Εμφάνιση απλής εγγραφής

dc.creatorTsougos I., Vamvakas A., Kappas C., Fezoulidis I., Vassiou K.en
dc.date.accessioned2023-01-31T10:19:04Z
dc.date.available2023-01-31T10:19:04Z
dc.date.issued2018
dc.identifier10.1155/2018/7417126
dc.identifier.issn1748670X
dc.identifier.urihttp://hdl.handle.net/11615/80148
dc.description.abstractOver the years, MR systems have evolved from imaging modalities to advanced computational systems producing a variety of numerical parameters that can be used for the noninvasive preoperative assessment of breast pathology. Furthermore, the combination with state-of-the-art image analysis methods provides a plethora of quantifiable imaging features, termed radiomics that increases diagnostic accuracy towards individualized therapy planning. More importantly, radiomics can now be complemented by the emerging deep learning techniques for further process automation and correlation with other clinical data which facilitate the monitoring of treatment response, as well as the prediction of patient's outcome, by means of unravelling of the complex underlying pathophysiological mechanisms which are reflected in tissue phenotype. The scope of this review is to provide applications and limitations of radiomics towards the development of clinical decision support systems for breast cancer diagnosis and prognosis. © 2018 Ioannis Tsougos et al.en
dc.language.isoenen
dc.sourceComputational and Mathematical Methods in Medicineen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85055080068&doi=10.1155%2f2018%2f7417126&partnerID=40&md5=93ade3de8df0ea65f1de202dd5fb915b
dc.subjectDeep learningen
dc.subjectDiagnosisen
dc.subjectMedical imagingen
dc.subjectPatient treatmenten
dc.subjectBreast cancer diagnosisen
dc.subjectClinical decision support systemsen
dc.subjectComputational systemen
dc.subjectDiagnostic accuracyen
dc.subjectDifferential diagnosisen
dc.subjectLearning techniquesen
dc.subjectNumerical parametersen
dc.subjectPathophysiologicalen
dc.subjectDecision support systemsen
dc.subjectautomationen
dc.subjectbreast canceren
dc.subjectcancer diagnosisen
dc.subjectcancer prognosisen
dc.subjectclinical decision support systemen
dc.subjectdeep learningen
dc.subjectdiagnostic accuracyen
dc.subjectdifferential diagnosisen
dc.subjectdigital breast tomosynthesisen
dc.subjectfeature extractionen
dc.subjecthumanen
dc.subjectimage segmentationen
dc.subjectmammographyen
dc.subjectnuclear magnetic resonance imagingen
dc.subjectpattern recognitionen
dc.subjectpersonalized medicineen
dc.subjectpreoperative evaluationen
dc.subjectquantitative studyen
dc.subjectReviewen
dc.subjecttreatment responseen
dc.subjectautomated pattern recognitionen
dc.subjectbreast tumoren
dc.subjectdiagnostic imagingen
dc.subjectexpert systemen
dc.subjectfemaleen
dc.subjectmachine learningen
dc.subjectphenotypeen
dc.subjectproceduresen
dc.subjectprognosisen
dc.subjectsoftwareen
dc.subjectbiological markeren
dc.subjectBiomarkersen
dc.subjectBreast Neoplasmsen
dc.subjectDecision Support Systems, Clinicalen
dc.subjectDiagnosis, Differentialen
dc.subjectExpert Systemsen
dc.subjectFemaleen
dc.subjectHumansen
dc.subjectMachine Learningen
dc.subjectPattern Recognition, Automateden
dc.subjectPhenotypeen
dc.subjectPrecision Medicineen
dc.subjectPrognosisen
dc.subjectSoftwareen
dc.subjectHindawi Limiteden
dc.titleApplication of Radiomics and Decision Support Systems for Breast MR Differential Diagnosisen
dc.typeotheren


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής