Mostrar el registro sencillo del ítem

dc.creatorWang K., Chen H., Zhang X., Tong Y., Song S., Tsiakaras P., Wang Y.en
dc.date.accessioned2023-01-31T11:37:20Z
dc.date.available2023-01-31T11:37:20Z
dc.date.issued2020
dc.identifier10.1016/j.apcatb.2019.118468
dc.identifier.issn09263373
dc.identifier.urihttp://hdl.handle.net/11615/80777
dc.description.abstractDeveloping electrocatalysts with high activity and long-term stability towards oxygen reduction reaction (ORR) in acidic media is still an important topic. However, most of the already reported non-precious-metal catalysts (NPMCs) for ORR exhibit excellent performance in basic media. In the present work, we report a newly designed FeOx@graphitic carbon core-shell structured nanoparticles implanted in N-doped carbon matrix, with ordered and mesoporous structure (FeOx@GC-NOMC), which i) exhibits a better electrocatalytic activity in acidic media, ii) follows a four-electron ORR process, and iii) shows superior stability and inertness to methanol when compared with commercial Pt/C (20 wt %). These features are mostly attributed to the following two points: i) the ordered mesoporous carbon matrix can not only be favorable for the rapid transfer and active sites exposure, but also limit the embedded nanoparticles size and avoid its agglomeration, and ii) the high content of “Fe-N” active sites, and the core-shell structure of embedded nanoparticles (FeOx@GC) can protect the active sites from the corrosion of harsh conditions and ensure the long-term durability. It is found that the as-prepared FeOx@GC-NOMC shows one of the best H2-O2 PEMFC single-cell performances, among all thetested and currently reported NPMCs, as well as a long-term durability. More precisely, at an open circuit potential of ca. 1 V, the peak power density reaches up to 350 W g−1 (1050 mW cm-2 based on active area). A slight current decay is observed after a chronoamperometric test of 120 h. The above features make FeOx@GC-NOMC a promising potential alternative to Pt/C for ORR electrocatalysis in practical fuel cell applications. © 2019 Elsevier B.V.en
dc.language.isoenen
dc.sourceApplied Catalysis B: Environmentalen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075967256&doi=10.1016%2fj.apcatb.2019.118468&partnerID=40&md5=d21b13b1bed5a4f76507888ee9db97cc
dc.subjectCarbonen
dc.subjectCatalysisen
dc.subjectCore shell nanoparticlesen
dc.subjectCorrosion protectionen
dc.subjectDoping (additives)en
dc.subjectDurabilityen
dc.subjectElectrocatalysisen
dc.subjectElectrocatalystsen
dc.subjectElectrolytic reductionen
dc.subjectIron oxidesen
dc.subjectMesoporous materialsen
dc.subjectNanoparticlesen
dc.subjectPrecious metalsen
dc.subjectProton exchange membrane fuel cells (PEMFC)en
dc.subjectShells (structures)en
dc.subjectElectrocatalytic activityen
dc.subjectEmbedded nanoparticlesen
dc.subjectLong term stabilityen
dc.subjectMesoporous structuresen
dc.subjectNon-precious metal catalystsen
dc.subjectOpen circuit potentialen
dc.subjectOrdered mesoporous carbonen
dc.subjectSingle cell performanceen
dc.subjectOxygen reduction reactionen
dc.subjectElsevier B.V.en
dc.titleIron oxide@graphitic carbon core-shell nanoparticles embedded in ordered mesoporous N-doped carbon matrix as an efficient cathode catalyst for PEMFCen
dc.typejournalArticleen


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem