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MpoAoyocg

H mapoloa epyacio €xel oTOX0 va TIOPOUCIATEl BOCIKEG AEITOVPYIKEC TITUXEG, MIOG OTIO TIC
OPXITEKTOVIKEC PETATPOTIEWY AVOAOYIKOU 0€ Yn@lako anpa (kKal avtiotpo®a), mou Baagifovtal
otV uTepdelypatoAnyia. H mpostolpyacia g Eekivnoe tov ZemtéuPpio 2007 Kol 0AOKANP®-
Bnke to Maio 2008. To évauoua dGONKe OTO TO TIPOTITUXIOKO HABNuUa €TUAOYNG: ZXxediaon
Avaloyikwv KukAwpdatwv VLSI, émou d1ddxItnKav Kal ol BACEIC YIO TO CUYKEKPIYEVO BEua.

Q¢ Baon g availuong XPnoluoToldnke éva amé Ta Aiya BIBAia [13] Tou €xouv ypa@Tei
ylO OUTO TO B€ua, TO OTIOI0 GUYKEVIPWVEL PEYAAO HEPOC TWV ONUOCIEVCEWY TIOU €XOULV YIVEL
MEXPL TNV XpovoAoyia ékdoong tou (2004).

MapoTl onpePa LUTIAPXOLV TIOAAG TIPOIOVTO G€ AUTO TO XWPO, N OXeEdioON Toug dev Baailetal
TO00 O¢ TANPN BewpNTIKA TEKUNPiwoN, 000 O¢ TIEIPOUATIKEG TIPOCOMOIWCEI. AUTO CUMPAIVEL
YIOTi N YN YPOUUIKN AEITOupyia Twv Bpoxwv avadpacng, dNUIoVPYED ampopAemn o€ éva Babd-
MO OUMTIEPIPOPA, KOl KOBIoTA adlvaTn T POVIEAOTIOINGCH NG ME TA UTIAPXOVIO HOBNUOTIKG
EPYOAEeia.

APXIKA PEAETNOOUE BeWPNTIKA Kal ETURERAIWOCOPE HE TIPOCOMOIWTEIC TIC BACIKEC OPXEQ
AEITOLPYIOG TWV PETOTPOTIEWV UTIEPEIYUATOANYIOG, ocLPTIEPIAOUBAVOPEVNG KOl TNG avaAUan(
BopULPou KOBWC Kal TNV £TIOPACT OPIoUEVWY QPIATPWVY o€ autdv. ‘Emterta Baoidouevol og opl-
Opéva TTopiopata NG avaAUCNC €LCTABEING, PEAETOOME TA OPIO TNG €LOTABEING Yia JId@Oopa
OrHOTO KOl TIEPITIWOEIC. TO OTIOTEAECHOTA Eival TIEIPAMOTIKIG QUOEWE, KABWE OTIWG EITTApPE 0
TPOTIOC PE TOV OTIOI0 TO CUCTNPA TEAIKA 0dnyEital og aoTABEIO TIAPAPEVEL OVEENYNTOC.

KaBot dev umtdpxel BIBAIOYpA@Ia VIO TO CUYKEKPIUEVO OVTIKEIIEVO OTNV EAANVIKT YAWOOQ,
TIPOC OTTOQUYN ACTOXWV HETAPPACEWVY TNG TEXVIKIG OPOAOYIOg, XPNOIMOTIONONKE N ayyAIKn

YAWOGO 0TO GUVOAO TNG EPYNCTIOG, TIOU EUTIEPIEXETAI WC TAPAPTNHA.



MetatporTteiq YTrepdelypyatoAnyiag

Ma va JETATPEYPOUPE Eva GO OTI0 OVOAOYIKA O€ PN@IOKN Hop@r, GUXVA ETUOIWKOUUE PEYOAN
oKpiBela. Autr n akpiBela peTplETan o€ bits Kal Kupaivetal oTi¢ PEPEC pag amo 4 €wg 22 bits
avAaAoya PE TIG OTIAITACEIC TNG KABE gpapuoyng. Ol YETATPOTIEIC PE aKpIBela Tapamdve oo
12 bits ocuxvd xpnolhoTololy YeBOdoug LTIEPAEIYOTOANYIaG. Z0P@wWVa Pe TO Bewpnua Tou
Nyquist artaitovvtal TouAdxioto d00 deiypata avd Tepiodo. O AOyog UTIEPOEIYUOTOANYIOC
deixvel TOoeC POPEC TTAVW aTO OUTO TO Oplo OEIYUATOANTITOUPE TO oNfpa. ‘OC0o PeyOADTEPOC
gival 0 AOyo¢ autog TOOO0 PEYOAUTEPN OKpPiBela Tetuxaivoupe. 'ETOol yia mapddeiypa €av
OEIYUOTOANTITACOUPE €va NUITOVIKO anua cuxvotntag IKHZ pe Aoyo utepdelypotoAnyiog
128, 161e B0 TIPéMEl va €xoupe 256 deiypata ava Tepiodo Tou onuatog. ‘ETol pmopolue JE
XPron €vog amiou KPBavtioTr Tou €vog bit cuvdedepévo o KATAAANAO Bpoxo avadpacnc va
TIETUXOUUE PE KOTAAMNAO AOYyO uTiEPdElyUOTOANYiag akpiBela petatpoTig PEXP! kat 10 bits.

Mo va KOTAAGBOUPE KOAUTEPO OE TIOIEC TIMEC KLPAIVOVTAI Ol PETOTPOTIEIC AVAAOYIKOU O€
YnN@IoKo onua, Ba TIPETIEL v BOUPE XWPIOTA TIG ETUSOCEIG TNG KABE Katnyopiag. Ol YETATPOTIEIG
TIoU OgV XPNOIUOTIOIOUV UTIEPDEIYHATOANYIO, OAMa delypoToANTITOUV € ouxvotnta Nyquist,
pTIopolV va @TAcouv PEXPL Kat 20Gs/s (20.000.000.000 desiypata TO OEVUTEPOAETITO) PE HOAIG
6.5 bits akpiBela [6], €1¢ BAPOC OUWCE TNC KOTAVAAWGNC 10XVOC TIoL PTAVEL T 10 W. AAAEG
oxedldoelg, Ye Atyotepo amo 1W katavaiwon, @tdvouv ta IGs/s pe 8.85 bits akpifeia [7],
N 0.8Gs/s ue 9 bits [5], 1] 1.35 Gs/s pe 7.7 bits [9] r} pe BeATicwoon TOL TIPONYOUPEVOU OXEdIOL
pEXpl 1.8 Gs/s pe 8.3 bits [15]. 'Amo Tnv GAAN PEPIA, Ol PETOTPOTIEIC LTIEPOEIYUATOANYIOG
MTIOPOUV va @Tacouv HEXPL Kal 20 N kal 22 bits, e TOAD apyOd Ouw¢ onua €icodou: 15 1
12.5 HZ avtiotoixa [11], [10]. TMoio icoppoTinuéveg aoxedIACEIC TIOU TIEPIypagovIal oto [12],
€Xxouv akpifela yopw ota 15 bits ye cuxvotnta onuatog péxpt IMHC.

2TOUG UETOTPOTIEIG LTIEPEIYUOTOANYING, TO TTARBOC Twv PPdxwv avddpacng opilel To Pabuo
Tou petatpoTiéa. ‘ETol yia mpwiou BaBPov PETATPOTIEN CUVAVTANE Eva Bpoxo avadpaong, yia
0elTEPOL PaBuol dUO, KOl AVTIOTOIXO Yyl PeyOAUTEPO Pabud. BéERaia n didtagn tou KABE
Bpdxou, KABWC Kal To KEPOOC TOU KABOPI{ouV TO TEAIKO OTIOTEAEGHO.

Eival eDKoAa Katavonto OTl N LTIEPDEIYPATOANYIO UTIOPEL VO EQOPUOCTEI GE OXETIKA apyd
ONUOTA, OTIWE TA OKOUOTIKA, KABWE yia TTapadelypa éva onua ouxvotntag 100 MHz pe Adyo
vTtepdelypatoAnyiag 128 Ba ataitovoe 12.8 GHz cuxvotnta delypoToAnYiag mou €ival oAU

OUOKOAO VO €TUTEVXOEI.



O KBavToTAC OtV TIO Al TOU PopP@R MTIOPEL va €ival évag ouykpIthig Pe dV0 OTAB-
peg €€000L. MTIOPOUNE EVOAANAKTIKG VO XPNOIUOTIOI)OOUME €va UETATPOTIEN HE TIEPIOCOTEPEC
OTaOuEC €€000L. ZuXVA aUTOC 0 PETaTPOTIEAC gival evag Nyquist petatportéag Aiywv bits mou
XPNOIUOTIOIEITAI 08 GUVOETHOAOYIO LTIEPDEIYUOTOANWIOC TIPOKEIUEVOL va BEATIWOEI N avaiuan
TOUL.

'ETO1 yla Tapadelyda edv €X0oUpe €va arjua €1l00d0ou 0.25V Kal Tpo@odoTollE €vay PETO-
TPOTIED TIOU XPNOoloTTolEl évav KPBavtioTr pe emimeda 0 Kat 1 ge povo Bpoxo avadpaong, TOTe
Ba avapévoupe otnv €€080 TOL KPAVTIOTH va £xoupe £€000 TNC poperig 100010001000
KOK. H peon tipn mg €€6d0u TopatnPoUpe OTI HETA amd IKAVO TIARB0C dElyUATWY TIPOCEyYilel
NV TN NG €10030U.

Idlaitepn onuocia Ba Tpémel va d0Bsi otov BOpUPO KPBAVTOTIOINONG TIOU TIOPOMEVEL KO-
VIA 0Tn OoUXVOTNTO TOU OAUOTOC. H PoVIEAOTIOINGN TOU W¢ TUXAIo onua, Pag OiVEl KATIOIEG
TIPOOEYYIOTIKEG EKTIUNOEIG VIO TO PEYEBOC TOU, KOBWC KOl T CUOXETION TOU HE TO AOYW
LTIEPOEIYUOTOANYIAC KOl TNV OPXITEKTOVIKI] TOU UETOTPOTIEN. MEAETEC TIOU £XOULV Yivel Oei-
XVOuVv OTI 0 B8puPog uTo TIPOUTIOBETEIC EEAPTATAN OTIO TO PETPO TNG €10000L KAl OTOV AUTH
gival akepala UTIOdINIPECT TOL €UPOUC TOU KPBAVTIOTH TOTE 0 BOPUPBOC EXEl WIKPN 10XV, VW
OTOv Eival TOAD KOVTIA 0g aKEPAIO LTIODINIPEDN E€XEl ONUAVTIKG PEYOAUTEPN. TO TOAPOTIAV®W
IoXVEl yla opyd PETABOAAOPEVA orpata, dnA., OTav n ouxvotnta OclypatoAnyiag &emepvdel
KOTA TIOAU T oLXVOTNTO TOL OTPATOC.

Ma v petatpom m¢ Ynelokng €000V TOU KPOVTIOT] 0 OVOAOYIKA HOP®r XPENOIUo-
TIo0I00VTal BOBUTIEPATA QPIATPO KOATAAANAOL E€UPOUE, £TCL WOTE VO OTIOKOTITOUV TIG OTIOTOMEG
METOBOAEG NG €€600L TOL KBAVTIOTH KAl va dlatnpouv TN XPionun TIANPOQOPIa TIOU EUTIEPIEXE-
TOl G€ AUTN. ZUXVA XPNOIUOTIOIEITal Kal £va eVOIANETO OTASIO TIOU OUOdOTIOIE Ot AEEEIG Eva
TIARB0¢ amd bits, peiwvovtag €Tol TN cuxvoTNTa TG €€0600V. ME AUTO TOV TPOTIO XAANPWVO-
VTOI Ol ATIAITNOEIG IO T oXediaon Tou PBabuTiepatol @IATPOU TIOU AKOAOULBEl, Kol EMITPOCOETa
UTIO TIPOUTIOBEOEIC UTTOPOUUE va TIETUXOUME MIA MIKPN Meiwon tou BopuBou Tou UTIAPXEl o€
OUXVOTNTEG KOVTIVEC PE QUTH TOU Onuatoq. Idiaitepn mpocoxn Ba mpémel va d00ei oe autd To
oT1adl10, KaBWE av 0gv AAPBOUUE UTIOYN OPICHEVEG TTAPAUETPOUE, 0 BOpuLPOC evicxLETaL.

Id1aitepn onuoaoia emumAéov TpEmeEl va d0Bel kal otnv avaiuon euotabeiag. Na onueiw-

OO0UPE OTI EPOCOV 0 BPOXOC EUTIEPIEXEL PN YPOUMIKO OTOIXEIO (KBAVTIOTAC), TO cUOTNUO Ogv



MTTIOPEL VO PHOVTEAOTIOINBEI WG YPOAUMIKO, KOl €V PTIOPOLV VO XPNOIMOTIoMBoLV yvwaTtd KPITh-
plO €VOTABEIOG. AUTO TIOU POG EVOIA@EPEL Eival, PEXPL TIOIO TIPN PTIOPEI va @TACEI TO PETPO
NG €100d0V o€ OX€on ME TO €UPOC TOU KPBaVTIOTH, €101 WOTE va a0@aAileTal OTI Ol £0W-
TEPIKEG KOTOOTACEIC TOU METOTPOTIEN Ba TTOpOpEiVOUY 0 Oplopévo €0pog TIPwv. ‘Otav o
METOTPOTIENG PTAVEI 0€ OOTABEIN, Ol KOTAOTAOEIC TOU 0dnyouvIdl OTO ATEIPO KAl N ££000¢
TOu KBavTIoTA PEVEl aTabepn €iTte otV HEYIOTN €ite oTnv EAAXIOTH NG TIPR. Na onuEwoou-
pE OTI Ogv LTIAPXOLV EEKABOPO OPIO YIa TO TIOU LTIEPPaivETal N evoTaBela, KOBWE KOVIA oTa
0Opla EVOTAOEINC-OCTABEING LTIAPXOUV KATIOIEG TIMEC VIO TIC OTIOIEC N EVCTABEID EP@AVICETAL
OPICUEVEC QOPEC Kal PETA amd 20.000 TePIGAOLC TIPOCOUOIWONG, YO TOV HETOTPOTIEN TPITOU
Babuol pe kPBavtiot 15 emmEdwv Tou Xpnolgoroinenke. Na onueiwooupe OTI Ol TIPOCO-
MOIWOEIG Of TETOIO KAIPJOKO €ival €TNPETEIC 08 OPIBUNTIKA OEAAUOTO TIOU €I0GyOVTal AOYw
NG apIBUNTIKAG TIETIEPOCUEVNG OKPIBEIOG TNG UTTOAOYIOTIKNG povadag. ‘Etol gival avaykaio
VO €l0GyoUUE €TUTIPOCOETO BOPULPO, TIOU UTIAPXEl KAl GTNV TIPAYHOTIKOTNTA OTO NAEKTPOVIKA

KUKAWMOTO TIPOKEIUEVOL va EETIEPATTEL OUTH N dUCKOAIQ.
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INntroduction

In digital photography, the light’s intensity level is stored in small sensors, referred as pixels.
For a more “close to reality” conversion, apart from the total number of these pixels, we
are also interested for the bit-accuracy that each pixel can store. Latest digital cameras
maximum resolution is 22 bits, achieved by oversampling analog to digital converters [16].

Today, one could say that digital processing has become the cheapest and most efficient
way to process all types of signals. Since most signals are analog in nature, we require an
analog to digital stage, in order to convert these signals in digital form. So, if we have a
.B-bit analog to digital converter (ADC), we can represent the theoretically infinite values
in analog range, to 2B values in digital form.

Several architectures of ADC have been developed, depending on the requirements of
each application. These requirements may concern the input signal characteristics like
amplitude and frequency. They may also concern accuracy in bits of the resulting digital
signal.

There are two main categories of ADC, with respect to the number of samples taken.
First, those that sample the analogue signal with at least twice the frequency of signal’s
highest frequency, i.e., at least two samples per period as extracted by Nyquist sampling
theorem. These ADC have a transfer function as shown in Fig. 1.4.

Each value of the analog input signal is quantized in one of the converter’s levels (2s in
number). For every added bit, hardware increases logarithmically. This is not a problem
by itself, but if we take into acount the element matching required for big cirquits, we can
understand the difficulty of these architectures.

The second category are converters sample at a frequency n times higher than Nyquist
rate. These are called oversampling modulators, and n is called the oversampling ratio

(OSR). These modulators use 2 OSR samples per period, and use this abundance of samples



in order to achieve higher accuracy, usually more than 20 bits. These modulators use
converters of a few bits in accuracy in feedback loops, and are studied in depth in this
thesis.

State-of-the art ADC can reach 20 Gs/s for ENOB = 6.5 bits [6], at the expense of power
consumption that reaches 10W. Other designs with less than 1W power cinsumption,
reach 1Gs/s for ENOB = 8.85bits [7], or 0.8Gs/s for ENOB = 9bits [5], or 1.35Gs/s for
ENOB = 7.7bits [9], or by imroving the last design 1.8 Gs/s for ENOB = 8.3bits [15].
On the other hand, in the area of high resolution ADC, we find architectures that have
ENOB = 20 or 22bits, at the expense of slow input data rate, e.g., 15Hz [11] or 12.5Hz
[10]. More balanced architectures, described in [12], can have ENOB around 15bits for
input frequency up to 1 MHz.

Concerning our work, in the first chapter, based on [13], we present the basic operation
of a simple oversampling modulator, including operational equations and basic accuracy
and noise approaches. In the second chapter we study in more detail the quantization
noise, first using general noise analysis and then taking into account system dynamics that
affect noise statistics. In the third chapter we examine a specific type of decimation filters,
called sinck along with their effect in baseband noise. Finally we study stability issues,
concerning sufficient conditions that keep the system stable.

Due to the lack of general theoretical results concerning some aspects of the operation of
oversampling ADC, our work is based on extensive simulation analysis, verifying whatever

studied and presented in this thesis.



Chapter 1

Oversampling

1.1 Basic Ildea

Oversampling ratio (OSR) is how many times above the Nyquist rate, we sample an
analog signal in order to achieve analog to digital conversion (ADC). This aims to achieve
higher resolution in bits, keeping circuit complexity low at the expense of higher sampling
rate. So oversampling is ideal for low-frequency signals, like audio ones, since a 100 MHz

signal with OSR = 64 would require 64 2100 MHz = 12.8 GHz sampling rate which is very

difficult to achieve.

1.2 Single stage delta-sigma modulator

Delta-Sigma modulators are the basic type of oversampling converters used today, and

they have the form of Fig. 1.1.

Figure 1.1: Single stage oversampling ADC



Input u(i) is a discrete time signal. The inner loop, consisting of the delay element
along with positive feedback, can be considered as an integrator in digital form, since it
adds the previously created state x(i — 1) to the new input. For further details concerning
continuous and discrete time conversions refer to [14]. Furthermore consider the quantizer
as a comparator deciding +1V ifits input (i.e., x(i)) is positive or zero and 0V if negative.

The functional equations describing the modulator in Fig. 1.1 are

y(i) = Q[x(1)] (1.2.1)
x{i) = x{i—1) +u() —y@i—-1) (1.2.2)

Note that since the quantization function Q[x{i)\ is inherently non-linear, behavior of the

circuit can’'t be predicted with standard state-space techniques.

1.3 Behavior of delta-sigma modulator for steady input

Assuming u(i) = 0.25V and x(I) =0, for i — 1 : 4, the functional equations give:
i) = QIx(M] = Q0] = 1,

x{2) = x() +u(2) - 3/(1) =0+0.25-1=-0.75

212) = Q[x(2)] = Q[-0.75] -0,

X(B) =x(2) +u@) -y(2) =-0.75+025-0=-0.5

2I3) = Q[x(3)] = Q[-0.5] =0,

X(4) =x(3) +u(4d) - 2/(3) =-0.5+025-0=-0.25

2/(4) = Q[x(4)] = Q[-0.25] =0,

xX(5) = x(4) +u(5) - 1/(4) =-025+025-0=0

The resulting output of the delta-sigma loop for four samples of the input is y(i) =
{1,0,0. 0}, having a mean value 1/4 = 0.25V, which perfectly matches the input. Note
that since x(5) = x(I) the above pattern will continue unchanged for future samples. In
Fig. 1.2 we have started to plot from sample 64 in order to avoid seeing transient effects at
the output of the filter. The filter is a first order low-pass following the quantizer output.
Note that the oscillation of the filter depends on its cuttof frequency. Since the input signal

is constant, the normalized cuttof frequency is expressed as 1/20SR (the bigger the OSR



signal amplitude (V)

Figure 1.2: Quantizer and filter output for u=0.25V

the narrower the filter). In Fig. 1.2 we used OSR = 64 and from oscillation’s amplitude
we have calculated the signal-to-noise ratio: SNR = 41.2 dB and resolution: 12.3 bits. For
different values of OSR, simulation results are shown in Table 1.1. It is clear that higher
OSR leads to better accuracy. Also note that using a single bit quantizer we have reached
acuracy of 18 bits.

If u(i) = 1.5V and x(l) = 0, from the functional equations we have:
y(@) = QIX(] = Qo] =1,
x(2) =x() +u@) -y{1) =0+15-1=05
2/(2) = Q[x{2)] - Q[0.5] =1,



--------- u: input
/A — y: quantizer output
X: inner state

0 2 4 6 8 10 12 14 16
samples

Figure 1.3: Quantizer and filter output for u=1.5VvV

X(B) =x(2) +u3) -y =05+15-1=1
y@3) = Q[x(3)] = Q[ll =1,
X(4) =x@3) +u@@d) -y@)=1+15-1=-1.5

As plotted in Fig. 1.3 we see that state x tends to infinity and output y is always 1. We
say that input u{i) = 1.5F is leading the modulator to instability. Stability for this simple
type of modulator is assured for any input in the range of 0 < u(i) < 1 since u(i) = 0 would

give all-zero and u(i) — 1 all-one output.



OSR SNR Dbits

4 17.8 5.9
16 29.2 9.7
64 41.2 136
256 53.2 177
512 593 197

Table 1.1: Simulation results for SNR in dB and resolution in bits for steady input

1.4 B-bit symmetric quantizer

Fig. 1.4 shows the transfer function of a B-bit symmetric quantizer with B =3. Straight
line y = x represents perfect matching of the input x to the output y, but since the quantizer
can only take seven values, quantization error e occurs, which is the difference between the
ideal output (y = x) and the the actual output of the quantizer. The difference between
output thresholds is called least-significant bit (LSB) size and in this case is A = 1. The
maximum level of the quantizer output is M — 2S 1 — 1 =3 and the minimum is —M

respectively. Note the quantization error is between —A/2 and A/2 when input stays within



the range —M — A/2 <x < M + A/2.

We introduced this type of of quantizer in order to show significant differences in low-
frequency noise shape after the filtering process. In Fig. 1.5 and Fig. 1.6 we see a full period
of a sinewave with 256 samples per period. OSR in both these cases is 32, and the signal
is considered to be 4 times slower than maximum input frequency. In Fig. 1.5 we used a
simple 1-Bit quantizer to sample a sinewave of 0.5 Vpp amplitude and a 0.5V dc offset in
order to stay within the stability margins. Using a first order low-pass filter with cuttof
frequency coresponding to OSR = 32, we obtain SNR = 20dB and 9.5 bits of accuracy. For
OSR = 64 we obtain SNR = 24dB and 10.8 bits. In Fig. 1.6 we used the 3-Bit quantizer
of Fig. 1.4 to sample a centered 5Vpp amplitude sinewave. Same as before, for OSR = 32,

SNR = 28 dB and 8.5 bits, while for OSR = 64, SNR = 29dB and 9.1 bits.

0 50 100 150 200 250
samples

Figure 1.5: Oversampling a sinwave with a 1-Bit quantizer



Figure 1.6: Oversampling a sinwave with a 3-Bit quantizer



Chapter 2

Noise

2.1 Basic considerations

As noted in the previous chapter, we are highly interested in the quantization noise that
lies within the passband of the low-pass filter. Its magnitude determines the signal to noise
ratio (SNR), or equivantly the accuracy in bits that we finally achieve. At first we will
study the baseband quantization noise for a specific type of modulator and later on we will

see that there are factors, that when taken into consideration, affect our basic assumptions.

2.2 Noise in first order modulator

For the 3-bit symetric quantizer shown in Fig. 1.4 of the previous chapter, we saw that
quantization error is between —A/2 and A/2 when input stays within the range —M—A/2 <
X < M+ A/2. Since x can take randomly any value, depending also on the feedback gain as
shown in [1], e can be considered as having zero mean and mean-square 02 — A/12. Using
this linear model shown in Fig. 2.1 for the quantizer, the first order modulator is described

in z-domain by following equation
Y(z) = X(z) + E(z) = z—'X{z) + U(2) - z~1Y(2) + E(2) g
= U(@2)-z-1[Y(2)-X(2)\ + E(z) = U{z) + (1-=-1)E(2)

Compared to the general form: Y(z) = STF(Z)U(z) + NTF(2)U(z), the signal transfer
function is STF = 1 and the noise transfer function if NTF = 1 — z_1, which is a high-pass
response having \NTF\2 = (21t/)2 for z = and /7 -C L

For the linear model of quantizer, the spectral density of e is Se(f) = 202 = 2/3 for

10



11

A = 2. If the cut-off frequency of the low pass filter is fc = 1/(2 1 OSR), the in-band noise

power is
<«m*>

Consider a sinewave input with peak amplitude M. Since STF = 1, its power is o\ =
M272, therefore
9M2(OSR)3

SNR = -£ = 2.2.3
212 ( )

Note that the accuracy can be expressed as the effective houmber of bits (ENOB). The
relationship between SNR and ENOB for sinewave excitation is SNR = 6.02ENOB + 1.76
[13, sec. 1.1]. So, for doubling the OSR, SNR is increased by 9dB and ENOB by 1.5bits.

2.3 Noise in second order modulator

Figure 2.2: Second order modulator linear model

For the second order modulator shown in Fig. 2.2, the output equation is: Y(z) —
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z~1U(z) + (1 — z~1)2E(2). It is clear that there is a one sample delay from the input u to
the output y since there is a delay element on the straight-forward path. Note also that
since NTF = (1 — z-1)2 has two zeros at dc (instead of one in the first order modulator),
we expect increased attenuation of quantization noise at low frequencies. Same as before

INTF|2 = (2tt/)4 for F<«ClI, and

erc ot-4
- = ijRSsS)* P-3'1*
For a sinewave input with peak amplitude M
SNR/\/\=15M2(F°SR)5 (2.3.2)
o2 4712

The ENOB can be found as in the first order modulator case. Note that in the second
order case, for doubling the OSR, SNR is increased by 15dB and ENOB by 2.5bits. In
general, the higher the order of the modultor the greater the increase in SNR with OSR.
We should keep in mind that when adding feedback loops, bigger stability constraints arise

for input signal and quantizer structure.

2.4 Experimental results

For the two modulators described in previous section, Fig. 2.6 shows experimental results
concerning quantization noise. Since the first order modulator has NTF with a single zero
at dc and the second order has NTF with a double zero at dc, we except their diagram
to have 20 dB/dec inclination and 40 dB/dec respectively. On the right diagrams we have
modeled the quantizer as a source of zero-mean noise with cr2 = A/12 where A = 2. Note
that for the simulation we have used a sinewave of the form u = 0.9 sin(Tp27rf/T), having
Tp = 100 periods of simulation, and T = 2(2 + 3/17) - Tp 1 OSR total number of samples,
with OSR = 128. Notice that we used a bit more than 41 OSR samples per period, because
this would result in misleading results on the FFT analysis. On the left diagrams we didn’t
use any model for the quantization noise and just simulated the circuit with a single-bit
quantizer using the sign operation. This is why A = 2.

It is obvious that there is some harmonic distortion higher than the noise level. This
shows that quantization noise isn't totaly random as previously considered. The above anal-
ysis though, shows how the relation between OSR and o2 changes for different modulator

architectures.
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power (dB)

normalized frequency for second order modulator

Figure 2.3: simulation results

2.5 Quantization noise for slow-changing signals

As proved in [4], for steady input, the quantization noise is highly correlated with the
amplitude of the input signal. The same result also holds when the sampling rate of the
oversampling modulator far exceeds the frequency of the input signal. Additional noise
analysis can be found in [2].

Consider the modulator shown in Fig. 2.4 ignoring the clocking of impulse generator.
Since u is a steady input of magnitude u, the output x of the analog integrator would be

a ramp, as shown in Fig. 2.5. Whenever signal x becomes positive, the impulse generator



Clock
Input 4, Analog Impulse Output
Integrator x Generator y
+impulses

Figure 2.4: First order integrating modulator
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creates an impulse y of magnitude A, which is subtracted from input u. Increasing the

input u, leads to steeper output x of the integrator and thus impulses occur more often.

Impulse frequency is x/A.

If we include clocking of period r, as in Fig. 2.6, an impulse is generated only when

the clock is present. If u is exactly A/t, an impulse occurs in each clock instance.

If it

is slightly more, an impulse would still occur in each clock, but in each period we have a

positive remainder summing up to infinity. Note that impulses still occurs at an average rate

of x/A. The same average rate, can be generated by sampling a sequence of rectangular

pulses R of frequency x/A and duration r as shown in Fig. 2.7. This is also proved by
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Figure 2.6: modulator in discrete time

simulation results.

We use this equivalence (that is proved later on also by simulation results), in order to
derive an easier way to describe modulation noise with mathematical equations.

The output y can be expressed as the product of C(t) and R(i) from Fig. 2.7. Ignoring

constant delays, y can be expressed as

Vo) = cam) - 2 12> -p(")

|
(2.5.1)
Z Z smi{r;lu)_ exp(27rj|-9--T_-|:-|-(1)'

The result in Eq. 2.5.1 represents the output signal as a set of spectral lines of frequency
/ = (lu + k)/r and since we are interested in the band of frequency that is less or equal

than half the sampling rate, i.e., / < I/2r, y can be expressed as

y(u) =u+ " cos(2€WWt) (2.5.2)
1=1

where the first term is the useful output and the second is modulation noise. Note that
[u] represents the fractional roundoff of a real number u having nearest integer I(u). For

further details refer to [4].
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Let /o be the baseband, i.e., the cutoff frequency of a low-pass filter following the
modulator. For the noise component of y in Eq. 2.5.1 of frequency / = [lu]/r to lie in the

baseband /o, it is required that
INI < /0r (2.5.3)

and the component’s associated power is
Pi(lu) = 23'”@5/';'2\') (2.5.4)
Note that | is an integer and the larger its value, the smaller the power component given
by Eg. 2.5.4. Since the input range is 0 < u < 1, we want to find those integers | for which,
for a given value of the input, inequality 2.5.3 is satisfied. Suppose /or is 0.1 and u is 0.5.
Inequality 2.5.3 is satisfied for even values of | for which [lu] = 0 resulting in zero noise
components. If u is slightly bigger or smaller than 0.5 then non zero noise components are
present for even values of |, that have to be summed up in order to find the noise power for
the specific input amplitude.
In Fig. 2.8 we have plotted noise power in dB according to equations 2.5.4 and 2.5.4 for

the whole input range, for a baseband /o = 3.5 KHz and for sampling rates of 64, 256 and
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512 KHz. For each case r is the inverse of the sampling rate, resulting in smaller /or, which

is the bound of inequality Eq. 2.5.3.

[ R ] | AL diimnei mi mi. i dhidiidi I mi un mu mu in » i i i mi i Imiiiini 0 him f N e
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
u(V) at 256 OSR

u(V) at 512 OSR

Figure 2.8: Results from theoretical Eq. 2.5.4 for OSR = 64, 256 and 512

Observations concerning the correlation between baseband noise and input amplitude
reveal that noise power is close to zero in integer divisions of the input signal and has peak
values in the vicinity of these divisions. As /or becomes smaller, i.e., the sampling rate
increases, these vicinities become narrower and peak values larger.

Next we run a simulation on the first order modulator using the sign quantizer for a
full scale sinewave and OSR = 256. In Fig. 2.9 by comparing the two plots, we verify our

assumptions.



power (dB)

power (dB)

theoretical results

Figure 2.9: Comparison of theoretical and simulation results
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Chapter 3

Decimation

3.1 Introduction

Decimation is the the trading of word length for word rate. Suppose we have a four bit
quantizer sampling a signal of 1 MHz with oversampling ratio 512. The resulting signal is
a four bit word length having 512 MHz word rate. This signal is quite difficult for further
processing because of its high word rate. The most simple type of decimation is to take the
mean value of every 64 samples and use these values instead of the original samples. This
would reduce the the word rate to 8 MHz, but we need also to increase the word length
in order to conserve resolution. So we use decimation, that can be implemented easily in
digital ways, to downsample the oversampled data to about four times the Nyquist rate,
and then we use a more simple low-pass filter (than the one needed without the decimation
stage) for further processing. The sinck filters consist the basic type of decimation filters.
First we will study the structure and transfer function of sinkk filters and right afterwards

their effect in baseband noise.

3.2 sinck filters

For k = 1 we have the most simple sinkk filter. It consists of N — 1 delays and computes
the running average of the input data stream y(n) which is the output of the quantizer for

our case. The output w(n) of the sine filter can be expressed as

w(n) = i3:2:1)
i=0

19
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having impulse response

hicn) 1TV, ifO<n<lV —1 (3.22)
i(n < 2.
0, otherwise

and z-domain transfer function

11—-2z~N

Hi(D) N1 oo (3.2.3)

Its basic advantage is that it can be realized easily when used after a single-bit quantizer
by just using discrete counters and registers. Fig. 3.1 shows an implementation of a sine
filter. The upper counter is incremented for each +1 from the quantizer and the lower
counter, every N clock cycles, resets the upper and sends its value to the register. Thus,
the output w(n) of the register is N times slower than y(n) and each of its value is an
accounting of +1 produced by the quantizer during N sampling instances.

Quantizer counter register

Figure 3.1: sine filter implementation

For k — 2, sine? is obtained by convolving the rectangular sine filter by itself. The
resulting triangular shape can be seen in Fig. 3.2. The z-domain transfer function is the

one of the sine filter squared

H-™S = <-WT=I")2 <3'2'4)

Note that for N = 16, the sine filter uses samples from y(1) to y(16) in order to form
to(), y(17) to y(32) for tu(2) and so forth. On the other hand, in the sine? filter, for the
same N = 16, each sample is used twice since u>(l) needs samples y(l) to y(32), w(2) needs

samples y(17) to y(48), w(3) needs samples y(33) to y(64), etc.
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sample number

sample number

Figure 3.2: sine and sine? filters with N=16

For the higher order sinck filters, we need k successive convolutions of the sine filter,

and their z-domain transfer function is
Ht(z) = P.2.5)

3.3 Effect of sinck filters on quantization noise

We need to judge on the effectiveness of a sinck filter, in comparison with a low-pass filter,
on a Zth-order modulator. It follows from the noise analysis of the first and second order

modulator, than for an Zth-order modulator of the same architecture NTF = (1 — z-1)! and
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the noise at the output of the sinck filter would be

Qu(z) = ifit(2)NTF,(2)E(z) = ~"KI\NZI Tk (1 - ™I E(2) (3.3.1)

For k =1, Eq. 3.3.1 gives
Qi,i(z) = ~~—"DIE(2) (3.3.2)

For k =1+ 1, Eq. 3.3.1 gives
l1—z-N i 11—2z~N
QltuWwW = (—jy—) Jv TV r £2 (3.3.3)
Notice that Eq. 3.3.3 differs from Eqg. 3.3.2 in a factor equal to the transfer function of
a sine filter. So in Qi+ij the noise component is averaged for every N samples. This is
why the RMS value of Qi+ij is y/N times smaller than the RMS of Qij. These result are

further analyzed in [3].

3.4 Experimental results

We used the same sinewave and modulators as in noise analysis, followed alternatively by
either a sine or a sinez? filter with IV = 17. Fig. 3.3(a) shows the power spectral density of
the output y of a first order modulator, while (b) and (c) shows the results of a sine filter
and sine? respectively. In Fig. 3.4 we used the same filters at the output y of the second
order modulator.

We should keep in mind that the basic role of this filter is not noise shaping, but to
reduce the word rate. Since N = 17 we see that the filtered output is 17 times slower.
For the second order modulator we see that for the sine filter there is significantly more
baseband noise. So as a rule of thumb, the order of the sinck filter should be at least the

same with the modulator’s order.
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Figure 3.3: (a) first order modulator output, (b) effect of sine filter , (c) effect sine2 filter
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Figure 3.4: (a) first order modulator output, (b) effect of sine filter , (c) effect sine2 filter



Chapter 4

Stability of oversampling
converters

4.1 Theoretical analysis

As studied in [8] there exist sufficient conditions for which an oversampling converter of
specific architecture remains stable. It can be proved that an jV-th order modulator with
NTF = (1 — z~I)N, will remain stable if the quantizer has B > N + 1 bits and the input u
is bound to half the quantizer no-overload input range.

The maximum input at quantizer is found to be limited by
IMloo < WSTF\h - IMloo + \NTFW, - llelloo - IMU (4.1.1)

where STF is the signal transfer function, NTF is the noise transfer function, u the input

signal and e the quantization error. Since quantizer input should not exceed the non-

overload input range |A|, it is
\R\ < lISTFUa 1 IMU + \\NTF\U - ||B|loo - ||B|loo (4.1.2)

For the B-bit symmetric rounding quantizer we studied earlier, \R\ = (23_1 — 1/2) and

assuming that the input stays within the no-overload input range, the error is bound by

llelloo = A/2.
For the modulator architecture of N stages using N — 1 delay-free integrators and one

delaying just before the quantizer, the input-output relation is found to be
Y{z) = z-xU(z) + (1 - z~-I)NE(2) (4.1.3)

25
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where
STF(z) = z-1 -» HSTFIU =1 (4.1.9)

NTF(z) = (1 - z-T -> [[NTF[|y = 2N (4.1.5)

Assuming the input signal u occupyes half the quantizer range, i.e., ||u]j]oo = 2s-2,

inequality 4.1.2 gives
2B~ -1 >112b 2 +2Nn-"-"B=N +1 (4.1.6)

We should note that the above condition for stability is sufficient but not necessary.
After simulations on specific theoretical model, we check for how much can we exceed these
boundaries and remain stable. Simulations near these boundaries may also give some insight

concerning why, how and when an oversampling loop becomes unstable.

4.2 Simulation results

The above condition is verified by simulating a general 1V-th order modulator with a B-bit
symmetric rounding quantizer for several values of B > N + 1 keeping \Vi\\x = 2B~2.

Later on, we focused on a specific modulator, and tried several input signals. The
modulator is a third order modulator, having two delay-free integrators and one delaying.
The quantizer is a four bit symmetric rounding quantizer in order to satisfy the above
condition. It has the form of Fig. 1.4 shown in an earlier chapter, with maximum level
M = 2@3~1 — 1 = 7 and minimum level —M, spaced with A = 1. Starting with an input
signal of magnitude A = 2s-2 = 4 (or 8 peak to peak), we progressively increased this value
and notice when the system becomes unstable.

At first, for OSR = 128, we used a sinewave with relative frequency fn = 0.5 meaning
that it is two times slower than the maximum signal frequency. So this signal has exactly
512 samples per period. For A < 5.46 the system remained stable during 500 periods
of simulation. For A = 5.47 it became unstable at the 295th period and for A = 5.5 it
remained stable again. This fact is intuitively unjustifiable.

Firstly, we increased the time of simulation and noticed that for the same sinewave,
instability starts around A — 5.2 after about 20.000 periods of simulation and still has
stability regions mixed with instability ones around this region. The same happens with

triangular and square signals, for any OSR.
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Since in practice the input signal can’t be perfectly synchronized with the sampling rate,
and in order to avoid sampling at exactly the same point of the input signal in each period,
we slightly changed the relative frequency of the signal fn, so as not to have integer number
of samples per period. Additionally, since any arithmetic inaccuracy is of the order of 1~10
or less, we add on the main stability loop some noise of magnitude 1-6.

By using these adjustments, stability margins became more clear. There are no stability
regions inside instability ones. Between the stability and the instability region, there is a
zone of uncertainty leading sometimes to instability after 1.000 periods at the worst case.
However, we still cannot derive any specific relationship connecting stability with signal
magnitude A, relative frequency fn and OSR. For OSR = 128 and fn = 0.497 simulation
results are summarized in table 4.2. The stability column has the maximum value of A,
below of which the modulator remains stable. The instability column respectively, has the
minimum value of A above which the modulator is unstable. Between these values there is

this zone of uncertainty.

signal type stability instability

sinewave 5.20 5.60
triangular 5.26 5.80
rectangular 4.90 5.22

Table 4.1: Simulation results for stability and instability regions

In the diagrams shown in Fig. 4.1, we have plotted the maximum magnitude of the inner
states (of the three inner states since we have a third order modulator). Notice that that
the inner states are mainly influenced by the input and they are all positive since we have

plotted absolute values.
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Figure 4.1: Maximum state for stable and unstable operation
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Chapter 5

Conclusions

An oversampling modulator is a non-linear system, because of the quantization process
taking place inside the loop. To some extend basic characteristics of low order modulators
can be modeled and predicted with enough accuracy, using standard linear state space tech-
nigues. Such characteristics is the relationship between SNR and OSR as shown in the first
chapter, or the relationship between the input amplitude and noise power for slow changing
signals as studied in the second chapter. Parameters of decimation, as an intermediate state
between the modulator output and low-pass filter can be roughly estimated, as seen in the
third chapter.

In practice we want to push our design to maximum achievable specifications, by proba-
bly using a higher order modulator. However, it is almost impossible to predict theoretically
its behavior in advance, using existing mathematical tools. This difficulty has been encoun-
tered in the fourth chapter when we tried to estimate with accuracy the stability margins of
a third order modulator. There are regions that the modulator will remain stable for most
cases, but for those that it does not, we can not specify the exact dynamics of the system
that drive it to instability.

Since there is a great need for designing such converters, maybe this can lead to es-
tablishing a non-linear theory describing their dynamics. Through this work we show the
weakness of existing mathematics to describe non-linear systems and also the power of these

systems to provide very useful results.
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