dc.creator | Ogbughalu O.T., Vasileiadis S., Schumann R.C., Gerson A.R., Li J., Smart R.S.C., Short M.D. | en |
dc.date.accessioned | 2023-01-31T09:41:00Z | |
dc.date.available | 2023-01-31T09:41:00Z | |
dc.date.issued | 2020 | |
dc.identifier | 10.1016/j.jhazmat.2020.122338 | |
dc.identifier.issn | 03043894 | |
dc.identifier.uri | http://hdl.handle.net/11615/77372 | |
dc.description.abstract | Acid and metalliferous drainage (AMD) remains a challenging issue for the mining sector. AMD management strategies have attempted to shift from treatment of acid leachates post-generation to more sustainable at-source prevention. Here, the efficacy of microbial–geochemical at-source control approach was investigated over a period of 84 weeks. Diverse microbial communities were stimulated using organic carbon amendment in a simulated silicate-containing sulfidic mine waste rock environment. Mineral waste in the unamended leach system generated AMD quickly and throughout the study, with known lithotrophic iron- and sulfur-oxidising microbes dominating column communities. The organic-amended mineral waste column showed suppressed metal dissolution and AMD generation. Molecular DNA-based next generation sequencing confirmed a less diverse lithotrophic community in the acid-producing control, with a more diverse microbial community under organic amendment comprising organotrophic iron/sulfur-reducers, autotrophs, hydrogenotrophs and heterotrophs. Time-series multivariate statistical analyses displayed distinct ecological patterns in microbial diversity between AMD- and non-AMD-environments. Focused ion beam-TEM micrographs and elemental mapping showed that silicate-stabilised passivation layers were successfully established across pyrite surfaces in organic-amended treatments, with these layers absent in unamended controls. Organic amendment and resulting increases in microbial abundance and diversity played an important role in sustaining these passivating layers in the long-term. © 2020 Elsevier B.V. | en |
dc.language.iso | en | en |
dc.source | Journal of Hazardous Materials | en |
dc.source.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85080081324&doi=10.1016%2fj.jhazmat.2020.122338&partnerID=40&md5=52e2e72e35ccb5abd9044fb4d5742d8b | |
dc.subject | Biogeochemistry | en |
dc.subject | Electron microscopy | en |
dc.subject | Gene encoding | en |
dc.subject | Ion beams | en |
dc.subject | Iron | en |
dc.subject | Microorganisms | en |
dc.subject | Multivariant analysis | en |
dc.subject | Passivation | en |
dc.subject | Pyrites | en |
dc.subject | Silicates | en |
dc.subject | Solid wastes | en |
dc.subject | Time series analysis | en |
dc.subject | Transmission electron microscopy | en |
dc.subject | Management strategies | en |
dc.subject | Microbial abundances | en |
dc.subject | Microbial communities | en |
dc.subject | Microbial diversity | en |
dc.subject | Microbial ecology | en |
dc.subject | Multivariate statistical analysis | en |
dc.subject | Next-generation sequencing | en |
dc.subject | Organic amendments | en |
dc.subject | Organic carbon | en |
dc.subject | acid | en |
dc.subject | aluminum | en |
dc.subject | calcium | en |
dc.subject | iron | en |
dc.subject | magnesium | en |
dc.subject | organic carbon | en |
dc.subject | potassium | en |
dc.subject | pyrite | en |
dc.subject | RNA 16S | en |
dc.subject | silicate | en |
dc.subject | silicone | en |
dc.subject | sodium | en |
dc.subject | sulfur | en |
dc.subject | ferric ion | en |
dc.subject | ferric oxyhydroxide | en |
dc.subject | pyrite | en |
dc.subject | sulfide | en |
dc.subject | biogeochemistry | en |
dc.subject | bioremediation | en |
dc.subject | dissolution | en |
dc.subject | electron microscopy | en |
dc.subject | microbial activity | en |
dc.subject | mine waste | en |
dc.subject | molecular analysis | en |
dc.subject | oxidation | en |
dc.subject | pyrite | en |
dc.subject | silicate | en |
dc.subject | soil remediation | en |
dc.subject | sulfide | en |
dc.subject | acid and metalliferous drainage | en |
dc.subject | Actinobacteria | en |
dc.subject | Article | en |
dc.subject | Bacteroidetes | en |
dc.subject | biosolid | en |
dc.subject | cyanobacterium | en |
dc.subject | dissolution | en |
dc.subject | DNA extraction | en |
dc.subject | Firmicutes | en |
dc.subject | high throughput sequencing | en |
dc.subject | inoculation | en |
dc.subject | kinetic leach column | en |
dc.subject | leaching | en |
dc.subject | microbial community | en |
dc.subject | microbial diversity | en |
dc.subject | mine waste | en |
dc.subject | nonhuman | en |
dc.subject | oxidation | en |
dc.subject | Proteobacteria | en |
dc.subject | soil amendment | en |
dc.subject | time series analysis | en |
dc.subject | waste management | en |
dc.subject | bacterium | en |
dc.subject | bacterium identification | en |
dc.subject | chemistry | en |
dc.subject | classification | en |
dc.subject | genetics | en |
dc.subject | industrial waste | en |
dc.subject | metabolism | en |
dc.subject | microbiology | en |
dc.subject | mining | en |
dc.subject | oxidation reduction reaction | en |
dc.subject | pH | en |
dc.subject | prevention and control | en |
dc.subject | procedures | en |
dc.subject | Bacteria | en |
dc.subject | Bacterial Typing Techniques | en |
dc.subject | Ferric Compounds | en |
dc.subject | High-Throughput Nucleotide Sequencing | en |
dc.subject | Hydrogen-Ion Concentration | en |
dc.subject | Industrial Waste | en |
dc.subject | Iron | en |
dc.subject | Mining | en |
dc.subject | Oxidation-Reduction | en |
dc.subject | Silicates | en |
dc.subject | Soil Microbiology | en |
dc.subject | Sulfides | en |
dc.subject | Elsevier B.V. | en |
dc.title | Role of microbial diversity for sustainable pyrite oxidation control in acid and metalliferous drainage prevention | en |
dc.type | journalArticle | en |