting

y{y.c„c,)[ =γ(γ„ζ,_,ζ,_) -Y,„

(5.16)

and

0(y'C‘-Cr)\=

Equations (5.14) and (5.15) can be rewritten as

-y(k+1/2)  ·γ(ΐ<+\12)

r 2_______ 2 i u0
h 8

V*)/
P 1 +P 1

/+— /—V 2 27

V-®1*1 (
r , +r i

V ,+2 2 7

y(£ + l/2) ^ y(£+l/2)

i+—,m,m i—,/w,/wV 2 2 7

\(*)/
P 1 +P/+- V 2 27

r , +r ,
V '+2 2 7

\
γΜ^ γΜ^

v 2 2 7

(5.17)

and

φ(Ι(+\/2) _φ(*+1/2)
i+—,m,m i—,m,m ft

r 2____________________ 2___________. _0_

Λ 8

7 v*) 7
P. 1 + Pi 1 A' 1 /+— /—V 2 2 7

Λ1-®1*’ 7
r i +r ,

V ,+2 '2 7

Λ
φ(.+1/2) +φ(Μ/2)

v 2 2 y

_ ^0
7 \(*) 7
P.l+P.l

V '+2 27

xl-®1*1 ^
(5.18)

r i +r i
/+- /—V 2 27

Φ + Φ1 1 ^ 1 i+—,m.m 1—,m,/wv 2 2 y

In order to simplify Eqs. (5.17) and (5.18) we introduce

2-0=
&r.

n(*)
Pi+P 1

V ,+ 2 '27

7 Y
r . +r ,
/+- /—V 2 2 7

(5.19)

and then following the particle trajectories we yield the following algebraic equations 

For QXm > 0 and > 0:

Y{k+m) = L-^I (1 - TO) y(T2) + TO
H—,m,m 2 1— 

2

f μ <i·) ^
YM\ + ΚΜ,

/H—,/w,m I—.m./wV 2 2 7
(5.20a)

Φ (*+1 2) _____j_
H—,m,m 

2 (1 + Γ0)
(1-7Ό)Φ(*+Ι2) +Γ0

/—,m,m 
2

f (*) μ ^
ΦΛ/, +Φ^

i+—,m,m i—,m,mV 2 2 7 J
(5.20b) 

m = l,2,...,M i = l,2,...,7
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For ζ < 0 and ζ > 0:
xm sm

Y (*+!' 2) _ .

H—,m+M,m 2 (1 + Γ0)
(l-rO)F(i,+1 2) +T0

i—,m+M,m 2

( (*) (*> ^
YM, + YMX

H—,m+M,m i—,m+M ,mV 2 2 J
(5.21a)

Φ (*+12) _
/+—,m+M ,m 2 (1 + Γ0)

U\-To)0{k;'2) +to
i—,m+M ,m 7

Φκ\ + ΦΜΧ
w M M

H—,m+M,m I—,m+M,mV 2 2 J
(5.21b)

m = \,2,...,M i = \,2,...,I

For ζχ >0 and ζ < 0 :

r(*+l/2) |(i + 7O)r(*+12) -to
(l — 7Ό) i—,m,m+M 2

Y M <*)
+ Y M (*)

i+—,m,m+M i—,m,m+MV 2 2 J
(5.22a)

(*+12) _ . [(1 + Γ0)φ(ν 2) -7Ό
i+^,m,m+M (l — 7Ό)

For ζχ <0 and ζ <0 :

i—,m,m+M 2

(*) «
ΦΜ, +Φ"

i+—,m,m+M i—,m,m+MV 2 2 7
(5.22b)

m = 1,2,..., A/ i = 7,7-1,...,!

y(*+l'2) 1
(1 + Γ0)κ(ί,+12)

o
1

f (A)
YMX

M(t)
+ YMX

H—,m+M ,m+K4 
2 (1-7Ό) v i—,m+M,m+M

l 2
i+-,m+M,m+MV 2 i—,m+M,m+M

2 J J

φ(*+12) 1
=----------------< (1 + 7Ό)Φ(^ 2) -7Ό

^ <*) 
ΦΜΧ

(A) A
+φμχ l

i+—,m+M,m+M
2 (1-7Ό) V 7 i—,m+M,m+M

2
i+-,m+M,m+M 

K 2
/—,m+M,m+K4

2 J)

> (5.23a) 

(5.23b)

m = \,2,...,M / = 7,7 — 1......1

It is noted that Eqs. (5.20) and (5.21) are identical as well as Eqs. (5.22) and (5.23). This 

is easily explained due to the absence of the axial component of the molecular velocity 

cx in the equations. In equations (5.22a,b) and (5.23a,b) where ζγ < 0, if we define

T0= hs°

f

*k.

\(*)
Pl+P.l

. /+— /—Λ v 2 2 y

Y
r i +r ,

V '+2 ' 2 J

then they can be rewritten as follows: 

For ζ > 0 and ζ < 0 :

(5.24)

v(*+1/2) _ 1 (i-ro)r(*+1/2) +ro
( (*) (A) A
YMX +YMX

i+-,m,m+M (l + TO) \ 7 i ii—,m,m+M
l 2 \ 2 2 J]

(5.25a)
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φ(*+1 2) _ [(1-7Ό)Φ(*1+12) + 70
(

i+^,m,m+M (ΐ + 7θ)

For ζ < 0 and ζν < 0 :
^ Ληι J sm

r(k+1 2) _ 1

/—,m,m+M 2
Φκ\ +Φ ,

i+—,m,m+Μ i—,m,m+MV 2 2 J

(*) (‘) \
(5.25b)

w = / = /,/-1,..., 1

r
(1 + 7Ό)

(i-ro)r(*+» 2)
/—,m+M,m+M 2

+ T0
' (*) (*) ^
rw, +rM,

i+-,m+M,m+M i—,m+M,m+MV 2 2 J
•(5.26a)

Φ,(i+l 2) 1
i+-^,m+M ,m+M (1+70)

j (\-Τ0)Φ{,(i+l 2) + 70
/—,m+M,m+M 2

ΦΜ, +ΦΜ,
i+-,m+M,m+M i—,m+M,m+MV 2 2 J

(5.26b)

Thus, the explicit expressions (5.20, 5.21), (5.25, 5.26) are the same and only one set of 

discrete velocities e[0,oo) may be used. It is noted that Eqs. (5.21, 5.22) and (5.25,

5.26) are the same but in the first we are moving from bottom to top (or left to right), 

while in the latter from top to bottom (or right to left). The above two loops with respect 

to the spatial variable are included into one loop with respect to the molecular velocities. 

So, for each discrete velocity we march through the spatial grid.

5.4 Discretization in the cy space

Similarly to the discretization in the (cx,cy^ molecular velocity space, the

discretization in the cy space is applied. The governing equations are integrated 

accordingly over the space of the appropriate component of the molecular velocity 

yielding a reduced set of equations, which do not include the component of the molecular 

velocity upon which the integration has been performed. Again we choose pmy to be the

roots of the Legendre polynomials of order M and the transformation

1Ih
1-Λ

with άζ =
(I-/·,)2

(5.27)

is used to convert the initial set to [0,oo). By letting
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Eq. (5.14) can be rewritten as follows: 

For ζγη >0:

Y (*+' 2) _ . 1
i+—,m

2 (1 + 7Ό)

r ( ,, ΛΊ
](ΐ-7Ό)Κ(ν 2)+T0 YMX + YMX
[ '~rm \ 2 2 J)

(5.28)

m = \,2,...,M i = \,2,...,I

For ζνΜ < 0:

γ(!<+\ 2)

i--,m+M
2

, L J (i+ro)r(V2) -to

(
yMW +yMx] jj0

1 V ' i+-,m+M
l 2

i+—,m+M \ 2
/—,m+M

2 ))
(5.29)

m = \,2,...,M / = /,/-!, 1

InEq. (11) (4" < 0), if we define

T0= hs°
8 |f,

then it is rewritten as

, +P1 r I
V ,+2 '27

\]-
r 1 +r 1

V 2 2 y
(5.30)

r(*+12) _ _

(1 + Γ0)
|(i-ro)r(V 2)+ro

/+—,/w 
2

rM (*) +rM (*)
i+-,m

2
/—,m 

2

(5.31)

m = \,2,...,M i = I,

Thus, the explicit expressions (5.29) and (5.31) for >0 and ζ„<0 respectively

are of the same form and the same set of discrete set ζη e[0,oo) may be used. It is

important to note that, at each iteration, the system of algebraic equations is solved by a 

marching scheme and no matrix inversion is required. For each discrete velocity the 

distribution functions are computed at each node explicitly, marching through the 

physical domain. Following this procedure, supplemented by a reasonable dense grid and 

an adequate large set of discrete velocities, we are able to obtain grid independent results 

with modest computational effort.
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5.5 Evaluation of macroscopic quantities

Finally, having the values of Y and Φ it is necessary to integrate over ζ to obtain the 

macroscopic quantities needed for the next iteration namely, density, velocity and 

temperature as described in Eqs. (5.5a,b,c). We apply a double Gauss - Legendre 

quadrature scheme and for the density we have

r,<,=
-00 -00

00 00 00 0

\jY(y,(„ir^dir + i fY(y-C„(,)i{,dC,+
0 0 0 -oo

+ J)γ(ν-ζ„-ζ,}ΐζ,<ΐζ,=
-oo 0 -oo -oo

J Jr (y, c ζ, Υζ,Λς, + ljr(y,-c„(, ]d(,d(r +
0 0 0 0

+ΥίΗ>·ϊ.·-(,)ί(Μ,+})r(r,-c -ς,γς,άς, =
0 0 0 0

MM 2M M

=ΣΣυ^^>λ + Σ +
m=l m=l /w=Af m=l

Μ 2M 2 Μ 2M

+Σ Σ %ίν-ί>Λ+Σ Σ
m=l m=M m=M m=M

MM 2M M

=ΣΣκο^„,,^Χ,λ„,+ Σ Σ^Ί^,,,Ι’^,,,Κλ,,, +
m=l m=l m-M m=1

M 2M 2M 2M

+Σ Σ + Σ Σ

w =

/w=l m-M m=M m=M

Here, as mentioned above, Cr and ζ„ , m = 1,2,..., rV/ are the roots of the Legendre
Jxm Jsm

polynomials of order M and wx - wy the corresponding weights. It is noted that

weights wr , w„ and wr , w, related by
^ xm y>n xm sm

The other macroscopic quantities are evaluated in a similar manner.

(5.32)
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6
Analytical Solutions and Closed Form Expressions

6.1 Free molecular regime

In the free molecular regime the rarefaction parameter δ = 0 and therefore the 

governing equations are significantly simplified. It is easily justified that since the 

problem is one dimensional in space, the distribution functions will be constant between 

the two plates. In the case of the free molecular flow there are no collisions between 

molecules. This means that the particles emitted from the boundaries are travelling 

through the domain without changing their molecular velocity. Then, it is reasonable to 

expect that the distribution function at any point between the plates is identical to the 

bottom and top boundary distributions for cy> 0 and cy< 0 respectively.

At the lower wall

* = λ’Γ -------- TyCXP
OP+/»)r

(c..+t/o) + + c)] '

(■+/»)
cy>0 (6.1)

and at the upper wall
f r

g
f\ '
2,C = &*= ------ -- ην« P

(c,-C/0)J+cJ+c;

0-/5)
Cy< o (6.2)

In order to compute the macroscopic quantities of practical interest for the flow, we make 

use of the corresponding moments as they are described in Section 3 (Eqs. 3.22a-j).

For the estimation of density we have
+oo +oo 0 +00 +00 +00

Pfm = J J J gdcxdcydc: = J J J gdcy dcxdc: + J J J gdcy
-oo -oo -oo -oo-oo 0

dcdc.

pfm{y)=\{Pi+p2) (6.3)
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Also using the mean density we write
L \ \

1 2 2 2 1
"o=7 \n(y)dy^>Ln0=n0L \Pfm(y)dy^ fp/m (y)dy = 1 = -(Pl + p2) (6.4)

L_L _\_ 1 2
2 2 2

For the computation of p, and p2 we make use of the no-penetration condition at the 

walls in the y direction. According to this condition, the normal component of the 

velocity vector in both the upper and lower wall equal zero.
Λ +00+QO+00 A +00 +00 0 A +00 +00 +O0

UT = — J i J gcydcxdcydcz=- J | J gcydcy dcxdc:+— J J j gcydc
—00 —00 —00

dcdc.

1 +oo +oo 0
1 t r r P2

[(cx_i/o)2+el+ci]

—e M cydcydcxdcz +

+00 +O0 +00

Pi-Jif-
Pii ο[π(\ + β)]'

[(cx+i/o)2+cy+Ci]

up Cydcydcxdc7

u{m=-[
1 r P2

+00 +00 +00

TC
J J J e~Cx~Cy'C: cydcydcxdc'z + 

e ' ' · cydcydcxdcz] =

-oo -oo 0 

+00 +00 +00, Ρΐ\Ι(1 + β) J j
π' -oo -oo 0

< = -p^(l-P)+p^(up) = 0:
2 p4n

p? §yT)=p? §up)

By combining equations (6.4) and (6.5) we conclude

pf" =
Uujp

and

Pim =
2^Ι(\ + β)

(6.5)

(6.6)

(6.7)
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Table 6.1: Free molecular analytical solution for the density parameters p!f and pf

β
C

u0
0.1 0.3 0 .5

0 - - 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.1 0.9499 1.0501 0.9499 1.0501 0.9499 1.0501 0.9499 1.0501

0.5 0.7321 1.2679 0.7321 1.2679 0.7321 1.2679 0.7321 1.2679

0.9 0.3732 1.6268 0.3732 1.6268 0.3732 1.6268 0.3732 1.6268

The behavior of p{m, p f in terms of β and U0 is shown in Table 6.1. At each β the

first column refers to the values of the values of the p{m parameter, while the second 

refers to the p f. We can see that the increase of the parameter β of the flow increases

the density parameter at the upper cold wall and decreases it at the lower hot wall. This 

can be easily explained since the density parameter is expected to be proportional the 

inverse of the temperature. At this point we should stress out that the density of the gas 

inside the flow domain for all the cases in the free molecular regime is constant and 

equals to one as described already by Eq. (6.4).

For the estimation of the axial velocity we have
2 +ou -t-ou -t-ou 2 +00 +oo 0 ^

uim =- j J Jgcxdcxdcydcz = - f f jgcxdcy dcxdcz+- j J j gcxdc
P —CO —00 —00 P —00 —00 —00 P —00 —00 0

dcdc„

+00 +00 0

P:

P —CO —00 [_—CO

[6,-c/0)X+c;]

P - oo-oo-«ο (l —
ι~β cxdcdcxdcz +

+1 f r ?—El—

1 ,pf0-/8)
71

+C0 +C0 +C0

-co -oo 0

Pi

π'

rw t'jj t'-'j

-co -oo 0

up cxdcydcxdcz

-cfcl (Cx+U°) dcdcdc +
Vo3β) y
(C*~Uo)

^β)
dcdcdcf
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(6.8)^=φτ[ρ?υ« -pfU']-y(pf -pf)

Introducing Eqs. (6.6) and (6.7) for pf” and p2/m into Eq. (6.8) we find the following 

closed form expression:

(6.9)

From Eq. (6.9) it is seen that when the walls are stationary (U0 =0) or isothermal 

(β = 0, ±U0 = 0), the axial velocity is zero. The behavior of uffl in terms of β and U0 is

seen in Table 6.2. The increase of the temperature difference between the plates also 

increases the deviation between the velocity of the flow and the equilibrium velocity. We 

can also see that the increase of the β parameter of the flow increases the velocity of the 

flow in a non-linear way, while the increase of the velocity at the wall leads to a linear 

increase at the velocity of the flow.

Following similar mathematical manipulations for the temperature we define
+00 +co 0

r/m=— J J \g(c-uf dcxdcydc2=— J J Jg(c-w)2 dc
—00 —00 —00 

+00 +oo +O0

3 p J ■/ —oo —<•oo —oo —oo

dcdc, +

+YP\\
-oo -oo 0

dcdc_

Table 6.2: Free molecular analytical solution for the axial velocity of the flow.

β U0
0 0.1 0.3 0.5

0 - 0.000000 0.000000 0.000000

0.1 0.000000 0.005012 0.015038 0.025083

0.5 0.000000 0.026795 0.080385 0.133975

0.9 0.000000 0.062679 0.180804 0.313395
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+00 +C0 0

'*=ήίίί
Pi

[(ci-fj,o) +ci+cz]

\-β

3p _» -«ο (l - /?)] ' f -u.J + cj + ci dcdcdc, +y x z

+ Pi
^ -t-w tw -t-OJ

— f i i-
3p 0 [;r(l + /?)]7

[(Cx+i'o^+Cv+C?]
l+>3

(c'-">)2 + cj+c! dcdcdc,y * “

zfm =·

3p
P2'

f™
3(l-/?) + 2 ):) + ^(3(l + /?) + 2(i/0-n,f) (6.10)

Introducing Eqs. (6.6), (6.7) for p/^and pf and Eq. (6.9) for wf1 into Eq. (6.10) we find

the following closed form expression:

1 + -
8 ui (6.11)

3^(\-β) + ^\ + β))~

From the form of the equation it is easily concluded that for the cases where there walls 

are isothermal (/? = 0), the temperature distribution equals 1 + 8£/02 /3. For the cases

where the parameter β does not change, the increase of the velocity at the plates 

introduces more compressibility in the flow and this phenomenon is expressed via the 

increase of deviation between the temperature of the flow and the reference temperature. 

The detailed behaviour of r/m in terms of β and U0 is seen in Table 6.3. For the cases

that U0= 0 and U0= 0.1, for the same value of β, there is a small change in the

temperature. The increase of the temperature ratio between the plates, decreases the 

values of the temperature distributions computed. For these small velocities imposed at 

the wall, the flow can be treated as incompressible.

Table 6.3: Free molecular analytical solution for the temperature of the flow.

β u0
0 0.1 0.3 0.5

0 - 1.000067 1.060000 1.666667

0.1 0.994987 1.001637 1.054837 1.161235

0.5 0.866025 0.872213 0.921718 1.020726

0.9 0.435890 0.439937 0.472318 0.537079
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.By using the suitable moments, the axial heat flux is found to be
+00 +00 0

qT = J J \s{c-u)2 {cx-ux)dcxdcydc; = J | fg(c-u)2(cx-ux)dcy
—oo —oo —oo 

+oo +oo +oo

+ iJ Sg(c~u)2(cr-u*)dcy

dcdc. +

-oo -oo 0

+oo +oo 0

«Mff Pi

dcxdcz

[(c,-i/0)2+c;+Cj2]

—00 —00 —00 00-/0]'

1-/3

+00 +oo +00

■ill
P,

[(c,+t/0)2+c2+e]]

1+/8

° [^0+^)]/

)dcydcxdc2 +

(c* )’+CJ+C* (c* -«** :

^-(f/o-Mf')(5(l-^) + 2(t/o-Mf')2)-^(t/o+W;f’)(5(l + >0) + 2(C/o +^)2)

(6.12)

Introducing Eqs. (6.6), (6.7) for p{"' and p-f” and Eq. (6.9) for uxm into Eq. (6.12) we 

yield

2f/o[(V(l-/?)-VO + /0))(5/?2+4i/o2) + /?(V(l-y9)+V(l + ^))(5 + 4f/o2)]
q? = —

(V(l-y3) + V(l + y9))
(6.13)

From the form of the equation it is easily concluded that for the cases where the walls are 

stationary (U0 = 0) or isothermal (β = 0), the axial heat flux is zero. The detailed

behaviour of qf” in terms of β and U0 is shown in Table 6.4. When the parameter β 

does not change, the increase of the velocity at the plates leads to an increase of the axial 

heat flux. Also, as β is increased, the absolute value of the axial heat flux increased. This 

means that, the unexpected horizontal heat flux is increased as the temperature and the 

velocity gradients between the plates are increased, provided that the flow is sufficiently 

rarefied. The heat flux computed is always negative, i.e. opposite to the direction of the 

cold (upper) moving plate. Further more, the increase of the temperature ratio at the 

plates also decreases the heat flux. The quantitative behavior of the axial heat flux in the 

flow can be seen in Table 6.4.
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For the case of the normal heat flux of the flow, similar procedure is followed. 

Making use of the corresponding moment and introducing similar mathematical 

manipulations we find
tw -t-wj -t-ou -+-αυ

qym = J J \g{c~u)2 cydcxdcydcz = J J Jg(c-u)2 cydc
-oo -oo -oo 

+oo +oo +oo

dcdc.

+ JJ \g(c-u)2cydcy dcdc,

+oo +oo 0

<=ίίί h---------e >-p
—00 —00 —00 [π(\-β)]

cdcdcdc, +y y x z

+
+00 +00 +00

ill Pi 1+P

0 [π(\ + β)\
+c;+c\ cdcdcdc:

=

(6.14)

Introducing Eqs. (6.6), (6.7) for pfl and pfl and Eq. (6.9) for ufl into Eq. (6.14) we find 

the following closed form expression:

2 [l

++

1 (i+£4)’

V^(i+Vi-/?2 )

(6.15)

Table 6.4: Free molecular analytical solution for axial heat flux (qfl ).

β ^0
0 0.1 0.3 0.5

0 - 0.000000 0.000000 0.000000

0.1 0.000000 -0.025037 -0.077512 -0.137186

0.5 0.000000 -0.116523 -0.361507 -0.642305

0.9 0.000000 -0.137367 -0.430366 -0.778164
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From the form of the equation it is easily concluded that for the cases where there walls

are isothermal (β = 0), the normal heat flux equals zero. The detailed behaviour of qym

in terms of β and U0 is shown in Table 6.5. For the cases where the parameter β does

not change, the increase of the velocity at the plates introduces an increase in the 

corresponding values of the heat flux, while, on the other hand, the increase of the 

temperature ratio between the plates, increases the normal heat flux in a more drastic 

way.

Moreover, macroscopic quantities of major importance for the flow are the stresses 

(normal and shear). The evaluation of the normal stress in the x direction is
+oo +oo +oo

= { } \s{cx~ux)2dcxdcydcz = J | \g{cx-ux)2cydcy
—oo —00 —00 

+00 +00 +00

+ ii \g(c*-ux)2cydc>

dcdc. +

+oo +oo 0

-i-fjf f>2

dcxdc.

—00 —00 —00 [π(\-β)\

up (cx~uim)' dcydcxdcz +

+00 +00 +00

TU P,
[(c,+t/0)2+c2w+c;]

up (cx-uff dcdc dc:

afm =XX

-® o [;r(l + /?)]/2 

^(n/TT) + 2(t/0 + u<r)!) + &( J(UP) + 2(u0 -)2) (6.16)

Table 6.5: Free molecular analytical solution for normal heat flux (qym).

'

^0
0 0.1 0.3 0.5

0 - 0.000000 0.000000 0.000000

0.1 0.112413 0.112977 0.117485 0.126500

0.5 0.505839 0.508549 0.530236 0.573608

0.9 0.522431 0.526069 0.555176 0.613390
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Introducing Eqs. (6.6) and (6.7) for p{m and pf into Eq. (6.16) we yield:

1-/32 +(VE7eT)(l+4t/02)

(Vo-/»Wo+/»))!
(6.17)

The quantitative behavior of the x-normal stress can be seen in Table 6.6. The increase of 

the velocity at the walls leads to a significant increase of the computed stress. On the 

other hand, the increase of the temperature difference between the plates decreases the 

normal stress of the flow but only when parameter β acquires high values. In small 

velocities, the computed stress remains quite the same.

In a similar manner we have
+oo +oo +oo +oo +oo 0

< = i j \g(cy-uy) dcxdcydc, = J J \gc]dcy
—00 —00 —00 

+00 +00 +00

—00 —00 —CO

dcdc, +

+ J{ \gc;dcy
-00 -00 0

+00 +00 0

dcdc.

P2
[(cr~t/o)i+Cy+Cz]

—00 —00 —00 Ml-/*)]'
M c]dcydcdc: +

-t-wj -+-«j

TH
-oo -oo 0

P,
[(c»+i/o)2+c5+cr]

'+β c]dcydcxdc2

^^[Λ-λ+Λ+λ]· (6.18)

Table 6.6: Free molecular analytical solution for normal stress σ/χ.

β U0
0 0.1 0.3 0.5

0 - 0.510000 0.590000 0.750000

0.1 0.497494 0.507469 0.587268 0.746866

0.5 0.433013 0.442295 0.516551 0.665064

0.9 0.217945 0.224016 0.272587 0.369729
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Introducing Eqs. (6.6) and (6.7) for p{m and ρβ1 into Eq. (6.18) we find the following 

closed form expression:

(6.19)

The values of the y-normal stress are independent of U0. The detailed behaviour of ayy 

in terms of β and U0 is shown in Table 6.7. The increase of the temperature difference 

between the plates decreases the stress of the flow, especially for the cases where 

parameter β acquires high values. In large temperature differences, the evaluated stress 

is less than the half computed in small values of the β parameter.

Finally, the normal stress in the z direction of the flow is found
+oo +oo +oo +oo +oo 0

-00 —CO —00

σ* = I I \s{cz-uz)2 dcxdcydcz = J J \gc:dcy
—00 —00 —00 

+00 +00 +00
+ {J \gc)dcy

dcdc, +

-co -oo 0
dcdc.

+O0 +O0 0
e '~β c]dcydcxdc, +

+ JJJ
-00 -00 0

Pi
[(c,+(/0)2+cJ+^J

e χ+β c]dcydcxdc, =>

σζ = λ-[ρ>·(\-β) + ρ;’(\ + β)\. (6.20)

Introducing Eqs. (6.6) and (6.7) for pf" and p{m into Eq. (6.20) we find the following 

closed form expression:

σ{" = = σfm (6.21)

In this case as expected the behaviour of σ 'β in terms of β and U0 is identical to the 

one of σζ.
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Table 6.7: Free molecular analytical solution for normal stresses ayy=

β

0

o © p p 1/
1

- 0.500000 0.500000 0.500000

0.1 0.497494 0.497494 0.497494 0.497494

0.5 0.433013 0.433013 0.433013 0.433013

0.9 0.217945 0.217945 0.217945 0.217945

Probably the most important macroscopic quantity in this problem is the shear stress:
-t-wj -t-wj -t-wj -w κι

σ^= J J \f(cx-ux)(cy-uy)dcxdcydcz = J j \f(cx-ux)cydc
—00 —00 —00 

+O0 +00 +00

+ Jj f/(cx-"JcA dcdc.

+00 +O0 0

■v = J J f
P2

[(c,-C/0)2+^+^]

—00 —00 —00 [π(\-β)\

1-/3
{C,-U^)CydCydCxdCz +

+00 +00 +00

TJi
Pi

[(cr+i/o)2+cv+‘'i ]
up

Ο [π(\ + β)\
(c,-u,„)cvdcdcxdc:

P,J(. l + P)

dcdc„ +

(6.22)
2\[π ' ° x>' 2^[π

Introducing Eqs. (6.6), (6.7) for p,/mand p2/m and Eq. (6.9) for w/m into Eq. (6.22) we find 

the following closed form expression:

afm =-xy
2U0JT/32

^(^(\-β)+^(1 + β)) '
(6.23)

The quantitative behavior of the shear stress can be seen in Table 6.8. As it can be 

noted from the equation above, the influence of both U0 and β imposed at the plates of 

the flow geometry is of great importance. In general, the shear stress computed is always
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Table 6.8: Free molecular analytical solution for shear stress (σ 'ζ ).

β U0
0 0.1 0.3 0.5

0 - -0.056419 -0.169257 -0.282095

0.1 0.000000 -0.056207 -0.168620 -0.281033

0.5 0.000000 -0.050584 -0.151752 -0.252919

0.9 0.000000 -0.029024 -0.087072 -0.145120

negative, opposite to the direction of the cold (upper) moving plate, behaving in a similar 

manner with the axial heat flux. The increase of the velocity at the walls leads to a 

significant increase of the absolute computed stress. However, the increase of the 

temperature difference between the plates decreases the absolute shear stress.

6.2 Hydrodynamic regime

In order to verify the validity of the proposed method and the computed results, a 

comparison between the analytical results via the implementation of the Navier Stokes 

equations and the corresponding numerical ones at the hydrodynamic limit is presented 

[Liu, 1962]. In obtaining such a solution, the medium is assumed to be a perfect gas with 

a viscosity μ directly proportional to the absolute temperature. This behaviour is the one

of a Maxwell molecule. It is noted that although μ = μ(Τ) and k = k(T), the Prandtl

number (Pr = μ -cp / A:) remains constant.

The Navier Stokes equations that describe the physics of the problem are

dy
du

F~r
. dy.

= 0

^ = 0 
dy

and

(6.24)

(6.25)
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Equations (6.24) and (6.25) are the momentum equations and Eq. (6.26) is the energy 

equation. For the closure of the problem we have to define the boundary conditions that 

characterize the flow domain. At y = H / 2, u = U0 and T = Τλ, while at y = -H / 2,

u = -U0 and T = T2.

Integration of Eq. (6.24) and (6.26) yields

du ,
M~r = b i dy

(6.27)

and

"PrN 2
,2,

u -
Ay

u = b, (6.28)

respectively, where bv b2, b3 are the unknown constants. At the present, we introduce the 

quantity μ2 which denotes the viscosity coefficient evaluated at the temperature T2. By 

integrating Eq. (6.27) for one more time we conclude 

M^._b,y+b4
{——du = 
J Mi Mi

(6.29)

where bA is another unknown constant. Since we are implementing Maxwell 

intermolecular model (ω =1) the viscosity is proportional to temperature according to

-=4 <6-3o>Mi T2

By using Eq. (6.30) and integrating Eq. (6.23) we finally obtain 

1 , b2 2 Pr 3 b} b4------ b2u H—— u------u =—'-y + —- (6.31)
cpT2 L k 6 J Mi Mi

The four unknown constants that appear in Eq. (6.28) and (6.31) are defined by the four 

boundary conditions. The solution of the system yields

MiUq [~3cp (^j + ?2)+ 2 Pr £/p ]
*,=■ 3 cpHT2

(6.32)
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(6.33)b2 =
μι{Ά-Τ2)[*αρ(Τ\+Τ2) + 2?τυϊ\

6HT,

L cp(Tt+Ti)+?rUt
°3 — ~

b. =
M^-t2)u0

4Γ,

(6.34)

(6.35)

Substituting Eqs. (6.32-6.35) into Eq. (6.31) we find

V
V2V

T1 + 4-
?2J

Y-1 ?r Ma " u 1 (
1-4- r«! 2

V — 1 9
-L Pr Ma2

( λ3uK 4 l T2)UJ 6 J
f t 2(7-1) 1

y —
( T \
1-4-

{ Ά 3 J 4 l T2)

(6.36)

where Ma = U0/c0 is the Mach number and y = cp l(cp - Rj where R is the specific

gas constant. Equation (6.36) is solved in an iterative manner by implementing the 

Newton -Raphson algorithm. Next we substitute Eqs. (6.32-6.35) into Eq. (6.28) to find

T r-l , 
— + L—Pr Ma2 + —

u

vf/y

r T\
1-4-

v 7;2

u _ 1

U~2

T
\ + ±

T12 y
+ ——-PrMa2. (6.37)

This equation can be easily solved for T(y) provided that the velocity u(y) is known 

from Eq. (6.36). Equation (6.36) and (6.37) are used to compare with the kinetic solution 

at <5 = 100 . This is possible by setting γ = 5/3, Pr = 2 / 3 and Ma = U0yj2/γ .

6.3 Conservation Principles

In this section, conservation principles through the moments of the reduced kinetic 

equations are presented. The macroscopic quantities of the axial and normal velocities, 

the temperature, the heat fluxes and the shear stress are used in order to produce these 

principals. As it has already been mentioned in previous chapters, the corresponding 

expressions described by Eqs. (4.43a-g) are valid for both the BGK and the S models.

For the conservation of mass flow we take the zeroth moment of Eq. (4.28):
+oo +oo +oo

j- J c,Ydcr + δ,ρτ'- } Ydcr -50pr'~J Yudcy =>
-00 -oo -00
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(6.38)

ο Γ τ/7 £ \—ο) ο \—ο) Ίπτ— I cyYdc + δ0ρτ ρ = δ0ρτ ρ-η= 
fyi y/πτ

-]c/dcy=0~-(«yP) = 0 

Also by taking the zeroth moment of Eq. (4.29) we find:
+CO +00 +00

— JCy0dCy + δ,ρτ'-" J0dcy = δ,ρτ'~“ J0UdCy =5
'v —00 —00 —00

fcv0dc +δ0ρτ'~ωρηχ = d0pr'-auxp~L^ 
fy-t Ίπτ

— f c Φάο = 0
3y_i ' '

(6.39)

To yield the conservation of energy flux principal we take the second moment of Eq.

(4.28) and the zeroth moment of Eq. (4.30) and we add the resulting equations to yield:
+oo +oo +oo

— \cy[Ycl+X~\dcy+6apr'- \[Yc]. + x}dcy=e,PT'- \[yuc] + Xu]dcy =>
—00 —00 —00

— \cy[Yc) + x]dcy+doPT

+00

-\cy[Yc]+X-\dcr=0

2 3pr 
KP + -T- = 50pr'-|[2u,!+3r]:

(6.40)

Another equivalent energy conservation principal may be obtained if the integral 

expression for the y-component of the heat flux vector is used as a guideline. In 

particular, we take the first moment of Eqs. (4.28), (4.30) and (4.29) after the latter one is 

multiplied by (-2uxcy0). The resulting equations are added to find:

- ][clY + cyX-2u,c,0]dcy + 2 dU*
dy -oo

+oo

■ου -rou

\cy0dcy +δΰΡτ{-ω \[c2yY + X-2ux0]dcy

=δ0ρτλ~ω J\c)YM +XM -2ux0M]dcy
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£ \\c\Y + crX-2uxc,0\dc, + 2 [ffj+iy \[c]Y + X-2u,0]dcy =
dy dy

+oo

=δ0ρτχ~ω J[c;+(w;+r)-2wi2]exp1 f c2)
Jexp __ y_

v τ.

Yy \[c)Y + cyX-2uxcy0]dcy + 2 ^ [σν] + ^0ρτ

=δ0ρτ'-ωρ y -w;

^ +00

-\\c\Y+c,X-2u,c,0-\dc, + 2^j[<] = 0 =

_a_
dy

— Ur +r

dc..

Λ3ρ 2
~2«XP

—iq ) + 2σ ^- = 0
^ y’ x> dy

(6.41)

To deduce and expression for the conservation of momentum flux principal we take the 

first moment of Eqs. (4.28) and (4.29) after the former one is multiplied by (-ux). Then, 

we add the resulting equations to yield:

c, - uj] + δ,ρτ'- [Φ - u,r] = s,pr'-[<*>“ - u,Yu ] =>

c, |;[<*> - «.11 + a.pr'·" [Φ -«/] = [0] =s>

_5_

_a_

dy

+00

\[0-uxY]cydcy + 5opTX-a \[0-uxY]dcy = 0:
—00 —oo

(°xy) + fcp - w,p] = 0 =>

Following similar principals we obtain that

5

(6.44)

dyKH

It is also important to note that in non-equilibrium flows, in general σχχ Φ σyy Φ σζζ, 

which will result in a non-uniform pressure across the channel.
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7
Results

7.1 Computational Parameters

The numerical results presented here have been obtained using the double projected 

kinetic equations for both the BGK and the S model as they were described in Chapter 4. 

The two different implementations with regard to the projection method return, as it 

should, the same results. Therefore, the one with the least computational effort is adopted. 

In order to achieve a good accuracy for the numerical results, the computational 

algorithm makes use of I = 401 nodes for the spatial discretization and M = 96 roots of 

the Legendre polynomials for the molecular velocity components. The termination 

criterion for the iterative process has been set as the sum of the maximum relatives errors 

between the macroscopic quantities of the flow and equal to 1 O'6. Results are presented 

in the whole range of rarefaction (0 < δ0 < 102), with U0- 0, 0.1, 0.3 and 0.5 , β - 0,

0.1, 0.5 and 0.9 and ω = Μ2 . Also in some cases results for ω = 1 are presented.

7.2 Comparison with existing results

In order to validate the accuracy of the numerical results extensive comparisons have 

been performed with analytical and computational results available in the literature.

As it has been shown in Section 6.1 analytical results have been derived for all 

macroscopic quantities at the free molecular limit (6=0). The numerical results obtained 

by the nonlinear kinetic code for 6=0 have been compared with the corresponding 

analytical ones and in all cases excellent agreement has been found.
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Also, in Section 6.2, it has been shown that semi-analytical results may be deduced at 

the hydrodynamic limit (£->oo). Corresponding results for £ = 100 with the BGK 

model have been obtained and a comparison is presented in Figures 7.1-7.4. In general, 

the agreement is very good. Actually at small values of U0 and β the agreement is

excellent, while as these two parameters are increased there are some discrepancies, 

which are small and they can be easily justified by the fact that the BGK solution is based 

on the hard sphere model, while the Navier-Stokes solution on the assumption of 

Maxwell molecules.

Finally, a comparison is made with some results solving the same problem based on 

the DSMC method [Marques, Kremer and Sharipov, 2000]. First we analyze the profile 

of the velocity field as a function of the distance between the plates. In Fig. 7.5 the 

velocity profile for Kn=0.25, β - 0 and V = 0A(kT(/m)112 is in excellent agreement with 

the corresponding DSMC solution. Also, in Figure 7.6 the ratio Ρχ/ρο, with po = nokTo 

denoting the equilibrium pressure, is plotted as a function of the Knudsen number when 

the velocity of the plates is V - 0A(kTo/m) . The comparison between the DSMC and 

the kinetic results yields very good agreement in the whole range of the Kn number. In all 

cases computed, the relative error between the kinetic and the corresponding DSMC 

results is from 8% for the free molecular regime, reaching a maximum of 13% at the 

continuum regime. In Figures 7.7 and 7.8 the vertical and horizontal heat fluxes estimated 

by the DSMC method are plotted for Kn=0.25 and V = (kT(/m)U2. The kinetic solution is 

in excellent agreement with the DSMC. The bigger discrepancies compared to the 

DSMC results appear at the walls where the kinetic approach overestimates the values of 

the heat flux vector.

7.3 Pure Heat Transfer (±f/0 =0)

In Figures 7.9-7.11 the pure heat transfer problem is presented for £0 =0, 0.1, 1, 10 

and 102 with β = 0.1, 0.5, 0.9 respectively. The velocity profiles for all cases are equal 

to zero. The deviation of the temperature profiles from the isothermal profile r = 1 is 

increased as β is increased. Also as the temperature ratio between the walls is increased,
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the temperature jump at the hot plate is larger than the corresponding jump at the cold 

plate. The normal heat flux is always positive, denoting as expected, that heat is moving 

from the lower cold plate towards the cold upper plate. The vertical heat flux is 

increasing as the temperature difference between the plates is increased. The horizontal 

heat flux qx (y) parallel to the flow is zero, something which is expected, since the axial

heat flux is related to the velocity as it is shown from the analytical solutions for the free 

molecular regime. The density distributions change significantly as β is increased. The 

deviation from the average value p = 1 is increased with the parameter β. It is seen that 

the density jump at the cold upper wall is significantly larger than the one at the lower hot 

plate. Finally, the pressure distribution P(y) is constant for δ0 = 0 and 102, while for

the intermediate values of δ0 depends on y and in particular it is decreased as we are

moving from the lower towards the upper plate. Also, it is decreasing as the temperature 

gradient is increased.

7.4 Coupled Couette flow with heat transfer

In the present section, some results for non-isothermal walls for various values of 

parameter β are presented. The selected values of /? = 0.1, 0.5, 0.9 correspond to wall 

temperature ratios equal to 1.2, 3 and 19 respectively. In Figures 7.12-7.23, a detailed 

quantitative description of the flow quantities is presented. In particular, distributions of 

velocity w(y), temperature r(y), vertical and horizontal heat fluxes qy(y) and qx(y),

density p{y) and pressure P(y) are presented for δ0 = 0, 0.1, 1, 10 and 102 with 

£/0 = 0,0.1, 0.3 and 0.5 and β = 0.1, 0.5, 0.9 .

7.4.1 Isothermal plates

First, results are provided for the case of isothermal plates (β-O) via the BGK 

model kinetic equation. In Figures 7.12-7.14, distributions for the velocity w(y), the
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temperature r(y),the heat fluxes qy (y) and qx(y), the density p(y) and the pressure 

P(y) are presented for 0.1, 1, 10 and 102 with t/0=0.1, 0.3 and 0.5

respectively. At δ0 = 102 (very close to the hydrodynamic limit) the velocity profiles are 

straight lines. As δ0 is decreased, the profiles have the well known s-shape and finally, at 

δ0 =0, u(y) is constant and equal to zero. In all cases the velocity profiles are anti­

symmetric and there is very good quantitative agreement with the corresponding results 

obtained by using linear kinetic theory.

Quite more interesting are the temperature distributions. It is seen that although the 

walls are isothermal the flow is not. The temperature distribution is symmetric about the 

axis y - 0 and reaches a maximum at y - 0. This maximum value is increased as U0 is

increased. For example in the specific case of δ0 = 1 the temperature at the center 

compared to the wall temperature is increased less than 1% when U0 =0.1, more than 

5% when U0 =0.3 and more than 12% when U0 =0.5 . Also, as δ0 is decreased the 

shape of the temperature distribution is changed from parabolic to flat. Actually, at 

δ0 = 0 the temperature is a straight line equal to 1 + 8t/2 / 3. It is also evident that as δ0 is

decreased the temperature variation from the isothermal conditions, at each point between 

the plates, including the temperature jump at the walls and the maximum value of the 

temperature at the center, is increased.

The heat flux distributions, shown in Figures 7.9-7.11, for the pure heat transfer 

problem, compared to the corresponding ones in Figures 7.12-7.14 for β = 0 are 

qualitatively different. The normal heat fluxes are anti-symmetric (positive at the upper 

half and negative at the lower half) and almost linear in terms of y . For the specific case

of = 0 we have qy (y) = 0. The axial heat flux qx (y), which is parallel to the flow is

also shown. It is seen that these fluxes appear even for isothermal walls. They are anti­

symmetric (negative at the upper half and positive at the lower half) having an s-shape 

at intermediate values of δ0. It is important to note that the behavior of both heat fluxes

in terms of δ0, as it is shown in Figures 7.12-7.14, is typical only for isothermal walls.
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Moreover, the density and pressure distributions of the flow are also presented. Both 

macroscopic quantities appear to have a symmetric distribution about the axis y- 0,

where the density has its minimum value and the pressure its maximum. Also, as δ0 is 

decreased the shape of the density distribution is changed from parabolic to flat. Actually, 

at t>0 = 0 the density is a straight line equal to unity and therefore the pressure 

distribution matches the temperature one, since in general P = p x r. It is also noted that 

in the free molecular and hydrodynamic regimes the pressure distribution is flat, while in 

the transition regime is a function of y.

7.4.2 Coupled flow

In Figures 7.15-7.23 all macroscopic distributions of some practical interest are 

shown for U0 =0.1, 0.3. 0.5 and β = 0.1, 0.3, 0.5 in the whole range of the rarefaction 

parameter δ0 from the free molecular through the transition up to the hydrodynamic

limit. Studying these figures it is possible to investigate the effects of the velocity and 

temperature of the walls on the flow characteristics and properties. A general comment is 

that the well known anti-symmetric profiles of the velocity and temperature distributions 

in the case of the linear Couette and heat transfer problems are not present anymore. Due 

to the coupling of the problem and the implemented nonlinear kinetic solvers the 

solutions are not anti-symmetric.

Starting with the velocity profiles it is seen that when δ0 = 0 the velocity profile is 

flat (there is dependency on y) and different than zero. At the other end, when δ0 = 102 

for small values of U0 is almost linear but as U0 is increased becomes nonlinear. The

velocity distributions in the transition regime lay between the velocity distributions 

corresponding between these two limiting cases. In all cases the velocity slip at the lower 

hot walls are larger than the corresponding slips at the upper cold walls. Also, as expected 

the slip is increased as δ0 is decreased (the atmosphere becomes more rarefied).
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The dependency of the temperature profiles, in terms of all flow parameters can be 

also studied. The temperature jump at the hot walls is always larger than the 

corresponding ones at the cold wall and it is increased as δ0 is decreased. At large wall

velocities and small temperature differences the temperature of the gas inside the channel 

may be larger than the temperature of the hot wall. In contrary, at large wall temperature 

differences even at large values of the wall velocity the temperature of the gas is always 

decreasing as we are moving from the lower towards the upper plate. In general, as U0 is 

increased its effect on the temperature distribution becomes more significant it becomes 

more prominent as δ0 is decreased (more rarefied atmospheres).

Both the vertical and horizontal heat fluxes are also presented in Figures 7.15-7.23. 

The vertical heat flux is always positive indicating a heat flow from the lower hot towards 

the cold upper plate. The heat flux is increased as the temperature difference and the 

relative velocity of the walls are increased. Also they are increased as δ0 is decreased. 

For δ0 =0 and 100 the vertical heat flux profiles are almost constant, while at the 

intermediate values of δ0 they are a monotonic increasing function of y.

The existence of an horizontal flux it is a non-expected phenomenon, which may have 

several useful heat transfer applications. Its presence is due to non-equilibrium (rarefied) 

conditions. The sign of these heat fluxes is always negative indicating that the flow is 

from right to left and its absolute values are increased as δ0 is decreased. It is also noted

that at δ0 = 102 the horizontal heat fluxes become almost zero. It is important to note that 

in addition to the rarefied atmosphere the horizontal heat fluxes are present only when 

both velocity and temperature gradients exist in the flow and they are increased as these 

gradients are increased.

Finally, the density and pressure distributions across the plates are also shown. In 

general, the density profiles have an opposite variation in terms of y, compared to the 

corresponding one of the temperature profiles. That means that when the temperature is 

increased the velocity is decreased and vice versa. In that sense the density jump is larger 

at the cold wall compared to the density jump at the hot walls, while the temperature
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jumps are the other way around. This behaviour is well justified by the relation Ρ-ρχτ, 

where the pressure distribution has small variation in terms of y. It is important however 

to note that the pressure is a function of y. Again this is a non-equilibrium effect. It is also 

noted that σα * σν>, * σΖ2. This non-equilibrium behaviour is clear at intermediate values

of £>0 in the transition regime. At δ0 = 102, when the flow is dominated by intermolecular 

collisions and at δ0 = 0, when there are no intermolecular collisions at all, the pressure 

distributions are constant.

7.5 Comparison between the BGK and Sakhov models

A systematic comparison between the results obtained by the BGK and Sakhov 

models are presented in Figures 7.24-7.26 for a wide set of flow parameters. The 

comparison is made by using the hard sphere model (w=0.5). The macroscopic 

distributions for δ0 = 0 are not shown since in this case the flow is collisionless and does

not depend on the intermolecular potential. In Figure 7.24, where £/0=0.1 and β=0Α 

there is an excellent agreement between the results of the two models. As both β and U0 

are increased there are some discrepancies between the results, which however in general 

remain small. This behavior is expected since the BGK model is not the appropriate 

model to study nonisothermal model since it does not produce the correct Prandtl 

number. From the other hand the Shakhov model, which produces the correct Prandtl 

number is considered as more reliable. The discrepancies become more evident in Figure 

7.26, where U0= 0.5 and β=0.9 particularly when the temperature and heat flux profiles

are compared. Figure 7.25, corresponds to the moderate values of U0 =0.3 and β=0.5. In 

general, the two models follow the same trend in all macroscopic quantities, having an 

excellent agreement is free molecular and hydrodynamic regimes and having good 

agreement in the transition regime. So overall, if the BGK model is implemented due to 

its simplicity instead of the Shakhov model, the expected error should not be more than 

20%.
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7.6 Comparison between intermolecular collision models

The hard sphere and the Maxwell intermolecular potential models are the two limiting 

cases of the so-called inverse power law (IPL) models. As it has been pointed out in 

previous chapters by setting the parameter w=0.5 we obtain the hard sphere model, while 

by setting w=l we obtain the Maxwell model. In this paragraph results are presented, in 

Figures 7.26-7.28, for all macroscopic quantities for different set of flow parameters for 

these two limiting intermolecular collision cases. The results are for δ0 =0.1, 1, 10 and

102 with β = 0.1 and U0 = 0.1 in Figure 7.27, β = 0.5 and U0 = 0.3 in Figure 7.28 and 

β = 0.9 and U0 = 0.5 in Figure 7.29. Again, the distributions for δ0 - 0 are not shown 

since the results are irrespective of the collision model being used. The agreement 

between the results is very good clearly indicating that this specific flow configuration 

does not, at least significantly, on the implemented intermolecular model. In general the 

agreement between the results obtained by the two models vary from 1% for small values 

of U0 and β up to 10% for large values U0 and β. In terms of the rarefaction parameter 

the results are almost identical for small and large values of delta, with the largest 

differences at intermediate values of δ0 inside the transition regime.

7.7 Estimation of shear stress

One macroscopic quantity of great importance for the problem in question is the shear 

stress. As it has been shown theoretically the distribution of the shear stress, in all cases, 

irrespective of δ0, β and U0 is flat and independent of the spatial variable y. Here, we

present, as reference, tabulated results of the shear stresses for all parameters involved in 

the calculations. In Tables 7.1 and 7.2 the values of the shear stress are computed via the 

BGK and Shakhov kinetic model equations respectively using the hard sphere model. In 

Table 7.3 the BGK results for the shear stresses are shown for the Maxwell molecular 

model.

The shear stress is always negative. It depends both on β and U0. The absolute value 

of the shear stress is increased as δ0 is decreased, as U0 is increased and as β is
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decreased. The maximum absolute values occur at β = 0, U0= ±0.5 and δϋ-0. The 

results are considered as accurate up to three significant figures.

Table 7.1: Shear stress based on the BGK equation and hard sphere model

β u0
0 0.1

*0
1 10 100

0.1 -0.0564 -0.0522 -0.0339 -0.0083 -0.0010
0 0.3 -0.1693 -0.1570 -0.1023 -0.0253 -0.0030

0.5 -0.2821 -0.2625 -0.1723 -0.0431 -0.0051
0 0.0000 0.0000 0.0000. 0.0000 0.0000

0.1 0.1 -0.0562 -0.0521 -0.0338 -0.0083 -0.0010
0.3 -0.1686 -0.1565 -0.1020 -0.0252 -0.0030
0.5 -0.2810 -0.2616 -0.1719 -0.0430 -0.0051
0 0.0000 0.0000 0.0000. 0.0000 0.0000

0.5 0.1 -0.0506 -0.0472 -0.0313 -0.0081 -0.0010
0.3 -0.1518 -0.1418 -0.0946 -0.0246 -0.0029
0.5 -0.2529 -0.2373 -0.1596 -0.0420 -0.0050
0 0.0000 0.0000 0.0000. 0.0000 0.0000

0.9 0.1 -0.0290 -0.0283 -0.0218 -0.0074 -0.0009
0.3 -0.0871 -0.0851 -0.0662 -0.0224 -0.0028
0.5 -0.1451 -0.1428 -0.1131 -0.0386 -0.0048
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Table 7.2: Shear stress based on the Shakhov equation and hard sphere model

β U0
0 0.1 1 10 100

0.1 -0.0564 -0.0522 -0.0339 -0.0083 -0.0010
0 0.3 -0.1693 -0.1570 -0.1022 -0.0252 -0.0030

0.5 -0.2821 -0.2625 -0.1719 -0.0427 -0.0050
0 0.0000 0.0000 0.0000. 0.0000 0.0000

0.1 0.1 -0.0562 -0.0521 -0.0338 -0.0083 -0.0010
0.3 -0.1686 -0.1565 -0.1019 -0.0252 -0.0030
0.5 -0.2810 -0.2616 -0.1714 -0.0427 -0.0050
0 0.0000 0.0000 0.0000. 0.0000 0.0000

0.5 0.1 -0.0506 -0.0473 -0.0314 -0.0081 -0.0010
0.3 -0.1518 -0.1420 -0.0947 -0.0244 -0.0029
0.5 -0.2529 -0.2376 -0.1595 -0.0415 -0.0050
0 0.0000 0.0000 0.0000. 0.0000 0.0000

0.9 0.1 -0.0290 -0.0286 -0.0222 -0.0072 -0.0009
0.3 -0.0871 -0.0862 -0.0673 -0.0220 -0.0028
0.5 -0.1451 -0.1445 -0.1146 -0.0375 -0.0048

Table 7.3: Shear stress based on the BGK equation and Maxwell model

β U0
0 0.1 1 10 100

0.1 -0.0564 -0.0523 -0.0339 -0.0083 -0.0010
0 0.3 -0.1693 -0.1573 -0.1032 -0.0256 -0.0030

0.5 -0.2821 -0.2638 -0.1762 -0.0446 -0.0052
0 0.0000 0.0000 0.0000 0.0000 0.0000

0.1
0.1 -0.0562 -0.0521 -0.0338 -0.0083 -0.0010
0.3 -0.1686 -0.1567 -0.1029 -0.0256 -0.0030
0.5 -0.2810 -0.2629 -0.1756 -0.0445 -0.0052
0 0.0000 0.0000 0.0000 0.0000 0.0000

0.5 0.1 -0.0506 -0.0470 -0.0310 -0.0081 -0.0010
0.3 -0.1518 -0.1416 -0.0944 -0.0249 -0.0030
0.5 -0.2529 -0.2377 -0.1617 -0.0435 -0.0052
0 0.0000 0.0000 0.0000 0.0000 0.0000

0.9 0.1 -0.0290 -0.0280 -0.0219 -0.0075 -0.0010
0.3 -0.0871 -0.0846 -0.0672 -0.0232 -0.0030
0.5 -0.1451 -0.1426 -0.1167 -0.0406 -0.0052
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0.5
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<Jx(y) τ(γ)

Figure 7.4: Distributions of macroscopic quantities for β = 0.9 and U = 0.1,0.3 and 0.5
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Figure 7.5: Velocity profile for Kn=0.25 

β = 0 and V = 0.1 (kT0/m)V2

Figure 7.7: Heat flux perpendicular to the 

plates for Kn=0.25, β = 0 and V = (kT0 / m)' 2
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Figure 7.6: Distributions of macroscopic 

quantities for β = 0 and V = 0.1 (kTQ / m)'2

Figure 7.8: Heat flux parallel to the plates for 

Kn=0.25, β = 0 and V = (kT0 / mf2
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Figure 7.9: Distributions of macroscopic quantities for β = 0.1 and U = 0
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Figure 7.10: Distributions of macroscopic quantities for β = 0.5 and U -0
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Figure 7.11: Distributions of macroscopic quantities for β -0.9 and U -0
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Figure 7.12: Distributions of macroscopic quantities for β = 0 and U = 0.1
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Figure 7.13: Distributions of macroscopic quantities for β = 0 and U = 0.3

78
Institutional Repository - Library & Information Centre - University of Thessaly
19/05/2024 16:21:45 EEST - 3.146.34.55



Figure 7.14: Distributions of macroscopic quantities for β = 0 and U = 0.5
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Figure 7.15: Distributions of macroscopic quantities for β = 0.1 and U = 0.1
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Figure 7.16: Distributions of macroscopic quantities for β-0.1 and U -0.3
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Figure 7.17: Distributions of macroscopic quantities for β = 0.1 and U -0.5
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Figure 7.18: Distributions of macroscopic quantities for β = 0.5 and U = 0.1
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Figure 7.19: Distributions of macroscopic quantities for β = 0.5 and U = 0.3
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Figure 7.20: Distributions of macroscopic quantities for β = 0.5 and U = 0.5
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Figure 7.21: Distributions of macroscopic quantities for β -0.9 and U = 0.1
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Figure 7.22: Distributions of macroscopic quantities for β = 0.9 and U = 0.3
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Figure 7.23: Distributions of macroscopic quantities for β = 0.9 and U = 0.5
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Figure 7.26: Comparison of macroscopic quantities for β = 0.9 and U = 0.5
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8
Concluding Remarks

The scope of the present work is the investigation of the rarefied gas flow between 

two moving plates maintained at different temperatures. This problem has been 

attracted a lot of attention over the years. Here we study this problem as a test bed in 

order to validate the accuracy of our recently developed nonlinear kinetic codes and 

also due to the fact that still there are some interesting non-equilibrium phenomena 

which require further investigation.

In order to model the flow, we use both the nonlinear BGK and Shakhov 

equations coupled to Maxwell diffuse boundary conditions. The numerical solution is 

based on the discrete velocity method. The results include all macroscopic 

distributions of practical interest (velocity, temperature, normal and shear stresses, 

vertical and horizontal heat flux, density and pressure) in the whole range of the 

Knudsen number in terms of the relative velocity and the temperature ratio of the two 

plates.

In an attempt to evaluate the accuracy of the implemented algorithms, the 

analytical solutions at the free molecular limit and the hydrodynamic regime have 

been compared with the corresponding numerical results. In all cases excellent 

agreement has been demonstrated. In addition, a detailed comparison between the 

simple BGK with the more sophisticated Shakhov model clearly indicate that the 

BGK model remains a reliable choice at least for engineering purposes. If very 

accurate solutions are required then implementation of the Shakhov model is needed. 

Also, applying the hard sphere and Maxwell molecular models for intermolecular 

interaction it is deduced that the intermolecular potential model does not significantly 

influence the flow properties and characteristics.

Several interesting findings have been presented. It has been found that the 

velocity slip and the temperature jump are larger at the hot plate compared to the ones 

at the cold plate. Even more the flow is characterized by the presence of an horizontal
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axial heat flux, which increases as the rarefaction of the gas is increased and which is 

present only when both velocity and temperature gradients exist in the flow. This is a 

non-equilibrium cross effect and it vanishes at the hydrodynamic limit. Also the 

pressure distribution is a function of the spatial variable in the transition regime. This 

is also due to the rarefaction of the flow.

In the future, the implementation of the non linear kinetic equations could be 

extended to solve problems in more complex geometries in two and three spatial 

dimensions. The use of the Cercignani - Lampis kernel for the simulation of the gas- 

wall interaction could also be introduced.
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Appendix: Source Codes

In the attached CD-ROM, the source codes used in the present thesis can be found

A.l Fortran source codes for Rarefied Gas Flow Between Moving Plates With Heat 
Tranfer, BGK model

• Projection in z direction: Couette flow with heat transfer (BGK,z).f90

• Projection in * and z directions: Couette flow with heat transfer (BGK,x- 

z).f90

A.2 Fortran source codes for Rarefied Gas Flow Between Moving Plates With 

Heat Tranfer, Shakhov model

• Projection in z direction: Couette flow with heat transfer (S,z).f90

• Projection in x and z directions: Couette flow with heat transfer (S,x- 

z).f90
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