Nonparametric modelling of biodiversity: Determinants of threatened species
Abstract
This study uses a sample of 71 countries and nonparametric quantile and partial regressions to model a number of threatened species (reptiles, mammals, fish, birds, trees, plants) in relation to various economic and environmental variables (GDPc, CO(2) emissions, agricultural production, energy intensity, protected areas, population and income inequality). From the analysis and due to high asymmetric distribution of the dependent variables it seems that a linear regression is not adequate and cannot capture properly the dimension of the threatened species. We find that using OLS instead of non-parametric techniques over- or under-estimates the parameters which may have serious policy implications. (C) 2010 Society for Policy Modeling. Published by Elsevier Inc. All rights reserved.