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KepdaAaio 1

EIZAIQIMH

1 Ta teAevtaia xpovia, €ival @AvG N TTOPOUCIia EQAPPOYWV TIOU XEIPI-
Jovtal yEWUETPIKA dedopéva (geo-data objects). Ta cuoTAUOTA YEWYPAPIKWYV
TIAnpogopiwv (GIS), ta avtopata gpyalieia oxediaong (CAD design) kal ta
ouoTNUaTa TIPORAEYNC KAl aviXveuong Kivnong KIVOUUEVWVY OVTIKEIUEVWV Ei-
Val UEPIKEC AVTITIPOCWTIEVTIKEG EQPAPPOYEG. AVTIOTOIXO, TA YEW-OEOOPEVA -
TIopei va gival onueia, ypopuEG, KOAA OPIOUEVEG TIEPIOXEG KAl OyKOol dUo,
TPIWV, TEOOAPWV I KAl TIEPICOOTEPWV dlaoTdoswv. E&aitiag Tou peydAouv peyeE-
Boug Twv dedopévwy, Ta CLUCTAPOTA BACEWV TIOL LTTOOTNPI(OLVV TETOIEC EQAP-
MOYECG, TIPETIEL va €ival EQOSIOCPEVECG HE KATAAANAO cUOTNPA JEIKTOSOTNONG
(indexing) TETOI0 WOTE N €VPETT TWV OESOUEVWVY VA YIVETAI UE ATIOTEAECHATIKOTN-
Ta KAl ToX0TNTO.

AUO OEPEAIWDEIC EPWTIOEIC TIOV TIPETIEI VA ATIAVTOUV Ol EIBIKEC AUTECG OOUEC

delktodoTnoNng (index structures) gival n epwtnon toung (intersection query)

'Z10 Ttopov BIRAI0 xpnoluoToindnke n ypapuatooelpd Kerkis, ta SIKAIOPATA TNG OTIOi0C

aviikouv oT1o TuApa Madnuatik@v Tou MaverioTnuiov Alyaiou.
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Kal N €pwtnon twv k Kovtivotepwv yeitovwy (k nearest neighbors). Me gicodo
£VO YEWMETPIKO OXNHA, N TIPWTIN £PWTNCN ETUCTPEPEI OAA TA OEDOUEVA TNG
Bdaong Touv xEUvovtal JE TO OXNUO aUTO KOl N OeVTEPN ETUOTPEPEL TA K TTIO
KovTIva dedopéva OTO OXNMA.

Ma va yivel katoavontn n avaykn Xpriong Twv €10IKwV d0PwV JEIKTOdOTNoNG,
0CG LTTOBECOLUE OTI YEWHETPIKA dedOPEVA Eival ATTOBNKELUEVA G Eva oVUCTNUA
Baong xwpig deIKTodoTNoN. TOTE, EVKOAA KAVEIC CUPTIEPAIVEL, OTI N KABE pIa
aTto TIg V0 EPWTNOEIC KOOTICEl o Tipocfdaoelg otov dioko (I1/0), O(—-—- ——)
OTNV KOADTEPN, TNV HECN KOl TNV XEIPOTEPN TIEPITITIWATN. Av AABOLPE LTIOYIV
HOG OTI TO KABe dedOPEVO KATAAOUPBAVEL, 1dn, HEYOAO XWPO KAl OTI Ol av-
TIOTOIXEQ EPAPUOYEC XEIPIZoVTal JEYAAO OpPIOUO dedoPEVWY, Eva TETOIO KOOTOG

gival aveTtitpeTtTo.



KepaAaio 2

ANAZKOINMHZH AYNAMIKQN

AOMOQN AEIKTOAOTHZHX

2.1 R-tree

H mpwyxn dopn dEIKTOdOTNONG TTIOL UTIOPOVCE VO XEIPIOTEl PEYAAA oUVO-
AQ aTt0 TTOALAIACTOTO YEWMETPIKA OeSOUEVA, €TTIVONONKE amd tov Antonin

Guttman 1o 1984. lNMpokeital yia 1o didonuo, Ao, R-tree.

Ta @OAa Tov R-tree TiepiEXouv eyypageg (index records) tTng popeng
(I.objID)

omouv 10 objID eival n Tpaypatikn) dleVBUVON OTNV OTIoId KOTOIKEI TO O€-
dopévo otnv Bdon kat 1o | gival To JIKPOTEPO O€ OYKO TIOAPOAANAOYPAUO TIOU
KOAUTITEl TO dedopévo auvto (Minimum Bounding Rectangle). Ot d100TtdoEIq

Tou MBR €gival, @UOIKA, 00gq €ival Ol SIONCTACEIC TWV YEWMPETPIKWVY SESOUEVWIV.
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Ol E0WTEPIKOI KOPPOL TIEPIEXOLV EYYPAPEC (entries) TNG HOPPNG

(I,child-pointer)

ortou 1o child-pointer gival n d1e0Buvan €vog XOPNAOTEPOL KOPPBOUL TOU JEV-
dpou Kkal 10 | gival To MBR 10U KOAUTITEL OAa T0 MBRS 10U XOUNAOTEPOUL
autoV KopBou.

‘Eotw M, 0 PEYIOTOC apPIBUOCG EYYPAPWY TIOU PTIOPOUV VA ATIOONKELTOUV

ge €vav KOPBo Kal

n TIOPAPETPOG TIOL KOBOPILEl TOV EAAXIOTO aplBPO gyypapwv. Tote 10 R-tree

opietal, auotnpd, w¢ €ENG:

1. KaBe @OAo Ttepdaupavel amo nn péxpt M index records ek1dg av givat

n pica.

2. KdaBe e0wTePIKOC KOPPBOC TIEPINPPBAvel atto to PEXPL M entries ek10Q

av gival n pica.

3. H pida mrepAapBdavel TOLAAXIOTOV d00 Kal T0 TIOAD M eyypa@ég ekto(

av gival guAo.

4. 'OAa 1a @UAO Bpickovtal oTo idlo BAboC.

H sikova A. 1 deixVvel €va OTIYUIOTUTIO €vOG R-tree pE TIG ETUKAADWYEIG TV
MBRs.

To R-tree givail duvapikr] dopr], LTTOoTNPI(oVTIag TNV TIPOCONKN KAl a@aipean
YEWMETPIKWY OESOUEVWV LE OTIOTEAECHUA TNV OAAAYr TOU CUVOAOU S Twv de-

S0opEVWV TIOL OEIKTOSO0TEl. DPUCIKA, PIA OTATIKI] doPr 64 TOKTOTIOIOVOE TOU(
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deiKteq OTa dedOPEVA KOAVTEPD, UE OTIOTEAECHA TNV EAQXICTOTIOINCON TOL TIANBOLG
Twv TIpocafacewv otov dioko (I/0) yia Tnv amdavinon twv epwinocwv. Mia o-
TATIKN dopN Opw¢ Ba ETIPETE KABE @opA TToL Ba TTapouvacialotav Ttapapioon
TwV ouVBNKWV (KATa TNV TIPOCHNKN 1 a@aipeon OedOPEVWIV) VA QPTIOXVOTOV
aTtd TNV apxr] yla OAd Ta dedOPEVA TIOU OEIKTOOOTOVOE MEXPL EKEIVI TNV OTIy-
un (global bulk loading-rebuilding technique). Kat t€t010, O0pwg, auv&avel
TO KOOTOG TWV EVOECEWV KAl TV dlaypa@wy Kal g€ Xpovo CPU alA& Kal ot
I/0. MNa autdév tov Adyo, otav diariotwlei mapafioon, 1o R-tree cupuop-
pwvetal toTtiika (local rebalancing). 210 local rebalancing, avtifeta pe 1o
global rebuilding, d10pBwvovTal HEPIKA POVOTIATIO ATIO KATIOIA QUAC PEXPI

Vv pida.

'ECTw AOITIOV, TIWG OTnv OoMIr TIPoaTiBetal éva véo dedopevo. H doun Ba
TIPETIEL VO ATIO@ACIcEl TTou Ba aTtoOnKeLTE N gyypapr] index record 1ov Ba

OEIKTOOOTEI TO VEO aUTO dedopévo. To KpITHPIo TIov XpnolyoTtolei o Guttman

Zald rzim
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>xnua 2.1: An R-tree instance.
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eival n glaxlotoroinon tng av&nong Touv Oykou xwv MBRs 1 Mg auxov
X0V XPOTIO, 0 avayvwoxXng MTIopei va dialioBaveei ox1, TtpooTtabei n doun va
attoUyEl, 000 €ival duvoxov, XIG ETUKOADWYEIC PETAEL Xwv MBRsS xou idlou
KOpBov. Idavikd, dg, Ba BEAape, n €vpeon KABA deSOUEVOL VO EVEPYOTIOIEI
MOVO €va POVOTIAXI, KAX! TIOU UTTOPEi va CUUPEl av dev LTIAPXOULV KOBOAOUL
ETUKAAVYEIG. ApXilovXOog, ETTOPEVWC, OTIO XNV pila, dIOAEYOUUE VO KOXEBOUUE
o€ eKeivo xo Ttaudi, Xou ottoiou Xo MBR xpeiadexal xnv HIKpOxXepn av&non oyk-
0L Yla VO KOAUWEL X0 VEO dedopEvo. Oupidoupe Ox1 xo MBR gvog Koo gival
ATI0ONKEVPEVO € KATTOIO EYYPA@r] X0U TIaxEPa xou. H diladikaaia ouvexilexal
MEXPL VO @XACOUUE O€ KATIOIO UAO. EKei, vttoAoyidovpe xo MBR xou véou
dedopEVOL KOl Evav JeikXn TIou OEiXVEL XNV akpifr] B€on xou veéou ded0UEVOL
0xov OioKO, PBpioKovxag ME auXOV Xov XPOTo xo index record xou véou Oe-
d0UEVOL TIOL aTTOBNKELEXAL, OTIWC EITTAUE, 0X0 PUAO auxo. Mo xnv diaypaen
€VOC OTOoIXEioL, TIPETIEI va BPOUUE OE TIOI0 QUAO PPICKETAl X0 OVTIOTOIXO in-
dex record. Emopévwg, pe depth first osipd, katelaivoupe og ekeivoug Toug
KOMBOULG xwv oTIoiwv xo MBR xépvexal pJe xo dedopévo Tpog elpecn. Otav
@TAVOULPE OTa UAQ, EAEYXOULME OAa Xa dedOpPEVA TIOU OEIKTOSOTOUVTAI OTIO XA
index records toug yia va BpoUvpe To aTtd OAa xa index records gival ekeivo
TIOU OEIKX0J0XEl X0 dedOUEVO. MOAIG X0 BpoUpE, a@AlpoUPE X0 €V AOyw index
record. Metd kal amo xi¢ dVo TIPAEelg (apolL PBpovpe X0 PUAO) aveRaivouue
X0 HOVOTIAX! aTtO X0 UAO aux0 PEXPL XNV pila, Ttpocapuoloviag X0 avTtioToixa
MBRs, ylati TtA¢ov dev gival €ykupa.

Katd xnv SIApKEIO XWV EVOECEWV KAl XwvV dlaypa@wv, OTwG Non €XOULUE

avagepel, iowg apadlaaxolv ol cLVONKeG. Aux0 cuuBaivel yioTi KATIOIO QU-

’IXIG dLO SICTACEIG 0 OYKOG AVOPEPETAL 0X0 EPRAdOV Xwv MBRS
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Ao, owqg €xel MAvw oo M gyypa@eg 1 AlyOTEPEG ATIO TN I OKOpOA n pida
va €XEl HOVO Jia gyypagr] KAl OYPoC un PNOEVIKO. TNV TPWIN TEPITITWON
KAvoupe split. AnAadr] , dI0CTIOVHE TO GUAO O€ U0 KAIVOUPIO LE OTIOTEAECHA
0 TIOTEPAC TOUL VO OTIOKTA MIA TIOPATIAVW £yypa@r. ZTnv dOeVTEPN TIEPITITWON,
AQAIPOVUE TEAEIWC TO QUAO (OTIOTE 0 TIOTEPAC EXEl IO EYYPAP] AlYOTEPN) KOl
Eavapalovpue otnv doun TIC EYYPOAPEC TIOL KOTOIKOUOOV OTO (UAO OUTO GaV va
EUTIOIVAV YO TIpWTN @opa (reinsertion). Kal otig dL0O TIEPITITWOEIC OEV TTOP-
OA&iTtOLPE VO AVEBOUPE TA PYOVOTIATIO TA OTIOI0 KOTERNKOMPE, OXI HOVO yid va
TIPOCOPUOCOUUE Ta MBRs OAAA KAl yiO va EAVOEKTEAETOULME, TIIBAVOTATA, TO
split § 10 reinsertion, KABWC HETABAAETAL TO TIANOOC TWV EYYPAPWV KOl GTOUG
TIPOYOVOULCG. ZTNV TPITN TIEPITITWOTN, dlaypA@ETal TEAEIWC N pila KAl ToV pOAO
¢ veag pidag Tov Ttaipvel To JOVASIKO Ttaudi TNG TTOAIAG.

MoAAG pTtopei va eImwbouv yia To TPOTI0 PE TOV OTtoio yivetal 1o split.
MNevika, o Guttman TIpoTteivel TPEIG TPOTIOVE, 0 KABEVACG OTIO TOUG OTI0IoLG
TIOPOULOIALEl DIAPOPETIKI) TaXVTNTA TIEPATWONG KOl OTIOTEAECUATIKOTNTA. TO
KOIVO TOUC OTOIXEIO, TAVIWG, €ival OTI TIPOCTIafoUV va eAAXICTOTIOI|COUV TOV

OYKO TIOU KaTaAOpBavouv T MBRs twv dU0 VEWV KOUPBwWV.

2,2 R* —tree

To 1990, técoepig MNeppavoi emivonoav pia Ttapaiiayr] tov R-tree, tnv
oTtoio Kol ovopacav R* — tree. To dIO@QOPETIKO NTAV OTI ETTAIPVAV HEPOC
TUO TIOAAG KPITAPIA, KPITAPIO TIoU deV EAAXIOTOTIOIOVCOV HOVO TOV OYKO TwWV

MBRs oAAG Kal TNV €TUKAALYPT TOLG KOBWCE Kal To storage utilization. Qg

Storage utilization opicetar: aver*-number-of*entries-per-node ym tov
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TIEPIOPICHUO TOL TIANBoULCG Twv splits, emvonoav tnv texVikn "forced reinser-
tion". Katd tnv TEXVIKI] auTr, avTi va yivel split Tovu kKoPBou, agaipoloav 10
30% 1wV eyypa@wv Tou, TIC OTIoieq avarpoobetav otnv dopr). Mg auTtov Tov
TPOTIO pEiwvav To TTANB0C Twv splits Kal Tavtoxpova BeATiwvav TNV CUPTIEPI-
POopA TNG dOPNC KABWC TETOIEC DUVAMIKEG OOUEG, TIAOXOUV ATIO OESOUEVA TIOU
€XOUV UTIEL TTOAIA.

TeAIKA aUTO TIOL KOTAPEPOAV Ol Meppavoi pe 1o R* — tree, Nrav pio PeATI-
Won o100 PECO aApPIBUO TIPOoBACEWY OTOV 3IOKO avd €pWINaN, MEXPL Kal 138%.
MpayuaTikA OAAG KAl CUVOETIKA (OPOIOUOPOP@NG KAl YKOOUGIOVIG KATAVOUNG)

OUVOAD YEWYPOAPIKWV dESOUEVWV OTIOOEIKVUOULV TNV UTIEPOXN TNG VEAC OOUNG.

2.3 ANOITTEC DLUVOAMUIKEC/NUIOLVOMUIKEC OOMEC OEIK-
X0d0xNoNng

Metd 1o 1983 kot 10 1990, spgaviotnkav TTANB0¢ dOPWV TIOU 0OV OKOTIO
gixav v PBeAtiwon TOL KAOOIKOU R-tree kal Tou R* — tree. EVOEIKTIKA
avagepoupe TNV Small-Tree-Large-Tree 1eXVIKr twv Li Chen, Rupesh Choubey
kal Elke A. Rundensteiner ([26]), T0 Merging R-tree twv BaciAn Baoditn,
ANEEavdpou NavottovAou kat Mavayiwtn Mmo&avn ([25]), To Hilbert R-tree
Twv Ibrahim Kamel kai Xprjotov ®aArovtoou ([16]), To LR-tree twv Mavayiwtn
Mrtoldavn, AXéEavdpou NavoTtovAou Kal MNavvn MavwAoTtovAou ([12]) kot TNV
bulk loading texvikn Twv Stefan Berchtold, Christian Bohm kai Hans-Peter

Kriegel ([7, 8)]).
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WeR-Tree

3.1 OewPNTIKN TEKUNPIiwoN

TeAIKOG OKOTIOC TNG SITIAWMATIKIG JOL £pyaciag ATav n BewpnTiKr KOTavonon
S0oPWV BEIKTOdOTNONG TIOAUAIACTATWY 3EA0PEVWVY, N LAOTIOINON Twv WeR-trees

Kal n oUyKpIoTr Toug JE To R* — tree.

Opiopog 1. 'Eva WeR-tree gival éva R-tree 1ou 01t0i0L OuWG Ol KOPPol gival og
I00ppOoTIia. ATIO TNV ABLN, £€vag KOPPBOCG L gival Gg ICOPPOTIID, OTAV TO AVTIOTOIXO
uTIOdEVOpPO Tv gival 10odlvapo pe éva bulk-loaded R-tree, ot1o idlo clvofo

dedopEVWVY Sv.

Avagépape oo 2.1, vwpitepa, oti ta global rebuildings eivail ToA0 akpid.
QOoT1000, pIa pEcn AVON TIOL CLVAVALEL TNV KOAR CUPTIEPIYOPA Tov rebuilding
Kol Tnv taxouTnta tou local rebalancing €ival n partial rebuilding uééodoc.
& QUTNV TNV TIEPITITWAN, £Va UTTOOEVOPO TNG OOUNG PTIAXVETAL OTIO TNV apxn,

otav oupuBei apdBacn. MNa va YTTOPECOUVPE VA EICAYOUVHE TNV TEXVIKI OUTH

15
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ota R* — trees , Oa TIPETTIEl VO Opicouvue TIOTE cULPBaivel TTapAaBaon KaBw(
TIAé0V TTIO YnAoi KOMPBOL TIPETIEL va £€X0LV YVWaOn yia 1o TIANOog Twv entries
TIOU €ival aTToOnNKeLPEVA OTa PUAC. MeydAo, AoITtov, poAo Oa TIaigel TO BApPOC

TWV KOUBWV.

Oplouog 2. 'Eotw éva WeR-tree. O KOO ToL d€vdpou v, he LYog hv Kal

Bapog nv Oa BpiokeTal og 1I00pPOTIIO OTAV KOOI HOVO OTAV

mhv C nv ™ MK

Emopévwg, ol TIpAgelg tng £€vBeong Kal TnNg agaipeong amAd Bpiockouv tov
TUO XOUNAO KOPBO (EEKIVIOVTOG OTIO KATIOIO UAO OTO OTtoi0 BPEBNKAV PE TOLG
TPOTIOUC TIOL €€NyNCOpE ota 2.1 Kal 2.2) 0 0TIoiog dev IKAVOTIOIEI TNV CLVOIKN
NG ICOPPOTIIAC KAl @TIAXVOULV ATIO TNV apXr TO UTTOOEVOPO TOL TIATEPA TOU.
AV 0 XapuNAOTEPOC KOUPBOC TTov PBpednke gival n pida tote yivetan bulk-loading

ge OAn NV doun.

Oewpnua 1. To eMPEPICPEVO KOOTOG TNG TIPOCHECNC KAl TNG agaipeong gival

O(log2n).

ATtodei€n. Oa atodeifoupe T0 Avw @EPAYUA YO TNV TIPAEn TNG TTPOCOHNKNG.
Opoiwg TIPOKUTITEL TO OTIOTEAECHO KO yia TNV agaipeon. ‘Eotw, Aoimtov, ot
BpNkKaue ToV XapNAOTEPO KOYPBO w TTou Ttapafiadel TNV ocuvenkn Kal gipaoTe
£TOIPJOL VO XTIOOULUE ATIO TNV OpXI TO LTTOOEVOPO TOL TIATEPA TOU, V, TIOU
Bpioketal e vYo¢ hiv. Emteidn 1o bulk-loading mov epappodlovpe dev aANALEL

10 LYOC TOL TIATEPQ, YiA TO BAPOC TOL NV PETA To rebuilding 1oxLeL OTI:

K ™ nv ™ Mhv. (3.1)
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Agv 10X0El, OPWG TO id10 yia xov KOPYPBo w. Av cuPBOoAIcCOLPE PE NW KO NW, Ta
Bdpn TOL APEOWC PETA TO TIpoNyoULpEevo rebuilding Kol auéowg TPV auTto To

rebuidling 101e 1I0XVEl OTL:
mhv~t N nw ~ Mhv~!

mh ~ nw ~ Mh

pMe h' > hv — 1. ETtTopévwg
nw-Nnw”™ mh' - Mhv~1 ~ (cMf - INT"™ KMK

e N ¢ N | kat K pia KatdAANAN un apvnukhg TTOPAUETPOC HE OWOTH
ETUIAOYI TNG TTIOPAUETPOU c.I ATIO TNV 3.1 TIPOKUTITEl OTL:

Tw  tiw  kfiy

AUTO onuaivel, ot PeTagL duo dladoxikwv rebuildings pecoAaBouv Q(n,,)
evBéoelq. 'Eotw, OTI PHETAEL dVO dladoxikwv rebuildings cuppaivouv X gv-

O¢oclq. TOTE TO ETUPEPIOPEVO KOOIOC OTNV XEIPOTEPN TIEPITITWON €ivat:

Xlogn + BL(nv) 0{Xlogn + BL{nv)) o(BL(nv))
0<-——-- XTT = n(x) =0(losn) + a{x)
= 0(logn) + = o(logn) + O1'I'T Xi) = O(logn) + O(HT}1)
u{nv) nv n

AopBavovtag LTTOYIV TOUG KOUPBOUG € OAO TO POVOTIATI, TEAIKA TO ETTIUEPIO-
pévo koatog toovtal pe 0{log2n) + O{lognBL*~). To kdotog tou rebuilding
TIOL XPNOIPOTIOIOVUE ,0pWG, €ival O(N) ,0TIOTE TIPOKUTITEL OTI TO {NTOVUEVO
eTIPEPIOPEVO KOaTOG givatl O(log2n). O

T ¢ = 0.4 kal M = 50 1ou €ival ouvrBeIg TTOoOTNTEG, TO K gival PN apvnTIKOg aplOuog

HEXPL bWOC hv = 4. ETedr}, KIOAAG, PE auTtd 10 VYOG, PTTOPOUVV va deIKTOd0TNOoUV TIAvw

amnod 312.000.000 dedopéva, HAC EVIIO@EPEL, AKOUA, N ACOUVUTITWTIKY BEWPNTIKA avAaAuor.
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3.2 Bulk Loading

ZKOTIOC OAwv Twv bulk loading teXxVikwv gival n TIAApNG aglottoinon tng
TIANPO@OopPIag TTou pag divouv Ta dedoUEVa. ZTIC OOPEG TIOU OVO@PEPOVTAL GTO
2.3, UTTAPXOULV OPKETEC TETOIEC TEXVIKEG. Epegiq davellbpuaoTte TNV AOYIKN TwV
Hilbert R trees ([16]) kal TNV Aoylkr] Ttou Tipoteivouv ol Stefan Berchtold,
Christian Bohm kot Hans-Peter Kriegel ([7, 8]). YAortoloUug, dnAadr, duo
eKOOXEC TwV WeR-trees, KABOe o amod TIG OTIOIEC XPNOIMOTIOIEI MIa aTIio TIG
mapamtavw Bulk Loading texvikég. H dopr pag ival EDEAIKTN PE TNV €vvola
OTl pyTTopEi va dexTtei oToladnToTE TETOId PEBOdO. H KATOOKELN OUWC TOUL
VEOU LTTOOEVOPOUL, ATIO TNV CTIYUN TIOU Ol TEXVIKEG QUTECG £XOUV TAEIVOUNOEL TA
dedopéva, gival kabapd Bepa Kal Asitovpyia twv WeR-Trees. Auto, dnAadn,
TIOU KAVOULV OTNV TipaypatikoTnTa ol bulk loading péBodol gival éva €idog

Tagivounong.1 2

1. H mpwin ekdoxn ta&ivopei Ta dedopeva pe Baon tnv Hilbert tiyn toug.
Ta dedopéva gival EKEivA TIOU KATOIKOUV OTO UTIOSEVIPO TIOU TIPOKEITAL
VO OVOKOTOOKELOOTEL. Av Kol autny n tagivopnon kootidel O(nlogn)
OTNV XEIPOTEPN TIEPITITWATN, HME KATIOIEC TPOTIOTIONOEIC KOTAPEPVOUHE
va KOaTiZel HOAIG 0(1). Av AGBOULPE LTTOWIV KOl TO OTI TIPETIEI VO PalEY-
oupE Ta dedouEva TIPIV TNV TAgIVOUNGN, TOTE TO CUVOAIKO KOOTO( E€ival
O (n). Katd KATTolo TPOTIO TIETLXAIVOUPE Ta dedouéva va gival Ndn Tag-

IVOPNUEVQ.

2. H de0tepn eival 10 TTOAOTIAOKN. Ta dedopéva Tagivopouvtal SIadoXIKA
og KAOg diaotacn PE TNV PBoriBsia touv quicksort. Agv pag evola@EPEl

OUWCG N TIANPNG Ta&ivounon. ©O&AovUE va KOBoupe KABE gopd to par-
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tition ot p€on, PEXPL TIOU TO TUNPOA AUTO VO TIEPIEXEL TO TIOAU M Oe-
dopEva KAaBwWC dev €XEl VONUA TIEPICCOTEPO OTIACIPO. Emouévwg, yivetal
Oa@EC OTI XpelalOPaoTe Kal Tov dldcnuo aAyoplBuo k-select, o omoiog
ETIIOTPEPEl TO OTOIXEIO TIOL TIPOCEYYIOCTIKA €ival To median &vog Ttiva-
Ka. AUTO ot péon Tmepimtwon koaTtidel cuvoAikd O(n) + O(n) = O(n).
DUCIKA, N XEIPOTEPN TIEPITITWAN €ival TIIO ACKXNHUN OAAA ETTEION] OOUAED-
OUUE PE PEYOAQ data sets, n PUECN XEIPOTEPN TIEPITITWON E€ival OPKETA

OVTITIPOCWTIEVTIKN).

‘Eotw o611 TIpOKEITAl va Eavaxtiooupe To LTI6devdpo Tu Tou opilel 0 KO-
Bog v. A@oU paléWoupue Ta OEBOPEVA EPAPPOLOVUE HIA OTIO TIG TIOPATIAVL
TEXVIKEC. TO GUVOAIKO KOOTOC OTIWG OVO@PEPAUE KOBOopIdeTal aTtd T0 KOOTOCG Va

dlatpegoupe OAa ta dedouéva, To OTToio gival;

logn A AT A
OTMw¢ vToBEcape oto 3.1.

ATIO eKei KAl TIEPA TO XTICIPO TOU OVOVEWMPEVOUL LTTOBEVIPOU TO OVOAOM-
Bavel n doun pog. H avaKataoKeLur TOu LTTOdEVIPOUL YiveTal pe top-down
TpOTIO.

Av OpEoWC TIPIV TO EAVOXTICIPO, TO LTIOBEVOPO eixe LYOC hv, To idlo VY-
0o¢ Ba €xel kal PYeTd 10 rebuilding. AuTO TTOU OAAAGZEL €ival 0 APIBUOG TwV
TIOdIV 08 KABE KOPPBO TOL VEOL ULTIOBEVOPOU. IKOTIOC MG €ival n OuUOoIOo-
pOop®EN KOTavour Twv 8edopévwyv oTa @UAA. [MpooTtaBolug, dnAadn, OAa Ta
VEQ QUAO va €XOULV TOV (310 aplBPO dedopévwv.

Mpv OUWC AVOAVCOUE TNV TEXVIKI PAG, A OOUE |IE TIOIOV TPOTIO PEYICTOTION-

eital 1o storage utilization. AuTo €ival éva PEyeBog IOV dEIXVEL TO TTIOCO KOAX
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a&loTTolI0VE TOLCG TIOPOLG TNG dOUNG KAT 0 TUTIOG Tou divetal oto 2.2. 'Eotw,
AoITtov, 0TI, TO LTTOdEVOPO Tu, DYoULC 2 KAl Bapoug Nu xTidetal amod TNV apxn.

O1 d00 akpaieg, AVCEIQ gival ol EENG

1. O koOppog v €xel, TTAéov, m uTtodevdpa(entries 1 fanout), oTtoTE Ta LA

YEUICOULV PE TOV PEYIOTO apIBPO dedopévwy (—).

2. O KOpPog v €xel, Aéov, M UTIOdeVdPA, OTIOTE T PUAA YEUI{OUV UE TOV

EAGXIOTO OPIOUO BedOPEVWV ().

2NV TIpWIn TEPITITWOT, To storage utilization Touv vTodévdpou Tu egival
M+mM ev* ot deutepn sivar M12 . Amtodeikvistal, eDKOAQ, OTI TO storage
utilization ™g MPWING TEPITITILWONG €ival To KOAUTEPO. [eviKd, €Tedn ota
TIO XOUNAA ETUTIESO €XOULUE TIOAD TIEPIOCCOTEPOULC KOPPBOULE, TIPOTIMOVUE va
YEMICOLPE ALTOUC TIPWTA YIOTI SIAPOPETIKA, B EiXOPE KAKI a&loTtoinon Twv
Topwv. H BeAtiwon, TAviwg, €ival yOpw amo €vav Ttapdyovia 2. AKoud, 1o
YEYOVOC OTI YEHICOUVME TO PUAO UE TO UEYIOTO apIBUO dedopevwy, odnyei Tnv
doun o€ To oLXVEG Ttapafdacelg apa Kal rebuildings. TMa autov tov Adyo
ETUAEYOUUE 0 KABE KOPPBO va £€XOUME TOV PECO apIPOPO LTTOdEVOPwWY. AUTO
€XEl 0OV ATIOTEAECHA, T QUAO va £X0ULV TiepiTtov M+M dedopéva, TTAavTa.

YTto8£TOoUuE, TP, OTI 0 KOPPBOCG V Bpioketal ag LYo hv kol £€xel Bapog Nu.
MeTd 1O XTiolhO TIPETIEl KABE KOPPOG, LYoLCG h Kal BAapoug n, va IKAVOTIOIEi
TNV oxéon;

mh ~ n ~ Mh

Av X gival 1o fanout Tou v, TOTE T0 BAPOG TWV TIAISIWV TOU TIPETIEI VA IKOVOTIOIET
TNV oxéon:

mhv~1 ~ — N M*"'-1
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yiati oAa ta Taudid poipalovial 10 BApog TOu TIOTEPA TOUCG Of ica PEPN.
Mevikd, dev €XEl vONUA, Ol KOPPBOL evog ETITIEOOL va PNV @IAOEEVOUV TO id10
TIANBO0C dedouevwv. OEAOLUE ion Kal dikaln PETOXEIPION KOl OTOLG EVOIAE-

o0uG KOPBouG. MPOKUTITEL, €TTOPEVWC, OTL

(3.2)

H mapamndvw oxéan, opwg, dev eyyudtal 0Tl To X Oa gival avapeoa amo m Kat
M, T1ou €ival amapafiootn cuvlnkn ota dévdpa NG R — tree olkoyEvelag.
E&AaANoOL, XpeidlovTal Ta Opla auTA YIa VO UTTOPE va KOBOPIoTEI N XwpnTIKOTN-

Ta TNG ogAidag (page capacity). Na autd n oxeéon 3.2 peTaoXnUaTieTal otV

max’/ —2% - m) € x © mmi—p2r, R
Mh n) X mhv~1

O {NToVpPEVOCG, ETIOPEVWCG, APIBUOG X Eival ETTOUEVWC
(3.3)

TIOL €ival, aKPIBWCE, 0 HECOC ETUTPETTOC APIOUOC Ttadiwv. Mapatnpeiote o1l
OAol o1 KOPPBol Tov idlov eTUTTEdOL €XOULV TO idl0 fanout emeldr OAa Ta TTAIdIA
poipadovtal To BApog TOU TIATEPA TOUCG OE {00 KOUATIAL.

AULT N apIBUNTIKI] TEXVIKI TIOU HOAIG TIEPIYPAYOAPE, TIOPOUCIAlEl PIa
ONUAVTIKA aduvopia: AOyw Tng dIaKPITNG OTPOYYyLAOTIOINONG TIOU LTTOCTNPI-
{0LVV OAeC Ol YAWOOEG TIPOYPOUHOTIONOU, T0O OQAAUO CUCCWPEVETAl PETA ATIO
ETTAVOANYPEIG, PE ATIOTEAECHA, EITE VO €XOUVUE O€ KATIOIO KOPPBO TIAvw amd M
entries €ite KATw ato TN. MNAPOAO TIOU Ol TIOPATIAVW OXECEIC EIVAl OWOTEG, OEV
AOPBAvVETAl LTIOYIV TO CEAAPA TWV APIBUNTIKWVY TIPAgewv. Ag SOUUE, AOITIOV,

TIWG AVVETAI TO TIPOPRANMA.



22 KE®DPANAIO 3. WER-TREE

'EXEl UTTOAOYIOTEL, AOITTIOV, 0 apPIBUOG X. To KABe €va amod Ta X TTaIdIA
@I\o&evei OedoPEVa KOl OXI OTIAA 7 OTIWG £XOVME LTTOBECEI PEXPL TWPO.
Emeidn X¢ TO TeEAeLTaio TTOIdI iOWC va TIPETIEl va @IAOEEVNOEL TTIO
TIOAAG a0 [yt) yta va pnv peivouv dedopeva ameéw. 'H, PTTOPEi To KATW
Oplo OUTO VA PNV IKAVOTIOIE(, AUECA, TNV OPICTEPI) AVICOTNTA TNG OXEONG
3.3. AuTO Opw¢ onuaivel Kai Tieavn mapdpacn oTig TtPolTIoBETEIC TNG dOUNG
KOBw¢ TiTtota dgv pag gyyudtal 0Tl T0 BAPOC Tou TeEAELTAIOL TTaIdIOL Nw 9a
IKOVOTIOIEl TNV OXEoN;

mhv~l  nw 3 Mhv~I

Tn oxéon aut] 9a TNV IKAVoTIoinoUCoE POVo av T0 BApog Nw LTTOAOYIOTOV
omw¢ Teptypaape oty 3.3. MNa va €ipaoTe 0waoToi, AoITIOV, TIPETIEL:

1. Av LNJ eival HIKPOTEPO aTtd 10 mhv~l va PEIWOOULHPE TO X (aUTog o
€AEYX0( yiveTal yia 10 TPWTo TtaIdi, dnAadr}, pOVO HIa Qopd oTnv apxr, &-
TIOUEVWC, TIAAL Ta BApn €ival Tiepitou ica yia OAa ta Ttaudid ).

2. AlO@QOpPETIKA, av 1 gival 1o e€etadopevo Taidi (1 N N X) 90 TIpETEl
va 1oxVEl N remaining — (X — ) |—J ~ Mhv~l kal av oxl eite va
MEIWVOULPE KATA €va To BApog Tou i-oTol TtaudloV eite va 10 avavoupe. To
remaining ava@EPETal 6To TIANB0C Twv OEOOUEVWVY TOU QIAOEEVEI 0 TTOTEPAG U
OAANG OEV €XOUV aKOUO avoTeBei og KATTOIO TTOIdi TOU.

Me tnv diladikaoia TIou €XOULUE TIEPIYPAPEl WG £dwW, LTIOAOyiovTtal Td
fanouts kat ta Bdapn Twv KOPBwv. To VEO LUTIOBEVOPO @TIAXVETAL ATIO TIAVW
TIPOC TO KAtw (top down approach), omwg 9a ekave évag depth first aAyopr-
Opog. Kal auto eival Aoylko yiaTi To BAapog evog KOUPBoL eEaptdtal Ao To
Bdapog Tou TATEPA TOU CUPEPWVA ME TNV TEXVIKN pOG. 'ETol, OTOV ETTIOKETT-

TOUOOTE €vav VEO KOUPO, €@ApPOlOLPE TNV dladIKacia autr, PHEXPL VO @Ta-
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OOUPE Ot KATIOIO @UAO, OTIOTE dNUIOUPYOULUE Ta index records ekeiva Tov
OEIKTOO0TOUV T CUYKEKPIUEVA JedOopPEV. ‘OTaV ETIICTPEPOUVHE ATIO KATIOIO
KOUBo, mpooapuolovpe ta MBRs toU yiaTi, TIAEOV, €XEl TEAEIWOEL TIANPWCG N

KOTOOKEUN TwV TTaIdIWV TOU.

3.3 ZU0ykplion pe to R* — tree

EkTteAéTOpE, €va HEYAAO TIANOOC TIEIPAUATWY TIOU ATIOOEIKVUOUV TNV OVWTE-
potnta Tou WeR — tree. Autd PBaciotnkav o€ 4 olOvoAa duodldoTaTwWY O€-
dopévwv. Ta Tpwta 2 €ival TIPAYUOTIKA GOVOAd, dnAadr, OedopEva TIOL
XPNOIYOTIOIOUVTAI OTIO TIPAYHUOTIKEG EQAPUOYEC. To 30 aroteAsital amod o-
HOIOpOpP@A KATAVEPNHEVO dedopEva Kal To 40 Ao OeOOUEVA TIOU OKOAOU-
Oouv zipfian kKatavoprn yia va UTIOPECOUPE VO EAEYEOUVHE TO EURASO KAl TNV
TTUKVOTNTA TWV OeS0UEVWV.

H doun pag yAitwvel gEXpl Kal 50% Tpocfacelg otov dioKo Kal OTou(
dUO0 TUTIOULC EPWTACEWV YIO TIPAYHATIKA deS0UEVA VW N avTioToiXn PBeAtiwon
Yyl T0 CUVOETIKA 3edOPEVA PTAVEL MEXPL KAl TO 90%. EKTEAECOUE TIEIPAPOTA
ME OVOMEIYPEVEC OKOAOUBIEC OTIO TIPOCOHETEIG, APAIPETEIC KAl EPWTIOEIC KAl
SlATIOTWOoAPE OTI N OOMPI MAC KAVEL MEXPL Kal 31% AlyOTeEPEC TIPOCPRACEIG
otov dioko. TMoAD kKoAd aroteAécpata divel kKal n scaleup analysis. E3dW
METPNOOUE TNV KAIJAKWOTN TOU TIANOOUG Twv TIPOCPRACEWY avda €PWTNON OF
OX€0N ME TO TIANBOC Twv dedopevwyv. H BeAtiwon eival yopw oto 43%. TENOG
1o storage utilization 1ouv eTuTLYXAVETAL AYyYilel TNV povada (98.1%) evw ota
R* — trees auto dev &eTepva t0 70%.

IMa Yo AETITOPEPETTEPN TIAPOLTIaaT TOCO0 TWV TIEIPOUATIKWY OTIOTEAECUATWV
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000 KOl NG TeKunpinong twv WeR-trees ,0 avayvwoTtng JUTTOPEI va avatpEEel

oto Mapdaptnua A.



Appendix A

WeR-Trees

A.l1 Introduction

Numerous applications, like Geographical Information Systems, CAD
and VLSI design have emerged during the last years that demand the effi-
cient manipulation of massive sets of geometric objects like points, lines,
areas or volumes in one or more dimensions. The databases that ac-
commodate this specific kind of objects are called spatial and they employ
indexes that must be able to answer a very diverse set of geometric queries,
like range queries, that ask for all objects lying within a given region, and
nearest-neighbor queries, that seek for the object closest to a given object.

The diversity of the queiy repertoire combined with the massive nature
of the involved datasets explains why practical, general purpose indices
like R-trees attract so much research interest [19], An R-tree is a height-
balanced tree which can be considered as an extension of B+-tree for

multi-dimensional data. The minimum bounding rectangle (MBR) of each

25
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geometric object, along with a pointer to the address where the object actu-
ally resides, are stored into the leaves. Each internal node entry consists of
a pair (pointer to a subtree T, MBR of T), with the MBR of a tree T defined
as the MBR enclosing all the MBRs stored in T. Like in B+-trees, each
node contains at least m and at most M entries, where m  M/2. On the
other hand, unlike B+-trees, a search query may activate several search
paths from the root to the R-tree leaves, resulting, in the worst case, in
a linear to the size of dataset performance just to retrieve a few objects.
Figure A. 1 illustrates an R-tree instance on a set S of rectangles.

Since its introduction in 1984, several variants of the R-tree have
been proposed, each one aiming at improving the performance by tun-
ing some parameters. Among the members of the “R-tree family"”, the most
prominent one is the R*-tree of Beckmann et al. [4], In R*trees a num-
ber of heuristics were applied, like forced re-insertions during insertions

(as in the case of deletions), buffering and optimization criteria for split-

@

T

[pIQIRT |

Figure A. 1: An R-tree instance.
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ting/merging nodes and adjusting the involved MBRs, so that R*-trees are
widely accepted as achieving the best performance. However, the construc-
tion of any R-tree version by using repeated insertions does not guarantee
the efficiency of the query performance; actually, the linear worst-case

query time complexity cannot even be avoided.

On the other hand, bulk-loading techniques for R-trees do exist which
capitalize on the priori knowledge of static datasets to build the structure
from scratch. In this way, better utilization and search performance are
achieved in the average case. This fact was the main motivation for the
present work. Next, we briefly discuss bulk loading: [16] use the Hilbert
sorting technique to impose a total order on the data and then build the
R-tree according to the resultant sequence. [18] extended this approach,
applying successive sorting and division of data into slabs for each of the
dimensions. [9, 3] proposed the building of indices with repeated block-
wise insertion, attaching auxiliary buffers to index pages. In [7] a recursive
top-down algorithm is employed, which, operating in a manner similar to
quick sort, determines the tree topology (height, fan-out, etc.) and uses
a split strategy to bisect the data in secondary storage and construct the
index directory in a depth-first, post order way. Finally, [2] introduced
the Priority R-tree which exhibit a bulk-loading algorithm utilizing priority
rectangles, in a way that an O((n/M)1_1/d + 71/M) worst case performance

is achieved, where M is the node capacity and d the data dimensionality.

Since it is easier to design data structures for static sets with good query
time, a great number of efforts introduced general methods for converting

static or semi-dynamic data structures into dynamic ones [5, 21, 20, 22],
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This kind of research has been initially conducted in the area of main
memory data structures. The methods can be classified into four main
categories: (i) partial rebuilding, which enforces tree balance with subtree
rebuilding: (ii) global rebuilding, allowing the structure to go out of balance
before rebuilding it again, using only the valid data; (iii) block-based seg-
mentation for query problems satisfying certain decomposability criteria;
and (iv) local balancing, which maintain query efficiency by local changes
to the tree structure. The applicability of (i)-(iv) depends on the specific
characteristics of the transformed data structures, for instance, the rate of
performance degradation or the ability to absorb insertion- or deletion-only

operations.

Examining disk-based indexing solutions, various mobile indexes [11]
in a loose way may be classified as members of the global rebuilding family,
because of the limited horizon validity restriction they exhibit. R-trees can
be considered of the last category, since their maintenance is based on
local node adjustments along the path leading to the insertion or deletion
location. On the other hand, the LR-tree [12] is an example of a block-
based segmented index; it consists of a logarithmic number of component
sub-structures, called blocks, organized as semi-dynamic, deletions-only

R-tree-like indexes.

Although LR-tree outperforms RMree, it comprises a forest of indexes
which may be difficult to be handled when one wants to combine it with
single R-tree-like structures, say, in a merging ([25]) orjoin ([10]) operation.
In this paper we use for the first time the technique of partial rebuildings

in order to generate Weighted R-tree (WeR-tree), a very practical and well-
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behaved single-tree member of the R-tree family. The rest of the paper is
organized as follows. Section A.2 presents the partial rebuilding paradigm
and Section A.3 introduces the WeR-trees. In Section A.4 we give the-
oretical bounds while Section A.5 provides experimental evidence on the
superiority of our scheme over R*-trees. Finally, Section A.6 concludes our

work.

A.2 The Partial Rebuilding Paradigm

Let us assume a tree structure index T already built for a set of items.
Whenever one wants to insert or delete a point into/from T, the balance
of the nodes along the involved search path changes. As a matter of fact
several of them may become out of balance. The criteria of balance are
specific to each data structure. For example, in B-trees, one node cannot
accommodate fewer than B/2 or more than B children, B being the node
capacity. Once violations are detected, balance must be restored.

The treatment of imbalance characterizes each data structure. B-trees,
for instance, remedy violations applying local adjustments; repeated split-
ting/merging of nodes along the search path is employed until invariants
are restored. In the partial rebuilding paradigm, the actions are more “el-
ementary"; one locates the highest problematic node v, and rebuilds the
subtree Tv rooted at. v in a perfectly balanced shape. “Perfect balance" is
determined exclusively by the underlying data structure definition and the
aiming properties.

In the above coarse description there is a missing point; the higher
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the unbalanced node v the bigger the subtree Tv and therefore the more
expensive its rebuilding. However, enforcing fewer expensive rebuildings
and more cheaper ones, good amortized update times can be achieved
[20, 22]. Usually this involves proving: (i) a lower bound on the nhumber of
updates performed on node v before becoming unbalanced since the last
rebuilding of TV and (iij) an upper bound on the rebuilding cost in terms
of the size of Tv. When (i) and (ii) are determined, the cost of rebuilding or
bulkloading is charged to the updates that caused the reconstruction so

that the total accumulated cost is bounded.

A.3 WeR-trees

A.3.1 Intuition

R*-tree is considered as the most efficient among the R-tree variations.
Based on a number of carefully designed heuristics, it addresses the defi-
ciencies of the original R-tree algorithms about query performance, improv-
ing the insertion phase. R*-tree introduces the forced reinsertion technique
which avoids splits by reinserting a fraction of entries from an overflowed
node. Regarding node splitting, R'-tree takes several factors into account:
overlap between nodes, node perimeters and storage utilization. Also, it
uses the plane-sweep technique to separate the node entries. However,
deletion and searching are identical to the respective R-tree algorithms.

The following theorem ([12]) summarizes the R*-tree performance:

Theorem 1. A set S of n geometric items can be accommodated in a R*-

tree using O(N/M) space so that a searchfor an item has linear worst-case
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time complexity, an insertion ofan item can be completed in 0(\ogM n x M)
worst-case 1/0 time, while, given the location ofan item, it can be deleted in
O(logM n x M) worst-case I/O time (M denotes the node capacity or block

size and I/O time refers to the number ofblock retrievals.)

Additionally, we must note that several analytical works for the query
operations do exist (see, for example, [15, 17, 23, 24]) and are characterized
by limited generality since they simply derive approximate estimates based
on a number of assumptions, like uniformity ofthe underlying distribution,
known aspect ratio of MBRs, etc. Only in [2] a static R-tree variant with
worst case performance guarantee is presented.

So, in the presence of actively changing datasets, R*-tree involves per-
formance tuning with forced reinsertion on internal nodes v, i.e., a pro-
cess that performs a kind of local, partial rebuilding of respective subtree.
This motivated investigating of the replacement of the original update al-
gorithms by carefully triggered perfect rebuilding of unbalanced subtrees.
Bulk-loading techniques, that build the structure from scratch and achieve
better utilization and search performance in the average case, exist for R-

trees and are adopted to achieve the desired perfect balance.

A.3.2 Definition

The WeR-trees are defined as follows:

Definition 1. A WeR-tree is an R-tree in which every internal node v is in
perfect balance. An internal node v is in perfect balance if the respective

subtree Tv is equivalent to a bulk-loaded R-tree on the same data set Sv.
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The invariant of the definition of the WeR-tree is enforced by carefully trig-
gered subtrees’rebuilding, as specified by the update operations. Contrary
to B+-trees, which can be reconstructed in a single way, R-tree-like struc-

tures permit a number of solutions, as we saw in Section A. 1.

Insertion. Figure A.2 illustrates the insertion algorithm. Given the item
p to be inserted, we firstly locate the leafl into which p should reside. The
search process depends on the kind of R-tree the adopted auxiliary bulk-
loading method constructs—this will be exemplified in Section A.5, where
a concrete experimental set up is described. Subsequently, we locate the
deepest ancestor v of | such that the rebuilding ofthe subtree Tw ofits child
w on the path towards the tree root r would have bigger height from the
other children of v, whereas the rebuilding of Tv would yield a subtree of
the same height as before the insertion ofp. In this way, we ensure that all
leaves are at equal distance from r, while node capacities are within limits.
Finally, the data items of Tv are passed to the bulk-loading procedure so
that a new space and query efficient subtree is built. Figure A.3 illustrates
a rebuilding example after inserting K. Since rebuilding at node w would
increase the height of Tw, node v is chosen and Tv is bulkloaded from
scratch.

Alternatively, one can use the insertion procedure described in Fig. A.4,

that enforces the following invariant:

Invariant 1. The subtree T,  ofevery node v of height hv accommodates Nv
items, such that (cM)hv ¥ Nv ¥ Mhv, with M being the page capacity and

¢ < 1 aproperly chosen constant.
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Algorithm INSERT(item p, node r)

Input: The item p to be inserted into the WeR-tree
with root node r

Output: The new instance of the WeR-tree

accommodating p

1. Find the leaf page | that should accommodate p
using the R-tree search procedure
2. Locate the deepest ancestor v of | such that

(i) the rebuilding of the subtree Tw of its child w
on the | — r path would have bigger height from

the other children of v; and
(i) the rebuilding of Tv would yield a subtree of
the same height as before the insertion

3. Rebuild Tv, using bulk-loading

end of Insert

Figure A.2: Insertion algorithm

Similarly to the previous algorithm, in the beginning we find the leafl that
should accommodate new item p. Next, we locate the highest ancestor v

of | respecting the invariant while having a child w with more descendants
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Figure A.3: A rebuilding example.

than the number the invariant suggests. After that, we substitute Tv with

a brand new bulk-loaded subtree.

Deletion. As usually, deletion (Fig. A.5) is symmetrical to the insertion
operation: After locating item p to be deleted, we locate the deepest ances-
tor v of accommodating leaf | such that the rebuilding of the subtree Tw

of its child w on the path towards root r would have smaller height from



A.3. WER TREES 35

Algorithm INSERT2(item p, node r)

Input: The item p to be inserted into the WeR-tree
with root node r

Output: The new instance of the WeR-tree

accommodating p

1. Find the leaf page | that should accommodate p
using the R-tree search procedure

2. Locate the highest ancestor v of | such that
(i) it fulfills invariant 1; and
(ii) its child w has more descendants than the
number the invariant indicates

3. Rebuild Tv, using bulk-loading

end of Insert2

Figure A.4: Alternative insertion algorithm

the other children of v, while the rebuilding of Tv would yield a subtree
of unaltered height, and therefore, all leaves are at the same level while
node capacities are within limits. Finally, Tv is rebuilt by the adopted
bulk-loading procedure.

Alternatively, one can use the deletion procedure of Figure A.6, that
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enforces invariant 1. Here, the goal is to find the highest ancestor v of
involved leafl such that obeys invariant 1, while having a child w with less

descendants than the number the invariant suggests.

A.4 Theoretical Bounds

Since R-trees have linear worst case performance, we cannot prove
better bounds. However, in the average case, one expects that the query
performance of the WeR-trees is better than R*-trees, since its subtrees are
regularly rearranged by the adopted bulk-loading procedure; Section A.5
provides evidence on this claim.

On the other hand, the reorganization is not prohibitively costly, as the

following theorem describes:

Theorem 2. The insertion and deletion procedures have O(logM nBC{n)/n)
amortized complexity, withn the number ofstored items, M the page capac-

ity and BC[n) the time complexity ofbulk-loading reconstruction.

Proof We will focus on the insertion procedure—the arguments about the
deletion case are symmetrical. Let v and w be the farther-target of the
rebuilding and the child whose height must be increased, respectively.
Since the height hv of v remains constant before and after bulk-loading,

the subtree Tv contains nv leaf pages, such that:

mh~~nv~Mh m=cM, c< 1

On the other hand, let nw,n'w be the number of leaf pages Tw contains

immediately after the last rebuilding of v and immediately before the new
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rebuilding of v, respectively. Then, the following equations hold:

mhv=x ~ nw ~ Mhv~I

mh ~ nv ~ Mh', hv—1</.

Hence, we have:

<, -nw ~ mv-MK~l A~ MM = M1

= ch'Mh _ Mhv—1 ~ kMh

with k a properly chosen constant. Therefore, between the last and the
new rebuilding, Q(n,) insertions took place. This means O(B£(nv)/nv)
amortized complexity per insertion due to node v. Summing up the amor-
tized costs along the leaf-to-root path, the claimed insertion complexity

follows. O

Usally, bulk-loading algorithms cost O(n logM n) time, which gives an
O(log”™ n) amortized update complexity. The previous proof was based
on the first version of insertion/deletion algorithms, which are height-
balanced ones, while the alternative versions can be characterized as weight-
balanced. In [13] the equivalence of height-balanced and weight-balanced
binary trees was proved. While R-trees are k-way trees, they can easily be
converted into binary ones. By extending the arguments of [13], one can
show that the same bounds also hold for the alternative versions of the

update operations.
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A.5 Performance Results

A.5.1 Experimental Set up and Heuristics

We have implemented all examined methods in C, using the same com-
ponents for the common tasks among the methods. All experiments were
performed on a machine with a Pentium IV processor at 2.3 GHz, with
1GB main memory and with a 10 GB hard-drive. We used both real and
synthetic data sets which contain two, three and four-dimensional points.
Specifically, we present results for the LB data set, which contains 53,000
two-dimensional points representing postal address at Long Beach, and the
NE data set, which contains 123,593 two-dimensional points representing
postal addresses of three metropolitan areas (New York, Philadelphia and
Boston). Both the aforementioned data sets have been used as bench-
marks in prior work (e.g., [16]). For synthetic data sets we present results
for two, three and four -dimensional points following uniform and zipfian
distribution. We used a default page size equal to 8KB (other page sizes
gave analogous results) . We also used the k-nearest neighbor algorithm
that is described in [6].

We tested our structure using two bulk-loading techniques. The first
one is inspired by the algorithms described in [16], that is, the data points
at every time are sorted according to their Hilbert value. The second tech-
nique is based on the approach that is described in [7] where the data
points that are about to be bulk loaded are sorted consequently in each
dimension according to their values. The first and the second implemen-

tation of our WeR-tree will be termed in the sequel as WeR-A and WeR-B
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respectively. Notice that in contrast with WeR-A, WeR-B sorts the data
points of a subtree that is going to be rebuilt, invoking the quicksort algo-
rithm, so we expect bigger execution times compared with these of R*-tree
and WeR-A tree. More over, we have to mention that the bulk load tech-
nique that is adopted by the WeR-B tree is not efficient for low dimenional
points as the author of [7] imply. The superiority of this technique is ap-
parent in data sets that contain points of dimensionality over than 8. In
our case, where the dimensionality is 4 at most, someone would expect
that WeR-B tree query performance is worst than R* tree. On the con-
trary, we will show that, althought the bulk loading technique of WeR-B
is not suggested for low dimenional points, the well tuned WeR structure
balances the bad performance of this technique.

The rebuilding in both implementations follows a top down fashion.
During its way down, the algorithm decides the appropriate nhumber of
entries (subtrees) at every node. If the current node v (with weight of Nv
data points ) has height hv then the fanout of this node is defined as:

= M) + max(-~7, m)
2 2

and the weight of each of the x subtrees is therefore defined as”™. With
this method, all the leaves have the same number of accommodated data
points and most important they are filled with the average allowed num-
ber. What we succeed is that we limit the bulk loading operations in the
presence of mixed update operations because the leaves are neither fully
nor least filled. During its way up, the top down algorithm adjust the
corresponding MBRs (and the Largest Hilbert Values in the case of WeR-A

implementation) as a classic depth-first algorithm would do.
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For convenience, we adopt the approach of prior work and consider
square-shaped range queries, characterized by the size of the square. We
are interested in the relative performance of the examined methods; there-
fore, we use a path-buffer (containing the current path from root to leaf)
but no other buffer space, to clearly examine the behavior of the methods

regardless the effect of buffering.

Experimental Results

Our first experiment considers range search queries on both real and
synthetic data sets that contain two dimensional points. As performance
measure we use the number of page accesses. We assume six query files
(Q1HQH6) of 100 intersection window queries each, all of them uniformly
distributed over the data space. The area of the window queries of each
query file (Q1)-(Q6) varies from 0.001%, 0.01%, 1%, 1.5%, 1.8% to 2%
relatively to the area of the whole data space. Figures A.7-A.8 illustrate
the results with respect to the range query size; the latter is expressed in
terms of the percentage (%) of the work space.

Considering the real data sets, we observe in Figure A.7 that WeR-
A and WeR-B trees clearly outperform R*-tree:savings vary between 20%
and 35%. Analogous conclusions can be drawn from the synthetic data set
with uniformly distributed points (Fig. A.8(a)), where gains reach 35%. For
the synthetic data set with points following a Zipf distribution (Fig. A.8(b)),
the WeR trees compares favorably to the R'-tree. The WeR-tree family
presents an improvement between 68% and 85%. This can be justified

by the demanding nature of the zipfian data set; the distribution of both
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the points and the queries is very skewed. On the other hand, WeR-trees

demonstrate better organization which evidently deals with this case.

Then, we studied the /c-nearest neighbor queries. We present results
only for the real data sets since the findings for the synthetic ones are
analogous. For every diiferent value of parameter k, we performed 100
queries with point queries uniformly distributed over the whole data space.
The average page accesses are given in Figure A.9. It is apparent that in
all cases, the WeR trees have better performance than the R*-tree; savings
vaiy from 27% to 49%. Even though the WeR-B invokes a inefficient bulk

loading technique, finally it is still better than the R*-tree.

Our next experiments evaluate the behavior of the update operations.
As performance main measure we use the wall-clock time. Update opera-
tors involve sorting, plane-sweeping of node entries (during R*-tree split),
finding the entries to be reinserted (during R*-tree reinsertion), calculating
the subtrees for bulk-loading (during WeR-A and WeR-B tree construction
phase) and other operators which require non-negligible CPU cost, addi-
tional to the I/O cost (which is not the case for search queries, where I/O
cost is the dominant one). Therefore, wall-clock time considers both these

two cost factors.

Insertion is the first operation we deal with. We give results only for the
NE data set; the other data sets led to the same conclusions. We tested
all methods by initially inserting a number of points from the data set.
and measuring the insertion time with respect to the number of remaining
points. The number of remaining points is expressed as percentage of

the total number of points in the data set. Figure A. 10(a) illustrates the
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findings. As depicted, the WeR trees outperform the R*-tree. Although
WeR trees spend much time to reconstruct the subtrees, they consume
much less time to find the appropriate leaf in where the new point will
reside. This is because the ChooseSubtreeO method of the R*-tree costs
O(pM log n) worst case while the relative method of the WeR-A tree only
O(M log n). Additionally, the good MBR packing of WeR structures leads
to fewer intersections and fewer activated paths. As a result, despite the
fact that WeR-B has an identical ChooseSubtreeO function to R*-tree and
invokes the time consuming quicksort algorithm, it is slower than R*~tree.
For this experiment we also give in Figure A. 11, the average number of

page accesses per operation, which follows the theoretical analysis.

Additionally, we investigated the execution time of the deletion opera-
tion. Figure A. 10(b) illustrates the results with respect to the number of
deleted points. Similarly as above, the WeR trees perform better than the

R*-tree.

Next, we simulated a typical workload with a sequence of mixed dele-
tion, insertion and range queiy operations in order to examine the impact of
interleaved updates on query performance. Initially, all the dataset points
were inserted and no deletion is performed. For the remaining points, the
ratio, C, of the number of inserted points to the number of deleted points
defines the experimental parameter. Here we must note that deletions
were carried out by removing already accommodated points. Interleaved
with insertions and deletions, range queries were performed and the aver-
age number of disk accesses needed by the range queries was determined.

Figure A. 12(a) illustrates the results with respect to C for the LB dataset.
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As shown, the WeR-A clearly outperforms the R'-tree, while the perfor-
mance of WeR-B is close to R* but still better: performance gains range

from 18.5% to 20.3%.

We also studied the scale-up properties of each method with respect to
the dataset size, using synthetic datasets which follow the uniform distri-
bution. Figure A. 12(b) depicts the results for the range search query (with
uniformly distributed windows queries from the Q6 query file) for increas-
ing number of points in the dataset (given in thousands). As shown, WeR
trees outperform R*-tree, since they require 24%-38% less page accesses.
Moreover, we observe that the performance of the WeR-A tree grows lin-
early with respect to the number of inserted data points in a slow way.
This can be explained as follows: the Hilbert values of the data points
are distributed uniformly over the whole data space because the Hilbert
value is a linear function of uniform variables (the coordinates of the data
points follow uniform distribution). This means that after consecutive re-
constructions, where the data points are sorted according to their Hilbert
value, the data points in the WeR-A tree are uniformly distributed in the
leaves. Hence, queries with uniformly distributed windows (and this is the
case) activate only a few paths. On the contrary, the packing of the R*-tree
does not guarantee that the data points are stored in the leaves uniformly.
As a result, the more the inserted points are, the more paths are activated

due to bad packing.

In addition, the WeR*-tree owes his good performance to the storage uti-
lization it achieves since the data points are distributed uniformly among

the leaves. While R*-trees use the 70.4% of their resources at most, WeR-A
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trees reach up to 98.1%. Figure A. 13 shows the storage utilization for all
the data sets used in our experiments, after the insertion of all the data
points in each case. The superiority of the WeR-A trees is obvious in every
data file. As far as the R*-tree is concerned, we observe a performance im-
provement in the uniform data file but still is much worst than the WeR-A

tree.

We also display, in Figure A. 14 and Figure A. 15, the range query per-
formance with the six query files (Q 1)-(Q6) with respect to the size of cache.
This is our last experiment involving two dimensional points with which we
want to show that WeR family trees are better independently of any cache
size. Here, we use the LB real data set. We also present, in Figure A. 16,
the k-nn query performance (using the NE real data set) with respect to
the size of cache as well to enhance our claim that the performance of WeR
trees is better in any cache size. Similar results appear for all data files in

both cases.

The rest of this section considers three and four-dimensional points.
We used a data set of 123,000 3D points that follow uniform distribution.
We measured the range query and k nearest neighbor performance with
respect to the cache size. For the range queries, we used nine query files
(Q1)-(Q9) that consist of 100 window queries each. Every window queiy in
each file is distributed uniformly over the whole data space and has vol-
ume equal to 0.001%, 0.01%, 1%, 1.5%, 1.8%, 2%, 5%, 10% and 20% of
the whole data volume respectively. Figure A. 17 and Figure A. 18 depicts
the results. Obviously, the WeR family trees have better performance com-

pared to this of R*-tree: saving gains vary from 23% to 32%. Analogous
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conclusions are derived from Figure A. 19, where the k nearest neighbor
performance is displayed with respect to cache size: gains reaches up to
35%.

Finally, we examined the performance of our structures regarding four
dimensional points. For the following experiments we used a data set that
contains 123,000 4D points. These points are distributed uniformly over
the whole data volume. We measured the range query performance with
the nine query files (Q1HQ9) that we have already defined in the above
paragraph, varying the size ofcache. The results are shown in Figure A.20.
We observe that WeR-A is much better than -tree.The performance of
WeR-B is similar to this of i?*-tree but still better. The superiority of
WeR-B is more obvious when large window queries take place. Saving
gains reaches up to 35%. Our last experiment invokes k nearest neighbor
queries. The results are depicted in Figure A.21 with respect to the cache
size. In all cases, WeR tree structures outperform the R*-tree. Savings

vary from 15% to 35%.

A.6 Conclusion

We presented a new scheme, called WeR-tree, for the dynamic manip-
ulation of large datasets. WeR-trees are the first members of the R-tree
family which employ the technique of partial rebuildings, i.e., a gradual
reconstruction of subtrees in a carefully triggered way. The update opera-
tions are theoretically investigated and proven to be of O(logM vBC{n)/n)

amortized complexity. Additionally, the basic geometric queries are thor-
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oughly tested with carefully designed experiments which confirm the ap-
plicability of the proposed method and demonstrate its superiority over
R*-trees: utilization reaches up to 98.1%, range query savings vary 20%-
35% on real data sets and 15% - 85% on synthetic data, knn queries are
27%-49% cheaper, during mixed operations performance savings are be-
tween 18.5% and 20.8%, while the scheme scales up linearly with respect
to the number of inserted points achieving 24%-38% less page acesses.
These gains resulted from a careful employment of a top-down reconstruc-
tion method. For future work, we would like to investigate how repeated
reconstruction can be tuned in conjunction with designing specially tai-
lored bulk-loading methods. Towards this end, merging subtree methods

([25]) may be proven helpful.
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Algorithm DELETE(item p, node r)

Input: The item p to be deleted from the WeR-tree
with root node r

Output: The new instance of the WeR-tree

with p deleted

1. Find the leaf page | that accommodates p
using the R-tree search procedure
2. Locate the deepest ancestor v of | such that

(i) the rebuilding of the subtree Tw of its child w
on the | — r path would have smaller height from

the other children ofv, and

(ii) the rebuilding of Tv would yield a subtree of

the same height as before the deletion

3. Rebuild Tv, using bulk-loading

end of Delete

Figure A.5: Deletion algorithm
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Algorithm DELETE2(item p, node r)

Input: The item p to be deleted into the WeR-tree
with root node r

Output: The new instance of the WeR-tree

with p deleted

1. Find the leaf page | that accommodates p
using the R-tree search procedure

2. Locate the highest ancestor v of | such that
(i) complies with invariant 1; and

(i) its child w has less descendants than the number

the invariant indicates

3. Rebuild Tv, using bulk-loading

end of Delete2

Figure A.6: Alternative deletion algorithm
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(b)

Figure A.7: Range queries on real data sets: (a) Long Beach, (b) North East.



50 APPENDIXA. WER-TREES

(b)

Figure A.8: Range queries on synthetic data sets: (a) Uniform, (b) Zipfian.
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Ibeach.dat

number of nn

(b)

Figure A.9: k nearest neighbor query: (a) Long Beach real data set. (b)

North East real data set.
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NE.dat

(b)

Figure A. 10: Update operations: (a) Insertions, (b) Deletions.

Figure A. 11: Average number of page accesses per insertion.
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mixed operations (Ibeach.dat)
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scale up (uniform data set)

(b)

Figure A. 12: Query performance with respect to: (a) Mixed operations, (b)

Scale-up.

Lbeach NE uniform zipfian

data set

Figure A. 13: Storage utilization.
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Figure A. 14: Range Queiy Performance with respect to: (a) 2KB cache, (b)

4KB cache.
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Figure A. 15: Range Query Performance with respect to:

(b) 64KB cache.

32KB cache
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64KB cache

query file

(b)

55

(a) 32KB cache,
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Figure A.16: k Nearest Neighbor Query Performance with respect to: (a)

2KB cache, (b) 64KB cache.
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8KB cache

©

Figure A. 17: Range Query Performance considering 3D points with respect

to: (a) 2KB cache, (b) 4KB cache, (c) 8KB cache.
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Figure A. 18: Range Query Performance considering 3D points with respect

to: (a) 32KB cache, (b) 64KB cache.
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Figure A. 19: k Nearest Neighbor Query Performance considering 3D points

with respect to: (a) 2KB cache, (b) 8KB cache, (c) 64KB cache.
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Figure A.20: Range Query Performance considering 4D points with respect

to: (a) 8KB cache, (b) 16KB cache, (c) 32KB cache, (d) 64KB cache.
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Figure A.21: k Nearest Neighbor Query Performance considering 4D points

with respect to: (a) 4KB cache, (b) 8KB cache, (c) 64KB cache.
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