Εμφάνιση απλής εγγραφής

dc.creatorSimeonidis K., Martinez-Boubeta C., Rivera-Gil P., Ashraf S., Samaras T., Angelakeris M., Tresintsi S., Mitrakas M., Parak W.J., Monty C., Balcells L.en
dc.date.accessioned2023-01-31T09:56:11Z
dc.date.available2023-01-31T09:56:11Z
dc.date.issued2017
dc.identifier10.1002/jctb.5187
dc.identifier.issn02682575
dc.identifier.urihttp://hdl.handle.net/11615/78983
dc.description.abstractBACKGROUND: Over recent decades, there has been increasing global concern over public health impacts related to water pollution with arsenic. With the development of nanotechnology, nanomaterials are being proposed as alternative agents for water treatment. This study focuses on the use of core-shell nanoparticles as secondary receptors able to operate under intense conditions and perform efficient yet environmentally friendly regeneration of conventional adsorbents. RESULTS: Hybrid MgO-coated Fe nanoparticles are proposed, optimized to achieve maximum arsenic uptake under a strong alkaline environment, such as the NaOH stream used to regenerate a typical oxy-hydroxide adsorption column. The magnetic response of these nanocomposites enables their recovery and recirculation by means of an external magnetic field. A scalable laboratory continuous flow system was designed as a proof-of-concept to provide maximum efficiency of the recirculating nanoparticles, as well as complete reuse of the alkaline washing solution. A risk assessment scheme was conducted to evaluate the potential environmental impact of nanoparticle residues by testing the toxicity of arsenic-loaded materials in RTgill-W1 cells and their inertization into concrete building blocks. CONCLUSION: The presented methodology illustrates a way to incorporate nanoparticles in water technology taking advantage of their surface activity and magnetic separation potential. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industryen
dc.language.isoenen
dc.sourceJournal of Chemical Technology and Biotechnologyen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85010739246&doi=10.1002%2fjctb.5187&partnerID=40&md5=a5262dc3b6a51516b114d470c31f5e78
dc.subjectAdsorptionen
dc.subjectAlkalinityen
dc.subjectArsenicen
dc.subjectConcrete testingen
dc.subjectEnvironmental impacten
dc.subjectHeavy metalsen
dc.subjectMagnetic separationen
dc.subjectMagnetismen
dc.subjectMaterials testingen
dc.subjectNanofiltrationen
dc.subjectNanoparticlesen
dc.subjectProcess engineeringen
dc.subjectRisk assessmenten
dc.subjectWateren
dc.subjectWater filtrationen
dc.subjectWater pollutionen
dc.subjectWater treatmenten
dc.subjectAdsorption columnsen
dc.subjectAlkaline environmenten
dc.subjectContinuous-flow systemen
dc.subjectCore-shell nanoparticlesen
dc.subjectEnvironmental chemistryen
dc.subjectExternal magnetic fielden
dc.subjectSecondary receptorsen
dc.subjectSeparation potentialen
dc.subjectNanomagneticsen
dc.subjectarsenicen
dc.subjecthydroxideen
dc.subjectiron nanoparticleen
dc.subjectmagnesium oxide nanoparticleen
dc.subjectnanoparticleen
dc.subjectunclassified drugen
dc.subjectArticleen
dc.subjectenvironmental impacten
dc.subjecthybriden
dc.subjectleachingen
dc.subjectmagnetic fielden
dc.subjectmagnetic separationen
dc.subjectnanofiltrationen
dc.subjectregenerationen
dc.subjectrisk assessmenten
dc.subjectJohn Wiley and Sons Ltden
dc.titleRegeneration of arsenic spent adsorbents by Fe/MgO nanoparticlesen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής