
UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Automatic Service Quality Assessment in IoT Platforms

and Ecosystems

Diploma Thesis

Elefterios Chatziefraimidis

Supervisor: Aspassia Daskalopulu

Volos 2021

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Automatic Service Quality Assessment in IoT Platforms

and Ecosystems

Diploma Thesis

Elefterios Chatziefraimidis

Supervisor: Aspassia Daskalopulu

Volos 2021

iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Αυτόματη αξιολόγηση της ποιότητας των υπηρεσιών σε

πλατφόρμες και οικοσυστήματα IoT

Διπλωματική Εργασία

Ελευθέριος Χατζηευφραιμίδης

Επιβλέπουσα: Ασπασία Δασκαλοπούλου

Βόλος 2021

v

Approved by the Examination Committee:

Supervisor Aspassia Daskalopulu

Assistant Professor, Department of Electrical and Computer En

gineering, University of Thessaly

Member Michael Vassilakopoulos

Associate Professor, Department of Electrical and Computer En

gineering, University of Thessaly

Member Georgios Stamouli

Professor, Department of Electrical and Computer Engineering,

University of Thessaly

Date of approval: 2322020

vii

Acknowledgements

I would like to express my sincere gratitude to Prof. Aspasia Daskalopoulou, and also

to Prof. Georgios Stamoulis and Prof. Michael Vassilakopoulos for the continuous guidance

and support. Besides the supervising committee, i would like to thankDr. Charilaos Akasiadis

and Dr. Constantine D. Spyropoulos for providing me with the opportunity to participate in

the SYNAISTHISIS project, and assisting me at every step until the completion of my thesis.

Finally, i would like to thank all my professors and every person that encourage and help me

the past years at the University.

ix

DISCLAIMER ON ACADEMIC ETHICS

AND INTELLECTUAL PROPERTY RIGHTS

«Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work /

contributions of third parties for which the permission of the authors / beneficiaries is re

quired and are not a product of partial or complete plagiarism, while the sources used are

limited to the bibliographic references only and meet the rules of scientific citing. The points

where I have used ideas, text, files and / or sources of other authors are clearly mentioned

in the text with the appropriate citation and the relevant complete reference is included in

the bibliographic references section. I fully, individually and personally undertake all legal

and administrative consequences that may arise in the event that it is proven, in the course of

time, that this thesis or part of it does not belong to me because it is a product of plagiarism».

The declarant

Elefterios Chatziefraimidis

2322021

x

Abstract

Internet of Things (IoT) is a rapidly increasing technology. It is a concept that encom

passes various objects and methods of communication to exchange information and allow

cyberphysical systems to realize their operation. This can be achieved by networks of phys

ical objects or things embedded with communication, sensing processing, and actuating ca

pabilities.

Nowadays billions of devices are interconnected and integrated as web services which

can be used by developers to build complex applications. The definition of the Internet of

things has evolved due to the convergence of multiple technologies, realtime analysis, ma

chine learning, commodity sensors, and embedded systems. But in an Internet of Things (IoT)

enviroment, the existence of a huge number of heterogeneous devices, which are potentially

resourceconstrained has led to quality of service (QoS) concerns.

In this thesis, we examine and evaluate the current state of the art in the domain of auto

matic QoS/QoE and different approaches and implementations that are proposed by several

researchers. Some of these studies provide a theoretical approach from a platform perspec

tive, while others focus on establishing a mechanism that achieves the appropriate QoS/QoE

level. Therefore, using the above implementations and theoretical proposals, we design and

implement our mechanism that belongs to the network layer techniques and provides an ef

fective QoS level using outlier detection techniques. Our system captures the traffic of each

service that is running on the SYNAISTHISIS IoT platform, and after that features extrac

tion, we train a model using various outlier detection algorithms. Next, using this model, we

identify the outliers that will reduce the QoS level, and also decrease the performance of the

IoT platform.

xi

Περίληψη

Το διαδίκτυο των πραγμάτων (Internet of Things IoT) αποτελεί μια αναπτυσσόμενη τε

χνολογία. Η γενικότερη ιδέα περιλαμβάνει αντικείμενα και μεθοδολογίες επικοινωνίας για

την ανταλλαγή πληροφορίας και την υποστήριξη της λειτουργίας κυβερνοφυσικών συστη

μάτων. Το παραπάνω μπορεί να επιτευχθεί με την χρήση δικτύων από φυσικά αντικείμενα

με ενσωματωμένα συστήματα για επικοινωνία, λήψη και επεξεργασία σημάτων.

Σήμερα δισεκατομμύρια συσκευές είναι διασυνδεδεμένες και ενσωματωμένες ως διαδι

κτυακές υπηρεσίες και μπορούν να χρησιμοποιηθούν από μηχανικούς (developers) για την

δημιουργία πιο σύνθετων εφαρμογών. Ο ορισμός του διαδικτύου των πραγμάτων (Internet

of Things IoT) έχει εξελιχθεί εξαιτίας της σύγκλισης πολλαπλών τεχνολογιών, της αναλύ

σης σε πραγματικό χρόνο, της μηχανικής μάθησης και των ενσωματωμένων συστημάτων και

αισθητήρων. Βέβαια σε ένα περιβάλλον που βασίζεται σε διαδίκτυο πραγμάτων, η ύπαρξη

πολλαπλών ετερογενών συσκευών με περιορισμένες δυνατότητες οδηγεί σε προβληματισμό

σχετικά με την ποιότητα των υπηρεσιών (QoS).

Σε αυτή την διπλωματική, θα εξετάσουμε την τωρινή κατάσταση του τομέα της αυτόμα

της παροχής ποιότητας υπηρεσιών και εμπειρίας (QoS/QoE), ποικίλες προσεγγίσεις και υλο

ποιήσεις που προτάθηκαν από πολλούς ερευνητές. Κάποιες από αυτές τις έρευνες παρέχουν

μια θεωρητική προσέγγιση όσον αφορά την οπτική της πλατφόρμας, ενώ άλλες εστιάζουν

στην δημιουργία ενός μηχανισμού που επιτυγχάνει το απαραίτητο επίπεδο ποιότητας υπηρε

σιών και εμπειρίας (QoS/QoE). Στην συνέχεια, βασισμένοι στα παραπάνω θα σχεδιάσουμε

ένα μηχανισμό που ανήκει στην κατηγορία των δικτυακών τεχνικών που παρέχει ένα απο

δοτικό επίπεδο ποιότητας υπηρεσιών (QoS) χρησιμοποιώντας τεχνικές για εντοπισμό ασυ

νήθιστων συμπεριφορών. Το σύστημά μας συλλέγει την ‘κίνηση‘ των υπηρεσιών που τρέ

χουν στην πλατφόρμα ΣΥΝΑΙΣΘΗΣΗ και αφού εξάγει κάποια χαρακτηριστικά, εκπαιδεύει

ένα μοντέλο με διαφορετικούς αλγορίθμους. Τέλος, χρησιμοποιώντας το παραπάνω μοντέλο

αναγνωρίζουμε τις ανομοιομορφίες που μειώνουν το επίπεδο ποιότητας υπηρεσιών και την

xiii

xiv Περίληψη

γενικότερη απόδοση της πλατφόρμας.

Table of contents

Acknowledgements ix

Abstract xi

Περίληψη xiii

Table of contents xv

List of figures xvii

List of tables xix

1 Introduction 1

1.1 The IoT ecosystem . 1

1.1.1 Historical Flashback and Definition 1

1.1.2 Use Cases . 3

1.1.3 Challenges . 4

1.2 Quality of Service/Experience from an IoT Perspective 5

1.2.1 Quality of Service through the layers 5

1.2.2 Quality of Experience . 8

1.3 Thesis Objectives . 12

1.3.1 Research Background . 12

1.3.2 Sections . 13

2 Related Work 15

2.1 Quality of Service . 15

2.1.1 Introduction . 15

xv

xvi Table of contents

2.1.2 Application Layer Techniques . 15

2.1.3 Network Layer Techniques . 19

2.1.4 Network Layer Techniques Outlier Detection 22

2.2 Quality of Experience . 25

2.2.1 QoE Controller . 25

2.2.2 MARLQ Algorithm . 26

2.2.3 HMARLQ Algorithm . 27

2.2.4 Combination of QoE with Resource Estimation 28

3 Network System For Anomalies Detection QoS 31

3.1 Introduction . 31

3.2 The SYNAISTHISI Platform . 32

3.3 Proposed System . 34

3.4 Outlier Detection Algorithms Model . 41

4 Setup and Evaluation 47

4.1 Setup of the QoS mechanism . 47

4.2 Evaluation through Experiments . 49

4.2.1 Service Setup . 49

4.2.2 Frequency Modifications . 51

4.2.3 Range Modifications . 52

5 Conclusion 55

5.1 Summary . 55

5.2 Future Work . 56

Bibliography 57

List of figures

1.1 Estimated InternetConnected Devices[1] 6

1.2 Influence Factors of QoE . 11

2.1 ADAMANT prototype [2] . 16

2.2 QoSMONaaS interfaces [3] . 18

2.3 Traffic classification scheme [4] . 19

2.4 Elephant flow detection architecture [5] 21

2.5 Workflow of the proposed ensemble model [6] 23

2.6 Flowchart of the DetMCD [7] . 24

2.7 QoE Architecture [8] . 25

3.1 Platform components . 32

3.2 Random Integer Generator . 33

3.3 Upload Dockerfile for the build . 34

3.4 Services . 35

3.5 Outlier Detection System . 36

3.6 Outlier detection using iForest . 41

3.7 Outlier detection using LOF . 42

3.8 Minimum Covariance Determinant vs Classical 44

4.1 Upload dockerfile and build service . 50

4.2 Service’s traffic . 50

xvii

List of tables

1.1 QoS attributes of three IoT layers . 9

3.1 Features extracted from PCAP files . 39

3.2 Final features that will be used . 40

4.1 Outlier detection accuracy after frequency changes. 52

4.2 Outlier detection accuracy after range modifications. 53

xix

Chapter 1

Introduction

1.1 The IoT ecosystem

1.1.1 Historical Flashback and Definition

The Internet of Things is an archetype based on a number of interconnected heteroge

neous devices, which are able to autonomously exchange data and deliver advanced cyber

physical systems and respective services. The term “Internet of Things“ was first introduced

by Kevin Ashton in 1999 as a global newtwork of objects connected to Radio Frequency

Identification [9]. Since then, IoT has spread to other application areas. The primary purpose

of the IoT ecosystem remained the same to reinforce computers with capabilities related to

information gathering without human intervention. The basic goal of the IoT is to expand

the every day routine with computing power that provide various services through sensing,

computing, communication and controlling the enviroment. These capabilities are desired in

many use cases due to their impact from making our lives easier and safer. IoT brought a new

viewpoint on the type and category of data that should be collected, and also the gathering

frequency and the sources from which we would find the nessessary data [10]. That unlocked

new possibilities because we could get information that was not available before.

The IoT archetype is described by its diversity and complexity and combined with the

rapid progress from research has led to the lack of a standardised definition of IoT. There

fore, various definitions have been proposed by the academia and standardisation organisms

including:

• Definition by ITU:[11] The Internet of Things is a global infastructure for information

1

2 Chapter 1. Introduction

society, enabling advanced services by interconnecting things based on existing and

evolving interoperable information and communication technologies.

• Definition by IERC:[12]Adynamic global network infastructurewith selfconfiguring

capabilities based on standard and interoperable communication protocols where phys

ical and virtual things have identities, physical attributes, and virtual personalities and

use intelligent interfaces, and are seamlessly intergrated into the information network.

• Definition by ISOC: [13] The term Internet of Things generally refers to scenarios

where network connectivity and computing capability extends to objects, sensors and

everyday items not normally considered computers, allowing these devices to generate,

exchange and consume data with minimal human intervention. There is, however no

single, universal definition.

Even if the above definitions have various common points, one commonly accepted defi

nition hasn’t yet been determined. The IEEE [14] captured and analyzed the different aspects

of the definition with the goal to clarify the concept and construct one accepted commonly

definition. Although, they realised that the definition of IoT is too extensive and they decided

to provide two separate definitions, one for small and one for large enviroments:

• Definition for small enviroments: An IoT is a network that connects uniquely iden

tifiable “Things“ to the Internet. The “Things“ have sensing/actuation and potential

programmability capabilities. Through the exploitation of unique identification and

sensing, information about the ’Thing’ can be collected and the state of the ’Thing’

can be changed from anywhere, anytime, by anything.

• Definition for large enviroments: Internet of Things envisions a selfconfiguring,

adaptive, complex network that interconnects “Things“ to the Internet through the use

of standard communication protocols. The interconnected things have physical or vir

tual representation in the digital world sensing/action capability, a programmability

feature and are uniquely identifiable. The things offer services, with or without hu

man intervention, through the exploitation of unique identification, data capture and

communication, and actuation capability. The service is exploited through the use of

intelligent interfaces and is made available anywhere, anytime and for anything taking

security into consideration as well.

1.1 The IoT ecosystem 3

The essential difference between the above two definitions lies to complexity, considering

the fact that small specific systems have fewer services than large global systems that support

many services and capabilities. Thus, taking into account that even IEEE couldn’t synthesize

properly one accepted IoT definition we can observe that the IoT has a large range of use cases

that we should describe and analyze. The IoT ecosystem is very diverse and complex and in

order to create efficient applications we need to embrace and deeply understand each part of

that system. As the IoT defintion describes, connecting things to the Internet and giving them

the ability to sense/actuate is a feature demaned everywhere. Thus, trying to categorize the use

cases into more general groups can reduce the fuzziness and offer a greater comprehension.

1.1.2 Use Cases

The IoT ecosystem is becoming more and more complex, and it is essential to understand

its potentials to improve the current infrastructure. As the above definition says, connecting

things to the Internet and giving them an ability to sense/actuate is a feature demanded every

where. However, various cases exist, so it is crucial to categorize the application use cases

in more general groups for better comprehension. Since IoT provides individual use cases,

different categorisations have been proposed based on the experience and viewpoint:

• Perera et al. [15] defined three general categories based on application domains: indus

try, enviroment and society.

• libelium [16] listed 54 application use cases under 12 categories: smart cities, smart

enviroment, smart security etc.

• Atzori et al. [17] grouped applications into 4 categories: transport and logistics, health

care, smart enviroment and personal and social.

• IERC [18] defined 10 categories: smart food/water monitoring, smart health, smart

living etc.

We can observe that some researchers propose a more general classification, while others

offer a more detailed one based on their scope and the requirements they want to cover. Most

of those proposals consider the target audience to be more significant than the categories.

Thus, taking into acount that perspective, we can separate the users into the following groups:

4 Chapter 1. Introduction

• individuals: individuals persons looking to improve their level of lifestyle.

• society: a community of people looking to find solutions for common issues.

• industry: any economic sector looking to satisfy customer’s need with their product.

Every user category is an individual group with its own needs but in general these groups

share some common goals: (i) maximize health and safety, (ii) minimise the amount of work

while maximising the convenience of its execution, (iii) minimise the costs. As soon as we

will understand every expectation that IoT has to fulfill we will identify and categorize the

proper use cases that will lead to the achievement of the above goals. The defined user groups

have a various range of interest and we would see that the number of categories will diverge

based on the level of abstraction. Thus, depending on our level of abstraction we can group

the use cases in a way that will satisfy the need of the user groups. For example, if we aim

to limit the number of domains so that it would be clear what applications every domain

covers, we can alter the IERC [18] and define only eight categories: smart buildings, smart

healthcare, smart enviroment, smart city, smart energy, smart transport and mobility, smart

manufacturing and retail, and smart agriculture. These eight domains cover the expectations

and requirements that the user groups have so we can use keep that aspect to categorize the

use cases for the IoT ecosystem. Usually we can categorize the use cases in a way that some

application domains are influenced by a user group while others have to fulfill the needs of

two or even all three user groups. Therefore, the overall categorization of the application use

cases is influenced more by other technical aspects. Thus, we will describe the challenges

that the IoT is facing to gain a better perspective of how this aspects are influencing the IoT

ecosystem.

1.1.3 Challenges

Simultaneously with the rise of the IoT systems, different challenges are arising in vari

ous sections, including security issues [19], communication [20], and networking[20], among

others. Based on the study of [21], these challenges can be divided into four categories: hard

ware, software, connectivity, and security. Each of these groups defines its specific issues that

influence the overall quality of IoT solutions. Thus, we focus on each category separately.

1.2 Quality of Service/Experience from an IoT Perspective 5

Hardware: The number of IoT devices is rising exponentially, and that comes with some

uprising issues. Firstly, IoT devices must be low cost to support massive infrastructures, oth

erwise, the value won’t justify the cost. Also, the overall size and battery life will vary based

on specific needs.

Software: Software is the baseline of the IoT system. In many cases, the existing software

doesn’t always meet the IoT requirements and that leads to new developments that have spe

cific goals. For example, the IoT not only connects things to the Internet, but it also allows a

machinetomachine (M2M) communication. This approach requires particular comprehen

sion and an AI system to control the process without human interaction.

Networking: The original Internet protocols are not designed for all the new emerging

new data traffic characteristics. New network technologies are expected to support the Iot to

address the upcoming challenges. These new network designs should be able to scale effi

ciently to support the systems with billions of interconnected IoT devices and also to extend

the coverage and be more reliable than the old ones.

Security: Security is emerging to be the IoT’s greatest challenge. The IoT systems, being

a cyberphysical system, has been escorted with individuals vulnerabilities that sometimes

may cause lifethreating consequences. Thus, the proposed solutions should offer attack re

sistance and confidentiality.

Now, we can assume that to face efficiently all these issues and to satisfy the spectrum

of the requirements, it is essential to implement some QoE/QoS mechanisms. But, first, we

should examine those mechanisms to understand their usage and limitations from the IoT

perspective.

1.2 Quality of Service/Experience from an IoT Perspective

1.2.1 Quality of Service through the layers

The Internet of Things is related to the use of intelligently heterogeneous connected de

vices and systems to gather data by embedded sensors and actuators in machines and other

physical objects. Over the following years, the IoT will spread rapidly and will reveal new

services that will improve the lives of consumers, unlocking new opportunities. The latest

forethoughts have predicted that there will be between 26 to 50 billion devices by 2020[22].

6 Chapter 1. Introduction

Figure 1.1: Estimated InternetConnected Devices[1]

The huge amount of devices will introduce new services from a wide variety of sources such

as home appliances, surveillance cameras, monitoring sensors, actuators, displays, vehicles,

machines and so on. They will allow the development of applications in various domains,

such as home automation, industrial automation, medical aids, traffic management, and many

others[23]. As we have already mentioned these devices are gathering enormous amounts of

data the so–called Big Data and often stored in Cloud data centers. While data processing

speeds have increased rapidly, bandwidth to carry data to and from data centers has not in

creased equally fast. Thus, supporting the transfer of data from/to billions of IoT devices is

becoming hard to accomplish due to the volume and the geodistribution of those devices. A

potential way for solving such issues would be the implementation of QoS techniques that

will supply an efficient and effective path to communications [24]. A few of the IoTbased

applications that will be developed even if they will have a range of QoS requirements will

not be provided by proper QoS. The implementation of a proper mechanism at each layer

of the IoT system is required to afford a standard QoS service. It’s also essential to define

the quality of factors that will be used for the evaluation of the QoS and also identify the

significant.

Quality of Service (QoS) is the key for the IoT ecosystem since assessing the actual

quality of what service the device provides and what service users are paying has become

a missioncritical practise requirement. Even if QoS entails a number of individual issues,

since the ever increasing complexity of individual components, middleware, and inteconnec

1.2 Quality of Service/Experience from an IoT Perspective 7

tion infastructures, reveal that QoS is and will be a vital facility in the IoTCloud computing

scenario. To ensure an essential level of QoS for crucial applications there must be QoS ap

proaches at every layer [22]. For example, when we have a delay at any layer of a physical

sensor that will affect different parts from home automation to healthcare applications. Thus,

we need to assure that these delays can be prevented at any level anytime using various ap

proaches that will allow regulation and feedback between the different layers. In literature,

there are different approaches and implementations for designing IoT architectures such as:

(a) defining the architecture using applicable protocols and access networks[4], and (b) the

baseline to implement IoT systems relies on individual middlewares [2]. A mechanism that

provides QoS should be implemented in each layer of the IoT system using different software

and hardware components.A service in the IoT ecosystem can be related to data handling for

specific applications using various combinations of functionalities and interactions to satisfy

the necessary requirements.

TheQuality of Service is the capability to provide satisfactory service by different providers

and systems. The above can be achieved by implementing QoS methods and techniques that

will reform the quality of service parameters. These QoS parameters are defined from various

perspectives based on the paper [25]: (a) User and Application, (b) Operator and Network, (c)

Communication resources, (d) Technological resources. To maintain decent service quality

for the users, it is essential to adopt specific quality parameters related to the combination of

the above perspectives. An efficient IoT environment that satisfies admissibly the users in

volves additional services and infastructures and also it should rely on agreed SLAs(Service

Layer Agreements). However, in many cases, achieving the SLAs to satisfy the user by reach

ing the maximum QoS may not be related to QoS parameters. Thus, in somer scenarios even

after satisfying the SLAs the system may not even reach the minimum QoS. An implemen

tation of QoS in an IoT system with specific agreements may involve various tradeoffs and

regulations based on the requirements to achieve the quality of service that the user is expect

ing.

Based on the review and study of various architectures and schemes, these QoS parame

ters should be applied at each layer of the IoT architecture to satisfy the demanded require

ments. Bhaddurgatte et al. [25] and many other researchers [26],[27] proposed a three layer

architecture in which the QoS attributes are embedded as nonfunctional components in dif

ferent layers. We will adopt for this thesis the above architecture schema, whose functional

8 Chapter 1. Introduction

ities are described in more detail below:

Application Layer: The application layer is related to specific applications that provide

various services to the user. This layer includes several applications that are deployed by the

IoT ecosystem, for example, smart homes, smart cities, and health. The layer, also consists of

modules that gather realtime data for analysis and computations. Bhaddurgatteet et al. [25]

separates the parts of this layer into two categories:

• End Users: Users or machines that retrieve the data that are captured by the sensors.

• IoT modules: This part includes the functionalities like optimization of data transfer

from/to devices and dynamic decisions based on different events.

Network Layer: The network layer consists of modules that determine the route of the

data through the different layer of the IoT system. This layer will, also include various types

of access networks and protocols that will be used to fulfill the specific purposes and require

ments. Moreover,it will handle the communication devices that will be used in order to carry

out the connectivity between the devices in the IoT ecosystem using individual routing func

tions and modules. In general, this layer communicates with the other individual layers and

it is responsible for every action related to transferring and transmitting.

PerceptionSensing Layer: The perceptionsensing layer handles the data gathering for

the real world that is related to objects, machines, and people. Also, this layer includes mod

ules and functions that regulate the sensors based on the values that they retrieve, and that

sometimes influences the other layers.

Having defined all aspects of the QoS architecture at each layer, we can observe some

of the QoS parameters that we mentioned above. These parameters are associated with a

particular layer and affect the performance of the IoT ecosystem.

1.2.2 Quality of Experience

Since the IoT ecosystem is rising with an exponential rate, billions of devices will emerge

that will use various technologies and have unequal capabilities in terms of processing, com

munication, and energy consumption. However, they will provide services in critical user

centric applications, and it is essential to adopt various QoE techniques. Being usercentric,

the QoE provides a more conceptual understanding of the system’s factors,while concerning

the QoS attributes. Also, being closer and related to the user perspective, the QoE indicates

1.2 Quality of Service/Experience from an IoT Perspective 9

Application Layer Network Layer Perception Layer

Service time, Availability Bandwidth Time syncronization

Service delay Delay Location/mobility

Information Accuracy Packet loss rate Sensing coverage

Fault tolerance Network resources utilization Actuation coverage

Service perform cost Realtime throughput Reliability

Table 1.1: QoS attributes of three IoT layers

the real influence on human life and the crucial improvements. But, it is essential to consider

also other quality indicators such as Quality of Data or Quality of Information that can be

combined with the QoE to provide a more desirable outcome. In many papers, researchers

have proposed various definitions related to the QoE approach such as:

• Definition by ITUT SG 12 in 2007 [28]: “Degree of delight or annoyance of the user

of an application or service as perceived subjectively includes the complete endtoend

system effects that are influenced by user state, content and context“

• Definition by Dagstuhl seminar 2009 [29]: “Describes the degree of delight of the

user of a service, influenced by content, network, device, application, user expecta

tions, and goals, and context of use.“

• Definition by [30]: “QoE is the degree of delight or annoyance of the user of an appli

cation or service. It results from the fulfillment of his or her expectations with respect

to the utility and/or enjoyment of the application or service in the light of the user’s

personality and current state.“

From the above definitions, only the last one is used nowadays and is considered a work

ing definition. However, none of the above can provide a practical and exact definition of

how to measure the QoE or how it impacts on the user’s expectations. Since the QoE is a new

perception in the IoT ecosystem, researchers are facing new challenges while analyzing the

QoE Influencing Factors(IFs) that are used by the evaluation phase as metrics. Qualinet et

al. [30] defined the IFs as follow: “Any characteristic of a user, system, service, application,

or context whose actual state or setting may have influence on the Quality of Experience for

10 Chapter 1. Introduction

the user.“. These IFs can be classified into four individual categories based on the approach

of [31]:

• Userrelated IF: any property and characteristic of a human user. The characteristic

can describe the demographic and socioeconomic background related to the physical

and emotional state of the user.

• Systemrelated IFs: properties and general characteristics that define the generated

quality of service.They are related to media capture, transmission, storage, rendering

and display,also the communication of information from content production to user.

• Contextrelated IFs: are factors that include any situation property related to user’s

enviroment, in terms of physical, temporal, social, economic and technical character

istics. These properties are associated, for example, with the user’s location or the pur

pose of using a specific service.

• Contentrelated IFs: the information regarding the offered content by the service or

application under study. In the case of video for example, they are associated with with

video format, encoding rate, resolution, duration,type and content of the video.

Several works provided other extra external factors, e.g. the performance of the user’s

hardware and mobility [32].Also, five standards of video quality metrics (join time, buffer

ratio, rate of buffer events, average bitrate, and rendering quality) were presented in [33].

Even if several papers provided some extra external factors, that influence the QoE in specific

applications, they don’t satisfy the properties that most IoT applications have. Thus, only the

described categories can be characterized as Influencing Factors. To have a better perspective

of these factors, we can observe the interaction of the QoE with the IFs in Figure 2.

1.2 Quality of Service/Experience from an IoT Perspective 11

Figure 1.2: Influence Factors of QoE

Based on the above IFs, we can monitor these factors and optimize the QoE accordingly.

Takanori Hayashi [34] proposed a process that consists of four steps and can achieve the

optimized QoE performance that every IoT requires. These steps are: (a) QoE quantification,

(2) QoEmeasurement and collection, (3) QoE analysis and visualization, and (4) QoE control.

At the first step in QoE quantification, the purpose is to determine the relationship between

QoE and some quality measures and to define the QoE traffic that will be observed during

the process. Then, in QoE measurement and collection, you need to collect and measure

correctly the information related to the QoE. Next, the current step analyzes and visualizes the

collected information using the state of service provision. Lastly, using predefined conditions,

the QoE control uses the analyzed and visualized data to optimize the performance of the

QoE. However, to understand how each step works and what it achieves, we should describe

in more detail the process that is followed by each action.

QoE quantification: The QoE quantification step defines service quality and manage

ment guidelines based on the human perceptive and features that respect the quality of com

munication services. At this step is also implemented the infrastructure for measuring the

QoE using various quality metrics related to network, communication and usercentric data.

12 Chapter 1. Introduction

QoE measurement and collection: The QoE information that is used by different ser

vices is collected and measured to send it at the next level for QoE analysis and visualization.

Since QoE is affected by some influence factors that we described above, information on

user’s service usage is needed to improve and optimize the performance of the QoE after the

extraction and visualization of specific characteristics.

QoE analysis and visualization: Useful collected information for improving user sat

isfaction can be visualized at the current step by various visualization techniques, and also

big data analysis methodologies can be applied for the extraction of the information related

to these visualizations. This information involves statistics related to network state, signs of

service fault, the scope of quality degradation on services, etc. By visualizing the QoE infor

mation, we can improve the quality of the network communications and reduce the cost of

maintenance while increasing the user’s satisfaction.

QoE control: The QoE control is triggered when the QoE rate is decreasing based on the

visualizations of the previous step to improve the QoE. However, in an IoT ecosystem with

realtime situations, QoE optimization addresses some difficulties and requires a powerful

mechanism that is responsible for traffic control to support the service provision. Similarly,

in our approach, the above systemwill be an effective feature of our mechanism for our future

work.

1.3 Thesis Objectives

1.3.1 Research Background

In the twentieth century, society went through two significant periods of economic trans

formation: (a) industrialization and (b) computerization. These two processes led to mas

sive productivity gains, economic growth and major improvements in living standards. Many

countries rest their hopes on digital technology in terms of automation. The Internet of Things(IoT)

has the means to push digitalization to a new level. Nowadays, the IoT ecosystem supports

both clients and enterprises. For clients, the IoT delivers solutions that improve energy suf

ficiency, security, health, education, and many other aspects of daily life. For enterprises,

it improves productivity, agriculture, and other regions. In general, IoT is related to the use

of heterogeneous connected devices and systems that are capable of gathering and analyzing

data for their purposes. Also, it offers a new point of what kind of data should be gathered, how

1.3 Thesis Objectives 13

often and from which place, so it would be possible to get information that was not available

before. In many cases, however, this benefit means the communication of low power devices

over lossy networks, which creates high demands on the used technologies. Thus, to estab

lish a more reliable user experience and to improve the characteristics of IoT applications, a

certain service level is needed to motivate the users to use the IoT applications.

To ensure the appropriate level of service in several papers is proposed the usage of QoS

and also QoE mechanisms that will manage the system requirements using the proper re

sources. This thesis aims to analyze the work related to QoS/QoE techniques at each layer

of the IoT architecture and also describe how these mechanisms are implemented. However,

we will consider the QoS part of a service level and we specify a QoS mechanism enabling

the guarantee of a service level that is required. After describing our QoS mechanism, we

implement and evaluate our proposed approach using the SYNAISTHISI IoT platform as a

testbed.

1.3.2 Sections

The structure that is followed in this thesis is described below: Section I describes the

general meaning of the IoT ecosystem and highlights the purpose of the QoS/QoE. Section

II describes the related work and points out the main mechanisms that provide QoS/QoE.

Section III introduces the SYNAISTHISI Platform that we will use it as a testbed for our

mechanism. Furthermore, this section describes the conceptual approach of our QoS mecha

nism and also the outlier detection algorithms that we will use. Section IV includes the setup

of our implementation at the IoT platform and the evaluation through various experiments.

Finally, we summarize our work in Section V and discuss about the future work and the

improvements to our system.

Chapter 2

Related Work

2.1 Quality of Service

2.1.1 Introduction

In the previous section, we introduced the approaches of QoS and provided motivation

on how it affects the IoT ecosystem since every service in an IoTbased environment has a

range of QoS requirements. To fulfill these requirements and to provide guaranteed services

to critical applications it is necessary to build useful mechanisms at each layer of the IoT

architecture. The layers of the above schema are assigned as follows [25]: (1) Application

layer, (2) Network layer, (3) Device layer. A delay in any layer from the physical sensor to the

user can cause problems in several crucial applications in different domains from automated

driving vehicles to healthcare applications. This mapping reveals areas that the literature

concentrates on, and points out areas that need more attention. There is a respective number

of established approaches through the layers of the IoT that allows negotiation and feedback

between the different layers. To this end, we now present the most important approaches from

the literature, which are tailored for each of the layers that constitute the IoT stack.

2.1.2 Application Layer Techniques

Due to the advantages of performance and scalability, the number of distributed systems

that use pub/sub middlewares has increased rapidly [35]. This implementation is used in dif

ferent largescale application domains, varying from shipboard computing to grid computing.

Themiddleware supports policies that affect the QoS of the IoT system. The basic rules across

15

16 Chapter 2. Related Work

different approaches include persistence and durability. However, even if the policies provide

control of the system, QoS evaluations must address a multitude of dimensions, especially in

largescale dynamic environments [36]. For example, a simple protocol may provide latency

QoS only when a publisher sends a small number of subscriptions. Also, some middleware

mechanisms used to provide QoS properties may not be applicable for different environment

configurations. Challenges mostly arise when multiple QoS policies interact with each other.

The solution to the above is the framework that is called Adaptive Middleware And Net

work Transports(ADAMANT). This mechanism was introduced by Joe Hoffert et al. [2] to

address the challenges that pub/sub middleware had by integrating the following technolo

gies: (1) QoSenabled pub/sub middleware, (2) adaptive transport protocols, and (3) machine

learning to manage specified QoS withing dynamic environments.

Figure 2.1: ADAMANT prototype [2]

The Adaptive Middleware And Network Transports is a pub/sub middleware that regu

lates the transport protocols and associated parameters tomaintain specified QoS. It addresses

2.1 Quality of Service 17

the emerging challenges using the following features:

• Standard QoSenalbed pub/sub middleware addresses the scalability issues by separat

ing data senders from data receivers.

• Adaptive network transport protocols work to address the challenges by providing the

baseline system to maintain QoS even within dynamic circumstances.

• Machine learning models determine appropriate transport protocols and parameters

given specified QoS and environments configurations.

ADAMANT has integrated the OpenDDS implementation with the Adaptive Network

Transports framework, which supports various transport protocol types. As we can observe

in the above figure ANT is also included and helps in building the properties provided by the

scalable transport protocols. Finally, the framework provides the capability to input collected

metrics and configuration information into weka and after analyzing the data determine tech

niques that provides the best results. A high level description of the ADAMANT framework

is shown in Figure 3. Likewise, for our approach, we adopt from the ADAMANT framework

the general pipeline, the packet capturing phase, and also the feature extraction step.

Nowadays, Quality of Service is the key for every platform’s success, since every service

has its own QoS requirements. However, QoS faces several issues since the IoT ecosys

tem consists of complex components, middlewares, and interconnected infrastructures. QoS

monitoring is also an essential facility in cloud computing environments. Due to the dynamic

conditions of the cloud infrastructure , continuous monitoring is necessary. One theoretical

architecture that is proposed in the literature and provides the solution to the above cloud

computing scenario is called QoSMONaaS: Quality of Service MONitoring as a Service

[3]. The application is portable so that it can be transported with minimal effort and config

urations. J.Hoffert et al. [3] claim that QoS monitoring should be available to all cloud users

in a seamless way and the “as a Service“ model is the ideal solution. The implementation of

QoS monitoring has some requirements and the platform quarantees that:

• All messages must be routed to the QoS service.

• Message authenticity remains, this means that the payload is unmodified and reliable.

• The identity of the user groups involved in the exchanges are kept anonymous. This is

essential to avoid security issues between participants.

18 Chapter 2. Related Work

QoSMONaaS implements a individual QoS facility which is made available to all ap

plications running on a cloud platform. A detailed approach of the model involved in the

monitoring process is presented below. For the framework to achieve the monitoring of the

actual QoS delivered to the user, the Service Provider must already have settled an agreement

with the cloud platform that describes the SLAs that will be applied. The agreement also con

tains information related to the Key Performance Indicators of interest with a description of

the business aspect. These indicators evaluate the success of a service related to some levels

of operational goals. Accordingly, choosing the right KPIs relies upon a good understanding

of what is necessary to the platform in general.

Figure 2.2: QoSMONaaS interfaces [3]

As we can observe in the Figure 4, the framework introduces an anonymization system

that prevents from revealing the real identity of monitored participants. It is essential for

ensuring the “trust by design“ principle and the monitor to ignore the real identification to

avoid cheating. QoSMONaaS is already an application that runs on top of the SRT15 cloud

[3] platform in the form of a web service. The features provided by SRT15 have made the

implementation of QoSMONaaS possible. From the above approach, we obtained for our

implementation, the concept that our mechanism should be separate from the IoT platform,

and also each service should have an individual instance of our model.

2.1 Quality of Service 19

2.1.3 Network Layer Techniques

With the exponentially fast growth of the multimedia traffic in the IoT ecosystem, IoT

traffic now requires a different approach regarding the Quality of Service. Under limited

training data conditions though, existing classification methods are limited to the perfor

mance and are not efficient in classifying all the types of traffic[37]. To improve QoSaware

traffic classification, researchers have proposed various techniques in the literature. Changhe

Yu et al. [4] divided these techniques into three categories. The first category is based on

deep packet inspection. The DPI can identify the network packet of the data and classify that

packet to use it later at the QoS classification step. However, a series of restrictions and the

encryption of the packets restrict the DPI and to identify all the packet flows and the under

lying protocols you need to reverse engineer all the previous pieces. The second category

is related to machine learning. Machine Learning(ML) classification differentiates from the

DPI in the part that the first extract the characteristics of the flow than checking the payload.

That solves the previous problem with the encrypted content. The third category combines

multiple classification techniques to achieve traffic classification. For this, Changhe Yu et

al. [4] propose a flow classification framework using DPI and semisupervised learning with

multiple classifiers. Firstly, they use DPI to analyze the data flows and tag them with specific

applications to form a partially labeled dataset. After that step, they train the classifier with

this dataset and sort different applications into QoS categories so that the framework provides

differentiated services for the individual types of applications. The classification scheme that

they incorporated for their purpose lies below in Figure 5.

Figure 2.3: Traffic classification scheme [4]

20 Chapter 2. Related Work

Although there are a lot of unknown flows in the network, they observe that the applica

tions with the same QoS classification have similar features. So they used a semisupervised

approach that XL represents the labeled dataset and XL = {(x1, y1), (x2, y2), ..., (xl, yl)}.

The common semisupervisedmechanism is called tritraining. Tritraining is a semisupervised

mechanism that uses labeled datasets and three identical classifiers to enable iterative train

ing. After that, the steps that they follow are described below:

• Generate three subsets La, Lb, Lc

• Use classifiers to make classification to unlabeled dataset. If a sample meets the below

condition : Li = {x|x ∈ U |Ca(x) = Ci(x)}. Then set Li as the initial database to

generate new training instances. If the error is less than last cycle we can continue to

expand.

• Use the multiclassifiers for the classification of the unlabeled dataset.

To sum up, the proposed architecture combines DPI mechanisms and Multiclassifier

semisupervised learningmechanisms. DPI can analyze the packet flows and create the database,

while theML classifier can provide quick classification. Based on this approach, we designed

the internal components of our model that have a similar pipeline, and some of the compo

nents are also used in our technique.

Another approach related to the network layer is the research of Zehui Liu et al. [5] ,

which is based on the fact that 80 % of the flows are smaller than 10KB and last under a few

milliseconds while the 10 % of the traffic is related to the socalled elephant flows, which

are extremely large (in total bytes) continuous flows measured over a network link. Such

detection can be classified into 4 categories: (1) pullbased statistics, (2) hostbased trigger,

(3) sampling, (4) hostbased detection. Motivated by the above, they proposed an adaptive

approach for elephant flow detection using a dynamical traffic learning algorithm to configure

the threshold value in realtime circumstances. The steps of the process that they follow:

• Obtain the traffic statistical counters of switches.

• Analyze the relationship between traffic and elephant flow, the system learns the chang

ing traffic and decides the threshold with DTL algorithm.

• Given the estimated threshold, the elephant flow is classified in realtime.

2.1 Quality of Service 21

The architecture that they proposed is illustrated in Figure 6. The top layer collects and

analyzes network traffic. The collector captures the traffic and sends it to the analyzer. After

that, the analyzer gathers the proper information and feeds the DTL algorithm. The second

layer includes the training phase of a model , the smooth mechanism and also the weighted

optimization related to the value of the threshold. The purpose of weighted optimization is to

improve the training data accuracy. A smoothmechanism, which is composed of an algorithm

described in the paper [5], decides whether to replace the previous threshold value or not.

Figure 2.4: Elephant flow detection architecture [5]

Machine learning techniques automatically learn specific patterns and characteristics from

the dataset that we provide. This approach is often more efficient from a manual configura

tion of an algorithm. Thus, they used a statistical methodology that is based on ML to build

the mathematical model. The workflow that is followed, is described below:

• When the switch captures a new flow, it decides whether it belongs to elephant flow or

mice flow according to the predefined threshold.

• The collector collects the incoming traffic characteristics.

• Analyzer receives the characteristics from the traffic collector and forwards them to

the second layer for the training phase.

• Training data build the model and predicts the threshold using the weighted optimiza

tion technique.

22 Chapter 2. Related Work

• Smooth mechanism decides if the threshold should be changed.

To sum up, they proposed a adaptive framework to implement and evaluate a elephant

flow detection,an approach that dynamically changes threshold value to meet the demands

of the traffic characteristics in the network. Similarly, in our approach, we decided to cre

ate a traffic collector and analyzer and also to follow a related structure of the components.

However, we didn’t use the same algorithm for our training and evaluation of our model.

2.1.4 Network Layer Techniques Outlier Detection

A different approach that is also networkbased focuses on detecting various abnormal

behaviors at the traffic and more specific at the packets that arrives at an IoT ecosystem. This

technique is known as outlier or anomaly detection, and can also be adopted as a QoS mech

anism. Some of the algorithms that can be categorized as outlier detection algorithms and are

widely used are the following: (a) Isolation Forest(iForest), (b) Local Outlier Factor(LOF),

(c) Minimum Covariant Determinant(MCD). Each of the mentioned methods has its advan

tages and disadvantages. In detail, iForest is only sensitive to global outliers and is weak in

dealing with local outliers. Although LOF performs well in local outlier detection, it has high

time complexity. Lastly, the Minimum Covariant Determinant method is a robust and agile

estimator of multivariate location and scatter. Since estimating the covariance matrix is the

cornerstone of several statistical methods, it can also serve as an outlier detection approach.

However, the above algorithms should be described in more details before we analyze

the implementations and systems that are build based on these methods. Firstly, iForest is an

unsupervised anomaly detection method and works on the principle of isolating anomalies

instead of adopting the point’s characteristics. Thus, the most common techniques construct a

profile of what is “normal“ so that anomalies are reported as those instances that don’t match

the previous profile. Although, the iForest uses a different approach and avoids building

a model of normal circumstances and explicitly isolates anomalous points in the dataset.

Furthermore, the LOF shares some concepts with DBSCAN and OPTICS and also belongs to

the anomaly detection algorithms. It separates the normal from the outliers by measuring the

local density of a given data point concerning its neighbours. The local density is estimated

by the distance at which a point can be “reached“ from its neighbors. By comparing the local

density of an object to the local densities of its neighbors, it identifies regions with similar

density that have lower density than their neighbors and are considered outliers. Using a more

2.1 Quality of Service 23

statistical approach, moreover, the MCD, being resistant to outlying observations makes, the

current method to be considered a wellknown outlier detection approach. The basic ideas

is to build a minimum covariance determinant model and then compute the Mahalanobis

distance as the outlier degree of the data. The method can be applied on Gaussiandistributed

data and could be still relevant on data from a unimodal,symmetric distribution.

In literature, there are different approaches and implementations, that are adopting the

above methods to build efficient outlier detection systems that can accurately predict the out

liers in complex datasets with low time complexity. Zhangyu Cheng et al. [6] proposed a

twolayer ensemble method that combined the iForest and Local Outlier Factor that over

come their weaknesses. The algorithm applies the iForest to swiftly scan the dataset, drop the

normal data, and generate a dataset with only the outliers. After that, LOF is implemented to

separate the outlier candidate set and get more accurate outliers. The proposed model takes

advantage of two algorithms and concentrates valuable computing resources. We can see the

workflow of the proposed method at the Figure 7.

Figure 2.5: Workflow of the proposed ensemble model [6]

Thus, using the below model they conducted comparative experiments on six synthetic

datasets and six realworld datasets, evaluated the outlier detection algorithm, and confirmed

the accuracy effectiveness of the proposed model. A different implementation, using the

DetMCD, was also proposed by Bart De Ketelaere et al. [7] that focuses on theMinimumCo

variance Determinatnt approach Rousseeuw (1984) which provides highly robust estimators

24 Chapter 2. Related Work

for multivariate location and covariance matrices but with the difference that the DetMCD

is deterministic,does not use random subsets, and is significantly faster for the huge sample

sizes. The only disadvantage that the proposed method has is the loss of affine equivariance.

The algorithm that the researchers followed is described below:

• Each variable of the dataset X is standardized.

• Six initial estimates Sk(Z),k = 1, ..., 6 of the scatter of Z are contructed.

• As the eigenvaluesmight be inacurate, they denoted the covariance ofmatrix by
∑

k(Z)

and its location by µk(Z).

• Each (µk(Z),
∑

k(Z)) is used to start Csteps until the convergence.

• The raw DetMCD covariance estimate
∑

raw is chosen as the Ck(Z) with the lowest

determinant.

• A reweighting step is applied to improve the accuracy.

• The robust distances RDi = d(zi, µrew,
∑

rew) classifies the observations into Inliers

and Outliers.

The steps of the DetMCD are summarized at the following flowchart.

Figure 2.6: Flowchart of the DetMCD [7]

To sum up, we observe that many outlier detection algorithms have been proposed by

researchers in the literature that can separate the normal for abnormal behaviors. Thus, we

can use these techniques also to categorize the traffic from an IoT system and predict the

possible abnormal circumstances in order to provide an efficient QoS mechanism. We can

observe the mentioned techniques and also the implementation of them in Section III.

2.2 Quality of Experience 25

2.2 Quality of Experience

2.2.1 QoE Controller

A future feature of the upcoming applications is to provide the available resources to

satisfy the user’s requirements. Such conditions can be described by properly defined Quality

of Experience. Based on literature the QoE is defined as the overall acceptability of an

application or service, as perceived by the enduser. A large amount of research is focusing

on the field of QoE evaluation and also to the relation between QoE and QoS parameters.

Francesco Delli Priscoli et al. [8] adopted a approach related to QoE control. Once the QoE

evaluator has estimated the personalized perceived QoE level, a QoE controller should take

proper control decisions to reduce the difference between personalized Target and Perceived

QoE levels. Moreover, at discrete time k with a time period T the QoE controller makes

decisions. Each application is handled by an Agent i and the QoE error is defined as:

ei(tk) = PQoEi(tk)− TQoEi

The purpose of the QoE Controller is to ensure that a nonnegative QoE Error for all Agents

i exists to avoid the presence of underperforming applications. For a better perception of the

model, we can observe the sketch of the QoE architecture in Figure 9.

Figure 2.7: QoE Architecture [8]

In more detail, when a new application is running, the Agent i begins to evaluate the Target

QoE and feed the controller with the computed values. As a result, the controller, based on

the received values up to time tk has to choose the most appropriate action ai(tk) which the

Agent i should enforce at time tk. The same behavior is followed by the rest of the agents.

26 Chapter 2. Related Work

Another methodology using as baseline the above model is to associate the Perceived QoE

with the application type of each application instance [38]. Let M denote the total number

of application types, let m ∈ {1, ...,M} denote a generic application type and also let i(m)

denote an Agent. Then the Perceived QoE for Agent i(m) is computed as:

PQoEi(m)(tk) = gm(ϕm(tk)),

where ϕm(tk) represents a set of Feedback Parameters for the mth application type and gm

is a function related to the application type and the Feedback Parameters.

Using the initial model approach, the QoE controller may produce outputs that contain

Reference Values and also Security Reference Values [39]. Based on these values, the con

troller has to select the most appropriate that drive the Perceived QoE close to the Target

QoE. However, this procedure is timeconsuming so in order to solve it, they proposed the

use of the Classes of Services(CoS), as described in [40]. In their paper, they assumed that

each CoS is associated with a predefined set of QoS Reference Values. The above approach

can be applied even in the case when each CoS is not related to QoS.

2.2.2 MARLQ Algorithm

Aswementioned above, [8] solves the problem that we described previously usingmodel

based control techniques. TheQoE controller should evaluate the interaction between its deci

sions and the Perceived QoE. Thus, a mindset based on realtime learning by trial and error is

followed. The strategy we stated uses the modelfree MARL algorithm at each time step. The

MARL algorithm uses the observations of a joint reward r(tk+1, a1(tk), a2(tk),, aN(tk)) =

r(tk+1, a1, a2, ..., aN) which is received by each Agent at time tk+1 as a result of the policy

joint π(a1, a2, ..., aN) at time tk. The MARL algorithm is focusing to maximize the R(π):

R(π) = Eπ{
∞∑
k=0

γk · r(tk+1, a1, a2, ..., aN)}

where γ ∈ [0, 1) is a discount rate. Also, it is necessary to define the state space, the ac

tion spaces, and the reward function to make the algorithm work properly. Francesco Delli

Priscoli et al. [8] proposed a MultiAgent QLearning algorithm that provided a suitable

solution and achieved the goal. The MARLQ algorithm depends on actionvalue function

Q(s, a1, a2, .., aN), as the return of the system when it starts from state s, takes the joint ac

tion (a1, a2, ..., aN) and follows the policy π. Then, the policy update step contains a random

2.2 Quality of Experience 27

action with probability equal to ϵ and with probability equal to 1ϵ a joint action :

(a
′

1, a
′

2, ..., a
′

N) = argmaxQ(tk, a1, a2, ..., aN)

The parameter ϵ ∈ (0, 1) is exploration rate.

To summmarize, at each time step tk the QoE controller follows the below process until

it converges under an initial policy:

• Updates the function Q.

• Choose the joint action with the above probabilistic behavior.

• Update all the Agents so that each Agent i should enforce the ai.

• Calculate the joint reward according to the selected reward function.

The algorithm, converges to the satisfaction of the initial policy. The convergence speed de

pends on the learning rate, the exploration rate, and the discount rate. However, even if the

current algorithm is a useful approach that satisfies some purposes, it is followed by some

flaws:

• The first challenge that the MARL algorithm has to face is the curse of dimensionality.

Moreover, the complexity of the estimation for each possible state is exponential. Thus,

it is impractical the implementation of the dynamic CoS using this specific version of

the algorithm.

• EachAgent faces themovingtarget learning problem since anyAgent’s action depends

on the actions taken by the other Agents, and that constraints the progress.

To handle the above difficulties, the researchers proposed another form of the above al

gorithm. The HMARLQ is an alternative algorithm that reduces the join action space, and

that leads to the acceleration of the dynamic CoS assignment without redundant information.

2.2.3 HMARLQ Algorithm

The HMARLQ algorithm selects only a subset of the joint action space providing the

ideal solution to the dynamic CoS assignment. At each timestep, the joint action space in

cludes several actions that have few possibilities of being the best ones. So the basic steps

that the HMARLQ algorithm follows to reduce that joint actions are described below:

28 Chapter 2. Related Work

• Identification of the Reduced Joint Action Space is performed when a new Agent is

born.

• Identification of the Suboptimal Joint Action is performed at each time step tk to iden

tify the joint action that will be selected.

Whenever a new Agent is created at time tk, it updates the QoE controller by providing its

QoE requirements in terms of Target QoE. Then the QoE controller emulates the behavior of

the system in N − 1 twoplayer test games between: (i) the new Agent and (ii) each already

active Agents. In each twoplayer test game, the optimal policy π∗(ai, aj) is calculated by

using the MARLQ algorithm described previously. This optimal policy calculates the pair of

actions (a∗i , a∗j)where a∗i and a∗j that the two Agents should enforce. Every time step at which

N Agents are active the controller stores N(N−1)
2

actions pairs. The Reduced Joint Action

Space contains these pairs and also a subset of the entire joint action space A. Moreover, the

Reduced Joint Action Space contains N Subspaces, where the ith Subspace is related to the

twoplayer game of the ith Agent. Thus, the Reduced Join Action Space includes only SN

joint actions related to the SN that appear at the entire join action space A [8].

The second part of the HMARLQ algorithm includes the use of the MARLQ algorithm

with the Reduced Joint Action Space instead of the entire joint space A. In the current step,

the QoE controller is using the process that we described in the previous algorithm to perform

the required tasks but with a different reduced action space. Thus, this improvement reduces

the required computational cost since the range of the pairs is narrowed down by the first

step of the HMARLQ algorithm and at the same time it fulfills the purpose of the paper to

create a Multiagent QoE system that we can use it.

2.2.4 Combination of QoE with Resource Estimation

Several services related to multimedia are becoming more desired and have a variety of

quality of service requirements. Thus, it is essential to focus on QoEbased systems that play

a crucial role related to the fulfillment of those QoS requirements. Mohammad Aazam et al.

[41] proposed a QoEbased dynamic resource estimation system that it depends on the QoE

Ratio (QoER). They mentioned in the paper that there is a different approach to acquire the

QoE through the net promoter score (NPS). Clients provide NPSbased QoE feedback on a

scale of 010. When they respond supplying a score between 06 are known as detractors, 78

2.2 Quality of Experience 29

are passives, and 910 are promoters. The final NPS is estimated by substracting the detractors

from the promoters. In the case that there is no feedback provided, the score is the mean of

passive, which is 7.5. To define the NPS ratio, the researchers are using two parameters:

• The overall NPS(NPS0) which is related to the feedback from all the users that already

are using the service.

• The NPS(NPSc) of a customer C that requests the service S.

The described implementation can play an essential part in the improvement of the QoS by

observing the changing state of the service. Also, in their paper [41], they introduce a QoER

model for resource estimation. The steps that the model follows are the below:

• Clients requests a service S.

• The service provider ensures that all QoS requirements are satisfied.

• The client responds with his/her feedback. The client’s feedback provides the baseline

of the user’s expectations, so we should consider that when we estimate our resources.

• An NPS ratio is generated using the overall NPS and the NPS provided by the current

client.

Thus, with that approach resources are allocated more efficiently according to the expec

tations and requirements of the clients. When the QoS requirements are not met, then the

resources are increased to provide more effective services. The NPS ratio that we mentioned

above is calculated as follow:

NPSr =

∑n
i=0

NPSd

x̄NPSoi
, if n=0∑n

i=0
x̄NPSoi

NPSd
, if x̄NPSoi > NPSd∑n

i=0

∑n
k=0

x̄NPSoi

x̄NPSck
, if x̄NPSoi > x̄NPSck∑n

i=0

∑n
k=0

x̄NPSck

x̄NPSoi
, if x̄NPSck > x̄NPSoi

NPSr is the NPS ratio defined by the overall NPS(NPSo) of the service i that is re

quested by a client with a historical NPS(NPSc). As we can observe, at the above definition,

there are four cases represented. The first case represents the situation when a client is new,

and the default NPS is applied. Although the service some times may have a higher overall

30 Chapter 2. Related Work

NPS(NPSoi) than the default, so we got the second case of the model. When a historical

NPS(NPSc) already exists, then case 3 or 4 is applied depending on the number of the pre

vious instances.

The ratio inceases as the difference between NPSsk and NPSoi increases to fulfill the

required demands. The NPS ratio is calculated as follow:

NPS = NPSpr −NPSdt

where NPSpr represents the promoters and NPSdt represents the detractors. In order to

evaluate the QoER model they proposed that we should use some metrics related to the NPS

ratio:

• Overall NPS: Average NPS of all the clients that used a service

• Default NPS: The default NPS, which is the average of the passive(7.5)

• Customer’s Historical NPS: The average NPS of a client that requested a service.

With the above metrics, they tried to evaluate the performance of their model and run

some tests on an environment that they created. To sum up, they defined a mathematical

model based on a QoE ratio that can be applied to any IoT ecosystem.

Chapter 3

Network System For Anomalies

Detection QoS

3.1 Introduction

Inspired by the related work, we will focus our research and implementations on building

a network infrastructure that will capture, analyze and identify the abnormal network packets

using some of the wellknown outlier detection techniques. In detail, we will build a network

outlier detection system that will capture some packets and will extract some features. After

that, we will apply three of the most wellknown outlier detection algorithms and categorize

these packets as normal or abnormal. The algorithms that we decided to adopt are the fol

lowing that was also described in the related work section: (a) Isolation Forest(iForest), (b)

Local Outlier Factor(LOF), (c)MinimumCovariance Determinant. These methods have their

advantages and their weakness that we also described at the related work where we quickly

analyze them. Thus, our purpose is to use the SYNAISTHISI IoT Platform as a testbed and

implement a system that will provide a networkbased outlier detection mechanism that will

be regarded as an efficient QoS layer for the IoT ecosystem. With the usage of the outlier

detection techniques, each suspicious action will be caught and blocked by the system with

out interfering with the client’s services. The system will provide stability and give a more

reliable view of the incoming and outcoming traffic and guarantee a protected and fair use

of the platform resources to the clients. However, to better understand the implementation

31

32 Chapter 3. Network System For Anomalies Detection QoS

that we will try to build, we should first examine and describe further each part of the IoT

platform and also how it works and what it provided to the clients.

3.2 The SYNAISTHISI Platform

The purpose of the SYNAISTHISI platform is to contribute efficient, secure applications

and services to clients, which aim to minimize the cost, delays, and usage of resources. The

platform consists of five layers each contributing functionalities at different aspects. These

layers manage the physical objects, the communication with the platform through intercon

nected channels, and also control of the current resources. The current IoT platform provides

interfaces that support five of the most commonly used Application Layer Protocols(ALPs):

MQTT, AMQP, WebSockets, CoAP, and REST HTTP and it is based on opensource com

ponents that are interconnected. To use the SYNAISTHISI platform, we need to set up an

instance of the platform as a dockerized container that contains some opensource compo

nents that implement those five ALPs. The modules and the internal components, which form

the IoT platform, are displayed in Figure 10.

Figure 3.1: Platform components

We can observe that the platform is using docker to run sandboxed instances of processes, and

also all the services run with the same approach to be executed on top of the existing operating

system and to be isolated from each other. Furthermore, one of the core components is Ponte,

3.2 The SYNAISTHISI Platform 33

which is an opensource framework that bridges various ALPs such as MQTT, MQTT over

WebSockets, REST/HTTP, and CoAP. Lastly, other components coexist inside the instance

of the platform, and are used for parsing, querying, data transfer, and storing as we discern

in the above figure. To better understand the infrastructure of the platform we should define

the two main entities:

• Topics are the communication channels established by the message brokers that are

responsible for message exchanging.

• Services are related to the algorithms/methods operating on the data that are transferred

by the topics.

After the setup, we need to create an account as a client to access the functionalities and

capabilities of the SYNAISTHISI. Then, after registering, we need to create a new service

and describe your application flow using input and output topics based on given ontologies. A

topic as we described previously from the IoT aspect is a path where an IoT device subscribes

and publishing messages to provide input or to retrieve the output to/from specific services.

At the figure below, we can see a service that generates random integers. It has two input

topics, the frequency and the range that specifies how often should an integer be generated,

and the range limit of the output.

Figure 3.2: Random Integer Generator

Moreover, it has an output topic that is called random_int where we can retrieve the generated

integer. Thus, when an IoT device wants to receive a random integer, it can connect to the

34 Chapter 3. Network System For Anomalies Detection QoS

output topic and wait until an integer is generated. Additionally, the client can tweak the

frequency and the range of the generated integers based on the requirements that he/she needs

to fulfill by just accessing each topic. However, to use a service, we need first to generate one

and then deploy it to the IoT platform. Thus, it is essential to write our algorithm using python,

and after that, we need to dockerize your program because the IoT platform accepts only

dockerized applications. Next, we need to upload our Dockerfile and all the other essential

resources that are required. We can examine the upload/build step in Figure 12.

Figure 3.3: Upload Dockerfile for the build

This step includes the choice of the previously mentioned files and the image building after

the insertion of your password. After the successful upload and image construction, you can

begin the service to use your application through the IoT platform.When the service is up and

running, then you can connect your IoT device and via the input topics run your algorithm

and retrieve the estimated output using only the platform’s resources.

Hence, now that we described the entire process of service construction and image build

ing, we should examine the topicbased system we will implement. Briefly, we will build an

infrastructure that will capture the network packets that transfer the messages from the topics.

After that, we will extract and analyze the features that are provided by these packets using

various machine learning techniques. In that way, we will achieve some QoS requirements

to make the IoT platform perform in a more reliable and fair perspective.

3.3 Proposed System

Here, we describe how we build a system that uses network traffic to identify anomalies

and abnormal behavior at the IoT platform known as SYNAISTHISI. Let’s assume that we

have a scenario where the IoT platform has deployed N services and each of these has unique

id i , i = 1, 2, ..., N . Each of those running services has ki input andmi output topics. We can

observe the described scenario at the Figure 13. As we can see, each service is running at its

own container because all the services are using docker images and each one is independent

of the other without sharing any information or messages. Thus, we should create a QoS

3.3 Proposed System 35

implementation that runs separately and creates an instance of itself for every running service

to provide more reliable and unique protection for each service.

Figure 3.4: Services

Every instance of our implementation will behave as a parallel monitor subscribing to the

respective topics at every service and won’t interfere with the service’s algorithm. The pur

pose of our mechanism is to capture the traffic of each service and identify the outlier using

various machine learning techniques after the creation of a trained instance that fullfils our

QoS requirements. Thus, to reach our purpose first, we need to accomplish some initial steps

that will provide the trained model that is essential. The steps that our technique requires are

the following:

• Packet capturing.

• Feature extraction.

• Feature filtering.

• Model Creation.

• Evaluation using real time circumstances.

Every step that we described has its individual role to play and provides to the implementation

with the important requirements that will be used to keep our system running and fulfill its

goal. Therefore, we should not avoid any of the above steps because if that happens, then we

won’t have the result that we expected to have. We now describe each step of our procedure

36 Chapter 3. Network System For Anomalies Detection QoS

separately to gain a better understanding of our perspective. However, before that, we can

examine the complete implementation visually of our infrastructure below in Figure 14.

Figure 3.5: Outlier Detection System

The first step of our technique is related to the capturing of the network packets. We

analyzed the structure of the IoT platform previously, and we declared that eachmechanism is

in a container. Thus, each instance of our sytem needs to monitor the traffic from the container

that is related to message transporting through the topics, and that container is the one with

the Ponte running inside. For the packet capturing we can use the tcpdump tool using the

following command:

$ tcpdump − i <CONTAINER ID> s r c <CONTAINER IP >

−w <FILE > . pcap

After obtaining the PCAP files from the Ponte container, we should hold the ones that are

related to the topics that the current instance of our system is responsible for and drop all

the others. Thus, each instance of our system that is responsible for each service will hold

the PCAP file (or populate a corresponding database) that contains information about their

service’s topics. After the capture phase has ended, then each instance will start the prepro

cessing step. That step includes the extraction of specific features that are related to the PCAP

3.3 Proposed System 37

files and will help us build our machine learning model using the algorithms that we men

tioned. The features that we choose are also examined by other researchers. Goodman et al.

[42] describe a Word2Vec approach, used for text processing, and apply it to packet data

for automatic feature extraction using some of the features that we also adopt. Furthermore,

Sikos [43] focus on packet analysis for network forensics and also uses some of the features

that we also choose. Thus, we should examine each of the features separately as shown below

at the Table 2.

Features Description

version Internet Protocol Version (IPv4 or IPv6)

ihl Internet Header Length

tos Type of service

len Packet Length

ip_flags Various flags related to the packet

frag Fragmentation flag

ttl Time to Live

proto Protocol

ip_options Options related to the packet

time The time that the packet arrived

sport Source port

dport Destination port

dataofs Offset indicating the start of the header

reserved For future use and should be set to zero.

tcp_udp_flags Another option related to different protocols

window The highest possible numeric value for a receive window(in

bytes).

urgptr Number of urgent packets.

tcp_udp_options Options related to the packet

land 1 if connection is from/to the same host/port. 0 otherwise.

time_diff Time difference between two packets.

payload The encapsulated data

38 Chapter 3. Network System For Anomalies Detection QoS

std_dev_payload Standard deviation of the payload

Avg_syn_flag The average of packets with syn flag active in a window of

packets.

Avg_urg_flag The average of packets with urg flag active in a window of

packets.

Avg_fin_flag The average of packets with fin flag active in a window of

packets.

Avg_ack_flag The average of packets with ack flag active in a window of

packets.

Avg_psh_flag The average of packets with psh flag active in a window of

packets.

Avg_rst_flag The average of packets with rst flag active in a window of

packets.

Avg_DNS_pkt The average of DNS packets in a window of packets.

Avg_TCP_pkt The average of TCP packets in a window of packets.

Avg_UDP_pkt The average of UDP packets in a window of packets.

Avg_ICMP_pkt The average of ICMP packets in a window of packets.

Duration_window_flow The time from the first packet to last packet in a window of

packets.

Avg_delta_time The average of delta times in a window of packets. Delta

time is the time from a packet to the next packet.

Min_delta_time The minimum delta time in a window of packets.

Max_delta_time The maximum delta time in a window of packets.

StDev_delta_time The Standard Deviation of the delta time in a window of

packets.

Avg_pkts_length The average of packet length in a window of packets

Min_pkts_length The minimum of packet length in a window of packets

Max_pkts_length The maximum of the packet length in a window of packets.

StDev_pkts_length The standard deviation of the packet length in a window of

packets.

3.3 Proposed System 39

Avg_small_payload_pkt The average of packet with a small payload. A payload is

considered small if his size is lower than 32 Byte.

Avg_payload The average of payload size in a window of packets.

Min_payload The minumum of payload size in a window of packets.

Max_payload The maximum of payload size in a window of packets.

StDev_payload The standard deviation of payload size in a window of pack

ets.

Avg_DNS_over_TCP The average of ration DNS/TCP in a window of packets.

Table 3.1: Features extracted from PCAP files

However, even if these features provide several indications related to different aspects of

the traffic, we shouldn’t include them all because our model will become complex and with

additional inefficient redundant data. Thus, we reduce the amount of features using multiple

techniques that will drop the columns with low standard deviation and high covariance ratio

providing a more reliable and useful model that avoids overfitting and also holds only the

required knowledge. To extract the features with low standard deviation, we calculate the

standard deviation of the collected data and remove the instances with standard deviation

equals to zero. For the high covariance, we compute the correlation matrix of the features

from our dataset and then remove the features with a ratio that is over 85%. After using the

above methods, our dataset now carries valuable features, that includes all the essential de

tails for building our mechanism and are presented in Table 3.

Features Description

time The time that the packet arrived

time_diff Time difference between two packets.

payload The encapsulated data

std_dev_payload Standard deviation of the payload

Avg_psh_flag The average of packets with psh flag active in a window of

packets.

Avg_TCP_pkt The average of TCP packets in a window of packets.

40 Chapter 3. Network System For Anomalies Detection QoS

Duration_window_flow The time from the first packet to last packet in a window of

packets.

Avg_delta_time The average of delta times in a window of packets. Delta

time is the time from a packet to the next packet.

Min_delta_time The minimum delta time in a window of packets.

Max_delta_time The maximum delta time in a window of packets.

StDev_delta_time The Standard Deviation of the delta time in a window of

packets.

Avg_pkts_length The average of packet length in a window of packets

Avg_small_payload_pkt The average of packet with a small payload. A payload is

considered small if his size is lower than 32 Byte.

Avg_payload The average of payload size in a window of packets.

Table 3.2: Final features that will be used

The next step that we follow is associated with building our model. Now that we have pre

processed our data, we can feed our model with the features that we choose. We depend on

different python libraries that provide us with the implementation of the outlier detection

algorithms that we mentioned previously(iForest,LOF,MCD). Thus, using these implemen

tations, we train and build a model that will identify the outliers and abnormal behaviors at

each service, and that means that this step is identical for every instance of our system. Lastly,

using the model that we created in the previous step, we can evaluate the behavior of our im

plementation with the new incoming packets and categorize them as normal or anomalies,

and after various experiments decide if our system perform well or not. These experiments

depend on changing the frequency of the traffic, the payload of the packets, and various mod

ifications to verify the capabilities and limits of our system. These trials are analyzed in detail

in the next chapter.

Now that we have an overview of our system, we focus on the algorithms that we use

for detecting the outliers and analyze how they achieve that. Hence, in the next section we

examine separately each of the following algorithms: (1) Isolation Forest, (2) Local Outlier

Factor, (3) Minimum Covariance Determinant, and also specify how each of them handles

the features and decides the category of each network packet.

3.4 Outlier Detection Algorithms Model 41

3.4 Outlier Detection Algorithms Model

In the previous subsection, we described each part of our implementation, including the

evaluation step. But, we didn’t focus on explaining the algorithms that our model uses to

identify the outlier from the usual traffic. Thus, now we analyze and examine each of the

three mechanisms that our model adopts to have a better perspective of the way that they

work. This will help us later to understand why each technique chooses the specific outliers

based on the nature of each implementation.

In this study, we include an isolation algorithm that focuses on separating the outliers

from the rest of the data points. However, this method differs from the other techniques as it

isolates the anomalies instead of identifying the normal instances. The concept of Isolation

forest was brought by Liu et al. [44] and uses random forests to compute an isolation score for

each data point. The model is built by performing recursive random splits on attribute values,

hence generating trees able to isolate any data point from the rest of the data. The score of a

point is then the average path length from the root of the tree to the node containing the single

point, a short path denoting a point easy to isolate due to attribute values significantly different

from nominal values. The author states that his algorithm provides linear time complexity.

We can see how the algorithm works by observing Figure 15 where the iForest is trying to

isolate the xi and x0.

Figure 3.6: Outlier detection using iForest

42 Chapter 3. Network System For Anomalies Detection QoS

However, we can recognize that x0 is isolated using fewer iterations than the xi and has a

short path at the tree. The shorter path means that the point is different from the rest of the

data points, and is classified by the algorithm as an outlier. Hence, using a similar approach to

the one that we defined above is applied by our model. At the preprocessing step, an instance

is created with various features, and that instance is isolated and then categorized as a normal

or an abnormal data point. The whole procedure is based on the iForest, which decides the

category for each data point. Thus, with that in mind, we have a better perception of our

system and also the algorithm that helps us to accomplish our purpose to create an outlier

detection mechanism that provides QoS to the IoT platform.

Another method that we are applying for detection the outliers also wellknown and called

Local Outlier Factor (LOF). This technique indicates the degree of outlierness for each object

in the dataset that we build, and also it is a concept of an outlier that quantifies how outlying an

object is. Furthermore, the local outlier factor algorithm is an unsupervised anomaly detection

method that computes the local deviation of a given data point with respect to its neighbors.

Figure 3.7: Outlier detection using LOF

The definition of “local“ is related to the fact that the algorithm takes into account only a

restricted neighborhood of each object. We can examine the above observations in Figure 16,

where we can see the performance of the LOF algorithm at a random dataset. This technique is

loosely related to densitybased clustering. However, it doesn’t require any explicit or implicit

3.4 Outlier Detection Algorithms Model 43

notion of clusters. Thus, after the calculation of the local deviation, it considers as outliers

the samples that have a substantially lower density than their neighbors. Moreover, another

detail related to the performance of the LOF algorithm, is that both normal and anomalous

instances are needed during the train phase. To fully understand the implementation of the

LOF algorithm, we present a formal explanation below. Consider that ndistance(A) be the

distance of the instance A to the nth nearest neighbor.We define the set of n nearest neighbors

asNn(A). This distance is determined as reachability distance in terms of the LOF algorithm,

and defines the true distance of two objects:

reachability − distancen(A,B) = max{n− distance(B), d(A,B)}

Now that we have the above metric, we can define the local reachability density of an object

A with the below equation:

lrdn(A) =
1∑

B∈Nn(A) reachability−distancen(A,B)

|Nn(A)|

With the above definition, we can calculate every local density of each point in our dataset and

compare it with the neighbors. If the density of a point is lower than the neighbor’s density,

then the point is considered an outlier. In summary, we also apply the current algorithm to

our model to identify the abnormal traffic using this densitybased approach.

The last algorithm that we are using for our system is also a robust method related to out

lier detection. The method was introduced in 1985 by Rousseeuw [?] and it’s one of the first

equivariant estimators of multivariate location and scatter. The MCD is resistant to outlying

observations, and that why it is used to develop many multivariate techniques, which include

principal component analysis(PCA) and multiple regression. However, for our purposes, we

will adapt the MCD that uses the covariance matrix of the data points to provide an efficient

outlier detection mechanism. Geometrically, the covariance matrix specifies an ellipsoid that

circumscribes the primary dimensions of the data in N space. Outlier data stretches the ellip

soid along the axis of the outlier relative to the mean. We can examine the above observation

in Figure 17.

44 Chapter 3. Network System For Anomalies Detection QoS

Figure 3.8: Minimum Covariance Determinant vs Classical

Now that we defined the geometrical approach of the MCD algorithm, let’s analyze the steps

that will separate the outlier from the rest of the data points.We assume that we have a random

sample of size h. We can confirm the similarity between data points in the two datasets using

the Mahalanobis distance [45]. Let M be the mean of the random subset and S be the standard

covariance of the random subset.

D = [(x−M)S−1(x−M)]
1
2

The Minimum Covariance Determinant algorithm is performed as follows:

• Choose a random subset of A of X, with size h.

• Determine covariance S and mean M of the subset A.

• Determine distances d(Xi) for all Xi relative to A with the Mahalanobis distance.

• Choose the h smallest distances and create a new subset A1.

• Repeat with A = A1 , until A and A1 are equal or 0.

• Evaluate for K times and determine the selection that had the smallest volume.

3.4 Outlier Detection Algorithms Model 45

Thus, our model has implemented internally the MCD algorithm using some python li

braries 123 that follow the same steps that we described. After the training, our model is ready

to identify the outliers again using the samemethodology, and that provides us a robust outlier

detection mechanism that offers to the IoT platform a reliable QoS tool. At this point, we have

finally described every part of our system and how the entire infrastructure works. Thus, now

we should proceed to the testing phase, where we will evaluate our implementation through

various experiments.

1Scikitlearn
2Scapy
3PyOD

Chapter 4

Setup and Evaluation

In the current section, we will focus on describing the setup of our mechanism related to

the platform and how the entire infrastructure works together. In detail, we will explain how

our implementation will be combined with the platform’s workflow without affecting the

performance of the running services. Moreover, our model would be a separate component

of the platform, but it would capture the traffic of each service that is running at the IoT

platform. Without this approach, our implementation wouldn’t be able to obtain the essential

data for the training and evaluation phase. Next, after explaining each required step for setup

at the platform, we will describe various experiments that we will attempt to understand the

limits and the capabilities of our algorithm. Also, with those experiments, wewill evaluate the

performance of our mechanism and identify the weak spots to improve those vulnerabilities in

the future. Finally, through this general evaluation, we will get a glimpse of the effectiveness

of our method and also discover different techniques that will improve our implementation

and provide more reliable and efficient results.

4.1 Setup of the QoS mechanism

Ourmechanism, as wementioned already in Chapter 3, relies on different Python libraries

that implement the algorithms that we will need for our purpose. We adopt these libraries

to create the infrastructure that we previously described that provides an efficient anomaly

detection system that will ensure the fulfillment of the basic QoS requirements. Thus, we

47

48 Chapter 4. Setup and Evaluation

need first to install Python on our machine to run our mechanism since every part of the

implementation uses it. After that step, we should run the initial script that setups a tool that

generates processes after the creation of a new service so that these processes will run the

anomaly detection algorithm for each service. Therefore, for each service that is running,

we have a “twin“ of our mechanism handling each service and is independent of the other

processes. In that way, every instance will not be affected by the other ones and will create

an individual model that reflects the behavior of the service that is responsible for. We can

understand better the initial script with the below algorithmic approach:

Algorithm 1 Create processes for each service
services = []

while true do

check the database

if new service created and service not included in services then

add service to services

create a duplicate of our mechanism for that service

end if

end while

Now we are done with the setup, and after that, each process starts filtering the traffic from

the container, extracts the features, and generally follows the steps that we described in Chap

ter 3 (Page 4950). The setup of our mechanism is not very complicated and has minimum

requirements for the configuration. The only obligation that someones has is to run a few

scripts, and everything is up and running. Our method is kept simple with specific algorithms

that achieve our goal without burdening the entire IoT platform. After the process creation

that we described, another script is triggered by our mechanism that will setup the feature

extraction, training, and evaluation phase. When our model is trained using the three out

lier detection algorithms, we can evaluate the performance of our method with new traffic

instances that are not included in the training dataset. All the above steps are included in a

script that runs the outlier detection system for each service and can be examined below:

For our model we used open source python libraries and also a simple approach to create

a system for outlier detection that would be transparent to everyone and easy to transfer and

setup to another IoT platform. Now that we explained the whole implementation and also the

setup of our mechanism, we should proceed to the experiments to evaluate the performance

4.2 Evaluation through Experiments 49

Algorithm 2Model’s Algorithm
iterations = 0

while true do

capture the traffic and save it to pcap files.

extract the features from the pcap files.

if iterations >0 then

retrain the model with the new instances.

else

train the model.

end if

increase the iterations by one

end while

and the effectiveness of our method.

4.2 Evaluation through Experiments

4.2.1 Service Setup

Before starting the experiments and see the effects of altering different variables, we

should create a service to use it as a testbed for our purpose. Based on that service we will

analyze the traffic that produces and setup our model at that instance to test the performance

of our mechanism. The service that we use is a random generator that returns integers within

a range every k seconds that we specify, and that sample is provided by the IoT platform.

We chose a basic approach as a testbed to quickly install that service and also to understand

better the effects after applying various reconfigurations. Those reconfigurations are related

to the modification of the packet frequency, and also the payload that each packet transfers.

Therefore, to install that service, we upload the docker file to the IoT platform, and we press

the “build“ button to build the docker for our service as we can observe in Figure 18.

50 Chapter 4. Setup and Evaluation

Figure 4.1: Upload dockerfile and build service

Then we are ready to run the service and start the experiments. When the service starts run

ning, we can recognize the traffic and the requests that the service is handling at our terminal,

as we can also examine in Figure 19. Additionally, we can retrieve the logs of the running

service by entering the container, and inside /var/log see all the events/traffic, and also the

results that the random integer generator produced. Another essential factor related to the

service is that the random integer generator has two inputs (frequency, range), that define

the range of the generated values and how often these values are produced.

Figure 4.2: Service’s traffic

Thus, the experiments that we would perform are related to these two fields that we tweak to

examine the performance of each of the three proposed algorithms. To achieve the different

variations to the two mentioned values, we will use a tool that is called mosquitto_pub and

the command for altering an input is the following:

$ mosqu i t t o_pub −h l o c a l h o s t − t < i npu t > − i

< c o n t a i n e r − id > −p 1883 −u <username >

−P <password > −m <va lue >

4.2 Evaluation through Experiments 51

Now that we explained all the components of the initial setup phase, we need to proceed to

the following part and start the various modifications at the service’s inputs.

4.2.2 Frequency Modifications

As we proposed, we will use the random integer generator for our evaluation purposes.

This service has two input topics and one output topic. Those input topics are called fre

quency and range. The default values of frequency and range are 1 and 10. Thus, we will

train our mechanism using the default case, and after that, we will tweak these two inputs

to evaluate the performance of the three algorithms. First, we will be focusing on changing

the frequency to receive integers with different time windows. In that way, we will observe

how each implementation behaves when the timestamp of the packets differentiates. There

fore, using the mosquito_pub command, we increase the frequency to 5 seconds. After that,

we will receive an integer from the service every 5 seconds, and that will increase the time

difference between two incoming packets. Thus, using the iForest as the main component of

our model instantly separates the outlier and recognizes that the packet flow has changed and

tracks the outlier with a percent of 89%. Next, we try the same experiment using the Local

Outlier Factor and Minimum Covariant Determinant, and identify the outlier with a percent

of 96 % and 93% accuracy. Now, we should try to increase more the frequency to expand the

time window of the traffic. Hence, we change the frequency topic to 10 seconds to make the

contrast more obvious. After repeating the equivalent process and running each of the algo

rithms, we saw that all of them achieved 100 % accuracy at detecting the outliers. However,

the above results are expected since most of the algorithms that we used are densitybased.

Thus, since the algorithms rely on distance metrics, it was apparent that the outliers will be

identified by the algorithms because the time “distance“ diverges among the experimental

cases. The above experiments and the results are also displayed in Table 4.

Algorithm 5 second 10 second

iForest 89 % 100 %

Local Outlier Factor 96 % 100 %

Minimum Covariant Determi

nant

93 % 100 %

52 Chapter 4. Setup and Evaluation

Table 4.1: Outlier detection accuracy after frequency changes.

4.2.3 Range Modifications

Now that we have compared the algorithms after the frequency altering, we can continue

and tweak the range of the values that the random integer service produces. The range is the

second input topic of the service that we use for the experiments, and it defines the range

of the value that the generator will return. For example, if the range is 100, then the gen

erator will provide numbers between 0 and 100. The default value of the range is 10, and

we will try to change that value to 1000 and 10000 to observe how that will affect the three

algorithms. To include the range into our dataset, we have defined a field called payload and

also some other metrics related to the average of the payload, the minimum, and maximum

value that we already introduced in Chapter 3. Thus, when we would modify the range of

the generator, the payload and also the related metrics will diversify, and that will affect the

behavior of the dataset. After that, we will evaluate the performance the three algorithms us

ing the above dataset. Therefore, let’s begin with the range modification to 1000 using the

mosquitto_pub command. Using the iForest as the main component of our model, it achieves

only 67 % accuracy to identify the outliers based on the range altering. However, the other

two algorithms that are densitybased achieve better performance with 97 % (LOF) and 96 %

accuracy (MCD). Next, if we repeat the same experiment with a range of 10.000, we achieve

similar results with the iForest being 72% and the other two 100% accurate. Since the range

and also the frequency are distance related input topics, a densitybased algorithm operates

better than a more statistical one. Due to that fact the LOF and MCD that are densitybased

techniques perform better at the outlier detection than the iForest that has a more statistical

approach. We can observe the above experiments and also the results at Table 5.

Algorithm 0 1000 0 10000

iForest 67 % 72 %

Local Outlier Factor 97 % 100 %

4.2 Evaluation through Experiments 53

Minimum Covariant Determi

nant

96 % 100 %

Table 4.2: Outlier detection accuracy after range modifications.

Chapter 5

Conclusion

5.1 Summary

The rising importance of IoTbased services has resulted in the adoption of more sophis

ticated ways to provide improved services that meet rising QoS expectations. QoS is a major

concern when it comes to multimedia services and tasks that require significant power and

resources. Moreover, QoS is a design paradigm to map realtime constraints from the ap

plication and also offers a way to handle time requirements as delay, jitter, and throughput

at any level of the architecture. Current methods either have low selection accuracy or are

highly timeconsuming (e.g., exponential time complexity), neither of which are desirable

in largescale IoT applications. In this paper, we presented various methodologies that are

proposed in different researches. The researchers applied those techniques at different lay

ers of the IoT stack, and each of those implemented a handling mechanism that fulfilled

the QoS requirements. Next, we proposed a networkbased QoS approach with a model that

combine machine learning techniques to achieve outlier detection at the IoT platform called

SYNAISTHISI.We used three wellknown outlier detection techniques: (a) iForest, (b) Local

Outlier Factor, (c) Minimum Covariant Determinant. The first one uses a statistical approach

to define how an outlier behaves while the others are densitybased algorithms that use dis

tancemetrics to identify the outlier from the rest of the dataset. Thus, through our experiments

and evaluation, we realize that the problem that we are trying to eliminate can be solved using

the densitybased algorithms since our metrics perform better using numerical that statisti

55

56 Chapter 5. Conclusion

cal approaches. Finally, we came to the conclusion that our model can provide an efficient

outlier detection system that will satisfy the QoS requirements of an IoT platform using the

LOF, and MCD algorithms are the main components of our mechanism. All the source code

for the entire project and some of the test cases that was used in these thesis are included in

a public repository.

5.2 Future Work

As the Connected Life evolves, the number of interconnected devices is set to rise dra

matically. These devices will bridge the physical and digital worlds, enabling a new category

of services that will improve the quality of life and productivity. However, these devices have

various QoS requirements to fulfill in order to provide those services and achieve their pur

poses. In recent years, several researchers have developed and construct different methods

and using machine learning to satisfy the requirements that every IoT ecosystem needs. Thus,

while machine learning techniques will evolve and rise, new mechanisms will be created ev

ery day. Therefore our future work will include an ensemble model of our technique that

will combine two or all the algorithms that we proposed using a mechanism in the form of a

pipeline that will provide a better outlier detection identification. Finally, another alternative

would be to combine the current model using futuristic procedures that will be introduced in

the next years.

https://github.com/echatzief/thesis-anomaly-detection

Bibliography

[1] J. Liaperdos, A. Arapoyanni, and Y. Tsiatouhas. Bi intelligence estimates. Sept. 2015.

[2] Joe Hoffert, Daniel Mack, and Douglas Schmidt. Using machine learning to maintain

qos for largescale publish/subscribe systems in dynamic environments. In 8th Work

shop on Adaptive and Reflective Middleware, pages 1–5, Jan. 2009.

[3] O. Adinolfi, R. Cristaldi, L. Coppolino, and L. Romano. Qosmonaas: A portable ar

chitecture for qos monitoring in the cloud. In 8th International Conference on Signal

Image Technology and Internet Based Systems, pages 1–8, Nov. 2012.

[4] Changhe Yu, Julong Lan, JiChao Xie, and Yuxiang Hu. Qosaware traffic classification

architecture using machine learning and deep packet inspection in sdns. pages 1–8, Jan.

2018.

[5] Zehui Liu, Deyun Gao, Ying Liu, Hongke Zhang, and Chuan Heng Foh. An adaptive

approach for elephant flow detection with the rapidly changing traffic in data center

network. In International Journal of Network Management, pages 1–13, June 2017.

[6] Zhangyu Cheng, Chengming Zou, and Jianwei Dong. Outlier detection using isolation

forest and local outlier factor. pages 1–7, September 2019.

[7] Bart De Ketelaere, Mia Hubert, Jakob Raymaekers, Peter J. Rousseeuw, and Iwein

Vranckx. Realtime outlier detection for large datasets by rtdetmcd. In Chemomet

rics and Intelligent Laboratory Systems, pages 1–28, January 2020.

[8] Francesco Delli Priscoli, Alessandro Di Giorgio, Federico Lisi, Salvatore Monaco, An

tonio Pietrabissa, Lorenzo Ricciardi Celsi, and Vincenzo Suraci. Multiagent quality of

experience control. pages 1–12, Decembers 2015.

[9] K.Ashton. That ‘internet of things’ thing. In RFiD Journal, pages 1–8, June 2009.

57

58 Bibliography

[10] Andreas Plageras, Kostas E. Psannis, Christos Stergiou, and Haoxiang Wang. Efficient

iotbased sensor big data collectionprocessing and analysis in smart buildings. In Fu

ture Generation Computer Systems, pages 1–16, October 2017.

[11] ITUT Y.4050/Y.2069. Terms and definitions for the internet of things. In GLOBAL IN

FORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT

GENERATION NETWORKS, pages 1–14, July 2012.

[12] H.Sundmaekerm, P.Guillemin, P.Friess, and S. Woelffle. Vision and challenges for re

alising the internet of things. In Cluster of European Research Projects on the Internet

of Things, pages 1–15, April 2010.

[13] H.Sundmaekerm, P.Guillemin, P.Friess, and S. Woelffle. Vision and challenges for re

alising the internet of things. In Cluster of European Research Projects on the Internet

of Things, pages 1–15, April 2010.

[14] R. Minerva, A. Biru, and D. Rotondi. Towards a definition of the internet of things (iot).

In IEEE Internet Initiative, pages 1–35, August 2015.

[15] C.Perera, A.Zslavsky, P.Christen, and D.Georgakopoulos. Context aware computing

for the internet of things: A survey. In IEEE Communications Surveys and Tutorials,

pages 1–16, May 2013.

[16] libelium. 50 sensor applications for a smarter world. pages 1–30, May 2016.

[17] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey. In International

Journal of Applied Mathematics, pages 104–110, December 2010.

[18] O. Vermesan and P. Friess. Internet of thingsfrom research and innovation to market

deployment. pages 1–50, December 2014.

[19] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu. Security of the internet of things:

perspectives and challenges. In Wireless Networks, pages 2481–2501, May 2013.

[20] H.Aksu, L.Babun, M.Conti, G.Tolomeit, and A.S.Uluagac. Advertising in the iot era:

Vision and challenges. In IEEE Communications Magazine, pages 1–7, January 2018.

Bibliography 59

[21] Zozo Hassan, Hesham Arafat Ali, and Mahmoud M Badawy. Internet of things (iot):

Definitions, challenges, and recent research directions. In October 2015International

Journal of Computer Applications, pages 37–47, October 2015.

[22] Gary White, Vivek Nallur, and Siobhan Clarke. Quality of service approaches in iot: A

systematic mapping. In Journal of Systems and Software, pages 1–19, May 2017.

[23] Keyur K. Patel and Sunil M. Patel2. Internet of thingsiot: Definition, characteristics,

architecture, enabling technologies, application and future challenges. pages 6122–

6131, 2016.

[24] AnjumSheikh, AshaAmbhaikar, and Sunil Kumar. Quality of services improvement for

secure iot networks. In International Journal of Engineering and Advanced Technology,

pages 1–9, December 2019.

[25] Ravi C Bhaddurgatte and Vijaya Kumar BP. A review: Qos architecture and implemen

tations in iot environment. In Research Reviews: Journal of Engineering and Technol

ogy, Sept. 2015.

[26] Pallavi Sethi and Smruti R. Sarangi. Internet of things: Architectures, protocols, and

applications. In Journal of Electrical and Computer Engineering, pages 1–24, Jan.

2017.

[27] Prachi Jain, Kancha Jha, and Sanjivani Patwa. Architecture of internet of things. In

IEEE Wireless Communications, pages 1–14, June 2017.

[28] D. Hands, O. V. Barriac, and F. Telecom. Standardization activities in the itu for a qoe

assessment of iptv. In IEEE Communications Magazine, pages 78–84, March 2008.

[29] M. Fiedler, K. Kilkki, , and P. Reichl. 09192 executive summary from quality of service

to quality of experience. In Dagstuhl Seminar Proceedings, March 2009.

[30] K. Brunnstrom, S. A. Beker, K. De Moor, A. Dooms, S. Egger, M.N. Garcia, T. Hoss

feld, S. JumiskoPyykko, C. Keimel, and C. Larabi. Qualinet white paper on definitions

of quality of experience. In EU COST action 1003 QUALINET, pages 1–12, March

2013.

60 Bibliography

[31] Parikshit Juluri, Venkatesh Tamarapalli, and Deep Medhi. Measurement of quality of

experience of videoondemand services: A survey. In IEEE Communications Surveys

and Tutorials, pages 1–20, March 2016.

[32] A. Mellouk, H. A. Tran, and S. Hoceini. Qualityofexperience for multimedia. pages

1–40, March 2013.

[33] F. Dobrian, A. Awan, D. Joseph, A. Ganjam, J. Zhan, V. Sekar, I. Stoica, and H. Zhang.

Understanding the impact of video quality on user engagement. In Communications of

the ACM, pages 1–12, October 2011.

[34] T. Hayashi. Qoecentric operation for optimizing user quality of experience. pages

1–10, September 2015.

[35] M. Cilia, L. Fiege, C. Haul, A. Zeidler, and A. P. Buchmann. Looking into the past: En

hancing mobile publish/subscribe middleware. In Databases and Distributed Systems

Group, pages 1–9, August 2003.

[36] GaryWhite, Andrei Palade, Christian Cabrera, and Siobhan Clarke. Quantitative evalu

ation of qos prediction in iot. InConference: 2017 47th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks Workshops, pages 1–6, June 2017.

[37] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. Blindbox: Deep

packet inspection over encrypted traffic. In ACM SIGCOMM Computer Communica

tion Review, pages 1–7, August 2015.

[38] S. Canale, F. Facchinei, R. Gambuti, L. Palagi, and V.Suraci. User profile based quality

of experience. In 18th International Conference on Circuits, Systems, Communications

and Computers (CSCC 2014), volume 2, pages 1–12, July 2014.

[39] L. Ricciardi Celsi, S. Battilotti, F. Cimorelli, C. Gori, Giorgi, S. Monaco, M. Panfili,

V. Suraci, and F. Delli Priscoli. A qlearning based approach to quality of experience

control in cognitive future internet networks. In 2015 23rd Mediterranean Conference

on Control and Automation (MED), pages 1–12, June 2015.

[40] C. Estan, S. Savage, and G. Varghese. Automatically inferring patterns of resource

consumption in network traffic. InACMSIGCOMMComputer Communication Review,

pages 1–12, July 2003.

Bibliography 61

[41] Mohammad Aazam and Khaled A. Harras. Mapping qoe with resource estimation in

iot. In 2019 IEEE 5th World Forum on Internet of Things (WFIoT), pages 1–15, April

2019.

[42] Eric L. Goodman, Chase Zimmerman, and Corey Hudson. Utilizing word2vec for fea

ture extraction in packet data. In MLDM 2019, pages 1–15, April 2020.

[43] Leslie F.Siko. Packet analysis for network forensics: A comprehensive survey. In

MLDM 2019, pages 1–15, March 2020.

[44] F. T. Liu, K. M. Ting, and Z.H. Zhou. Isolation forest. In Data Mining, 2008, pages

1–10, Jan. 2009.

[45] Mia Hubert, Michiel Debruyne, and Peter J. Rousseeuw. Minimum covariance deter

minant and extensions. In Wiley Interdisciplinary Reviews: Computational Statistics,

pages 1–11, September 2017.

	Acknowledgements
	Abstract
	Περίληψη
	Table of contents
	List of figures
	List of tables
	Introduction
	The IoT ecosystem
	Historical Flashback and Definition
	Use Cases
	Challenges

	Quality of Service/Experience from an IoT Perspective
	Quality of Service through the layers
	Quality of Experience

	Thesis Objectives
	Research Background
	Sections

	Related Work
	Quality of Service
	Introduction
	Application Layer Techniques
	Network Layer Techniques
	Network Layer Techniques - Outlier Detection

	Quality of Experience
	QoE Controller
	MARL-Q Algorithm
	H-MARL-Q Algorithm
	Combination of QoE with Resource Estimation

	Network System For Anomalies Detection - QoS
	Introduction
	The SYNAISTHISI Platform
	Proposed System
	Outlier Detection Algorithms - Model

	Setup and Evaluation
	Setup of the QoS mechanism
	Evaluation through Experiments
	Service Setup
	Frequency Modifications
	Range Modifications

	Conclusion
	Summary
	Future Work

	Bibliography

