
UNIVERSITY OF THESSALY

BACHELOR THESIS

A Case Law Decentralized Public Ledger

Αποκεντρωμένο Δημόσιο Κατάστιχο

Νομολογιών

Author:
Eleni PANAGOU

Supervisor:
Prof. Emmanouil VAVALIS

A thesis submitted in fulfillment of the requirements
for the degree of Diploma in Engineering

in the

Department of Electrical and Computer Engineering

February 27, 2020

http://uth.gr/
https://github.com/elenapan/
https://mav.e-ce.uth.gr/
https://www.e-ce.uth.gr/

iii

Declaration of Authorship
I, Eleni PANAGOU, declare that this thesis titled, “A Case Law Decentralized Public
Ledger” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

“I am not a visionary. I’m an engineer. I’m happy with the people who are wandering around
looking at the stars but I am looking at the ground and I want to fix the pothole before I fall
in.”

Linus Torvalds

vii

UNIVERSITY OF THESSALY

Abstract
Department of Electrical and Computer Engineering

Diploma in Engineering

A Case Law Decentralized Public Ledger

by Eleni PANAGOU

Case law is the term used to refer to reports of past court decisions and is consid-
ered an essential source of law. Current legal research services are centralized, have
complete control over the data and often charge fees for its access. To address the
aforementioned issues, this thesis attempts to leverage the potential of the Ethereum
blockchain in order to form a public and decentralized platform which allows the
submission of court decisions in a decentralized database, while achieving their val-
idation, classification and evaluation via a network of contributors. The focus of
this work is the establishment of a sybil-resistant voting protocol used for reaching
agreement and the development of a tokenized economy used to incentivize partic-
ipation.

Ο όρος νομολογία αναφέρεται σε δικαστικές αποφάσεις του παρελθόντος και αποτελεί

σπουδαία πηγή νόμου. Οι τρέχουσες υπηρεσίες νομικής έρευνας είναι συγκεντροποιη-
μένες, έχουν απόλυτο έλεγχο των δεδομένων και συχνά επιβάλλουν χρεώσεις για την
πρόσβαση σε αυτά. Για να αντιμετωπίσει τα προαναφερόμενα ζητήματα, η παρούσα δι-
ατριβή επιχειρεί να εκμεταλλευτεί το Ethereum blockchain με σκοπό τη δημιουργία
μίας δημόσιας και αποκεντρωμένης πλατφόρμας που επιτρέπει την εισαγωγή δικαστικών

αποφάσεων σε μία αποκεντρωμένη βάση δεδομένων, επιτυγχάνοντας ταυτόχρονα την
επικύρωση, κατηγοριοποίηση και αξιολόγησή τους μέσω ενός δικτύου συνεργατών. ΄Εμ-
φαση δίνεται στη σχεδίαση ενός πρωτοκόλλου ψηφοφορίας που αντιστέκεται σε επιθέσεις

Sybil και χρησιμοποιείται για την επίτευξη συμφωνίας, καθώς και στην ανάπτυξη μίας
tokenized οικονομίας που λειτουργεί ως κίνητρο για συμμετοχή.

HTTP://UTH.GR/
https://www.e-ce.uth.gr/

ix

Acknowledgements
First and foremost, I would like to express my gratitude to my supervisor Prof.

Manolis Vavalis who gave me great help and guidance during the development of
this thesis. I would like to thank him for his support and faith in me and my ideas.
Working with him gave me the opportunity to learn a lot about research, allowed
me to gain confidence in my knowledge and capabilities as an engineer and helped
me mature as a person.

I also wish to thank my father, Nikos, my mother, Kelly and my brother, Apos-
tolos for their unceasing encouragement throughout the entirety of my studies. This
accomplishment would not have been possible without their great love and support.

Finally, I would like to thank my partner David who was always supporting
me and putting up with me during difficult times. I will be forever grateful for his
unconditional love, for all the sacrifices he made to be near me and for never letting
me quit, every time I was ready to.

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Case Law . 1
1.2 Motivation . 1
1.3 Purpose of this Thesis . 2

2 Background 3
2.1 Blockchain . 3
2.2 Ethereum . 4

2.2.1 Gas . 6
2.2.2 Smart Contracts . 6
2.2.3 Tokens . 7
2.2.4 Oracles . 8

2.3 Decentralized Applications . 8
2.3.1 Decentralized file services . 8

3 Related Work 11
3.1 Blockchain voting . 11

3.1.1 Commitment schemes . 11
3.1.2 Token-weighted voting . 12

3.2 Token-curated registries . 13
3.3 Decentralized data markets . 14

4 Design 15
4.1 System overview . 15
4.2 Token engineering . 15

4.2.1 LAW . 15
4.2.2 VLAW . 16

4.3 Platform rules . 17
4.3.1 Rulebook . 17
4.3.2 Poll types . 17

4.4 Document submission . 18
4.5 Voting process . 18
4.6 Analysis . 20

4.6.1 Collective wisdom . 20
4.6.2 Effects of token value on the protocol 21
4.6.3 Effects of token accumulation . 21
4.6.4 Reliability . 22
4.6.5 Exploring the marketplace concept 22

xii

5 Implementation 25
5.1 Smart contracts . 25

5.1.1 Main contract . 25
5.1.2 Token and crowdsale contracts 26
5.1.3 Time-dependent contract logic 27

5.2 Web application . 27
5.3 Storage . 28

5.3.1 IPFS limitations . 28
5.3.2 Anonymization . 29

6 Synopsis and Prospects 31

Bibliography 33

xiii

List of Abbreviations

API Application Programming Interface

DApp Decentralized Application

DAO Decentralized Autonomous Organization

DID Decentralized IDentifier

ICO Initial Coin Offering

IPFS InterPlanetary File System

PoW Proof of Work

PoS Proof of Stake

UI User Interface

UX User eXperience

xv

Dedicated to my family and friends.

1

Chapter 1

Introduction

1.1 Case Law

The essence of case law is captured by the principle of stare decisis, which is Latin
for “to stand by decided matters”. This principle compels courts to adhere to past
rulings in order to avoid contradicting themselves when applying the law. In other
words, cases that present similar facts or similar key points should be treated the
same. Consistency is of utmost importance. Courts are not only discouraged from
contradicting other courts’ decisions, but are also outright forbidden from doing so
when faced with the decision of a higher or equally ranked court in the hierarchy of
the jurisdiction in question. The reason for adhering to this principle is the aspiration
of maintaining a standard enforcement of the law.

It is common for the interpretation of the law to be unclear, as statutory language
tends to be ambiguous [33] and at times the legality of a given act can be uncer-
tain. In addition, when considering extraordinary cases, it is reasonable to assume
that legislation could be insufficiently developed and thus incapable of offering a
straightforward resolution to the matter. In these cases, case law, if available, be-
comes the catalyst for the case at bar as well as future cases of the same kind. Since
courts are obligated to avoid contradictions with past rulings, case law constitutes
an indispensable tool for legal professionals and is therefore both an extension and
a source of law itself.

1.2 Motivation

The provision of reliable legal information for attorneys and law firms in a consis-
tent, digitized format has been the focus of several companies in recent years. Ser-
vices such as LexisNexis Case Law [27], WestLaw [50] and Bloomberg [9] provide
comprehensive collections of case law. They employ attorney editors who review,
analyze and summarize cases. Others, such as Luminance [29] and Eigen Technolo-
gies [16], a startup funded by Goldman Sachs, utilize AI in order to automate the
extraction of useful data from legal documents. Finally, there are also services which
strive for free and open access to case law for the public, such as Google Scholar [23],
and the Caselaw Access Project [2], which exposes an API endpoint for this purpose.

Multiple issues arise with the approaches above, the most crucial of which is their
high degree of centralization. A central authority has complete control over the data
as well as the ability to restrict access to it. Restrictions may be applied by allowing
minimal or no access to data without a subscription, while subscription fees may
be freely raised and access to the data may be revoked at any time. Additionally, a
centralized service presents a single point of failure that could fall victim to attacks

2 Chapter 1. Introduction

and censorship. Case in point, access to Wikipedia was blocked in Turkey in 2017
and continues to be blocked to this day [51].

Furthermore, [47] mentions that automatic categorization of case law documents
can be challenging due to their complexity. As a result, the larger part of legal re-
search services employ attorneys for the curation and quality control of the massive
collection of documents they provide, a procedure which undoubtedly requires ex-
pert knowledge and immense effort. This leads to duplication of effort and a scatter
of legal information across different sources and inconsistent formats, since no stan-
dard metadata structure has been agreed to represent a case law document. Lastly,
as the volume of digitally available legal documents increases, the need for a more
scalable and robust solution is apparent.

To this day, there is no decentralized, unified, comprehensive, aggregator of
case law which is open access and offers opportunities for contribution by anyone.
The open, trustless, immutable and publicly verifiable nature of a public blockchain
could render it an essential component for the establishment of such a platform.

1.3 Purpose of this Thesis

This thesis aims to design and implement a public and decentralized case law ecosys-
tem where the provision and curation of legal knowledge is a collaborative effort of
an entire network of contributors. The ecosystem will attempt to enhance the trans-
parency and ease of access to verified and categorized legal information, as well as
eliminate single points of failure by relying on decentralized principles and compo-
nents.

The regulations that define the ecosystem are permanently stored in a ledger as
a set of smart contracts and enforced through the trustless execution offered by the
Ethereum blockchain, which constitutes the cornerstone of the platform. The sub-
mission of court decisions is open to any user, while the validation and labeling of
newly submitted decisions according to their legal subject and juristic value are per-
formed through timed polls, which are open to any and all users of the platform. The
influence of each user is measured by parameters such as their financial investment
and positive contributions. Appropriate behavior is encouraged through financial
incentives, which are formed through reward distribution using a digital token. Au-
tonomy is maintained by employing the collective wisdom for reaching agreement,
ensuring that no intervention by a central authority is required for the successful
operation of the platform.

Consequently, the adoption of this platform on a national basis could potentially
be of great value not only to legal professionals but also to any parties interested in
case law research regardless of their legal expertise. Additionally, the establishment
of a tokenized economy will directly benefit the platform’s contributors. At the time
of writing, a thorough search for decentralized applications of such type did not
yield any results.

The rest of the thesis is organized as follows. Chapter 2 provides an overview
of the background and fundamental technologies addressed throughout the paper.
Chapter 3 presents the related work as well as a discussion of projects which could
potentially cover the problem domain of this thesis. In chapter 4, a proposed design
is presented, analyzed and evaluated. Chapter 5 presents the various components
used for the implementation of the platform. Finally, chapter 6 concludes the thesis
and mentions a number of recommendations for the potential enhancement of the
platform’s capabilities.

3

Chapter 2

Background

2.1 Blockchain

A blockchain is a peer-to-peer (P2P) network which maintains an immutable record
of digital transactions. Transactions are signed messages that are propagated within
the network and affect the global state of the chain. They are validated and grouped
into cryptographically secured blocks. The genesis block is the first block of the chain
and all subsequent blocks build on top of it by storing the hash of the previous block
in their headers. This creates a permanent and tamper-resistant data structure.

The global state of the chain is updated with each newly generated block. In
a public or permissionless blockchain, anyone may participate in the block creation
process by connecting to the network with the chain’s client software. This software
implements the blockchain’s specification and allows a peer to synchronize with
the network by downloading a complete copy of the blockchain, from the genesis
to the most recently generated block. The peer can then begin participating in the
validation process.

There are various block validation schemes, the most widely used of which is
Proof-of-Work (PoW), introduced by Nakamoto in [34]. In a Proof-of-Work blockchain,
consensus is reached by competition. Peers participate in a process called mining,
during which they use their computational power to solve a puzzle, which is usu-
ally a resource-intensive hashing process. The puzzle must be difficult to solve but
easy to verify, in order to be able to quickly determine the miner’s claim. The first
miner to provide the proof of its solution is authorized to append the next block
to the chain and gains an amount of cryptocurrency, the digital currency managed
by the network, for doing so. Miners compete to solve the puzzle faster than other
miners in order to reap the rewards and cover the financial costs associated with
mining. Consequently, the blockchain is economically secured with cryptocurrency,
since miners act beneficially to the network out of self-interest.

More than one different blocks may be generated and propagated to the network
at the same time by different miners. A fork happens whenever more than one avail-
able path from the latest block to the genesis block is created. Nodes will attempt
to keep building on the longest fork. As more blocks are appended to the existing
branches, at some point in time, one of them will become longer than the rest and
eventually, the fork will be resolved by nodes abandoning the shorter branches.

A hard fork is used deliberately to either perform radical protocol changes in the
network, or to reverse the effects of a bug or malicious attack. If the protocol changes
are backwards compatible with the old chain, the fork is termed a soft fork. Hard
forks usually require nodes to update the software they use to connect to the net-
work.

4 Chapter 2. Background

Source: https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

FIGURE 2.1: Example of multiple forks. The green block is the gene-
sis and the black blocks represent the branch that prevails due to its

length.

The hard fork between Ethereum and Ethereum Classic happened in order to
amend an attack which, due to a contract vulnerability, successfully stole approxi-
mately $50 million worth of Ether in 2016 [48]. The network which did not accept
the fork was named Ethereum Classic, while the network that accepted the fork by
erasing the attacker’s transactions from the chain retained the name Ethereum.

The aim of a Proof-of-Work validation scheme is to be resource-intensive in order
to prevent an attacker from easily creating new blocks that modify the history of the
chain or maintaining a malicious fork. However, if an attacker succeeds in acquiring
more than half of the network’s mining power, they will be able to mine faster than
anyone else and create the longest and heaviest chain which will be then accepted
by the network (51% attack). The more miners participate in the network, the harder
it is to perform this attack.

Proof-of-Stake (PoS) is an alternative consensus algorithm which is based on
peers staking amounts of cryptocurrency in order to become validators who have
the ability to propose new blocks or vote on whether a proposed block is valid.
Voting power is proportional to the staked amount, meaning the amount of cryp-
tocurrency locked into a deposit by each validator. The validators are chosen with
a round-robin protocol. They gain a reward, based on their stake, if their proposed
block is accepted by the majority of validators, while they can lose the entirety of
their stake if their proposed block is rejected.

2.2 Ethereum

Ethereum [11] is a Proof-of-Work blockchain which allows the execution of programs
called smart contracts in an auditable, transparent and trustless environment. The
blockchain is used as storage for the global state of the system, while a consensus
algorithm allows state synchronization within the peers of the network. Smart con-
tracts are written in high-level programming languages and compiled to bytecode.
They can then be executed on the Ethereum Virtual Machine (EVM), a fully sandboxed

https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

2.2. Ethereum 5

and isolated runtime environment. It has no access to other processes, the network
stack or the file system as it is entirely virtual. This makes code execution completely
deterministic.

Every Ethereum node has an instance of the EVM which is used to execute smart
contract code triggered by transactions. The EVM has its own instruction set and is
able to access block and account information such as addresses and their respective
balances, number and timestamp of the latest block.

There are two account types available in the Ethereum blockchain. Externally
owned accounts, which consist of a public and private key pair, are owned and con-
trolled by individuals. They can use their private key to sign and send transactions
to other externally owned accounts or contract accounts, and they can receive Ether
through their public key or address. Generating a new identity happens locally on
a user’s machine and has virtually no cost. Thus, users may have one or more ac-
counts at their disposal. Contract accounts represent the address through which a
smart contract can be invoked. Contract accounts may not send transactions inde-
pendently, rather, their execution can be triggered by a transaction originating from
an externally owned account or another contract account. Both account types have
an Ether balance.

Ethereum transactions are cryptographically signed messages from an externally
owned account to another account on the chain. They can be used to transfer Ether
to another account, invoke contract code or deploy a smart contract to the network.

A cryptocurrency named ether (Ξ), which is acquired as a reward for success-
fully mining a block, is used by the network as a means of paying for computation.
Ethereum’s smallest currency denomination is called wei and it is equal to 10−18

Ether.
The average Ethereum block creation rate or block time is maintained between

the range of 10 and 20 seconds. It may be calibrated by various parameters, such
as block difficulty, which adjusts how small the block hash has to be in order for a
block to be considered valid and ultimately determines how much energy has to
be expended in order to generate the Proof-of-Work. The smaller the valid hash
threshold, the harder it is to find one that satisfies this condition, increasing the time
required to complete the mining process. The block difficulty automatically adapts
to the network state so that the average block time remains within the expected
time. For instance, the block time is evaluated every few blocks, and if it exceeds the
expected block time, the difficulty decreases in order to reduce it.

On the one hand, lower block times allow for higher transaction throughput. On
the other hand, they lead to a higher probability of multiple miners solving the PoW
puzzle at the same time, which causes the creation of orphaned blocks, meaning
blocks that are valid but were not included in the main chain.

In Ethereum, these blocks may be appended to the chain at a later time and are
called uncle blocks, although they do not grant the full block reward to their miner.
The main causes of a high uncle rate are network latency due to a large block size and
high block rate due to low block difficulty. The reason why they are not discarded
is that they increase the security of the network by guaranteeing a reward for valid
blocks regardless if they are orphaned or not. Otherwise, validating blocks would
only be profitable for mining pools and not for independent miners, which would
endanger the decentralization of the network.

6 Chapter 2. Background

2.2.1 Gas

Solidity, the most widely used contract programming language for Ethereum, is
Turing-complete. This implies that contract code written in Solidity can be non-
terminating, which, in the Ethereum world, can essentially perform a Denial of Ser-
vice (DoS) attack on the network. This is because all peers that attempt to validate
the program will inevitably be running it forever.

For this reason, Ethereum employs gas, a mechanism for controlling the compu-
tational resources a transaction attempts to consume. Every EVM instruction has a
predetermined cost measured in gas units. Thus, gas represents the amount of work
a miner needs to do in order to validate a transaction and include it in a block. Gas
is purchased with Ether for every transaction, and it is consumed as code execution
progresses. Any unused gas is returned to the transaction sender. The sum of all
transaction gas fees is sent to the miner of the block as a reward. If the gas sent
with the transaction does not cover the cost of the operations needed to complete
its execution, the transaction fails with an “Out of Gas” exception, any changes to
the state are reverted and the price paid for the gas is lost, since the network already
used computational power for the execution. Most wallets, which are responsible for
constructing the transaction object, calculate the amount of gas needed to complete
the transaction and set the correct amount for the user in the transaction headers.

The cost of gas is not fixed. The transaction sender is able to set the gas price
of the transaction, which represents the conversion rate of ether to gas. It is thus
used to calculate the amount of Ether to be paid for the gas spent during transaction
execution. Miners naturally prefer to include transactions with higher gas price in
their blocks due to gaining higher rewards for doing so. Thus, setting a higher gas
price will result in a faster transaction confirmation time.

Currently, each block has a gas limit of about 10,000,000 gas units. Consequently,
the number of transactions that fit in a block depends only on how much gas each
transaction requires. Nevertheless, the block gas limit is adjustable. Miners are able
to vote to increase or decrease it by a maximum of 1

1024 of the previous block’s gas
limit [52].

Increasing the block gas limit leads to increased storage requirements for nodes
due to the larger block size. A larger block size also implies that the time required
to propagate blocks is increased, which leads to a higher uncle rate. A higher uncle
rate will lead to a loss of revenue for miners. To counteract this, miners will avoid
creating full blocks in order to ensure that their block gets validated and appended
to the chain in time.

2.2.2 Smart Contracts

Unlike Bitcoin and most blockchains which only allow the management of cryp-
tocurrency within the network, Ethereum provides the ability to instantiate and ex-
ecute programs in a trustless manner. Smart contracts are code that has been stored
on the blockchain and can be invoked by anyone who has the ability to send trans-
actions to the network. When a transaction is sent, it is stored in a transaction pool
and all peers in the network individually execute the contract code in order to agree
on its output.

Smart contracts are written in high-level languages such as Solidity and Vyper,
compiled to EVM bytecode and deployed to the network. Once deployed, they ac-
quire their own address through which their functions and storage are accessible.
They are permanent and immutable: the only way to update a smart contract is to

2.2. Ethereum 7

redeploy it. During the execution of a transaction, in case of interruption, for in-
stance due to an EVM exception, all the state changes that have been caused by it
are reverted. Furthermore, contract code cannot run autonomously. An account has
to sign and send a transaction which includes all the input needed to invoke con-
tract code in order to notify the nodes of the Ethereum network to execute it. As
mentioned in 2.2.1, this does not come without cost.

All input and output of a contract is public knowledge and can be accessed by
the whole network. Any sensitive input will be revealed as soon as the transaction
is sent. A commitment scheme allows one to temporarily hide a chosen value stored in
a public environment and having the ability to reveal it at some point in the future.
Commitment schemes exploit the fact that hashing is a one-way operation and are
performed in two phases. During the commit phase, a user publishes the hash of the
desired value, while during the reveal phase, they publish the value itself. It is then
possible for anyone to verify if the hash of the revealed value is equal to the com-
mitted hash. In that case, the user has successfully hidden their value during the
commit phase and has proven that they have revealed the correct value. Applica-
tions of commitment schemes include secure coin flipping, zero-knowledge proofs
and secure computation.

2.2.3 Tokens

The permanent, immutable and trustless nature of the blockchain makes it a suitable
option for asset management. Programmable assets can be implemented on top of
Ethereum through smart contracts for cases when Ethereum’s native cryptocurrency
is not sufficient. An asset may be abstracted and implemented on the blockchain as
a token. Tokens may represent currency, physical or digital resources, voting power,
or access rights. There is absolute freedom to establish custom rules of ownership as
well as asset management such as transfers, purchases and sales, while maintaining
trustlessness and transparency.

Various token standards have been introduced that cover basic token concepts.
They define an interface, meaning a set of methods which have to be implemented to
cover the specification of the token. ERC20 [17] is the most widely used token stan-
dard. It represents ownership of value which can be divisible and interchangeable,
much like real-world currency. The ERC721 [18] token standard is used to repre-
sent non-fungible tokens that denote ownership of a unique, non-divisible asset or
collectible, or even track negative occurrences such as loans. Every token is repre-
sented by a 256-bit identifier and its ownership can be transfered from address to
address.

Token specifications determine only the minimum functionality that needs to
be implemented. They can be easily extended by implementing more functions in
order to cover more specific needs. Compliance with standards allows tokens to
automatically be supported by various exchanges, other smart contracts and appli-
cations. Furthermore, it allows popular token specifications to be implemented as
libraries, facilitating the deployment of such tokens. Both ERC20 and ERC721 spec-
ifications have been implemented as pluggable contract libraries by OpenZeppelin
[35] and are publicly audited, “battle-tested” and kept up to date with the latest
Solidity changes, which is crucial in such a rapidly evolving ecosystem.

Tokens may be created out of thin air in a process called minting and can then be
exchanged for Ether through crowdsale contracts. Crowdsales can be programmed
to have a certain duration, maximum supply amount or even form bonding curves
so that the rates scale with the current supply, encouraging the contribution of early

8 Chapter 2. Background

investors. Furthermore, token sales are commonly used as a fundraising mechanism.
An Initial Coin Offering (ICO) is often used in order to fund the development of a new
project and attract investors, usually after the release of the project’s whitepaper.

2.2.4 Oracles

Smart contracts have no access to external data since the EVM in which they are ex-
ecuted is completely isolated from the real world. However, they may often require
data from external systems. Use cases include true random number generation,
identification and authorization through decentralized identifiers (DIDs), access to
online information such as market data, IoT sensor data such as temperature, or any
events and triggers that happen off-chain but need to be acknowledged on-chain.

This data can be introduced to a smart contract via an oracle, a third-party agent
which seeks, verifies and provides external information and events which originate
from outside of the blockchain and are used in smart contracts. Usually, a smart con-
tract is created by an oracle which obtains data from an external source and stores the
information in its contract storage. Other smart contracts may access this informa-
tion through the oracle contract. In addition, oracles can be part of multi-signature
contracts which require, among others, the signature of an oracle in order to trigger
a specific action, such as the release of funds.

Off-chain occurrences cannot be verified by the Ethereum network, thus depend-
ing on knowledge originating from oracles constitutes an inevitable security risk.
For instance, let us assume the existence of an oracle that generates random num-
bers for a contract that implements a game of roulette. There is a high incentive to
compromise or bribe the oracle if the financial reward for doing so will cover the cost
of the attack. For this reason, oracles are, ideally, systems that rely on decentralized
principles for increased security and transparency.

2.3 Decentralized Applications

Armed with publicly verifiable, trustless and guaranteed correct program execu-
tion provided by the Ethereum blockchain, smart contracts can be used as a build-
ing block to develop decentralized applications. These applications, also known as
dApps, use smart contracts to apply their business logic and implement a web in-
terface that interacts with the blockchain using the web3 stack. Optionally, they may
also use a decentralized storage service, a decentralized messaging protocol or both.
Web3 or “The Third Age of the Internet” [1] is the term used to describe the shift of
focus of web applications towards more decentralized protocols, which exploit the
autonomy and censorship-resistance provided by blockchain technologies.

The degree of decentralization of an application can vary. Some applications
choose to utilize the blockchain only for a small part of their business logic, while
others attempt to achieve complete decentralization by not only storing their data in
decentralized file systems, but also serving their web interface through them.

2.3.1 Decentralized file services

Since the blockchain is an append-only data structure, storing data on it will even-
tually cause it to grow insurmountably, increasing synchronization time as well as
block propagation time, thus reducing the overall performance of the network. As a
result, there is an incentive to limit the amount of data stored inside contracts. This is
achieved by applying prohibitively large gas fees for storing data. For reference, the

2.3. Decentralized Applications 9

ADD opcode, which performs an addition operation, consumes only 3 gas units, while
the SSTORE opcode, which saves a word (256 bits) to the contract storage consumes
20000 gas units [52].

Consequently, applications which use large amounts of data are forced to use
contract storage in conjunction with an off-chain database to fulfill their storage
needs. Contracts cannot access this storage, thus the application needs to sensibly
split its data into contract and external storage.

Using any standard, centralized database to store external data is certainly pos-
sible. However, this approach suffers from the same issue that the application is
trying to solve by using the blockchain: centralization. Public and decentralized
file hosting services are able to meet most of the storage needs of a dApp without
compromising decentralization and transparency.

The InterPlanetary File System (IPFS) [6] is a public, peer-to-peer global file host-
ing service. In the IPFS protocol, an uploaded file is split into small chunks of 256Kb
which are then hashed and stored on multiple different nodes on the network. The
hashes are stored in a distributed hash table (DHT), which is used to retrieve a file
whenever it is requested. Storage provided by IPFS is content-addressable, meaning
that a file is identified and accessed solely by its hash.

Additionally, the more popular a file is, the faster it can be accessed, since it is
replicated on multiple nodes. Conversely, a file that is not regularly accessed is in
danger of being garbage collected from the network. At least one node has to be
online and pin the file in order to guarantee availability. Pinning ensures that the file
is always kept locally on the node and is never garbage collected.

Due to the above, IPFS is currently not able to ensure data availability. How-
ever, there has been work in creating incentives for monetizing permanent storage.
Ethereum Swarm [44], which functions similarly to IPFS, is part of the web3 stack
and works as an incentive layer for sharing permanent storage by rewarding Swarm
nodes who offer their storage for use by other clients. Among others, Storj chain
[14], Sia [42] and Filecoin [39] offer the same service, but are built on top of their
own dedicated blockchain and use their own native currency for reward distribu-
tion.

A welcome property of content-addressability is the fact that immutability is
guaranteed. Any changes to the file would result in it having a different hash. A
commonly used pattern in the development of decentralized applications is to store
large data on IPFS, obtain its unique content-addressed hash and permanently store
it on the chain.

11

Chapter 3

Related Work

3.1 Blockchain voting

This section will review numerous protocols and applications that attempt the de-
centralization of the voting procedure using the blockchain. Emphasis should be
given in ensuring privacy of the vote during vote casting in order to eliminate bias.

[53] proposes a voting protocol where the creator of the poll has the capability to
grant a user the right to vote by registering their wallet address. The voters have a
specific deadline before which they are obligated to declare their vote, and only one
vote per user is allowed for each poll.

[13] presents a voting application designed for high-level educational instruc-
tions. Every user that can be identified with a valid identification code and email
address that belong to the institution has the ability to create polls or participate in
them. This application combines Ethereum smart contracts and Paillier Homomor-
phic Encryption in order to ensure the privacy of the vote.

An attempt to enforce a single vote per user per poll is presented in [25]. It
suggests the incorporation of an Ethereum light client in a mobile application and
the registration of each voter in the system by making use of the MSISDN (phone
number) of the user’s SIM card.

It is noted that none of the above solutions are not completely decentralized since
they rely on a central authority which the potential voters have to register to. Con-
sequently, the maximum number of voters is known before the start of the poll and
voters potentially compromise their anonymity [25, 13] since they are uniquely iden-
tified through personal information. Furthermore, in [25, 53] there is no attempt to
achieve privacy of the vote. Since submitted votes are visible to anyone on the chain,
in order to guarantee confidentiality and non-repudiation, the votes need to be sub-
mitted to the contract in a hidden but verifiable format, as shown in [13] or by using
a commitment scheme.

3.1.1 Commitment schemes

Commitment schemes are valuable for temporarily hiding data in trustless environ-
ments. They are used in a plethora of applications on the blockchain, such as voting,
blind auctions and creating randomly generated numbers for multiplayer games.

An example implementation of a commitment scheme is demonstrated in [40],
which implements an oracle for random number generation by using the input of
multiple participants. Each participant must send the hash of a secret number along
with a pledge. After the submission phase is over, users reveal their secret number.
In the final phase, the contract computes the random number by combining all valid
inputs and returns the pledge to each participant that revealed a number whose hash
matches their previously committed hash.

12 Chapter 3. Related Work

[30] presents a secure and self-tallying voting procedure, meaning that eventu-
ally the votes are publicly accessible and anyone may compute the tally of the elec-
tion. A voter registers for an election by submitting a deposit and a zero knowledge
proof for authentication purposes. The voting procedure is then performed using
a standard commitment scheme for privacy preservation. An administrator orches-
trates the poll by triggering each next phase after all members have participated
in the current one. Revealing a valid vote returns the deposit to the user. The de-
posit may also be returned if one or more voters do not commit their vote before the
commit phase ends. After the last vote has been revealed, the administrator calls a
contract method which tallies the votes.

The main drawback of this method is that an administrator entity is required
to advance through the poll phases, which sacrifices autonomy. Furthermore, it re-
quires knowledge of the number and identities of voters beforehand and it relies on
all users cooperating in order to advance to the next phase.

For this thesis, more flexibility is required regarding the number of voters in
each poll. New voters may join the platform at any time, and voters may abstain
from voting on some polls. More importantly, regarding the Ethereum network,
there is virtually no cost for generating new accounts and attempting to impersonate
multiple voters. In these circumstances, when voter registration and identification
is not an option, the result of the poll should not be computed by tallying individual
votes, but by tallying voting power.

3.1.2 Token-weighted voting

Using tokens as a voting right is justified by the assumption that the benefit of the
platform is of direct interest to its stakeholders which have made financial invest-
ments in it by purchasing and holding tokens. Consequently, the larger their invest-
ment, the heavier their vote should be. Variations of token-weighted voting are used
by decentralized autonomous organizations (DAOs) to implement self-governance.

An implementation of token-weighted voting is presented in [36]. The votes are
concealed through a commitment scheme in order to ensure confidentiality. Users
can decide how many tokens they wish to lock in a specific poll and they may lock
their tokens in multiple polls simultaneously. The amount of tokens they lock in a
poll is used to calculate their weight for the poll in question. They may only retrieve
their locked tokens after the end of the voting process, in order to prevent double-
voting using the same tokens in different polls.

[32] proposes a blockchain governance method which allows users to vote with
a token locking mechanism. In order for a proposal to be approved, first it needs
to receive enough approval votes within a certain time window. If this is achieved,
a new voting round starts where opponents of the proposal have to counter the
approval using the same voting method. This ping-pong procedure continues until
one side is not able to gather the needed votes to satisfy the threshold, which resolves
the issue.

Kleros [26] is a decentralized dispute resolution system. A smart contract on
Ethereum may set Kleros as an arbitrator in order to resolve disputes. Token holders
register as jurors by locking their tokens in a smart contract. The locked tokens
serve as a stake. Jurors are selected randomly, while their chance to be chosen scales
with the amount of tokens they lock. Their weight in the vote is proportional to
the number of times they are drawn as a juror for the dispute in question and by
extension it is proportional to their amount of locked tokens. The voting procedure
is performed via a standard commitment scheme to prevent juror bias. Jurors whose

3.2. Token-curated registries 13

decision agrees with the majority are rewarded with a part of the lost tokens in the
stake pool as arbitration fees, relative to their weight.

3.2 Token-curated registries

In order to compensate for the transaction fees associated with storing data on the
blockchain, a user has to be incentivized to publish their content. Furthermore, the
need for a certain content evaluation system becomes apparent considering that it
can be used not only for determining the publisher’s reward, but also filtering out
low value content. In this section, there will be a brief presentation of decentralized
content sharing platforms and the methods they employ to ensure that the condi-
tions mentioned above are met.

Steemit [43] is a decentralized news and blogging service, analogous to Reddit
[41], a popular social news aggregation platform. Voting is a fundamental part of
the platform. It contributes to publisher’s revenue by rewarding posts based on its
amount of upvotes, while voters are encouraged to curate content by gaining a per-
centage of the total amount earned by the post. The biggest contributors are also
the ones to receive the largest profit. Various techniques are employed to mitigate
Sybil attacks. Among them is the use of a special resource named Steem Power (SP)
which can be acquired by committing an amount of the network’s native, tradable
coin (STEEM) to a vesting schedule for a period of 13 weeks. This resource is used
to calculate a user’s Voting Power, which essentially represents a vote’s influence.
Attempting to divide vesting tokens into multiple accounts will also divide their in-
fluence and thus leave the net influence intact. Voting Power becomes increasingly
weaker and increasingly slower to replenish with every vote. Lastly, all accounts
need to maintain a minimum balance in order to be allowed to transact in the plat-
form.

[28] implements a decentralized content sharing platform built on top of the
Ethereum Blockchain. Users may interact with the platform by using an inflation-
ary token named Primas. For instance, publishers are initially required to register by
permanently locking a number of Primas tokens, while publishing content requires
a small amount of tokens to be locked for seven days. In addition, if a publisher
desires, they may monetize their content by requiring token payments for its repro-
duction. Plagiarism is punished by token deductions. Users with similar interests
may participate in self-governing groups whose members are responsible for eval-
uating the content published in the group and are subsequently rewarded for their
contributions in tokens. Finally, the publishers’ revenue is based on the content
quality of the submitted post which is in turn measured by factors such as number
of likes, reviews, recommendations and reproductions.

[49] presents a decentralized paper publication platform which allows anyone to
upload and share their work in a network of researchers. Each publication creates a
transaction which stores metadata such as title, keywords, publisher’s address, pub-
lication transaction hashes of all cited papers and timestamp of the submission. The
paper itself is uploaded to IPFS. Authors are charged with a certain amount of cur-
rency in order to submit a paper. This amount is allocated to the paper’s reviewers
and to authors of all cited papers. After a fixed interval of time, the authors gain a re-
ward determined by the score of the paper’s reviews. From then on, the paper may
only generate revenue every time it is cited. Reviewers of a paper submit a score
and optionally a comment which is also stored on IPFS. Comments can be rated by

14 Chapter 3. Related Work

readers the same way papers are rated by reviewers. Highly rated comments are
rewarded.

Lunyr [38] attempted to develop a crowdsourcing based decentralized encyclo-
pedia, similarly to Wikipedia. Contribution to the network may be fulfilled either
by submitting or reviewing content. Users that wish to submit are required to first
review other submitted articles. They are also obligated to provide sources in order
to prove the credibility of the information they are attempting to publish. Before
an article can be successfully inserted in the platform, it must be peer-reviewed and
approved by multiple users. It implements three different tokens in order to incen-
tivize participation. LUN, a standard ERC20 token, is the reward for contributions
and can be used to purchase advertising. Contribution tokens (CBN) are gained
through successfully submitting or peer reviewing content and are used to deter-
mine the amount of LUN tokens that will be given as a reward to the user at the
end of each two-week reward cycle. Finally, Honor (HNR) is used for governance
purposes such as creating or voting in polls that concern malicious content which
the reviewing system might have mistakenly approved.

3.3 Decentralized data markets

An alternative way of evaluating submitted documents is to monetize them, thereby
forming a case law marketplace where document submitters have ownership of
their documents and are able to sell them to any interested parties. A considerable
amount of inspiration for this concept can be drawn from decentralized data mar-
kets. Areas of interest include the methods used for secure storage, monetization
and exchange data between two or more parties, proof that the data provided by the
seller is valid and the design of a transparent and efficient purchase procedure for
the end-user. All these methods should ideally not compromise decentralization.

Datapace [15] is a decentralized application built on a private blockchain and
based on the Hyperledger Fabric framework. It aims to create a marketplace for
IoT sensor data. Buyers, sellers and validators may participate in the platform. Val-
idators comprise a closed consortium which validates transactions using the PBFT
consensus algorithm. Buyers may browse the marketplace for IoT data streams of-
fered by sellers and receive a temporary URL to the data upon purchase. Sellers offer
their collected data for sale. Datapace provides specialized hardware for sale in or-
der to ensure that the data source is valid. Sellers who purchase the hardware are
flagged as trusted, which increases their visibility in the market. Honest behavior is
also incentivized due to their initial financial investment in the network.

[24] allows its users to monetize data collected by telemetry in a secure and de-
centralized manner. Users are able to set fees for the data they own and submit to
the network. The data is anonymized, encrypted and finally stored in BigchainDB
[7]. The data release is enacted off-chain with a key exchange between the data
provider and the data consumer. Buyers are responsible for validating the data after
the purchase and a reputation system is planned to facilitate the procedure.

15

Chapter 4

Design

4.1 System overview

This thesis designs AnyCase, a token-curated registry (TCR) for case law. The fun-
damental component of the platform is a set of Ethereum smart contracts which
implement the core protocol for document submission, validation and taxonomy, as
well as a tokenized economy. The platform also consists of a web application which
interacts with the Ethereum blockchain and allows participation through the user’s
web browser.

Documents may be accessed by data consumers, such as legal professionals or
casual researchers, without cost. However, participating in the platform either as a
submitter or as a curator requires the use and management of LAW, the token which
functions as the platform’s currency and consequently, as an incentive mechanism
for positive contribution to the network.

Through the platform, a user is able to upload a document to a public, decentral-
ized and content-addressed file service such as IPFS and then submit its hash on the
chain along with a deposit in LAW. Document submission triggers the creation of
polls which determine its validity as a court decision, its category of law and juristic
importance.

Using a commitment scheme to prevent bias, curators are able to stake LAW
and submit their vote on the chain. The curators whose vote was coherent with the
majority are rewarded by sharing the staked tokens of the unsuccessful voters. If
a document is deemed valid by the majority, the submitter also receives part of the
stake pool.

The platform incentivizes users to act as curators without relying on a centralized
authority for tallying the votes or directing the voting procedure, essentially leading
to the establishment of a public, decentralized and autonomous platform dedicated
to case law. Furthermore, it allows both humans and machines to participate in the
network. Documents and their metadata are stored in a format which is easy to
parse and consume, while access to the results of the polls is publicly available via
the contract’s storage. Thus, the platform provides labeled data which can be used
to train machine learning models. This facilitates and encourages participation by
those who wish to use their machine learning model in order to earn tokens.

4.2 Token engineering

4.2.1 LAW

The platform’s medium of currency is LAW, an ERC20 compatible token with addi-
tional features. The token implements the ERC20 specification which is supported
by the majority of exchanges and wallets, while it adds support for the management

16 Chapter 4. Design

of token vesting schedules. Vesting schedules are used to turn LAW into VLAW, a
vested token whose utility will be analyzed in detail in the next section.

Users may gain LAW by purchasing it from the crowdsale contract in exchange
for Ether, by engaging in trading with other token holders or as a reward for con-
tributing positively to the platform after successfully participating in a poll. In ad-
dition, actions that involve voting or inserting content in the platform require an
amount of LAW to be deposited in the contract as a stake.

4.2.2 VLAW

A vesting schedule is a method of gaining ownership of assets, such as company
shares or benefits, usually after an extended period of time. Its main purpose is to
encourage loyalty. For instance, an employee may earn rights to retirement bene-
fits based on how long they have been employed in a company. A graded vesting
schedule allows gradually gaining assets within the schedule’s duration, while in
cliff vesting, the assets are released after the duration of the cliff has passed. During
the cliff, the stakeholder has no ownership of the assets.

Source: https://medium.com/cardstack/building-a-token-vesting-contract-b368a954f99

FIGURE 4.1: Example of a token vesting schedule using a combina-
tion of cliff vesting and graded vesting.

In AnyCase, vesting schedules allow a user to turn LAW into Vested LAW (VLAW)
by locking it in a contract for a long period of time. The amount of VLAW gained
from a vesting schedule increases linearly with time until the end of the vesting pe-
riod, when the full amount of VLAW has been acquired. Furthermore, a cliff is put
into place to prevent gaining any vested tokens for a small period of time immedi-
ately after the start of the schedule. A user may revoke a vesting schedule at any
time, but their LAW will be locked for a short period of time before being released.

In the platform, VLAW is an equity token which represents voting power and its
main purpose is to add sybil resistance to the platform. Since voting power is equal
to a user’s vested balance, there is no difference, for instance, between a user having
10 VLAW and 10 users having 1 VLAW each, rendering sybil attacks impossible.

Transferring VLAW means transferring voting power. If users were able to trans-
fer voting power instantly between accounts, double-voting would be an issue. The

https://medium.com/cardstack/building-a-token-vesting-contract-b368a954f99

4.3. Platform rules 17

vesting cliff prevents this, due to the cliff duration being longer than the duration
of the poll’s commit phase. This disallows voting more than once in the same poll
using the same tokens, since, by the time the vested tokens have been transferred to
another account, the voting process of the poll will have come to an end.

Additionally, the release duration should be long enough to prevent a user from
intentionally vandalizing the platform and instantly selling their tokens. This en-
sures that the user has to wait until their actions actually affect the value of the
platform and by extension, the token, before being able to sell, encouraging positive
behavior. Finally, since VLAW may only be gained through a long-term financial
investment, it is a good indication of faith and loyalty to the platform, making it a
suitable criterion for determining influence.

4.3 Platform rules

4.3.1 Rulebook

The rules that define the platform need to be stated in detail and stored publicly
in order to be easily accessible by all participants. As mentioned in 2.3.1, contract
storage is not the solution, as there is a steep cost required to store large amounts of
data on-chain. Instead, the rulebook is converted to an easily parsable format such
as JSON and uploaded to a public, decentralized and content-addressed file service.
The service provides the hash of the file in return, which is then permanently stored
on-chain during the deployment of the contract.

While there are multiple such services, which have been enumerated in 2.3.1,
from this point on only IPFS will be mentioned as it was also used in the implemen-
tation of the platform. Using such a service allows storing data without relying on
a centralized storage provider. The rulebook is then able to be accessed and used as
a reference for appropriate behavior both by submitters and curators. Furthermore,
content-addressability ensures that the rulebook has not been tampered with after
its submission, as that would result in its hash being different than the one perma-
nently stored on-chain.

4.3.2 Poll types

This section will analyze the three different types of polls that can be identified in
the platform. First, the validity poll determines whether the document in question
is valid case law or not. It begins immediately following the document’s submis-
sion. The validity conditions are stated in the rulebook and should be taken into
consideration by the document submitter in order to ensure that their document is
accepted. If any rules are broken, an honest validator should vote the document
down. Examples of possible validity conditions are stated below:

“The document must be written in formal language and exhibit use of
legal vocabulary.”

“The document must include a headnote that accurately summarizes the
court decision.”

“The document’s date must be in the format YYYY-MM-DD.”

The classification poll places the court decision into a category of law. The poll
begins accepting votes after the end of the validity poll, on the condition that the

18 Chapter 4. Design

document was deemed valid. Depending on the desired taxonomy, the available cat-
egories of may vary. Examples include high-level categories such as “Labour law”
and “Property law”, or categories specific to the decision content such as “homi-
cide” and “arson”. Generally, the number of available categories may range from 20
to 100. The winning category is the one which gathers the majority of votes.

The importance poll assesses the document’s juristic value. It follows the case
law ranking scheme adopted by the European Court of Human Rights [21], in which
cases are placed in four categories according to their importance level. The high-
est ranked cases represent influential case law, while the lowest ranked cases are
common and of little legal interest. Similarly to the classification poll, this poll is
scheduled to start after the end of the document’s validity poll.

4.4 Document submission

Through the web application, a user is able to author and submit a court decision
to the platform, following the document validity conditions stated publicly in the
rulebook. First, the document and its metadata such as date and decision number,
are converted to JSON format and uploaded to IPFS. Next, the document submission
to the contract is performed using a deposit-refund paradigm. The submitter sends a
transaction to the contract which operates as follows:

1. It stores the IPFS hash of the uploaded document and the submitter’s address
in the contract in a new document entry.

2. It submits an amount of LAW as a deposit. The deposit amount is defined as a
constant in the contract storage.

3. It initializes the three polls mentioned in 4.3.2.

4. It openly votes TRUE in the newly created validity poll using the submitter’s
current voting power.

The submitter is mainly interested in the validity poll, since their deposit and re-
ward depend on its verdict. If the document is deemed valid, the deposit is returned
and the submitter may collect part of the reward pool.

It is noted that it is impossible to prevent the document submitter from voting
for themselves. Attempting to prohibit the submitter’s address from voting in the
poll would result in all submitters maintaining a second account just to vote for
their own documents. The issue with allowing it is that the submitter’s vote cannot
be ambiguous, as there is no incentive for one to vote against their own document.
This is also the reason why the vote is submitted openly, instead of through the
commitment scheme. This adds bias to the poll, especially if the submitter is a high-
influence user, since this could cause other voters to vote in agreement with the
submitter in order to increase their chance of gaining the reward.

4.5 Voting process

Voting is the most fundamental component of the platform. Key elements of the vot-
ing process are its commitment scheme and deposit-refund paradigm. This section
will analyze the voting process and its transactional flow in detail.

A standard commitment scheme is used during the voting procedure in order to
ensure the confidentiality of the vote. Confidentiality prevents bias between voters

4.5. Voting process 19

and constitutes a necessary property since voters are rewarded based on their vote
and the outcome of the poll. Since transaction data in the Ethereum network is pub-
lic, the vote needs to be concealed locally before sending the transaction. This pre-
vents voters from monitoring contract transactions and copying the voting patterns
of the platform’s most powerful voters in order to increase their chance of gaining a
reward.

The deadlines of the commit and reveal phases of a poll are initialized during
its creation. Thus, the contract is able to compare the current block timestamp and
the phase deadlines to determine the current phase. No authority is required to
manually advance the poll through its phases. In addition, the duration of each
phase is long enough to allow the participation of a large network population.

During the commit phase, voters send a transaction which performs the follow-
ing actions:

1. It submits hash(v, s) to the contract, where v represents the vote as an index
that points to the desired candidate of the poll and s is a locally and randomly
generated value which is used as a salt. The salt is necessary since it adds
entropy to the committed hash and prevents other voters from using a rainbow
table to expose the vote.

2. It deposits an amount of LAW as a stake. This is a method of insurance against
bad actors, since the participants who vote incorrectly are punished by losing
their stake.

3. It records the voter’s weight at the time of the vote by computing their vested
balance (VLAW) based on the current block timestamp.

The deposit amount is small and constant for every user in order to curb the
maximum amount of tokens that one can gain from a poll. It prevents wealthy and
high-influence users from gaining too many tokens by staking considerable amounts
of LAW.

During the reveal phase, voters send a transaction which performs the following
actions:

1. It submits the vote v and salt s to the contract and verifies that the revealed
values match the committed hash by performing the hash computation on-
chain.

2. It refunds part of the voter’s stake in order to discourage voters from abstain-
ing from the revealing process.

3. It adds the voter’s previously recorded weight to the tally of the voted candi-
date, thus officially recording the vote.

As the end of the reveal phase approaches, it becomes easier to predict the out-
come, with the last voter essentially having knowledge of the outcome before other
voters. Consequently, this would lead voters to wait until the last moment to reveal
their vote, while voters who predict that their vote is unsuccessful may choose to
abstain from revealing in order to avoid paying the transaction’s gas cost. Simply
put, it would result in voter bias and a skewed poll verdict. Providing compensation
for revealing leads to voters being honest and revealing their vote regardless of the
final verdict.

20 Chapter 4. Design

After the end of the reveal phase, the vote tally becomes immutable as the poll
stops accepting reveal transactions. The winning candidate of the poll can be deter-
mined by finding the candidate which has accumulated the most weight during the
reveal phase.

Users who voted for the winning candidate may send a transaction in order col-
lect their stake and reward. The total reward pool consists of the staked LAW tokens
of users who voted incorrectly, or did not reveal their vote.

Individual reward is proportionate to the amount of the voter’s VLAW that was
recorded on commit. This is because sharing the reward equally between winners
would hurt the protocol’s sybil resistance. A user could cheat by voting with mul-
tiple accounts and earning an equal amount of tokens in all of them. In total, their
share of the reward would be larger than that of honest voters who only use one
account.

Consequently, in order to calculate an individual reward, the total reward pool
is multiplied by the user’s recorded voting power and divided by the total voting
power recorded in the poll. This not only prevents sybil attacks by taking into ac-
count the user’s contribution to the outcome, but it also rewards high-influence vot-
ers with a larger share of the reward pool, which is a desirable result.

There is no deadline for collecting poll rewards. Collecting a poll reward finalizes
the user’s involvement with the poll and concludes the transactional flow of the
voting process.

4.6 Analysis

4.6.1 Collective wisdom

The ground-truth regarding the validity, category and importance of a submitted
document is unknown and the platform cannot rely on a centralized authority to
provide it. Consequently there is a need to produce or at least approximate it by
aggregating individual knowledge. The key element of determining the result of
each poll is “coherence”.

[31] presents consistency with other users as a parameter that effectively evalu-
ates human taggers. Additionally, [12] applies this concept to a blockchain which
implements a decentralized data feed. It incentivizes participants to perform the
same task but rewards only those whose result agreed with the majority of voters.
It relies on the theory that it is harder to coordinate and agree on a specific lie than
simply being honest. [37], which implements a decentralized prediction market, also
relies on this theory.

In this platform, if the rulebook was removed, the voting game could still be
played, but without significant collusion, there would be chaos concerning the re-
sults of each poll. The rulebook makes is easier for voters to coordinate on what to
agree on in order to get rewarded. If voters assume that the majority of other voters
are honest, they themselves will also vote honestly for fear of losing their deposit
and reward.

Individual rewards are proportionate to the amount of disagreement, since, the
more voters disagree, the higher the reward pool, due to more voters losing their
stake. Thus, one could attempt to collude in order to increase their profits by con-
vincing a small amount of voters to vote dishonestly. For instance, the colluder
announces to a small number of voters that they will vote for B while planning to
vote for A. The plan is to convince just the right amount of voters which will lead to
an increased reward pool but not result in a different winning candidate.

4.6. Analysis 21

Finally, an advantage of using this method to reward voters is that the rewards
are provided by participants who lost. New tokens do not need to be minted to
reward winners, instead they are exchanged between the poll participants. Minting
new tokens, which, concerning real-world economy, could be considered similar
to printing dollar bills, would lead to inflation which could significantly affect the
value of the token.

4.6.2 Effects of token value on the protocol

Platform incentives are sensitive to the value of LAW. Due to the rewards scaling
with VLAW, the income of a low-influence voter will be significantly lower com-
pared to other voters. When the reward of winning the poll is so low that the total
sum of gas costs spent for the participation exceeds the value of the reward con-
verted to Ether, there is no incentive to participate. This may happen when the
value of LAW drops excessively. Conversely, when the value of the token increases
significantly, voters are reluctant to participate in fear of losing wealth.

These issues derive from the fact that the vote stake is set to a constant amount of
LAW, which helps limit the reward pool. An approach to introduce reward flexibility
would be to implement self-governance mechanisms in the form of general polls
which affect the various parameters of the protocol, such as vote stake.

4.6.3 Effects of token accumulation

A voter or a colluding group of voters who owns more than 50% of the platform’s
VLAW can single-handedly determine the outcome of a poll. This could easily be
the case with token exchanges, which could eventually accumulate a large amount
of LAW tokens and vest them in order to gain a significant amount of voting power.
This constitutes the main limitation of the presented concept.

It is impossible to limit the voting power threshold per voter in a poll, since they
could simply split their VLAW to multiple accounts in order to bypass it. Instead,
the long vesting schedule required to gain one’s full value of LAW as well as the
period where LAW tokens are locked before being released from a schedule, lead to
a greatly reduced token liquidity. This prevents a high-influence user from voting
and instantly releasing their LAW with the intention to sell.

Assuming that their intention is to attack the platform, their negative contribu-
tion would cause the platform to be considered unpredictable and unreliable, there-
fore decreasing the value of the token. Since the attacker is not able to instantly
sell their tokens, their attack would harm their wealth. Consequently, the protocol
assumes that the curators with the highest amount of influence in the network are
honest and attempt to contribute positively to the network out of self-interest.

In order to mitigate the initial influence of users, a user score parameter could be
introduced, which starts at 0 and increases with each positive contribution. Again,
the way a contribution is counted should scale with a user’s VLAW in order to avoid
sybil attacks. Otherwise, a person which votes with two accounts earns two contri-
butions instead of one.

The user score could represent a multiplier that is applied on a voter’s VLAW
with every vote, adjusting their power. In addition, the user score has to increase
indefinitely. If a cap on the user score was applied, it could be easily bypassed by
creating another account every time the cap is reached on the previous account.

However, the multiplier will eventually reach the threshold where it no longer
reduces voting power. This would lead to the user gaining even more voting power,

22 Chapter 4. Design

which will in turn lead to an even higher user score. A VLAW-wealthy user could
very quickly increase their user score due to the user score gains scaling with VLAW.
Thus, the user score parameter would significantly decelerate the progress of low-
influence users, while a high-influence user could bypass the handicap with limited
contribution.

4.6.4 Reliability

While crowdsourcing image labeling or sentiment analysis could yield satisfactory
results regardless of the voters’ technical skills or specialties, the validation and clas-
sification of case law demands a extensive knowledge of legal terms. Thus, uncerti-
fied voters may not be considered adequate for the task since they cannot guarantee
to have the knowledge to curate the submitted content.

Sacrificing decentralization is unavoidable, in present times, in order to gain au-
thenticity and reliability. A semi-decentralized solution could rely on decentralized
identifiers (DIDs) and blockchain certifications for legal knowledge provided by in-
stitutions in order to authenticate voters. Authenticated legal professionals could be
provided with a user profile which starts with a high-influence. There has already
been an initiative to store academic records on the blockchain [10, 3, 8].

4.6.5 Exploring the marketplace concept

Authoring and submitting a document requires a user to expend a lot of effort and
the reward gained from the voting process might not be enough to justify that effort.
The formation of a decentralized market for case law is a possible approach that
could infuse the submitted documents with financial value.

The potential approaches to this concept presented in the literature [15, 24, 4]
come with consequences to convenience, financial cost and decentralization. Fur-
thermore, the concept faces a larger problem when it comes to preserving the secu-
rity of the documents, since access to them by curators is necessary for their valida-
tion before being made available for purchase.

A method to mitigate the problem would be to require users to purchase the doc-
ument before they are able to process it. This, however, would lead to users being
reluctant about which documents they choose to process, preferring documents in
which they have a direct interest, thus reducing the overall participation in the net-
work. As a consequence, the amount of attention a document receives would be
directly proportionate to the interest the network shows for it. This would lead to
some documents not being processed correctly due to low participation.

Furthermore, piracy and collusion between buyers can also result in a loss of
income for the submitter. Buyers may freely resell or share a document after its
purchase. Additionally, they could collude by agreeing to share the cost of the doc-
ument.

The data exchange between the two parties, buyer and seller, should be performed
using a secret channel. However, since off-chain communication and data flow is not
verifiable, disputes could arise. The seller could choose to deliberately send invalid
data. In that case the buyer would have to initialize a dispute and the seller would
have to prove their innocence. Furthermore, the buyer could receive the correct
data but attempt to grieve the seller by falsely accusing them. Dispute resolution
would then require the document to be revealed to the arbitrators in order to reach
a decision.

4.6. Analysis 23

In conclusion, the lack of verifiability of intra-user transactions, uncertainty con-
cerning the real content of a document due to it being hidden before purchase, re-
liance on a reputation system to ease this uncertainty, constitute limitations which
result in a complex and inefficient marketplace.

25

Chapter 5

Implementation

This section presents a proof-of-concept implementation of the protocol described
in chapter 4. At the time of writing, the source code and documentation of both
the smart contracts and the web interface are stored in a private GitHub repository
which will be made public shortly after the publication of this thesis.

5.1 Smart contracts

Three smart contracts were written in Ethereum’s Solidity smart contract program-
ming language. The Truffle framework [45] was used during development in order
to generate the project template, as well as to provide tools for project management
such as building, unit testing and deploying the contracts to both private and pub-
lic test networks. During early development, Ganache [22], a personal Ethereum
blockchain simulator, was used to launch a local, private blockchain for testing con-
tract interactions and monitoring transactions.

5.1.1 Main contract

The main contract stores most of the vital application data and implements the doc-
ument submission and voting protocol. The main data structures used throughout
the contract are Document and Poll.

The Document struct stores only the submitter address and IPFS hash of the up-
loaded document. Documents are stored in a global documents array, as the web
application might need to access them sequentially, in order, for instance, to display
the 10 most recent documents.

The Poll struct stores its poll type, the index of the document it is associated
with, deadlines for the commit and reveal phases, and a helper VoteData struct
which includes vote information such as committed hash, vote weight and revealed
vote for every user. Each piece of information is stored in a mapping, a key-value ta-
ble which maps addresses to information. The reason why a helper struct was used
is merely due to a limitation in the Solidity language, which does not allow return-
ing arrays of structs which contain mapping fields. Wrapping all the mapping fields
in a separate struct bypasses this limitation.

Additionally, it is noted that, concerning the contract, the sole functional dif-
ference between the poll types is their number of candidates. Thus, the contract
requires only the number of available candidates of each poll type to be recorded in
its storage. This allows the contract to initialize the vote storage of each poll, repre-
sent each candidate as an index which corresponds to the desired candidate in the
candidate array and finally, to verify whether a submitted vote is valid or not during
the reveal phase. The contract is agnostic of the meaning and verbose description of

https://github.com/elenapan/caselaw

26 Chapter 5. Implementation

each candidate. These may be stored in the rulebook, which can be easily fetched
from IPFS and displayed in the web application.

Similarly to documents, a global polls array is initialized. New documents and
polls created by addDocument() are appended to their respective arrays. Thus, knowl-
edge of the poll index and voter address allows O(1) access to a voter’s data for the
poll in question.

The contract data could be linked in more complex ways in order to allow the
contract to answer queries such as “documents which were uploaded by user 0x1234
between April and June”, however that would increase storage needs and by exten-
sion, gas costs for the user. Generally, it is adequate to use arrays of structs for
data that needs to be accessed sequentially and mappings for data that needs to be
accessed by an arbitrary key. To answer more complex queries, an application which
indexes and aggregates contract events is required, such as TheGraph [46].

The commitment scheme is implemented as described in 4.5. The functions
commitVote() and revealVote() are used during the commitment scheme. The
modifiers canCommit and canReveal are applied to the aforementioned functions in
order to test if the conditions for a valid commit or reveal are satisfied. If that is not
the case, the transaction is reverted. In addition, the modifier withTokenDeposit()
is to applied to functions addDocument() and commitVote() since they require a user
to stake tokens to proceed. Finally, collectReward() determines whether a user is
eligible for collecting a reward for a specific poll, calculates the reward based on the
method described in 4.5 and transfers the tokens to the transaction sender.

5.1.2 Token and crowdsale contracts

OpenZeppelin [35] provides contract templates, math libraries and token implemen-
tations for common token specifications. This work was based on the implementa-
tion of OpenZeppelin’s ERC20 token. The full token name is “LAW Coin” and its
symbol is “LAW”. It is represented with 18 decimals in order to mimic the relation-
ship between Ether and wei.

The token ties itself to the platform by allowing the address of the main contract
to make transfers to itself through an additional helper function, dappTransfer().
Due to the specification of ERC20 tokens, in order for a contract to transfer tokens on
behalf of a user, two transactions are required: an approve() transaction and then a
transfer(). Thus, with dappTransfer(), the token contract is able to authorize the
main contract to make transfers to itself on behalf of users using only one transac-
tion.

The creation of a vesting schedule essentially determines the parameters that de-
fine the line seen in figure 4.1. These parameters are stored in a VestingSchedule
data structure and each user is mapped to an array of such structures. In order
to calculate the VLAW balance gained so far from a vesting schedule, we need to
determine the value of the line function, given the current block timestamp. Con-
sequently, the total vested balance of a user is the sum of their vesting schedule
balances.

A loop is needed to compute the sum of balances. However, loops are not ideal
due to gas costs. If the vesting schedule duration is short enough, it is possible to
achieve lower gas consumption during transactions that need to compute a user’s
vested balance by occasionally restructuring the vesting schedules array in order
to decrease its size. Completed vested schedules no longer need to be computed.
During restructuring, it is possible to delete them from the array and keep their
balance in a separate variable. Deletion is achieved by swapping the element to be

5.2. Web application 27

deleted with the last element and then decreasing the length of the array. This causes
an amount of gas to be refunded to the transaction sender, since the transaction
deletes data from a contract’s storage.

Finally, the crowdsale contract was also based on the crowdsale implementation
offered by OpenZeppelin. A standard non-timed crowdsale with a maximum total
supply provided and a stable conversion rate of Ether to tokens was used and no
additional business logic was implemented.

5.1.3 Time-dependent contract logic

The commitment scheme which is essential for ensuring a privacy-preserving vot-
ing procedure requires time-dependent logic in order to function successfully. The
same applies to the token vesting schedule functionality implemented in the to-
ken contract. In Solidity, special global variables such as block.timestamp and
block.number are made available for this purpose.

Relying on the timestamp of the block is a possible solution. However, its accu-
racy is unreliable as the miner is able to adjust it to some degree and is expected to
do so if there is a large enough profit to be gained by this action. As a more secure
solution, [1] recommends to use the block number in conjunction with the average
block time of the chain in order to estimate time, since the block number is more
difficult for a miner to manipulate.

The Ethereum network attempts to keep the block time at 15 seconds on aver-
age [20]. The block difficulty is adjusted accordingly to achieve this. However, the
transition of Ethereum to a Proof-of-Stake network could decrease the block time,
potentially rendering any estimations inaccurate. Furthermore, in this contract, no
critical decision is made by relying on the block timestamp. Plenty of time is pro-
vided for all time-sensitive actions of the contract. Additionally, regarding vested
balance which is also time-dependent, a deviation of several seconds would be neg-
ligible when considering the months or years required to complete a vesting sched-
ule. Due to the aforementioned points, we opt for the timestamp method in order to
enforce time constraints.

5.2 Web application

The web application provides users with an intuitive interface to the deployed con-
tracts and their methods. Through the frontend of the application, it is possible to
manage their tokens and vesting schedules, as well as participate in polls and sub-
mit documents. The frontend was developed as a Single-Page Application (SPA)
using the ReactJS framework, meaning that all routing happens on the client side.
Due to this fact, the frontend of the application can be hosted on IPFS, achieving, as
a result, a higher degree of decentralization and potentially accelerated access as its
popularity increases.

The backbone of the application is web3.js, a JavaScript library which allows
interaction with an Ethereum provider through a HTTP or IPC connection. The
provider may be either a local node running with geth or a remote node offered by
various services such as Infura [19].

The MetaMask browser extension, a non-custodial wallet and Ethereum light-
node, is used for interacting with the applications by signing and sending the user’s
transactions to the network. The application is tightly integrated with MetaMask as
it is the least intrusive wallet solution for a new user and can be used with all major
web browsers.

28 Chapter 5. Implementation

The user may navigate through the following pages:

1. The upload page, which allows a user to submit a document for validation.
It provides forms for various metadata such as court decision number and
headnote, which is a summary of the case separated from the document body.
Documents are submitted to IPFS in JSON format, which is easy to parse and
is widely used by most APIs. Finally, the addDocument() contract method is
called in order to perform the actions mentioned in 4.4.

2. The search page, which allows a user to submit queries and browse through
submitted documents. The search results display the headnote of the case as
well as metadata such as category and importance level, if the respective doc-
ument polls have ended. Rendering a selected document involves fetching it
directly from IPFS and parsing the returned JSON.

3. The contribute page, which allows a user to participate in any of the three
polls mentioned in 4.3.2. Upon choosing the desired poll type, all the open
polls of such type are fetched and rendered as a list. Clicking on a poll fetches
its data from the contract, including the document it is associated with. If the
user is able to vote for the poll, the document is fetched directly from IPFS and
displayed along with the poll’s question. For instance, in the case of a validity
poll, the validity conditions are displayed alongside the document and the
user is instructed to tick them off individually. A cryptographically secure,
randomly generated salt is created with web3.utils.randomHex() and finally,
commitVote() is called. The vote and salt are stored in the user’s localStorage
on transaction confirmation in order to be revealed later on.

4. The dashboard page, which allows a user to manage their LAW and VLAW as
well as post-commit voting procedures. It fetches the pending polls in which
a user has committed their vote and, depending on their state, displays infor-
mation about their reveal deadline and whether or not the user is eligible to
collect their reward. Furthermore, a mechanism for exporting and importing
the committed data is available. Its main use case is to back up locally stored
vote data and import it to different browsers or computers.

5. The help page, which provides information about the platform in a Frequently
Asked Questions (FAQ) format.

5.3 Storage

5.3.1 IPFS limitations

The main disadvantage of content-addressed file services is their lack of support for
sequential storage. Thus, files need to be downloaded individually in order to be
processed in a meaningful way. Aggregation of data is not possible natively, thus,
this functionality has to be implemented as a separate application on top of the file
service.

In order to accommodate the needs of data consumers, it is necessary to main-
tain a server or server cluster that aggregates and indexes documents and accepts
full-text search queries from users. This should constitute the only centralized com-
ponent of the platform. It is noted that this functionality is only necessary to cover
the needs of data consumers, who do not participate in the curation process, but are
only interested in browsing through documents.

5.3. Storage 29

Additionally, IPFS cannot guarantee data availability, as non popular data is in
danger of being garbage collected from the network. One or multiple IPFS nodes
which pin newly added documents are required to ensure high availability and ac-
cess speed for all documents.

5.3.2 Anonymization

While it has been noted that anonymization can make legal research harder [5, 47],
countries which have adopted strict data protection laws are making efforts in order
to remove identifying information such as names of physical persons occurring in
the bodies of court decisions.

Consequently, depending on the platform’s country of operation and the data
protection and privacy regulations it is required to adhere to, document submitters
might be forced to anonymize the data they provide. In such cases, anonymiza-
tion should be added to the platform’s document validity conditions. Furthermore,
a method of de-personalization should be employed in order to preserve both the
privacy of the involved parties and the usefulness of the data.

In order to protect the privacy of the involved parties, de-identification could be
achieved by replacing victim and defendant names with initials such as V1, V2 and
D1, D2 respectively. Genders of physical persons would have to be preserved as they
may constitute a crucial parameter of the verdict, such as in cases concerning divorce
and custody.

31

Chapter 6

Synopsis and Prospects

This thesis has introduced AnyCase, a decentralized case law curation ecosystem
powered by intrinsic financial incentives which generate wealth for its benefactors.
The voting protocol presented herein is completely decentralized and autonomous
since it requires no tallying authority or administrator entity to operate. The vot-
ing process itself is privacy-preserving and publicly verifiable, while it allows voter
abstinence in all phases and does not compute the tally based on the number of in-
dividual voters, rendering it completely sybil-resistant. Lastly, no secret channels
between participants are necessary during the voting process. Communication is
only performed between the user and the smart contract through transactions.

Nevertheless, the presented concept has room for improvement. Due to the ex-
pertise needed to perform the tasks identified in the platform, it is necessary to raise
the average skill level of participants and thus the reliability of the platform as a
knowledge base. A semi-decentralized platform which identifies and authorizes
skilled curators might result in higher quality validation and classification. Unfor-
tunately, identity on the blockchain is one of the hardest problems to solve without
sacrificing decentralization.

A more in depth financial analysis would be required to determine the solidity of
the market this platform creates for the LAW token. Furthermore, self-governance
mechanisms should be researched to increase autonomy and resistance to factors
such as the tokens’s market value and the value of Ether, which, for the time being,
directly affect the incentives of protocol.

Close collaboration with legal professionals is crucial in order to identify the key
elements which assist legal research through an online case law database. It is also
vital to determine the pain points of user experience in order to design a practical
and intuitive user interface for audiences unfamiliar with cryptocurrency and de-
centralized applications. Finally, it would be interesting to investigate the feasibility
of using the platform as an oracle for a next-generation decentralized court.

32 Chapter 6. Synopsis and Prospects

Source: https://xkcd.com/2267/

FIGURE 6.1: “Blockchains are like grappling hooks, in that it’s extremely
cool when you encounter a problem for which they’re the right solution, but

it happens way too rarely in real life.”

https://xkcd.com/2267/

33

Bibliography

[1] A Antonopoulos and G Wood. Mastering Ethereum: Building Smart Contracts
and DApps. 2018. ISBN: 9781491971949. URL: https://github.com/ethereumbook/
ethereumbook.

[2] API Documentation | Caselaw Access Project. URL: https://case.law/api/
(visited on 12/30/2019).

[3] Augusta Hightech Soft Solutions. UAE University launches the blockchain records
app to manage academic records. 2019. URL: https://hackernoon.com/uae-
university-launches-the-blockchain-records-app-to-manage-academic-
records-2ff8ab7804a0 (visited on 02/25/2020).

[4] Prabal Banerjee and Sushmita Ruj. “Blockchain Enabled Data Marketplace -
Design and Challenges”. In: (2019). arXiv: 1811.11462. URL: http://arxiv.
org/abs/1811.11462.

[5] Barnard, Catherine and Peers, Steve. EU Law Analysis: Anonymity in CJEU
cases: privacy at the expense of transparency? 2018. URL: http://eulawanalysis.
blogspot.com/2018/12/anonymity- in- cjeu- cases- privacy- at.html
(visited on 02/10/2020).

[6] Juan Benet. “IPFS - Content Addressed, Versioned, P2P File System”. In: CoRR
abs/1407.3561 (2014). arXiv: 1407.3561. URL: http://arxiv.org/abs/1407.
3561.

[7] BigchainDB - The blockchain database. URL: https://www.bigchaindb.com/
(visited on 09/09/2019).

[8] Blockchain diplomas land in Virginia at ECPI | Higher Education. 2018. URL: https:
//www.cryptoscoop.io/blockchain- diplomas- land- in- virginia- at-
ecpi-higher-education/ (visited on 02/25/2020).

[9] Bloomberg. URL: https://www.bloomberg.com/company/ (visited on 06/03/2019).

[10] Busta, Hallie. More colleges are using the blockchain for student records. 2018. URL:
https://www.educationdive.com/news/more-colleges-are-using-the-
blockchain-for-student-records/542093/ (visited on 02/25/2020).

[11] Vitalik Buterin. “A Next-Generation Smart Contract and Decentralized Appli-
cation Platform”. In: January (2013). URL: https://github.com/ethereum/
wiki/wiki/White-Paper.

[12] Vitalik Buterin. SchellingCoin: A Minimal-Trust Universal Data Feed. URL: https:
//blog.ethereum.org/2014/03/28/schellingcoin- a- minimal- trust-
universal-data-feed/ (visited on 02/23/2020).

[13] Gaby G. Dagher et al. “BroncoVote: Secure Voting System using Ethereum’s
Blockchain”. In: Proceedings of the 4th International Conference on Information Sys-
tems Security and Privacy (ICISSP 2018). Icissp. 2018, pp. 96–107. ISBN: 9789897582820.
DOI: 10.5220/0006609700960107.

[14] Decentralized Cloud Storage - Storj. URL: https://storj.io/ (visited on 08/28/2019).

https://github.com/ethereumbook/ethereumbook
https://github.com/ethereumbook/ethereumbook
https://case.law/api/
https://hackernoon.com/uae-university-launches-the-blockchain-records-app-to-manage-academic-records-2ff8ab7804a0
https://hackernoon.com/uae-university-launches-the-blockchain-records-app-to-manage-academic-records-2ff8ab7804a0
https://hackernoon.com/uae-university-launches-the-blockchain-records-app-to-manage-academic-records-2ff8ab7804a0
http://arxiv.org/abs/1811.11462
http://arxiv.org/abs/1811.11462
http://arxiv.org/abs/1811.11462
http://eulawanalysis.blogspot.com/2018/12/anonymity-in-cjeu-cases-privacy-at.html
http://eulawanalysis.blogspot.com/2018/12/anonymity-in-cjeu-cases-privacy-at.html
http://arxiv.org/abs/1407.3561
http://arxiv.org/abs/1407.3561
http://arxiv.org/abs/1407.3561
https://www.bigchaindb.com/
https://www.cryptoscoop.io/blockchain-diplomas-land-in-virginia-at-ecpi-higher-education/
https://www.cryptoscoop.io/blockchain-diplomas-land-in-virginia-at-ecpi-higher-education/
https://www.cryptoscoop.io/blockchain-diplomas-land-in-virginia-at-ecpi-higher-education/
https://www.bloomberg.com/company/
https://www.educationdive.com/news/more-colleges-are-using-the-blockchain-for-student-records/542093/
https://www.educationdive.com/news/more-colleges-are-using-the-blockchain-for-student-records/542093/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://blog.ethereum.org/2014/03/28/schellingcoin-a-minimal-trust-universal-data-feed/
https://blog.ethereum.org/2014/03/28/schellingcoin-a-minimal-trust-universal-data-feed/
https://blog.ethereum.org/2014/03/28/schellingcoin-a-minimal-trust-universal-data-feed/
http://dx.doi.org/10.5220/0006609700960107
https://storj.io/

34 BIBLIOGRAPHY

[15] Drasko Draskovic and George Saleh. “Datapace - Decentralized Data Market-
place Based on Blockchain”. In: (2017), pp. 1–16. URL: https://www.datapace.
io/datapace{_}whitepaper.pdf.

[16] Eigen Technologies: Unlock Your Data With Natural Language Processing. URL:
https://www.eigentech.com/ (visited on 05/28/2019).

[17] EIP 20: ERC-20 Token Standard. URL: https://eips.ethereum.org/EIPS/eip-
20 (visited on 02/15/2020).

[18] EIP 721: ERC-721 Non-Fungible Token Standard. URL: https://eips.ethereum.
org/EIPS/eip-721 (visited on 02/15/2020).

[19] Ethereum API | IPFS API & gateway | ETH nodes as a service | Infura. URL:
https://infura.io/ (visited on 02/25/2020).

[20] Ethereum Average Block Time Chart. URL: https : / / etherscan . io / chart /
blocktime (visited on 09/03/2019).

[21] Explanation of Importance Level & Key cases. URL: https://www.echr.coe.int/
Documents/Explanation_Importance_Level_ENG.pdf (visited on 01/01/2020).

[22] Ganache | Truffle Suite. URL: https://www.trufflesuite.com/ganache (visited
on 02/25/2020).

[23] Google Scholar. URL: https://scholar.google.com/ (visited on 12/30/2019).

[24] Roger Haenni. Datum Network - The decentralized data marketplace - Whitepaper
V15. 2017. URL: https://datum.org/assets/Datum-WhitePaper.pdf.

[25] David Khoury et al. “Decentralized Voting Platform Based on Ethereum Blockchain”.
In: 2018 IEEE International Multidisciplinary Conference on Engineering Technol-
ogy (IMCET). IEEE, Nov. 2018, pp. 1–6. ISBN: 978-1-5386-4500-0. DOI: 10.1109/
IMCET . 2018 . 8603050. URL: https : / / ieeexplore . ieee . org / document /
8603050/.

[26] Lesaege, Clément and Ast, Federico and George, William. Kleros - Short Paper
v1.0.7. 2019. URL: https://kleros.io/assets/whitepaper.pdf.

[27] LexisNexis R© Case Law | Comprehensive collection of case law. URL: https://www.
lexisnexis.com/en-us/products/caselaw.page (visited on 05/08/2019).

[28] Primas Lab Foundation Ltd. Primas - Restoring Health to the Internet. 2018. URL:
https://primas.io/whitepaper/en (visited on 12/11/2019).

[29] Luminance | Technology. URL: https://www.luminance.com/technology.html
(visited on 05/08/2019).

[30] Patrick McCorry, Siamak F Shahandashti, and Feng Hao. “A Smart Contract
for Boardroom Voting with Maximum Voter Privacy”. In: Financial Cryptogra-
phy and Data Security. Ed. by Aggelos Kiayias. Cham: Springer International
Publishing, 2017, pp. 357–375. ISBN: 978-3-319-70972-7.

[31] Olena Medelyan, Eibe Frank, and Ian H. Witten. “Human-competitive tag-
ging using automatic keyphrase extraction”. In: Proceedings of the 2009 Confer-
ence on Empirical Methods in Natural Language Processing Volume 3 - EMNLP ’09.
Vol. 3. Morristown, NJ, USA: Association for Computational Linguistics, 2009,
p. 1318. ISBN: 9781932432633. DOI: 10.3115/1699648.1699678. URL: http:
//portal.acm.org/citation.cfm?doid=1699648.1699678.

https://www.datapace.io/datapace{_}whitepaper.pdf
https://www.datapace.io/datapace{_}whitepaper.pdf
https://www.eigentech.com/
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721
https://infura.io/
https://etherscan.io/chart/blocktime
https://etherscan.io/chart/blocktime
https://www.echr.coe.int/Documents/Explanation_Importance_Level_ENG.pdf
https://www.echr.coe.int/Documents/Explanation_Importance_Level_ENG.pdf
https://www.trufflesuite.com/ganache
https://scholar.google.com/
https://datum.org/assets/Datum-WhitePaper.pdf
http://dx.doi.org/10.1109/IMCET.2018.8603050
http://dx.doi.org/10.1109/IMCET.2018.8603050
https://ieeexplore.ieee.org/document/8603050/
https://ieeexplore.ieee.org/document/8603050/
https://kleros.io/assets/whitepaper.pdf
https://www.lexisnexis.com/en-us/products/caselaw.page
https://www.lexisnexis.com/en-us/products/caselaw.page
https://primas.io/whitepaper/en
https://www.luminance.com/technology.html
http://dx.doi.org/10.3115/1699648.1699678
http://portal.acm.org/citation.cfm?doid=1699648.1699678
http://portal.acm.org/citation.cfm?doid=1699648.1699678

BIBLIOGRAPHY 35

[32] Paul Merrill et al. “Ping-Pong Governance: Token Locking for Enabling Blockchain
Self-governance”. In: Mathematical Research for Blockchain Economy. Ed. by Panos
Pardalos et al. Cham: Springer International Publishing, 2020, pp. 13–29. ISBN:
978-3-030-37110-4.

[33] Arthur S. Miller. “Statutory Language and the Purposive Use of Ambiguity”.
In: Virginia Law Review 42.1 (1956), pp. 23–39. ISSN: 00426601. URL: http://
www.jstor.org/stable/1070047.

[34] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. In: Oc-
tober 2008 (2008), p. 9. ISSN: 09254560. DOI: 10.1007/s10838-008-9062-0.
arXiv: 43543534534v343453. URL: https://bitcoin.org/bitcoin.pdf.

[35] OpenZeppelin: Contracts. URL: https://openzeppelin.com/contracts (visited
on 02/14/2020).

[36] Partial Lock Commit Reveal Voting System that utilizes ERC20 Tokens. URL: https:
//github.com/ConsenSys/PLCRVoting (visited on 02/19/2020).

[37] Jack Peterson et al. “Augur: a decentralized oracle and prediction market plat-
form”. In: arXiv preprint arXiv:1501.01042 (2015).

[38] Arnold Pham and Andrew Tran. Lunyr - A decentralized world knowledge base
on Ethereum driven by economic incentives. 2017. URL: https://whitepaper.io/
document/222/lunyr-whitepaper (visited on 12/30/2019).

[39] Protocol Labs. Filecoin: A Decentralized Storage Network. 2017. URL: https://
filecoin.io/filecoin.pdf.

[40] randao.org. Randao: Verifiable Random Number Generation. URL: https://www.
randao.org/whitepaper/Randao_v0.85_en.pdf (visited on 02/19/2020).

[41] reddit: the front page of the internet. URL: https://www.reddit.com/ (visited on
12/21/2019).

[42] Sia. URL: https://sia.tech/ (visited on 08/28/2019).

[43] Steemit. Steem: An incentivized, blockchain-based, public content platform. 2017.
URL: https://steem.com/SteemWhitePaper.pdf (visited on 12/19/2019).

[44] Swarm - Storage and Communication for a Sovereign Digital Society. URL: https:
//swarm.ethereum.org/ (visited on 08/28/2019).

[45] Sweet Tools for Smart Contracts | Truffle Suite. URL: https://www.trufflesuite.
com/ (visited on 02/25/2020).

[46] The Graph - A Query Protocol for Blockchains. URL: https://thegraph.com/
(visited on 02/21/2020).

[47] Marc Van Opijnen and Cristiana Santos. “On the Concept of Relevance in Le-
gal Information Retrieval”. In: Artif. Intell. Law 25.1 (Mar. 2017), 65–87. ISSN:
0924-8463. DOI: 10.1007/s10506-017-9195-8. URL: https://doi.org/10.
1007/s10506-017-9195-8.

[48] Vessenes, Peter. Deconstructing theDAO Attack: A Brief Code Tour. 2016. URL:
https://vessenes.com/deconstructing-thedao-attack-a-brief-code-
tour/ (visited on 02/10/2020).

[49] Taotao Wang, Soung Chang Liew, and Shengli Zhang. “PubChain: A Decen-
tralized Open-Access Publication Platform with Participants Incentivized by
Blockchain Technology”. In: ArXiv abs/1910.00580 (2019).

http://www.jstor.org/stable/1070047
http://www.jstor.org/stable/1070047
http://dx.doi.org/10.1007/s10838-008-9062-0
http://arxiv.org/abs/43543534534v343453
https://bitcoin.org/bitcoin.pdf
https://openzeppelin.com/contracts
https://github.com/ConsenSys/PLCRVoting
https://github.com/ConsenSys/PLCRVoting
https://whitepaper.io/document/222/lunyr-whitepaper
https://whitepaper.io/document/222/lunyr-whitepaper
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://www.randao.org/whitepaper/Randao_v0.85_en.pdf
https://www.randao.org/whitepaper/Randao_v0.85_en.pdf
https://www.reddit.com/
https://sia.tech/
https://steem.com/SteemWhitePaper.pdf
https://swarm.ethereum.org/
https://swarm.ethereum.org/
https://www.trufflesuite.com/
https://www.trufflesuite.com/
https://thegraph.com/
http://dx.doi.org/10.1007/s10506-017-9195-8
https://doi.org/10.1007/s10506-017-9195-8
https://doi.org/10.1007/s10506-017-9195-8
https://vessenes.com/deconstructing-thedao-attack-a-brief-code-tour/
https://vessenes.com/deconstructing-thedao-attack-a-brief-code-tour/

36 BIBLIOGRAPHY

[50] Westlaw UK | UK Legal Solutions | Thomson Reuters. URL: https://legalsolutions.
thomsonreuters.co.uk/en/products-services/westlaw-uk.html (visited
on 05/08/2019).

[51] Wikipedia Blocked in Turkey. URL: https://turkeyblocks.org/2017/04/29/
wikipedia-blocked-turkey/ (visited on 12/31/2019).

[52] Wood, Gavin. Ethereum: A Secure Decentralised Generalised Transaction Ledger.
2019. URL: https://ethereum.github.io/yellowpaper/paper.pdf.

[53] Emre Yavuz et al. “Towards secure e-voting using ethereum blockchain”. In:
2018 6th International Symposium on Digital Forensic and Security (ISDFS). IEEE,
Mar. 2018, pp. 1–7. ISBN: 978-1-5386-3449-3. DOI: 10.1109/ISDFS.2018.8355340.
URL: https://ieeexplore.ieee.org/document/8355340/.

https://legalsolutions.thomsonreuters.co.uk/en/products-services/westlaw-uk.html
https://legalsolutions.thomsonreuters.co.uk/en/products-services/westlaw-uk.html
https://turkeyblocks.org/2017/04/29/wikipedia-blocked-turkey/
https://turkeyblocks.org/2017/04/29/wikipedia-blocked-turkey/
https://ethereum.github.io/yellowpaper/paper.pdf
http://dx.doi.org/10.1109/ISDFS.2018.8355340
https://ieeexplore.ieee.org/document/8355340/

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Case Law
	Motivation
	Purpose of this Thesis

	Background
	Blockchain
	Ethereum
	Gas
	Smart Contracts
	Tokens
	Oracles

	Decentralized Applications
	Decentralized file services

	Related Work
	Blockchain voting
	Commitment schemes
	Token-weighted voting

	Token-curated registries
	Decentralized data markets

	Design
	System overview
	Token engineering
	LAW
	VLAW

	Platform rules
	Rulebook
	Poll types

	Document submission
	Voting process
	Analysis
	Collective wisdom
	Effects of token value on the protocol
	Effects of token accumulation
	Reliability
	Exploring the marketplace concept

	Implementation
	Smart contracts
	Main contract
	Token and crowdsale contracts
	Time-dependent contract logic

	Web application
	Storage
	IPFS limitations
	Anonymization

	Synopsis and Prospects
	Bibliography

