Edge AI for Industry 4.0: An Internet of Things Approach
Fecha
2020Language
en
Materia
Resumen
In this paper, we study the edge artificial intelligence (AI) techniques for industry 4.0. More specifically, we assume fog computing takes place on the edge of Industrial Internet of Things (IIoT) networks. We provide details about the three main edge AI techniques that can contribute to the future industrial applications. In particular, we deal with the active learning (AL), transfer learning (TL) and federated learning (FL), where AL is used to deal with the problem of unlabeled data, the TL is used to start training with a pre-trained model and the FL is a distributed solution to provide privacy. Finally, their combination is developed too that we name it federated active transfer learning (FATL). Simulation results are carried out that reveal the gain of each solution and their FATL combination. The deployment of FATL in IIoT networking standards such as IEEE P2805 is described too that can be extended as our future work. © 2020 ACM.