dc.creator | Ravanidis S., Grundler F., de Toledo F.W., Dimitriou E., Tekos F., Skaperda Z., Kouretas D., Doxakis E. | en |
dc.date.accessioned | 2023-01-31T09:51:17Z | |
dc.date.available | 2023-01-31T09:51:17Z | |
dc.date.issued | 2021 | |
dc.identifier | 10.1016/j.fct.2021.112187 | |
dc.identifier.issn | 02786915 | |
dc.identifier.uri | http://hdl.handle.net/11615/78473 | |
dc.description.abstract | It is well-established that long-term fasting improves metabolic health, enhances the total antioxidant capacity and increases well-being. MicroRNAs oversee energy homeostasis and metabolic processes and are widely used as circulating biomarkers to identify the metabolic state. This study investigated whether the expression levels of twenty-four metabolism-associated microRNAs are significantly altered following long-term fasting and if these changes correlate with biochemical and redox parameters in the plasma. Thirty-two participants with an average BMI of 28 kg/m2 underwent a 10-day fasting period with a daily intake of 250 kcal under medical supervision. RT-qPCR on plasma small-RNA extracts revealed that the levels of seven microRNAs (miR-19b-3p, miR-22-3p, miR-122-5p, miR-126-3p, miR-142-3p, miR-143-3p, and miR-145-5p) were significantly altered following fasting. Importantly, the expression levels of these microRNAs have been consistently shown to change in the exact opposite direction in pathological states including obesity, diabetes, nonalcoholic steatohepatitis, and cardiovascular disease. Linear regression analyses revealed that among the microRNAs analyzed, anti-inflammatory miR-146-5p expression displayed most correlations with the levels of different biochemical and redox parameters. In silico analysis of fasting-associated microRNAs demonstrated that they target pathways that are highly enriched for intracellular signaling such mTOR, FoxO and autophagy, as well as extracellular matrix (ECM) interactions and cell-senescence. Overall, these data are consistent with a model in which long-term fasting engages homeostatic mechanisms associated with specific microRNAs to improve metabolic signaling regardless of health status. © 2021 Elsevier Ltd | en |
dc.language.iso | en | en |
dc.source | Food and Chemical Toxicology | en |
dc.source.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85104662161&doi=10.1016%2fj.fct.2021.112187&partnerID=40&md5=3cbfbf41159d0134a4c540004ebc9de4 | |
dc.subject | glucose | en |
dc.subject | mammalian target of rapamycin | en |
dc.subject | microRNA | en |
dc.subject | microRNA 122 5p | en |
dc.subject | microRNA 126 3p | en |
dc.subject | microRNA 142 3p | en |
dc.subject | microRNA 143 3p | en |
dc.subject | microRNA 145 5p | en |
dc.subject | microRNA 19b 3p | en |
dc.subject | microRNA 22 3p | en |
dc.subject | transcription factor FOXO | en |
dc.subject | triacylglycerol | en |
dc.subject | unclassified drug | en |
dc.subject | circulating microRNA | en |
dc.subject | adult | en |
dc.subject | Article | en |
dc.subject | autophagy (cellular) | en |
dc.subject | biochemical analysis | en |
dc.subject | bioinformatics | en |
dc.subject | body mass | en |
dc.subject | caloric intake | en |
dc.subject | cardiovascular disease | en |
dc.subject | cell aging | en |
dc.subject | cholesterol blood level | en |
dc.subject | clinical feature | en |
dc.subject | computer analysis | en |
dc.subject | controlled study | en |
dc.subject | correlation analysis | en |
dc.subject | diabetes mellitus | en |
dc.subject | diastolic blood pressure | en |
dc.subject | fasting | en |
dc.subject | female | en |
dc.subject | gene expression | en |
dc.subject | gene expression level | en |
dc.subject | gene function | en |
dc.subject | glucose blood level | en |
dc.subject | health status | en |
dc.subject | homeostasis | en |
dc.subject | human | en |
dc.subject | human cell | en |
dc.subject | intracellular signaling | en |
dc.subject | laboratory test | en |
dc.subject | linear regression analysis | en |
dc.subject | male | en |
dc.subject | metabolism | en |
dc.subject | mTOR signaling | en |
dc.subject | nonalcoholic steatohepatitis | en |
dc.subject | obesity | en |
dc.subject | oxidation reduction reaction | en |
dc.subject | reverse transcription polymerase chain reaction | en |
dc.subject | systolic blood pressure | en |
dc.subject | toxicity | en |
dc.subject | triacylglycerol blood level | en |
dc.subject | waist circumference | en |
dc.subject | adolescent | en |
dc.subject | aged | en |
dc.subject | blood | en |
dc.subject | diet restriction | en |
dc.subject | gene expression profiling | en |
dc.subject | middle aged | en |
dc.subject | oxidative stress | en |
dc.subject | physiology | en |
dc.subject | signal transduction | en |
dc.subject | young adult | en |
dc.subject | Adolescent | en |
dc.subject | Adult | en |
dc.subject | Aged | en |
dc.subject | Circulating MicroRNA | en |
dc.subject | Fasting | en |
dc.subject | Female | en |
dc.subject | Gene Expression Profiling | en |
dc.subject | Humans | en |
dc.subject | Male | en |
dc.subject | Middle Aged | en |
dc.subject | Oxidative Stress | en |
dc.subject | Signal Transduction | en |
dc.subject | Young Adult | en |
dc.subject | Elsevier Ltd | en |
dc.title | Fasting-mediated metabolic and toxicity reprogramming impacts circulating microRNA levels in humans | en |
dc.type | journalArticle | en |