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MNEPIAHWH

H katavaAwon evépyelag Kal 1 armodoTnkotnta mpocBacng ival 800 Baaikoi
OTOXOl KOl OVIOYWVICTIKOI atnv acUpuatn eKTouT) dedopévwy. Ma va
QVTIUETWTIICTEI TO EVEPYEIOKO TIPOPBANUO GtV akoAouBlakr avalitnon padi
pe T dedopeva €xouv Tipootedei Ocikteg ( index ). Ztnv epyacia auth
TIPOTEIVOUUE €va TIOPOUETPOTIOCNUO OAYOPIBUO EKTTOUTIAG OEDOUEVWVY TOV
Interpolation Index. O aAyopiBuoCg €xEl dLVATOTNTO VO PBEATIOTOTIONCEL TO
XPOvo avadnTnong KPoTwvTag otabepd Tov Xpovo guvtoviauol (tuning time )

Kal avTioTpoQa.



1.EIZATQIMNH

H paydaia avamtuén tng acOpPoTng TEXVoAoyiag padi pe TNV avAaTItuén twv
€ELUTIVWV  KIVNTWV OULCOKELWV 00Nynoav oTnv €EATIAWGON TwWV  UTINPECIWV
TIANPO@OPIWV , Ol OTIOIEC TTaPEXOLV TIPOCPaCn O TIANPOPOPIEC CE PEYAAO
TANB0¢ TeAatwy, Taviol Kal KABE wpa PeCw Onueiwv mpocBacng Kal
aoUPUOTWY KAVOAWV. ETITPOcBeTa n HeyAAn TPO0d0C OTNV KOTAGKEUL] TIOAD
MIKPWV  KUKAWHATWY  KOBWC KOl  KUKAWUATWY  MIKPNG  KatavAaAwaong,
oULVOIO(OUEVO  IE IOXUPEC HTIOTOPIEC HIKPOU PEYEBOUC EXOUV KAVEL TNV
KOTAOKELH ACUPUOTWY AIGBNTAPWY TIPAYUOATIKOTNTA.

O xpoOvocg TIPOCTIEAACNC €ival €vag KOIVOC OTOX0C O€ TIOAG CLCTHAUOTA OTIWC
Bagoelg dedoPEVWY, OAANA N KATAVAAWGOT €VEPYEIAC ival Evag (WTIKOC OTOXO0C
ota acvppata diktua. AuTO cudfaivel dIOTI Ol KIVNTOi TIEAATEC €XOULV
TIEPIOPIOUEVA OTIOBEPATA EVEPYEIOC. O KOADTEPN KATOVAAWGT EVEPYEIOG Ol
Kivntoi TteAdteg uttootnpidouv dU0 KATOOTACEIC AEITOLPYIOG , TNV &veEPYN
KataoTaon Kal Tnv  Kotdotoon UTvou  OTou  €XOUPE TNV MIKPOTEPN
Katavadwan evépyela¢. H avaloyia koatavddwong avdaueca ot dvo
KOTAOTACEIC €ival TepaoTia. MNa mopddelypya évag KOPPBog aiobntrpag o€
KataoTaaon UTIVOU KATAavaAWVEL 7-20 QopEC AlyOTEPN EVEPYEILQ.

Onw¢ @aivetal 0 xpovog avalAtnong Kal 0 XpOvo¢ CUVTOVIOUOU Egival 600
OpOI TEAEIWCG aVTAYWVICTIKOI. O KIVNTOC TIEAGTNG YIO VO TIAPEL A TIANPOo@opia
TIOU BEAEI TIPETIEL VA OKOUEL GUVEXWC OTO KOVAAI O¢ KOTAaTaon evepyn. 'ETol
avaykaletal va dlaBAacel TIANPoPopieg TTIou dev TOV eVOIOPEPOLY PEXPL VO PBpEi
TNV TTANPO@OPIa TIOU BEAEl CTIOTOAWVTIAC TNV €VEPyeld Tou. H A0aon eival va
OULVOIACOLKPE TOV XPOVo avalntnong Kol Tov XpOvog CULVTOVIGHOU yia va
€XOUME TO KOAUTEPO aTTOTEAECHA. Ol TIEAATEG TIPETTEL VO UTTOPOUV VA UTIOUV O€
KataoTaon UTIVOU KOl VO GUYXPOVIOTOUV Eavd e Tov €EUTINPETN OTaV Eival va
TIAPOUV TNV TTIANPO@OPIa TIOU TOUC eVIIO@EPEL. Mo va yivel autd TIPETEL va
UTTAPXEl O KABE EKTIEUTIOPEV TIANPOPOPIa Eva EVPETNPI0. O KIVNTOC TIEAATNC
a@oU ouyxpovioTei e TO €Euttnpetn Kol OlaBAdEl TO EUPETNPIO NG
TIANPO@OPIOG TIOU EKTTEUTIETAl EKEIVI TNV PO KOl MTIAIVEL € KOTAGTOOT

OTIVOU PEXPL TNV CTIYUN TIoL Ba €pBel N TIANPO@OpPIa IOV BEAEL.



2.NMPOKATAPTIKA

2.1 Baolkn 10¢a

‘Exovpe €va yevikd cUOOTNUO EKTIOUTING O£OOUEVWV, OTIOU O EEUTINPETNG
KUKAIKG EKTTEUTIEL MIO GUAAOYN aTO TAEIVOUNUEVEC TIANPOQOPIEC Ot Eva
aoUPUATO KOVAAL Ol KIivnToi TIEAATEC CLVTOVI(OVTAl PE TO KAVAAI EKTIOUTING
Kal &ekivave tnv dladikaaoia avalntnong tng TAnpogopiag mou 8éAouvve. O
€EUTINPEING Yo va Pondroel tnv dladikacia avalntnong TPOoCcHETEl aTa
EKTTEUTIOUEVA AVTIKEIUEVO EVPETNPIO ONUIOLPYWVTAC €va KUKAO EKTTOUTINC.
KaBe ekTouTtr] €ival opyavwuevn ¢ M okoAouBia amd idlov peyéboug
avtikeipeva ( buckets ) mou gival n HIKPOTEPN POVADA TIANPOPOPIOC TIOU EXEL
TIPOCBaaon 0 KIVNTOC TEAATNC. KABE aVTIKEIPEVO Eival KATNYOPIOTIOINUEVO EiTE
O€ OVTIKEIJEVO OEDQOPEVWV EITE OF QVTIKEIMEVO €LPETNPIOV. MEPIKEC QOPEC
€VO OVTIKEIPEVO €LPETNPIOL UTIOPED va TTIEPIEXEL Kal OEAOUEVA KOl OVOUAZETAl
UBPISIKO.

AvAloya PE TNV OUXVOTNTO EKTTIOUTING OEOOPEVWV N EKTIOUTI) MTIOPE va
opyavwoei ae eTMedN , 0TV KABE AVTIKEIUEVO EKTIEUTIETAN JOVO IO QOPJ, Kal
oe skewed, av KABE AVTIKEIUEVO EKTIEUTIETAI TIEPICCOTEPO ATIO MIA QOPEG . H
ETIIAOYI QVAPECO OTA OUO €EOPTATAI ATIO TO €AV €ival yVwoTd 1) 01 Ta PoTiRo
TIPOCTIEAOCNC TOL XPNoTn. Ol EKTTOUTIEC PTIOPED VO OPICHEVEG w( clustered
non clustered. Mia ektouTtr) ovouddetal clustered Otav OAQ TO AVTIKEIMEVO E
Vv idla TN 1810TNTag eg@avidovtal dladoxIKA, aAAIwg dev €ival clustered.
Apa n clustered ekmoumn OXeTieTal MPE TNV ETTEDN €EKTIOUTI) OTAV TO
XOPAKTNPIOTIKO €ival TIpwTévov. ATIO TNV AAAN ta non-clustered oxetidovtal

€iTE YE TNV ETTTIEDN EKTIOUTIN €iTE PE TNV skewed eKTIOUTIN.



2.2 ZuvaQeic epyaaieg

H aoUppatn eKTTouTI OEQ0PEVWV EXEL AAPBEL TIOAD €VAIO@EPOV TA TEAELTAIA
xpovia. To (1 , m )-indexing TTOPOLCIACTNKE WC PIA PEBOSOC KATAUEPICHOU
ELPETNPIOV CUPPWVO E TNV OTIOIO N TIANPOPOPIA EVPETNPIOV EKTIEUTIETAL M
QOPEC KATA TNV SIAPKEL KABE EKTIOUTIAC. TO BACIKO TIPOPRANUA e tov (1 , m
)-indexing €ival n avamapaywyry OAOKANPEOU TOU ELPETNPIOVL M @EOPEC UE
OTTOTEAECHO VA PEYAAWVEL TIOAD TOV KUOKAO EKTIOUTINC KOI KOTA GUVETTEID TOV
MECO XpOvo avalntnang. ‘Evag aAAog aiyopiBuog sival o distributed indexing.
O1 TAnpo@pieg eival opyavwuéveg e Eva B+ dévdpo. ETiong LTtApXEl Kal 0
flexible index o1OU OI TAEIVOUNUEVEG OKOAOLBIEC BEDOPEVWV DIALIOIPACHEVEC
Ot OPKETA idlou peyeBOLC TUNMATA.ZTO E&eKivnua KABe TuRuaTtog eival
TOTIOBETNUEVA €VA YEVIKO KOl €V TOTIIKO EUPETHPIO. TO YEVIKO EVPETHPIO OF
KABE TuMUA €XEL Eva AOYOPIOUIKO aplBuo amod m {euydpia ( KAEIDI, OeiKTNg )
TO OTIOIO XWpPI(oUV TA TO TUAMOTO G€ O€ ETUTTAEOV M+1 UTIO TUNUOTO KOl KOTA
OUVETIEIO EUTIEPIEXEL EVO ECWTEPIKO KATAAOYO. ETIEITa TIPOTABNKE OO TOUC
Seifert kot  Hung o flexible distributed indexing o omoio¢ xwpilel Vv
EKTIOUTI| O¢ iOOU peyEBOLC TUNMOTO, TETOIO WOTE va Unv EeTepacTei éva
d0GUEVO Oplo XPOVOU CUVTOVIOUOU GE GUVAIOGHO UE TIOAUTIAEEN €VOC TTUKVOUL

B+ d¢vdpou. Emeita mpotdbnke o Exponential index tov ormoio avaAOoupe

TIOPAKATW.
0 I 2 3 4 5 6 7 8 9 10 1 12 13 14 15
X
11 4
2-3 8
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815 2
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Z0P@WVA e TNV TIOPOTIAVW EIKOVA 1| 0 exponential index artoteAsital amod
LBPISIKA avTIKEipeVa Ta OTtoia €ival Tagivounuéva. KAabe avTIKEINEVO TIEPIEXEL
€va  euPETNPIO.TO €UPETAPIO  ATIOTEAEITAl  ATIO  AOYOPIOUIKO  TIARB0G
eypapwv.Kabe eypagn armoteAeital amo éva levydpl ( OeiKTNG , MEY.KAEIDI
).KaBe deiktng deixvel ae €va AVTIKEIUEVO KOl TO HEY.KAEIDI €ival TO PEYIOTO

KAEISi TOU TPAUATOC TIOU OVTITIPOCWTIEVEL TO KAEIDI.

. Max Key

Eikoéva 2

H doun Tou gupetnpiov @aivetal GtV €IKOVA 2 OTIOL I gival N AOyapIOUIK)
Baon.O Xelpotepog xpovog avaldnmnong eival logr(n) kat o Péocog XpOvog

avalntnong sivar  logr(n)



3.INTERPOLATION AIR INDEX

H péBodog Tou TIPOTEIVOUE OE QUTHV TNV £PYACIO EKHMETOAAEVETAL TNV 100
NG €QPAPHOYNC aVAdPOUIKOU TEPAXIOHOU TETPAYWVIKNG OTIOCTACNC PE TNV
OTIOIO KOTAW@EPVOUHE VA €XOUUE AOY-AOYOpPIBUIKO Xpovo. Mpwta £EeTAlOVE
NV 100 TTiow aTtd T0 AOY-AOYapPIBUIKO OXNua eQapUOlovTac To O€ Eva TTiVOKO
ME avTikeipeva.(Ta aVTIKEiHeEVO Ogv EKTTEUTIOVTAl OAAA PBpiokovtal otnv

MVHAUN TOU UTTOAOYIOTH ).

3.1 H 1déa miow amé 1o log-log oxAua

YToBEToupe OTI €XOLUE €va TrivoKa aplBuwy Tagivounuévwy Pe av&ouvaa
OEIPA Xi<X2<X3<.....<Xn. O1 aplBpoi £Xouv OpoIOUOoPEN KATAVOUN GTo 0poC (

Xo , XM+1) .Wdaxvoupue 10 oTOoIXEiO Y w¢ €ENC. ECTW

y-%0
Xn+1-J0

TO TI000CTO TOV KAEIBIWV TIOU TIEPIPMEVOUUE VA €ival UIKPOTEPA aTIO TO Y . TOTE
OUYKPIVOUPE TO Yy HE TO X(P*n) KOl OTNV TEPITITWON TIou dev €ival opola
WAXVoUPE avOadPOMUIKA GTO LTIOTTIVOKA X1,X2,....XfP*n] -1 ((y < X[P*n] ) ] OTOV
vTtortivaka X[p*n]+1 , X[P*n]+2,...,.xn (y> X[P*n] )-

O xpovog mpooTédaong eival log-log(n) otnv péon TeEPITTWON KAl YPOUIKO

aTnv XEIPOTEPN.



3.2 TMMepiypagn Tou Interpolation index
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Eikova 3

H ekmouT) otnv TIpOTOCON HOC OTIOTEAEITal OO 1 UPBPISIKA QVTIKENEVA
b),b2,....bn. O1 evowUATOUEVEG EYYPOPEC TOU EUPETNPIOL Ba 0dnyricouvv TNV
avadntnon, e€oPEIVOVTAC TOV interpolation search otnv agUPUATN EKTIOUTIN.
1. Mj, mi 8a cival n pé€ylotn Kal n eAAXIOTn €yypo@r Tou [-00TOU
OVTIKEIYEVOU.
2. Apa k@Be avTikeipevo avrkel 1o eupog [ ml . Mn];
3. mj kol Mn 8a gival emiong dilaBéaiya ae KABE AVTIKEIUEVO

4. FR(y)=Prob[Y <=y|Y €R].

Baoiopévol atnv amodnkKeuyévn TIANPOEOPIa , TO TIPWTOKOAAO €ival To €ENC .
‘Eotw 10 Kk €ival To aVTIKEIPEVO GTO OTIOI0 £XEI GUVTOVIOTEL 0 TIEAATNG, Y Eival

TO QVTIKEIUEVO TTOU PAXVEL, | TO ETTIESO TNC AVOSPOUNG KAl j N TIPORAETIONEVN



Béon Tmou vttoAoyiletal pe TNV F. OTav 10 Y AVIKEl OTO €0POG KAEIDIOU E€ite
ToU K €ite Tou k+1 i €ival idlo pe N PEyloTn TN Mt Tou evpeTnpiov TOTE dev
€XOUME VO KAVOUE TIOAG VO KAVOUME. ZTNV GUVEXEIO LTTOBETOUPE OTI Kaia
aTI0 OIUTECG TIG TIEPITITWOEIC OEV TLUUPAivVOLVY.

Katd v JIdpKeIa NG TPWING QOPAC TIoOL 0 TIEAATNC OULYXPOVI(eTal OTO
KOVAAL UTTAPXOULV TPEIG TIIBAVOTNTEG EKTOC OTIO TIC YEVIKEC TIEPITTTWOEIC.OTOV

TAUTOXPOVA TO j KAl TO Yy Ppiokovtal pmpootd amd 10 k ( €lkéva 3a) n

UTTOAOITIN EKTIOWUTIN €ival acrjuavTn. MNMapoAa auTd eEAeyXOUUE AV 4 = Cd,
an

Cd mopapeTpog BeAtiotoroinong.Eav 1ox0el 0 KIVNTOG TIEAATNC KOIUATOL JEXPL
va €pBOel TO avTIKEiyevo 1, KAl PETA KAVEL YPOAUUIKO PAEIUO YE 4n AAJaTa
XPNOIUOTIOIVTOC ETUTIEOOL 1 OEIKTN , MEXPL VA EVIOTIICEI TO OPIOTEPO OPIAKO
QVTIKEIYEVO TOL 4N - PEYEBOUC LTTOPOKEAOL TIOU TIEPIEXEL TO Y, OTO OTIOIO
eEMavoAauBavoyaote . XTIV YECN TIEPITTTIWON TO Yy EUTIEPIEXETOA
+T4n tyAPoTa and 10 j , KAl TO OVTIKEIYEVO | €ival OpKETO KOVIA OTO
j.MpooappolOpaoTe € AUTA TNV CLUVTNPNTIKN TIOAITIKN] YIO VA OTTOQUYOUE
Toavr] OeUTEPN ATIOTUXNMEVN EKTIOUTIN). ATIO TNV AAAN 0 TIEAATNG UETARAIVEL
0¢ KOTAOTOCN UTIVOU KOl PEXPl TO AVTIKEIUEVO [ - c&4n a@ixBei, ca gival
TapApeTpog BeAtiotoroinong. MAAl TIPOTIUAKE VO va KAVOUPE Aiyo Tticw aro
TO j QVIOAAACOVTOG MIa a0&Nan TOU XPOVOU CULVTOVICHOU &odelovTaC Aiyo
XPOvo avadntnong MEIWVOTag TNV Tilavotnta piag deUTEPNG EKTIOUTING . 2€
TIEPITITWON ETUTUXNMEVNG TIPOPRAEWNC EQPAPPOLOVUE TO TIAPATIOVE YPOUMIKO
WAgIJo  yia va OKAVAPOUWE TNV TIEPIOXN CE€ MIA LTIOPETAdOCT ToU 4. Av
OLMBEl Kal Oe0TEPN ATIOTUXNMEVN EKTIOUTI KAVOUPE YPOUPIKO WPAgIUo
EeKIVOVTAC OTIO TO AVTIKEiUEVO 1.

Z1tnv de0TEPN TIEPITITWAN, TO j TIPOoNyeital Tov kK Kaly €ival PJeTa To j Kal TIpIvV
10 y ( ekova 3B ).Edw petafaivoupe amd tnv KOTACTOCH UTIVOU OTNV
KOTAOTOGN AEITOLPYIOG Kal TO avAoTPO@Oo HE PeTOAABnon 4n TUNUATwWY
MEXPL VO BpoluE TO TO 4N TUAPA TIoU BEAOLE Kal KAVOUWE avadpoun. Otav
To y Tponyeital 1o k kaittoj Ppioketal etd 1o kK ( €IkOva 3y ) 0 KIVNTOG

TIEAQTNG XAVEL TN TPEXWV EKTIOUTIN). AUTN N KATAOTAGN Eival TTOpOUoIa PE TNV

10



TIEPITITWON TNG €IKOVOG 3 a Pe To K va avtikaBioTtd 1o j. Molo €1dIKa av —1=
V<«

<= Cd, 0 TIEAATNC KOIUATAl PEXPL TNV APIEN TOU AVTIKEIUEVOUL 1 yia va Yivel TO
YPOUUIKO PAEIMO .ANIWC 0 TIEAATNG TIAEl TIAAI O€ EVEPYO KATAOTACN OTAV TO
avTikeipevo k - 0AA[N a@ixBei .Av gival TUXepOG oTnV TIPORAEWN N YPOMUUIKI
avadntnon apxicel. AANIWG N EKTIOUTIH OV EXEL XPNOILMOTNTA, OTIOTE O TIEAATNC
KOIJATOI KAl KAVEl YPOUUIKO WAEIWO ammd To avrikeiyevo l.Mupvoviag otnv
YEVIKN TIepiTwon (1 >= 1) 0 KIvNTO¢ TIEAATNG 1on EEPEL OTI TO Yy PpiokeTal
ovdueca amd amd 10 avikeipevo k kot min (k + 2yfn ., n } , 10
interpolation eTioTpEPel éva eupeTplo j Tou avrkel oto { k , min ( k+ 2y/n
, N}, KAl TO PAKOG TwWV OAUATWVY KATA TNV JSIAPKEID TOU YPOUMIKOU
Pagipatog  eival  14n  .YTApxouv TPEI TIIBAVOTNTEG . ZTNV TIPWTN T0 Y
QAIVETAl VO AVNKEL JETA TN 6€omn Tou OeiKIn €TUTEDOL 1 TIX TO QVTIKEIPUEVO
k + 14n 6co 10 Bpioketal yetaéd oL Kk Kai tov k + yfn .MeT& KoluOpaoTe
MEXPl TO avTiKEiyevo k + 4n petadoBei kKal EEKIVIIOOUUE TO YPOUUIKO
Pa&ipo.Otav 10 10 y evrortidetal avapeoa avapeoa tov k Kot k + 4n
( €eIKOVa 3e ) AoxeTa TNG BEONG TOL j OEV £XOUME VA KAVOUPE TITTOTA.TO 4N

UTIO TMAPO OTO OTIOIO TIPETIEL VA KAVOUME avadpour €xel Ppedei.Ztnv

TeAevtaia Tepimtwon ( elIkova 3f) kal To y Kal 10 j Ppiokovral PETA TO
avrtikeiyevo k + 14n . Avj - caV« < k + yfn 1o0X0€l KAVOUUE YPOUMIKO
WAEIMO TNV LTIOAOITIN EKTIOMTIN OTIO TO TPAUO K + 14n . AAIWG KOIUOPAOTE

MEXP! TO avTIKEiyevo j - 0AA[N a@ixBei .Av n Tipocapuocpévn TIPORAEWN
aTtodelx0ei aAndwvr) €KTEAOUUE TO YPOUMIKO WAEIMO.ANIWE XAooue TNV

EKTIOUTIN KOl TO YPOAPUIKO PAEIYO YiveTal amd To aoc@aAéC avTikipevo kK + 6.

4 NMEIPAMATA KAI ZYMIEPAZMA

MeplooOTEPEC AETITOPEPEIEG O OVAYVWOTNG UTIOPEI va BpEi aTo TTapdpTnua

1
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Interpolating the Air
for Optimizing Wireless Data Broadcast
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ABSTRACT

Energy conservation and access efficiency are two fundamen-
tal though competing goals in broadcast wireless networks.
To tackle the energy penalty from sequential searching, the
interleaving of index with data items lias been proposed.
Although, quite important contributions exist in the liter-
ature on providing broadcast indexes, they present signifi-
cant shortcomings. This article proposes a novel parame-
terized air index, the interpolation index, which is a tunable
structure able to optimize the latency with the tuning time
kept at a given amount, and vice versa. Theoretical and
experimental results attest that the novel indexing struc-
ture outperforms state-of-the-art air indexing schemes and
demonstrate its great flexibility in trading access latency
with tuning time.
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1. INTRODUCTION

The rapid advent of wireless technology along with the
growing popularity of smart mobile devices, led to the de-
ployment of pervasive information services, which provide
access to “ambient” information to large number of au-
diences (clients), anywhere, and anytime, through access
points and a number of wireless channels. Additionally, the
advances in miniaturization and the creation of low-power
circuits, combined with small-sized batteries have made the
development of wireless sensor networks a working reality,
boosting the deployment of wireless networks even further
and pushing the challenges concerning their development to
the limits.

Consider the following scenario encountered in a cellular
wireless network (e.g., a PCS), where resource-constraint
mobile units within a wireless cell, retrieve information from
a relational database, whose contents are repetitively broad-
cast by a base station serving the cell; in the general case,
the information pieces consist of thousands of “projections”
(i.e., columns) of relational table rows. The existence of
wireless data broadcast service providers, such as Ambientl,
Microsoft2, and SkyTel3 confirms the industrial interest in
such kind of services and exhibits their feasibility.

In a second scenario from sensor network applications,
where a node (assumed to be energy-rich, due to its special
duties) with various sensing capabilities (e.g., temperature,
humidity, pressure, carbon-dioxide concentration), is able
to sense the environment at regular time intervals (differ-
ent for each measured quantity). These measurements are
repetitively broadcast and collected by surrounding energy-
starving nodes/sensors, which implement various applica-
tion protocols, dealing with aspects of temperature only, of
gas only, of concentrations only, etc., or with various combi-
nations of them. Such an application scenario could be built
on the basis of the architecture described in [5].

In these application scenarios, it is evident that:

« The information “consumers” need to retrieve the data
as quick as possible (i.e., with small access latency,
which is the time elapsed between when the need for a

1Ambient Information Network and Device Design
(http: //www.ambientdevices.com)

2DirectBand Network, Microsoft Smart
Personal Objects Technology, SPOT)
(http://www .microsoft.com/resources/spot)

3Timex Internet Messenger, SkyTel Corporation

(http://mobile.timex.com/indexENTER.html)
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datum arises in a node and the moment the node gets
that datum from the channel).

= The consumers are energy-starving nodes; therefore
they should refrain from continuously monitoring the
broadcast channel (i.e., pursuit a small tuning time,
which is the amount of time a node spends while mon-
itoring the channel).

e There could be several thousands of broadcast items,
thus scalability in terms of broadcast items is a very
important issue.

Access efficiency is a common target in many systems,
(e.g., databases), but energy conservation is a vital goal in
wireless networks for prolonging the longevity of the sensor
network or for guaranteeing as much power-independence
as possible for the mobile hosts. To achieve energy savings,
mobile nodes support two generic modes of operation, the
active mode, which is a fully operational state, and the doze
mode4, which is a power saving state. The ratio of energy
consumption between the two modes is usually an order of
magnitude [27]. Similarly, sensor nodes can be in one of
three active states - transmit, receive, idle - or in sleep state;
a sensor in the sleep state consumes 7-20 times less energy
than when it is in the idle state [6].

As it is easily seen, access latency and tuning time are
competing each other: to acquire the requested data as
soon as possible, the client must actively listen to the broad-
casting channel—retrieving mainly unwanted information —
therefore consuming energy, and vice versa. Apparently, ev-
ery solution for trading off access latency and tuning time
must provide some auxiliary information which allows clients
to alternate from doze mode to active mode when brows-
ing the broadcast data. Thus, clients can remain in the
doze mode most of the time and tune selectively into the
broadcast channel only when significant data arrive. This
set up calls out for a sort of directory or indexing informa-
tion which specifies the arrival times of particular items over
the broadcast channel. By accessing this index, known as
air index, mobile clients are able to predict the arrival of
desired data. Obviously, this scheme demands additional
bandwidth for broadcasting the index. However, its costless
scalability feature compensates for the incurred overhead
and, so, it became the method of choice.

Traditional database indexing techniques are designed for
random access storage media which permit back-tracking
during the search operation. On the other hand, broadcast-
ing is equivalent to a sequential access medium: in order to
benefit from the indexing information, the client has to wait
until the next index entry point is transmitted. The same
also holds in case of bad transmitted index items; re-entry
to the next broadcasted entry point is the only solution to
such “linkage” errors. To cope with this problem, two main
approaches were introduced: i) multiple replicated indexes
are interleaved with data broadcast [13]; and ii) transmitted
data are linked together through index information so that
multiple entry points exist during each broadcast cycle [12].

In the following, we deal with the second approach since
proven superior to the first one. The most prominent mem-
ber of this category of air indexes is the exponential in-
dex [28, 29]. This scheme can be loosely seen as the lin-
earization of a directed acyclic graph (dag), laid over the
sorted sequence of data items to be broadcasted, so that

4Following the terminology of [13].

the client can simulate the binary search operation, irre-
spectively of the time point he tunes into. Alternatively, it
can be seen as a distributed implementation of skip lists,
1. e., a skip list with multiple entry points. As a result, the
exponential index shows logarithmic access complexity and
resilient behavior to link errors due to bad transmitted pack-
ets. Even though this access time complexity is acceptable
for a few hundreds of items, still is not satisfactory when
dealing with a few thousands of items.

In this paper, we are mainly motivated by the scalabil-
ity problem of the indexing structures, and improve upon
the state-of-the-art indexing method, namely the exponen-
tial index. Deviating from the philosophy of this index, we
recursively apply a squar ed-distance partitioning of the lin-
ear broadcast order, which, effectively, overlays index search
paths of log-logarithmic length in the average case. Addi-
tionally, we implement this technique in a distributed fash-
ion, so that it allows index access from any tuning point,
permitting the recovery from link errors quickly and easily.
This novel air indexing scheme is called the interpolation air
index. Theoretical and experimental results attest that the
novel indexing structure outperforms state-of-the-art air in-
dexing schemes and demonstrate its great flexibility in trad-
ing access latency with tuning time.

The rest of the paper is organized as follows. Section 2 re-
views basic notions and related work. Section 3 introduces
the interpolation air index. In Section 4 we provide both
theoretical and experimental evidence on the superiority of
our scheme over exponential index. Finally, Section 5 con-
cludes our work.

2. PRELIMINARIES

2.1 Basic notions

We consider a generic data broadcasting system, where
a server cyclically broadcasts a collection of totally ordered
data items onto a down-link wireless channel. The mobile
clients must tune into the broadcast channel and actively
must find their way to the required information. In order
to aid the search process, the server interleaves auxiliary in-
dex items with the actual data items, forming a broadcast
cycle, i.e., beast. Every beast is organized as a sequence
of equal sized buckets, which constitute the smaller unit of
information a mobile client has access to. Each bucket is
categorized as being either data bucket when it contains a
number of (pure) data items or index bucket, in case it holds
index information. Sometimes, an index bucket may accom-
modate and some data items, and, then, it is termed as
hybrid one. In this context, a pointer to a specific bucket is
defined as an offset from the bucket containing the pointer
to the bucket to which the pointer points to, and designates
the number of basic bucket transmission time units one has
to wait to start retrieving the pointed bucket. It is widely
accepted that every data bucket contains a pointer to the
immediately upcoming index bucket. As it is easily seen,
the employment of index buckets reduces the tuning time,
however it increases the access time.

Figure 1 exemplifies the general data organization of an
indexed broadcasted file and the protocol for retrieving its
data. When the mobile client tunes into the channel, he
reads data bucket d,s. So, he switches to doze mode until
the time index bucket h arrives. Then, the index searching
phase is commencing, during which, according to the desired
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Figure 1: Searching in an indexed broadcast.

query, the client listens to a number of index buckets. In
our example, after retrieving I2, the client downloads 14 and
decides that the required data is contained into data bucket
dn. When this bucket is accessed, the actual data retrieval
takes place. In the described scenario, the tuning time is 4,
while the access latency equals 12. Here we must note that
in the literature, the time interval between the point the
client initially probes the channel to the point when the
next upcoming, relevant to the inquiry, index bucket is read,
sometimes is referred to as probe time. In our example, the
probe time is 3.

Based on data item broadcast frequency, a beast can be
categorized as flat, when every item is transmitted exactly
once, and skewed, if some items occur more than once dur-
ing the entire schedule. The choice between these two al-
ternatives depends heavily on whether user access patterns
are known or not. Beasts can be further classified as clus-
tered and non-clustered [13] based on the broadcast schedule
of same valued data items. Namely, a broadcast is clus-
tered when all data items with the same value of the at-
tribute appear consecutively; otherwise, it is non-clustered.
So, clustered broadcast is equivalent to flat broadcast when
the attribute is primary. On the other hand, non-clustered
broadcast corresponds to either flat broadcast with respect
to a secondary attribute or skewed broadcast of a primary
attribute.

2.2 Related work

Air-indexing has received much attention during the last
years after its introduction in the seminal papers [12, 13].
In [13] (I,m)-indexing was introduced as an index allocation
method, according to which the index information is broad-
casted m times during each beast. The main problem with
the (1, m)-indexing scheme is the replication of the entirety
of the index m times, since it prolongs the broadcast cycle
and thus the average access time. In the same paper, a tree-
based indexing method, called distributed indexing, was also
suggested: the data file is associated with a B * -tree [3], and
since the wireless channel is a sequential medium, the formed
tree is linearized with a pre-order traversal. Additionally,
the first k levels of the index are partially replicated in the
broadcast, while the remaining levels are not. The nodes
at the replicated levels are repeated at the beginning of the
first broadcast of each of their children. Compared to the
(I,m)-index, the tree-based scheme has lower access time
due to its shorter broadcast cycle while its tuning time is
analogous to that of the (1, m)-index.

In [12] it was exhibited how hash functions can be used for
allocating data items to the slots in the broadcast schedule.
Since collisions — that is, multiple items are mapped to
the same slot — are inevitable, the authors adopted the
linear probing method [4] for collision resolution. Namely,
overflow items are relocated into succeeding slots, pushing
forward every item originally hashed to them, and, thus,
penalize them with an extra tuning time of one slot. The

hash-based scheme incurs minimal overhead, compared to
the over indexing techniques, since only the hash function is
broadcast together with data. However, one has to examine
the entirety of the implicit partitions, corresponding to areas
of overflowed items, to find the desired item. This may
incur high tuning time, especially for large partitions. This
approach was extended in [30] to the case of skewed beasts,
by introducing the MHash air-index. MHash maps data
items to broadcast slots using a two-argument hash function,
so that the broadcast schedule is free of unoccupied slots,
while the spacing between instances of each data item and
the bandwidth allocation follow the underlying distribution.

In [12], the flexible indexing scheme was also proposed,
according to which, the sorted sequence of data items is
partitioned into several equal-sized segments. At the be-
ginning of each segment, a global index and a local index
are accommodated. The global index at a segment contains
a logarithmic number of (key, pointer) pairs to guide the
search towards succeeding segments. On the other hand, the
local index holds m (key, pointer) pairs that split further the
hosting segment into m + 1 subsegments, and, thus, com-
prises an inside directory. This approach was generalized
in [28], by introducing the exponential index. Specifically,
the sizes of the indexed segments increase exponentially by
a base of r > 1, r being a system parameter. This approach
was further studied in error-prone environments [29].

Seifert and Hung [24] suggested the flexible distributed in-
dexing scheme which employs partitioning of the broadcast
program into a number of equal-sized data segments, such
that a given limit on the tuning time will not be exceeded, in
conjunction with multiplexing of a dense B+tree-like index
on the data items. Similar to (1, m)-indexing, index infor-
mation is broadcast multiple times during a beast. How-
ever, the broadcasted sequence is not indexed at its entire;
every index tree refers to the data of immediately upcom-
ing segments, with occasionally exceptions when the tuning
time is bounded by a desired limit. Both [25, 2], considered
unbalanced tree structures to optimize broadcast schedule
for non-uniform data access, while Tan and Yu [26] studied
scheduling policies for skewed beasts.

Signatures have been successfully employed to facilitate
retrieval in several types of databases and was adapted to
broadcast environments in [15]. Data items are organized
into groups and a single signature is generated for each
group. During beast, each signature is transmitted before
its corresponding group of data items. A client firstly gen-
erates a query sighature based on the same assumptions as
the server did, and then by listening to the signatures se-
lectively switches between doze and active mode. A hybrid
among the signature method and the distributed index tree
was proposed in [9] and applied it also to the multi-attribute
indexing case [10, 11]. Remotely related to the present ar-
ticle, are the air indexing schemes that have been proposed
for the case of multiple broadcasting channels [1, 8, 14, 22],
and for querying spatial data, e.g., [16, 31].

For the case of wireless sensor networks, since the major-
ity of research has focused for the moment on topics like
routing, clustering, sleep scheduling, localization, medium
access control, the issue of indexing has received much less
attention and the literature has solely developed distributed
indexes that reside on the sensor nodes and are not broad-
cast. These indexes comprise (in one form or another) adap-
tations of the traditional disk-based indexes, with special



Figure 2: Searching with the exponential index.

care to achieve only local (to the extend possible) commu-
nication during their creation or maintenance, and small
storage overhead. The GHT [23] is based on a (geographic)
hashing scheme, DIM [17], DIFS [7] and DIST [19] are based
on the quadtree structure, and TSAR [5] is based on Skip
Graphs (a generalization of Skip Lists for distributed envi-
ronments). None of these indexes is broadcast over wireless
channels and they all assume global ordering for the data
they index. We conclude this section by presenting more
details about the exponential index, since it comprises the
state-of-the-art in indexing for single broadcasting channel
environments.

The Exponential index.

According to this scheme [28, 29], the beast consists of hy-
brid buckets, which try to simulate the exponential search-
ing technique [18] over the periodical broadcast. The index
part of each bucket consists of logarithmic number of en-
tries. Every entry consists of a pair (pntr,maxKey) and
indexes a segment of buckets, where pntr is a pointer to
the first bucket of the involved segment, and maxKey is
the maximum key value in the last bucket of this segment.
Specifically, the first entry refers to a single bucket segment,
the one immediately following, and every i-th entry refers
to the segment of 2*_1 buckets that are from 2t_1 to 2* — 1
slots ahead; that is, the sizes increase exponentially by base
of 2. It follows immediately that, firstly, the pointer can be
inferred from the entry IDs, and, secondly, the key range
of the buckets indexed by the i-th entry is bounded by the
maxKey values of the (i — I)-th and i-th entries.

Figure 2 provides an instance of exponential index search-
ing, where, for simplicity, every bucket contains only one
data element of integer type. Assume that a client needs to
retrieve element 40 and he tunes into the broadcast at the
8-th slot. Since 40 belongs to the range of values covered
by the fourth entry, he switches to doze mode until the 8th
succeeding bucket arrives. By examining its index, he de-
cides to be active again after 4 buckets. Then he figures out
that the element he searches is one bucket ahead.

The authors suggested two generalizations: i) The sizes of
segments increase exponentially by any base r > 1. There-
fore, the i-th index entry refers to buckets that are from

to [IrZ\j away; and ii) To reduce the index-
ing overhead, the beast is partitioned into data chunks of /
buckets, and the exponential index is build on a per-chunk
basis. Thus, in each chunk, the first bucket is hybrid, while
the rest / — 1 are pure data buckets. To aid intra-chunk
search, the hybrid bucket contains also a local index, of I —1
entries, so that the i-th local entry holds the maximum key
of the i-th data bucket within the local chunk. It is easy one

to see that the intra-chunk tuning time is either 1, for the
first bucket in the chunk, or 2, for every pure data bucket.
Given the size B of each pure data bucket, in number of data
items it holds, and the size B' of a hybrid bucket, measured
in number of data items it can accommodate, a formula
is provided in [29] for calculating the smallest permissable
value for base r.

In an error-free broadcasting environment, the average ac-
cess latency is 1/2 + N/2, N the size of beast, the worst

case tuning time is |Mog_j_(C — 1)J + 1, C the number
of data chunks, the average tuning time equals to qg.

BO-)+p"' + i(1) being the tuning time for a
data chunk that is | chunks away from the current chunk,
while the index space overhead per chunk is O(1 + logr C).
The authors in [29] also proved analytical formulae for both
average access latency and average tuning time in error-
prone environments.

3. INTERPOLATION AIR INDEXING

We described earlier how the exponential index conducts
the tuning into the channel in order to get the desired data
in such a fashion that the resulting performance is logarith-
mic in the number of broadcast data. The method proposed
in the present article exploits the idea of recursively apply-
ing a squared-distance partitioning of the linear broadcast
order, which, effectively, overlays index search paths of log-
logarithmic length, in the average case. This idea is further
improved by implementing it in a distributed fashion to al-
low for multiple “entry” points from the broadcast. Firstly,
we exemplify the idea behind this log-logarithmic scheme
by applying it in a ordinary array of items (the word ‘ordi-
nary’ means that the items are not broadcast, but reside in
a computer’s main memory).

3.1 The idea behind the log-log scheme

Suppose that there is an array of totally ordered numeric
values (keys) X\ < X2 < 111 < xn, drawn independently from
a uniform distribution over the range (io,i,+i). Search-
ing by interpolation for the item y in the array proceeds
as follows: Let p = x , that is the percentage of the
keys expected to be less than y. Then, we compare y to
Xfp*n-], and, in case of inequality, we search recursively ei-
ther subarray *1,3:2 , , X[p»n|-l (y < *|-p»,i) or subarray
2Tp*n1+1>XIP*™1+2> 111 >Xn (y > XIp*"i)-

The access time is loglog n in the average case, and linear
in the worst case [20]. This approach, with the same time
bounds, can be employed in every totally ordered data set
whose cumulative distribution function is known.

A further improvement to this scheme can be achieved [21],
namely the binary interpolation search, which modifies the
actions after comparing y to x , as follows: Ify > x;P.n],
then y is successively compared with xfp.n+jyiri, i = 1,2,...,
to locate the smallest i such that y < X|-p,n+iv/"™ Ify <
Xfp»ni, then y is successively compared with *pp>,,_ VA, i =
1,2,... In either case, the located pertinent subarray of size
y/n is recursively searched.

It can be shown that the average access time is bounded
by 2.03log log n, but its worst case time complexity is sjn +
O(V/n). It can be relatively easily showed that the worst
case complexity of this approach can be further improved
to 21logn, if one employs exponential search to determine



i with logi comparisons [18], without affecting the average
case performance.

3.2 Description of the proposed Interpolation
index

The beast in our proposal consists of n hybrid buckets,
&I, 62, -, bn. The embedded index entries will guide the
search, simulating the interpolation search in the wireless
set up. In the following, i) Mi,mi will denote the maximum
and the minimum data entry, respectively, of i-th bucket —
therefore, every data element belongs to the range [mi, M,,];
ili) to1 and M,,, will be also available to every bucket; and
iv) T-R{y) = Prob[V < y\Y 6 Tt\

In the first version, apart from mi and mn, the index
part of fc-th bucket, k = 1,2, ...,n, will consist of pairs
(ipntr, maxKey), where pntr is an offset and maxkey is the
maximum data entry of the bucket pntr slots ahead. The
0- th entry refers to the immediately upcoming bucket, while
the i-th entry holds mfc+ri2-i, namely, the maximum data

entry 11 slots ahead; every such entry is characterized as
1- th level. It follows immediately that:

Lemma 1. The space overhead of every accommodated in-
dex structure is 1 + loglogn entries.

Please note that the offsets are immediately inferred given
the sequence id of the hosting bucket and, therefore, are not
stored.

Based on stored information, the access protocol is as fol-
lows (please cf. Fig. 3): Let k be the bucket the client cur-
rently tuned into, y the search item, | the level of recursion,
and j the probing position, calculated using T. When y be-
longs to the key range of either k or k + 1, or equals to one
of the maximum values Mi of the indexed buckets, then we
do not have much to do. So, in the sequel we assume that
none of these cases occurred.

During the first time the client tunes into (i.e.,, | = 1),
three possibilities, besides the general case (see below) may
happen. When both j and y lie ahead of k (Fig. 3(a)), the
rest ofthe beast is useless. Thus, we check whether < ca,
Cd a tuning distance parameter. If so, the client dozes until
bucket 1 arrives, and then he conducts linear search with
/N long jumps, using level 1 pointers, until he locates the
left delimiting bucket of the y/n-sized subfile containing vy,
to which we recur; since, on the average, y lies within ap-
proximately +2y/rc slots from j ([21]), and bucket 1 is close
enough to j, we adopt this conservative policy, to avoid a
possible second missed beast. Otherwise, the client switches
to doze mode until bucket j — caVVn arrives, ca being an
interpolation adjustment parameter. Again, we prefer to
“step” back a little from j, trading-off an increase of tun-
ing time with sparing some latency time, by decreasing the
probability of a second consecutive unutilized beast. In case
of successful prediction, we stmt employing the above men-
tioned linear search to narrow down the area of interest in a
sub-transmission of s/n extent. If, however, a second missed
beast does happen, we employ the linear search starting from
bucket 1.

In the second case, j precedes k and y succeeds both of
them (Fig. 3(b)); we simply start switching between doze
and active mode, with y/n intervening slots, until we locate
the desired y/n-sized interval, to which we recur. When y
precedes k and j succeeds k (Fig. 3(c)), the client missed
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Figure 3: Relative positions of k,j and I: (a)-(c) can
happen only when | = 1, (d)-(f) general recursive
cases (I > 1).

the current beast. This situation is similar to the one of
Figure 3(a), with k substituting j. Specifically, if < Cd,
the client dozes until the arrival of bucket 1 to conduct the
linear search. Else, the client goes back to active mode when
bucket k — cay/n arrives. If he is fortunate in his prediction,
linear searching commences; otherwise, the beast is useless,
he dozes and applies the linear search starting from bucket 1.

Turning now to the general case (I > 1), the client al-
ready knows that y is lying between buckets k and ininjfc +
2* 1/n,n], the interpolation obviously returns an index j 6
[k, min{A: + 2 y/n,n}], and the length of jumping during
linear searching equals to y/n. There are also tree possibili-
ties. In the first one, y seems to belong after the position the
level | pointer points to, i.e., bucket k+ y/n, while j lies be-
tween k and k+ y/n (Fig. 3(d)). Then, we doze until bucket
fc-f y/n is transmitted and we start the linear search proce-
dure. When vy is located between k and k+ y/n, (Fig. 3(e)),
irrespectively of j's position, we have nothing to do; the y/n
subfile, to which we must recur, has been found. In the last
case (Fig. 3(f)), both y and j lie after bucket k + y/n. If
J —caVVn < k + \Jn holds, we linearly search the rest of
the beast from slot k + y/n. Else, we doze until bucket
Jj-Ca™ arrives. If the adjusted prediction is proven to
be true, we execute the linear search; otherwise, we missed
the beast and linear searching is performed from “secure”
bucket k + y/n.

The described protocol is presented in the appendix, while
Figure 4 illustrates a searching instance, where we assume
that Cd = 1.2, ca = cx = 1, and 40 is the key we search. We
initially tune into bucket 8. Since 40 < 60, we interpolate



Figure 4: An instance of searching for item 40 with
interpolation index.

and get Jj = jj°-io ' 16] = 6- Since -fy- = 15 > 1.2
we decide to switch into doze mode until the bucket 6 — 1 -
%/16 = 2 arrives, where we have 21 < 40, and, thus, we must
continue linear searching in upcoming buckets. Since level 1

pointer (52) bounds 40, we recur in level 2. We apply once
again interpolation which give us j = 2 + Is2~21 = 5.

Because 40 is located after 2 + \V/T6 = 4, we sleep until
bucket 4 is transmitted, where we figure out that 40 belongs
to the following bucket 5.

As far as tuning time is concerned, the following Lemma
holds, whose proof is omitted due to space limitations:

Lemma 2. The average tuning time is O(loglogn).

4. PERFORMANCE EVALUATION

This section provides a detailed study of the performance
of the proposed index against the state-of-the-art scheme
of exponential index [28, 29], using similar system param-
eters in order to conduct fair comparisons. The database
size n ranges from 1000 to 1000000 items. Additionally, the
database is characterized as small one when TV between 1000
and 50000; otherwise, is considered as a big one. In this ar-
ticle, similar to [28, 29] we present the results for uniform
access pattern; the conducted experiments for skewed (Zip-
fian) access patterns favor the interpolation index even more.
We have also investigated different combinations of bucket
capacity B, ranging thus the item size. In the sequel, we
report the results for B = 10 and B = 100; intermediate
values for B led to the same conclusions. Finally, the tun-
ing time and access latency, are both measured in terms of
number of buckets.

4.1 Tuning the Interpolation index

Our first experiment investigated the impact of parame-
ters Cd and c0 on the performance of the interpolation index.
Due to space limitations, we consider only the case c0 =
Cd = C. Figure 5 depicts our findings when TV = 30 000, B
is either 10 or 100, and C varies between 0 (i.e., the index
‘blindly’ trusts the interpolation estimation) and 1.5 (we are
a bit conservative and adjust the estimation by going back
1.5 steps; we have arrived to analogous conclusions for var-
ious values of TV, while being more conservative, that is,
C > 1.5 proven to deteriorate the index performance.

Figure 5(a) shows that every value greater or equal to
0.3 is fine for bringing the average latency time to 50% of
the beast. On the other hand, C = 0.9 appears to be the
best value for achieving the overall best tuning time perfor-
mance. This value is used for the rest of the experimental
section, and as we will see, certainly beats the exponential
index, proving that our proposal is a very easily configurable
indexing scheme.

4.2 Comparison with the Exponential index

In this section, we compare our proposal to the exponen-
tial index. The investigation is twofold: we explore both the
time as well as the space overhead of the two proposals.

4.2.1 Access latency and tuning time

Firstly, we explored the tuning time performance of both
schemes. The comparison was performed on the basis of
tuning the Interpolation air index to achieve the same ac-
cess time with that achieved by the exponential index and
then comparing their tuning time performance. The inde-
pendent parameter was the number of broadcast items. The
performance of the indexes was compared for both small and
large databases, and for the case where the parameter r of
exponential index was set to r = 2 and r — 3. The ob-
tained results are depicted in Figures 6(a)-(d). Confirming
the conclusions of [29], we observe that the tuning time of ex-
ponential index increases as the number of broadcast items
gets larger. The increase is more steep for large number of
items. On the contrary, the tuning time incurred by the In-
terpolation index is almost constant for small database sizes
and increases moderately for large databases, as a result of
its log log performance.

In Figures 7(a)-(c) we performed the reverse experiment:
we kept the tuning time the same for both schemes and
examined the access latency. We can see that our scheme
achieves the same average access latency performance, irre-
spectively of the data base size, while the exponential index
is slightly worst for small data sets. We refrained from show-
ing the results for the case of large databases and with the

ACCESS LATENCY

(b)

Figure 5: Investigation of the C parameter when
TV = 30000: (a) access latency; and (b) tuning time
w.r.t. the C parameter.
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Figure 6: Average Tuning Time: (a) big data base
base with r = 2; and (d) small data base with r = 3.

exponential index’s r = 3, because the results are completely
analogous.

4.2.2 Index overhead investigation

In this final presented experiment, we show the results
of the interrelation among the tuning time and the index
overhead which is measured in “pointers” per transmitted
bucket. Following the same policy as before, we performed
the investigation by keeping constant for both competing
indexes the first “quantity” and measuring the other, and
vice versa. Firstly, we evaluated the average index overhead
for the same tuning time; to achieve the same tuning time,
we adjusted the index base r of the exponential index. The
results are illustrated in Figure 8(a)-(b). It is obvious that
on the average, the overhead of exponential index is four
times larger than the respective of the interpolation index!
This implies that the length of the broadcasting program
generated by the exponential index is much larger than the
program generated by the interpolation index.

Then, we forced both schemes to employ the same in-

TUNNING TIME

(b)

TUNNING TIME

#NUM OF ITEMS

(a)

with r = 2; (b) big data base with r = 3; (c) small data

dex space overhead and investigated the tuning time perfor-
mance. Figures 9(a)-(b) confirm that interpolation air in-
dex undoubtedly outperforms exponential index by almost
an order of magnitude.

5. DISCUSSION AND CONCLUSION

Modern wireless broadcasting systems, like Microsoft’s
SPOT technology or emerging applications of wireless sen-
sor networks, involve the broadcasting of several thousands
of items over wireless channels. Given the fact that mobile
nodes of cellular systems or sensor nodes are energy-starving
devices, it is mandatory that the access to the transmitted
information is as energy-conserving as possible. This re-
quirement calls for the deployment of distributed air indexes
able to scale up to larger than ever numbers of items, and
tunable so as to be able to tradeoff energy-conservation for
access latency when needed.

This article is motivated by the aforementioned require-
ment, and proposes the interpolation air index, a very easily
configurable and efficient air indexing scheme. This scheme



ACCESS LATENCY
15
INTERPOLATION (B =1 10)
INTERPOLATION (B = 100)
- EXPONENTIAL ( B = 10)
EXPONENTIAL ( B = 100)

ONUM OF ITEMS

@
ACCESS LATENCY
0.57
INTERPOLATION (B * 100)
0.56 ——— INTERPOLATION ( B = 10)
- —i— EXPONENTIAL (B = 100)
—*  EXPONENTIAL (B » 10)
0.55
fo
r:{l 0.54
'6' 0.531
s
Jos2 <
0.51
2 3 4 5
#NUM OF ITEMS y 1
ACCESS LATENCY
0.57
INTERPOLATION (B = 100)
0.56 ———— INTERPOLATION (B =10)
- —+— EXPONENTIAL ( B * 100)
—»— EXPONENTIAL (B - 10)
0.55 »
g
0.54
3
< 053
0
0.51
0.49
0 2 3 4 5
#NUM OF ITEMS | 10¢
(©

Figure 7: Average access latency: (a) big data base;
(b) small data base with r = 2; and (c) small data
base with r — 3.

exhibits a linear structure, suiting the broadcast environ-
ment very well. The index space overhead is log-logarithmic
per transmitted bucket, while the tuning time is log-logari-
thmically proportional to the broadcast size. Additionally,
the access latency and tuning time of the interpolation index
can be simply adjusted by a single parameter. To evaluate
the suitability and behavior of the proposed novel air index,
we investigated its performance against the state-of-the-art
exponential index [29]. The experimental results attest that
our index outperforms the exponential index both in tuning
time and space overhead, while achieving the same access
latency.

INDEX SIZE

@

INDEX SIZE

(b)

Figure 8: Average index overhead when both
schemes exhibit the same tuning time performance:
(a) big data base; and (b) small data base.

There are a number of issues that are left for future work.
Firstly, we plan to investigate how skewed data can be ac-
commodated in our scheme. Secondly, it is very interesting
to explore its performance in multi-channel data broadcast
environments.
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APPENDIX

AUXILIARY FUNCTION — Searchl
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Searchl(j/,x, z,i)
//probing of interpolated value x;z is the ‘retry’ bucket
if {x = current bucket)
doze until bucket x arrives;
if (y < mx)
switch to doze mode until bucket z arrives;
if((m* <j/<M?)||(M* <y<Mi+,))
//y belongs toz orz-F1
search y among the data elements of bucket z
or z + 1 and exit;
if ((y == Mp)&& (p among indexed buckets))
switch to doze mode until bucket p arrives;
return the result of search and exit;
SearchL(j/, z,l);
else
iIf((Mx<y<MxX)\\(MXx<y<Mx+i))
/'y belongs to x or x + 1
search y among the data elements of bucket x
or x -f 1 and exit;
if ((y —— flip) && (p among indexed buckets))
switch to doze mode until bucket p arrives;
return the result of search and exit;
SearchL(j/, x,l)-,

. end of SEARCHI

AUXILIARY FUNCTION — SearchL

1
2
3
4
5.
6
7
8

SEARCHL(y,x,l) 7/ linear search with jumps

b=x+ ;
while (Mi, <vy)
//known from the index of the current bucket b — NT
switch to doze mode until bucket b arrives;
b = b 4- ;
InterpolationSearch(p, b — nzf | + 1);
end of SearchlL

CLIENT ACCESS PROTOCOL FOR INTERPOLATION INDEX

Algorithm InterpolationSearch(j/, k,I)

Input:

The key item y to be searched, k the current bucket
the client tuned into, and | the level of recursion

Output: The data bucket r such that y 6 [mr,Mr], and may

©® N OO0 WDNpR

=
o©

11.

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

contain y
if ((mk <y< MK) II| Mk<y< Mk+1)) //y € {k,k + 1}
search y among the data elements of bucket k or k -f 1;
exit;
if ((p == Mp) && (p among indexed buckets))
switch to doze mode until bucket p arrives;
return the result of search and exit;

i=0>=1?2 [MmF[mi M 2_J+1 ()1 :[nF|lm,,Mn|(V)D);
ifg <=k
if (y < m*;) //this may happen only ifl =1
if(M-| <cd)
//within heuristic distance parameter Cd
SEARCHI(/, 1,1, I)3/we search from bucket 1
else //we will try the estimation, in case of failure
//we will resume on bucket 1
Search”j/,N — c0 \V/n, 1,/);

else //y > linear search from k
Searchl (y,k,k,)]
else //j > k
if (y < mk)

if([—£;,”:'!<cd)

//within heuristic distance parameter Cd
Searchl(p, 1,1,/);

else //we will try the estimation
Searchl(t/, max{fc — ca ly/n, 1}, 1, 1);

else // y > M»
if (M/t <y <M 2i ) //the right subfile is found
k F %/n

//recursive searching
InterpolationSearch(p, k,| + 1);
else //y>M i
kE "Vn
if j <k + \ri) //linear search from k + y/ri
SearchL(j/, k + 2-7TL/);

else //G>k+ li/N)A(y>M i
k+ \/ri

if (j —Cdy/n>k+ ly/n)

/Iwe will try the estimation
Searchl(y,j —cd \Mn-, k + 2y/ri,t)\

else //linear search from k + \/**
SearchlL(v,Is + VVn, D\

end of InterpolationSearch
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