Εμφάνιση απλής εγγραφής

dc.creatorGarcía-García F., Corral A., Iribarne L., Vassilakopoulos M.en
dc.date.accessioned2023-01-31T07:39:43Z
dc.date.available2023-01-31T07:39:43Z
dc.date.issued2020
dc.identifier10.1016/j.future.2019.10.037
dc.identifier.issn0167739X
dc.identifier.urihttp://hdl.handle.net/11615/71959
dc.description.abstractSpatialHadoop is an extended MapReduce framework supporting global indexing techniques that partition spatial datasets across several machines and improve spatial query processing performance compared to traditional Hadoop systems. SpatialHadoop supports several spatial operations (e.g., K Nearest Neighbor search, range query, spatial intersection join, etc.) and seven spatial partitioning techniques (Grid, Quadtree, STR, STR+, k-d tree, Z-curve and Hilbert-curve). Distance-Join Queries (DJQs), like the K Nearest Neighbors Join Query (KNNJQ) and K Closest Pairs Query (KCPQ), are common operations used in numerous spatial applications. DJQs are costly operations, since they combine spatial joins with distance-based search. Data partitioning improves the management of large datasets and speeds up query performance. Therefore, performing DJQs efficiently with new partitioning methods in SpatialHadoop is a challenging task. In this paper, a new data partitioning technique based on Voronoi-Diagrams is designed and implemented in SpatialHadoop. Moreover, improved KNNJQ and KCPQ MapReduce algorithms, using the new partitioning mechanism, are also designed and developed for SpatialHadoop. Finally, the results of an extensive set of experiments with real-world datasets are presented, demonstrating that the new partitioning technique and the improved DJQ MapReduce algorithms are efficient, scalable and robust in SpatialHadoop. © 2019 Elsevier B.V.en
dc.language.isoenen
dc.sourceFuture Generation Computer Systemsen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85074421248&doi=10.1016%2fj.future.2019.10.037&partnerID=40&md5=8c6409b64dd86d50ca2f00fc2b991680
dc.subjectComputational geometryen
dc.subjectDatabase systemsen
dc.subjectGraphic methodsen
dc.subjectIndexing (materials working)en
dc.subjectLarge dataseten
dc.subjectMotion compensationen
dc.subjectNearest neighbor searchen
dc.subjectQuery processingen
dc.subjectText processingen
dc.subjectData partitioningen
dc.subjectK-closest pairsen
dc.subjectK-nearest neighborsen
dc.subjectMap-reduceen
dc.subjectSpatial queriesen
dc.subjectSpatialHadoopen
dc.subjectData handlingen
dc.subjectElsevier B.V.en
dc.titleImproving Distance-Join Query processing with Voronoi-Diagram based partitioning in SpatialHadoopen
dc.typejournalArticleen


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής