UNIVERSITY OF THESSALY

DEPARTMENT OF MECHANICAL ENGINEERING

Diploma Thesis

Cycle Time Prediction in the Wafer Test Fab of a Semiconductor Manufacturing Plant
using an Artificial Neural Network Model

by
GEORGIOS LOGOTHETIS

Submitted in partial fulfillment of the requirements
for the Diploma in Mechanical Engineering

February 2020

© Copyright by
Georgios Logothetis
2020

H éykpion mg dmhopatikng epyaciog and 1o Tunpa Mnyavordyomv Mrnyovikdv g
[ToAvteyvikng ZyoAng tov I[avemompuiov Oeocoriog dev VTOINADVEL OTOS0YN TOV
anoyewv Tov cuyypagéa (N. 5343/32 ap.202 map. 2).

The Diploma Thesis of Georgios Logothetis has been examined and approved by a
three-member Examination Committee as satisfactory for the thesis requirement for the
Mechanical Engineering degree.

Approved by:

First Examiner:

(Supervisor)

Second Examiner:

Third Examiner:

Dr. George Liberopoulos

Professor, Department of Mechanical Engineering, University of
Thessaly

Dr. Dimitrios Pandelis

Associate Professor, Department of Mechanical Engineering,
University of Thessaly

Dr. Georgios K.D. Saharidis

Assistant Professor, Department of Mechanical Engineering,
University of Thessaly

Acknowledgements

First of all, I owe special thanks to my Supervisor, Professor George Liberopoulos. My
early involvement in [Jij-funded project ||l white being on my 3 year
of studies, as well as the chance to be an intern at our project collaborators, KIT and
I /<1 some of the opportunities he generously offered me. These chances
to perform undergraduate research and work for such partners, provided me with
valuable lessons and insights for my career.

I also would like to thank Professor Liberopoulos’ PhD student and a personal friend
of mine, Michalis Deligiannis, for his scientific support throughout my work.

In addition, | am grateful to my intern supervisor at ||| GG rant in
I B o the precious suggestions in the direction of my thesis

topic. During my internship at-, | had the opportunity to work as a shift employee
in a Wafer Test Fab and gain valuable insights about fab operations. Many thanks to
the- people who helped me understand the physical system that was modeled in
this dissertation.

Last but not least, | thank my family, which stands by my side in all my endeavors.

Abstract

The large production scale [1], high stochasticity and complexity [2] that characterize
the manufacturing processes of semiconductor plants, make the analysis and modelling
of the physical system very challenging. Products that may re-enter the same machine
types through the course of their production, as well as the routing flows and the job
sizes that dynamically change [3] during the process, make it hard to gain valuable
insights and Key Performance Indicators (KPIs) of the production process.

One of these KPIs is the Cycle Time (CT) of a product through any fab of the plant or,
more importantly, through the entire plant.

Knowledge of CT information plays a very important role in semiconductor
manufacturing industries. It allows them to promise accurate delivery times to their
customers, and hence reduce penalties for lateness, as well as handle their inventory in
a just-in-time way.

In order to achieve an accurate prediction of this important KPI, we must take into
account the factors that affect it, such as the WIP of the fab, the utilization of the
equipment, the size of queues before the equipment, etc. [4]

In the literature, several model-based and data-based approaches for predicting CT are
suggested. Among the data-based approaches are the methods of Multiple Linear
Regression (MLR) and Artificial Neural Networks (ANNSs) [5]. Data-driven methods,
enabled by recent technological advances, are particularly promising for accurate CT
prediction, as they are based on historical data.

In this thesis, we present an ANN-based method for CT prediction. Roughly described,
an ANN treats the system as a black-box, using massive input data and a properly
designed forecast model to predict CTs, without much knowledge of the structure of
the system.

We applied this method to the Wafer Test Fab of the - semiconductor plant in
I 7o o this, several steps had to be taken. First, we had to comprehend the
physical system of the semiconductor manufacturing plant, and more specifically the
Wafer Test Fab. Then, we had to identify and define the most important factors that
potentially influence CT. These comprised the input factors of the ANN model. Next,
we had to manipulate the raw data in order to form the proper aggregated inputs. This
step turned out to be the most challenging one, because it involved dataset
transformation through a very concrete data analysis. Finally, we developed the ANN
model, using MATLAB’s Neural Network Toolbox (currently, Deep Learning
Toolbox) [6]. In the end, we evaluated the results and the model efficiency, and we
gave directions for improvements. The results that we obtained were reasonable and
encouraging, suggesting that our implementation approach is reliable and promising.

[TepiAnyn

H avélvon xotr 1 povieAomoinon Tov QUOIKOD GULOTHUOTOS TOV EPYOCTUCIMOV
TOPAYOYNS NUayoydv sivar wiaitepa odvOetn. O Adyog €ykertar 610 yeyovdg OTL
amotedel pio mapaymyn peyaine kMpokag [1], o6mov ot dwdikaoieg NG
yapaxtnpiCovtal omd vynAn otoyactikdtnTa Kot TolvmAokomta [2]. Ta mpoiova,
UTOpOoLV va €l6EAB0VY GTOV 1d10 TUTTO UNXOVIG TTEPIEGOTEPO amd pio opd Kot N
dupkela g enesepyosiog Tovg. Emiong, ot aAlayég oTic Stadpopés Kot Tor pey€dn toug
etva duvapukég [3], kot g ek T00ToL KOOIGTOHY FOGKOAN TNV OTOKTNGT TANPOPOPLDV
v Baoikovg Agikteg Amddoong TG Topay®ytkng d1adtkociog.

"Evag and toug Baowkovg Agikteg Anddoong givarl o ypdvog mov damavd Eva mpoidv
KT TNV TOPOymYN TOL, €1T€ G€ Evav TOUEN TOV EPYOCTAGIOV, £1T€ GUVOAIKE GE OAO TO
€PYOGTAGIO.

H yvéon tov ypovov tapaymyng (Cycle Time — CT) dwadpopatilel onuavtikd poro yio
g Prounyavieg kataokevg nuayoyov. Tovg emtpénet va vrdoyovror axpiPeic
XPOVOLG TOPBEOOGNC TV TPOTOVIWV GTOVG 0YOPAOTEG, KOl KT CUVETELN LEDMVOLV TOL
KOGTN TOL TPOKVTTOVV amd TLYOV KabBvoTepnoelc. Emiong, toug divel) duvatdtnta vo
dayepilovtan o amoBépaTd Toug pe Tpdmovg just-in-time.

H mp6freym tov mapandve deiktn, eEaptdrol amd mopdyovies, Onwg o apltdnog tmv
gpyaoctov oe eEEMEN (Work In Process — WIP) oto gpyootdoio, 1 amddoon tmv
UNYavoV, To péyebog tmv ovpdv Ticw amd kabe unyovn k.o. [4]

> BPMoypapio TpoteivovTon SIAPOPES TPOCEYYIGELS Yo TNV TPOPAEYN TOV YPOVOL
mopay®yns. Metald avtov eivar ot péBodot TOAAATANG YPOUUIKNG TOAIVOPOUNONG
(Multiple Linear Regression — MLR), 1 Tpocopuoimon ¢ mopoy®yng Kot To TEXVNTA
vevpovika diktoa (Artificial Neural Networks — ANN) [5]. To povtéla wov n avantoén
tovg Paociletor oe 10TOPIKA O€dOpUEVA, OVVOVTOL VO TPOPAEYOVV OTOTEAECUOTIKA
TETOL0VG YPOVOLG.

Y& autn 1 oTpipn, mapovsialovpe pio pEBodo mov Paciletor oe TEYVNTE VELPOVIKA
diktva yio v TpdPAreymn Tov xpovov mapaywyng. [llepnmtikd, Eva texvntd veupmviko
diktvo avtipetomilel T0 cHOTNUA ®G LAOPO KOVTL, YPNCILOTOLDVTAG UEYAAO aplBud
dedoUEVOV Yoo TIC HETOPANTEG €16000V Kot €va KATOAANAG GYESOOUEVO LOVTELOD
TPOPAEYNG YO0 TNV EKTIUMON TOV HETAPANTAOV ££000V, YWPIG YVAOON NG dOUNG TOV
(PLGKOV GLOTNLOTOG.

[To ovykekpyéva, gpapudcapte v mopandve péBodo otov Topéa Aoxkipmv
Aoketov/IThakwdiov Huoyoyov (Wafer Test Fab) g Poounyovicg mopoyoyng
pmposnséspyacsrd)v_ 010 _ [Ma v enitevén tov
OLYKEKPIUEVOL GTOYOL, EMPENE MPOTA Vo Tponyndodv KAmol ONUAVTIKA PritoTa.
Apykd, ETPENE VAL KATOVOT)COVLE TO PVGIKO GUGTILOL TOL EPYOCTUGIOV, KO E10IKOTEPL
tov Topéa Aokipdv tov Atoketov Huayoyov. EmmAiéov, Enpene va evtomicovpe kot
va kaBopicovE TOLG CNUAVTIKOTEPOVS TAPAYOVTES TOL TOAVAOS ETNPedlovy TO ¥POVO

5

mopaymyns. Avtol ot mapdyovieg Oa amoteAécovy Kot TIG UETAPANTEG 10000V TOV
TEYVNTOD VELPOVIKOD JSIKTOOV. XTN CUVEXEWN, EMPENE VO OLOYEIPIOTOVUE KO VO
eNeEEPYACTOVE TO OKATEPYAOTO dEdOUEVA TTOL AdPapE amd TNV TOPAY®YT, OOTE Vo,
SUOPOOCOVUE TIG KATAAANAEG PeTAPANTEG €16000V. AvTO TO Prpa amodeiybnke to
TLO JATOVIPO YPOVIKE, EPOGOV OTANTOVGE PETOCYNLATICUO TV SEOOUEVOV HEG® TNG
KATAAANANG avaivong Tov apyikodv. Télog, avamtiape Kot EKTOdEDGAE TO LOVTELD
TOL TEYVNTOV VELPOVIKOL O1KTVOL ypnoitomoidvtag to gpyoreio “Neural Network
Toolbox” t¢ MATLAB (mhéov, “Deep Learning Toolbox) [6]. Ev katax)eiot,
avVOAOGOUE Kol AEI0AOYNCUUE TOL OTOTEAEGLOTO KOl TNV OlOS00T] TOV LOVIEAOV Kol
mopetyope katevhovoelg yio peArovtikn Epevva eni Tov Bépatog. A&ilel va onuelmdel
TOG TO ATOTEAEGHATO TTOV AdPape NTov AOYIKE, VITOONADVOVTOG OTL 1] EQOPUOYN LOG
etvar a&16mot Kot Waitepa ypnoun.

Contents

CHAPTER 1T INTrOQUCTION ...t 11
1.1 Motivation and Background............cccoerrinieninninie e 11
1.2 LItErature REVIEWccuoiiieiiiie sttt 12
1.3 THESIS OULHNG ..o 13

CHAPTER 2 Semiconductor ManufaCturing..........cccceeeeeereernsiiesnese e esee e 15
2.1 Manufacturing PrOCESS.......c.vcvueiieiieeiesie st eie ettt sae e e ne s 15
2.2 The Wafer TeStFaD......ccooiii e 16

CHAPTER 3 Data ANAIYSIS ...ccuveieiieiiieie ettt 18
T8 A I 1= ST] o] £ [o OSSO 18
3.2 Data Validation & PreproCeSSiNg........cccveiverieiieeieeiesieesresiesieeseesseseessaessens 19
3.3 Data ANalySiS StrAtEQYcccveieiierieeiesiesie e see e seesie e e sae e e ne s 22
3.4 SQL Code DESCIIPLIONeeveeiieiiieiieeiesteeste et sre e e e e 25
3.5 MATLAB C0de DEeSCIIPION.....ccciieiiiiieiieeie e e ie st see e e 26

CHAPTER 4 Atrtificial Neural Network (ANN) Model.........ccccceviniiiniciiiniens 32
4.1 Introduction 10 ANNSc.eiiiiiiee e e 32
4.2 ANNs in Manufacturing & Competitive Advantage...........ccoccevvvereniennenncns 37
4.3 ANN Model (NN-TOOI)ooiiiiiiieieiieie e e 37

CHAPTER 5 RESUIS ...ttt ettt 47

CHAPTER 6 Summary and Future DIireCtionscccooveverirnieneiiesiene e 52

BIBLIOGRAPHY ...ttt nae e e nneeas 53

APPENDICES ...t e aa e 55
APPENDIX 1: Code of Data Preprocessing (SQL)coccererrininniennenienieene e 55
APPENDIX 2: Code of Data Preprocessing (MATLAB)......ccccoovieienieiieeeee 81
APPENDIX 3: Neural Network Training for All Product Familiesc.c....... 98

Figures

Figure 1: Factor Analysis for Cycle TiMecccoiviii i 13
Figure 2: Stages of Semiconductor Manufacturing (source: Ménch et al., [15]) 15
Figure 3: Sample of txt file of Flow Table raw data

Figure 4: Sample of txt file of Equipment State Table raw data

T 20

Figure 5: Flow Table data visualization & validationccccceviiinieninnieiinne, 20
Figure 6: Union of Flow Table tXt fileS ..o 21
Figure 7: Each equipment type executes more than one recipe..........cccocvevvevverveeenne. 22
Figure 8: Each Recipe is executed in a single EQuipment typecccoecvevvevvevveeenne. 22
Figure 9: Recipe-based database.ccueiveieiieiice e 22
Figure 10: Average Priority Calculation............cccccveiiiieie i 23
Figure 11: TOEQPLYPE LOTS. ...uiiiiiieiieie ettt 23
Figure 12:Parts to be analyzed ..o 23
Figure 13: Number of lots of part [JJij that pass from the 10 selected equipment
107 LT TP T R OPPPUPRPTUPRPRPPIN 24
Figure 14: The equipment-based dataset for the 14 partS.........ccccceoeveenenienieennsienne. 24
Figure 15: Entry and departure timestamps of 10tS.........ccccocevieviiiii i 25
Figure 16: Priorities & CT Of the 10tS.......cccvoviiiiiic e 26
Figure 17: Lots' CT CalCUlation..........ccoceeiieiiiiecrce e 26
Figure 18: Recipe-based Processing TiMe........cccovveieiiieieeieseese e 27
Figure 19: Equipment-type-based Processing TIMESccccoeeereririienenieseenee e 27
Figure 20: WIP Level of Fab upon ENtry ..o 28
Figure 21: Expected Queue Times for entering LOtS........ccocovvveviriniinneniieneenecee e 28
Figure 22: Connection of MATLAB to the Database..........cccooevvriiienenieiieneeeee 28
Figure 23: SQL-based MATLAB Script for WIP........cccooviiiiiiecece e 29
Figure 24: MATLAB SQL-based script for Projected Time in QUeuecc.c.c..... 29
Figure 25: MATLAB SQL-based script for EQuipment’ Utilization.............c.ccce..... 30
Figure 26: Creating the Final Tablesccoviieiiii e 30
Figure 27: Final Table LayOuLtccooi oo 31
Figure 28: ANN PhiloSOPNY [6].....coveeeiieiiiieiieie s 32
Figure 29: NN's basic Math Operation [6].........ccouvvrriiireniiiieniee e 32
Figure 30: Multilayer Network [17]ooeooeieee e e 33
Figure 31: Algorithm Cheat Sheet (Source: scikit-learn.org).........cccccevvevvrivervninnne. 34
Figure 32: A typical NN LayOUL........cccoiiieiieieiiece e 34
Figure 33: The sigmoid fUNCLION.........c.ccieiiie e 35
Figure 34: Backpropagation’s algorithm.c.cccooe i 36
Figure 35: A Network that depicts the architecture of the first two cases.................. 38
Figure 36: The 1-Hidden Layer Network Set ... 42
Figure 37: The 2-Hidden Layer Network Set ..o 42
Figure 38: The NNOOI Of MATLAB........cooi e 42
Figure 39: NNtool Set Up of 6 nets for 1st Product Familyccccceveniiiiinnnenn. 43

8

Figure 40: The training Parameters.........ccooiveueiieerveie e sie e se e sie e see e nes 43

Figure 41: Product Family 1 Train (1 Hidden Layer of 16 Neurons)............cccccvevvenee. 44
Figure 42: Product Family 1 Train (1 Hidden Layer of 32 Neurons)cccccvevvenee. 44
Figure 43: Product Family 1 Weights (1 Hidden Layer of 32 Neurons) 45
Figure 44: Product Family 1 Train (2 Hidden Layers of 32 Neurons)cccccceenee. 45
Figure 45: Neural Net on the whole Data ..o 46
Figure 46: SQL Code for EQPS MEITEccueiiiiieiieee st 49
Figure 47: MATLAB Script for EQPS MErge.......cccoviiiiiieciece e 49
Figure 48: Dataset with EQUIPMENT STALES.........ccciveiiiieiiceceece e 49

Tables

Table 1: MAPE of predicted CTs for the three ANN architectures for each product

family and all ProUCES..........ooviii e 47
Table 2: Prediction results for the 1st product family.........c.ccccooevviiiiiiiiinccciee 48
Table 3: Influencing factors tracing based on best & worst prediction for three product
FAMITIES ...ttt ettt e bt et et et re e e 50

10

Introduction

1.1 Motivation and Background

The strength of semiconductor manufacturing in Europe as mainly a supplier for many
different applications (automotive, automation, etc.) lies in the possibility to quickly
react to demand changes and provide a large variety of products on time. Therefore, it
is necessary to be able to predict throughput and especially Cycle Times (CTs) with
high accuracy weeks ahead of the actual delivery dates.

The accurate prediction of production CTs is of great importance for operations, sales
and inventory managers, because it allows them to make better workflow management
and release decisions, quote more accurate delivery times, reducing late delivery
penalties and contract losses while improving customer satisfaction, and handle their
inventories more effectively, implementing minimum stock policies.

Furthermore, accurate CT forecasts, empowered by production automation and
Industry 4.0 technological advances, can greatly benefit the supply chain as a whole,
especially if these forecasts are shared with the interested supply chain partners. For
instance, if a change in the production times of a partner upstream the chain is
communicated to a partner downstream the chain, the latter can adjust its schedule
accordingly to absorb fluctuations.

Semiconductor manufacturing processes, however, have specific characteristics which
make CT prediction particularly difficult: complex product flows, random vyields,
diverse equipment characteristics, equipment downtime, production and development
in shared facilities, and data availability and maintenance. In the past decades, several
methods have been proposed for CT estimation, including analytical, simulation,
statistical analysis-based, and Artificial Neural Network (ANN) methods.

The objective of this thesis is to implement an ANN method that takes as inputs
important factors that potentially influence CT to predict CTs in the Wafer Test Fab of
an actual semiconductor manufacturing plant.

The work in this thesis was carried out in part within project

” which is funded by the European
Research and Innovation Program Horizon 2020 and National Funding Authorities,
through the

program. The project coordinator is :
and more than 100 other industrial and research partners are involved. The main
purpose of the project is to bring about a significant improvement in digitalization of
European industry through electronic and Information and Communication Technology
(cT). | is the largest European research effort to date under the initiative
of automation and data exchange in Industry4.0 industrial technologies [7].

11

The industrial partner that provided the use case and data to pursue our goal is-
I through its Semiconductor Manufacturing plant in [i, which primary

The author was involved in as an undergraduate student at UTH MIE,
during his 3™ year of studies, and so managed to obtain a holistic view of the project
since the beginning. His two internships at Karlsruhe Institute of Technology (KIT),
one of the main research partners, and in |GGG o2 him the
opportunity to gain insight in the different problem-solving policies that each
organization use while dealing with the project tasks.

Most of our work was carried out in the Production Management Laboratory (PML) of
the Department of Mechanical Engineering (MIE) at the University of Thessaly (UTH),
which is one of the research partners of . More specifically, PML is
involved in Work Packages 4 and 5, entitled

respectively.

1.2 Literature Review

Several approaches for CT estimation have been proposed in the literature. These
approaches can be divided into two categories: model-based and data-based.

Examples of approaches in the first category are queueing models, Markov Chains, and
simulation. Shanthikumar et al. [8] surveyed research efforts in applications of
queueing theory in semiconductor manufacturing, focusing on the improvement of
model assumptions and model input, mainly in the mean and variance of the processing
times. They acknowledged that practice had shown that implementation of classical
queueing theory in semiconductor industry had been unsatisfactory, and they discussed
open problems on queueing modeling semiconductor manufacturing systems.

Among the data-based methods, ANNs have been attracting increasing attention in
recent years [9]. Chen & Wang [10] incorporated the fuzzy c-means (i.e., classifying
the jobs into several categories) and back propagation network (FCM-BPN) approach
with a nonlinear programming model to predict the completion time of the jobs.
Moreover, Sha et al. [5] and Tirkel [11]found that ANN models outperform MLR and
decision tree methods, which are also data-based. Furthermore, the large and relatively
clean data that the industrial partner provided, permits the use of such data-driven
models. For all these reasons, the choice to develop such a model is made.

In order for an ANN to return an accurate prediction of the desired metric, it has to be
fed with the proper inputs. Thus, an analysis must be made on which factors should be
treated as input factors for the model. The determination and calculation of these factors
is in the core of this dissertation.

12

Figure 1: Factor Analysis for Cycle Time

As a starting point, let us break down the CT of a wafer lot into Processing (Run) Time,
Wait Time and Transportation Time (see Figure 1). Which factors influence these
times? Wang et al. (2018) [12], which inspired much of the work in this thesis, suggest
in that CT is affected mainly by following input factors:

1.

“The processing time of each operation. The processing of each operation is
the difference between the track in time and track out time of the operation.
The priority of each wafer lot. The priority of a wafer lot is exactly equal to
the attribute ‘Priority’ in the raw dataset.

The utilization of each machine. The utilization of a machine means the
average utilization of a machine in a whole date (24 hours).

The WIP level. The WIP level can be measured by counting the wafer lot
whose first process has been completed and the final process has not been
completed.

The size of waiting queue for each machine. The Qi can be calculated by
summing the next procedure’s processing time of all wafer lots waiting before
the machine i.”

Going back to the diagram in Figure 1, we mark in red the factors that are considered
more important.

1.3 Thesis Outline

The remainder of the thesis is organized as follows.

In CHAPTER 2, we briefly describe semiconductor manufacturing processes, focusing
on the Wafer Test Fab stage.

13

In CHAPTER 3, we describe the dataset analysis. Initially, we describe the three-year
data sample given to us by || p'ant. We focus on the use case of the
Wafer Test Fab, for which we describe the preprocessing, validation and transformation
of the related data. We complement this description with samples of Microsoft SQL
Server and MATLAB code that was developed to acquire the factors that most likely
affect CTs and constitute the input data of the ANNS.

CHAPTER 4 is devoted to ANNSs. First, we introduce ANNs and discuss their
usefulness and competitive advantage in analyzing complex manufacturing systems.
Then we describe the MATLAB model and program that we developed for our specific
use case.

In CHAPTER 5, we present and evaluate the results regarding the prediction of the
ANN model. A discussion of the results and a few problematic cases follows.

Finally, CHAPTER 6 summarizes the works and gives directions for future research.

14

Semiconductor Manufacturing

2.1 Manufacturing Process

Semiconductors are on the cutting edge of the electronics and technology revolution.
Being among the fastest growing industries in the world, semiconductor manufacturing
is perhaps the most complicated industry. The main raw material of a semiconductor is
silicon, which is the main substrate used to manufacture Integrated Circuits (ICs). An
IC is a device made of interconnected electronic components that can hold millions of
circuits that are capable of high performance. The main attribute of a semiconductor is
that it conducts electricity under some conditions and alternatively acts as an insulator
in others [13]. This type of capability is widely exploited by products like computers,
transistors and the mobile phones, among others [14].

In semiconductor manufacturing there are four basic stages: (1) Wafer Fabrication
(Wafer-Fab), (2) Probe or Sort (Wafer-Test), (3) Assembly and (4) Final Testing, as it
is depicted in Figure 2. These manufacturing processes can be grouped into two basic
categories: “Front-End Operations” and “Back-End Operations”. Wafer Fabrication
and Probe/Sort are included in “Front-End Operations” while Assembly and Final
Testing belong to “Back-End Operations”.

Figure 2: Stages of Semiconductor Manufacturing (source: Ménch et al., [15])

During the manufacturing process in the “Front End”, the products are grouped in lots,
which in the [Jfij use case, contain a maximum of] wafers. The high degree of
complication in the semiconductor manufacturing process stems partly from the fact
that the process flow is highly re-entrant. Specifically, lots may pass more than once
from the same equipment types, either for rework or as a part of their main flow.

As lots of raw wafers are deployed to the Wafer Fab, they are processed layer by layer,
with the most advanced technologies, accumulating as many as 40 layers. The base
process steps of this stage are the following [15]:

1. Oxidation/diffusion: A layer of material is grown or deposited on the surface of a
cleaned wafer. Oxidation aims at growing a dioxide layer on a wafer. Diffusion is
a high-temperature process that disperses material on the wafer surface.

15

2. Film Deposition: Deposition is used to deposit films onto wafers. The
corresponding steps deposit dielectric or metal layers.

3. Photolithography: Coating, exposure, developing, and process control are the main
steps of the photolithography process. In the first step, the wafer is coated with a
thin film of a photosensitive polymer, called photoresist strip. Accurate and precise
three-dimensional patterns are produced on the silicon wafer’s surface when an IC
pattern is transferred via a photo mask, i.e., reticle, onto the photosensitive polymer,
which replicates the pattern in the underlying layer. Exposure tools, called steppers,
transfer the pattern onto the wafer by projecting light through the reticle to expose
the wafer using ultraviolet light. The exposed wafer is then developed by removing
polymerized sections of photoresist from the wafer. Every wafer passes through the
photolithography area up to 40 times because the circuits are made up of layers. The
photolithography work area is a typical example of a bottleneck in a wafer fab
because steppers are very expensive machines.

4. Etch: This step is responsible for removing material from the wafer surface. The
wafers are partially covered by photoresist strip after the photolithography step.
Areas on the wafer that are not covered are then removed from the wafer.

5. lon implantation: Dopant ions are selectively deposited on the surface of the wafer.
Doping material is deposited where parts of the wafer have been etched.

6. Planarization: This step cleans and levels the wafer surface. It is called chemical-
mechanical polishing (CMP).

Next, the wafers are sent to Probe/Sort, where tests identify the individual dies that are
not likely to be good when packaged. Historically, bad dies were physically marked so
that they would not be put in a package. Today, this has been replaced by producing an
electronic map to identify the bad dies. The checked wafers are sent to an assembly
facility where the dies with a reasonable quality are put into an appropriate package.
Finally, the packaged dies are sent to a test facility where they are tested in order to
ensure that only good products are sent to customers.

2.2 The Wafer Test Fab

This thesis focuses on the Probe/Sort stage, or more commonly the Wafer Test Fab.
This fab is the final stage of the “Front End” operations, where products are still treated
as wafer lots. Throughout this study, the objective is to create a tool that manages to
efficiently predict CT values of these wafer lots.

In this fab, tests are run on the individual dies of each wafer in a wafer lot. The tests
depend on the use that the dies are going to have when they will be formed into final
products. In this manner, while the primary tests that run in this clean room are
electrical, there also exist heat tests, pressure tests and even gas tests. During these tests,
an electronic map of each wafer is updated. This map shows the distribution of dies on
the wafer, and more importantly the ones that are characterized as defective. After the
tests are performed, the wafers are forwarded for Visual Inspection. There, microscopes
are used to determine if during the tests, dies were falsely marked as defunctive. Finally,

16

in the Dot Marking area, the defective dies are marked physically by machines, so as to
be scrapped when the wafers will be cut.

The equipment types that perform the electrical tests are composed of two main parts:
The Prober, which executes the motion part, and the Tester, which executes the
measurement part. The allocation of wafer lots to the machines is performed through a
software that takes into account factors, such as the type of product, its priority and the
availability of auxiliary parts for the testing, such as the PCs. PCs are hardware that
have needles through which electrical tests are run on the dies of a wafer. These needles
get worn out by use and need to be restored. This procedure is performed in a special
area within the fab and seems to cause one of the main bottlenecks in the process flow.

Another delay is caused when a lot fails to perform the test on a machine, in which case,
it is stored in a buffer until a process engineer deals with it. This results in a significant
time of the lot in this machine, which may be recorded as a long waiting time or a long
processing time, depending on whether in the data entry it is considered behind (queue)
or in (processing) the machine. As it will become clear in the next chapters, cases like
these can greatly affect the CT forecasting model.

Moreover, in the Wafer Test Fab, the flow of products observed is usually low, which
means that equipment there has low utilization. The reason for this is that the Wafer
Fab usually pushes wafer lots at a lower throughput than the Wafer Test Fab can handle.
This is reasonable, since the former fab, being more expensive and complex that the
latter, has lower capacity. The low utilization of equipment in the Wafer Test Fab was
also observed in the data analysis, as we will see later.

Nevertheless, the utilization of certain machines in the Wafer Test Fab may see a
substantial increase due to the relatively high intake volume of a certain product that
requires to be tested in same type of equipment. This is a phenomenon that can be
attributed to the Product Mix that is initially deployed in the Wafer Fab.

The above observations are important for comprehending the physical system and
assessing the results that come out of the ANN.

17

Data Analysis

3.1 Description

The dataset provided by the industrial partner contains 3 years || ij of records,
organized in seven different tables that contain information about the material flow
through the fabs, the states of the equipment, the flow and the equipment states
specifically in the photolithography stage, lists of new and removed equipment
throughout the 3 years, as well as data about the yield in the dicing area. We also had
access to the database of lot priorities.

For our work, we used the Flow and Equipment State tables in the Wafer Test Fab.

More specifically, the Flow Tables contain the following information:

1.
2.

9.

10.
11.
12.

13.
14.

15.

LOTID: Lot id (Lot Name) Lots that start with T are Test Wafers.

LOTTYPE: Highest aggregation of products (product cluster, technology)

(part < product group € LOTTYPE). Lot types that start with Z are test wafer

lot types.

Obfuscated Part: Anonymized name of product (without version) for all

products ran in ||| Gtis 2 “primary key” together with RECPID

and STAGE, i.e., each combination of these three attributes is unique in the

database).

Obfuscated Prod.Area: Anonymized name of the production area (Factory).

STAGE: Workflow section (it is a primary key together with RECPID and

obfuscated Part).

Obfuscated Eqgptype: Anonymized name of tool / machine / equipment group

(group of same kind of equipment (equipment capability can vary due to

equipment qualification status).

EQPID: Name of Equipment (Equipment € Equipment Type € Location <

Production Area < Plant).

RECPID: Name of Recipe (Machine Program) (it is a primary key together

with Stage and obfuscated Part).

QUEUETIME: Track out time stamp of lot in previous process step.

TRACKINTIME: Track in time stamp of lot in process step.

TRACKOUTTIME: Track out time stamp of lot in process step.

TRACKINMAINQTY: Lot size at lot track in (in Frontend <=. Wafer) (often

1 in case of Test lots).

CURMAINQTY: Lot size at lot track out. It is equal to TrackOutMainQty.

CURPRCDKIND: Kind of procedure being currently executed.

r and [are rework procedures, lﬂ
are normal procedures.

DUEDATE: Schedule delivery date.

18

Due to the big amount of raw data (more than fifty million lines of input) and files, the
tables were transferred to a single table in an SQL database.

The Equipment State Table contains the following information:

1. EQPID: Name of Equipment (Equipment € Equipment Type € Location <
Production Area < Plant)

LASTSTATE: State before state change. NULL for new equipment.

STATE: State after state change.

CHANGEDT: Date of state change (from LASTSTATE to STATE).
SERIALNOBYTE: Serial Number of state change event. SerialNoByte is
equal to O for current state and 1, 2, 3, ..., for historical record.

ok own

In addition to the two above types of tables, we also used a table that contained a list of
LOTIDs and their priorities. A problem with this table is that it had multiple entries of
the same LOTIDs with different priorities and no time stamps to identify the LOTIDs
from the Flow Tables.

From the above data, we proceeded to calculate the factors described in the previous
chapter, namely, the processing time of each operation, the priority of each wafer lot,
the utilization of each machine, the WIP level and the size of waiting queue for each
machine.

In the following sections, we describe the steps we took to reach this calculation.

3.2 Data Validation & Preprocessing

The raw data for both tables came in a txt format, as shown in Figure 3 and Figure 4.
To validate the data and be able to visualize and manipulate it, we used Microsoft SQL
Server. Figure 5 shows the SQL commands used to convert the Flow Table raw data of
the Wafer Test Fab into a table format and validate them.

Figure 3: Sample of txt file of Flow Table raw data ||| GG
19

Figure 4: Sample of it file of Equipment State Table raw data

CREATE FLOW17A VALIDATED
SELECT LOTID, PART, STAGE, EQPID, EQPTYPE, RECPID, QUEUETIME, TRACKINTIME, TRACKOUTTIME,
DATED MINUTE, CAST(QUEUETIME AS datetime), CAST(TRACKINTIME AS DATETIME)) AS MWT,
DATEDTFF(MINUTE, CAST(TRACKINTIME AS datetime), CAST(TRACKOUTTIME AS DATETIME AS PT,
DATED MINUTE, CAST(QUEUETIME AS datetime), CAST(TRACKOUTTIME AS DATETIME)) AS CT,
TRACKINMAINQTY, CURMAINQTY
FROM FLOW17A
wHERE prodarea = ‘[l - fer wafertest
AND QUEUETIME 1S NULL
TRACKINTIME L
TRACKOUTT IME
RECPID
EQPID
QUEVETIME !
TRACKINTIME
TRACKOUTTIME - **
AND RECPID != "'
EQPID !
AND TRACKOUTTIME QUEUVETIME > @
ORDER BY PART, LOTID, QUEUETIME;
-4
sults 38 Messages
LOTID PART STAGE EQPID EQPTYPE RECPID QUEUETIME TRACKINTIME TRACKOUTTIME WT PT CT TRACKM

Figure 5: Flow Table data visualization & validation

As can be seen from Figure 5, we performed the following steps for validating the data:

1. We chose records concerning only the Wafer Test Fab by setting the Production
Area equal to the anonymized name of that fab.

2. We eliminated records with “Null” and empty values for the Datetime data,
recipe and equipment ids.

3. We omitted production year - and only kept which the
data was more reliable.

20

4. We eliminated records with zero processing times (whose departure times are
equal to their arrival times), because they added computational burden, without
carrying important information. A version of the table without this limitation
was also studied. The original version with the elimination is called Validated
and the second version without the elimination is called Semi-Validated.

5. The records were ordered alphabetically by Part (Product Family) name and
LOTID (lot identification) and then in increasing order of the time that the lot
enters the queue of the machine (QueueTime).

As can also be seen from Figure 5, the differences between the three key datetime
instances of each record were defined and calculated. These differences are:

WT (Waiting Time) = Trackintime — QueueTime
PT (Processing Time) = TrackOutTime — Trackintime
CT (Cycle Time) = TrackOutTime — QueueTime

The above differences were calculated in minutes and were used in the subsequent
analysis.

It is worth noting that the above validation steps were partly suggested by our project
collaborators who dealt with the same dataset and our common industrial partner that
provided that set.

To minimize the size of the data, we only kept the important fields, namely: LOTID,
PART, STAGE, EQPID, EQPTYPE, RECPID, QUEUETIME, TRACKINTIME,
TRACKOUTTIME, PT, WT, CT, TRACKINMAINQTY, CURMAINQTY.

Finally, we merged all the validated files (there were originally 10 txt files for
production years || il]) into one big unified file using the union command, as
shown in Figure 6.

UNION

SELECT

FROM FLOW17B_SEMIVAL
UNION

SELECT

FROM FLOW17C_SEMIVAL
UNION

SELECT

FROM FLOW17D_SEMIVAL
UNION

SELECT

FROM FLOW17E_SEMIVAL
UNION

SELECT

FROM FLOW17F_SEMIVAL
ORDER BY QUEUETIME

Figure 6: Union of Flow Table txt files

The unified file contained 775,415 records for the Wafer Test Fab which were ordered
in increasing Queue Time.

21

For validation purposes, we made sure that all the lots of these parts passed from the 10
selected equipment types. Figure 13 shows an example of a query of the number of lots
of the first part type in Figure 12 (i that pass from the 10 selected equipment.
As can be seen by comparing the two figures, all the lots pass from all the equipment

types.

EQPTYPE DIST_LOTS

© BN U RN -

10
Figure 13: Number of lots of part PMVBL that pass from the 10 selected equipment types

Based on the above analysis, we created the equipment-based dataset that was then used
to shape the final table to be used as input of the ANN model. This set contained the
following attributes: LOTID, PRIORITY, PART, STAGE, EQPID, EQPTYPE,
RECPID, QUEUETIME, TRACKINTIME, TRACKOUTTIME, PT, WT, CT,
TRACKINMAINQTY, CURMAINQTY (see Figure 14).

SELECT

FROM PARTS14_DATASET_UNMACHINED
WHERE LOTID TN

(SELECT

FROM PARTS14 LOTS_1@MACHINES)

--PARTS14_DATASET
6187LOTS

sults gl Messages
LOTID PRIORITY PART STAGE EQPID EQPTYPE RECPID QUEUETIME

Figure 14: The equipment-based dataset for the 14 parts

The entries of the final table to be used as input of the ANN model are:

The LOTID.

The part that the LOTID belongs to.

The LOTID priority.

The cumulative processing time that the LOTID spends on each equipment type.

e

The sum of the processing times of all the lots waiting to be processed in each
equipment type at the time of entry of the LOTID.

6. The utilizations of the equipment-types, during the last 24 hours before the entry
of the LOTID.

24

cT
SELECT LOTID, PART, PRIORITY, CT
FROM PARTS14 DATASET
ORDER BY PART, LOTID, EQPTYPE;--FOR CT 14

SELECT FROM FOR_CT_14;

SELECT LOTID, SUM(CT) AS CT
FROM FOR_CT_14
GROUP BY LOTID;--CYCLETIME 14

--THE FINAL CYCLE TIME TABLE
SELECT DISTINCT FOR_CT_14.LOTID, FOR_CT_14.PART, FOR CT 14.PRIORITY, CYCLETIME 14.CT
FROM FOR CT 14

RIGH 01N CYCLETIME_14

ON FOR_CT_14.LOTID = CYCLETIME_14.LOTID

ORDER BY FOR_CT_14.PART, FOR_CT_14.LOTID;--final ct 14

~ 4

sults i Messages
LOTID PART PRIORITY CT

Figure 16: Priorities & CT of the lots

3.5 MATLAB Code Description

As was mentioned in Section 3.3, we first tried to sort and aggregate the lots based on
recipe. To this end, we used MATLAB’s “Database Explorer” tool, which allows
MATLAB to connect with local databases and acquire data directly. After loading the
proper data in the proper data type, we validated the CT of each lot in the fab (see Figure
17).

%Create the LotID CT Table
Lot _CT(1l)=ct(1):;
for i=2:c

logicalIndex=ismember (lotid(i),lotid(i-1));
if logicalIndex==true
Lot CT(j)=Lot_CT(j)+ct(i);
else
J=3+1;
Lot CT(j)=ct(i);
end
end

Figure 17: Lots' CT Calculation

26

Then, we calculated the total processing time of each lot on each equipment type,
accounting for the fact that a lot might have passed from the same equipment type more
than once (see Figure 18).

%$0ne PT per Recipe

i 1;

3j 1;
m=1;

Recipe_PT = zeros(b,9);
logicalIndexl = 0;
logicalIndex2 = 0;
Recipe PT(1,1) = pt(l):
for i=2:c
logicalIndexl = ismember(lotid(i),lotid(i-1));
logicallndex2 = ismember (recipe(i),recipe(i-1));
if logicalIndexl == true
if logicalIndex2 == true
Recipe PT(j,m) = Recipe PT(j,m) + pt(i);
else
m=m+ 1;
Recipe PT(j,m) = pt(i):
end
else
J=j+1;
m= 1;
Recipe PT(j,1) = Recipe PT(j,m) + pt(i);
end
end

Figure 18: Recipe-based Processing Time

We repeated a similar procedure for the equipment-type-based model, which as was
mentioned in Section 3.3 was easier to handle (see Figure 19).

EQPTYPE PT = zeros(b,10);

logicalIndexl = 0;
logicalIndex2 = 0;

EQPTYPE 1list(l,1) = eagptype(l);
EQPTYPE PT(1,1) = pt(l);

for i=2:c

logicalTndexl = ismember (lotid(i),lotid(i-1});
logicalIndex? = ismember (egptype (i) ,eqptype(i-1));

if logicalIndexl == true
if logicalIndex2 == true
EQPTYPE PT(j,m) = EQPTYPE PT(j,m) + pt(i);
else
m=m+ 1; %m will reach 10

EQPTYPE list(l,m) = egptype(i);
EQPTYPE_PT(j,m) = pt(i);

end
else
Jj=J+1;
m=1;
EQPTYPE PT(j,1) = EQPTYPE PT(j,m) + pt(i);
end
end
EQPTYPE ALL(1,:) = EQPTYPE list;
EQPTYPE ALL(2: (b+1),:) = num2cell (EQPTYPE PT);

Figure 19: Equipment-type-based Processing Times

To calculate the Work in Process upon entry of each lot x, we used the timestamps table
shown in Figure 15 that was created in SQL. For this calculation, we added all the lots
that entered the fab before the arrival of lot x and departed the fab after that arrival. The
MATLAB code is shown in Figure 20.

27

SWIP
for i = 1:b
for j = 1l:¢
if (datenum(tableZarray((min in(j,:)))) <= datenum(tablelarray(t(i,:)))) ...
k& (datenum(tableZarray((max out(j,:)))) >= datenum(tableZarray(t(i,:))))
WIP(i) = WIR(i) + 1;

list lots(k,1) = (lot(di)):
k=k+ L;
elseif (datenum(tableZarray((min in(j,:)))) > datenum(table2array(t(i,:))))
break
end
end
k=1

end
Figure 20: WIP Level of Fab upon Entry

Next, for each lot x, we calculated the sum of the processing times of all the lots waiting
to be processed in each equipment type at the time of entry of x. Figure 21 shows the
MATLAB code for doing this.

for i = 1:1
for j = 1:f
for k = 1l:c

logicalIndexl = ismember (lotid(k), (list_lots(:,1)));

logicalIndex?2 = ismember (type (j),eqptype(k)):

if (logicalIndexl == true)...

&& (datenum(table2array((queue(k,:)))) <= datenum(tablelarray(t(i,:)))) ...
&& (datenum(tableZarray((trackin(k,:)))) >= datenum(table2array(t(i,:))))...
&& (logicalIndex2 == true)
all time(i,j) = all time(i,j) + pt(k);

Figure 21: Expected Queue Times for entering Lots

Although the above two codes are correct, they are extremely slow and hence
impractical. A much faster alternative was to repetitively execute SQL query statements
from within the MATLAB environment. To access SQL from MATLAB, we used the
code shown in Figure 22.

datasource = ' MS SQL Server';
conn = database(datasource,'',"");
selectquery = 'select * from WAFERTEST SEMIVAL' ;

data = select (conn, selectquery);

Figure 22: Connection of MATLAB to the Database

Then, we used the SQL ‘count’” command within a simple “for” loop to deliver the
outcome extremely quickly (on average, it took approximately in 50 seconds). The main
idea for calculating the WIP upon entry remains the same. Figure 23 shows the
MATLAB code.

28

$timestamps

t_part = table2cell(T(:,1));
t_lot = table2cell(T(:,2));
t = T(:,3):;%the timestamp
t_max out = T(:,4);

datasource = ' MS SQL Server';
conn = database (datasource,'',"");

b = size(t,1);
WIP = zeros(b,1);
mega_list = cell(1500,b);

for i = 1:b
sglqueryl = ['SELECT COUNT (DISTINCT LOTID) FROM WIP_WAFERTEST SEMIVAL ' ...
'WHERE Q IN<= ' '''' char(tablelarray(t(i,:})) ''''...
'END T OUT»= ' '''' char(table2array(t(i,:})) ''"''1;

sqlquery2 = ['SELECT LOTID FROM WIP_WAFERTEST_ SEMIVAL L.

'WHERE Q IN<= ' '''' char(tablelarray(t (i,:3)) "ol

'END T QUT>= ' '''' char(tablel2array(t(i,:))) "'''I;
WIP(i) = table2array(fetch(conn, sglqueryl));
mega_list(1:WIP(i),i) = fetch(conn,sglguery2);

end
Figure 23: SQL-based MATLAB Script for WIP

Similarly, Figure 24 shows the MATLAB code for the calculation of the sum of the
processing times of all the lots waiting to be processed in each equipment type at the
time of entry of each individual lot x.

for i = 1:b

sglgquery2 = 'DELETE FROM matlab listlots';

exec (conn, sglguery?2) ;

insert(conn, 'matlab listlots',aa(2),list lots(:,i));

sqlaquery3 = ['SELECT ISNULL(AVG(new wafertest semival.PT),0) '
'FROM matlab egptypes '
'LEFT JOIN new wafertest semival
'ON matlab egptypes.EQPTYPE = new wafertest semival.EQPTYPE '
'AND new wafertest semival.LOTID IN(SELECT list FROM matlab listlots)
' BAND new_wafe:test_semiva;.QCECETZME <= ' '"'''" char(tableZarray(t(i,:)))
'AND new_waferteet_aeniva;.TRRCKOUTTZME »>= ' '''' char(table2array(t(i,:))) """’

'GROUP BY matlab egptypes.EQPTYPE '
'ORDER BY matlab eqgptypes.EQPTYPE ASC'];

'GROUP BY WAFERTEST SEMIVAL.EQPTYPE'
'ORDER BY WAFERTEST SEMIVAL.EQPTYPE ASC'

% sqlquery3 = ['SELECT WAFERTEST SEMIVAL.PT'

5 ' FROM C'IRFE.RTE.ST_SE.M:VRL'

% 'INNER JOIN matlab listlots ON WAFERTEST SEMIVAL.LOTID = matlab listlots.list'

% 'INNER JOIN matlab egptypes ON WAFERTEST SEMIVAL.EQPTYPE = matlab egptypes.egptype’
% 'WHERE WAFERTEST SEMIVAL.QUEUETIME <= ' '''' char(tableZarray(t(i,:))) "'

% 'END WAFERTEST SEMIVAL.TRACKINTIME >= ' '''' char(table2array(t(i,:))) ''''

Figure 24: MATLAB SQL-based script for Projected Time in Queue

Because the number of equipment (eqpid_number) of each individual equipment type
might be more than one, the sum of the processing times was divided by eqpid_number
to yield an average value, as follows:

final_time_queue = table2array(cell2table(TIME_QUEUE))./eqpid_number;

29

For the utilization of the equipment, a similar calculation method was used. First, an
additional timestamp was calculated, signaling the beginning of a 24-hour window
before the entry time of each lot x. Then, the utilization of each equipment-type, during
this window was calculated by adding the part of the interval between the arrival and
departure times of each lot that falls within the window and dividing the total by the
number of equipment for each individual equipment type. The MATLAB code is shown
in Figure 25.

for i = 1:b
sqlquery = ['SELECT SUM((cast (DATEDIFF (MINUTE, [dbol.[Max2] (new wafe:testf%enival.TRECKZXTZME,' -
'''' char(tableZarray(t_24(i,:))) '''' '), [dbol.[Min2] (new_wafertest_ semival.TRACKOUTTIME,' ...
'''' char(table2array(t(i,:})) '''' "))as float)/1440)) / (NUM ID 10.num egpid) ' ...

'FROM matlab egptypes ' ...
'LEFT JOIN new wafertest semival ON matlab egptypes.EQPTYPE = new wafertest semival.EQPTYPE ' ...
'LEFT JOIN NUM ID 10 ON matlab eqgptypes.EQPTYPE = NUM ID 10.EQPTYPE ' ...

'"WHERE ' ...

'(new_wafe:test_semiva;.TRACK:NT:ME = ' e char(tableZarray(t_24(i,:]J] rene

' BND n char (table2array(t(i,:))) "''" ") "...
'OR (nev fertest semival.TRACKINTIME <= ' '''' char(table2array(t_24(i,:))) "'""'

' AND n afertest semival.TRACKOUTTIME <= ' '''' char(tablelarray(t(i,z))) '''' ..

' END n afertest_semival.TRACKOUTTIME >= ' '''' char(tablelarray(t_24(i,:)))} "''' ') '...
'CR (nev fertest semival.TRACKINTIME >= ' '''' char(tableZarray(t 24(i,:))) "'""'

' AND n afertest_semival.TRACKOUTTIME >= ' '''' char(tablel2array(t(i,:))) '''"'

' AND n afertest semival .TRACKINTIME <= ' '''' char(tableZarray(t(i,:})) """ ")} '...
'OR (ne fertest_semival.TRACKINTIME <= ' '''' char(tableZarray(t 24(i,:))) "''' ...

' AND ne afe:test_seniva;.TRACKCC“T:ME »>= ' ''"'' char(tablearray(t(i,:z))) """'" ") '"...

"GROUP BY NUM ID 10.EQPTYPE, NUM ID 10.num egpid ' ...
'ORDER BY X:M_:E_l[.EQPTYPE ASC'];
util(i,1:f) = transpose(fetch(conn,sglquery)):;
end

maxi = max(round (max (cellZmat (util))),1);
final util = cellZmat(util) ./ maxi;

Figure 25: MATLAB SQL-based script for Equipment’ Utilization

The final table to be used in the ANN model was finally created by using the code in
Figure 26.

wip = readtable('wip all.xlsx');

wait = readtable('gueuel.xlsx');

util = readtable('final utilizationl.xzlsxz');
T = readtable('timestamps.xlsx');

A = readtable('cycletime.xlsx');

B = readtable('processl_xlsx'");

Stimestamps

Last(:,1) = A(: %LOTID

1)
2); %PAERT

(-
Last(:,2) = A(:,
Last(:,3) = A(:,3); %PRIORITY
Last(:,4:13) = B; %processing times
Last(:,14:23) = wait; %waiting
Last(:,24:33) = util; %utilization
Last(:,34) = wip; %wip

(:

Last(:,33) = A(:,4); =CT

Figure 26: Creating the Final Tables

This final table, has the layout shown in Figure 27.

30

Figure 27: Final Table Layout

The code developed for the above purposes can be found in the APPENDIX 2: Code of
Data Preprocessing (MATLAB).

31

Acrtificial Neural Network (ANN) Model

4.1 Introduction to ANNs

As it is stated, the prediction methodology that is followed on this dissertation makes
use of ANNSs. So, it is of some value for the reader to be introduced into the ANNSs and
their features [16].

ANNs are computational models trained to perform tasks by taking into account
examples. The main aspiration of ANNs is to carry through with the given assignments
after the appropriate training procedure. These assignments could be image and voice
recognition, data classification, prediction optimization, etc.

More specifically, ANNs are composed of simple elements operating in parallel. These
elements are inspired by biological neural networks. As in nature, the network function
is determined largely by the connections between elements. One can train an ANN to
perform a particular function by adjusting the values of the connections (weights)
between elements. Typically, ANNSs are adjusted, or trained, so that a particular input
leads to a specific target output. Such a situation is shown in Figure 28. There, the ANN
is adjusted, based on a comparison of the output and the target, until the network output
matches the target. Typically, many such input/target pairs are used, in this supervised
learning, to train a network. The User Guide of MATLAB for its Neural Network Tool
[6] is very explanatory on this topic.

Figure 28: ANN Philosophy [6]

Figure 29: NN's basic Math Operation [6]

32

A layer of a network is defined in Figure 29. A layer includes the combination of the
weights, the multiplication and summing operation (here realized as a vector product
W « p), the bias b, and the transfer function f. The vector of inputs, p, is not included
in the layer. In Figure 29, w and b are both adjustable scalar parameters of the neuron.
The central idea of ANNS is that such parameters can be adjusted so that the network
exhibits some desired or interesting behavior. Thus, we can train the network to do a
particular job by adjusting the weight or bias parameters, or perhaps the network itself
will adjust these parameters to achieve some desired end.

Figure 30: Multilayer Network [17]

The architecture of a network consists of a description of how many layers a network
has, the number of neurons in each layer, each layer’s transfer function, and how the
layers connect to each other. Figure 30 shows a multilayer ANN.

Aside from the number of neurons in a network’s output layer, the number of neurons
in each layer is up to the designer. Except for purely linear networks, the more neurons
in a hidden layer, the more powerful the network. Multiple feed-forward layers give a
network greater freedom. For example, any reasonable function can be represented with
a two-layer network: a sigmoid layer feeding a linear output layer [6]. The cheat-sheet
presented on Figure 31 may be of use when choosing the ANN proper architecture.

There are 3 main cases that can be found in ANNSs:

1. Classification: All classification tasks depend upon labeled datasets; that is,
humans must transfer their knowledge to the dataset in order for a neural
network to learn the correlation between labels and data. This is known as
supervised learning.

2. Clustering: Clustering or grouping is the detection of similarities. Deep learning
does not require labels to detect similarities. Learning without labels is called
unsupervised learning.

33

3. Predictive Analytics (Regressions): Deep learning is able to establish
correlations between present events and future events. It can run regression
between the past and the future. The future event is like the label in a sense.

Figure 31: Algorithm Cheat Sheet (Source: scikit-learn.org)

In supervised learning (Classification), there is a known number of classes, it is based
on a training dataset and used to classify future observations. In unsupervised
(Clustering), there is an unknown number of classes, no prior knowledge and the model
is used to understand (explore) the data.

Inputs Weights Net input Activation
n function function
9 @ 9 9 output

Figure 32: A typical NN Layout

The case of this thesis falls in the supervised learning class, since the data provided by
the industrial partner are structured.

In essence, a neural network, as presented in Figure 32, is a collection of neurons
connected by synapses. This collection is organized into three main layers: the input
layer, the hidden layer, and the output layer. One can have many hidden layers, which
is where the term deep learning comes into play. The role of a synapse is to multiply
the inputs and weights. One can think of weights as the “strength” of the connection
between neurons. Then, an activation function is applied to return an output. Deep

34

learning maps inputs to outputs, by finding correlations. It is known as a “universal
approximator”, because it can learn to approximate an unknown function f(x) = y
between any input X and any output y, assuming they are related at all (by correlation
or causation, for example).

A neuron or node is just a place where computation happens. A node combines input
from the data with a set of coefficients, or weights, that either amplify or dampen that
mput. These input-weight products are summed. Sum is passed through a node’s so-
called activation function. If the signals pass through, then the neuron has been
“activated”.

The rules through which the number of hidden layers and neurons is determined, are a
bit vague, as it depends between other on the number of training examples and the
complexity of the desired classification. The most common strategy is a combination
of trial and error with empirical methods.

A side note is that it is very important to keep in mind the overfitting problem, i.e. when
the neural network becomes too complex and insensitive to input changes.

Weights are the most essential factors in converting an input to impact the output. The
output is determined by the equation below:

y=fx) :inwi

Bias i1s an additional parameter which is added to adjust the output along with the
weighted sum of the inputs. Therefore, it helps the model to fit best for the given data.

Layer Output = z x;w; + Bias

Then a function called activation function is applied on this output so that the input of
the next layer is the output of the neurons in the
previous layer. Sigmoid

The most frequently used activation functions are the
ReLU (Rectified Linear Unit) and the Log-Sigmoid
Function, as shown in Figure 33. The general form of

the sigmoid function 1s: Figure 33: The sigmoid function.

1
1+ebx

fG) =

One defines a learning rule as a procedure for modifying the weights and biases of a
network. (This procedure may also be referred to as a training algorithm.) The learning
rule is applied to train the network to perform some particular task. Learning fall into
two broad categories: supervised learning, and unsupervised learning. In supervised
learning, the learning rule is provided with a set of examples (the training set) of proper

35

network behavior where is an input to the network, and is the corresponding correct
(target) output. As the inputs are applied to the network, the network outputs are
compared to the targets. The learning rule is then used to adjust the weights and biases
of the network in order to move the network outputs closer to the targets [6]. Also, itis
of worth to be mentioned that long training times can be caused by the presence of an
outlier input vector whose length is much larger or smaller than the other input vectors.

Backpropagation was created by generalizing the Widrow-Hoff learning rule to
multiple-layer networks and nonlinear differentiable transfer functions. Input vectors
and the corresponding target vectors are used to train a network until it can approximate
a function, associate input vectors with specific output vectors, or classify input vectors
in an appropriate way as defined by the user, as it can be seen in Figure 34. Networks
with biases, a sigmoid layer, and a linear output layer are capable of approximating any
function with a finite number of discontinuities. Standard backpropagation is a gradient
descent algorithm, as is the Widrow-Hoff learning rule, in which the network weights
are moved along the negative of the gradient of the performance function. The term
backpropagation refers to the manner in which the gradient is computed for nonlinear
multilayer networks.

Properly trained backpropagation networks tend to give reasonable answers when
presented with inputs that they have never seen. Typically, a new input leads to an
output similar to the correct output for input vectors used in training that are similar to
the new input being presented. This generalization property makes it possible to train a
network on a representative set of input/ target pairs and get good results without
training the network on all possible input/output pairs [17].

These are the reasons that Backpropagation is opted for this dissertation.

Figure 34: Backpropagation’s algorithm.

36

4.2 ANNs in Manufacturing & Competitive Advantage

Modern manufacturing systems, especially in the semiconductor industry, are
extremely complex. ANNs provide a promising alternative for making accurate
predictions based on data, by mapping inputs into outputs, without knowing the
underlying dependence function.

Furthermore, as was already mentioned in Section 1.2, the competitive advantage of
ANN:Ss is that they emphasize on predictive accuracy, while statistical modeling targets
interpretability and parsimony. More specifically, ANNs can produce output even with
incomplete information and are able to solve a great variety of similar problems. On
the other hand, statistical methods may be more comprehensible, but they are usually
stiff as they are limited to specific statistical distributions and require some assumptions
in order to perform predictions.

4.3 ANN Model (NN-Tool)

In this sub-chapter we explain how to use the backpropagation training functions in
MATLAB Neural Network toolbox to train feedforward ANNs to solve specific
problems. There are generally four steps in the training process:

Assemble the training data

Create the network object

Train the network

Simulate the network response to new inputs

A wbh e

The first step was thoroughly described in the previous chapters. The remaining three
steps will be analyzed here.

As was described in the Data Analysis on CHAPTER 3, there are 32 inputs to our
model: The processing times, the queue times upon entry and the last-24-hour
utilizations of the 10 equipment types, plus the wafer lot priorities and the total WIP
upon entry of the fab. The only output is the CT of each wafer lot. The class of the
problem is “Regression”, and so the proper architecture of the hidden layers and hidden
neurons should be decided.

Based both on the above presented literature and on trial and error procedures, the
architecture of the network is decided. First as discussed, a Feed-Forward
Backpropagation Network, as shown in Figure 35, will be utilized. More specifically,
three network architectures will be tested on each product family data, as well as on the
whole dataset. These three cases are inspired by the number of inputs (32) and are the
following:

1. 1 Hidden Layer of 16 neurons (half the inputs).
2. 1 Hidden Layer of 32 neurons.
3. 2 Hidden Layers of 32 neurons each.

37

The activation function from each layer to the next is chosen to be the tangent sigmoid
(tansig), and from the last hidden layer to the output layer the pure linear (ReLU).
Multiple layers of neurons with nonlinear transfer functions allow the network to learn
nonlinear and linear relationships between input and output vectors.

Figure 35: A Network that depicts the architecture of the first two cases

Once the network weights and biases have been initialized, the network is ready for
training. The network can be trained for function approximation (nonlinear regression),
pattern association, or pattern classification. The current case is the first one. During
training the weights and biases of the network are iteratively adjusted to minimize the
network performance function net.performFcn, which is chosen to be regularized mean
square error mse - the regularized average squared error between the network outputs a
and the target outputs t. There are several different training algorithms for feedforward
networks. All of these algorithms use the gradient of the performance function to
determine how to adjust the weights to minimize performance. The gradient is
determined using a technique called backpropagation, which involves performing
computations backwards through the network. The backpropagation computation is
derived using the chain rule of calculus.

The simplest implementation of backpropagation learning updates the network weights
and biases in the direction in which the performance function decreases most rapidly -
the negative of the gradient.

One iteration of this algorithm can be written as: x,,1 = X — ArGx

where Xk is a vector of current weights and biases, g is the current gradient, and a, is
the learning rate.

There are several training functions that can be used to train the network. An example
of them is the Batch Steepest Descent (TrainGD), where the weights and biases are
updated in the direction of the negative gradient of the performance function, i.e. the
mse.

Also, there are seven training parameters associated with TrainGD:

38

Epochs

Show

Goal

Time

min_grad

max_fail

The learning rate (LR)

No gabk~owdRE

The learning rate LR is multiplied times the negative of the gradient to determine the
changes to the weights and biases. The larger the learning rate, the bigger the step. If
the learning rate is made too large, the algorithm becomes unstable. If the learning rate
is set too small, the algorithm takes a long time to converge. With standard steepest
descent, the learning rate is held constant throughout training. The performance of the
algorithm is very sensitive to the proper setting of the learning rate.

The training status is displayed for every show iteration of the algorithm. The other
parameters determine when the training stops. The training stops if the number of
iterations exceeds epochs, if the performance function drops below goal, if the
magnitude of the gradient is less than min_grad, or if the training time is longer than
time seconds. Also, max_fail is associated with the early stopping technique.

When all the parameters set, one is ready to train the net. After training, they can
simulate the net by providing new data and examining how good the outcome is.

However, one should mention here that the Batch Steepest Descent (TrainGD) method
is often too slow [16] and as analyzed a couple of lines before, depends a lot on the
correct LR setting. Thus, another algorithm should be selected.

In this quest for the proper algorithm selection, the choices are many. Some of them are
the Resilient Backpropagation (TrainRP), the Conjugate Gradient Algorithms such as
the Fletcher-Reeves Update (TrainCGF), the Polak-Ribiére Update (TrainCGP), the
Powell-Beale Restarts (TrainCGB) and the Scaled Conjugate Gradient (TrainSCG).
Also, there are Line Search Routines as well as Quasi-Newton Algorithms, such as the
BFGS Algorithm (TrainBGF) and the One Step Secant Algorithm (TrainOSS).

Newton’s method is an alternative to the conjugate gradient methods for fast
optimization. The basic step of Newton’s method is

Xpy1 = X — Ap— 1 gy

where A, is the Hessian matrix (second derivatives) of the performance index at the
current values of the weights and biases. Newton’s method often converges faster than
conjugate gradient methods. Unfortunately, it is complex and expensive to compute the
Hessian matrix for feedforward neural networks.

With this in mind, the focus falls on the Levenberg-Marquardt Method (TrainLM) and
more precisely on the Bayesian Regularization Method (TrainBR), which is actually a

39

modification of the Levenberg-Marquardt training algorithm to produce networks that
generalize well. It reduces the difficulty of determining the optimum network
architecture [6].

For the Levenberg-Marquardt Method (TrainLM) the following are true. When the
performance function has the form of a sum of squares (as is typical in training
feedforward networks), then the Hessian matrix can be approximated as H = J'J and
the gradient can be computed as g = JTe, where J is the Jacobian matrix that contains
first derivatives of the network errors with respect to the weights and biases, and e is a
vector of network errors. The Jacobian matrix can be computed through a standard
backpropagation technique that is much less complex than computing the Hessian
matrix. The Levenberg-Marquardt algorithm uses this approximation to the Hessian
matrix in the following Newton-like update:

Xeer = X — [J7) + ull — 1+ JTe

When the scalar u is zero, this is just Newton’s method, using the approximate Hessian
matrix. When p is large, this becomes gradient descent with a small step size. Newton’s
method is faster and more accurate near an error minimum, so the aim is to shift towards
Newton’s method as quickly as possible. Thus, u is decreased after each successful step
(reduction in performance function) and is increased only when a tentative step would
increase the performance function. In this way, the performance function will always
be reduced at each iteration of the algorithm.

The training parameters for TrainLM are:

Epochs
Show
Goal
Time
min_grad
max_fail
mu
mu_dec

. mu_inc
10. mu_max
11. mem_reduc

© oo NN E

The parameter mu is the initial value for u. This value is multiplied by mu_dec
whenever the performance function is reduced by a step. It is multiplied by mu_inc
whenever a step would increase the performance function. If mu becomes larger than
mu_max, the algorithm is stopped. The parameter mem_reduc is used to control the
amount of memory used by the algorithm. It’s used to determine how many rows of the
Jacobian are to be computed in each submatrix. If mem_reduc is set to 1, then the full
Jacobian is computed, and no memory reduction is achieved.

40

In many cases, TrainLM is able to obtain lower mean square errors than any of the other
algorithms tested. However, as the number of weights in the network increases, the
advantage of the TrainLM decreases.

One of the problems that occurs during neural network training is called overfitting.
The error on the training set is driven to a very small value, but when new data is
presented to the network the error is large. The network has memorized the training
examples, but it has not learned to generalize to new situations.

One method for improving network generalization is to use a network that is just large
enough to provide an adequate fit. The larger a network you use, the more complex the
functions the network can create. A method, also, for improving generalization is called
regularization. This involves modifying the performance function, which is normally
chosen to be the sum of squares of the network errors on the training set. The typical
performance function that is used for training feedforward neural networks is the mean
sum of squares of the network errors.

1% 1w
Femse =g) et =y tma)
i=1 i=1

It is possible to improve generalization if we modify the performance function by
adding a term that consists of the mean of the sum of squares of the network weights
and biases:

msereg =y *mse + (1 —y)msw

where y is the performance ratio and:

n
1 2
msw = — é W]
n r}
Jj=1

Using this performance function will cause the network to have smaller weights and
biases, and this will force the network response to be smoother and less likely to overfit.

It is desirable to determine the optimal regularization parameters in an automated
fashion. In this framework, the weights and biases of the network are assumed to be
random variables with specified distributions. The regularization parameters are related
to the unknown variances associated with these distributions. We can then estimate
these parameters using statistical techniques.

One feature of this algorithm is that it provides a measure of how many network
parameters (weights and biases) are being effectively used by the network, indicated by
#Par in the printout.

For the TrainBR, it is important to let the algorithm run until the effective number of
parameters has converged. The training may stop with the message “Maximum MU

41

reached.” This is typical and is a good indication that the algorithm has truly converged.
You can also tell that the algorithm has converged if the sum squared error (SSE) and
sum squared weights (SSW) are relatively constant over several iterations. When this
occurs, you may want to push the “Stop Training” button in the training window [6].

Moreover, all in all, a two-layer network, with tan-sigmoid transfer function in the
hidden layer and a linear transfer function in the output layer, is a useful structure for
function approximation (regression) problems.

Also, the training function is chosen to be the Bayesian Regularization one and the
performance metric is set to be the MSEreg, i.e. the Regularized Mean Square Error.
The network architecture for a 2-layer and a 3-layer version with 32 neurons in each of
the hidden layers can be seen in Figure 36 and Figure 37 respectively.

Figure 36: The 1-Hidden Layer Network Set

Figure 37: The 2-Hidden Layer Network Set

So, in this point follows a ty to apply the two Neural Network sets through MATLAB’s
NNtool on all the product families by their self. In Figure 38 is depicted the setting of
an ANN in NNtool.

Figure 38: The NNtool of MATLAB

42

In Figure 39 lies the setup of the three networks for the case of the first product family.

Al

I Input Data: # Networks il Output Data:

I_1 net32 net32_outputs

sim_fam_1 net32_sim
net32_32_outputs

@ Target Data: & Error Data:

01 net32_errors
net32_32_errors

1 Network: net32_32 - m| po

View Train Simulate Adapt Reinitialize Weights View/Edit Weights

Training Info Training Parameters

Training Data Training Results

Inputs i1 | Oupus net32_32_outputs
Targets 0.1 b Errors net32_32_errars
nit Input Delay Stal{zeros) Final Input Delay Stjnet32_32_inputStal
nit Layer Delay Staj(zeros) Final Layer Delay Stnet32_32_layerStat

') Train Network
Figure 39: NNtool Set Up of 6 nets for 1st Product Family

Also, in Figure 40 is shown how the training parameters of each net are set. The goal
for the Mean Square Error is set to 0.01.

1 Network: net_16 -] x

View Train Simulate Adapt Reinitialize Weights View/Edit Weights

Training Info Training Parameters

showWindow true mu 0.005
showCommandLine |false mu_dec 0.1

show 25 mu_inc 10

epochs 1000 mu_max 10000000000
time Inf

goal 0.01

min_grad 1e-07

max_fail 0

"2 Train Network
Figure 40: The training Parameters

Moving forward, the full picture is delivered for the first product family, and
accordingly follow the rest of them in APPENDIX 3: Neural Network Training for All
Product Families. In Figure 41 and Figure 42 the results of a training based on the first
product family are shown concerning the one-hidden-layer strategy. More specifically,
in Figure 43 the trained weights for the 32 neurons network as acquired by the NNtool
are shown. Moreover, in Figure 44 the training based on the first product family of the
two-hidden-layer strategy is depicted. As it will be analyzed, some of them seem
promising and some not. We followingly ran a simulation for each network-dataset

43

couple, using a random sample of records for each of the products, so as to assess the
forecasting capability of the model.

Figure 41: Product Family 1 Train (1 Hidden Layer of 16 Neurons)

Figure 42: Product Family 1 Train (1 Hidden Layer of 32 Neurons)

44

Figure 43: Product Family 1 Weights (1 Hidden Layer of 32 Neurons)

Figure 44: Product Family 1 Train (2 Hidden Layers of 32 Neurons)

Applying similarly for all the parts as well as on the whole data, one can get the results
that are analyzed in CHAPTER 5. The weights and biases of the nets are saved,
consisting actually the tool for each product family. The results can be found in
APPENDIX 3: Neural Network Training for All Product Families. Also, in Figure 45
is shown the outcome when the model is applied on the whole data.

45

Figure 45: Neural Net on the whole Data

These results seem very promising of the analysis and the chosen method, and so are
analyzed in the next chapter.

46

In each row of Table 1, the ANN that resulted in better CT predictions for the simulated
data 1s highlighted in yellow color. For example, in the last row, the ANN with 1 hidden
layer and 32 neurons outperformed the other two ANNSs with an average error 0of9.61%,
which is relatively good, considering the complexity of the problem. For three product
families, the smallest MAPE value was less than 10% while for the remaining 11

families it was between 10% and 20%.

Table 2 shows the actual and predicted CTs, as well as the absolute percent error, for
the 10 lots of the first part family (JIlll. using the ANN with 1 Hidden Layer and
16 neurons.

Table 2: Prediction results for the 1st product family

LOTID PART | €T | Sim 16 Absolute % Error
0,6402
1,2259
4,2666
6,8614
7,1785
9.9316
18,7692
30,7623
33,1850
36,3305

As can be seen from Table 2, the absolute percent error varies quite a bit from 0,36%
to 36,33% between the lots. This large variation holds also for all the product families,
the results of which can be found in APPENDIX 3: Neural Network Training for All
Product Families.

At first, we thought that this variation, which led to poor CT predictions, was perhaps
due to corrupted raw data and in particular data that indicated that the lots were being
processed and the equipment was utilized when 1n fact it was incapacitated, resulting
in long waiting/processing times.

To test this hypothesis, we used the information from the Equipment State (EQPS)
Table. More specifically, we wrote an SQL script that draws the equipment state at the
key time instances QUEUETIME, TRACKINTIME and TRACKOUTTIME and
creates three new values im our MATLAB code, namely, Q State, In State and
Out_State, describing the states of the equipment at these three time instances. The
codes for this task are shown in Figure 46 and Figure 47, respectively.

However, as 1s shown in Figure 48, all the equipment turned out to be available at the
times of interest and hence this hypothesis was not accepted.

48

From Table 3, it seems that certain factors, which are highlighted in yellow color, have
a higher positive correlation with the errors in the CT forecasts generated by the ANNs
than other factors. These factors are mainly the total WIP upon entry and the processing
times and utilizations of certain equipment-types, with types 2 and 7 being the
prominent ones.

51

Summary and Future Directions

We developed a data-driven tool for predicting the CTs of wafer lots in the Wafer Test
Fab of a Semiconductor Manufacturing Plant.

From our industrial partner’s production data covering a 2-year period, we pulled and/or
calculated for each LOTID information about the part family that the LOTID belongs
to, the LOTID average priority, the cumulative processing time that the LOTID spends
on each equipment type, the sum of the processing times of all the lots waiting to be
processed in each equipment type at the time of entry of the LOTID, the utilizations of
the equipment-types, during the last 24 hours before the entry of the LOTID, the total
WIP in the entire Wafer Test Fab at the time of entry of the LOTID, and the actual CT
of the LOTID. These calculations were performed using MATLAB in combination with
Microsoft SQL Server.

This information was then used to train three ANN variants developed in MATLAB’s
NNtool for CT prediction.

This methodology was implemented on 14 product families processed on 10 equipment
types in the Wafer Test Fab. The results showed that for three product families, the
smallest MAPE value of the CT forecast was less than 10% while for the remaining 11
families it was between 10% and 20%. Considering all the product families together,
the smallest MAPE value of the CT forecast was slightly less than 10%.

There are several directions for future work.

First, the raw data can be improved. There exist a lot of problematic data records, with
excessively large processing times or waiting times, which made CT prediction
difficult.

Moreover, Wang et al. [4] suggest a factor selection method as an extra preprocessing
step. This method seems very effective and its application in the examined use case is
promising.

There is also space for improving the design of the ANN as a predictive model. Some
of the important features that it should have are analyzed in this dissertation, but the
selection of its key parameters such as the number of hidden layers and neurons in each
layer can be further researched.

Finally, it would be worthwhile to apply the developed methodology to the Wafer Fab,
which is certainly more complex than the Wafer Test Fab. The data provided by our
industrial partner covers all the fabs in the front and back end of the supply chain.

52

BIBLIOGRAPHY

[1] J. Zhang, W. Qin, L. H. Wu, and W. B. Zhai, “Fuzzy neural network-based
rescheduling decision mechanism for semiconductor manufacturing,”
Comput. Ind., vol. 65, no. 8, pp. 1115-1125, 2014.

[2] S.C.H.Lu, D. Ramaswamy, and P. R. Kumar, “Efficient scheduling policies
to reduce mean and variance of cycle-time in semiconductor manufacturing
plants,” IEEE Trans. Semicond. Manuf., vol. 7, no. 3, pp. 374-388, 1994.

[3] Y. T. Tai, W. L. Pearn, and J. H. Lee, “Cycle time estimation for
semiconductor final testing processes with Weibull-distributed waiting time,”
Int. J. Prod. Res., vol. 50, no. 2, pp. 581-592, 2012.

[4] J. Wang, J. Zhang, and X. Wang, A Data Driven Cycle Time Prediction with
Feature Selection in a Semiconductor Wafer Fabrication System. IEEE Trans.
Semicond. Manuf., vol. 31, no. 1, 173-182, 2018.

[5] D. Y. Sha and S. Y. Hsu, “Due-date assignment in wafer fabrication using
artificial neural networks,” Int. J. Adv. Manuf. Technol., vol. 23, nos. 9-10,
pp. 768-775, 2004.

[6] H.Demuth and M. Beale, Neural Network Toolbox for Use with MATLAB®,
User’s Guide, Version 4, The Mathworks, 2002.

[7] University of Thessaly, Department of Mechanical Engineering News.
(N

[8] J. G. Shanthikumar, S. Ding S, M. T. Zhang, “Queueing theory for
semiconductor manufacturing systems: A survey and pen problems,” IEEE
Transactions in Automation Science and Engineering vol. 4, no. 4, pp. 513-
522, 2007.

[9] A. Kusiak and G. Xu, “Modeling and optimization of HVAC systems using a
dynamic neural network,” Energy, vol. 42, no. 1, pp. 241-250, 2012.

[10] T. Chen and Y.-C. Wang, “Incorporating the FCM-BPN approach with
nonlinear programming for internal due date assignment in a wafer fabrication
plant,” Robot. Comput. Integr. Manuf., vol. 26, no. 1, pp. 83-91, 2010.

[11] I. Tirkel, “Forecasting flow time in semiconductor manufacturing using
knowledge discovery in databases,” Int. J. Prod. Res., vol. 51, no. 18, pp.
5536-5548, 2013.

[12] J. Wang, J. Yang, J. Zhang, X. Wang & W. (C.) Zhang, “Big data driven cycle
time parallel prediction for production planning in wafer manufacturing,”
Enterprise Information Systems, vol. 12, no. 6, 714-732, 2018.

[13] A. Stamatakis and S. Botsis, “Reliability and maintainability analysis in
semiconductor manufacturing, "Diploma in Mechanical Engineering Thesis,
University of Thessaly, 2018.

[14] A. R. Shinde, “Modeling and simulation of a Semiconductor Manufacturing
Fab for cycle time analysis,” MSc. in Systems Engineering Dissertation,
University of Maryland, 2018.

[15] L. Ménch, J. W. Fowler, S. J Mason, “Production Planning and Control for
Semiconductor Wafer Fabrication Facilities - Modeling, Analysis, and

53

Systems,” Operations Research/Computer Science Interfaces Series, vol. 52,
Springer, Ney York, 2013.

[16] Y. Tony, Understanding Neural Networks, Towards Data Science, 2019,
[https://towardsdatascience.com/understanding-neural-networks-
19020b758230].

[17] M.T. Hagan, H.B. Demuth, M.H. Beale, Neural Network Design, PWS
Publishing Company, Boston, MA 1996.

[18] E. Tsiakiris and C. Kalantaridis, “Reliability and Prediction using Neural
Networks in Semiconductor Manufacturing,” Diploma in Mechanical
Engineering Thesis University of Thessaly, 2019.

[19] K. Papadimitropoulos, “Implementation of a queueing network modeling
method for analyzing semiconductor manufacturing systems,” Diploma in
Mechanical Engineering Thesis, University of Thessaly, 2018.

[20] C. Kuo, C. Chien and J. Chen, "Manufacturing Intelligence to Exploit the
Value of Production and Tool Data to Reduce Cycle Time," IEEE Transactions
on Automation Science and Engineering, vol. 8, no. 1, pp. 103-111, 2011.

54

APPENDICES

APPENDIX 1: Code of Data Preprocessing (SQL)

Here is a matrix with the total of databases we created through this analysis.

= @ Thesis
Database Diagrams
[= 7 Tables

System Tables
FileTables

External Tables

Graph Tables

F dbo.AVG_EQPTYPE_UTIL
E dbo.AVG_TIME_IN_QUEUE
B dbo.CUT_WAFERTEST_SEMIVAL
2 dbo.CYCLETIME

B dbo.CYCLETIME_14

B dbo.EQP_10

£ dbo.EQPID_Q_1

H dbo.EQPID_Q 2

£ dbo.EQPID_Q_3

F2 dbo.EQPS

B dbo.eqps_dataset

B dbo FINAL_LOT_10

F dbo.FLOW16A

B dbo.FLOW16B

E dbo.FLOW16C

F dbo.FLOW16D

E dbo.FLOW17A

E dbo.FLOW17AMINI

2 dbo.FLOW17AVALID

E dbo.FLOW17B

B dbo.FLOW17Bb

2 dbo.FLOW17C

E dbo.FLOW17D

B dbo.FLOW1TE

2 dbo.FLOW1TF

= W NEW_RESOLUTION

Database Diagrams

= Tables
System Tables
FileTables
External Tables
Graph Tables
H dbo.FLOW16A_SEMIVAL
B dbo.FLOW16B_SEMIVAL
A dbo.FLOW16C_SEMIVAL
H dbo.FLOW16D_SEMIVAL
B dbo.FLOW1TA_SEMIVAL
M dbo.FLOW17B_SEMIVAL
H dbo.FLOW17C_SEMIVAL
B dbo.FLOW17D_SEMIVAL
B dbo.FLOW17E_SEMIVAL
H dbo.FLOW17F_SEMIVAL

EE dbo.FLOW17F

EE dbo.FOR_CT

ER dbo.FOR_CT_14

EE dbo.ID_10

EE dbo.LIST_LOTS_EGL92_1

EE dbo.LIST_LOTS_EGME&0_1

ER dbo.LIST_LOTS_EGMA1_1

EE dbo.LOT_10

EE dbo.matlab_eqptypes

B dbo.matlab_listlots

EE dbo.MINI_TIMESTAMPS

EE dbo.new_REV_DATASET

EE dbo.new_REV_DATASET NOPRIO
B dbo.new_wafertest_semival

B dbo.NextLotlD

EE dbo.NUM_ID_10

EE dbo.PARTS14 DATASET

B dbo.PARTS14_DATASET_NOPRIO
ER dbo.PARTS14_DATASET_UNMACHINED
EE dbo.PARTS14_LOTS_10MACHINES
EE dbo.PARTS14_LOTS SINGLE_PRIO
EE dbo.PREV_9RECPS

ER dbo.PREV_DATASET

EE dbo.PRIORITY

EE dbo.REV_DATASET

E dbo.REV_DATASET_NCPRIO

ER dbo.REV_LOTS_SINGLE_PRIO

EE dbo.revalid_wafertest

EE dbo.sum_test lot

E dbo.timeQ_1

EE dbo.TIMESTAMPS

EE dbo.WAFERTEST_SEMIVAL

EE dbo.WIP_CUT_WAFERTEST SEMIVAL
EE dbo.WIP_WAFERTEST_SEMIVAL

= @ VALIDATED

Database Diagrams

= 4 Tables
System Tables
FileTables
External Tables
Graph Tables
B dbo.AT_LEAST_9
B dbo.FINAL_IRECPS
B dbo.FLOW16A VAL
B dbo.FLOW16B_VAL
B dbo.FLOW16C VAL
E dbo.FLOW16D_VAL
BB dbo.FLOW17A_VAL
BB dbo.FLOW17B_VAL
BB dbo.FLOW17C_VAL
B dbo FLOW17D_VAL
B dbo FLOW17E_VAL
ER dbo FLOW17F_VAL
B8 dboJUST_8_EQPTYPES
B dbo.new_wafertest_semival
B dbo.RECPS_10
B dbo.RECPS_9
M dbo.revalid_wafertest
B dbo.UTIL1
B dbo.WAFERTEST_SEMIVAL
B dbo.WFT_2Y VAL

55

In this chapter lies all the SQL Code we created throughout this dissertation.
To begin with, the following 7 queries were developed on the recipe-based analysis.

1.Data Preprocess

SELECT LOTID, COUNT(DISTINCT QUEUETIME)
FROM FLOW17A

WHERE ProdArea = '-'--WAFERTEST

GROUP BY LOTID

ORDER BY COUNT(DISTINCT QUEUETIME) DESC;

--THIS IS A TEST FOR THE VALIDATION RULES OF THE WHOLE DATASET

--CREATE FLOW17A VALIDATED

SELECT LOTID, PART, STAGE, EQPID, EQPTYPE, RECPID, QUEUETIME, TRACKINTIME,
TRACKOUTTIME,

DATEDIFF(MINUTE, CAST(QUEUETIME AS datetime), CAST(TRACKINTIME AS DATETIME)) AS
WT,

DATEDIFF(MINUTE, CAST(TRACKINTIME AS datetime), CAST(TRACKOUTTIME AS DATETIME))
AS PT,

DATEDIFF (MINUTE, CAST(QUEUETIME AS datetime), CAST(TRACKOUTTIME AS DATETIME)) AS
CT,

TRACKINMAINQTY, CURMAINQTY

FROM FLOW17A

WHERE ProdArea = '-'——For‘ wafertest

AND QUEUETIME IS NOT NULL

AND TRACKINTIME IS NOT NULL

AND TRACKOUTTIME IS NOT NULL

AND RECPID IS NOT NULL

AND EQPID IS NOT NULL

AND QUEUETIME != "'

AND TRACKINTIME != "'
AND TRACKOUTTIME ! v

AND RECPID != ''

AND EQPID = '

AND TRACKOUTTIME - QUEUETIME > ©
ORDER BY PART, LOTID, QUEUETIME;

--SELECT TOP 5004 *
--FROM FLOW17AVALID;

--SELECT *

--FROM FLOW17AMINI

--INNER JOIN PRIORITY

--ON FLOW17AMINI.LOTID = PRIORITY.LOTID;

--SELECT *
--FROM PRIORITY
--WHERE LOTID = '6583332.1°;

SELECT COUNT(DISTINCT RECPID) --flowl7aValid for 442 lotIDs
FROM FLOW17AMINI;

SELECT *

FROM FLOW17AVALID

where RECPID = '[JJl]’ --sos exw diaforetika ct gia to idio recipe!!!
ORDER BY LOTID ASC;

select distinct RECPID, count(RECPID), count(distinct LOTID)

FROM FLOW17AMINI
group by RECPID

56

ORDER BY count(RECPID) DESC;

select *
from FLOW17AVALID

where LOTID - [N

SELECT *
FROM FLOW17B;

2. Flow Validation

--FLOW VALIDATED

--i run this validated query for all the 2month raw data groups

--i reload them as FLOW##X_ VAL in the VALIDATED Database

SELECT LOTID, PART, STAGE, EQPID, EQPTYPE, RECPID, QUEUETIME, TRACKINTIME,
TRACKOUTTIME,

DATEDIFF(MINUTE, CAST(QUEUETIME AS datetime), CAST(TRACKINTIME AS DATETIME)) AS
WT,

DATEDIFF(MINUTE, CAST(TRACKINTIME AS datetime), CAST(TRACKOUTTIME AS DATETIME))
AS PT,

DATEDIFF(MINUTE, CAST(QUEUETIME AS datetime), CAST(TRACKOUTTIME AS DATETIME)) AS
CT, --MINUTES ALL OF THEM

TRACKINMAINQTY, CURMAINQTY

FROM FLOW17F

WHERE Prodarea - [}’

AND PART IS NOT NULL

AND QUEUETIME IS NOT NULL

AND TRACKINTIME IS NOT NULL

AND TRACKOUTTIME IS NOT NULL

AND RECPID IS NOT NULL

AND EQPID IS NOT NULL

AND QUEUETIME != "'

AND TRACKINTIME != "'
AND TRACKOUTTIME != "'

AND RECPID != "'

AND EQPID != "'

--AND DATEDIFF(MINUTE, CAST(QUEUETIME AS datetime), CAST(TRACKOUTTIME AS
DATETIME)) > ©

--AND DATEDIFF(MINUTE, CAST(TRACKINTIME AS datetime), CAST(TRACKOUTTIME AS
DATETIME)) > ©

ORDER BY QUEUETIME;

3.Tables Connect

--VALIDATED
SELECT *

FROM FLOW16A_VAL
UNION ALL

SELECT *

FROM FLOW16B_VAL
UNION ALL

SELECT *

FROM FLOW16C_VAL
UNION ALL

SELECT *

FROM FLOW16D_VAL
UNION ALL

SELECT *

FROM FLOW17A_VAL

57

UNION ALL

SELECT *

FROM FLOW17B_VAL
UNION ALL

SELECT *

FROM FLOW17C_VAL
UNION ALL

SELECT *

FROM FLOW17D_VAL
UNION ALL

SELECT *

FROM FLOW17E_VAL
UNION ALL

SELECT *

FROM FLOW17F_ VAL
;--714182

SELECT *

FROM FLOW16A_VAL
UNION

SELECT *

FROM FLOW16B_VAL
UNION

SELECT *

FROM FLOW16C_VAL
UNION

SELECT *

FROM FLOW16D_VAL
UNION

SELECT *

FROM FLOW17A_ VAL
UNION

SELECT *

FROM FLOW17B_VAL
UNION

SELECT *

FROM FLOW17C_VAL
UNION

SELECT *

FROM FLOW17D_VAL
UNION

SELECT *

FROM FLOW17E_VAL
UNION

SELECT *

FROM FLOW17F_VAL
ORDER BY QUEUETIME
;--710501 no douplicates
--from here we create wafertest2yearsvalid

SELECT *
FROM WFT_2Y_VAL;

--CREATE ONLY FOR 2 YEARS
SELECT *
FROM WFT_2Y_VAL

WHERE QUEUETIME > ' '
AND TRACKOUTTIME < ' 5
--SELECT *

--FROM FLOW16A;
--UNION ALL

58

--SELECT *

--FROM FLOW16B;

----ON FLOW16A.QUEUETIME = FLOW16B.QUEUETIME;

----FULL JOIN FLOW16C ON FLOW16A.LOTID = FLOW16C.LOTID
----JOIN FLOW16D ON FLOW16A.LOTID = FLOW16D.LOTID
----FULL JOIN FLOW17A ON FLOW16A.LOTID = FLOW17A.LOTID
----FULL JOIN FLOW17B ON FLOW16A.LOTID FLOW17B.LOTID
----FULL JOIN FLOW17C ON FLOW16A.LOTID = FLOW17C.LOTID
----FULL JOIN FLOW17D ON FLOW16A.LOTID = FLOW17D.LOTID
----FULL JOIN FLOW17E ON FLOW16A.LOTID = FLOW17E.LOTID
----FULL JOIN FLOW17F ON FLOW16A.LOTID = FLOW17F.LOTID
----ORDER BY FLOW16A.QUEUETIME, FLOW16B.QUEUETIME, FLOW16C.QUEUETIME;

--SELECT count(*)
--FROM COMBO_FLOW;

--SELECT *
--FROM COMBO_FLOW;

--SELECT count(*)
--FROM FLOW16B;

----INSERT INTO COMBO_FLOW
-- SELECT *

-- FROM FLOW16A

--UNION ALL

-- SELECT *

-- FROM FLOW16B;

--With TEMP as
- (

--select *
--from FLOW16A
--UNION ALL
--select *
--from FLOW16B)

--select *
--from TEMP;

4.Recipes PT

--DATABASE: VALIDATED
SELECT *
FROM WFT_2Y_VAL;--710501 records

SELECT DISTINCT LOTID, COUNT(DISTINCT RECPID)

FROM WFT_2Y_VAL

GROUP BY LOTID

ORDER BY COUNT(DISTINCT RECPID) DESC

;--we see that each lot passes from 1 up to 14 different recipes in the wafertest

SELECT DISTINCT RECPID, COUNT(DISTINCT LOTID)
FROM WFT_2Y_ VAL

GROUP BY RECPID

ORDER BY COUNT(DISTINCT LOTID) DESC

;--101

SELECT DISTINCT LOTID, COUNT(DISTINCT egptype)
FROM WFT_2Y_VAL

59

GROUP BY LOTID
ORDER BY COUNT(DISTINCT eqgptype) DESC
;--we see that each lot passes from 1 up to 12 different eqpytypes in the wafertest

--and as we can guess...

SELECT RECPID, COUNT(DISTINCT egptype)

FROM WFT_2Y_VAL

GROUP BY RECPID

ORDER BY COUNT(DISTINCT eqptype) DESC

;--...here we prove that we have 1tol match of a recipe to an eqgptype

SELECT eqptype, COUNT(DISTINCT RECPID) dist_recipes

FROM WFT_2Y VAL

GROUP BY eqgptype

ORDER BY COUNT(DISTINCT RECPID) DESC

;--however we see that an eqptype may perform more than one recipes

SELECT RECPID, COUNT(DISTINCT egpid)
FROM WFT_2Y_ VAL
GROUP BY RECPID
ORDER BY COUNT(DISTINCT eqpid) DESC

3

SELECT eqpid, COUNT(DISTINCT RECPID)
FROM WFT_2Y VAL
GROUP BY eqpid
ORDER BY COUNT(DISTINCT RECPID) DESC

3

--RECIPES
SELECT COUNT(DISTINCT LOTID)
FROM WFT_2Y_VAL

WHERE RECPID = '-'

--OR RECPID = 'MAPOV.®@5'

--OR RECPID = 'MCCVM.@2'

--OR RECPID = 'TRINK.Q1'--77137
--OR RECPID = 'INKN1.06'--77185
--OR RECPID = 'MAKRS.@2'--77196
--OR RECPID = 'ICHT1.03'--77333
--OR RECPID = 'OFFRV.@1'--77342
--OR RECPID = 'LTPDS.07'--77369
--OR RECPID = 'SIGHT.@3'--77372

SELECT DISTINCT RECPID, LOTID--PER LOT -->RECIPES
FROM WFT_2Y_VAL

--GROUP BY LOTID

ORDER BY LOTID;

--TO BE IMPROVED BY SELECTING LOTS WITH PT>@!!!
--RECP1

SELECT DISTINCT LOTID,QUEUETIME

FROM WFT_2Y_ VAL

WHERE RECPID = -

ORDER BY QUEUETIME;--75664

--RECP2
SELECT DISTINCT LOTID,QUEUETIME
FROM WFT_2Y_VAL

WHERE RECPID = _

ORDER BY QUEUETIME;--69470

60

--RECP3

SELECT DISTINCT LOTID,QUEUETIME
FROM WFT_2Y_VAL

WHERE RECPID = '-'
ORDER BY QUEUETIME;

--RECP4
SELECT DISTINCT LOTID,QUEUETIME
FROM WFT_2Y_VAL

WHERE RECPID = '-'

ORDER BY QUEUETIME;

--RECP5

SELECT DISTINCT LOTID,QUEUETIME
FROM WFT_2Y_VAL

WHERE RECPID = '-'
ORDER BY QUEUETIME;

--RECP6

SELECT DISTINCT LOTID,QUEUETIME
FROM WFT_2Y_ VAL

WHERE RECPID = '-'

ORDER BY QUEUETIME;

--RECP7
SELECT DISTINCT LOTID,QUEUETIME
FROM WFT_2Y_VAL

WHERE RECPID = '-'

ORDER BY QUEUETIME;

--RECPS

SELECT DISTINCT LOTID,QUEUETIME
FROM WFT_2Y_VAL

WHERE RECPID = -

ORDER BY QUEUETIME;--3/16-8/17

--RECP9

SELECT DISTINCT LOTID,QUEUETIME

FROM WFT_2Y_VAL

WHERE RECPID = -

ORDER BY QUEUETIME;--FOR SOME REASON THE LOTIDS HERE DO NOT APPEAR IN OTHER RECPS

--RECP10

SELECT DISTINCT LOTID,QUEUETIME
FROM WFT_2Y_VAL

WHERE RECPID = -

ORDER BY QUEUETIME; --2/17-8/17

--SELECT *
--FROM recplo
--WHERE LOTID ='EFA56.1"';

--AT_LEAST_9

select recpl.LOTID

from recpl

INNER JOIN recp2

ON recp2.LOTID = recpl.LOTID--68597
INNER JOIN recp3

ON recp3.LOTID = recpl.LOTID--66232
INNER JOIN recp4

ON recp4.LOTID = recpl.LOTID--47876
INNER JOIN recp5

61

ON recp5.LOTID = recpl.LOTID--39334
INNER JOIN recp6

ON recp6.LOTID = recpl.LOTID--22199
INNER JOIN recp?7

ON recp7.LOTID = recpl.LOTID--16214
INNER JOIN recp8

ON recp8.LOTID = recp2.LOTID--11767
INNER JOIN recp9

ON recp9.LOTID = recp2.LOTID--5648

J

SELECT COUNT(DISTINCT LOTID)
FROM WFT_2Y_VAL
WHERE LOTID IN(SELECT * FROM AT_LEAST 9);--CHECK AT LEAST 9RECPS, 5648

SELECT DISTINCT LOTID, COUNT(DISTINCT RECPID)
FROM WFT_2Y_VAL

WHERE LOTID IN(SELECT * FROM AT_LEAST_9)
GROUP BY LOTID

ORDER BY COUNT(DISTINCT RECPID)

;--CHECK FOR MORE THAN 9RECPS, 3942

--COMBINING WE GET JUST 9--> JUST 9
SELECT COUNT(DISTINCT LOTID)

FROM WFT_2Y_VAL

WHERE LOTID IN(SELECT * FROM JUST_9);--3942

--FINAL_9RECPS

SELECT *

FROM WFT_2Y_VAL

WHERE LOTID IN(SELECT * FROM JUST_9)
ORDER BY LOTID, QUEUETIME;--39608

SELECT *
FROM FINAL_OSRECPS;--39608

5.EQP
--VALIDATED

SELECT DISTINCT(EQPTYPE)
FROM FINAL_OSRECPS;

SELECT DISTINCT(EQPTYPE), COUNT(DISTINCT RECPID)
FROM FINAL_SRECPS

GROUP BY EQPTYPE;

SELECT DISTINCT(RECPID), COUNT(DISTINCT EQPID)
FROM FINAL_SRECPS

GROUP BY RECPID;

SELECT *
FROM FINAL_SRECPS;

6.UTIL+Q TIME

--validated

62

--utilization

SELECT * --SUM(PT) AS TOTAL_PT --/1052640? --2YEARS (IN
731DAYS*24HOURS*60OMINS

FROM WFT_2Y_VAL

WHERE
--EQPID IN (SELECT EQPID FROM WFT_2Y_VAL WHERE
eepTYPE -

--OR EQPTYPE = 'EDDCA'

--OR EQPTYPE = 'EACFFZ'

--OR EQPTYPE = 'EAFDBF'

--OR EQPTYPE = 'EZDEAF'

--OR EQPTYPE = 'EAEECA'

--OR EQPTYPE = 'EACDCC'

--OR EQPTYPE = 'ECAAFC'

--OR EQPTYPE = 'ECA-80/88"'

--AND PT < 5000

--GROUP BY EQPID

order by eqpid, TRACKINTIME, pt desc

3

SELECT *

FROM WFT_2Y_VAL

wHERE EQPID - [--12. 090
ORDER BY PT DESC

3

SELECT *
FROM UTIL1;

--AVG UTIL EQPTYPE
SELECT WFT_2Y_VAL.EQPTYPE, AVG(UTIL1.UTIL) AS AVG_UTIL
FROM UTIL1

INNER JOIN WFT_2Y VAL

ON UTIL1.EQPID = WFT_2Y_VAL.EQPID

GROUP BY WFT_2Y_VAL.EQPTYPE;

--time in queue

SELECT EQPTYPE, AVG(WT) AS TOTAL_WT

FROM WFT_2Y_VAL

WHERE

--EQPID IN (SELECT EQPID FROM WFT_2Y_ VAL WHERE
EQPTYPE = ' '

OR EQPTYPE =
OR EQPTYPE
OR EQPTYPE
OR EQPTYPE
OR EQPTYPE
OR EQPTYPE
OR EQPTYPE
OR EQPTYPE =
--AND WT < 5000
GROUP BY EQPTYPE
ORDER BY EQPTYPE

)

7.Dataset Creation

--THESIS
--+PRIORITY

--SELECT DISTINCT LOTID, COUNT(DISTINCT PRIORITY)
--FROM PRIORITY

63

MINS)

--GROUP BY LOTID
--ORDER BY COUNT(DISTINCT PRIORITY) DESC ;--3942
----AND I SELECT FROM HERE THE 2442 LOTS WITH 1 PRIO FROM THE 3942

--SELECT DISTINCT FINAL_SRECPS.LOTID
--FROM FINAL_OSRECPS;--3942

----S0 WE GET THIS

--SELECT DISTINCT FINAL_SRECPS.LOTID,
--FROM FINAL_OSRECPS

--JOIN LOTS_SINGLE_PRIO

--ON LOTS_SINGLE_PRIO.LOTID = FINAL_OSRECPS.LOTID;--2442

LOTS_SINGLE_PRIO.PRIORITY

--select *
--from LOTS_SINGLE_PRIO;--2442

SELECT DISTINCT (LOTID)
FROM FINAL_SRECPS;--3942

--PRIORITY RE-CALC-->AVERAGE PRIORITY

--CREATE LOTS_SINGLE_PRIO

SELECT DISTINCT LOTID, AVG(PRIORITY) as PRIORITY
FROM PRIORITY

WHERE LOTID IN (SELECT LOTID FROM FINAL_9RECPS)
GROUP BY LOTID

ORDER BY AVG(PRIORITY) DESC ;--3942

--PROOF THAT 1 LOT, MORE THAN ONE PRIOS--> WE NEED THE AVERAGE ABOVE
SELECT LOTID, PRIORITY
FROM PRIORITY

wHERE LOTID - [N

SELECT *
FROM LOTS_SINGLE_PRIO;

--AND FINALLY

--LAST TABLE OF 3942 WITH PRIORITY-->DATASET
SELECT FINAL_ORECPS.LOTID,
LOTS_SINGLE_PRIO.PRIORITY,

FINAL_9RECPS.
.STAGE,
FINAL_9RECPS.
FINAL_9RECPS.
FINAL_9RECPS.
.QUEUETIME,

. TRACKINTIME,
. TRACKOUTTIME,
T,
FINAL_9RECPS.
.CT,
. TRACKINMAINQTY,
. CURMAINQTY

FINAL_9RECPS

FINAL_9RECPS
FINAL_O9RECPS
FINAL_O9RECPS
FINAL_9RECPS

FINAL_ORECPS
FINAL_O9RECPS
FINAL_O9RECPS

PART,
EQPID,

EQPTYPE,
RECPID,

PT,

FROM FINAL_SRECPS

INNER JOIN LOTS_SINGLE_PRIO
ON LOTS_SINGLE_PRIO.LOTID =
ORDER BY FINAL_SRECPS.LOTID,

FINAL_ORECPS.LOTID
FINAL_O9RECPS.QUEUETIME; --39608

SELECT DISTINCT LOTID, PRIORITY
FROM DATASET
ORDER BY LOTID;

--VALIDATION FOR MATLAB TIME IN QUEUE

64

select LOTID,EQPTYPE,WT
from dataset
ORDER BY LOTID, RECPID;

SELECT LOTID,RECPID,PT
FROM DATASET
ORDER BY LOTID, RECPID;

SELECT EQPTYPE ,SUM(PT) AS TOTAL_PT
FROM DATASET
GROUP BY EQPTYPE

3

SELECT *
FROM DATASET
ORDER BY pt;

--UTIL calc on VALIDATED - WFT_2Y VAL

SELECT *
FROM EQPTYPE_UTIL;

65

Continuing on, as explained in the main course of this dissertation, the equipment-based
modeling of the fab was selected. Hence, below lie the queries developed on this basis.

First of all, the united semi validated data are used.

1.Data Reunion

--DATABASE :NEW_RESOLUTION
SELECT *

FROM FLOW16A_SEMIVAL
UNION

SELECT *

FROM FLOW16B_SEMIVAL
UNION

SELECT *

FROM FLOW16C_SEMIVAL
UNION

SELECT *

FROM FLOW16D_SEMIVAL
UNION

SELECT *

FROM FLOW17A_SEMIVAL
UNION

SELECT *

FROM FLOW17B_SEMIVAL
UNION

SELECT *

FROM FLOW17C_SEMIVAL
UNION

SELECT *

FROM FLOW17D_SEMIVAL
UNION

SELECT *

FROM FLOW17E_SEMIVAL
UNION

SELECT *

FROM FLOW17F_SEMIVAL
ORDER BY QUEUETIME

J

2. Equipment based Analysis
--VALIDATED

select *
from wafertest_semival;--the new uncutted data

SELECT DISTINCT LOTID, COUNT(DISTINCT egptype) AS DIST eqptype
FROM wafertest_semival

GROUP BY LOTID

ORDER BY COUNT(DISTINCT eqptype) DESC

3

--LOTS WITH 10 RECPS ->RECPS_10 TABLE
SELECT DISTINCT LOTID
FROM wafertest_semival

66

--WHERE PT>@, IF WE PUT IT, WE MAY RUIN THE FAMILY(PART)

--WHERE PART = 'PHC8T' --CHECK FOR RANDOM PART, THAT IS A RESULT OF THE 2ND NEXT
QUERY

GROUP BY LOTID

HAVING COUNT(DISTINCT RECPID) = 10 --ALL WITH JUST 1@ RECIPES

--CHECKING THE ABOVE QUERY FOR A LOTID

SELECT DISTINCT(RECPID)

FROM WAFERTEST SEMIVAL

WHERE LOTID = '_';

--from this Query i'll get 3 or 14 PARTS, depending on the analysis

SELECT DISTINCT PART, COUNT(DISTINCT LOTID) AS DIST_LOTID
FROM wafertest_semival

WHERE

--PT>0

--AND

LOTID IN

(SELECT *

FROM RECPS_10)

GROUP BY PART

ORDER BY COUNT(DISTINCT LOTID) DESC

;--NOW I CAN CHOOSE TO KEEP THE PARTS WITH SUFFICIENT AMOUNT OF DISTINCT LOTS

--CHECK_2:TO SEE THESE PART HOW MANY LOTS THEY HAVE, IE WHAT IS THE PERCENTAGE
OF THE 9RECP LOTS

SELECT DISTINCT EQPTYPE --LOTID, COUNT(DISTINCT EQPTYPE) AS DIST EQPTYPE

FROM WAFERTEST_SEMIVAL

WHERE PART ='- Y

--GROUP BY LOTID

--ORDER BY COUNT(DISTINCT EQPTYPE) DESC;--1126/1218 = 0,9244

--I CAN KEEP THE FIRST 3 PARTS

--PART DIST_LOTID RATIO

--PMVBL 1386 09,9878
--PNA30 1126 90,9244
--P4vv4 923 90,8969

SELECT DISTINCT EQPTYPE
FROM wafertest_semival;

--FROM THIS QUERY I GET THE 1@ standard eqgptypes
SELECT DISTINCT EQPTYPE, COUNT(DISTINCT LOTID) AS DIST_LOTS --THIS ONE IS TO SHOW
THAT ALL LOTS OF THE PART PASS FROM ALL EQPPTYPES
FROM wafertest_semival

WHERE

--PT>0 AND

PART -l ~0

LOTID IN

(SELECT *

FROM RECPS_10)

GROUP BY EQPTYPE

ORDER BY COUNT(DISTINCT LOTID) DESC

SELECT DISTINCT EQPTYPE, COUNT(DISTINCT LOTID) AS DIST_LOTS
FROM wafertest_semival

WHERE

--PT>0 AND

PART -l 0

LOTID IN

(SELECT *

FROM RECPS_10)

67

GROUP BY EQPTYPE
ORDER BY COUNT(DISTINCT LOTID) DESC

SELECT DISTINCT EQPTYPE, COUNT(DISTINCT LOTID) AS DIST_LOTS
FROM wafertest_semival

WHERE

--PT>0 AND

PART =l ~vo

LOTID IN

(SELECT *

FROM RECPS_10)

GROUP BY EQPTYPE

ORDER BY COUNT(DISTINCT LOTID) DESC

; --1I ADE THE CHECK ALSO FOR THE TOP 14 PARTS
--SOS:SINCE FOR THE 3 PARTS, EXCACTLY THE SAME, WE KEEP THESE 10 EQPTYPES
--EACDCC

--EACFFZ

--EAEECA

--EAFDBF

--ECA-80/88

--ECAAFC

--EDBFDFCDZ

--EDDCA

--EEAADFFCZ

--EZDEAF

--FOR ALL PARTS, WE PROVE THE MOST POPULAR MACHINES

SELECT DISTINCT EQPTYPE, COUNT(DISTINCT PART) AS DIST_PARTS
FROM wafertest_semival

WHERE

--PT>0 AND

LOTID IN

(SELECT *

FROM RECPS_10)

GROUP BY EQPTYPE

ORDER BY COUNT(DISTINCT PART) DESC

3

--AS WE CAN SEE, WE HAVE CHOSEN PARTS THAT PASS THROUGH THE 10 MOST POPULAR TYPES

--HERE WE SEE FOR A SPECIFIC PART, THAT IN AN EQPTYPE MORE THAN ONE RECIPES ARE
EXECUTED

SELECT DISTINCT EQPTYPE, COUNT(DISTINCT RECPID) AS DIST_RECPS
FROM wafertest_semival

WHERE

--PT>0 AND

PART ="l ~o

LOTID IN

(SELECT *

FROM RECPS_10)

GROUP BY EQPTYPE

ORDER BY COUNT(DISTINCT RECPID) DESC

)

--WE SEE THAT A LOT MAY PASS MORE THAN ONCE FROM A SPECIFIC EQPTYPE-->WATCH OUT
FOR THE PROCESSING TIMES

SELECT *

FROM wafertest_semival

WHERE PART ='

order by LOTID;

--HERE WE PROVE THAT LOTS OF THE SAME PART DOES NOT HAVE THE SAME # OF RECIPES
THAT THEY EXECUTE, BUT MOST OF THEM DO...GOOD RATIO

68

SELECT DISTINCT LOTID, COUNT(DISTINCT RECPID) AS DIST_RECPID
FROM wafertest_semival

WHERE PART = - --A RANDOM PART AS A CHECK VALUE

--AND PT>0

GROUP BY LOTID

ORDER BY COUNT(DISTINCT RECPID) DESC--78119

3

--REVISED DATASET, WITHOUT PRIOS -->REV_DATASET_NOPRIO
SELECT *
FROM WAFERTEST_SEMIVAL

WHERE (PART = ' ' OR PART = ' ' or PART - ')
AND (EQPTYPE = ' OR EQPTYPE = or_EQPTYPE - |’ or eopTYPE -
: * or EQpTYPE - | or ervee - 'R

or_EQPTYPE = | ©r ecrrvre - I or eePTvPE - | or EepTyPE
=)

--AND LOTID IN

--(SELECT *

--FROM RECPS_10) --trrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrerr e
ORDER BY PART, LOTID, QUEUETIME
;--37892 ROWS

--NOTE:: IN 7.14PARTS, I GET THE SAME ANALYSIS FOR 14PARTS.

--WE GET 3435 DISTINCT LOTS

SELECT DISTINCT LOTID, COUNT(DISTINCT EQPTYPE)

FROM WAFERTEST_SEMIVAL

WHERE (PART = ' ' OR PART = ' - or PART - |
AND (EQPTYPE = ' OR EQPTYPE = ' * or EQPTYPE - [l or EopTvPE -
: * or EQPTYPE - | or EQPTYPE - '

or_EQPTYPE = | ©r ecrtvre - O EoPTvPE - I or EopTYPE

~

")

AND LOTID IN

(SELECT *

FROM RECPS_10)

GROUP BY LOTID

ORDER BY COUNT(DISTINCT EQPTYPE);

---with new_wafertest_semival (LIMIT TO 7200MINS)

--NEW REVISED DATASET, WITHOUT PRIOS -->REV_DATASET_NOPRIO

SELECT *

FROM new_wafertest_semival

WHERE (PART = ' OR PART = OR PART =)

AND (EQPTYPE = OR EQPTYPE = ' or EQPTYPE - |’ or EopTYPE -

: ' OR EQPTYPE = " OR EQPTYPE =

OR EQPTYPE = ' OR EQPTYPE = '- OR EQPTYPE = '_' OR EQPTYPE
= ')

--AND LOTID IN

--(SELECT *

--FROM RECPS_10)
ORDER BY PART, LOTID, QUEUETIME
;--37892 ROWS

3.Dataset creation and Data Analysis Validation of MATLAB

--THESIS
--+PRIORITY

--PRIORITY RE-CALC-->AVERAGE PRIORITY
--CREATE REV_LOTS_SINGLE_PRIO

69

SELECT DISTINCT LOTID, AVG(PRIORITY) as PRIORITY

FROM PRIORITY

WHERE LOTID IN (SELECT DISTINCT LOTID FROM REV_DATASET_NOPRIO)--EDW PAIZOYN OI
ALLAGES KATHE FORA

GROUP BY LOTID

ORDER BY AVG(PRIORITY) DESC ;--2338/3435 WE LOST DATA FOR WHICH NO PRIORITY INFO
EXIST

SELECT *
FROM REV_LOTS_SINGLE_PRIO;

select *

from WAFERTEST_SEMIVAL
where LOTID - [
order by QUEUETIME asc;

--AND FINALLY

--LAST TABLE OF 2338 WITH PRIORITY-->REV_DATASET
SELECT REV_DATASET_NOPRIO.LOTID,
REV_LOTS_SINGLE_PRIO.PRIORITY,

REV_DATASET_NOPRIO.
REV_DATASET_NOPRIO.
REV_DATASET_NOPRIO.
REV_DATASET_NOPRIO.
REV_DATASET_NOPRIO.
REV_DATASET_NOPRIO.
REV_DATASET_NOPRIO.
REV_DATASET_NOPRIO.
REV_DATASET_NOPRIO.
REV_DATASET_NOPRIO.
REV_DATASET_NOPRIO.
REV_DATASET_NOPRIO.
REV_DATASET_NOPRIO.

PART,

STAGE,

EQPID,
EQPTYPE,
RECPID,
QUEUETIME,
TRACKINTIME,
TRACKOUTTIME,
WT,

PT,

T,
TRACKINMAINQTY,
CURMAINQTY

FROM REV_DATASET_NOPRIO

JOIN REV_LOTS_SINGLE_PRIO

ON REV_LOTS_SINGLE_PRIO.LOTID = REV_DATASET NOPRIO.LOTID

ORDER BY REV_DATASET_NOPRIO.PART, REV_DATASET_NOPRIO.LOTID,
REV_DATASET_NOPRIO.QUEUETIME; --25614

SELECT DISTINCT EQPTYPE
FROM REV_DATASET;

SELECT DISTINCT RECPID
FROM REV_DATASET;

SELECT DISTINCT LOTID, PART
FROM REV_DATASET

ORDER BY PART;

SELECT DISTINCT LOTID, PRIORITY
FROM REV_DATASET

ORDER BY LOTID;--2338 lots

SELECT *
FROM WAFERTEST_SEMIVAL;--775415

--ANALYSIS STARTS
--CREATE TIMESTAMPS TABLE

SELECT DISTINCT LOTID
FROM REV_DATASET

70

ORDER BY LOTID;--2338 lots

--timestamp table

SELECT PART,LOTID, MIN(QUEUETIME) AS Q_IN, MAX(TRACKOUTTIME) AS T_OUT
FROM REV_DATASET

GROUP BY PART, LOTID

ORDER BY PART, LOTID ASC

;--2338

SELECT *

FROM REV_DATASET;

SELECT *
FROM TIMESTAMPS
ORDER BY Q_IN ASC

;--sos: we see THAT TiMesTAMPs START From THE |G

----HENCE, WE WILL KEEP THE DATA FROM 3 months before THAT STAMP AND ON FROM THE
WAFERTEST_SEMIVAL

--SELECT *

--FROM WAFERTEST_SEMIVAL

--ORDER BY PART, LOTID, QUEUETIME

--;--CUT_WAFERTEST_SEMIVAL

SELECT LOTID, MIN(QUEUETIME) AS Q_IN, MAX(TRACKOUTTIME) AS T_OUT
FROM WAFERTEST_SEMIVAL

GROUP BY LOTID

ORDER BY MIN(QUEUETIME) ASC

5--WIP_WAFERTEST_SEMIVAL

SELECT *

FROM WAFERTEST_SEMIVAL

ORDER BY PART, LOTID,EQPTYPE ASC;
--CT

SELECT LOTID, PART, PRIORITY, CT

FROM new_REV_DATASET

ORDER BY PART, LOTID, EQPTYPE;--FOR_CT

SELECT * FROM FOR_CT;

SELECT LOTID, SUM(CT) AS CT
FROM FOR_CT
GROUP BY LOTID;--CYCLETIME

--THE FINAL CYCLE TIME TABLE

SELECT DISTINCT FOR_CT.LOTID, FOR_CT.PART, FOR_CT.PRIORITY, CYCLETIME.CT
FROM FOR_CT

RIGHT JOIN CYCLETIME

ON FOR_CT.LOTID = CYCLETIME.LOTID

ORDER BY FOR_CT.PART, FOR_CT.LOTID;

--select *
--from new_wafertest_semival;-- 7200 limit

select *
from REV_DATASET
ORDER BY PART, LOTID, EQPTYPE;--processing

--BIG TEST FOR WIP

select *
from mini_timestamps;

71

--WIP OF 1ST LOT CHECK
SELECT COUNT(DISTINCT LOTID)
FROM WIP_WAFERTEST_SEMIVA
--WHERE LOTID '
WHERE Q_IN<="
AND T_OUT>="
;--750

--WHILE ((SELECT Q_IN FROM WIP_WAFERTEST SEMIVAL) <= (SELECT Q_IN FROM
MINI_TIMESTAMPS)) and

--((SELECT T_OUT FROM WIP_WAFERTEST SEMIVAL) >= (SELECT Q_IN FROM
MINI_TIMESTAMPS))

--BEGIN

- SELECT LOTID FROM WIP_WAFERTEST SEMIVAL

- IF (SELECT Q_IN FROM WIP_WAFERTEST_SEMIVAL) > (SELECT Q_IN FROM
MINI_TIMESTAMPS)

- BREAK;

--END

--WIP OF 2nd LOT CHECK
SELECT *

FROM WIP_WAFERTEST_SEMIVAL
--WHERE LOTID
WHERE Q_IN<='
AND T_OUT>="'
order by Q_IN
;--800

--WIP OF 3rd LOT CHECK
SELECT *

FROM WIP_WAFERTEST_SEMIVAL
--WHERE LOTID = '
WHERE Q_IN<='
AND T_OUT>="
order by Q_IN
;--802

--waiting time testing

select LOTID, EQPID, EQPTYPE,QUEUETIME, TRACKINTIME, TRACKOUTTIME,PT

from WAFERTEST_SEMIVAL

where LOTID in (select LOTID from LIST LOTS_EGL92 1)

AND QUEUETIME <= ' 0000’

AND TRACKINTIME >= ' '

ORDER BY PART, LOTID,EQPTYPE ASC

;--create preprocessed data for train lot_1 waiting in matlab --timeQ_1

--#1

select distinct eqpid,eqgptype

from WAFERTEST_SEMIVAL

where EQPTYPE IN(SELECT EQPTYPE FROM EQP_10)
order by eqgptype asc;--175 -->ID_10

SELECT EQPID, SUM(PT) AS TIME_IN_QUEUE

FROM WAFERTEST_SEMIVAL

WHERE LOTID IN (SELECT LOTID FROM LIST_LOTS_EGL92_1)
AND QUEUETIME <= ' '

AND TRACKINTIME >= ' '
GROUP BY EQPID

ORDER BY EQPID ASC
;--EQPID_Q_1

SELECT *

72

FROM ID_10;

SELECT ID_10.EQPID, ISNULL(AVG(WAFERTEST SEMIVAL.PT),®)

FROM ID_10

left JOIN WAFERTEST_SEMIVAL

ON ID_10.EQPID = WAFERTEST_ SEMIVAL.EQPID

AND WAFERTEST_SEMIVAL.LOTID IN (SELECT LOTID FROM LIST_LOTS_EGM6@_1)
AND WAFERTEST_SEMIVAL.QUEUETIME <= '
AND WAFERTEST_SEMIVAL.TRACKOUTTIME >= '
--AND EQPTYPE IN(SELECT EQPTYPE FROM EQP_10)
GROUP BY ID_10.EQPID

ORDER BY ID_10.EQPID ASC

;--EQPID Q 1

SELECT WAFERTEST_SEMIVAL.lotid, EQP_10.EQPTYPE, WAFERTEST_SEMIVAL.pt
ISNULL (AVG(WAFERTEST_SEMIVAL.PT),®)

FROM EQP_10

left JOIN WAFERTEST_SEMIVAL

ON EQP_10.EQPTYPE = WAFERTEST_SEMIVAL.EQPTYPE

--AND WAFERTEST_SEMIVAL.LOTID IN (SELECT LOTID FROM LIST_LOTS_EGM60_1)
AND WAFERTEST_SEMIVAL.QUEUETIME <= '

AND WAFERTEST_SEMIVAL.TRACKOUTTIME >= ' :
--AND EQPTYPE IN(SELECT EQPTYPE FROM EQP_10)

--GROUP BY EQP_10.EQPTYPE

ORDER BY EQP_10.EQPTYPE ASC

;--EQPID_Q 1

select *
from new_WAFERTEST_SEMIVAL

where lotid = -

order by eqgptype asc;

select *
from NUM_ID 10;

--the golden one

SELECT ISNULL(AVG(WAFERTEST_SEMIVAL.PT),0)

FROM matlab_eqptypes

LEFT JOIN WAFERTEST_SEMIVAL

ON matlab_eqptypes.EQPTYPE = WAFERTEST_SEMIVAL.EQPTYPE

--AND WAFERTEST_SEMIVAL.LOTID IN (SELECT LOTID FROM LIST LOTS_ EGM6@ 1)
AND WAFERTEST_SEMIVAL.QUEUETIME <= '

AND WAFERTEST_SEMIVAL.TRACKOUTTIME >= ' !
--AND EQPTYPE IN(SELECT EQPTYPE FROM EQP_10)

GROUP BY matlab_eqgptypes.EQPTYPE

ORDER BY matlab_eqptypes.EQPTYPE ASC

;--EQPID Q 1

SELECT EQP_10.EQPTYPE, ISNULL(AVG(WAFERTEST SEMIVAL.PT), 0)

FROM EQP_10

LEFT JOIN WAFERTEST_SEMIVAL

ON EQP_10.EQPTYPE = WAFERTEST_SEMIVAL.EQPTYPE

WHERE WAFERTEST_SEMIVAL.LOTID IN (SELECT LOTID FROM LIST_LOTS_EGL92 1)
AND WAFERTEST_SEMIVAL.QUEUETIME <=

AND WAFERTEST_SEMIVAL.TRACKOUTTIME >= :
--AND EQPTYPE IN(SELECT EQPTYPE FROM EQP 10)

GROUP BY EQP_10.EQPTYPE

ORDER BY EQP_10.EQPTYPE ASC

;--EQPID_Q_1

select *
from matlab_eqptypes;

73

select *
from matlab_listlots;

select distinct lotid
from WAFERTEST_SEMIVAL

where WAFERTEST_SEMIVAL.QUEUETIME <= ' '
AND WAFERTEST_SEMIVAL.TRACKOUTTIME >= ' '
SELECT SUM(PT)

FROM WAFERTEST_SEMIVAL

WHERE LOTID IN (SELECT LOTID FROM matlab llstlots)

AND QUEUETIME <= '

AND TRACKINTIME »>= ' !

AND EQPTYPE IN(SELECT EQPTYPE FROM matlab_egptypes)

GROUP BY EQPTYPE

ORDER BY EQPTYPE ASC

;--EQPID Q 1

SELECT COUNT(DISTINCT EQPTYPE)

FROM WAFERTEST_SEMIVAL

WHERE LOTID IN (SELECT LOTID FROM matlab_listlots)

AND EQPTYPE IN(SELECT EQPTYPE FROM matlab eqptypes)

AND QUEUETIME <= '
AND TRACKINTIME >= ' '

SELECT SUM(WAFERTEST_SEMIVAL.PT)

FROM WAFERTEST_SEMIVAL

INNER JOIN matlab_listlots

ON WAFERTEST_SEMIVAL.LOTID = matlab_listlots.list
INNER JOIN matlab_eqgptypes

ON WAFERTEST_SEMIVAL.EQPTYPE = matlab_eqptypes.eqptype
where WAFERTEST_SEMIVAL.QUEUETIME <= '
AND WAFERTEST_SEMIVAL.TRACKINTIME >= '
GROUP BY WAFERTEST_SEMIVAL.EQPTYPE
ORDER BY WAFERTEST_SEMIVAL.EQPTYPE ASC

)

--#1
SELECT DISTINCT EQPTYPE

FROM WAFERTEST_SEMIVAL

WHERE EQPID IN (SELECT EQPID FROM EQPID Q 1)
ORDER BY EQPTYPE ASC

SELECT DISTINCT EQPID_Q_1.EQPID, EQPID_Q_1.TIME_IN_QUEUE AS TIME_IN_QUEUE
FROM EQPID_Q_1

INNER JOIN WAFERTEST_SEMIVAL
ON WAFERTEST_SEMIVAL.EQPID = EQPID_Q_1.EQPID

WHERE _(EQPTYPE = ' ' or EQPTYPE - | corvre - ' or EopTyPE

OR EQPTYPE = OR EQPTYPE = '
OR EQPTYPE =

")

;--AND WE KEEP ONLY THE 10 THAT WE ARE INTERESTED ABOUT

--#2
SELECT EQPID, SUM(PT) AS TIME_IN_QUEUE

FROM WAFERTEST_SEMIVAL

WHERE LOTID IN (SELECT LOTID FROM LIST_LOTS_EGMG60_1)
AND QUEUETIME <= '

AND TRACKINTIME »>= ' '
GROUP BY EQPID

ORDER BY EQPID ASC

;--EQPID Q 2

74

--#3

SELECT EQPID, SUM(PT) AS TIME_IN_QUEUE

FROM WAFERTEST_SEMIVAL

WHERE LOTID IN (SELECT LOTID FROM LIST_LOTS_ EGM61 1)
AND QUEUETIME <= '
AND TRACKINTIME >= '
GROUP BY EQPID
ORDER BY EQPID ASC
;--EQPID Q 3

--PRE UTILIZATION
--PRE UTILIZATION

select *
from matlab_eqgptypes;
select *
from matlab_listlots;

SELECT *
FROM ID_10;

--CREATE TABLE NUM_ID 10

select matlab_eqptypes.EQPTYPE, count(distinct ID_1@.eqpid) as num_eqgpid
from matlab_eqptypes

LEFT JOIN ID_10

ON matlab_eqptypes.EQPTYPE = ID_10.EQPTYPE

group by matlab_eqgptypes.EQPTYPE

order by matlab_eqgptypes.EQPTYPE asc;

select eqptype --, count(ID_10.eqpid)
from ID_10

--group by ID_10.EQPTYPE

--order by ID_10.EQPTYPE asc

)

SELECT * FROM NUM_ID_10;
--UTILIZATION
--UTILIZATION
--UTILIZATION

--it works

SELECT NUM_ID_10.EQPTYPE, SUM((cast(DATEDIFF(

MINUTE, [dbo].[Max2] (WAFERTEST_SEMIVAL . TRACKINTIME, ' |
)

[dbo].[Min2] (WAFERTEST_SEMIVAL.TRACKOUTTIME, ||) -

float)/1440)) as suml

FROM NUM_ID 10

LEFT JOIN WAFERTEST_SEMIVAL

ON NUM_ID_10.EQPTYPE = WAFERTEST_SEMIVAL.EQPTYPE

WHERE

--WAFERTEST_SEMIVAL.LOTID IN (SELECT LOTID FROM LIST_LOTS_EGM6©_1) AND

(WAFERTEST_SEMIVAL.TRACKINTIME >= ' AND
WAFERTEST_SEMIVAL.TRACKOUTTIME <= '

OR (WAFERTEST_SEMIVAL.TRACKINTIME <= ' AND
WAFERTEST_SEMIVAL.TRACKOUTTIME <= AND
WAFERTEST_SEMIVAL.TRACKOUTTIME >= '

OR (WAFERTEST_SEMIVAL.TRACKINTIME >= ' AND
WAFERTEST_SEMIVAL.TRACKOUTTIME >= AND
WAFERTEST_SEMIVAL.TRACKINTIME <=

OR (WAFERTEST_SEMIVAL.TRACKINTIME <= ' AND

WAFERTEST_SEMIVAL.TRACKOUTTIME >= '

75

--AND EQPTYPE IN(SELECT EQPTYPE FROM EQP_10)
GROUP BY NUM_ID_10.EQPTYPE

ORDER BY NUM_ID_10.EQPTYPE ASC

;--sum_test _lot

select sum_test_lot.suml / NUM_ID_10.num_eqpid
from sum_test_lot

left join NUM_ID_10

on sum_test_lot.eqgptype = NUM_ID_10.eqgptype;

--the one
SELECT NUM_ID_10.EQPTYPE, SUM((cast(DATEDIFF(
MINUTE, [dbo].[Max2] (warerTesT_semivAL .|| G

I
[dbo].[Min2] (WAFERTEST_SEMIVAL.TRACKOUTTIME, [) -
float)/1440)) / (NUM_ID_10.num_eqpid)
FROM matlab_eqgptypes
LEFT JOIN WAFERTEST_SEMIVAL ON matlab_eqptypes.EQPTYPE =
WAFERTEST_SEMIVAL .EQPTYPE
LEFT JOIN NUM_ID_1@ ON matlab_egptypes.EQPTYPE = NUM_ID_ 10.EQPTYPE
WHERE
--WAFERTEST_SEMIVAL.LOTID IN (SELECT LOTID FROM LIST_LOTS_EGM6@ 1) AND

(WAFERTEST_SEMIVAL . TRACKINTIME >= ' : AND
WAFERTEST_SEMIVAL.TRACKOUTTIME <= '

OR (WAFERTEST_SEMIVAL.TRACKINTIME <= ' AND
WAFERTEST_SEMIVAL . TRACKOUTTIME <= AND
WAFERTEST_SEMIVAL.TRACKOUTTIME >= '

OR (WAFERTEST_SEMIVAL.TRACKINTIME >= ' AND
WAFERTEST_SEMIVAL . TRACKOUTTIME >= AND
WAFERTEST_SEMIVAL.TRACKINTIME <= '

OR (WAFERTEST_SEMIVAL.TRACKINTIME ' AND
WAFERTEST_SEMIVAL.TRACKOUTTIME >= '

--AND EQPTYPE IN(SELECT EQPTYPE FROM EQP_10)

GROUP BY NUM_ID_10@.EQPTYPE, NUM_ID_10.num_eqpid

ORDER BY NUM_ID_10.EQPTYPE ASC

--ID_10.EQPID

SELECT ID_10.EQPID, SUM((cast(DATEDIFF(

MINUTE, [dbo].[Max2] (WAFERTEST_SEMIVAL. TRACKINTIME, ' |

)>

[dbo].[Min2] (WAFERTEST_SEMIVAL.TRACKOUTTIME, |) -

float)/1440))

FROM ID_10

LEFT JOIN WAFERTEST_SEMIVAL

ON ID_10.EQPID = WAFERTEST_SEMIVAL.EQPID

WHERE

--WAFERTEST_SEMIVAL.LOTID IN (SELECT LOTID FROM LIST_LOTS EGM6© 1) AND

(WAFERTEST_SEMIVAL.TRACKINTIME >= ' AND
WAFERTEST_SEMIVAL.TRACKOUTTIME <= '
OR (WAFERTEST_SEMIVAL.TRACKINTIME <= ' AND
WAFERTEST_SEMIVAL.TRACKOUTTIME <= AND
WAFERTEST_SEMIVAL.TRACKOUTTIME >= '
OR (WAFERTEST_SEMIVAL.TRACKINTIME >= ' AND
WAFERTEST_SEMIVAL.TRACKOUTTIME >= AND
WAFERTEST_SEMIVAL.TRACKINTIME <= '
OR (WAFERTEST_SEMIVAL.TRACKINTIME ' AND

WAFERTEST_SEMIVAL.TRACKOUTTIME >= '
--AND EQPTYPE IN(SELECT EQPTYPE FROM
GROUP BY ID_10.EQPID

ORDER BY ID_10.EQPID ASC

3

76

--ID_10.eqptype

SELECT 1ID_1@.eqptype, sum(cast(DATEDIFF(

MINUTE, [dbo].[Max2] (WAFERTEST_SEMIVAL . TRACKINTIME, ‘||
)>

[dbo].[Min2] (WAFERTEST_SEMIVAL.TRACKOUTTIME, ||) -

float)/1440)

FROM ID_10

LEFT JOIN WAFERTEST_SEMIVAL
ON ID_10.EQPID = WAFERTEST_SEMIVAL.EQPID

WHERE

--WAFERTEST_SEMIVAL.LOTID IN (SELECT LOTID FROM LIST_LOTS_EGM6©_1) AND
--WAFERTEST_SEMIVAL.EQPTYPE IN (SELECT EQPTYPE FROM matlab_eqptypes) AND
(WAFERTEST_SEMIVAL.TRACKINTIME >= ' ' AND
WAFERTEST_SEMIVAL.TRACKOUTTIME <=

OR (WAFERTEST_SEMIVAL.TRACKINTIME <= ' AND
WAFERTEST_SEMIVAL .TRACKOUTTIME <= ' AND
WAFERTEST_SEMIVAL.TRACKOUTTIME >=

OR (WAFERTEST_SEMIVAL.TRACKINTIME >= ' AND
WAFERTEST_SEMIVAL.TRACKOUTTIME >= AND
WAFERTEST_SEMIVAL.TRACKINTIME <=

OR (WAFERTEST_SEMIVAL.TRACKINTIME <= ' AND

WAFERTEST_SEMIVAL.TRACKOUTTIME >= '
--AND EQPTYPE IN(SELECT EQPTYPE FROM EQP_10)
GROUP BY ID_10.eqgptype

ORDER BY ID_10.eqptype ASC

)

--ONLY WAFERTEST_SEMIVAL, TO VALIDATE THE VALUES THROUGH EXCEL WHEN SUMING BY
EQPTYPE

SELECT LOTID, eqptype, EQPID, TRACKINTIME, TRACKOUTTIME, (cast(DATEDIFF(

MINUTE, [dbo].[Max2] (WAFERTEST_SEMIVAL.

I

[dbo]. [Min2] (WAFERTEST_SEMIVAL.TRACKOUTTIME, || -
float)/1440)

--,COUNT()

FROM WAFERTEST_SEMIVAL

WHERE

--WAFERTEST_SEMIVAL.LOTID IN (SELECT LOTID FROM LIST_LOTS_EGM6© 1) AND

(WAFERTEST_SEMIVAL.TRACKINTIME >= ' AND
WAFERTEST_SEMIVAL.TRACKOUTTIME <= '

OR (WAFERTEST_SEMIVAL.TRACKINTIME <= ' AND
WAFERTEST_SEMIVAL.TRACKOUTTIME <= AND
WAFERTEST_SEMIVAL.TRACKOUTTIME >= '

OR (WAFERTEST_SEMIVAL.TRACKINTIME >= ' AND
WAFERTEST_SEMIVAL.TRACKOUTTIME >= AND
WAFERTEST_SEMIVAL.TRACKINTIME <=

OR (WAFERTEST_SEMIVAL.TRACKINTIME ' AND

WAFERTEST_SEMIVAL.TRACKOUTTIME >= '
--AND EQPTYPE IN(SELECT EQPTYPE FROM
--GROUP BY matlab_eqptypes.EQPTYPE

ORDER BY eqptype, EQPID, TRACKINTIME ASC

)

--ONLY WAFERTEST_SEMIVAL, SUM
SELECT eqptype, sum(cast(DATEDIFF(

MINUTE, [dbo].[Max2] (WAFERTEST_SEMIVAL . TRACKINTIME, ' |
|

[dbo].[Min2] (WAFERTEST_SEMIVAL.TRACKOUTTIME, ||) -
float)/1440)

--,COUNT()

FROM WAFERTEST_SEMIVAL

WHERE

7

--WAFERTEST_SEMIVAL.LOTID IN (SELECT LOTID FROM LIST_LOTS_EGM6@ 1)
--AND

(WAFERTEST_SEMIVAL.TRACKINTIME >=
WAFERTEST_SEMIVAL.TRACKOUTTIME <= '
OR (WAFERTEST_SEMIVAL.TRACKINTIME <=
WAFERTEST_SEMIVAL . TRACKOUTTIME <= :
WAFERTEST_SEMIVAL.TRACKOUTTIME >= '
OR (WAFERTEST_SEMIVAL.TRACKINTIME >-
WAFERTEST_SEMIVAL . TRACKOUTTIME >=
WAFERTEST_SEMIVAL.TRACKINTIME <=
OR (WAFERTEST_SEMIVAL.TRACKINTIME <-
WAFERTEST_SEMIVAL.TRACKOUTTIME >= '
--AND EQPTYPE IN(SELECT EQPTYPE FROM EQP_10)
GROUP BY egptype

--ORDER BY egptype, EQPID, TRACKINTIME ASC

)

--VALIDATION FOR MATLAB processing TIME
select PART,LOTID,EQPTYPE,PT

from REV_DATASET

ORDER BY PART,LOTID,EQPTYPE;

--VALIDATION FOR MATLAB TIME IN QUEUE
select LOTID,EQPTYPE,WT

from REV_DATASET

ORDER BY LOTID, RECPID;

SELECT LOTID,RECPID,PT
FROM REV_DATASET
ORDER BY LOTID, RECPID;

SELECT EQPTYPE ,SUM(PT) AS TOTAL_PT
FROM REV_DATASET
GROUP BY EQPTYPE

3

SELECT *
FROM REV_DATASET
ORDER BY pt;

--UTIL calc on VALIDATED - WFT_2Y VAL

AND

AND
AND

AND
AND

AND

SELECT *
FROM AVG_EQPTYPE_UTIL;

4.Revalidated Dataset with a time limitation of 7200mins.

--re validate big data
--max time in state, 5 days = 7200mins

SELECT LOTID, PART, EQPID, EQPTYPE, QUEUETIME, TRACKINTIME, TRACKOUTTIME,
[dbo].[MINIMUM] (WT,7200) AS WT, [dbo].[MINIMUM] (PT,7200) AS
(([dbo].[MINIMUM] (WT,7200)) + ([dbo].[MINIMUM] (PT,7200))) AS CT

FROM WAFERTEST_SEMIVAL

ORDER BY QUEUETIME ASC; --ALL DATA IS KEPT

--we get new_wafertest _semival

SELECT DISTINCT LOTID, AVG(PRIORITY) as PRIORITY --new_REV_DATASET_NOPRIO
FROM PRIORITY

78

PT,

WHERE LOTID IN (SELECT LOTID FROM LOT_10)
GROUP BY LOTID
ORDER BY AVG(PRIORITY) DESC ;--2185 FINAL_LOT_10

--AND FINALLY

--LAST TABLE OF 2338 WITH PRIORITY-->REV_DATASET
SELECT new_REV_DATASET_NOPRIO.LOTID,
REV_LOTS_SINGLE_PRIO.PRIORITY,
new_REV_DATASET_NOPRIO.PART,
new_REV_DATASET_NOPRIO.EQPID,
new_REV_DATASET_NOPRIO.EQPTYPE,
new_REV_DATASET_NOPRIO.QUEUETIME,
new_REV_DATASET_NOPRIO.TRACKINTIME,
new_REV_DATASET_NOPRIO.TRACKOUTTIME,
new_REV_DATASET_NOPRIO.WT,
new_REV_DATASET_NOPRIO.PT,
new_REV_DATASET_NOPRIO.CT

FROM new_REV_DATASET_NOPRIO

JOIN REV_LOTS_SINGLE_PRIO

ON REV_LOTS_SINGLE_PRIO.LOTID = new_REV_DATASET NOPRIO.LOTID

ORDER BY new_REV_DATASET_NOPRIO.PART, new_REV_DATASET_NOPRIO.LOTID,
new_REV_DATASET_NOPRIO.QUEUETIME;
--25614

---we get new_REV_DATASET
--ALSO THE THRESHOLD SHOULD BE HERE

SELECT EQP_10.EQPTYPE, ISNULL(AVG(WAFERTEST_SEMIVAL.PT), ©)

FROM EQP_10

LEFT JOIN WAFERTEST_SEMIVAL

ON EQP_10.EQPTYPE = WAFERTEST_SEMIVAL.EQPTYPE

WHERE WAFERTEST_SEMIVAL.LOTID IN (SELECT LOTID FROM LIST_LOTS_EGL92_1)

AND WAFERTEST_SEMIVAL.QUEUETIME <=
AND WAFERTEST_SEMIVAL.TRACKOUTTIME >= ' '
AND PT<1440 ----S0S: OLO TO ZOUMI EDW

--AND EQPTYPE IN(SELECT EQPTYPE FROM EQP_10)
GROUP BY EQP_10.EQPTYPE

ORDER BY EQP_10.EQPTYPE ASC

;--EQPID_Q 1

5.EQPS Merge

SELECT EQPID, STATE, CHANGEDT
FROM EQPS
ORDER BY EQPID, CHANGEDT

3

--create eqgps_dataset

select EQPID, CHANGEDT, LASTSTATE, STATE

FROM EQPS

WHERE EQPID IN

(SELECT DISTINCT EQPID

FROM REV_DATASET)

AND LASTSTATE IS NOT NULL

ORDER BY EQPID, CHANGEDT; --SADDLY, WE GET DATA ONLY FOR 16 OUT OF THE 95
EQUIPMENTS

79

SELECT DISTINCT EQPID
FROM REV_DATASET; --95

select EQPID, CHANGEDT,LASTSTATE, STATE

FROM EQPS

WHERE EQPID IN

(SELECT DISTINCT EQPID

FROM WAFERTEST_SEMIVAL) --test for WAFERTEST_SEMIVAL

AND LASTSTATE IS NOT NULL

and EQPID != ' '

and EQPID != '

ORDER BY EQPID, CHANGEDT; --SADDLY, WE GET DATA ONLY FOR 34 OUT OF THE 236 EQPs

SELECT DISTINCT EQPID
FROM WAFERTEST_SEMIVAL;--236

seLect = FroM EQPs WHERE EQPID - | N:

--SELECT * FROM WAFERTEST_SEMIVAL;

SELECT EQPID, QUEUETIME, TRACKINTIME, TRACKOUTTIME FROM REV_DATASET
WHERE EQPID IN

(SELECT DISTINCT EQPID

FROM EQPS)

order by EQPID, QUEUETIME

;--WE WANT TO MERGE THE EQPS DATA HERE.

select * --REV_DATASET.LOTID, eqps_dataset.EQPID, REV_DATASET.QUEUETIME,
eqps_dataset.LASTSTATE

from egps_dataset

left join REV_DATASET

on eqps_dataset.EQPID = REV_DATASET.EQPID

--and REV_DATASET.QUEUETIME > eqps_dataset.CHANGEDT

order by REV_DATASET.LOTID, REV_DATASET.QUEUETIME

3

--FOR BIG PTs

SELECT WAFERTEST_SEMIVAL.LOTID, WAFERTEST_SEMIVAL.EQPID,
WAFERTEST_SEMIVAL.EQPTYPE, WAFERTEST_SEMIVAL.TRACKINTIME,
WAFERTEST_SEMIVAL.TRACKINTIME, WAFERTEST_SEMIVAL.TRACKOUTTIME, EQPS.CHANGEDT,
EQPS.STATE

FROM WAFERTEST_SEMIVAL

INNER JOIN EQPS

ON WAFERTEST_SEMIVAL.EQPID = EQPS.EQPID

WHERE WAFERTEST_SEMIVAL.TRACKINTIME > EQPS.CHANGEDT

ORDER BY WAFERTEST_SEMIVAL.EQPID, WAFERTEST_SEMIVAL.TRACKINTIME

J

--FOR BIG QTs

SELECT WAFERTEST_SEMIVAL.EQPID, WAFERTEST_SEMIVAL.EQPTYPE,
WAFERTEST_SEMIVAL.QUEUETIME, EQPS.CHANGEDT, EQPS.STATE

FROM WAFERTEST_SEMIVAL

INNER JOIN EQPS

ON WAFERTEST_SEMIVAL.EQPID = EQPS.EQPID

ORDER BY WAFERTEST_SEMIVAL.EQPID, WAFERTEST_SEMIVAL.QUEUETIME

3

select *
from NextLotID

where dest_prodarea = ' '
or src_prodarea = ' '

3

80

APPENDIX 2: Code of Data Preprocessing (MATLAB)
1.Recipe-based First Strategy

%Table Creation from DataBase (FLOW17AMINI)
% A->Cell B->Num

%SOS for A(cell),B(numeric) from (Dataset): INSERT LOTID,RECPID
ASC ORDER!!

%S0S for U, (dataset) from (eqp_util): INSERT IN ASC ORDER!!
%SOS for PR(numeric) Trom (LAST _LOTS prio): INSERT IN ASC
ORDER! !

lotid = A(:,1);

prio B(:,1);

part = A(:,2);

stage = A(:,3);
egpid = A(:,4);
eqgptype = A(:,5);
recipe = A(:,6);

% queue = C(:,1);

% trackin = C(:,2);
% trackout = C(:,3);
wt B(:,2);

pt = B(:,3);

ct B(:,4);

% trackinQ
% currentQ

B(:.5);
B(:.,6);

%LotID CT initialize

b = size(unique(lotid),1);

Lot_CT = zeros(b,1);

%so as to change when sequencial lotids differ
logicallndex = ismember(lotid(1),lotid(2));

size(A,L1);

hl-lo
(Il
e

%Create the LotID CT Table
Lot_CT(1)=ct(1);
for 1=2:c
logical Index=ismember(lotid(i), lotid(i-1));
it logical Index==true
Lot_CT()=Lot_CT(g)+ct(i);
else
J=3+1;
Lot_CT(g)=ct(i);
end
end

%Big Table Paper & List LotID-CT (1.2)

d = 1 + 1 + 1 + size(unique(recipe),l) + 2 *
size(unique(egptype),1l) + 1;%5*1 == LOTID + PART + CT + PRIO

K = cell(b,d);

K(:,1) = unique(lotid);

81

K(:,2)= num2cell(Lot_CT);

%0One PT per Recipe

S e o
(I
s

Recipe PT = zeros(b,9);

logicallndexl = O;

logicallndex2 = 0O;

Recipe_PT(1,1) = pt(1l);

for 1=2:c
logicallndex1l = ismember(lotid(i),lotid(i-1));
logicallndex2 = ismember(recipe(i),recipe(i-1));

it logicallndexl == true
it logicallndex2 == true
Recipe_PT(j,m) = Recipe_ PT(G,m) + pt(i);
else

m=m+ 1;
Recipe_PT(G,m) = pt(i);

e PT(j,1) = Recipe PT(j,m) + pt(i):
end
K(:,3:11) = num2cell(Recipe_PT);

%0One Utilization per EQPTYPE
%unique(egptype); SOS: INSERT UTIL IN ASC ORDER!!
k = size(unique(eqgptype),l);
Eqp_util = zeros(b,k);
for i=1:k
Eqp_Util(:,1) = U(i,2);
end

K(:,12:20) = num2cell (Egp_Util);
%TIME IN QUEUE

1 = 1;
J=1;
m=1;

Eqp_QGeue = zeros(b,9);

logicallndexl1ll = O;
logicallndex22 = 0;
Egp_Queue(l,1) = wt(1);

for i=2:c
logicallndex11
logical Index22
1 WITH EQPTYPE

ismember(lotid(i), lotid(i-1));
ismember(recipe(i),recipe(i-1));%RECIPE 1-

it logicallndex1l == true
it logicallndex22 == true
Eqp_Queue(j,m) = Egp_Queue((,m) + wt(i);
else

m=m+ 1;

82

Egp_Queue(@,m) = wt(i);

1;
1;

Queue(j,1) = Egp_Queue(j,m) + wt(i);
end

K(:,21:29) = num2cell(Egp_Queue);

WPRIORITY
K(:,30) = num2cell(PR(:,2));

% xIswrite("K.xIs",K);

% NEURAL NETWORK

% input(:,1) = cell2mat(K(:,1)); %lotid
input = cell2mat(K(:,3:30)); %input(:,2:29)
output = cell2mat(K(:,2));

% xIswrite("input.xIs®,input);
% xIswrite(Toutput.xls”,output);

2.Processing Time
% INSERT A(cell),B(numeric) from (new_Rev_Dataset)
% TIP: PART, LOTID,eqptype ASC ORDER!!

lotid = A(:,1);

% prio = B(z,1);
% part = A(z,2);
% stage = A(:,3);
% eqpid = A(:,4);
egptype = A(:,2);

X

o recipe = A(:,6);

% queue = C(:,1);

% trackin = C(:,2);
o trackout = C(:,3);
% wt = B(z,2);

pt = B(:,1);

ct = B(:,2);

% trackinQ = B(:,5);
% currentQ B(:,6);

%LotID CT initialize

b = size(unique(lotid),1);

% Lot CT = zeros(b,1);

% %so as to change when sequencial lotids differ
% logicallndex = ismember(lotid(1),lotid(2));

%

o

X

size(A,1);

e

% %Create the LotID _CT Table
% Lot CT(1)=ct(l);

83

% for 1=2:cC

% logical Index=1smember(lotid(i), lotid(i-1));
% if logical lndex==true

% Lot CT(jJ)=Lot CT(j)+ct(i);

% else

% J=i+1;

% Lot CT(j)=ct(i);

% end

% end

%

% %Big Table Paper & List LotID-CT (1.2)
%d=1+1+ 1+ 3 * size(unique(eqptype),1l) + 1;%5*1 == LOTID
+ PART + CT + PRIO

% K = cell(b,d);

% K(:,1) = unique(lotid);

%

% % Now 1 put the part in K(:,2)

% 1 = 1;

%3 =1;

% K(1,2)= part(l);

% for i=2:cC

% logical Index=ismember(lotid(i), lotid(i-1));
% iT logical lndex==true

% KJ.2) = part(i);

% else

% J=i+1;

% Kd,2) = part(i);

% end

% end

%
% K(:,3)= num2cell(Lot_CT);

%0One PT per EQPTYPE
% -
%
m=1;

EQPTYPE_PT = zeros(b,10);

logicallndexl = O;

logicallndex2 = O;

EQPTYPE_list(1,1) = eqptype(l);

EQPTYPE_PT(1,1) = pt(1);

for i=2:c

logicallndexl = ismember(lotid(i),lotid(i-1));
logicallndex2 = ismember(eqgptype(i),eqptype(i-1));

11
1;

(SSTR—

if logicallndexl == true
if logicallndex2 == true
EQPTYPE_PT(J,m) = EQPTYPE_PT(g,m) + pt(i);
else

m=m+ 1; %m will reach 10
EQPTYPE_list(1,m) = eqptype(i);
EQPTYPE_PT(,m) = pt(i);
end
else
i=j
m = 1'
EQPTYPE PT(j,1) = EQPTYPE_PT(j,m) + pt(i);
84

end
end

EQPTYPE_ALL(1,:) = EQPTYPE_list;
EQPTYPE_ALL(2:(b+1),:) = num2cell (EQPTYPE PT);

% K(:,4:13) = num2cel 1(EQPTYPE_PT);

%

%

% %PRIORITY

% % Now I put the priority in K(:,34)
% 1 = 1;

%3 =1;

% K(1,34)= num2cell(prio(1));

% for 1=2:cC

% logical Index=ismember(lotid(i), lotid(i-1));
% it logical Index==true

% K(d,34) = num2cell(prio(i));

% else

% J=i+1;

% K(d,34) = num2cell(prio(i));

% end

% end

%

% % xIswrite("K.xls",K);

%

%

% % NEURAL NETWORK

% % input(:,1) = cell2mat(K(:,1)); %lotid

% input = cell2mat(K(:,3:30)); %input(:,2:29)
% output = cell2mat(K(:,2));

% xIswrite("input.xIs®,input);
% xIswrite(Toutput.xls”,output);

3.WIP
% INSERT T_1(CELL),T 2(Table) from (TIMESTAMPS)
% INSERT W_1(CELL),W _2(Table) from (WIP_WAFERTEST SEMIVAL)

Y%timestamps

t part = T_1(:,1);

t lot = T _1(:,2);

t =T 2(:,1);%the timestamp
t max_out = T 2(:,2);

% WIP

lot = W 1(:,1D);
min_in = W _2(:,1);
max_out = W_2(:,2);

i =1;

J=1

k = 1;

b = size(t,1);

c = size(min_in,1);
WIP = zeros(b,1);

85

list_lots = cell(1000,b);%i have to find how to make this a
dynamic table for 802

%WIP
for 1 = 1:b
for j = 1:c
if (datenum(table2array((min_in(J,:)))) <=
datenum(table2array(t(i,:)))) -..
&& (datenum(table2array((max_out(j,:)))) >=

datenum(table2array(t(i,:))))
WIP(1) = WIP(I) + 1;
list_lots(k, i) = (1lot(}));
k =k + 1;
elseif (datenum(table2array((min_in(J,:)))) >
datenum(table2array(t(i,:))))
break
end
end
k = 1;
end

4.Queue Time

% INSERT T_1(CELL),T 2(Table) from (TIMESTAMPS)

% INSERT C(cell),D(Table),E(Numeric) from (WAFERTEST_SEMIVAL)
% TIP: PART, LOTID,EQPTYPE ASC ORDER!!

wip = readtable("3lots wip.xlIsx");
list_lots = table2cell(readtable("3lots_list.xlIsx"));
T = readtable(" timestamps.xlsx®);

Y%timestamps

t _part = table2cell(T(1:3,1));
t _lot = table2cell(T(1:3,2));
t = T(1:3,1);%the timestamp

t _max_out = T(1:3,2);

% wafertest _semival
lotid = C(:,1);
egpid = C(:,2);
egptype = C(:,3);
queue = D(:,1);
trackin = D(:,2);
trackout = D(:,3);
pt = E(Z);

UEUE TIME

X

0

i mnno

E
1
1
1
1

3 Xhl -

equipment = unique(egpi

86

b = size(wip,2);
c = size(lotid,1);
d = size(equipment,1);
T = size(type,2);
time = zeros(b,d);
all_time = zeros(b,T);
% for 1 = 1:b
% for j = 1:d
% for k = 1:c
% it (ismember(lotid(k),(list _lots(:,i)))).-.
% && (datenum(table2array((queue(k,:)))) <=
datenum(table2array(t(i,:)))) --.
% && (datenum(table2array((trackin(k,:))))
>= datenum(table2array(t(i,:))))--.
% && (equipment(j) == eqpid(k))
% time(i,j) = time(i,j) + pt(k);
% end
% end
% end
% end
%
% for m = 1:F
% it type(m) ==
% all_time(i,T) = time(i,j)/(size(time,2));%avg waiting
time for the egptype
% end
% end
for 1 = 1:1

for j = 1:Ff

for k = 1:c

logicalIndexl =
ismember(lotid(k), (list_lots(:,1)));
logicallndex2 = ismember(type(j),eqptype(k));
if (logicallndexl == true)...
&& (datenum(table2array((queue(k,:)))) <=
datenum(table2array(t(i,:)))) -..
&&

(datenum(table2array((trackindk, :)))) >=
datenum(table2array(t(i,:))))---
&& (logicallndex2 == true)
all_time(i,j) = all_time(1,]) +
pPE(k);
end
end
end
end

5.Database Setting
datasource = " MS SQL Server”;

conn = database(datasource,™","");
selectquery = "select * from WAFERTEST_ SEMIVAL*®

data = select(conn,selectquery);

87

6.WIP_Fetch
T = readtable("timestamps.xlsx™);

Y%timestamps

t_part = table2cell(T(:,1));
t_lot = table2cell(T(:,2));
t = T(:,3);%the timestamp
t_max_out = T(:,4);

datasource = ° MS SQL Server-;
conn = database(datasource,"","");

b = size(t,1);
WIP = zeros(b,1);
mega_list = cell(1500,b);

for 1 = 1:b
sqlqueryl = ["SELECT COUNT(DISTINCT LOTID) FROM
WIP_WAFERTEST_SEMIVAL = ...
"WHERE Q_IN<= " """" char(table2array(t(i,:))) """"...
"AND T_OUT>= " """ char(table2array(t(i,:))) """];

sglquery2 = ["SELECT LOTID FROM WIP_WAFERTEST _SEMIVAL * ...
"WHERE Q IN<= ® """" char(tablearray(t(i,:z))) """"...
"AND T OUT>= * """ char(table2array(t(i,:))) """ "1;

WIP(i) = table2array(fetch(conn,sqlqueryl));
mega_list(1:WIP(i),i) = Ffetch(conn,sqlquery2);
end

list = cell2table(mega_list);

wip = array2table(WIP);

% Filename = "megalist.xlsx";

% writetable(wip,filename, "Sheet”,1);
% writetable(list,filename, "Sheet”,2);

%run in 51 seconds

7.Queue_Fetch
%load workspace for easier

t_lots = table2cell(readtable("megalist.xlIsx"));

wip = readtable("wip_all_xlIsx");
lis

readtable("timestamps.xlIsx”);
= readtable("wafertest_semival .xlIsx"); %put the
new_wafertest_semival

T
D

Y%timestamps

t_part = table2cell(T(:,1));

t_lot = table2cell(T(:,2));

t = table(datetime(table2array(T(:,3)), " InputFormat”, "yyyy-MV-
dd HH:mm:ss.SSS"));%the timestamp

t max_out = T(:,4);

% wafFertest semival

88

lotid = table2cell(D(:,1));
eqpid table2cell(D(:,2));
eqptype = table2cell(D(:,3));
queue = D(:,4);

trackin = D(:,5);

trackout = D(:,6);

pt = table2array(D(:,7));

X

b QUEUE TIME

1 =1;

J =1

k = 1;

m=1;

b = size(wip,1);

c = size(lotid,1);
T = size(type,l);

all_time = zeros(b,f);

%%

datasource = " MS SQL Server-;
conn = database(datasource,™","");

% for 1 = 1:b

% for j = 1:Ff

% for k = 1:c

% logicallndexl = ismember(lotid(k),(list _lots(:,1)));
% logicallndex2 = ismember(type(j).eqptype(k));

% ifT (logicallndexl == true)...

% && (datenum(table2array((queue(k,:)))) <=
datenum(table2array(t(i,:)))) ...

% && (datenum(table2array((trackindk,:))))
>= datenum(table2array(t(i,:)))).-..

% && (logicallndex2 == true)

% all_time(i,j) = all_time(i,]j)
+ pt(k);

% end

% end

% end

% end

TIME_QUEUE = cell(b,f);

aa = {"eqgptype”, list"};

% remove(conn, "matlab_eqptypes®,"{}'"):;

% remove(conn, "matlab_listlots","{}'");
sglqueryl = "DELETE FROM matlab_egptypes”;
exec(conn,sqglqueryl);

insert(conn, "matlab_egptypes” ,aa(l),type);

for 1 = 1:b
sglquery2 = "DELETE FROM matlab_listlots”;

89

exec(conn,sqglquery?2);
insert(conn, "matlab_listlots®,aa(2),list_lots(:,1));

sqlquery3 = ["SELECT

ISNULLCAVG(new_wafertest_semival. PT) 0 " ...

"FROM matlab_eqgptypes " ...

"LEFT JOIN new_wafertest _semival = ...

"ON matlab_eqgptypes.EQPTYPE =
new_wafertest_semival _.EQPTYPE * ...

*"AND new wafertest semival.LOTID IN(SELECT Ilist FROM
matlab_listlots) ° ...

*AND new_wafertest_semival .QUEUETIME <= - e
char(table2array(t(i,:))) """ ...

"AND new_wafertest semival .TRACKOUTTIME >= = ==°°
char(table2array(t(i,:))) """ ...

"GROUP BY matlab_eqptypes.EQPTYPE * ...

"ORDER BY matlab_eqgptypes.EQPTYPE ASC"];

% sglquery3 = ["SELECT WAFERTEST_SEMIVAL.PT® ...

% "FROM WAFERTEST_SEMIVAL® ...

% "INNER JOIN matlab_listlots ON WAFERTEST SEMIVAL.LOTID

= matlab_listlots.list™ ...

% "INNER JOIN matlab_eqptypes ON WAFERTEST_SEMIVAL .EQPTYPE

= matlab_eqptypes.egptype” ...

% "WHERE WAFERTEST_SEMIVAL.QUEUETIME <= = *==°%°¢

char(table2array(t(i,:))) """ ...

% "AND WAFERTEST_SEMIVAL.TRACKINTIME >= = *==°%°

char(tablearray(t(i,:))) """

% "GROUP BY WAFERTEST _ SEMIVAL EQPTYPE® ...

% "ORDER BY WAFERTEST_SEMIVAL.EQPTYPE ASC*

% 1;

% sqlquery4 = ["SELECT COUNT(DISTINCT EQPTYPE) FROM

WAFERTEST _SEMIVAL "...

% "WHERE LOTID IN(SELECT list FROM matlab_listlots) -

% "AND EQPTYPE IN(SELECT egptype FROM matlab_eqptypes)

% "AND QUEUETIME <= = """* char(table2array(t(i,:)))

% "AND TRACKOUTTIME >= " *""" char(table2array(t(i,:)))

B

% b = table2array(fetch(conn,sqlquery4));

% aa = table2array(fetch(conn,sqglquery3));
TIME_QUEUE(1,1:F)= fetch(conn,sqglquery3);

end

final_time_queue =
table2array(cell2table(TIME_QUEUE)) ./eqpid_number;

% q = cell2table(TIME_QUEUE);

% Filename = "queue.xlsx”;
% writetable(q,filename, "Sheet",1);

90

% "AND (EQPTYPE = "EACDCC"™ OR EQPTYPE = "EACFFZ"™ OR

EQPTYPE = "EAEECA™ OR EQPTYPE = "EAFDBF" OR EQPTYPE = "ECA-
80/88" " ...
% "OR EQPTYPE = "ECAAFC"™ OR EQPTYPE = "EDBFDFCDZ"™ OR

EQPTYPE = "EDDCA™ OR EQPTYPE = "EEAADFFCZ' OR EQPTYPE = "EZDEAF')

8.Utilization_Fetch
%load workspace for easier

wip = readtable("wip_all_xlIsx");
list_lots = table2cell(readtable("megalist.xlsx"));

T readtable("timestamps.xlIsx®);
D readtable("wafertest_semival .xIsx™);
%timestamps

t_part = table2cell(T(:,1));

t _lot = table2cell(T(:,2));

t = table(datetime(table2array(T(:,3)), "InputFormat”, "yyyy-MM-
dd HH:mm:ss.SSS"));%the timestamp

t max_out = T(:,4);

%t-24
t 24 = table(datetime(table2array(t), " InputFormat®, "yyyy-MM-dd
HH:mm:ss.SSS")- days(1));

% wafFertest _semival

lotid = table2cell(D(:,1));
egpid = table2cell(D(:,2));
egptype = table2cell(D(:,3));
queue = D(:,4);

trackin = D(:,5);

trackout = D(:,6);

pt = table2array(D(:,7));

c
=

S X
I mnn
P RPRP P =

size(wip,1);
size(lotid,1);
size(type,1);

=0 T
I n

all_time = zeros(b,T);
%%

datasource = " MS SQL Server”;
conn = database(datasource,™","");

util = cell(b,P);

91

= {"eqgptype”, "list"};

sglqueryl = "DELETE FROM matlab_egptypes”;
exec(conn,sqglqueryl);
insert(conn, "matlab_egptypes” ,aa(l),type);

for 1 = 1:b

sqlquery = ["SELECT SUM((cast(DATEDIFF(MINUTE, [dbo].-[Max2]
(new_wafertest_semival .TRACKINTIME, * e
char(table2array(t_24(i,:))) e "), [dbo] - [Min2]
(new_wafertest_semival .TRACKOUTTIME, *® e

char(table2array(t(i,:))) e "))as float)/1440)) /
(NUM_ID_10.num_eqpid) = ...

"FROM matlab_eqptypes " ...

"LEFT JOIN new_wafertest_semival ON
matlab_eqptypes.EQPTYPE = new_wafertest semival .EQPTYPE * ...

"LEFT JOIN NUM_ID_10 ON matlab_egptypes.EQPTYPE =
NUM_ID_10.EQPTYPE * ...

"WHERE " ...

"(new_wafertest_semival .TRACKINTIME >= " e
char(table2array(t_24(i,:))) e " AND
new_wafertest _semival . TRACKOUTTIME <= - e

char(table2array(t(i,z))) """ ") "...
"OR (new_wafertest _semival _.TRACKINTIME <= = *==*"*~

char(table2array(t_24(i,:))) et - AND
new_wafertest _semival . TRACKOUTTIME <= - e
char(table2array(t(i,:))) e - AND
new_wafertest_semival . TRACKOUTTIME >= - e

char(table2array(t_24(i,:))) """ ") ...
"OR (new_wafertest semival .TRACKINTIME >= * e

char(table2array(t_24(i,:))) e " AND
new_wafertest semival .TRACKOUTTIME >= - e
char(table2array(t(i,:))) e - AND
new_wafertest_semival .TRACKINTIME <= " e

char(table2array(t(i,z))) "°"°° *) "._.

"OR (new_wafertest_semival .TRACKINTIME <= " e
char(table2array(t_24(i,:))) e " AND
new_wafertest_semival .TRACKOUTTIME >= - ene
char(table2array(t(i,:))) """ ") *

"GROUP BY NUM_ID 10. EQPTYPE NUM ID_10.num_eqgpid " ...

"ORDER BY NUM_ID _10.EQPTYPE ASC']'

util(i,1:f) = transpose(fetch(conn,sqglquery));
end

maxi = max(round(max(cell2mat(util))),1);
final_util = cellZmat(util) ./ maxi;

% u = cell2table(final_util);

% Filename = “final _utilization.xlsx";
% writetable(u,filename, "Sheet",1);

92

%1,021527778 25,35833333 0,004166667 17,56458333 0,999629968
3,208134921 3,502083333 2,077083333 1,688194444 1,106597222

9.Final_Countdown

wip = readtable("wip_all_xlIsx");

wait = readtable("queuel.xlsx");

util = readtable("final _utilizationl.xlIsx");
T = readtable("timestamps.xlsx™);

A readtable("cycletime.xlsx");

B readtable("processl.xlsx");

%timestamps
Last(:,1) = A(:,1); %LOTID
Last(:,2) = A(:,2); %PART

Last(:,3) = A(:,3); %PRIORITY
Last(:,4:13) = B; %processing times
Last(:,14:23) wait; %waiting
Last(:,24:33) util; %utilization
Last(:,34) = wip; %wip

Last(:,35) A(:,4); %CT

filename = “final final 1._xlIsx";
writetable(Last,filename, "Sheet”,1);

%%

% NEURAL NETWORK

% input = Last(:,1:34);

% output = Last(:,35);

%

% filenamel = "last_input.xlsx”;

% writetable(input,filenamel, "Sheet”,1);
%

% Filename2 = "last_output.xlsx”;

% writetable(output,filename2, "Sheet”,1);

10.EQPS_Merge
%EQPS Merge

%load rev_dataset
%load egps specific

data = readtable("REV_DATASET eqgp_sorted.xlIsx");
machine = readtable("egps_dataset.xlsx");

% gq_time =
table(datetime(table2array(data(:,8)), " InputFormat-®, "yyyy-MM-
dd HH:mm:ss.SSS"));

%data

egpid = table2cell(data(:,1));

g_time =
table(datetime(table2array(data(:,2)), " InputFormat®, "yyyy-MVM-
dd HH:mm:ss.SSS"));

in_time =
table(datetime(table2array(data(:,3)), " InputFormat”, "yyyy-MM-
dd HH:mm:ss.SSS"));

93

out_time =
table(datetime(table2array(data(:,4)), " InputFormat”, "yyyy-MM-
dd HH:mm:ss.SSS"));

%eqps

id = table2cell(machine(:,1));

stamp =
table(datetime(table2array(machine(:,2)), " InputFormat”, "yyyy-
MM-dd HH:mm:ss.SSS"));

last _state = table2cell(machine(:,3));

current_state = table2cell(machine(:,4));

%initialize

a = size(data,l);

b = size(unique(egpid),1);
c = size(machine,1);

d = size(unique(id),l);

states = cell(a,3);
g_state = states(:,1);
in_state = states(:,2);
out_state = states(:,3);

i 0;

j = o:

%testing the datetime comparison

aaa=0;

ifT table2array(stamp(l1,1))<table2array(q_time(1,1))
aaa = 1;

end

for i=1l:a
for j=l:c
logicallndex = ismember(eqpid(i),id(j));
it logicallndex == true
iT table2array(stamp(J,1))<table2array(q_time(i,1))
g_state(i) = current_state(J);
in_state(i) = current_state(J);
out_state(i) = current_state(j);
elseif
table2array(stamp(j,1l))>table2array(qg_time(i,1l)) &&
table2array(stamp(j,l1l))<table2array(in_time(i,1l))
in_state(i) = current_state(j);
out_state(i) = current_state(j);
elseif
table2array(stamp(j,l1l))>table2array(in_time(i,1)) &&
table2array(stamp(j,l))<table2array(out_time(i,1l))
out_state(i) = current_state(j);
elseif
table2array(stamp(j,1l))>table2array(out_time(i,1))
ifT states(i,:)==zeros(1,1:3)
g_state(i) = last_state();
in_state(i) = last_state(J);
out_state(i) = last_state(j);
end
else

94

break
end
else
continue
end
end
end

states(:,1) = g_state;
states(:,2) = in_state;
states(:,3) = out_state;

Tf = cell2table(states);
filename = "3states.xlsx”;
writetable(ff,filename, "Sheet”,1);I1

11.Test_NN
data = readtable("final_final .xlIsx");

c
|3
RPRERPO
Tl -

m = 30;%number of samples for simulation

(@] xhl -

size(data,l);
logicallndexl = O;
family(1,1:33,1) = table2array(data(l1,4:36));

for i1=2:c
logicallndexl = ismember(data(i,3),data(i-1,3));
if logicallndexl == true && k<=num_sim
family valid(k,1:33,j) = table2array(data(i-
1,4:36));
k =k + 1;
elseif logicallndexl == true && k>num_sim
family_train(k-30,1:33,j) = table2array(data(i-
1,4:36));
k = k + 1;
else
k = 1;
J1=3+1;
continue;
end
end

family 1 valid = family_valid(:z,:,1);%P1NGC
family 1 train =
family_train(any(family_train(:,:,1),2),:,1);%P1IN6C

family 2 valid = family valid(:,:,2);%P2UGU
family 2 train =
family_train(any(family_train(:,:,2),2),:,2);%P2UGU

family 3 valid = family valid(:, :,3);%P4VVv4

family_ 3 train =
family_train(any(family_train(:,:,3),2),:,3);%P4vVv4

95

family_4 valid = family_valid(:,:,4);%P6380
family_4 train
family_train(any(family_train(:,:,4),2),:,4);%P6380

family 5 valid = family valid(:,:,5);%PF2PB
family 5 train
family_train(any(family_train(:,:,5),2),:,5);%PF2PB

family 6 valid = family valid(:,:,6);%PFR8T
family 6 _train
family_train(any(family_train(:,:,6),2),:,6);%PFR8T

family 7 _valid = family valid(:,:,7);%PHVB5
family 7 _train
family_train(any(family_train(:,:,7),2),:,7);%PHVB5

family 8 valid = family valid(:,:,8);%PLVR1
family 8 train
family_train(any(family_train(:,:,8),2),:,8);%PLVR1

family 9 valid = family valid(:,:,9);%PMVBL
family 9 train
family_train(any(family_train(:,:,9),2),:,9);%PMVBL

family_10_valid = family_valid(:, :,10);%PNA30
family_10_train
family_train(any(family_train(:,:,10),2),:,10);%PNA30

family 11 valid = family_valid(:,:,11) ;%PNMXH
family_11 train
family_train(any(family_train(:,:,11),2),:,11);%PNMXH

family 12 valid = family_valid(:,:,12);%PV7PP
family_12 train
family_train(any(family_train(:,:,12),2),:,12);%PV7PP

family_13 valid = family_valid(:,:,13);%PW68U
family_13 train
family_train(any(family_train(:,:,13),2),:,13);%PW68U

family 14 valid = family_valid(:,:,14);%PX933
family_14 train
family_train(any(family_train(:,:,14),2),:,14);%PX933

transpose(family_1 train(:,1:32));
transpose(family_1 train(:,33));
transpose(family_1 valid(:,1:32));

RRe
nn

transpose(family 2 train(:,1:32));
transpose(family 2 train(:,33));
transpose(family 2 valid(:,1:32));

NNN
I

transpose(family_3_train(:,1:32));
transpose(family_3_train(:,33));
transpose(family_3 valid(:,1:32));

96

wWww
(I

=1 X
A B D
I

—Hr X
[ey
(I

=4 X
(o) o) le)]
I

—Hr X
SNENEN
nonon

=4 X
00 0O O
I

© ©o o
I n

K_10
L_10
T_10

K_11
L 11
T 11

K_12
L 12
T 12

K_13
L 13
T 13

K_14
L_14
T 14
K

horzcat(K_1,K_2,K_3,K_4,K_5,K_6,K_7,K_8,K_9,K_10,K_11,K_12,K_

3,K_14
L

3,L 14
:

horzcat(T_1,T 2,7 3,T 4,T.5,T7.6,T_7,7.8,T.9,T 10,T 11,T 12,T 1

3,T 14
nntool

transpose(family_4 train(:
transpose(family_4_ train(:
transpose(family_4 valid(:

transpose(family_5 train(:
transpose(family_5 train(:
transpose(family_5 valid(:

transpose(family 6 train(:
transpose(family 6 _train(:
transpose(family 6 valid(:

transpose(family_7_ train(:
transpose(family_7_ train(:
transpose(family_7_valid(:

transpose(family_8 train(:
transpose(family_8 train(:
transpose(family_8 valid(:

transpose(family_9_ train(:
transpose(family_9 train(:

transpose(family_9 valid(

transpose(family 10 train(:,1:32));

,1:232));

»33));
,1:32));

,1:32));

»33));
,1:32));

,1:32));

»33));
,1:32));

,1:32));

»33));
,1:32));

,1:32));

»33));
,1:32));

,1:232));

,33));
:,1:32));

transpose(family_10 train(:,33));

transpose(family_10_valid(:

transpose(family_11 train(:

transpose(family 11 train(:,33));

transpose(family_ 11 valid(:

transpose(family_12 train(:

transpose(family_12 train(:,33));

transpose(family_12 valid(:

transpose(family_13 train(:

transpose(family_13 train(:,33));

transpose(family_13 valid(:

transpose(family_14 train(:

transpose(family_14 train(:,33));

transpose(family_14 valid(:

)

)

);

97

,1:32));
,1:32));
,1:32));
,1:32));
,1:32));
,1:32));
.1:32));
,1:32));

,1:32));

horzcat(L_1,L_2,L_3,L_4,L 5,L_6,L_7,L_8,L_9,L_10,L_11,L_12,L_ 1

APPENDIX 3: Neural Network Training for All Product Families

For the rest 13 families, as well as the total data, the results are the following:

.

98

99

100

101

10 I

11 I

102

ALL Data

104

Q_TIME#9
Q_TIME#10
UTIL#1
UTIL#2
UTIL#3
UTIL#4
UTIL#5
UTIL#6
UTIL#7
UTIL#8
UTIL#9
UTIL#10
WIP

CcT
Simulation
AVG_Error 0,575974 | 15,00909 | 3,933143 | 50,02806 | 6,132744 | 22,14989

Typical MATLAB Neural Network Code

function [Y,Xf,Af] = myNeuralNetworkFunction (X,~,~)

CTION neural network simulation function.

ALNETWO

Ril
o]

===== NEURAL N

Input 1

x1_stepl.xoffset =
[2;07;0;07;18074177;1;22;0;0;38;0;31;0;0;9.86861313868613;8.42857142857143;12.6;0;0;9.833
33333333333;0;0.043482905982906;0;0.366820987654321;0.556143552311435;0.09427910052910
06;0.09496€52777777778;0.021875;0.000231481481481482;0.262307098765432;333];
xl_stepl.gain =
[2;2;0.0003659822485207101;2;0.00246609124537608;0.00026578073089701;0.0006428801028608
16;0.008097165991590283;0.25;0.0350877192982456;0.000735294117647059;0.0002777777777777
78;0.000465549348230912;0.4;0.000277777777777778;0.205243445692884;0.00255795478554828
;0.0027122321670735;0.000832986255726781;0.000833333333333333;0.0120240480961924;1.990
324809595163;2.13716927819163;480;3.37324310255075,;4.718145985769975;2.18726266681133;2.
56890553920257;1.96923076923075;2.40300375469337;2.36528721996624;0.0032626427406199];
xl_stepl.ymin = -1;

bl = [-1.3592143147378476e-15;-0.16571209615763197;1.0187228313644613e-15;-
1.0225882533627232e-15;-1.3673920619115801e-15;-5.4446833705065246e-
16;0.18480325559385447;-1.3020142574846626e-
15;0.097054005745429425;0.17019717981536261;1.7717649369148558e~-
15;0.066440219929966848;-0.09532053644310079;-7.8855166561016021e-16;-
0.065959835789589402;5.2403655872971608e-16; -
0.021583598268865682;0.082270879249972562;1.1664944158426322e~
15;0.050999296188244087;0.048173206428687818;0.24131908242620148;1.2382723458317663e-
15;7.2525336030752341e-16;-1.510151062313778e-15;-5.7175290686636004e-16; -
0.055248061035780831;-1.577053395021403e-15;0.065245426728686454;-8.5779627518763435e~
16;0.1774688714495363;1.537503932652315%e-15];

Iwl 1 = [4.6667777870765683e-15 -2.0053704724794636e-15 -2.005221345963751e-15
1.3592143147271611e-15 7.5127121449285888e-17 -1.2437105486176589e-15 -
2.1435097950363594e-15 -1.4761725070445856e-15 -2.4364633161093104e-15
6.3831452692921919%e-16 -9.9106208171189087e-16 9.2087195243441406e-16
3.7815183413164324e-15 1.1444651817329498e-15 1.7219361127945814e-15 -
1.905621530213824e-15 -5.6076595178160183e-15 -3.7855205026437702e-15 -
3.4223553209222807e-16 -3.2789659105247535e-15 3.2954996649278457e-15 -

111

1.7904217741698344e-15 2.0709452095197915e-15 -2.6475681227332205e-15
2.0870873953555249e-15 3.6686832609427319e-15 -1.7808105924277697e-15 -
2.9612230218195576e-15 -1.0486615346669919e-15 2.8382245751743495e-15 -
3.0123501338042925e-15 -1.0811413339012171e-15;0.25093875906290214 0.099711720725119038
-0.22644446351174433 0.16571209615718774 0.38347657879932084 0.17060802501167102
.10262786701296733 -0.26148106745062888 -0.10825018029100604 0.48593023702972155
.30774334161613537 0.1524665188654532 -0.037394278489230832 -0.11677291354173457
.30809195919391991 0.3554851385076222 -0.38668851948963595 0.00227362861944048
.1682859616019767 -0.33457910691947246 0.56980395418596708 0.20558517242353314 -
.61971668224960619 -0.12543289266299495 7.7449726864261973e-05 0.23209388325725838 -
.6038806064788329 -0.32058583798901297 0.038928376564704749 -0.31304147537782834
.20246818322875118 0.061160992468680737;-3.4980430366811649e-15 1.5031682982367328e-15

0

0

0

0

0

0

0

1.5030377540494489e-15 -1.0187228313671847e-15 -5.6284698204516604e-17
9.3226582086467953e-16 1.6067092331859865e-15 1.1064107663221644e-15
1.8262574429555899e-15 -4.783770719947575e-16 7.428930912701033e-16 -
6.9018510640797272e-16 -2.8344736887340808e-15 -8.5774055883661319e-16 -
1.2906256654177644e-15 1.4283940127483226e-15 4.2032074260419097e-15
2.8374317603077462e-15 2.5658828546708351e-16 2.457761900540223e-15 -
2.4700977081128428e-15 1.3420529620292524e-15 -1.5521874920201842e-15
1.9845163387104274e-15 -1.5643459487589303e-15 -2.7499309007921007e-15
1.3348121475914291e-15 2.2195938979285747e-15 7.8608060574553344e-16 -
2.1272822007199126e-15 2.2579400685929504e-15 8.1050741583140427e-
16;3.5102966158959457e-15 -1.5084114978568603e-15 -1.5083604921123946e-15
1.0225882533598284e-15 5.6534223443297901e-17 -9.35473713656782e-16 -
1.6123287308181453e-15 -1.1105886205763939e-15 -1.8327605663405919e-15
4.8029866416837236e-16 -7.4543002203640041e-16 6.9279469436690156e-16
2.8443764302392806e-15 8.6110317956264077e-16 1.2953635056432303e-15 -
1.4333305199057099e-15 -4.2182709398000494e-15 -2.8475984048893574e-15 -
2.5730233925841536e-16 -2.4665240878490459e-15 2.4790126629708789%e-15 -
1.3467393456172781e-15 1.5580323713763422e-15 -1.9915227656716219e-15
1.5700390164703116e-15 2.7594553971693471e-15 -1.3395848613408776e-15 -
2.2274869709740629e-15 -7.8871136431439152e-16 2.135235994970758e-15 -
2.2658819256038167e-15 -8.1281370008463621e-16;4.6952340200384061e-15 -
2.0176087751368164e-15 -2.0174302755449298e-15 1.3673920619201513e-15 7.5563555642936e-
17 -1.2513171084667894e-15 -2.1565856164410396e-15 -1.4850649600580436e-15 -
2.451282975856455e-15 6.4211464464513738e-16 -9.9713158019822261e-16
9.264154369364648e-16 3.8045843972169595e-15 1.1513115260043689e-15
1.7323549687416088e-15 -1.9172654777532008e-15 -5.6417309001349908e-15 -
3.8085223809619545e-15 -3.4439198201843986e-16 -3.2989055193278706e-15
3.3154967139528102e-15 -1.8013458165574007e-15 2.0834240579068494e-15 -
2.6636942632102932e-15 2.0997363702993052e-15 3.6910925690549889e-15 -
1.7916371292292235e-15 -2.9792380347557776e-15 -1.0551029293730891e-15
2.8553467139163129e-15 -3.030708409154236e-15 -1.0879264583719338e-
15;1.8696086814017943e-15 -8.0340885273595262e-16 -8.0333954740361494e-16
5.4446833704664455e-16 3.0074471604784791e-17 -4.9827750121667234e-16 -
8.5874877404296098e-16 -5.913468578596128e-16 -9.7608514819414803e-16
2.5566904899786261e-16 -3.9706346745110867e-16 3.6887459661448749e-16
1.5149388819024254e-15 4.584280880075027e-16 6.8979316491338942e-16 -
7.6343430752559417e-16 -2.2464987310249614e-15 -1.5165310344720734e-15 -
1.3714797086095149e-16 -1.313611683328314e-15 1.3201880309125131e-15 -
7.1729973620872827e-16 8.2959362338785908e-16 -1.0606761124136714e-15
8.3609780569768014e-16 1.4697605972961713e-15 -7.1342406395801682e-16 -
1.1863125334241496e-15 -4.2014541404172276e-16 1.1369624308604739e-15 -
1.2068085435394665e-15 -4.3318956682733483e-16;-0.39236989060373073 -0.2026778149805458

-0.19410484420972415 -0.18480325559436273 -0.2466486834652464 0.34577318193176826 -

0.056356825422113677 -0.52748695722881267 0.3480393570227428 0.095807252299884627 -
0.27737814207562306 -0.19654463351073453 0.85171960269295921 0.28746443456893839 -
0.25527216935872987 0.028493867116261999 1.1584230761841057 0.70283893437284239
0.1640626552367889 -0.30594183055102098 -0.045943010668224891 -0.35257670057717383 -
0.11144270756762537 -0.12529283242875205 -0.062780883544893459 0.27413279797876355 -
0.0077590854301919279 -0.33524641632043845 0.035557001758275295 0.33715962714897618
0.71000347944887254 -0.75340637790107001;4.4717355039857943e-15 -1.9215948989817364e-15
-1.9213501803647451e-15 1.3020142574920389e-15 7.1910365836701057e-17 -
1.1918131114529301e-15 -2.0539436344077679e-15 -1.4140903971125581e-15 -
2.3345003466894548e-15 6.1130925398779976e-16 -9.4973490362461042e-16
8.8212807132994992e-16 3.6234989737317404e-15 1.0961622941088578e-15
1.6496801809226458e-15 -1.8260622155360798e-15 -5.3728582923409272e-15 -
3.6270201675253791e-15 -3.281796152255706e-16 -3.1417340929615904e-15
3.1574190970890947e-15 -1.7156206762023732e-15 1.9838609509518452e-15 -
2.5368532885366642e-15 1.9995844539293825e-15 3.5154926010196546e-15 -
1.7062657326088226e-15 -2.8373126417428204e-15 -1.0050003455912186e-15
2.7189472656350699e-15 -2.8864144277839125e-15 -1.0366379043184611e-

15;0.7919067644017882 0.11398958514658217 0.0030409627196034518 -0.097054005745246585
0.090530177523261632 0.2156664201014957 -0.0028186934637353732 0.16308928837649939 -
0.31225690595654132 0.050979209219458047 0.11349571927290875 0.085478338761951295
0.70702143622818991 -0.34544119658301436 0.22443974270442735 0.14452508019391508 -
0.32747532411474495 -0.15869093113012339 0.028937195013126991 -0.24961266173010399 -

112

OCOO0OO0OO0OO0COCO0OO0OO0OO0OOCOOOOWWNNANPMONRPOODOOOOOOOOOOO

.067810718160366629 -0.56537596428129722 0.1756800172894073 -0.0010536050388541909
-53430059601517044 -1.473713891890321 -0.28617162495291759 0.12807077036746214
-13195642151905942 -0.23043258647033002 0.059556782038817049 -0.13890838006390482;-
.51997100311926847 0.046791585486201617 0.20933464228472157 -0.17019717981546392
.50500726262617224 0.018207644517591992 -0.04772332198316253 -0.70927034426457258 -
.54456247686713932 0.095965341029023779 0.14402543228664422 -0.10180447050804636
-18020765579473452 -0.084274701407462085 0.02596349045558019 0.46051717121920072 -
.0068173978459033511 -0.56196486792523992 0.018647918615431958 -0.098970824188675699
.44588819312654859 0.38674769983336121 0.45024868045834643 -0.10280244648493225
.51789409499253347 1.5305482427212622 0.3339396291433942 0.69022470866793451 -
-11853621357383359 -0.51978323177629315 -0.020029475375626889 0.030217099596306682 ;-
.0831990327362367e-15 2.6140352251315463e-15 2.6138523078242254e-15 -
.7717649369149205e-15 -9.7917622278017665e-17 1.6211988347046613e-15
.7941034291664536e-15 1.9242480135537774e-15 3.175974300516441e-15 -
.320584607761729e-16 1.2918696384526506e-15 -1.2003695204805546e-15 -
.9292287032524207e-15 -1.4918455811323814e-15 -2.2445675603144034e-15
.4839857427379799e-15 7.3096911736903288e-15 4.9345025973308997e-15
-4610379972120906e-16 4.2741994836414561e-15 -4.2957298833181826e-15
-3338515102997793e-15 -2.6995343028050516e-15 3.451156358513841e-15 -
.7205646291191699e-15 -4.7821531285754853e-15 2.321329007237015e-15
.8600048726208684e-15 1.3669427652286722e-15 -3.6996968224707521e-15
-9266416606838138e-15 1.4092059043488865e-15;0.52740157094023499 -0.046032063787954047
-16892442336638314 -0.066440219929717673 0.43429641284795578 -0.24835204624703386
.036810382793745447 -0.63635707643329986 0.26098116941823102 0.17708738039835345 -
.10509755571866319 0.016124511211014887 -0.20464451493230498 0.50951818868172916
.11451789324436878 -0.12690315366748844 -0.28765265089864267 -0.081295733937898254
.2179227986853795 0.96762092597973159 -0.80726724484517098 0.75538698482832078
.3028458542525832 -0.43749332794136225 0.15791949333209332 -0.69283257807434906
-057819672230940151 -0.37885913599318577 0.1477249812458151 -0.65611770740588238 -
.27831715318857758 -0.024261323146501184;0.12253461515801699 0.11873088496260066
.17191274967615158 0.095320536442944151 0.32046089219167578 -0.33667844331733598
.0037880975916943279 0.38619068580471105 -0.21233369104204872 0.32470953367320737
-046231226969971922 -0.028305138125816399 -0.1353744373548007 -0.60724495096368902
.23565344773209723 -0.044787420245362836 -0.42466038883150276 -0.1160307071155363
.13918125083168154 0.49211455186606862 0.24286344499776102 -0.53122455909822008
.27358812883655981 -0.49906905239060984 0.0073223360082992905 0.13829428919923312
.67065095989235435 0.060203757292319762 -0.050518830053121355 -1.0812134853756317 -
.42744434386250901 -0.25746500503548719;2.7083988537360849e-15 -1.1638613479020553e-15

-1.1637049532742315e-15 7.8855166560910441e-16 4.3541654240882244e-17 -

OO0OO0OO0O0O0OO0O0O0OO0ORROORLNRLPNOOAPOOOOOOORRPRERPRERPENOUREN

.2185790675358518e-16 -1.244019737652113e-15 -8.5644082242233765e-16 -
-4139276997930211e-15 3.7021787826888144e-16 -5.752394957535613e-16
-342507639266591e-16 2.1946432539097531e-15 6.6386700958043617e-16
-9913164207798843e-16 -1.1059975619899167e-15 -3.2541461890679412e-15 -
-1967569222007724e-15 -1.9879527877789226e-16 -1.9028435262622853e-15
-9123195913582879e-15 -1.0391092582273418e-15 1.2015172513758365e-15 -
.5364967254578438e-15 1.2110656782872711e-15 2.1292408069231322e-15 -
.0334282067165249e-15 -1.7184651996799625e-15 -6.0871784696261232e-16
.6467243077215899e-15 -1.7482145836466182e-15 -6.2791569120665302e-

6;0.47993000787216955 0.099541795920587525 -0.23582751682927108 0.065959835789294763

.15435230801023322 0.33402315468479638 -0.10700469142826778 -0.21408465612382113
.19223789221257251 -0.79098594469083894 -0.30393797066836431 7.8559784628226721e-06
.69288428802505542 0.72297647711800084 -0.0024722847595141919 0.43392333098540226 -
.22480052757243363 -0.17143133317608977 0.038371166988442444 -0.53047200443968934
-32257336845427786 0.10679907131769494 -0.31032203664033869 -0.30596206448458124 -
-31125268602561107 0.36039816440726363 -0.64116790355581299 -0.36480866725602878
-023219322624267579 0.4343199703914507 0.78866111346176315 -0.74574472586412777 ;-
.798135836310853e-15 7.7266265337306109e-16 7.7269627627234941e-16 -
.2403655872990215e-16 -2.8996901594673143e-17 4.7915138832458295e-16
.2590395904709404e-16 5.691218022132204e-16 9.389029652564778e-16 -
.4621341642844836e-16 3.8179591272253072e-16 -3.5502185768192982e-16 -
-4569973957057789e-15 -4.413625066780646e-16 -6.6370411817962957e-16
.3416630496009392e-16 2.1610469322869591e-15 1.458841535021087e-15
.3166530138347791e-16 1.2635840155994901e-15 -1.2700581580873414e-15
.8985467378217794e-16 -7.9839904467016472e-16 1.0201923080064277e-15 -
.044058306771479e-16 -1.4134379774063501e-15 6.8626878653637379e-16
-1411088331385095e-15 4.039232350318881e-16 -1.094139852859583e-15
.1607122146239952e-15 4.1595849574009819e-16;0.43792708913253164 0.011915888798079789
.27316121797514492 0.02158359826957763 -0.46268066497290483 -0.018664966905354803
-13479629489235054 -0.94780649628936331 0.47668689810021819 -0.49692458686440233 -
.022341466570222096 0.0038958693298829878 -0.63660886131477656 0.6419038790933691
.10146509448987992 0.06689745938346868 -0.0308809962762066 -0.5289247700926647
.12348785779603029 -0.79171971588535484 0.095333933420051753 0.047877895029340811 -
.12752573718539115 0.7643999800842578 -0.34850835190466067 -0.5290449526914196
-5151090756944251 -0.37229752526512344 0.49320199498275868 -0.17249888510245559
.67701435231287854 -0.3239470395762975;-0.18331892377473782 0.16104742392247148 -
-075282619095164538 -0.082270879249876597 -0.43607730519423027 -0.013105145461292782
-069563662463332662 -0.16247749341220136 0.39219146819332351 -0.14269581134433262

113

NFEFNMNNWRPNNRPRPRPOOOOOO

.2523661727082307 -0.19500629405170372 0.752924129839041 -0.022087045777031036
.2763401926329016 0.050279589205128539 -0.65812700664378787 0.037672619517786582
-071072449521750125 -0.31177978152083463 0.32407046766001413 0.20309998981387617 -
.77581929427940544 -0.37394453322432725 -0.88812519792401512 -0.34561625019228442 -
.57644916638659816 0.39624279000487439 0.088055420694656245 -0.53141160049890057
-14968361512905237 0.18481530606475408;-4.0051720698345474e-15 1.7210743154048142e-15
.7209404702235279e-15 -1.166494415843441e-15 -6.4469983589312663e-17
.0673969254713437e-15 1.8396287900907542e-15 1.2668736732647507e-15
.0910407146842608e-15 -5.4779973896364187e-16 8.5056727298296602e-16 -
-9030416530030947e-16 -3.2454165522633287e-15 -9.8218546202314198e-16 -
-477800068805907e-15 1.6354684585448713e-15 4.8126407103082229e-15
.2488339424491308e-15 2.9373365422851689e-16 2.8140984271376505e-15 -
.8282769865057726e-15 1.5365972252632658e-15 -1.7773165026715146e-15
.2722219111058853e-15 -1.7911864225033669e-15 -3.1485854298653562e-15
.5283415179701335e-15 2.5414049488895419e-15 9.0000528347968741e-16 -
.435810867553175e-15 2.5852908020298071e-15 9.2791049745768613e-16;0.45741922587430311

-0.058645776333149102 -0.35557144881541441 -0.050999296188287087 0.23929573894271314

ADNOWOWWNRPRWNAMANNRPRPRPRORPRPNOMRPRORPOOWRNURPORODPOOOOO0OO0OO0OO0OO0OO0OO0O00000000000O0

.46675707433013414 0.044578578868894138 -0.30679173859671172 0.067727419577432391
.18894247077402224 -0.061253903454757175 0.067617720165652179 -0.29449918932678404 -
.60253299831239604 0.20963685844838209 0.086123869031502209 -0.021582368733052717
.47276387291586319 -0.016926513234679766 0.33311107842875548 0.097934115764931579 -
.45285716868362241 0.13807353522561788 -0.20046032686040702 0.065104372546881673
-16689880675899246 -0.41993112852438486 -0.98408287590191057 0.015281900506291921 -
.051887068453032849 0.25719433922696294 0.63727497105513109;0.77963666724380809
.18077969938142893 0.60861921263835217 -0.048173206428523595 -1.1478934086522821

11359926281612986 0.2137823953211086 0.68165365950137358 0.43774067729761096 -

.13075479109468557 -0.01090166962099735 0.050254621623791254 0.041088622720110983 -
.086157009600588169 0.11439425604619181 -0.86732863951467876 0.46721600671721203 -
.44828396570404355 0.26147891049393251 -0.10661929549099181 -0.15217572897160936
-56184618808179365 -0.11041794023759173 -0.29736433528106665 0.16113295110367173
-5032236321216873 0.84271821126355562 -0.32148240955672541 0.30745441275158736
.45009817551983378 -0.49871239055799649 0.2595178504316395;-0.78750455834060862 -
.056761452345777674 0.65299570724074585 -0.24131908242616734 1.0621511121807834
.44577671932170482 0.13591224759687565 0.82548057862674884 -0.58978564310265913 -
.51239421791421447 -0.20485141395996889 -0.23293753357930067 -0.68009627783073823
.1556677494867541 -0.083687234661736262 0.36814979790024055 -0.15176029411535716 -
.20417301113590058 0.0088790380023027471 0.16836237625440686 0.89943034594151627 -
.63576000421843182 -0.68145983397824905 -0.51153431780722969 0.42992170992092782 -
.29741912099741252 -0.29580118876421591 -0.082445155385751145 -0.32006607022433481

63300744784593455 -0.68354826137962155 0.20385064097616387;-4.2500687267170483e-15

.8262898724754952e-15 1.8262789143644956e-15 -1.2382723458336174e-15 -
.8475483738435353e-17 1.132587296870516e-15 1.9521156142308522e-15
.3448301942716662e-15 2.2190687396530249e-15 -5.8166767086414503e-16
.0248769017814039e-16 -8.3890983815280605e-16 -3.4437854704120153e-15 -
-0427946469918579e-15 -1.5684819784995233e-15 1.7353492087733527e-15
-1074586174052951e-15 3.4478557380265745e-15 3.1141543162316234e-16
-9864299496100316e-15 -3.0016064305466109e-15 1.6305552480059808e-15 -
.8866313015547161e-15 2.411262720920547e-15 -1.9010484979365579e-15 -
.3409208151033555e-15 1.6219557805521531e-15 2.6969894795832946e-15
.5485301761180878e-16 -2.5855335476809728e-15 2.7434213955732357e-15
.8376416171357675e-16;-2.4892030390442427e-15 1.0696108308764926e-15
-0695969218371685e-15 -7.2525336030735873e-16 -4.0129287030445969e-17
.6332078053822979e-16 1.1433037993126976e-15 7.8762368024509602e-16
-2996662440408942e-15 -3.4069072341788092e-16 5.2855348190335594e-16 -
-9135797030540319e-16 -2.0170088764513079e-15 -6.1075884432654728e-16 -
-1865751321955817e-16 1.0163835143461883e-15 2.9913410484423547e-15
-0193367458912377e-15 1.8237625977643398e-16 1.7490804522568513e-15 -
.7580162104537662e-15 9.5496375521135867e-16 -1.1049690631375612e-15
.4122161279360174e-15 -1.113407666290803e-15 -1.9567442367865005e-15
-4993610151534335e-16 1.5795773303419495e-15 5.5922940857786377e-16 -
-5143107949034235e-15 1.6067748295882609e-15 5.7622906399668999%¢e-
6;5.1847605106357992e-15 -2.2279477483327991e-15 -2.2278012954356723e-15
-51015106231391e-15 8.3479223813179433e-17 -1.3817397253319017e-15 -
.3814229457112952e-15 -1.6400907892489636e-15 -2.7069210039673306e-15
-0922340225432839%e-16 -1.1010473007790728e-15 1.0231305713945195e-15
.2012384116808369e-15 1.2715806506053396e-15 1.9131137056939619e-15 -
.1171180770939448e-15 -6.2301558567064775e-15 -4.2057436737839004e-15 -
.8017632949919862e-16 -3.6429459152616665e-15 3.6613436609887801e-15 -
-9891418505091847e-15 2.3009059101375384e-15 -2.9414437083787079e-15
.3187921232752325e-15 4.075858392759386e-15 -1.9784928329381036e-15 -
.289928763454278e-15 -1.1650263017192377e-15 3.153371222466852e-15 -
-3467101781943387e-15 -1.2010149189294967e-15;1.9624584634200791e-15 -
.4327827304704859e-16 -8.4326431270357229e-16 5.717529068663202e-16
-1624156327670918e-17 -5.2296601446794578e-16 -9.0137644797699886e-16 -
.209396277817082e-16 -1.0246384385376675e-15 2.6857140399619352e-16 -
.1671859840201926e-16 3.8735887397190317e-16 1.5901752000853033e-15
.8148441904727373e-16 7.2423464995154736e-16 -8.013049981020697e-16 -

114

WWNNWNDRANNPRPPRPOOORPROOOODONRFEFNWNOORMRPROOOOOOOOWWNERERMNRPREPNRPNOOOOOOOORMDIDMROREN

5

.3583215925939799e-15 -1.5920131800592786e-15 -1.4380341341431986e-16 -
.3789532976861556e-15 1.3859721536891916e-15 -7.5289327877407544e-16
-7111462807440199e-16 -1.1133801189523934e-15 8.7778452380910453e-16
.5426768393436005e-15 -7.4891970853769712e-16 -1.2453157497137788e-15 -
.4090513818938948e-16 1.193826310159441e-15 -1.2667635669860883e-15 -
-5431384253165164e-16;-0.069361857474368946 0.23188993241729564 0.17381093651003635
.055248061035735048 -0.34516914771627011 0.13401522077389688 0.22339002020290866
.030872552830216636 -0.048373784710533455 0.51990076769215776 0.30489500868696362
.016565756148530515 -0.42276780824069543 -0.030144379803423705 -0.11052742589190565 -
.11585559234223439 -0.16412343882092445 0.44316222490425689 0.06306432324354827 -
-43944789940124068 -0.24442851934663409 0.38044329947906574 -0.10275359698078401 -
.13558704573773758 0.12701279865688744 0.32737789864877875 -0.75920458504966681 -
.13353517076771174 0.11678254183689742 -0.6598597414761127 0.22331133595712099

.65926207411169202;5.4143577632949003e-15 -2.3266121873081208e-15 -
-3264705454633726e-15 1.5770533950216657e-15 8.7174006365711412e-17 -
-4429270830619093e-15 -2.486885681047702e-15 -1.7127603526408529e-15 -
.826806564156681e-15 7.4065220125866427e-16 -1.1498042079797676e-15
-0684525982781927e-15 4.3872682747633357e-15 1.3279271207561374e-15
-9978498204864723e-15 -2.2108581136367992e-15 -6.506091513768262e-15 -
.3920192298808e-15 -3.969958884962507e-16 -3.8042929653317535e-15 3.8235023467936018e-

-2.0772349759052182e-15 2.4028438292911437e-15 -3.0717141310998453e-15
-4215019118492628e-15 4.2563326519740319e-15 -2.0661235074171608e-15 -
-4356332543157132e-15 -1.2166079132158621e-15 3.2930677288177295e-15 -
-4949184870005492e-15 -1.2541227360077918e-15;0.14238158532303535

-00054964094627982295 0.12928919765642433 -0.065245426728667164 0.71746827995799645
-40299818631828133 0.16000430917202771 0.68952403195344181 0.083614206986458758
.35640057869631531 -0.12054550123871396 -0.067317367972657222 0.21133590286972151 -
.10442226833851878 -0.26971389179085875 -0.63146746266470233 -0.23490782804330756
-16641557238147234 -0.034062960291616567 0.15972461016736675 -0.39399558372491739 -
.57723009975423445 0.056144057195782492 0.60869414522878396 -0.66658448939540482
.12404216096547524 -0.66534380684806027 -0.028772300372562981 -0.10432900467088491 -
.0300222090664247 0.30194080529263939 -0.38401499722429355;2.9450662448717583e-15 -
-2655347936330859¢e-15 -1.2654546322764824e-15 8.5779627518758938e-16
-7408913004675214e-17 -7.8486802953513288e-16 -1.3527128829833942e-15 -
.3162002471222151e-16 -1.5375988718443852e-15 4.0284990659479774e-16 -
.2542848897392809e-16 5.8115473485704817e-16 2.3863896791360724e-15
.2228514911738814e-16 1.0866864782271256e-15 -1.2025671694490117e-15 -
.5388852532089709e-15 -2.3889706665377811e-15 -2.1595456970016204e-16 -
.0692902860646547e-15 2.0797229438925837e-15 -1.1298906316336952e-15
.3069713436734964e-15 -1.670819315295421e-15 1.3171328355656129e-15
.3151775448839589e-15 -1.1238384266294733e-15 -1.8687612761675873e-15 -
.6176754189326218e-16 1.7911898872687662e-15 -1.901013096767539e-15 -
.82183208637057e-16;0.012167573124046869 -0.12182060563133314 -0.19982138604834357 -
.17746887144952259 -0.28542618375807272 0.031851545843189985 -0.046663889229768607
-33237505730675371 0.050952770447509295 -0.1275098582008117 0.22895778398147884
-081412489616566663 0.61173953327227704 -0.14329893413149353 0.1674020860868087
.1378631568531554 -0.77217564149683537 -0.33270435996880704 -0.60401850321976902
.43575937833174583 0.6118474167221275 0.15903154623420357 0.40195431866926806 -
.17448885877300044 -0.80139171414628019 1.2027206886919883 0.1667338543564407
.57162409909762046 -0.52687127068732365 0.31466337731054628 -0.09377288161031061 -
-0060982799374596 ; -5.2796647321249738e-15 2.2687674478329163e-15 2.2685497620835802e-

5 -1.5375039326524526e-15 -8.4938277583761517e-17 1.4071017649597381e-15
-4250403589220622e-15 1.6698488100282127e-15 2.7563805345790614e-15 -
.2196200514855546e-16 1.1212799647252756e-15 -1.041663008489905e-15 -
.2781384426796808e-15 -1.2945144132775064e-15 -1.947913764225004e-15
.155923489297793e-15 6.3438982559463064e-15 4.2825347916843866e-15
.8732107256991788e-16 3.7095074116045796e-15 -3.7281026809385633e-15
.0255878453133973e-15 -2.342644454399559%e-15 2.9952549302955726e-15 -
-3610454951095404e-15 -4.1505552100546801e-15 2.0146355671314445e-15
-3500482968695479e-15 1.1864789454052829e-15 -3.2106221220855614e-15
-4079472172059267e-15 1.2234573962810453e-15] ;
% Layer 2
b2 = 0.054484046404546654;
Lw2_1 = [-1.0182238311503452e-14 -1.2559374118626356 1.2720945359798932e-14 -
1.4257740637023221e-14 -1.5923006541499374e-14 -8.1935526184934338e-15
1.6913094804646052 -1.3181370345553694e-14 1.5767131547843165 1.7306030244477704
2.0433327121647149e-14 1.5542533842199235 -1.4620080283238945 -1.0245003446798691e-14 -
1.7797814327925032 7.5455726251605344e-15 1.8299031520350832 1.5907820621472193
1.3057308216577734e-14 1.4976593800412838 1.75791981408737 1.9964451834364629
1.5193155774009948e-14 7.8093034157762883e-15 -1.5828473489417164e-14 -
6.2622649465776493e-15 1.3484656600414684 -1.5368084231350398e-14 1.5605873671917656 -
9.1212172905951956e-15 1.8082913083986045 1.9259444117309521e-14];

%

yl stepl.ymin
yl_stepl.gain

Output 1
_l;
0.000222000222000222;

115

yl stepl.xoffset = 983;
0 ===== SIMULATION ========

% Format Input Arguments
isCellX = iscell(X);
it ~isCellX

X = {X};

end

% Dimensions
TS = size(X,2); % timesteps
if ~isempty(X)
Q = size(X{1},2); % samples/series
else

Q =0;

% Allocate Outputs
Y = cell(1,TS);

% Time loop
for ts=1:TS

% Input 1
Xpl = mapminmax_apply(X{1,ts},x1_stepl);

% Layer 1
al = tansig_apply(repmat(bl1,1,Q) + IW1l_1*Xpl);

% Layer 2
a2 = repmat(b2,1,Q) + LW2_1*al;

% Output 1
Y{1,ts} = mapminmax_reverse(a2,yl_stepl);
end

% Final Delay States
XF = cell(1,0);
Af = cell(2,0);

% Format Output Arguments
if ~isCellX
Y = cell2mat(Y);

% Map Minimum and Maximum Input Processing Function
function y = mapminmax_apply(x,settings)

y = bsxfun(@minus,Xx,settings.xoffset);
y = bsxfun(@times,y,settings.gain);

y = bsxfun(@plus,y,settings.ymin);

end

% Sigmoid Symmetric Transfer Function
function a = tansig_apply(n,~)

a=2 ./ @ + exp(-2*n)) - 1;

end

% Map Minimum and Maximum Output Reverse-Processing Function
function x = mapminmax_reverse(y,settings)

X = bsxfun(@minus,y,settings.ymin);

X = bsxfun(@rdivide,x,settings.gain);
X = bsxfun(@plus,x,settings.xoffset);
end

116

