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LQ@IEPWPEVN 0€ OO0ULC gival TTAVTA SITIAQ HOov.






.. EuxaploTieq ...

OEAW VO EUXAPIOTACW EEAPETIKA TNV EMIBAETIOLCN KABNYATPIO pou K. Mavaylwta
ToouttovoToUAOU yia TNV OAn UTIOOTHPIEN TIOU POU TIPOCEQPEPE KATA TNV SIGPKEIN TNG
@oitnong You, aAAd Kal KOTG TNV KTIOVNON NG SIMTAWMATIKAC oL epyaaiac. Ot I0EEC
¢, To OXOMO KOl Ol TIPOTACEIC KAl Ol TIPOTPOTIEG NG OTIWC ETIIONG KOl Ol GUVEXEIC
OULVOVTHNOEIG YOG, OTIOTEAECAV TNV KIVNTAPIO VAN YIO TNV EKTTAPWGN NG EPYAaiog
pou...

NO €UXapIOTACW €TiONG KAl Tov KOBnyntr K. MavoAn BaBaAn mou rtav €mmiong
TAvTo OITTA0 PJOU KOl TIAVTA TIPOBUPOG VO OTIOVTNCEl OTIC EPWTNCEIC KOl VO ME
OUUBOLAEPEL OTIC OTIOPIEC POV, €V TIAPAAANAG POU €3IVE KOUPAYIO OTIC TEAEUTOIEG
MEPEC TNC Epyaaiag pou...

AKOUN, Ba NBeAa va dWow TIC BEPUOTEPEC EVXOPIOTIEC JOL GE OAOUC TOUG KOBNYNTEC
TOU TUAUOTOC MNXAVIKGWV HAEKTPOVIKWY YTIOAOYIOTWV TNAETTIKOIVWVIWV Kol AIKTUWV
mou pe PBondnoav KaB' OAn TNV OIAPKEId TWV OTIOUdWV HOU KOl POU TIPOCEPEPQV
YVWOEIG KOl PJE EKOVAV VO AYOTIAOW TO PMEAAOVTIKO POU €TTAYYEAUa. ‘HTav peyaAn pou
TIYN) TIOU TOUG GLVAVTNGQ...

2€ aUTO TO ONUEI0 va ELXAPIOTOW TOUC YOVEIG JOL Kol Tov adeA@d pou. Idlaitepa
TOV TIOTEPO OTOV OTIOI0 XPWOTAW €V YEPEL TNV ETTIAOYI TNC GXOANG OTI6 TNV oTtoia Ba
aTIoQOITHOW. Agv Ba EEXATW TIOTE TIC CUMPBOUAEG NG UNTEPOC MOV TIOU TIAVTO JE OTNpPIlEl
KOl JE TIPOTPETIEL VO PNV OyXWvopadl. ‘Eva JeYGAO €UXOPIOTW KOl GTOV OJEAQO MO,
BagiAn, yia Ta aoTeia Tou, TO XI00POP TOU KOl TNV aydrn Tou...

TéNOG, €va peyalo euxaplotw otov Kwota mou umhpée Tavia dimAa PJou Kol JE
otpiée ae KABe aywvia Kal ae KABe duakoAia. H npeuia Tou XapOKIAPO TOL POV XAPIoE
TNV 100pPOTIIC TIOU JOL ATOV avayKaia oTIC SUOKOAEG OTIyUEC. Eivan €évag avBpwtog Tou
ME aTnpilel e éva TPOTIO0 HOVADIKO Kal EEXWPIOTO. ..
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KepdAaio 1: Eioaywyn

H mpocopoiwaon Kai n JOVIEAOTIOINGN TWV TTIOAUTIAOKWY CUCTNHUATWV OTIOITEL TNV
XPNon TIOAAQV OUVICTWOWY, KABWC TA @QUOIKA CUCTHPOTO  ATIOTEAOUVTOl aTIO
OUCTOTIKA  OIOQOPETIKAG  QUOIKNG OUOTOONG, Ol  TIOPOAANAEC  UTIOAOYICTIKEC
TIPOUTIONETOVY AVEEAPTNTA CUCTOTIKA KOl TA UTIAPXOVTO AOYIOUIKA ETIIADOULV POVO
OTIAG YEWUETPIKA cuoTthuata. NEa AOYIOUIKA KOl HOVIEAA TIPOOOHO0IGNG €X0ULV
TpotaBei oTIC 000 TIPONYOUHEVEG OEKOETIEG, €VW €XOULV MEAETNOei pEBodOI yia
interface relaxation o€ TPOPRAAUOTA TIOAATIAQV  XWPIWV/ TIOAATIAQV  QUGCIKWY
MOVTEAWV. H Ttapoloa SITIAWMOTIKY £PYOCia €XEl wWC OTOXO VO TIOPOUCIACEL £VA VEO
TIEPIBAAAOV  TIPOCOMOIGNC YIO TNV ETHAUCN  HEPIKWV  OIOPOPIKWY  EEICWTEWV.
Mapéxoupe pia ypagikr olemagr (Graphical User Interface - GUI), 6mou o Xpriotng
Ba propei va (wypagioel éva duadIAOTATO XwPIo KAl va OpIicEl TIC CUVONRKEG yia Ta
EEWTEPIKA KOl TO E0WTEPIKA Opla. Emiong, o xpriomg Ba €xel v duvatotnta va
opioel v dlagopikn €€icwan Kal TEAIKA va TNV €TTIAVEL Kail va BAETTEN TNV ADon.

YTIAPXOUV TPEIC UTIOAOYIOTIKEG TIPOOCEYYIOEIC YIO TNV TIPOCOMO0IWGN UEYAAWY
ETIOTNPOVIKWY TIPORANUATWY. H TIpwTn TEXVIKA Paciletal atnv dlaKPITOTI0INGN TOu
VEWUETPIKOD XWPIiov xpnolgotolvtag TIAéydata (grids or meshes) kabBw¢ Kal
MoBnUaTIK& PMOVTEAD YIO TA anueio Twv dlETma@wv. H de0Tepn Kal To TIOAIG pUEB0DOC
gival n dldomacn Schwarz. Ze autr TNV TEXVIKN JIOXWPIZETAl TO YEWUETPIKO XwpPIio
0€ MIKPOTEPA TIOU OMPWC ETIIKAADTITOVTIOL To pABNUATIKA POVTEAO AUVOUV TO KABE
ETIUEPOUC Xwpio Kal PETA e@appoletal n péBodoC Schwarz yia va UTIOAOYICTE N
GUVOAIKN AUCN. H eTIKAALYIN TWV XWPIWV dNUIOVPYEI YEYAAN TTOAUTIAOKOTNTO OKOUN
Kol o€ armAd TipoPAnuata. H tpitn kat o véa pebodog sival n pébodog tou interface
relaxation. ZOp@wva Pe auti v UEB0d0 TO XwpPio Xwpiletal oe vTTOXWpIa, OTIOL TO
KoB&éva €xel EEXWPIOTO POONUATIKO POVTEAO. ZTO ONMEIn Twv JIETTAPWV e@apuolovTal
OUYKEKPIPEVEG TUVONKEC, TIOU PBaocifovtal Kal IKOVOTIOIOUV (QUGIKG @alvopeva (TLX.
Bepuokpaaia, dlatripnon opung). AQoL TIPOCEYYIOTOUV Ol TOTTIKEC AVCEIC e BAon TIC
TIMEG OTIG JIETIOQEG, LTTOAOYICETAL TEAIKA N OAIKY] AUON.

O1 mopamdvw TPEIG PEBOSOI €XOULV KOIVO OTOXO va Xelpidovtal TIOADOTIAOKO KOl
OlO@OPETIKA QUOIKA HOVTEAD. AIO@EPOULY OPWC OTNV TIOAUTIAOKOTNTO. H péBodog
Schwarz pe emmKGALYN ONUIOVPYED 1oXLUPH OULELEN PETOED TWV  YEITOVIKWV
uTIoXwpPIWY. Ol TEXVIKEC XWPIC eTIKOALYPN Treplopidovial o€ €va KOl HOVOOIKO
MOBNUOTIKO POVTEAO YIO T YEITOVIKA LTIOXwpia. H TeXVIK Twv interface relaxation
O0gv ONUIOLPYOLV COuLVBNRKEC oULeLENG Kal Bivouv Ta KAAUTEpPO armoteAéouata. H
pEBOOOC TwvV interface relaxation €ival pla TOVAANTITIKY J10SIKOCIO TTOU OKOAOULOEI
T TIOPOKATW Pruata yia vo €TIADCEL TO OUVOAIKO TIPOPRANUA TWV  HEPIKWV
Ol0@POPIKWY EEICWOEWVY:

1) ApXIKQ, apXIKOTIOIOUVTAI TIG TIMEC OTIC SIETIAPEC TWV UTIOXWPIWV.

2) EmAbovtal o1 dla@QopIKEC €EI0WOEIC YIo KABE uTIoXWpPio PBacI{OPEVES TTIC

EKTIUOUEVEC TILEC TWV SIETIAPWV.

3) BeAtiwvovtal Ol TIUEC TOVW OTIC OIETIAPEG  XPNOIUOTIOIVTAG  JIAPOPEC

uebddouC.

4) Emuotpégel 010 Brjpa 2 dv dev IKAVOTIOIOUVTAI Ol TIPOUTIOBECEIC TTIOU BETOVTOI

000 a@OopPd TO GEAAMA Kal TO TIANB0C TwWV ETTAVAANPEWVY.
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Kepaiaio 2: MEBodol Interface Relaxation
yia MepIKEC Ala@opikEC EElowaElC

Ov péBodov yva TNV dVOKPVTOTIOINGN Xwpiwv TIoU £X0UV TIPOTABE], £X0UV oxedvaaoTei
yVo TNV ETIAUCT  EAMEVITIVKWY  OVA@OPVKWY  €E10W0ewv. OTIwC Qava@EPONE  Kav
TIAPATIAVW, 0V EBOBOV PTTOPOUV VO KOTNYOPVOTIOVNBoUV a€ HEBOOOUG E ETTVKAALYN Kav
O€ TEXVVKEC ME Mn €TMVKAALUYn. Kov ov 000 KOTNyopieg XPnovUOTIoOVoOLVIOV yva
OULOTAMOTO PEYAANG KAipokag. Ov pébodov pe eTvkaALYn, OTwg eivav n UEBOdOC
Schwarz ftav vovaitepa onUAVIVKI], OAAA COUQWVA UE VEEC EPEVLVEG EXEl ATIOOEIXOEI
KOl TIEIPAPOTIKA TIWC 0V PEBOOOV XwpPIG ETTVKAALYN €iVOV TTIO OTIOTEAECUOTIKEG KOl OEV
OTIOAAACCOUY TOV XPOTN aTtd TNV TIOAUTTIAOKOTNTA TN UAOTIOINONG TIOU OTtavtoUoav
Ol YeBodol pe ETVKAALYN.

O1 pébodol Tou interface relaxation pog mnyaivouv éva AU TIIO PTIPOCTA OTIO TIC
peBGOOLC dldoTIaoNC TOUL XWPIoOU XwpPIC ETIKAGALYN. ZTNV TIPOCTIABEI0 TOLG VA
TIPOCOMOICOUY TOV TIPAYMATIKO KOOUO, OlacTiolV TO TIOAUTIAOKO TIPORANUO Twv
MEPIKQV OIOQOPIKWY EEI0WOEWY, TO OTIOI0 OpieTal ae €va PEYAAO Kol TTOAUTIAOKO
Xwpio, o€ PIKPOTEPA LTIOXWPIO. Me autd Tov TPOTIO €XOUMPE TO MOAAATIAG-ZOOTNUA
Alo@oplkwv E&lowoewv/ TMoAATIAWV-XWpPiwy POVIEAO, TO OTI0I0 XPNOIUOTIOIE
TIOPAPETPOLC EEOUAALVOTNC VIO TIC OIETIAMEC.

2€ aUTO TO onueio Ba peAeTicouuE TIC pEBGOOULC Tov interface relaxation yia tnv
ETTIAUCT TWV EAAEITITIKWV dlOQOPIKWY e€l0waswv. Ol pébodol autég Baailovtal otnv
OlOUEPION TOU XWPIOL O PN ETUKOAUTITOMEVO  UTIOTUNAUOTA KOl OTNV  XPARon
KOTAAANAWY CUVONKWV OTO ECWTEPIKA KOUUATIO. TNV CUVEXEIX, XPNOIUOTIOIVTOC
KATIOIEG OPXIKEG UTTOBETEIC yIa TIC OIETTAPEG, AUVOUE TIG EEICWAEIC VIO TO ETTIMEPOUC
uTtoxXwpia. Av ol AUGEIG TIoU BPOUKE dEV IKAVOTIOIOUV TIC CUMPBACEIC TTOL €X0OUUE BETEl
yia TIC OlETIOPEG, TOTE ETMOVOAAUPBAVOLUE TNV dlAdIKACIO YO va TIAPOUUE KOAUTEPEC
TIMEG. Ta BAuota autd emavalauBavovTal PEXPl VO CUYKAIVOUUE otnv ADCN TOu
TIPORAAATOC.

O1 o yvwaoTég yéBodol yia interface relaxation €ival ol TTOPOKATW:

AVE : Mia anAn yéBodog mou uTtoAoyidel Katd péoo 6po TNV AVGT Kal TI
TIAPOYWYOUG TIAVW OTIC SIETIOPEG.

GEO . Mia pé6odog Baciouévn aTtnv amAni YEWMPETPIKI d1AoTIaan.

NEW : Mia texVIKr] Tou Bagiletal atnv péBodo tou Newton yia Tnv «dlopdwan» Twv
TIMV TWV BIETIOPWV.

ROB :'Evag aAyopiBuog 1ou XpnaotdoTiolei Ti¢ Robin dlEagég yia tnv eEopaiuvaon
NG AVoNG.

SCO : Mia texvIKA Tou Bagiletal 0To CUPTIARPWHA Tou Schur.

SHO : Mia pébodog mou Baacidetal otnv 10€a Tou shooting yia v €miAvon Twv
Mepikwv Ala@opikwv EElomaswv.

SPO : Mia pyébodog Tou TtponABe amd Tnv padnuatikr) cuvdptnon twv Steklov-
Paincare, n omoia mepIAauBavel TNV evariayr TOTIwV OTIC JIETIAPEC.

2tV mopoloa SITTAWUATIKN Epyacia, pia YéBodo¢ avamTUCOETal TIAPOKATW KOl
gival n pébodog GEO:
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- Mé6odoc GEO

H pébodo¢ GEO uroAoyilel Tnv véa AUOn yia KABe vmoxwpio Alvovtag &va
Dirichlet mpoBAnua kol Bewpeital YeBodog evog Prjuoatog. Ol TIPEC OTIC OIETIAPEC
uTtoAoYidovTal av OTIC TIAAIEG TIMEC TIPOCGOECOUUE Eva YEWUETPIKO GUVOUACUO TWV
TIOPOYWYWV TWV YEITOVIKWV UTIOXWPIWY. ZTO TTOPAKATW oXNua (Zxnua 1) utobetoupe
TWC Ol ul KAl ur €ival o1 AUCEIC TOU TIPOBANUATOC TWV MEePIKWY  AlOQOPIKWV
Eélowoewv oto 0plotepd Kal 10 dedi uToxwpio avtiotoixa atnv dolemaen |. MNa va
TIAPOUE TNV OAIKA AUGN KOTOAOBaiVOUE EDKOAO OTIO TNV YEWMETPIO TIWC TO M gival
N TIOPAPETPOC TIOU TIPETIEI VA TIPOCBECOLE OTa ul Kal Ur,

Zxnua 1.

AAyopIBUIKA N pEBodoc GEO @aivetal Tapakatw:
fork=l, 2, ...
Su(k
ey 7P~) o€ KAOg dieTtagr).

w/(i+1) = ui(k) LY
wL+wWR  i9x 9x

ufk+v> = solvepde(ui{k+])) oe kaBe vmoxwpio.
End
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Ke@aAalo 3: YTIOpXov AOYIOMIKO yia TNV
ETIAVLON MePIKWV Ala@opikwy EElowoewv

To Matlab Trapéxel éva 10XUPO Kol EVEAIKTO TIEPIBAAAOV yIO TNV UEAETN KOl TNV
ETIIAUCT PEPIKWV JIOQOPIKWV EEICWOEWY. XPNGCIPOTIOIVTAC ATTAG TNV EVIOAN pdetool
Qvoiyel éva ypo@IKO TIEPIBAAAOV TO OTIOI0 POC TIAPEXEL TIC TIOPAKATW dUVATOTNTECG:

1) Opiopdg TOU TIPOPANUOTOC TWV HEPIKWY OlOPOPIKWY EEICWOEWY, OnAadn
oxedioan Tou Xwpiou, OPICUOC TWV EEWTEPIKWY CUVONKWY KOl TWV CUVTEAEGTWV
¢ e&iowanc.

2) ApiBunmik emidvon Tou TIPOPAAUOTOC HE TNV Onuioupyio TIAéypOTog, TNV
SI0KPITOTIOINGN TWV EEI0WOEWV KAl TEAIKA TNV TIPOCEyyIon tng AVonC.

3) OTTIKOTIOINON TWV ATIOTEAECUATWVY.

To epyoaAieio pdetool eival oxedlaopévo 100 yia apxdploug 000 Kal yid
TIpoXwpPNUEVOLC XPNoteC. H Baaoikni e€iowan 1ou eTUAVEL €ival N EAAEITTTIKI] OlAQOPIKI)
e€iowan, mou divetal amo Tov TUTIO:

-V -(cVm) + 3w — /

H emiAuon AoITtov Twv S1a@OopIKWV EEI0WCEWVY Eival TTOAD OTIA UE TNV XPron Tou

gpyaAeiou pdetool kai TiepdauPavel Ta akoAouvba Brjuarta:

Briua 1°: Opliopog Tou TTPoRARUATOC XpnolpoTIolwvTac 1o pdetool

O 0 aTAGG TPOTIOG YIO TOV OPICHG €VOC TIPOPRANUOTOC SIOPOPIKWY EEICMOEWV Eival
HE TNV Xpnon tou ypagikol TtepIBaAlovTog Tou Ttapéxel 1o pdetool. Zto Draw mode.
UTIOPOUUE VA dNUIOVPYNCOUUE TO XwpPio Q, dnNAAdN TNV YEWUETPIO ToL TTPOPARUATOC,
XPNOIUOTIOIWVTAC £VO GET AVTIKEIUEVWV (TETPAYWVO, KUKAOG, EAAEIPN KOl TIOAU(QWVO)
TIOU TIOPEXEL. ZUVOETOVTOC QUTA TO AVTIKEIMEVA ONUIOLPYOUUE TNV @OPUOLAA TNG
VEWMETPIOg Tou €mmBupolpEe. ZT0 Boundary mode, kaBopioupe TIC GUVONKEG Twv
€EWTEPIKWV TUNPATWY. MTIOpOOUE va €XOUHE SIOPOPETIKOUC TOTIOUC GUVONKWY OTIWC
yla tapddetypa Dirichlet, Neumann Kai YEIKTOUG. 210 pdetool ol SIETIaQEC HETAED TwWV
Xwpiwv dev AapBavovtal vrtoyn. Xto PDE mode, pumopoUlue va KaBopiooupe Tov TUTIo
NG €&iocwaong Kal va BE00UHE TIMEC OTOUG CUVTEAEOTEC a, ¢, Z Kal d. MmopoUue va
kaBopiooupe dlagopeTikA e€iowan yla KABE uToxwpIo.

Brua 2°: EmiAuon tou TtpoBAfuUaToC XxpnoluoTiolwvtag 1o pdetool

Ta TeplooOTEPA TIPORANUATO UTTOPOUV VO ETIIAUBOUV PE TNV XPHon TOU YPOQIKOU
TepIBAaAAovTog pdetool. 210 Mesh mode, TTOPAYOULUE TA TIAEYHOTO, EVW TIAPAAANAC
UTIOPOUUE Va KoBopiooupe Kal SIAQOPEC TTOPAUETPOUG. TO Solve mode, PTtopoUE va
UAOTIOIN)COUVME KOl VO EAEYEOUME UN YPAUUIKOUC OAAG KAl TIPOCOPUOCIHNOUE TPOTIOUG
ETALONC VIO TIC EAAEITITIKEG EEI0WOEIC. Ma TTAPAPBOAIKA KAl LTIEPBOAIKA TTPORARATA,
MTIOPOUUE VO KABOPIGOUUE TIC OPXIKEG TIMEC KOl TOV apIBUO Twv emavaAiPewy. A@ol
AUooupe TO TIPOPANUA  UTIOPOUME va  €TIIOTPEQOLPE oTo Mesh mode yia va
BEATIOOOLE TO TIAEYUO KOl va AOGOUHE Kal TIAAL TO TIPORANUO.

Briua 3°; OTITIKOTIOINGT TWV OTIOTEAEGUATWV

ATIO TO YPO@IKO TIEPIBAAAOV UTIOPOUUE VO XpnoldoTioirjoovpe 10 Plot mode, dmou
€XOUMPE TIOAAEC OIOPOPETIKEC dLVATOTNTEG TTOpouaiaong tng Avong. MropoUue va
XPNOIUOTIOINCOUUE EEXWPIOTEC EIKOVEC.
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Ke@aAaio 4. YTIApXov AOYIOUIKO YiO TNV
uEBodo Tou Interface Relaxation

H peBodoroyia tou Interface Relaxation yia tnv €miAucn Twv PEPIKWV SIOQOPIKWV
€€10W0oEWV Eival OXETIKA VED KOl ETTOPEVWC OEV UTIAPXOUV TIOAANEG UAOTIOINCEIG TIOU v
TNV KOAUTITOUV. Mia omAf uloTtoinon Topoucidotnke to 1991, PBaci{détove 01O
TCP/IP Kal €ylve yia TNV OLVEPYaoio PETOED GUVODEAQWVY. Agv XpnolUoTToIoV0E
TUNMOTA AOYIOUIKOU KOl QVETITUOCE POVO Mia péBodo, Tnv AVE. Mia akOun oTtAoikni
LAOTIOINGN TIOPOUCIACTNKE KOl dla@EPEl amd TNV TPWIN KABWC XPNCIUMOTIoIoVGE
KQML pnvopota kai ipaktopec (ELLPACK PSE).

- YAomtoinon Networked Agents for Scientific Computing

O Drashansky mapouaciaoe pia Tpogopoiwaon yia TIOAOTIAOKO HOVTEAQ, TO OTIOIO
TIEPINOUBAVOUY TIEPITIAOKEC GUVONKEG Kal yewpeTpia. To MepiBaiiov EmiAuong
MpofAnudtwv MoAdamAwv Kabnkoviwv (MPSE) gival KatdAAnAo yia outd Tov
OKOTIO KOBWC UTIOPEL VO EPAPPOCTEL yIa TIOAAEG EQOPUOYEC KOl TIPOKTIKG TIPORANUATA,
ETUTPETIEL TNV ETTAVAXPNOIUOTIOINGN AOYIOHIKOU, €XEl XOUNAG KOOTOG Kal LYNAN
TTOIOTNTA.

Mo CUYKEKPIPEVD, YIa va ADCOLUE &va TIPOPRANuUa e Bdon to MPSE av 1) 10
TIPOPBANUA OTTIOTEAEITON ATIO TTIO OTIAG, CUVOEDEPEVA KAl TIIBOVWC ETEPOYEVH] TURUOTA,
2) KAOg TUNUO UTTOPEI va PHOVTEAOTIOINOEL PE éva ammAd PHABNUATIKO PMOVTEAO Kal 3) ol
OIETIOQPEC PETAEL TWV JIAPOPWVY TUNHATWY UTIOPOUV VA TIPOCOPHOCTOUY UE TNV XPHoN
KOTAAANAWY OUVONKWV OTIC OIETIOPEC KOl ETTIIKOIVWVIA PETOED TWV  YEITOVIKWY
Xwpiwv. ZTo TEPIBAAOV TIPooopoiwang TIou TTaPoLaCIAalel, LTIAPXouv d00 PaaiKoi
TOTTOI TIPOKTOPWV- Ol solvers kal ol mediators. O kK&Be solver TPAKTOPAC LTIOAOYILE
TNV TOTUKA AUOTN TOU TIPOPAAUATOC OTO UTIoXwpio. O solver avTipeTwtileTal oav
«MOUPO KOULTI» amd TOuC AANOUG TIPAKTOPEG KOl OAANAETIIOPA HE TOUG UTTIOAOITIOUC
XPNOIUOTIOIWVTAC Hia EIOIKA YAWCOA ETTIIKOIVWVIOC. ATIO TNV GAAN TIAeLPd, ol mediator
TIPAKTOPEG €ival uttebBuvol yio va pubuidouy TIC SIETIAPEG PETOED OUO0 YEITOVIKWV
uToxwpiwv. KadBe mediator avarapBavel pia dlETagr], evw 000 Tio TIOAUTIAOKN Eival n
OIETTIOQPN UTTOPEL VO UTTAPXOLV TIEPIGOOTEPOI TIPAKTOPEG YIO TNV PUBUIOT TWV CUVBNKWVY
N¢. O1 mediators avoAauBavouv TNV avtaAlayn 0edouévwy HETOED TwV Solvers Tou
uTtoAOyiouv TIC AUCEIC OTO YEITOVIKA uTtoxwpia. O1 pébodol Tou PTtopolv va
€QOAPUOCTOLY OTNV OJIETIAQP TIOIKIAOLV avAAoyda HE TNV @UON TOU TIPORAAMATOC.
TeAKd, 1o OiKTLO HETOEL Twv Ssolvers Kal Twv mediators TPOKTOPWY 0dnyei atnv
€0PEDN TNC GUVOAIKNG ADONC Tou TIPoPAUOTOG. H apxitektoviky Tou MPSE amd tv
TIAELPA TOL XPNOTN QAIVETAL OTNV EIKOVA 1. ATIO TNV TTAELUPA TOL O XPrOTNC KaAEgital
va opioel Ta uToxwpia, va KaBopioel Ta PJOVTEAD KOl TIC JIOPOPIKEG EEITWOEIG VIO
KAOg LTIOXWPIO KOl VO PUBICEL TIC PUOIKEC CLVONKEG OTIC JIETIAPEC. 'Eva TTOPAdEIYUO
evo¢ MPSE ocuoTtijuatoc eival 1o PYTHIA.
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Eikova 1. Apxitektovikn tou MPSE.

- YAoroinon RELAX

O McFaddin mapouaiaoe 1o epyaieio RELAX, éva TIEIPAPATIKO o0CTNUO Yo TV
ETNIALON TIOAOTIAOKWV BIAPOPIKWY €€l0waewv. H Tpocgéyyion autr Pagoiletal oe
OVTIKEIUEVO-TUNUATWY. Z€ Mia povada TIEPIYPAPETAL 1 YEWMETPIO TOU TIPOPRANUOTOG
Kol o0& GAAO TUAUO KOTOYPA@OVTOl Ol COUVONKEG KOl TO UTIOAOITIO OEDOMEVO TOU
TIPOBANPATOG KOl TEAOC N AUon Tapoudiddetal oe pia gexwplot dladikaaoia. Ol
MOVAdEC auTEC auvdLALoVTal KATAAANAG OE €Va OVTIKEIMEVOOTPAPEC TIEPIBAANOY TIOU
EXEL TIG TIAPOKATW OUVATOTNTEC:

e [ewpetpia: O xpromng ONUIOUPYEI Xwpia, T OTIoid CUVOETOUV TO GCUVOAIKO
TIPOPANUA, XPNOIUOTIOIWVTOC BACIKA oXnuaTta.

e MAE: Opilovtal dIa@OpETIKEC DIOPOPIKEG EEI0WAEIC KOl KATAAANAEC CUVOPIOKEC
OULVONKEG. Z€ KABE LTTOXWPIO.

e MegBodol emiduong: O xprioTng PTopE va KaBopioel dIOQOPETIKEG PUEBOOOLC YIa
TNV €TiAUCN TOL TIPORANUATOC KOBWC ETIIGNC UTIOPEI OV TPOTIOTIOINGEl KAl TIC
TIOPOPETPOUG TOUC.

e Algmo@ég: Ot dlETa@EC TIou opidovTal OT6 Ta LTTOXWPIa BewWPOLVTAL WG AUTOVOUd
avTIKeipeva ato epyoAeio RELAX.

« MeéBodol Interface Relaxation: Mapéxovtal éva TTANB0G SIAQPOPETIKWV HEBOdWV TIC
OTIOIEC UTTOPE( VO ETTIAEEEL O XPOTNC.

e ZX£0l10 dpdonc: KaBopiletal yia va ouyxpovioToUV OAEG Ol SIEPYOTIEC.

- YAottoinon SciAgent

‘Eva TI0 OAOKANPWUEVO EPYOAEIO IO TNV ETHALGN YPOUUIKWV KAl PN YPOUUIKWY
TIPORANUATWY PE PEPIKEC DIOQPOPIKEG EEICWATEIC €ival TO cuoTtnua SciAgent cuoTtnua,
TO OTIOI0O LAOTIOINONKE PE TNV Xpron Twv yAwoowv C kal Java. To g0OTNUO OUTO
EKMETOAAEVETAl TOV EUPUTO TIAPAAANAIOUO Twv PeBOdwWV Interface Relaxation. Ta
TUAMOTO OTI0 TA OTToIO aTToTEAETaN éva SciAgent cUoTNUa @aivovTal TNV EIKOVa 3.
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SciAgents PSE

Eikéva 2. Turuata touv SciAgent.

Mo OULYKEKPIPEVD, VIO TNV ETTIALCN €VOC TIPORAARUATOC UE TO epyaAcio SciAgent,
XPnoIJoTIolEiTal éva JIKTUO pE TOTIIKOUC Solvers dIa@OopIKmV eEI0WaewY Kal relaxers
OIETIOPWV.

210 o00Tnua Tipogodoiwong SciAgent €xouue TPEIC TUTIOUG TIPAKTOPWV:
Tipdaktopag PDECoordinator, mpdktope¢ PDESolvers kai mpaktope¢ PDEMediators.
O Tmpdktopag¢ PDECoordinator puBpidet O0An v  €@apuoyr, 0 TIPAKTOPOC
PDEMediator €TTIKOIVWVED PE TOLC TIPAKTOPEG TIOU ETIIADOLY TA TIPOPANUOTO Ot dUO
YEITOVIKA Xwpia Kal o Tipdktopag PDESolver mIADEL TO TTPOPRANA.

EKTOC amd 10 AOYIOMIKO TIOU XPEIAZETal IO TNV ULAOTIOINGN Twv TOPATIAV®
TIPOKTOPWV €ival amapaitnTn Kal n uTtooTPIEN TTOPEUPOANG (KABWC Ta TIAEYHOTO OTO
VEITOVIKA Xwpio PTIOPEl va Pnv CUUTIITITOUY), M0 JIOdIKOCIO ULTTOAOYIGHOD TWV
OPXIKWV TIHwV (e€aptwvtal amo TIC ouvenkec Neumann kai Dirichlet), kabopiopog
«KOAQV» TIHWV Yia TIG HeEBOdoUC interface relaxation kol KOTAAANAQ KPITAPIA yia TNV
TIPAYHATOTIONGT TWV ETTOVOARPEWY.



18



19

Ke@ahaio 5: YAottoinon gpyaAciov IRtool

To pdetool, mou ival vAoTtoinuévo oto Matlab, TTapexel Eva eLEAIKTO TIEPIBAANOV
ylo TNV PEAETN KOl TNV €miAuan v Mepikwv Alagopikwv E&lonoewv. Map’ 0Aa
outd, to pdetool dev petaxelpiletal KABOAOU TIC OIETIOPEC UETOED TWV UTIOXWPIWV.
AUTO ATav TToL Pag 00rynoe otnv vAoToinon Tou 1R Toolbox. To Interface Relaxation
Toolbox TOPEXEl €va YPOQEIKO TIEPIBAAAOV yia TNV MEAETN KOl TNV €TIALCN TWV
MEPIKQV Ola@OPIKWY €EI0WOEWV  AauBdavovtag umoyn v idla  otyun v
peBodoAoyia Tou interface relaxation. Emopévwg, 1o IRtool €xel TTPOOBETEC 1010TNTEG
Kal duvatotnte¢. H Paoikk 10éa  e€ival OTl PE TO OUYKEKPIUEVO €PYOAEio
METOXEIPI(OPOOTE TO TUAMOTO TWV  OIETOQWY KAl  AOVOUUE TO  TIPOPANUA
XPNOIUOTIOIWVTAC TIC TIOPAUETPOUG, OTwG €ival n pEBodog interface relaxation, ol
OPXIKEC TIMEC OTIC OIETIOPEC KOl TIC GLVONKEC TUYKAIONG (convergence, tolerance).

To ypa@iko TEPIBAAOY, TIOU ULAOTIOINCOME, OlOBETEl éva  peEvOD yia va
XEIPI(OPOOTE TO POBNUOTIKG PHOVTEAD. MapokdTw 6a TTOPOUCIAGOUNE TO TIEPIEXOUEVA
TOL PEVOU Kal Ta Tapadupa S10AGYyou oKoAouBoUueva amo éva Topddelyua. Ma va
EEKIVIIOOUPE TO YPOEPIKO TIEPIBAANOV OTIAG OTNV YPOUUN €VTOAWV Tou Matlab v
evioAn IRtool. To mapd@dupo Tou gu@avileTal eival oav TNV €IKOVA TIOL EP@avideTal
TIOPOKATW.

Eikéva 3. ApxIko TtapaBupo tou IRtool.
Draw mode

>to Draw mode éxoupe v duvatdtnta va oxedIAooLPE TO XWPIio Tou
TIPOPANUOTOG, ETIIAEYOVTOC aTO KATIOIO OVTIKEIUEVA (KUKAOG, TETPAYwVO, EANEIYN,
TIOAUYwWVO). To pdvo Tou Ba TIPETIEL VO TIPOTEEOUE VIO VA EQOPPOCOUE TNV PEB0DO
Tou interface relaxation €ival va pnv €mIKOAOTITOVTON Ta Xwpia. KaBe xwpio mou
ONMIOUPYOULE EXEL EVa EEXWPIOTO OVOUA KAl TEAIKA TO XWPIO Jag aTIOTEAEITOL OTIO TNV
€Vwan Twv SIPOPETIKWY LTIOXWPIwWV.
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Me autd Tov TPOTIO SNIcLVPYOULUE BV0 TTOPOAANAGYPAUHO VIO TO TIOPASEYUA MO
KOl TO TIOPABupo TIOU £XOULUE €ival TO TIAPAKATW KOl TO XWPIo TIOU €XOUME €ival TO
R1+R2.

Eikova 4. Draw mode.
Boundary mode

2€ 0UTO TO ONueio PTopolUE va KaBopiooupE TIC CLVONKEC OTA OPIA TOU Xwpiou.
Ta o6pla dnAwvovial HYE TO XPwUaATIOTA BEAN. Tnv ouvlnkn HTIOPOUPE va TNV
kaBopiooupe amd 1o mapadupo SIOAGYOL KOl UTIoPEl va gival évag amAdg aplBuog 1
Kal guvaptnon. Ymapxouv o600 toTol cuvOnkwv: 1) ouvbnkeg Dirichlet pe u = 0 oTo
oplo. O1 guvenkeg Dirichlet eugavidovtal pe KOKKIVO Xpwua, 2) ouvBnke¢ Neumann
(uTTAE Xpwpa) Kal 3) UEIKTEG oLVONKEG (TTPACIvo XpwHa). O KOBOPICHOE CLVONKWY
uTTOpPEL va yivel péaa amd 1o mopdbupo SIaAGYOU.



Q Boundaiy Condition

Boundary condtion equation:

Condition type:

O Neumann

O Dirichtet

Interface mode

Eikéva 5. Boundary mode.

|I=EPB

h*u-r

Coefficient Value

q [o

h [ o

r mytrue(x,y)J

! oK I Cancel

Description

Eikéva 6. Boundary Condition dialog box.
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‘Eva apxXIKO KOPUATI TOU €pyoAsiou pdetool ToOu TPOTIOTIOINCOME €ival 1
onuioupyia touv Interface mode. Ze autd 10 onueio gu@avidovial ol SIETIAPEC TOU
Xwpiov yia 1o TIPORANUa Tou opicaye. MECW TOU CUYKEKPIPEVOL HEVOU UTIOPOUUE OV
Béooupe TIC OPXIKEG TIMEC YIO TNV OIETIAPN TIOU E€XOUUE ETTIAEEEL. 2TO TOPABUPO
OloAGyou TIoU gP@avideTal PTIOPOUPE va ETUAEEOLPE Kal TNV péBodo interface
relaxation mou 6a xpnoigomoiooupe. H peBOdOC TOU £XOULUE LAOTIOINCEL €ival N

GEO.
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1 Interface Condition

Interface condition equation:

Condition type:

Orob

® GEO

Ermiong pumopoupe va kKaBopioouue TIC TIOPAUETPOUG TNG HEBGOOL aTd To TTaPAdupo

Eikova 7.

Interface mode.

eq2

Coefficient Value

9 [o

> 1

myOI(x.y)

Description

— =0

Cancel

Eikova 8. Interface mode dialog box.

TIOU avoiyel av eTUIAéEOLE aTtd TO Pevou Interface Parameters...

PDE mode

21N oLvEXela, Yéow Tou PDE mode, uttopolpE va OPICOUIE TOUG CUVTEAECTEG TNG
MEPIKNG Bla@OPIKAG €iowang Tov eTIBLOVKE va ETIADCOUHE. Ol CUVTEAECTEC UTTOPEI
va gival ite évag amhog aplbuog eite pio ouvdptnon. Emiong kabe vmoxwpio propei
va €XEl OIOMOPETIKEC TIOPOMETPOUC. X€ QUTO TO ONUEID UTTIOPOUMPE QKON Vo
ETUAEEOLUE TOV TUTIO TNG OIAPOPIKNC €€iowang (EANEITITIKN, TIAPAPBOAIKN), LTIEPBOAN,
e€iowaon xopaktnpIoTIKNC pidag) Ol TINEC aUTEC BETOVTAl OTO TIOPAKATW TIOPABLPo

SI0AOYyOU.
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PDE Specification

Equation: -div(c*grad(u))+a*u-f

Type of PDE: Coefficient Value
Oaptc 1.0

O Paraboic 0.0

O Hyperbole myf(x,y>

O Eigenmodes

Cancel

Eikova 9. PDE Specification dialog box
Save Data menu

To pevoyu Save Data e€ival vAotoinuévo oto IRtool otnv mpooTadela pag va
0oTT00NKEVOLPE TIOAG ONUOVTIKA OeDOOUEVO CE APXEID OTNV TEPITITWON TIOL TA
xpeladopaote. H Baaikn 10€a gival va Slaxwpicoule TIC TIANPOPOPIEG yia KABE Xwpio
KOl va TIC 0TT0ONKEVOLE EEXWPIOTA.

Mpwta om’ OAa, Olaxwpilovpe Ta dedopéva NG YEWUETPIAC Ot HIKPOTEPO
vTtotunuata dll xpnolgotolvTag TNV cuvdptnon deesg. Me auto TOV TPOTIO £XOUME
S1a@OPETIKOUC TTIVOKEC TIOU AVTIOTOIXOUV OTa JIOPOPETIKA LTIOXWPIa. AUTO €ival TTIOAU
TIPWTAPXIKO onueio kaBw¢ oto IRtool BEAoupE va XEIPI{OPOOTE TO OAIKO TIPORANUA
OlOPOPIKWY EEICWOEWY WC HIKPOTEPO TOTIIKA TIPOPBANUOTO KOl PETA VO LUTIOAOYICOUHE
KOl VO CUVOETOUPE TIC ETIPEPOLC AUCEIC VIO VO KOTOAAEOLUE GTNV GUVOAIKN ADGN.
TNV OUVEXEID, XWPI(OLUE Ta JEDOUEVA TWV CUVOPIOKWY GUVONKWY, TwV BIETTOPRV,
TWV CUVONKWV TIAEYMOTOG KOl TWV OUVIEAECTWV TWV OlOQOPIKWY GuvOnkwv. TIq
TIOPATIAVW TIANPOPOPIEC TIC aTIOONKEVOULME OE apxeia Ye 1o Ovoua dom*.m, Gmou m
gival o aplBuog Tou VTIoXWPIOU.

IRSolve menu

Eipaote AoV £T01MOI VO ADCOUUE TO TIPORANUA. To KUplo Tunua Tou IRSolve 10
0TT0I0 LAOTIOINCAE €ival 0 TIAPOKATW OAYOPIBUOC;

fori=1,2,... Maximum lterations,
forj = 1,2,... adomains,
u, ux, uy = solvedomainj

end
forl=1,2,... interfaces,
IR method (IRflag, I)
end
end

Me tnv ouvdptnon solvedomain evwooUE TTWC KOAOUUE TNV GLVAPTNOT assempde
yla va TIAPOUUE TNV TIPA w. EVW JE TIC ouvapTioelg pdegrad kal pdeprtni Ttaipvoupe
TIC TIMEC TWV TIOPOYWYwV UX Kol uy. H dlodikaoia autr) yivetal EEXwPIOTA Kal
ETIOVOANTITIKA yia KABe Xwpio. Mo va TIAPOULHE TIC TTAPATIAVW TIPEC KAl TEAIKA YO va
TIAPOUE TNV TEAIKN AUGN, TIPETEL va e@appocoupe Tnv IRmethod(IRflag, 1) yia k&Be
olemapry. Méow autg Tng ouvdptnong kalolpe pe Pdon 10 IRflag €ite v
ouvaptnon ROB, eite v cuvdptnon GEO. Ol ouvapTrGeIg aUTEG Eival UAOTIOINTEIG
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Twv PEBOOWV interface relaxation. Mg auto TOV TPOTIO TIAIPVOUUE TIMEG TNC AVCEIG Kal
TWV TIOPAYWYWVY Yia TNV KAaBe diema@r. H diadikaoia avth yivetal €MOvVOANTITIKA
avAAoyd HE TIC TIOPAPETPOUC (UEYIOTOC apIBUOC ETTAVOANYPEWY Kal avoxr] AdBouc) Tou
Bétoupe 01O TTOPABUPO JIOAOGYOUL TIOU EP@AVIZETAl YEGW TOL PEVOD Tou IRsolve.

| Solve Parameters ~ ala

Coefficient Value
OEftptic Maxterations 50
© Parabolic Tolerance 5e-5

Q Hyperbolic

O Eigenmode

Eikova 10. Mapabupo diaAdyou tou IRsolve mode.
H AOon TeAIKA Tou TIPORBAAUATOC TNG JIOPOPIKNC EEITWONG TEAIKA EP@AVIETAl O

éva &EXWPIOTO TIaPGBuPOo, evw TIAPAAANAQ eu@avileTal Kal éva Tapabupo e TO
CQOAUQ.

Ewkova 11. I'pagikn mapdotacn Tng AVong Kol Tou AdBoug,.
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Chapter 1:
INntroduction

The multi-domain/multi-physics problems consist of many different compo-
nents that have distinct natures, shapes and capabilities. In order to model these
systems, we must use parallel computing strategies that treat the systems’' com-
ponents as independent components, because the existing simulation software
is only used for simple geometrical shapes. The computation of these systems
is achieved by using several methods that have been proposed. The first and
the most common computational approach is domain decomposition [1]. Domain
decomposition refers to geometry discretization by using grids and meshes. The
decomposition creates small discrete and inter-connected problems. Each discrete
domain has its own equation, but the basic idea is that neighboring components
communicate and exchange details and useful information. Another method is
Schwarz splitting. This approach differs from the domain decomposition because
it decomposes the geometry into components with small overlap. Each problem
is solved independently and then the global solution can then be computed. The
overlap between the discrete domains creates complexity and it is very difficult to
solve the Partial Differential Problems by using this method. This has led to the
use of another method. The newest non-overlapping approach is the interface re-
laxation method. The domain is decomposed into sub-domains. The sub-domains
have different mathematical models and as for the interface between two neigh-
boring components we can use interface conditions that are derived from the
physical phenomena (e.g., continuity of mass temperature, conservation of mo-
mentum). The models on each sub-domain are solved in the loop of the interface
relaxation iteration method to compute the global solution. These methods use
one of a variety of “smoothing” formulas to reduce the error in satisfying the in-
terface conditions. These three methods, the domain decomposition, the Schwarz
splitting and the interface relaxation method, were proposed in order to handle
with different physical models by using parallel computers, but they differ in
generality and flexibility. Domain decomposition requires that neighboring com-
ponents have a lot of shared information about their discretizations. Overlapping
Schwarz methods are similarly constrained to a single physical model and also
create a tight coupling between neighboring sub-domains. The non-overlapping
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Schwarz methods are restricted to a single mathematical model for neighboring
sub-domains. The interface relaxation approach imposes no coupling conditions,
except those inherent in the mathematical models and it provides maximum gen-
erality and flexibility.

The interface relaxation method is the method that we are going to use in
order to solve complex PDE problems. The IR methodology is an iterative pro-
cedure. First the whole problem is decomposed into smaller and simpler PDE
subproblems, where there is no overlap between the neighboring sub-domains.
On all sub-domain interface we use initial values, which we estimate. The next
step is to solve each single PDE subproblem independently using the estimated
values on the interfaces. If the solution that we compute is not the same as the
real solution we improve the values on the interfaces using a relaxer. A relaxer is
an interface relaxation method, such as GEO, ROB, AVE [2]. This procedure is
progressed iteratively until satisfactory accuracy and convergence are achieved.

The main purpose of this thesis is to propose a simulation environment for
solving multi-domain/multi-physics problems. More specifically we want to solve
elliptic PDE problems that are coupled with both cartesian and general decompo-
sitions. The Graphical User Interface (GUI) is a simulation framework where we
can draw a 2-D complicated domain and define boundary and interface conditions.
We can also specify the partial differential equation, create, inspect and refine
the mesh and compute the solution for the particular problem. This framework
must have several very desirable properties like fast convergence, wide applicabil-
ity, increased adaptivity, high efficiency, inherent parallelism and software reuse
by integrating advances in different scientific areas like mathematical analysis,
numerical analysis, approximation, scientific computing, distributed computing
and agent computing. At first we examine only the elliptic PDEs but we believe
that our work can be easily extended.

In the Second Chapter, we present two of the Interface Relaxation methods,
the GEO method and the ROB method. The Third Chapter is about the software
that exists in order to solve the PDE problems. The existing software about
the interface relaxation method is presented in the Forth Chapter. In Chapters
Five and Six, the computing framework, IRToolbox that we designed and we

implemented, is presented.
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Chapter 2:
PDEs-IR Methods

The domain decomposition methods can be classified into two categories: over-
lapping and no-overlapping, as we mentioned above. There have already been
several studies about the comparison of these two classes. All these methods
have been used in order to solve complex problems, nevertheless further research
is needed.

We are not going to study the overlapping methods, as they received a great
deal of attention over the past years. The non-overlapping and more specifically
the interface relaxation methods are discussed. The interface relaxation meth-
ods are based on non-overlapping domain decomposition. A complicated PDE
problem is split into a set of sub-domains and each subproblem is solved indepen-
dently, by using initial guesses and smoothing operators on the interfaces. The
most known interface relaxation methods are listed below [2].

AVE : A simple method of averaging the solution and its normal derivative along
the interfaces.
GEO : A method based on a simple geometric contraction.
NEW : A scheme based on Newton’s method to “correct” the interface values.
ROB : An algorithm that uses Robin interface conditions for smoothing.
SCO : A scheme that is based (but not formulated) on a Schur complement
approach.
SHO : A method based on the concept of the shooting method for solving Ordi-
nary Differential Equations (ODES).
SPO : A method originated from the use of Steklov-Poincare operator which
involves alternating boundary condition types.

In my thesis one method is selected. This method is GEO Interface Relaxation
method [2] and is presented below.
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The GEO method.

GEO estimates the new solution for each sub-domain by solving a Dirichlet prob-
lem and is classified as a one-step method. The values of the interfaces are
obtained by adding to the old ones, a geometrically weighted combination of the
normal boundary derivatives of the adjacent sub-domains. In the figure 1 below,
we assume that Ul and Ur are the solutions of the PDE problems associated
with the left and the right sub-domains, respectively, of the interface point /.
We denote by S1 and Sr the right and left slopes at I. As it can be easily seen
geometrically, m is the correction that is needed to be added to Ur and Ur so as
to match the normal derivatives at |.

Figure 1. Cross-section perpendicular to the interface where ur and ur have
slopes S1 and Sr at the interface point I. Changing the values of ur and Ur by
m makes these slopes equal.

To calculate m we consider the two right triangles IAB and CDI (Figure 1)
whose heights are given by multiplying the corresponding tangent with the base
of the triangle, or by multiplying the normal derivative with the base. The bases
wl and wr are the widths and can be arbitrarily selected and play the role of
the relaxation parameters. The new interface values are now given by adding
the weighted average of the heights to the old interface values Ur and Ur. One
can intuitively view this as grabbing the function u and / and stretching it up
by m until its derivative becomes continuous. Numerical experiments show that
the convergence rate does not seem to depend much on the widths. In case that
ur”™ ul on / we simply use their average.
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GEO is given algorithmically by:
for k=0,1,2,...

m(fc+l) = uiw (-fa.------ —fa-) 071 each interface,
u"k+1) = solvepde(ui*k+b) in each sub-domain.

There is a wide class of interface relaxation methods for elliptic differential
equations. The methods have many differences. More specifically, the GEO
method converge rather rapidly achieving numerical convergence in a small num-
ber of iterations, regardless its formulation (multiple steps) and motivation and
smoothing techniques (Dirichlet-Neumann conditions).
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Chapter 3:
EXxisting software for PDEs

The PDE methodology is implemented on Matlab by simply using the instruc-
tion pdetool in command line. The Partial Differential Equation (PDE) Toolbox
[4] provides a powerful and flexible environment for the study and solution of
partial differential equations in two space dimensions and time. The equations
are discretized by the Finite Element Method (FEM).

The objective of the PDE Toolbox are to provide you with tools that:

1) Define a PDE problem, e.g., define 2-D regions, boundary conditions, and
PDE coefficients,

2) Numerically solve the PDE problem, e.g., generate unstructured meshes,
discretize the equations, and produce an approximation to the solution,

3) Visualize the results.

The PDE Toolbox is designed for both beginners and advanced users. The
minimal requirement is that you can formulate a PDE problem on paper (draw
the domain, write the boundary conditions, and the PDE). By using the com-
mand pdetool you can solve any differential equation problem. This invokes the
graphical user interface (GUI), which is a self-contained graphical environment for
PDE solving. For common applications you can use the specific physical terms
rather than abstract coefficients. Using pdetool requires no knowledge of the
mathematics behind the PDE, the numerical schemes, or MATLAB. Advanced
applications are also possible by downloading the domain geometry, boundary
conditions, and mesh description to the MATLAB workspace. From the com-
mand line (or M-files) you can call functions from the toolbox to do the hard
work, e.g., generate meshes, discretize your problem, perform interpolation, plot
data on unstructured grids, etc., while you retain full control over the global
numerical algorithm.

The basic equation of the PDE Toolbox that can be solved is the PDE:

-V-(cVu +au=*F

which we shall refer to as the elliptic equation, regardless of whether its coefficients

and boundary conditions make the PDE problem elliptic in the mathematical
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sense. Analogously, we shall use the terms parabolic equation and hyperbolic
equation for equations with spatial operators like the one above, and first and
second order time derivatives, respectively. Also, all solvers can handle differential
systems.

The PDEs implemented in the toolbox are used as a mathematical model for
a wide variety of phenomena in all branches of engineering and science. More
specifically the elliptic equations are used for modeling steady and unsteady heat
transfer in solids, flows in porous media an diffusion problems, potential flow,
electrostatics of dielectric and conductive media.

Additionally, the toolbox can be used for educational purposes as a comple-
ment to understanding the theory of the FEM.

A differential equation can be solved by using the PDE Toolbox if we follow

the next steps:

Step 1: PDE Problem Definition by using PDE Toolbox

The simplest way to define a PDE problem is using the GUI, implemented in
pdetool. There are three modes that correspond to different stages of defining a
PDE problem:

< In Draw mode, we can create Q, the geometry, using the constructive solid
geometry (CSG) model paradigm. A set of solid objects (rectangle, circle,
ellipse, and polygon) are provided. We can combine these objects using set
formulas.

e In Boundary mode, we specify the boundary conditions. You can have
different types of boundary conditions on different boundary segments, such
as Dirichlet, Neumann and mixed boundary conditions. In PDE Toolbox
only the external boundaries are considered. The internal segments are
ignored and this is the main objective that we want to change, in order to
treat these segments as interface boundaries.

< In PDE mode, we can interactively specify the type of PDE and the coef-
ficients c, a, f, and d. We can specify the coefficients for each sub-domain
independently. This may ease the specification of, e.g., various material
properties in a PDE model.
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Step 2: Solving PDE problems by using PDE Toolbox

Most problems can be solved from the GUI. There are two major modes that
help us solve a problem:

< In Mesh mode, we generate and plot meshes. We can control the parameters
of the automated mesh generator.

< In Solve mode, we can invoke and control the nonlinear and adaptive solvers
for elliptic problems. For parabolic and hyperbolic problems, we can specify
the initial values, and the times for which the output should be generated.
For the eigenvalue solver, we can specify the interval in which to search for

eigenvalues.

After solving a problem, we can return to the Mesh mode to further refine
our mesh and then solve again. We can also employ the adaptive mesh refiner
and solver. This option tries to find a mesh that fits the solution.

For advanced, nonstandard applications we can transfer the description of
domains, boundary conditions etc. to MATLAB workspace. From there we use
the functions of the PDE Toolbox for managing data on unstructured meshes.
We have full access to the mesh generators, FEM discretizations of the PDE and
boundary conditions, interpolation functions, etc. We can design our own solvers
or use FEM to solve subproblems of more complex algorithms.

Step 3: Visualizing the results

From the graphical user interface we can use Plot mode, where we have a
wide range of visualization possibilities. We can visualize both inside the pdetool
GUI and in separate figures. We can plot three different solution properties at
the same time, using color, height, and vector field plots. Surface, mesh, contour,
and arrow (quiver) plots are available. For surface plots, we can choose between
interpolated and flat rendering schemes. The mesh may be hidden or exposed in
all plot types. For parabolic and hyperbolic equations, we can even produce an
animated movie of the solution time dependence. All visualization functions are

also accessible from the command line.



18

Basics of the Finite Element Method

The solutions of simple PDEs on complicated geometries can rarely be ex-
pressed in terms of elementary functions. We are confronted with two problems:
First we need to describe a complicated geometry and generate a mesh on it.
Then we need to discretize your PDE on the mesh and build an equation for
the discrete approximation of the solution. The pdetool graphical user interface
provides us with easy-to-use graphical tools to describe complicated domains and
generate triangular meshes. It also discretizes PDEs, hnds discrete solutions and
plots results. We can access the mesh structures and the discretization functions
directly from the command line (or M-file) and incorporate them into specialized
applications.

We start by approximating the computational domain with a union of simple
geometric objects, in this case triangles. The triangles form a mesh and each
vertex is called a node. We are in the situation of an architect designing a dome.
He has to strike a balance between the ideal rounded forms of the original sketch
and the limitations of his simple building-blocks, triangles or quadrilaterals. If
the result does not look close enough to a perfect dome, the architect can always
improve his work using smaller blocks.

The solution should be simple on each triangle. Polynomials are a good choice:
they are easy to evaluate and have good approximation properties on small do-
mains. We can ask that the solutions in neighboring triangles connect to each
other continuously across the edges and we can still decide how complicated the
polynomials can be. Just like an architect, we want them as simple as possible.
Constants are the simplest choice but you cannot match values on neighboring
triangles. Linear functions come next. This is like using flat tiles to build a
waterproof dome, which is perfectly possible.
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Chapter 4.

Existing software for Interface Re-
laxation

The Interface Relaxation Methodology is a new area of study and that’'s why
there are only a few implementations that cover this research. In this chap-
ter, we are going to present the implementations that were proposed during the
past decades. A first but naive implementation was in 1991 [5]. It was based
on TCP/IP routines. A prototype implementation was proposed by Drashansky
(Networked Agents for Scientific Computing) and is based on a Multidisciplinary
Problem Solving Environment. With this environment, he managed to solve
complex problems. Another implementation was recommended by McFaddin
(RELAX). This system can support high-level interfaces and an object-oriented
framework for sets of problem solving modules. Last but not least, we contem-
plate the SciAgent implementation. This implementation is based on domain
decomposition and the parallel solution of each problem by using the character-
istics of the Interface Relaxation methods.

Networked Agents for Scientific Computing.

Drashansky’s implementation [6], [7], comprises a simulation environment that
solves multi-physics/multi-domain problems. This implementation is based on a
Multidisciplinary Problem Solving Environment (MPSE) that is a software ker-
nel which deals with tailored, flexible complex problems. This environment takes
advantage of the characteristic of the physical world. This characteristic sup-
poses that a physical complex problem consists of a set of simple, heterogenous,
connected problems and domains that have different behaviors and shapes and
they interact through geometric and physical interfaces with each other. On
the boundaries and the interfaces, several models are used in order to represent
the constraint conditions and mathematical formulas, such as partial differential
equations are used for the representation of the problems on each domain. As we
understand in a MPSE, the complete functional (mathematical) description of
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the problem includes: 1) definition of the sub-domains, 2) definition of the mod-
els in each sub-domain (these models are defined by the user) and 3) definition
of the interfaces between sub-domains and physical conditions along them. Tak-
ing into account all the above information, we conclude that the MPSE software
framework deals with a wide variety of problems in high quality. The Drashansky
implementation is based on the use of two agents [8]: the solver agent and the
mediator agent. Each solver agent is used to compute the local solution of a
subproblem in a sub-domain of the global problem. From the other hand the me-
diator agent is responsible for dealing with the interface between two neighboring
sub-domains. Sometimes, there may be more than one mediator agents for one
interface and each mediator agent operates on a separate part of the whole inter-
face. The mediator agent computes data on the interface by using some specific
methods and sends these information to the solvers agents. So, the solvers agents
and the mediator agents form a network that solves the global problem. The
architecture of this implementation is shown below in Figure 2.

Local Interfaces

Catalog
of Modules — A
User Builder Global
Interface Execution
Relaxer Agent Interface Instance\
Template Instantiator %
4
1
Solver /'instances \ instance!
Template

;Ware Bus

Figure 2. MPSE Architecture.

As we see on the above figure, the mediator and the solver agents communicate
through a software bus and they have their own local user interface in order to
interact with the user. If the solver agent does not have all the data that he needs
in order to compute the local solution, he waits the mediator agent to send him
the missing but useful data. The mediator agent waits if a solver on either side
of the interface is missing. This kind of synchronization is very important [9].

Also, an MPSE for simulating composite PDE models is the SciAgents which
is discussed below.
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RELAX.

McFaddin proposed RELAX [5], [10], an experimental system for using col-
laborating PDE solvers. From the computational science point of view RELAX
is a prototype of a new problem solving methodology for complex PDE problems.
In this implementation, the whole geometry is decomposed into blocks and each
block is characterized by a mathematical formula. The solution is computed for
every block is displayed directly and passed to the next procedure.

This system can support high-level interfaces and an object-oriented frame-
work for sets of problem solving modules. The problem solving modules are
interact only through the RELAX framework. These objects have their own
numerical methods, their own editors to interact with users, their own display
capabilities, etc. Some objects may, of course, be clones of a single master ob-
ject. The RELAX system allows many master objects including those created
by the user on the spot by combining and/or specializing existing objects. Its
capabilities are the following:

 Geometry: One can create collections of building block shapes (sub-domains)
to define a complex geometric object (domain). The basic shapes have pa-
rameters (e.g., width, rotations) to help shape the composite object.

 PDEs: One can define a different partial differential equation and associated
boundary conditions on each sub-domain.

e Solvers: The building blocks also have associated PDE solving methods
(in principle, one could have several such methods) whose parameters (e.g.,
mesh size) can be specified.

* [nterfaces: As the sub-domains are assembled, interfaces are created and
explicitly identified as objects in the RELAX system.

< Relaxers: Interface relaxation formulas are assigned to each interface. These
may be written by the user or selected from a menu of predefined formulas.

e Schedules: An ordering of applying PDE solvers on the sub-domains and
the relaxers on the interfaces constitutes a schedule. This ordering may be a
simple algorithm (e.g., Round-Robin) selected from a menu or interactively
specified step by step.
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SciAgent.

SciAgent, implementation consists of a whole class of Interface Relaxation
methods in an agent based framework that is implemented mainly using C and
JAVA. This implementation is used for general two-dimensional decompositions
of linear and non-linear elliptic PDE problems. The SciAgents [2] exploit the
inherent parallelism in the interface relaxation methods using the Agents com-
puting paradigm over a network of heterogenous workstations. The components
of a SciAgent system are shown in Figure 3 below.

SciAgents PSE

Figure 3. Components of the SciAgent system.

Specifically, the SciAgents transform the physical problem into a network
of local PDE solvers and interface relaxers. In the SciAgent prototype there
are three types of agents: one PDECoordinator agent, several PDESolver and
PDEMediat.or agents. The PDECoordinator, as it is figured by its name, is
responsible for the control of the entire application and coordinate the whole
procedure, a PDEMediator arbitrates between the two solvers sharing a boundary
between two domains, and a PDESolver is a wrapper for the legacy application
and solves the local problem.

When the PDECoordinator agent is started, reads a problem description file
and writes the information into its model. The input file contains information
about the number of solvers and mediators, the characteristics of the interfaces,
the initial guesses on the interfaces, the interface relaxation methods and the
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names of the machines that will be used to solve the whole problem. The next
step in the procedure is to create and configure the PDESolver and PDEMediator
agents. The PDECoordinator uses their addresses to setup the communication
between them. Then the coordinator waits for messages from the mediators,
regarding the status of the convergence to the solution of the problem, or from
the user. The messages from the user are to change the values of specific variables
of the input file, such as convergence tolerance or to force the execution to stop.

The PDESolver agent is responsible to solve the problem locally and path the
input/ output files etc. In the first state, the PDESolver starts-up the Pelltool
which compiles the .e file that describes the local PDE problem, and creates the
executable that will be used later on by the ExecuteTool. Both Pelltool and
ExecuteTool are parts of PELLPACK system [2], In the next state, the solver
extracts the points on the interfaces from the file that contains the mesh/ grid
points, and writes them into a file. Then the solver notifies the mediators that
the files are ready. The PDESolver agent remains idle until being notified by the
mediator that the list with all the points and their initial guesses are stored in a
file at a specific location. Then the solver uses these files to run the ExecuteTool
to solve the problem and then, the solver send a message to the mediators that
new values are computed, and waits for their response. Depending on the message
from the mediators, the solver will solve the problem again, remain idle waiting
for the other solvers, or plot the local solution. The PDECoordinator is able to
terminate the PDESolver by sending an appropriate message.

The mediator agent, PDEMediator, is created and configured by the PDECo-
ordinator agent. The mediator agent, has a complete description of the interface,
the relaxation method used, the solvers to collaborate with, the location of the
input/ output files, the location of the legacy programs, the tolerance used to de-
cide convergence, and the initial guess function. This information is provided by
the coordinator agent. After being started, the mediator waits for the boundary
points from the neighboring solvers. In the next stage, the mediator combines
the two point lists and then uses the initial guess to compute values at these
points. Afterwards, the mediator sends a message to the two solvers that the files
with the points and their values are ready. The mediator remains idle, waiting
for new values from the two solvers. When it receives new values it moves to the
next stage, reads the new data and compares them with current data. Then the

mediator agent uses the relaxation method to calculate the new values for the
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boundary conditions. If convergence is reached on this interface then the medi-
ator sends messages to the solvers and informs the PDECoordinator about the
local convergence so it will be able to decide on global convergence. A message
from the coordinator is sent to the mediator and the PDEMediator will finish, in
case of global convergence or wait for new data from the two solvers.

SciAgents require strong interpolation support, procedure for estimating ini-
tial guesses, mechanisms for determining “good” values for relaxation parameters
and criteria to control the iterative procedure. Interpolation is needed because
grids/ meshes do not necessarily match on the interface segment. Also the es-
timation of initial values on the interface is a very complex procedure, because
the Neumman and the mixed boundary conditions are sensitive to their initial
guesses and as the PDE problems get more complicated better initial guesses will

be needed.
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Chapter 5:
IRToolbox Implementation

The IRToolbox is implemented in Matlab and we used the files of Pdetool in
order to add some extra capabilities. In order to achieve that we modified some
of the existing files, we created new ones and we left other unchanged.

We begin with the file IRtool.m which opens the toolbox GUI, when we call
IRtool with no arguments. We will explain every change that we've made in this
file and we will present each new application that we casted. Now, we are going
to indicate the basic changes. The Interface menu and the IRsolve menu are the
menus that we have change in order to add new application and capabilities in
the pdetool.

Interface mode

In order to enter the interface mode we added a pull-down menu and a but-
ton icon. For the pull-down menu we created an inter_menu. In this menu, we
provide the sub-menus: Interface Mode, Specify Interface Conditions and
Interface Parameters... by using the functions menulabel and uimenu. Also,
we used the function pdeicon in order to load the button icons that we need, in
our case we created the icon for interface mode. The pdeicon function provides
the icon library for the PDEToolbox and the IRToolbox. When the user selects
Interface mode from the menu or pushes the icon /, automatically a callback
function is activated. This function is IR,tool('IRmode’). In this Callback func-
tion, we first get the User Data that appear in the pde.fig which is the main
figure of IRtool. If there is no geometry in the figure, IRtool(*2domain’) func-
tion is called. This secondary function IRtool('IRmode’) creates a geometry by
using the functions pderect, pdepoly, pdeellip and pdecirc. This geometry is an
example geometry. If we open the IRtool and the main window is empty, we can
use the example geometry of the IRtool by simply choosing Interface mode for
the Interface menu. The example geometry that we use is the geometry that is
presented below (Uniform Case). It consists of three rectangles. As we continue
in the function IRtool('IRmode’) the basic idea is to deactivate everything else
and activate only interface lines. This is enabled by the use of the callback func-
tion IRtool(‘drawlR."). This function extracts the User Data about the geometry
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with the command dll = getappdata(pde-fig, ‘dll ). Then, we find the interface
segments with the line intbounds=find([dll (6,:) ~=0 dllI(7,:) ~=0]), because
we know that a segment is an interface line when it adjoins with two domains
from both sides. The left and the right domain of an interface are shown in the
sixth and the seventh line of the matrix dll and are represented by the number
of each domain. Therefore, when none of the items dlI(6,i) and dlI(7,i) is 0, this
means that i is an interface segment. At this time, we also make the interface
lines into arrows in order to indicate direction, after this procedure, we have
the geometry designed and the interface lines indicated. The default color is red
which symbolizes the GEO method that is chosen.

So, in interface mode, we are ready to select an interface line and modify its
parameters. This is easy if we double-click on the interface a callback function
named IRtool(‘boundclkIR’,l) is activated. In addition, this function calls the
IRtool('set-IR") function. Now we can set the interface parameter values, be-
cause when we double-click on an interface and because of the IRtool('set-IR’)
an external function is called. This function is IRpdebddlg, which manages the
interface condition dialog box for the IRToolbox. First of all, it brings up and
initializes the dialog box. In the dialog box, we can choose between ROB and
GEO. When we choose GEO the value 1 is set in the variable IRflag, which is a
very important variable for the rest of the program, because it distinguishes the
methods. If we choose ROB, IRflag is set to 2. Also in the dialog box, we can
type the initial guess for the interface that we have selected. This can be done
by simply typing the preferable function in the parameter w. The procedure is
terminated if we press the OK button.

The information about the interfaces is saved in a file called pdebound. This file
can be used to specify the boundary and interface conditions of a PDE problem.
[0, g, h, r] — pdeboundfp, e, u, time) produces values of the boundary conditions.
The matrices p and e are mesh data. From the matrix e we only need a subset of
the edges in the mesh. The input arguments u and time are used for the nonlinear
solver and time stepping algorithms respectively. The matrix u is the solution
that we get from assempde. g and g must contain the value of the matrices q and
g on the mid point of each boundary or interface. Thus we have SIZE(q) — [N~2
NE], where N is the dimension of the system, and NE the number of edges in e,
and SIZE(g)=[N NE], For the Dirichlet or GEO case, the corresponding values
must be zeros, h and r must contain the values of the matrices h and r at the
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first point on each edge followed by the value at the second point on each edge.
Thus we have SIZE(h)=[N~2*NEj, where N is the dimension of the system, and
NE the number of edges in e, and SIZE(R)=[N 2*NE], When M<N, h and r
must be padded with N-M rows of zeros. The pdebound file is frequently used in

our program.

Back in IRtool file, from the Interface menu, we can select the sub-menu In-
terface Parameters..., which activates the callback function IRtool('IR-param).
This function and the function pdedlglRparam, which is defined in a separate file,
are responsible for the dialog box that opens. In this dialog box, we can define the
parameter omega for the GEO method and lamda for the ROB method. These
parameters are saved in handles because we need these parameters to be visible
from all files. The handles data can be extracted by using the functions getapp-
data and setappdata. The function value = getappdata(h,name) gets the value of
the application-defined data with the name specified by name, in the object with
the handle h. If the application-defined data does not exist, MATLAB returns an
empty matrix in value. The function setappdata(h,name,value) sets application-
defined data for the object with handle h. The application-defined data, which
is created if it does not already exist, is assigned a name and a value. Value can
be any type of data. pdedigIRparam manages the interface parameters specifica-
tion dialog box. These are the changes that we have made in the Interface menu.

IRsolve mode

The other basic part of pdetool that we have modified is the menu Solve.
If we press Parameters from the IRSolve menu, the callback function IR-
tool (IRSolve.param’) and the function pdedIgIlR are activated. This file brings
up the IRSolve specification dialog box. In this dialog box, we can modify the
parameters for the solution of PDE. These parameters are maximum number of
iterations and tolerance. We have saved these values in handles, in order to make
it easy to access them. We again use the unction getappdata and setappdata in
order to access the data that we have saved in handles.

Back to the file IRtool, we can choose IRSolve PDE from the menu IR-
Solve or press the “=" button, in order to solve the PDE problem that we
have specified. This is the basic part of our problem, as after having determined
the interface conditions, the interface parameters and the IRSolve parameters,
we are now ready to explain how we managed to solve the PDE problem. The
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callback function that computes the solution is IRtool('IRsolve). At this point,
we can decompose the information about the sub-domain, as we want to solve
each domain alone and independently and then compose the distinct solutions in
order to get the whole solution of the geometry. First of all, we must extract the
decomposed list, that represents the geometry data. This can easily be done by
the use of the following commands:

gd = get(findobj(get(pde-fig, ‘Children’), flat, ‘Tag, ‘PDEMeshMenu), ‘User-
Data);
and [dll-all, btl, pdedl|, bt, msb-all] = decsg(gd);.

The function decsg decomposes the solid geometry into minimal regions. [DL,
BT, DL1, BT1, MSB1]=DECSG(GD) decomposes the solid objects GD into the
minimal regions DL. The solid objects are represented by the Geometry De-
scription matrix, and the minimal regions are represented by the Decomposed
Geometry matrix. DECSG returns all the minimal regions. It also returns a
Boolean table BT that relates the original solid objects to the minimal regions.
A column in BT corresponds to the column with the same index in GD. A row
in BT corresponds to the column with the same index in DL. A second set of
minimal regions DL1 with a corresponding Boolean table BT1 is the set of min-
imal regions that have a connected outer boundary. These minimal regions can
be plotted by using MATLAB patch objects. The calling sequences additionally
returns a sequence MSB1 of drawing commands for each second minimal region.
At this point, it is very important to give the description of the geometry matrix.
The Geometry Description matrix GD describes the solid model that we draw
in the IRTOOL GUI. Each column in the Geometry Description matrix corre-
sponds to an object in the solid geometry model. Four types of solid objects are
supported. The object type is specified in row one:

1. For the circle solid, row one contains 1, the second and third rows contain
the x- and y-coordinates of the center respectively. Row four contains the radius
of the circle.

2. For a polygon solid, row one contains 2, and the second row contains the
number, N, of line segments in the boundary. The following N rows contain the
x-coordinates of the starting points of the edges, and the following N rows contain
the y-coordinates of the starting points of the edges.

3. For a rectangle solid, row one contains 3. The format is otherwise identical
to the polygon format.
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4, For an ellipse solid, row one contains 4, the second and third row contain
the center x- and y-coordinates respectively. Row four and five contain the major
and minor axes of the ellipse. The rotational angle of the ellipse is stored in row
SiX.

The Decomposed Geometry matrix DL contains a representation of the min-
imal regions that have been constructed by the DECSG algorithm. Each edge
segment of the minimal regions correspond to a column in DL. In each such col-
umn rows two and three contain the starting and ending x-coordinate, and rows
four and five the corresponding y-coordinate. Rows six and seven contain left
and right minimal region numbers with respect to the direction induced by the
start and end points (counter clockwise direction on circle and ellipse segments).
There are three types of possible edge segments in a minimal regions:

1. For circle edge segments row one is 1. Rows eight and nine contain the
coordinates of the center of the circle. Row 10 contains the radius.

2. For line edge segments row one is 2.

3. For ellipse edge segments row one is 4. Rows eight and nine contain the
coordinates of the center of the ellipse. Rows 10 and 11 contain the major and
minor axes of the ellipse respectively. The rotational angle of the ellipse is stored
in row 12.

So, when we have the decomposed geometry data, that is named dll-all. Next
we have to get this matrix for each of the sub-domains. We achieved that by using
the command [dll,btl,pdedl,bt,msb]—decsg(gd(:,j)); . where j is the identification
number of the corresponding domain. Afterwards, by using the matrix msb that
is also produced from decsg we create another matrix also called msb. This matrix
contains the indexes of dll.all that correspond to the boundaries of each domain.
By this way, we can extract the boundary data (matrix bl) for each distinct
domain. With the following commands, we manage to get all the information we
need for both the boundaries and the interfaces.

bLall=get(findobj(get(menuhndl, ‘Children), flat’, ‘Tag'PDEBoundMode),
‘UserData);

bLalLinter=get(findobj(get(menuhndl, ‘Children), flat’, ‘Tag’, ‘PDEInterMode ),
‘UserData);

bll = bll-all(:,msb(:,1));

The value of the interface in the matrix bll is determined from the Interface
Condition dialog box as the function my01(x,y) for the first interface, my02(x,y)
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for the second and e.t.c. In our code, we change this information into irO1(x,y)
and ir02(x,y) for the first interface in the left and in the right domain respectively
and into ir03(x,y) and ir04(x,y) for the second interface and e.t.c.

Furthermore, it is very important to extract the mesh conditions(p, e, t) for
each domain. This is possible by using the line [p, e, t] = initmesh(dll,'hmax,
trisize);, where trisize is a parameter that specifies the maximum edge size.
INITMESH builds an initial PDE triangular mesh. /P,E, T]=INITMESH(G)
returns a triangular mesh using the geometry specification function G. It uses a
Delaunay triangulation algorithm. The mesh size is determined from the shape
of the geometry. G describes the geometry of the PDE problem, as we mentioned
before. For more details we can check the function PDEGEOM. The outputs P,
E, and T are the mesh data. In the point matrix P, the first and second rows
contain the x- and y-coordinates of the points in the mesh. In the edge matrix
E, the first and second rows contain the indices of the starting and ending point,
the third and fourth rows contain the starting and ending parameter values, the
fifth row contains the boundary segment number, and the sixth and seventh rows
contain the left- and right-hand side sub-domain numbers. In the triangle ma-
trix P, the first three rows contain indices to the corner points, given in counter
clockwise order, and the fourth row contains the sub-domain number. The hmax
parameter controls the size of the triangles on the mesh. INITMESH creates a
mesh where no triangle side exceeds hmax.

In addition, we have to extract the PDE coefficients c, a, / and d with the
following lines:

params=get(findobj(get(pde-fig, ‘Children), ‘Tag’, ‘PDEMenu), ‘UserData);

ns=getappdata(pde.fig, ‘ncafd);

nc=ns(l); na=ns(2); nf=ns(3); nd=ns(4);

C-all=params(l:nc,:);

a-all=params(nc+l:nc+na,:);

f-all=params(nc+na+l:nc+na+nf,:);

d-all=params(nc+na+nf+l:nc+na+nf+nd,:);

and after having extracted the coefficients for all the domains, then we easily
extract the coefficients of each individual domain.

We save all the above information in cell arrays. We create a cell array
for each domain and each discrete cell array contains the decomposed geometry
matrix, the boundary matrix, the mesh conditions and the PDE coefficients of
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each domain.

The next step is to create a matrix, named inter. The matrix inter has rows
as many as the interfaces that exist in our geometry. In the first column, there
is the identification number of the interface. In columns 2 and 4, we save the
numbers of the domain that adjoin with the interface, and in columns 3 and 4
we have the identification numbers of the interface in each domain. We use this
matrix in many cases, so we save it into handles, so it is visible from all files.

Now that all the information for each domain is available, we are ready to solve
the PDE problem. First of all, we have the main loop that is executed iteratively
based on the parameters: maximum number of iterations and tolerance. Then
we have a first loop among the domains. This loop computes the solution u and
the derivatives ux and uy, by using the functions assempde, pdegrad and pdeprtni.
ASSEMPDE assembles the stiffness matrix and right hand side of the PDE prob-
lem. More specifically, U=ASSEMPDE(B,P,E,T,C,A,F) assembles and solves
the PDE problem that is defined by the equation -div(c*grad(u))+a*u=f on a
mesh described by P, E. and T, with boundary conditions given by the function
named B. It eliminates the Dirichlet boundary conditions from the system of lin-
ear equations when solving for U. In the first iteration, the boundary conditions
that we use, calls the functions ir*(x,y), where * represents the identification
number of each file as we discussed above. In this file ir*(x,y) as long as the
number of iteration is 0, the interface condition has the initial guess that we
type in file mytrue(x,y) in the interface dialog box. On the other hand, when
the number of iterations increases, in the file ir*(x,y), we have the value that is
produced from the Interface Relaxation method that we use. Back to assempde,
for the scalar case the solution u is represented as a column vector of solution
values at the corresponding node points from P. For a system of dimension N with
NP node points, the first NP values of U describe the first component of u, the
following NP values of U describe the second component of u, and so on. Thus,
the components of u are placed in the vector U as N blocks of node point values.
B describes the boundary conditions of the PDE problem. B can either be a
Boundary Condition Matrix or the name of Boundary M-file (For more details,
we can see the file pdebound). The coefficients ¢, a and / of the PDE problem

can be given in a wide variety of ways:
- A constant.

- A row vector of representing values at the triangle centers of mass. A



32

MATLAB text expression for computing coefficient values at the triangle centers
of mass. The expression is evaluated in a context where the variables X, Y, SD,
U, UX, UY, and T are row vectors representing values at the triangle centers of
mass. (T is a scalar). The row vectors contain x- and y-coordinates, sub-domain
label, solution with x and y derivatives and time. U, UX, and UY can only be
used if UO have been passed to assempde. The same applies to the scalar T,
which is passed to assempde as TIME.

- A sequence of MATLAB text expressions separated by exclamation marks
“I”” The syntax of each of the text expressions must be according to the above
item. The number of expressions in the sequence must be equal to the number
of sub-domain labels in the triangle list t.

- The name of a user-defined MATLAB function that accepts the arguments
(P, T,UTIME). P and T are mesh data, U is the UO input argument and T is
the TIME input argument to assempde.

If C contains two rows with data according to any of the above items, they
are the c(l,l), and c(2,2), elements of a 2-by-2 diagonal matrix. If ¢ contains
three rows with data according to any of the above items, they are the c(l,l),
c(1,2), and c(2,2) elements of a 2-by-2 symmetric matrix. If C contains four rows
with data according to any of the above items, they are the c(l,l), c(2,)), c(l,2),
and c(2,2) elements of a 2-by-2 matrix.

The next thing that we do is to compute the values u on each interface. This
is accomplished by the use of the command [unewl unew?2 ulis xlis ylis x2is y2is]
= IRmethod(IRflag,inter(l,)); IRmethod calls the function GEO or ROD based
on the value of IRflag. The variables unewl and unew?2 are global. The function
GEO is executed in proportion with the identification number of the interface.
According to this number, in GEO function we extract the mesh information
for the corresponding domains and the values of u, ux and uy, as well. We use
interpolation in order to get the values of the derivatives of the two domains on
the nodes and finally we compute the value of the variables unewl and unew2.
We also produce figures for the history of interface values and the corresponding
error. Back to function IRtool, we present the figures of the whole solution and

the error of our PDE problem.
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Chapter 6:
IRTool Graphical User Interface

The PDE Toolbox which is implemented in Matlab provides a flexible environ-
ment for the study and solution of partial differential equations. Nevertheless,
it does not handle with interface boundaries in a proper manner. This is the
reason that inducts us to implement the IR Toolbox. The Interface Relaxation
Toolbox provides a graphical user environment for the study and solution of par-
tial differential equations as it considers at the same time the interface relaxation
methodology. So, the IRToolbox has some additional properties and capabili-
ties. The basic idea was that with the IRToolbox we can deal with the interface
segments and solve the global problem by contemplating parameters such as in-
terface relaxation method, initial guesses on the interface segments and tolerance
(convergence).

The Graphical User Interface (GUI) has a pull-down menu bar that we can
use to control the modeling. It conforms to common pull-down menu standards.
Menu items followed by a right arrow lead to a sub-menu. Menu items followed
by an ellipsis lead to a dialog box. Stand-alone menu items lead to direct action.
Some menu items can be executed by using keyboard accelerators. IRtool also
contains a toolbar with icon buttons for quick and easy access to some of the
most important functions. The following sections describe the contents of IRtool
menus, the dialog boxes associated with menu items and an illustrated example.

To get started with the graphical environment we simply type in the Matlab
prompt the command IRtool. The GUI looks like the figure below (Figure 4).
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Figure 4. The main window of IRtool.

Now, we are going to explain the menus of the IRtool. Some of the menus are
the same as in Matlab pdetool an d so, we are going to mention them briefly.

File Menu

The pull-down menu has the following applications: New, Open, Save, Save
ds, Print, Exit. These applications deal with basic procedures that exist in many
toolboxes of Matlab.

Edit Menu
The Edit menu provides the applications below: Undo, Cut, Copy, Paste,
Clear, Select All.

Options Menu
Similarly, the Options menu is the same as the pull-down Options menu
of the pdetool. Its applications are: Grid, GHd spacing, Snap, Axis Limits, Axis
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Equal, Turn off Toolbar Help, Zoom, Application and Refresh

Draw Menu

In the Draw Mode, we can draw the geometry on which we want to solve the
PDE. As in PDE Toolbox, the IRToolbox provides four types of solid objects:
polygons, rectangles, circles, and ellipses by the selecting the following options
from the pull-down menu of the Draw menu: Rectangle/Square, Rectangle/square
(centered), Ellipse/Circle, Ellipse/Circle (centered), Polygon. In order to rotate
the selected objects we can use the Rotate choice from the same menu.

The objects are used to create a Constructive Solid Geometry model (CSG
model). Each solid object is assigned a unique label, and by the use of set algebra,
the resulting geometry can be made up of a combination of unions, intersections,
and set differences. By default, the resulting CSG model is the union of all solid
objects. The only thing that we must take care when we draw the geometry
is that the solid objects must not overlap each other if we want to solve the
PDE problem using the interface relaxation methodology. The IRtool as it is
implemented, it deals with geometries that consist of rectangles.
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Figure 5. Draw mode.

In the above example (Uniform Case), that we are going to explained it further
below (Chapter 7), the resulting CSG model is the union of the three rectangles
RI, R2 and R3, described by set algebra as R1+R1+R3 (Figure 5).

If we want, we can save this CSG model as an M-file. We simply use the
Save As. . . and Save option from the File menu, and enter a filename of our
choice. All the additional steps in the process of modeling and solving your PDE
are then saved to the same M-file. This concludes the drawing patrt.

Boundary Menu

In the Boundary menu we have the following options:Boundary mode, Spec-
ify Boundary Conditions, Show Edge Labels, Show Sub-domains Labels, Remove
Sub-domain Border, Remove All Sub-domain Borders and Export Decomposed
Geometry, Boundary Cond's.

We can now define the boundary conditions for the outer boundaries. We can
enter the Boundary Mode by clicking the dfl icon, or by selecting Boundary
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Mode from the Boundary menu. We can now remove sub-domain borders and
define the boundary conditions. In boundary mode, we did not do any changes
and the window is shown below (Figure 6).

The boundaries are indicated by colored lines with arrows. The boundary
condition can also be a function of x and y, or simply a constant. By default, the
boundary condition is of Dirichlet type: u = 0 on the boundary.

Figure 6. Boundary mode.

Double-clicking anywhere on the selected boundary segments opens the Bound-
ary Condition dialog box (Figure 7). Here, we select the type of boundary
condition, and enter the boundary condition as a MATLAB expression. The
boundary condition is typed in a file named mytrue.m. In this file, the user types
the elliptic problem that he wants to solve. The elliptic problem has the following

form:
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Lu(x,y) = V2 u(xy) + n2 u(xy) =f(xy), (xy)eQ

uxy) = u2 (x,y), (xy) eo

where the right side function f(x,y) and the boundary value function u2(x,y)

are selected if we consider the true solution u(x,y).

F1 Boundary Condition 11- N U

Boundary condition equation: heur

Condiion type: Coefficient Value Description

‘O Neumann
O Dirichlet
h 1

r mytrue(x.y)|

cancel |

Figure 7. Boundary Condition dialog box.

Interface Menu
The pull-down Interface menu is shown below (Figure 8):

Interface
Interface Mode Ctrl+R
Specify Interface Conditions...

Interface Parameters...

Figure 8. Interface mode: pull-down menu.

Interface mode: Enters the interface mode, where are highlightened only the
interface segments.

Specify Interface Conditions: Specify interface conditions for the selected in-
terfaces. If no interfaces are selected, the entered interface condition applies to
all interfaces. It displays a dialog box in which, we can specify the interface
condition. In the dialog box, we enter the initial values for the interface segment.

Interface Parameters: Displays a dialog box where we can enter the parame-
ters that are needed for the interface condition. For GEO method, the parameter
that we should define is w (omega), and for ROB method we should determine
the number A (lambda).

We can now enter the Interface Mode by clicking the 1 icon, or by selecting
Interface Mode from the Interface pull-down menu and we get a window that
seems like the Figure 9.
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Figure 9. Interface mode.

The Interface menu does not exist in PDE Toolbox. We have created it in order
to be able to deal with the internal boundary segments that until now were not
considered at all in pdetool. In order to achieve that, we did some software ac-
cessions in the main file (IRtool.m). So, when the user enters the interface mode
the interface segments are highlighted because Matlab runs the Callback function
IRtool(IRmode ). This function calls automatically the IRtool(‘drawlIR ). Inside
drawlR, we get the geometry data (assigned as dll) and we choose to turn off
everything else and light up only the interface lines by using the command int-
bounds=find([dll(6,:) *=0 & dllI(7,:) ~=0]);. In the 6th and 7th row of the array
dll there are the numbers of the right and the left domain. If in any of these
rows there is the number 0 (0 assigns the non-domain area), it means that the
segment is an external boundary segment.

Double-clicking anywhere on the selected interface segments opens the Inter-
face Condition dialog box (Figure 10). Here, we select the type of interface
relaxation method, and enter the interface condition as a MATLAB expression.
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We can choose between two methods ROB and GEO and we can change the
parameters g and r . For the GEO method, we can dehne the initial guess of
each interface by simply typing the my*(x,y) in the box about the r parameter,
where * corresponds to the number of the interface that we have selected. The
my*(x,y) file can easily be modified by the user according to the corresponding
problem. The initial guess is the first value that is used in order to compute the
true solution on each interface line. The IRtool is capable to solve PDE prob-
lems that have up to ten interfaces and by using the GEO Interface Relaxation
method. However, it is very easy to expand the program for a bigger number of
interfaces. And, further research will enable the implementation of ROB Inter-
face Relaxation method.

D Interface Condition IaJﬁ'—ilﬁf

Interlace condbon equation eq2

Condtion type Coefficjeri Value Description
Orob

®<seo
r myOl(x.y)

cancel |

Figure 10. Interface Condition dialog box.

The equation for the interface relaxation method that we have implemented is:

GEO: ujfi | oM, 1(QuA+dn]

Whenever we choose either ROB or GEO, we change the value in a variable
named IRflag. This variable is necessary in IRSolve mode (it will be presented
later) in order to know which interface relaxation method we will use to solve the
PDE problem.

PDE Menu

The PDE menu is exactly as it is in Matlab and has the following options:
PDE Mode, Show Sub-domain Labels, PDE Specification and Export PDE Coef-
ficients.
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The elliptic PDE equation is -V - (cVu) + au = /. The parameter d does

not apply to the elliptic PDE. The coefficients a, ¢ and / can be constants or
functions.

The PDE mode for the specific PDE problem that we have is shown in the
Figure 11.

Figure 11. PDE mode.

HPOE Specification

UIfPIB
Equation ~c*v(crgrad(u)>+a*uct
Type of PDE: Coefficient Value
O Eliptic ¢ 1.0
O Parabolic a 0.0
© Hyperbole f myfiXyfr

© Eigenmodes

oK | | Ccancel

Figure 12. PDE Specification dialog box.
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In the dialog box, we can select the type of PDE (elliptic, parabolic, hyper-
bolic, or eigenmodes) and define the applicable coefficients depending on the PDE
type. In the above dialog box (Figure 12), we have an elliptic PDE defined by

the following equation:
~V'(cV u) +au=ft withc = 1.0, a = 0.0, and /7 = myf(x,y).

The file myf(x,y) can easily be modified by the user because it is unique for

every differential problem.

Mesh Menu

The Mesh menu has the following options: Mesh Mode, Initialize Mesh, Re-
fine Mesh, Jiggle Mesh, Undo Mesh Change, Display Triangle Quality, Show Node
Labels, Show Triangles Labels, Parameters and Export Mesh.

Parameters for controlling the jiggling of the mesh, the refinement method,
and other mesh generation parameters can be found in a dialog box that is opened
by selecting Parameters from the Mesh menu. At this time, we must initialize
the maximum edge number, as this refers to the hmax. Hmax is necessary in
order to solve the PDE problem. This menu is the same as it is in PDE Toolbox

and the window that appears looks like the Figure 13.
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Figure 13. Mesh mode.

Save Data

The Save Data menu is a new pull-down menu that we implemented in
IRToolbox in order to save some important data in files in case that we need
them. The basic idea is to decompose the geometry into domains and divide the
information for each domain.

First of all, we decompose the solid objects GD (geometry data) into the
minimal regions dll by using the function decsg. By this way, we have sperate
arrays that correspond to different domains. This is very important because in
IRToolbox the main concept is to treat the PDE problem as local problems and
then combine the local solutions in order to get the global solution for the whole
PDE problem. Afterwards, we divide the boundary data (array bl), the mesh
conditions (p,e,t) and the PDE coefficients (c,a,f,d). All the above information
is saved into files. Each file is named as dom*.m! where * is the number of the

domain, and it contains the information about the corresponding domain.
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In addition, by using the function assempde we get the array u and the deriva-
tives on the nodes (ux, uy) for each domain and we save this information in files
named solvedomain*.m: where * is the number of each domain.

So, by clicking on SaveData menu, the user can easily extract all the data
that he might need about each individual domain. The files can be found in the

same directory folder that he uses at the same time.

IRsolve

The pull-down IRsolve menu is shown below Figure 14):

IRSoive
IRSolve PDE Ctri+E

Parameters...

Figure 14. IRsolve mode: pull-down menu.

IRSoive PDE: Solve the partial differential equation for the current CSG
model and triangular mesh, and plot the solution and the error.

Parameters: Display a dialog box where we can determinate the basic param-
eters in order to solve our problem. The parameters that are available are the
maximum number of iterations and the tolerance about the error.

Export Solution: Export the PDE solution vector u and, if applicable, the
computed eigenvalues | to the main workspace.

We are now ready to solve the problem by clicking the = button or by selecting
IRSoive PDE from the IRSoive menu to solve the PDE. The solution is then
plotted. By default, the plot uses interpolated coloring and a linear color map.
A colorbar is also provided to map the different shades to the numerical values
of the solution.

The IRSoive menu differs a lot from the Solve pull-down menu of pdetool.
The basic idea is that we decompose the geometry data gd, the boundary data
6, the mesh conditions p, e, t and the PDE coefficients c, a, /, d for each domain
that we draw. We save the decomposed objects in cell arrays. Each line of the
cell contains the information of each domain. By this way, we can extract every
item we need very easily.

Then, we implement the subjective part of IRSoive menu, that it is present

by the below algorithm:
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for i=Il, 2, .. . Maximum lterations
forj=I, 2, . . .#domains,

u, ux, uy=solvedomain j

end
for 1=1, 2, . . . #interfaces
IRrnethodflRflag, I)
end
end

By solvedomain j, we mean that we call the function assempde in order to get
the variable u. Then we use the functions pdegrad and pdeprtni and we get the
derivatives on the nodes for each different domain. For the loop about the inter-
faces, we call the function IRmethod(IRflag,l), where IRflag is the variable that
determinates which method (ROB or GEO) we will use. Afterwards, IRmethod
calls the function ROB or GEO for each interface segment. This function returns
all the useful information about the interfaces. The main loop continues if we
have minimum error or if we reach the maximum number of iterations. By that
time we get the true solution of the PDE problem.

The maximum number of iterations and the tolerance can be determined by
selecting Parameters from the IRSolve menu. The window that opens looks

like the figure below (Figure 15).

Figure 15. Solve Parameters dialog box.

The solution of the above partial differential equation after 11 iterations is shown
in the following Figure 16. In this figure we represent the solution of the PDE

problem on the whole geometry data.
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Figure 16. Plot of the solution and the error.

Along with the plot of the solution, the plot of the error function also appears.
We can get the error values if we subtract the exact solution of the PDE problem
from the computed solution.

In the next figure (Figure 17) we can see the history of the interface values
and the error history. For the figure of the history of interface values, with the
blue color the true value of the interface is presented, the red line represents the
current value of the interface and the black lines corresponds to the past values
of the interface. In the figure of the history of the error history, we can see how

the error changes as the number of iterations increases.

jFI*ur.3 QEJO -1rrui4
Fie Edit View Insert Tools Desktop Window Help Fie Ed* View Insert Tools Desktop Window Help
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Figure 17. Plot of the interface and the error history.
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Chapter 7:
Numerical Experiments

In this chapter, three different examples will be presented in order to illustrate

the use of the IRtool.

Example 1. Uniform Case
In order to understand the Interface Relaxation method, we experiment its ap-
plicability and convergence characteristics on geometry decomposition problems.

In the first example, we consider the following elliptic problem:

Lu(x,y) = -sj2u(x,y) + 12u(x,y) = f(x,y), (x,y)f£l
u(x,y) = ub(x,y), (x,y)eds$l

The true solution u(x,y) is
u(x,y) = ey(x+4)x(x-1)(x-0.9)y(y-0.5).

The first PDE problem consists of a geometry that is decomposed into three
domains with interfaces on . — 1/3 and ... = 2/3.

First of all, we determined different experiments in order to consider which
parameters affect the convergence of the GEO method. The convergence of the
method depends only on the relaxation parameter omega. This idea is illustrated
in the following figures (Figure 18) that show that as we increase the parameter

omega, the convergence of the GEO Interface Relaxation method is faster.
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errors history errors history

100

Figure 18. Plots of the error history on the interfaces Xj = 1/3 and X2 = 2/3 for
omega = 0.01, 0.03, 0.05, 0.07.

We next plot in Figure 19 the convergence history. Specifically, we plot the
max norm of the relative difference of two successive iterants on the two inter-
face points as this is depicted by the legends on the left versus the number of
iterations. According to these figures, we can easily conclude that the rate of
convergence is independent of the local discretization resolution h and depends

very little on the PDE coefficient j2.

Uniform Case at x| = 1/3 Uniform Case at xI = 1/3
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Uniform Case at x2 = 2/3 Uniform Case at x2 = 2/3

Figure 19. Plots of max norm of the relative difference of two successive iterants
measured on the two interfaces of the PDE problem versus the number of
iterations. For the plots on the left we set 72 = 2 and h = 0.1/(2*) for i = 0, 1,
2, 3 and for the plots on the right 72 = 1, 2, 5, 10 and h — 0.05.

We next plot in Figure 20 the relative true error of the computed solution.

Uniform Case at x2 = Uniform Casa at «1 m 1/3

Figure 20. Plots of max norm of the relative true error of the computed solution

- u| loc 7/ ]Ju]loc versus the iteration number k.

Example 2. Non-Uniform Case

The second PDE problem consists of a geometry that is decomposed into three
domains with interfaces on xj =1/5 and x2 = 1/2. We use the same differential
elliptic equation and true solution u(x,y), as we used in example 1. Below, we

have the figures (Figure 21 and Figure 22) for the non-uniform case.
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Non Uniform Case at xf - IS Non Uniform Case at «1 = U5

Non Uniform Case at x2 = 1/2 Non Uniform Case at x2 = 1/2

Figure 21. Plots of max norm of the relative difference of two successive iterants
measured on the two interfaces of the PDE problem versus the number of
iterations. For the plots on the left we set y2 = 2 and h = 0.1/(2*) for i — 0, 1,
2, 3 and for the plots on the right 'y2 — 1, 2, 5, 10 and h = 0.05.

Non Uniform Case at xI = 1/5 Non Uniform Case at x2 = 1/2

Figure 22. Plots of max norm of the relative true error of the computed solution

[Jlu”™ - ulloc 7/ ||u]loc versus the iteration number k.
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Example 2. 4-Domain Case

The Third PDE problem consists of a geometry that is decomposed into four
domains with interfaces on X] = 1/4, =1/2 and = 3/4- We use the same
differential elliptic equation and true solution u(x,y), as we used in example 1.

Below, we have the figures for the 4-Domain example (Figure 23 and Figure 24).

4-domain Example at x2 = 1/2 4-Domain Example at x2 = 1/2
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4-domain Example at x3 = 3/4 4-Domain Example at x3 = 3/4

Figure 23. Plots of max norm of the relative difference of two successive iterants
measured on the two interfaces of the PDE problem versus the number of
iterations. For the plots on the left we set 72 = 2 and h = 0.1/(2l) fori = 0, 1,
2, 3 and for the plots on the right 72 = 1, 2, 5, 10 and h = 0.05.

4-domain Example at x| = 1/4 4-domain Example at x2 = 1/2

Figure 24. Plots of max norm of the relative true error of the computed solution

() loc / llulloc versus the iteration number k.
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