
i 
 

 

University of Thessaly 

Department of Mechanical Engineering 

 

 

 
 

Diploma Thesis 

 
Reliability Prediction using Neural Networks in      

Semiconductor Manufacturing 

 
 

Evangelos Tsiakiris                                 Christos Kalantaridis  

 

 

 

Thesis Supervisor: Dr. George Liberopoulos, Professor 

 

                                                        

 

 

 

Volos, September 2019 

 



ii 
 

Members of the Examination Committee: 

 

 

First Examiner            Dr. George Liberopoulos 

(Supervisor) Professor, Department of Mechanical Engineering, 

                                    University of Thessaly 

 

 

 

Second Examiner        Dr. Dimitrios Pantelis  

Associate Professor, Department of Mechanical Engineering, 

University of Thessaly    

 

 

 

Third Examiner   Dr. Georgios K. D. Saharidis 

Assistant Professor, Department of Mechanical Engineering,  

University of Thessaly 

 

 

 

 

 

 

 

 

 

 

                                                
 

 

 

 

 

 

 

 

 



iii 
 

Acknowledgements 

 

First of all, we would like to thank our supervisor Mr. George Liberopoulos for his valuable 

help and guidance during our work and for giving us the opportunity to examine such an 

interesting topic, as reliability and neural networks in manufacturing. 

 

We would also like to thank Phd student Michalis Deligiannis for his constant scientific 

support and encouragement. Without his crucial contribution, we wouldn’t be able to carry 

through with our thesis on time. 

 

Moreover, we would like to thank Dr. Dimitrios Pantelis and Dr. Georgios K. D. Saharidis 

for their participation in the examination committee.   

 

Last but not least, we would like to thank our families for all the patience and guidance 

through all the difficult moments we had these years. Being at this stage of our life is all 

thank to them. In addition, we would like to thank our friends for the great time spent 

together and the experience shared. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                         

 

 



iv 
 

Abstract 

 

 

In this thesis, the reliability of specific machines from Bosch’s semiconductor plant, which is 

located at Reutlingen in Germany, is investigated by using neural networks in order to make 

future failure predictions. The processing data of the machines, provided by Bosch’s factory, 

was taken into consideration. More specifically, three cumulative descriptors were used for 

the creation of each neural network model. On the one side, the machines’ execution time 

along with the number of maintenance, compose the input parameters. On the other side, the 

number of faults constitutes the output parameter. As a result, the general idea is that the 

cumulative number of failures can be estimated depending on machine’s cumulative 

productive time and cumulative number of maintenance. Thus, in order to accomplish this 

conception, the data of each machine were imported from the Excel files into the Matlab 

software, to be deployed on neural networks training. After the training process, the 

validation and the performance of every model are tested, by making predictions regarding 

the future failures. It should be noted that besides the prediction part, another key feature of 

this thesis focuses on estimating the time that the first failure occurs for each machine. 

Having analyzed the results, a variety of diagrams that describe the data distributions is 

attached, in order to provide a better physical supervision and important statistical 

information. In the end, we consider some ways of how the predictive models could be 

applied in real life production chain circumstances, to help in the optimization of scheduling.   

 

 

Keywords: Neural Networks, Data Analysis, Semiconductor Manufacturing, Reliability, 

Failure Prediction  

 

 

 

                      

 

 

 

 

 

 

 

 

 



v 
 

 
ΠΕΡΙΛΗΨΗ 

 

 

Σ’ αυτή τη διπλωματική εργασία, διερευνάται η αξιοπιστία συγκεκριμένων μηχανών από το 

εργοστάσιο παραγωγής ημιαγωγών της Bosch, που βρίσκεται στο Reutlingen της Γερμανίας, 

χρησιμοποιώντας νευρωνικά δίκτυα για την πραγματοποίηση μελλοντικών προβλέψεων 

βλαβών. Τα δεδομένα λειτουργίας των μηχανών που παρασχέθηκαν από το εργοστάσιο της 

Bosch χρησιμοποιήθηκαν για το σκοπό αυτό. Πιο συγκεκριμένα, χρησιμοποιήθηκαν τρεις 

αθροιστικοί παράγοντες για τη δημιουργία των μοντέλων των νευρωνικών δικτύων. Από τη 

μία πλευρά, ο χρόνος λειτουργίας των μηχανών μαζί με τον αριθμό συντήρησης συνθέτουν 

τις παραμέτρους εισόδου. Από την άλλη πλευρά, ο αριθμός των βλαβών αντιπροσωπεύει την 

παράμετρο εξόδου. Έτσι λοιπόν, η γενική ιδέα είναι οτι ο αθροιστικός αριθμός βλαβών 

μπορεί να εκτιμηθεί συναρτήσει του αθροιστικού χρόνου παραγωγής και του αθροιστικού 

αριθμού συντήρησης της μηχανής. Για την επίτευξη αυτής της διαδικασίας, τα δεδομένα 

κάθε μηχανής εισήχθησαν από αρχεία Excel στο λογισμικό Matlab, έτσι ώστε να 

χρησιμοποιηθούν στην εκπαίδευση των νευρωνικών δικτύων. Μετά τη διαδικασία της 

εκπαίδευσης, ελέγχθηκε η εγκυρότητα και η απόδοση των μοντέλων πραγματοποιώντας 

προβλέψεις για μελλοντικές βλάβες. Πρέπει να σημειωθεί οτι εκτός απο το κομμάτι των 

προβλέψεων, ένα άλλο σημαντικό θέμα που πραγματεύεται η διπλωματική είναι η εκτίμηση 

του χρόνου στον οποίο συμβαίνει η πρώτη βλάβη, για κάθε μηχανή. Εφόσον έγινε η ανάλυση 

των αποτελεσμάτων, επισυνάπτεται ένα πλήθος διαγραμμάτων που περιγράφουν τις 

κατανομές των δεδομένων με σκοπό να δοθεί μία καλύτερη φυσική εικόνα και να ληφθούν 

σημαντικές στατιστικές πληροφορίες. Τέλος, παραθέτονται μερικοί τρόποι σχετικά με το πώς 

τα μοντέλα πρόβλεψης μπορούν να εφαρμοστούν σε περιπτώσεις πραγματικών αλυσίδων 

παραγωγής, με σκοπό να βοηθήσουν στη βελτιστοποίηση του εργοστασιακού 

προγραμματισμού. 

 
Λέξεις Κλειδιά: Νευρωνικά δίκτυα, Ανάλυση δεδομένων, Κατασκευή ημιαγωγών,        

Αξιοπιστία, Πρόβλεψη βλάβης 

 

 

 

 

 

 

 

 

 

 



vi 
 

                                       

Contents 
 

1 Introduction ........................................................................... 1 

2 Semiconductor Manufacturing ............................................ 2 

2.1Description of the Semiconductor Manufacturing .............................................. 2 

2.2Semi E10 ............................................................................................................. 5 

3 Data Analysis ......................................................................... 5 

3.1Description of the data ........................................................................................ 5 

3.2Bosch states according to SEMI E10 Standards ................................................. 7 

3.3Useful Data Exportation ...................................................................................... 8 

4 Neural Networks .................................................................... 9 

4.1Introduction to Neural Networks ......................................................................... 9 

4.2Neural Networks in Manufacturing ................................................................... 14 

4.3Analytic Models compared to Neural Networks  .............................................. 15 

5 Neural Network models in reliability prediction .............. 16 

5.1Neural network models’ architecture ................................................................ 16 

5.2The training procedure  ..................................................................................... 18 

5.3Tailoring the models for prediction ................................................................... 19 

5.4Networks’ performance and accuracy ............................................................... 20 

5.5Implementation in production scheduling………………….………………….26 

6 Statistical Distributions ...................................................... 27 

6.1Useful statistical distributions…………..………………….………………….27 

6.2Relevant diagrams………………………………………….………………….32 

7 Conclusions .......................................................................... 41 

Bibliography ........................................................................... 42 

Appendix ................................................................................. 44 

A.1Matlab codes…………..………………….……………………………...…...44 

 

 



1 
 

1 Introduction 

 

The objective of this thesis is to predict the cumulative number of failures of the equipment 

used in the semiconductor industry. This equipment is responsible for manufacturing chips 

and sensors that are widely applied in many cases, such as the automotive industry. The 

provided data are based on the SEMI E10 standards, which are specifically made for the 

equipment of the semiconductor plant. The SEMI E10 consists of a set of states the 

equipment must fall in, for users’ convenience. 

 

The motivation behind our research is the desire to learn more about data analysis and 

prediction making in real life industry situations. Moreover, the opportunity to be involved in 

neural networks’ science was for us of great interest, as neural networks are considered to be 

cutting edge technology. Besides that, Bosch’s broad reputation played a significant role for 

us to undertake such an interesting theme. These reasons gave us the tenacity needed to 

overcome the obstacles we found during our research. 

 

Working with a world leading company like Bosch, was for us a really beneficial experience. 

This cooperation occurred as our department of Mechanical Engineering takes part in the 

research project «Productive 4.0 – Electronics and ICT as enabler for digital industry and 

optimized supply chain management covering the entire product lifecycle». The project aims 

at designing a user platform across value chains and as a result stimulating the digital 

networking of manufacturing industries. 

 

The structure of this thesis is organized as follows: 

 

In the second chapter will be discussed the procedure of semiconductor manufacturing with 

the aim to clarify the production chain. Afterwards, SEMI E10 standards will be analyzed so 

as to give a better understanding of the semiconductor industry basis. 

 

In the third chapter will be described the data identity. Then we will represent our analysis 

regarding the selection process we followed. 

 

In the fourth chapter the science of neural networks will be initiated. Their utility and 

application in semiconductor industry will be referred as well. Moreover, a comparison 

between neural networks and analytic methods will be also delivered. 

 

In the fifth chapter we will introduce the prediction models. More specifically, we will 

present the general form of neural network models along with the training concept we used. 

On top of that, we pointed out the prediction results given by our models. Thus, as we 

assembled these prediction results we benchmarked them against analytic methods. 

 

In the sixth chapter we estimate the data’s distributions for the purpose of gaining a better 

view, concerning the input and output parameters of the models. 



2 
 

 

In seventh and final chapter we draw conclusions and set directions for future work. 

 

 

2 Semiconductor Manufacturing 

 

2.1 Description of the semiconductor manufacturing 

 

Semiconductor applications are everywhere around our life and they affect much of the 

world's industries. Semiconductor material has an electrical conductivity value falling 

between that of a conductor and an insulator. As temperature increases, their resistance 

decreases. Usually, the materials used in semiconductor manufacturing belong to a group of 

materials with solid crystal structure. For example, some common semiconductors are silicon, 

germanium, and gallium arsenide. More specifically, silicon is the critical element for 

fabricating most electronic circuits. In addition, gallium arsenide is used in laser diodes, solar 

cells, microwave frequency integrated circuits, and others. 

 

By themselves, intrinsic semiconductors are not of particular use. We can alter the properties 

of the material by introducing foreign substances or impurities into the crystal. These 

impurities are also known as dopants. A crystal with an added dopant is referred to as an 

extrinsic semiconductor or doped material. 

 

Due to their properties, semiconductors are widely used in our lives. Their impact can be 

found either on simple diode, either on transistors or on microchips. 

 

A semiconductor chip is an integrated electronic circuit, which is highly miniaturized, 

consisting of thousands of parts. The first step of every semiconductor manufacturing 

procedure includes the raw wafers that are thin discs made of gallium arsenide or silicon. Up 

to several thousand identical chips can be made on each wafer, depending on the diameter of 

the wafer. These chips can be made by building up the electronic circuits layer by layer in a 

wafer fab. It is worth mentioned that there are about forty layers for the most advanced 

technologies. Following this, the wafers are sent to sort or probe, where electrical tests 

identify the individual dies that are not likely to be in a good form when packaged. 

Historically, dysfunctional dies were physically marked, so that they would not take place in 

the packaging process. In recent years, this has been replaced by producing an electronic map 

to identify the defective dies. The probed wafers are sent to an assembly line, where the dies 

with fair quality are put into an appropriate package. Finally, the packaged dies are sent to a 

test facility where after testing, the packages are ready to be dispatched to the customers. 

Wafer fabs are often called front-end fabs, while assembly and test fabs are often called back-

end. Although front-end operations usually take place in highly industrialized countries, 

back-end operations are typically carried out in countries, where the cost of labor is cheaper. 

The whole manufacturing process may require up to 700 single process steps and up to three 



3 
 

months to be produced, considering the integration scale, the type of the chip and package, 

along with customer’s specifications. 

 

 

 
 

Figure 2.1The four main stages of semiconductor manufacturing. [6] 

 

 

The four main stages of semiconductor manufacturing are shown in Figure 2.1. In the past, all 

that was needed for a semiconductor company in order to be profitable was a high quality 

design product. However, over the last decade, increased competition required semiconductor 

companies to become more efficient in order to provide the most cost effective products 

possible. Several performance measures are commonly used to describe and assess 

semiconductor manufacturing systems including machine utilization, production yield, 

throughput, cycle time, and on-time delivery performance-related measures. A high on-time 

delivery performance is crucial for customers’ satisfaction. Usually, the competitiveness of a 

semiconductor manufacturer depends on the ability to rapidly incorporate advanced 

technologies in electronic products along with continuous improvement of manufacturing 

processes, and the capability of meeting customer due dates. In a situation where prices as 

well as the state of technology have settled at a certain level, the capability of meeting due 

dates along with the reduction of cycle time has become the most decisive factor in the fierce 

competition in the global market place. Consequently, short and predictable cycle times are 

highly desirable. Semiconductor companies have increasingly turned to data-intensive 

modelling and analysis tools and techniques because of their potential to significantly 

improve these performance measures. The semiconductor manufacturing modeling and 

analysis community has been working over the last twenty years on modifying general 

purpose manufacturing modeling tools and techniques. As a result, this could be helpful in 

order to handle the intricacies and complexity of semiconductor manufacturing. 

 

 

 

 

 

 



4 
 

 

 

Description of the Basic Process  

 

Below is described the basic process steps of a wafer fab regarding the operations that can be 

performed in different work areas. 

 

1)  Oxidation and diffusion: Firstly, a layer of material is grown or deposited on the surface 

of a cleaned wafer. The aim of oxidation process is to grow a dioxide layer on a wafer. On 

the other hand, diffusion is a high temperature process that disperses material on the wafer 

surface. Diffusion furnaces which are typical batch machines and rapid thermal processing 

equipment, are placed at the oxidation - diffusion work area. 

 

2)  Film deposition: Deposition is used in order to deposit films onto wafers. In an advanced 

circuit, there can be a big amount of such deposition layers. Deposition can be performed by 

different processes, to name a few: a) physical vapor deposition (PVD) or chemical vapor 

deposition (CVD), b) metallization and c) epitaxy.  

 

3) Photolithography: The basic steps of the photolithography procedure are exposure, 

coating, developing and process control. Initially, a thin film of photosensitive polymer 

(photo resist strip) coats the wafer. While an IC pattern is transferred by a photo mask, 

precise and accurate three-dimensional patterns are formed on the silicon wafer’s surface. 

The pattern is transferred onto the wafer by exposure tools, called steppers. Steppers use 

ultraviolet light in order to complete this process by projecting the light through the reticle to 

expose the wafer. As a result, after removing polymerized sections of photo resist from the 

wafer, the exposed wafer is then developed. Due to the fact that the circuits are consisted of 

layers, every wafer needs to pass through the photolithography area many times.  

 

4) Etch: This step is accountable for removing material from the wafer surface. After the 

photolithography step, the wafers are partly covered by photo resist strip while the non 

covered areas of the wafer are then removed. The etching process consists of two main 

categories: the wet (where liquids are used) and dry (where gases are used) etching.  

 

5) Ion implantation: The dopant ions are deposited on the surface of the wafer in a 

discriminating way. Among all wafer’s parts, the etched parts are the ones that are being 

deposited with the doping material. 

 

6) Planarization: This step is responsible for cleaning and leveling the wafer’s surface 

(chemical - mechanical polishing or CMP). As long as the chemical slurry is implemented to 

the wafer, the surface is equalized with the result of decreasing the wafer’s thickness before 

adding a new layer. 

  
 

 

 

 

 

 

 



5 
 

2.2 SEMI E10  
 

SEMI E10 is a Semiconductor Equipment & Materials International specification for 

definition and measurement of equipment Reliability, Availability, and Maintainability 

(RAM).  

 

The semiconductor industry has been instrumental in developing a methodology for tracking 

and evaluating the application of information from equipment, regarding its operating 

condition (Trybula and Pratt 1994). Originally published in 1986 and revised in 1990, 1992, 

1996, 1999, 2001, 2004 and 2011 SEMI E10-0304E which is the one we used in our analysis, 

is the most widely used of all SEMI standards. SEMI E10 defines the basic equipment 

conditions, RAM metrics, and equipment utilization measurement providing a common 

language and methodology between equipment suppliers and users.According to the Semi 

E10 specification, the considered equipment’s total time is organized as described in the 

figure below. 

 
Figure 2.2 SEMI E10 distinctive times. 

 

3 Data Analysis 
 

3.1 Description of the data 
 

Our research consists of four excel files (one for each machine) which contain information 

regarding time and date along with the corresponding state conditions. The provided data date 

range between 17/07/2015 – 31/12/2017 (4BSAXF18), 17/07/2015 – 28/12/2017 

(2BSAXF20), 27/07/2015 – 30/12/2017 (NF671) and 15/07/2015 – 30/12/2017 (NM111). So, 

concerning the machines’ time characteristics, we come across the following measurements : 

 

 Uptime 

 Processing time 



6 
 

 Productive time 

 Time to restore 

 Downtime 

 Maintenance time 

 Number of Maintenance  

 

The mentioned above files originate from the diploma thesis of Apostolos Stamatakis and 

Spyridon Botsis who exported these data from the SQL server basis. A short report about 

each characteristic is outlined below. 

 

 

 Uptime: The total time the equipment was up between the first and last failure. 

 Processing Time: Sum of times that the equipment is either in process experiments 

and software qualifications or available - productive. 

 Productive Time: Sum of times that the equipment is available - productive. 

 Time to Restore: Sum of times that the equipment is in unscheduled downtime. 

 Downtime: Sum of times that the equipment is in failure state. 

 Maintenance Time: Total time that the equipment is in scheduled maintenance 

process. 

 Number of Maintenance: The total number machine’s scheduled maintenance. 

 

 

The clarification of the time characteristics of machines is depicted in the subsequent chart. 
 

 

 
 

 

Figure 3.1 Equipment state scaling. [6] 

 



7 
 

3.2 Bosch states according to SEMI E10 standards 
 

The SEMI E10 protocol to measure equipment performance defines nine equipment states. At 

any given moment each machine must fall in one and only of these states. However, in our 

case, we encountered only five of them, as these were the only to appear. Briefly, the 

equipment states are shown in the following table. 

 
 

 
Figure 3.2 The description of the states. [6] 

 

For better understanding of the states, we concluded a small classification of each state 

regarding the time characteristics. 

 

1. The “1AVAILABLE” state contains productive time and standby time.  

2. The “1IDLE” state falls in standby time.  

3. The states “2TASK” and “2MAINTENANCE” fall in the scheduled downtime as 

both are maintenance procedures.  

4. “2TASK” falls in engineering time (for planned test runs) as long as the machine is 

working properly.  

5. The states “3REPAIR”, “3HELPNEEDED” and “3SUPMATNEED” all fall in the 

unscheduled downtime. However, “3REPAIR” is the only state that is equipment-

related.   

6. The “4DEFUNCT” state fits in the non-scheduled time as it is removed from the 

production network and there is no scheduled work for the equipment. 

 

In conclusion, the attached diagram combines the states with the suitable - corresponding 

characteristics. 

Null 



8 
 

 
Figure 3.3 The classification of the states according to time characteristics. [6] 

 

 

3.3  Useful Data Exportation 

 

Initially, as mentioned in the previous section, from all the parameters contained in the excel 

files only the productive time and the number of maintenance was used on the neural network 

models. As a result, at first we had to measure the time that the machines were available 

(“1AVAILABLE” state). In order to achieve this, we calculated the differences between the 

time of each cell from its predecessor (celln+1 – celln). Thereafter, we imported all the results 

into the Matlab software and then we unraveled the cases that were in available state. 

Consequently, after this separation process the input variable of the productive time was 

formed. As a next step, in order to compile the second input variable, we counted the number 

of maintenance state “2MAINTENANCE”. Lastly, the number of faults defined by counting 

the amount of failure state “3REPAIR” in each data set. 

 

The cycle used during the analysis is defined as the time period between two consecutive 

‘3REPAIR’ states. As a result, the discrete productive times and numbers of maintenance are 

calculated according to the mentioned above cycle. Consequently, the total number of cycles 

identifies with the total number of failures. The following table below shows how the initial 

form of data looked like: 

 

Machine Time and Date Initial State  Last State  

4BSAXF18 22/7/2015  2:20:46 am 1IDLE 1AVAILABLE 

4BSAXF18 22/7/2015  2:28:19 am 1AVAILABLE 3REPAIR 

4BSAXF18 22/7/2015  3:48:46 am 3REPAIR 1IDLE 

4BSAXF18 22/7/2015  3:49:22 am 1IDLE 1AVAILABLE 

…. …. …. …. 

Table 3.1 A sample of the initial form of the data. 

3HELPNEE

DED 



9 
 

The following tables below show how the final form of data looks like, after the analysis: 

 

Machine Time and Date Last State  Celln+1 – celln (sec.) 

4BSAXF18 22/7/2015  2:20:46 am 1AVAILABLE 453 

4BSAXF18 22/7/2015  2:28:19 am 3REPAIR 4827 

4BSAXF18 22/7/2015  3:48:46 am 1IDLE 36 

4BSAXF18 22/7/2015  3:49:22 am 1AVAILABLE …. 

…. …. …. …. 

Table 3.2 A sample of the edited data. 

 

Number of 

Cycle 

Productive Time 

(hours) 

Number of Maintenance Cumulative 

Number of Faults 

1 86,191 1 1 

2 0,146 0 2 

3 94,744 1 3 

4 35,319 0 4 

…. …. …. …. 

Table 3.3 The exportation of parameters used. 

 

As anyone can perceive, the initial form of the data could deliver much underlying 

information regarding the time characteristics (productive time, time to restore, processing 

time, number of maintenance, downtime, uptime, and maintenance time). This concept is 

finalized during our analysis, in the way that it is depicted in the final data form. 

 

On the other hand, the final form of the data contains just the final state in which the machine 

was at a certain date and time, along with the subtraction results that refer to specific time 

parameters. Furthermore, both the discrete numbers of maintenance and the cumulative 

numbers of faults are also noted.  
 

 

4 Neural Networks 
 

4.1 Introduction to Neural Networks 
 

In recent years great interest has been raised around the science of neural networks in the 

world of manufacturing. The inspiration behind artificial neural networks stems from the 

biological neural networks that constitute human brains. Their functionality tries to combine 

the human way of thinking with the abstract mathematical way. Thus, such networks are 

trained to perform tasks by taking into account examples. The origin of neural networks 

derives from the computational model of Warren McCulloch and Walter Pitts back in 1943 

called threshold logic.The research paved the way for further penetration into this topic. 

Soon, the two main approaches arised. On the one hand, scientists focused on the biological 

processes of the brain, while on the other hand engineers focused on the application to 

artificial intelligence. The thing that sets artificial neural networks apart from the biological 

ones is that even though they learn exactly as the human brain, they generally aren’t being 

programmed with any task – specific rules. The main aspiration of artificial neural networks 



10 
 

is to carry through with the given assignments after the appropriate training procedure. These 

assignments could be image and voice recognition, data classification, prediction 

optimization, etc. 

A common form of a simple neural network looks as follows: 

 
Figure 4.1 A neural network animation. 

 

This typical neural network has four input variables, one hidden layer with three neurons and 

one output variable. 

As we can see in the picture above, the main parts of a Feed-Forward NN (Neural Network) 

are: 

 

 The input parameters  

 The number of hidden layers and the number of neurons 

 The output parameters  

 

Secondarily, the following relative parts are also of particular interest: 

 

 Weight values wij 

 Biases values bj 

 Activation functions 

 

Every neural network takes into consideration input values and calculates the corresponding 

output values, by forming thousand computations in a split of a second. So, at first the 

network should be provided with the pattern data, in which are included both the input and 

the desired output values (targets). In this way, by finding the intended internal format, it is 

capable of solving similar problems that it is not familiar with. However, it is worth noting 

that these problems should be of the same class with the template model. Regarding the 

number of hidden layers and neurons, there are no strict rules to define a good network 

topology just from the number of inputs and outputs. It depends critically on the number of 

training examples and the complexity of the desired classification. The most common 

strategy is a combination of trial and error with empirical methods. It is crucial for the 

operational qualification of the model to pay attention to the problem of overfitting. 

Overfitting occurs when the neural network becomes too complex, by having an 

unnecessarily big amount of neurons or hidden layers that makes it insensitive to input 

changes. In contrast, when neural network model is too elementary then we face the opposite 



11 
 

problem (underfitting). After conceiving the basic core of the articial neural networks, it is 

now a proper opportunity to go into details. Weights are the most essential factors in 

converting an input to impact the output. They constitute a connection between neurons. 

Weights are numerical parameters which determine how dynamically each of the neurons 

affects the other. This is inspired by the slope in linear regression where a weight is 

multiplied to the input to add up and shape the output. For instance, if a typical neuron 

contains the inputs x1, x2, x3 then the synaptic weights are noted as: w1, w2, w3. 

The output is determined by the equation below: 

 

             

 

Bias is an additional parameter which is added to adjust the output along with the weighted 

sum of the inputs. Therefore it helps the model to fit best for the given data. 

 

                                

 

Then a function called activation function is applied on this output so that the input of the 

next layer is the output of the neurons in the previous layer as shown below: 

 

 

 
Figure 4.2 The connection between inputs - hidden layer – output. 

 

Three of the most commonly used activation functions are: 

 

 The linear function 

 The log-sigmoid function 

 The hard-limit function 

 

 

  

The sigmoid transfer function shown below takes the input x that x  (- , + ), and produces 

an output y that y  [0, 1]. This transfer function is commonly used in backpropagation 

networks. The general form of sigmoid’s function is: 

 

      
 

      
 



12 
 

 
Diagram 4.1 The sigmoid function. 

 

The linear transfer function shown below calculates the output of the neuron by simply 

returning the value that it was passed to it. This neuron can be trained to learn an affine 

function of its inputs, or to find a linear approximation to a nonlinear function. A linear 

network is unable to perform a nonlinear computation. 

 

 

 

  

                

 

 

 

 

 

 

 

 

 
Diagram 4.2 The purelinear function. 

 

 

The hard-limit transfer function shown below is used to form neurons that make classification 

decisions. 

 

      
      
     

  

 

 
 

Diagram 4.3 The hard-limit function. 

+1 

-1 

Y 

X 



13 
 

 

The most widely known training method for an artificial neural network is backpropagation. 

The key feature of this method is to redefine the weights, with the aim of minimizing the 

error between network outputs and target values. Backpropagation in a neural network is 

noted as the transmition of the information that relates to the error occurred by the network, 

when it makes a prediction about the data. The related learning algorithm can be divided into 

two parts and is described as follows: 

 

 Propagation 

 

o The first step is called forward propagation in which the training pattern’s input 

passes through the neural network to produce the propagation’s output activations. 

o The second step is called backward propagation in which the mentioned above 

propagation’s output activations go through the neural network the other way around, 

using the training targets in order to result in the corresponding errors of all output 

and hidden neurons. 

 

 

 

 Weight update 

 

o Firstly, the output error and input activation must be multiplied to get the gradient of 

the weight. 

o Then, the weight must be brought in the opposite direction of the gradient by 

subtracting a learning rate from the weight, because the sign of the gradient of a 

weight indicates where the error is increasing. 

 

Briefly, the back propagation steps can be summarized as follows: 

 

1. Calculation of the network’s error. 

 

                   
 

 
                    

  
    

 

            Where n = the number of outputs. 

 

2. Calculation of the new weights. 

 

                    
       

    
        

        
 
 

 

            Where n = the learning rate and indexes i, j refer to each neurons’ weight connection. 

  

3. Redefinition of the network’s error. 

4. The loop procedure ends when the network achieves the intended error. 
 



14 
 

 
Figure 4.3 Backpropagation’s algorithm. 

 

4.2 Neural Networks in Manufacturing 
 

Nowadays, new techniques are constantly introduced and adopted in the contemporary 

manufacturing sector. In recent times, there has been a raise of interest in applying artificial 

neural networks to manufacturing. Artificial neural networks have several upsides that are 

desired in manufacturing practice, including the ability to learn and adapt, performing 

computations, etc. There is the believe that neural networks and their techniques could lead to 

the grant of truly intelligent manufacturing systems. 

 

In many cases, a NN gives the opportunity to predict the mechanical properties of processed 

products based on specific technological parameters. Therefore, the implementation of a NN 

benefits the industry by reducing the cost and saving the material resources. Neural networks 

can be used for monitoring, controlling and optimizing the production process.  

 

The idea of using neural networks aims to map many inputs into multiple outputs without 

knowing the underlying function. One of the practical issues that goes with it is that the exact 

inputs which in fact affect the outputs are unknown. Often taking into account input variables 

that are considered as surplus parameters leads to an over complicated model. Unfortunately, 

a feed-forward neural network is like a “black box” and so it doesn’t provide any insight for 

the correlation between the inputs and the outputs. 

 

Neural networks deliver exceptional stability and robustness as well as efficient control of 

critical costs, such as WIP. Moreover, they enlighten many other manufacturing 

characteristics such as machine failure by making useful predictions. 

 



15 
 

 
Figure 4.4 Neural networks in production decisions.  

 

4.3 Analytic models compared to Neural Networks 

 

Statistical modeling and neural networks are two independent but converging methods which 

carry through with the task of learning from data. Neural networks are a part of machine 

learning, which is focused on algorithmic approaches. On the other hand, statistical modeling, 

introduces the probability distribution fitting of the observed data. Although neural networks 

and statistical models share the same goal, learning from data, this goal is pursued differently. 

On the one side, NNs emphasize predictive accuracy, while on the other side statistical 

modeling targets interpretability and parsimony.  
 

Neural Networks 

Advantages Disadvantages 
 The loss of data does not affect its 

functionality. 
 Powerful hardware dependence. 

 NN’s ability to produce output even 

with incomplete information. 
 It doesn’t give a clue as to why and 

how it produces the output. 

 Parallel processing capability – 

numerical strength and multitasking. 
 Appropriate NN’s architecture is 

achieved through experience and trial 

& error (no specific rules). 

 Even though they are trained from 

one example, they are able to solve a 

great variety of similar problems. 

 Vulnerable to over fitting and under 

fitting states as they depend a lot on 

training data. 

 NN’s flexibility as they can be used 

to solve both regression and 

classification problems. 

 

 They require only the machine’s 

failure history no assumptions. 

 



16 
 

 

Statistical methods 

Advantages Disadvantages 
 Patterns and correlations are direct 

and easily comprehensible.  
 They require assumptions in order to 

perform predictions. 

 They provide insight regarding the 

exact calculations that lead to the 

results. 

 In most cases are less accurate than 

neural networks, as neural networks 

adjust model complexity to manage 

the complexity of the failure history. 

 They usually resolve the problems 

through approaches that are easily 

understood.  

 Sometimes, the existing statistical 

distributions are inadequate to solve 

the problem. 

 A great range of bibliography and 

much research has been delivered 

through the years. 

 A strong mathematical background is 

required. 

 They provide a variety of useful 

metrics (mean value, variation etc.) 

that describe the data. 

 

 

 

5  Neural Network models in reliability prediction 

 

5.1 Neural Network models’ architecture 

 

Initially, the architecture of the NN is the first basic key feature. In order to deliver 

trustworthy results, the model should have the right form, otherwise the learning procedure 

fails. Finding the right form of a neural network is not a very easy task as there are no strict 

rules to follow. This process requires multiple trial & error attempts along with user’s 

experience to be accomplished. The main structure of the neural network consists of three 

parts:  

 

 

 The input parameters 

 The hidden layers and neurons 

 The output parameters 

 

The amount of input and output parameters is defined by the nature of the problem while the 

number of hidden layers and neurons is subject to user’s decision. According to the 

complexity of the problem and the data’s volume user is able to set the appropriate values.  

 

The optimal structure for each machine model is depicted as follows: 

 

 

 



17 
 

4BSAXF18 

 

 
Figure 5.1 Architecture of the model for the machine 4BSAXF18. 

 

2BSAXF20 

 

 
Figure 5.2 Architecture of the model for the machine 2BSAXF20. 

 

 

NF671 

 

 
 

Figure 5.3 Architecture of the model for the machine NF671. 

 

 

 

 

 

 

 

 



18 
 

 

 

 

NM111 

 

 

 

 
Figure 5.4 Architecture of the model for the machine NM111. 

 

 

 

 

As shown above we used: 

 

1. Cumulative productive time and cumulative number of maintenance as the two input 

parameters. 

2. One hidden layer with different optimal amount of neurons for each machine. 

3. Sigmoid transfer function in the hidden layer and pure linear function in the output 

layer for better accuracy. 

4. Cumulative number of faults as the output parameter. 

 

MACHINE Number of rows 

(volume of data) 

HIDDEN LAYERS  NUMBER OF 

NEURONS 

4BSAXF18 51 868 1 69 

2BSAXF20 34 334 1 30 

NF671 11 461 1 23 

NM111 3 960 1 15 
Table 5.1 The structure of neural networks for each machine. 

 

 

5.2  Τhe training procedure 

 

After neural network models creation the next step is the training process. As we have 

already mentioned this procedure is crucial for the network’s proper function. The training is 

based on the provided data from which the model composes the suitable learning path, in 

order to produce the right outputs. What this means is that the weights and biases have 



19 
 

reached optimal values. A typical training process consists of several iterations (epochs). 

During each epoch the model provides the network with a sequence of training pairs. The 

parts of each training pair are the input values and the corresponding target values. More 

specifically, in our case each training pair is formed by the cumulative productive time and 

the cumulative number of maintenance (as inputs) along with the cumulative number of 

machine’s failure (as output). Typically, at the beginning of training, network weights and 

biases are initialized with a set of small random values. 

 

Before training procedure starts, the user should provide the network with the main training 

characteristics which are: 

 

 The training function 

 The number of iterations (epochs) 

 The tolerance limit – mean squared error 

 The division of the data regarding training, validation and testing  

 

Knowing which training algorithm will fit best in each case, is almost impossible. It depends 

on many factors, such as the complexity of the model, the error goal, the number of weights 

etc. In our situation we make use of the Bayesian regulation training function (trainbr) as it 

was the most accurate comparing to all the others. 

 

Depending on the training function the number of epochs usually ranges between 0 – 1000 as 

default. However, it is worth mentioned that if the error rate increases continuously for more 

than six (default) epochs then the training procedure stops. Using the Bayesian regulation 

function the number of iterations reaches the maximum set value. 

 

As the next step, the algorithm computes a cumulative squared error between the targets and 

the actual outputs. Then the gradient of the sum squared error is used to adjust the weights so 

that the error measure decreases in the future iterations. At that point, the training process is 

terminated when the cumulative squared error reaches a specific tolerance limit. 

 

Last but not least it is necessary to set the percentage of data which are utilized for validation, 

training and testing. To avoid the danger of making the model too robust we subtracted the 

pairs that had productive time less than 1.2 minutes. Especially, for the machine 2BSAXF20 

we additionally eliminated the first data pair for practical reasons. 

 

 

5.3  Tailoring the models for prediction 

 

After the training process, the neural network model should be ready for machine’s failure 

prediction. Having obtained optimal values of weights and biases, the network is ready to 

deliver outputs for given inputs that are outside from the training data set. 

 



20 
 

In order to test the prediction model we calculated, the mean values of productive time and 

maintenance’s number. This allows us to get a general understanding concerning the 

expected time period between each failure. The prediction process is summarized as follows: 

 

       
                   Inputs                                                      Prediction model                                  Outputs 

 Cumulative productive time                                       Neural Network                              Predicted number of 

 Cumulative number of maintenance                                                                                  cumulative failures 

 

Figure 5.5 The basic process of performing predictions. 

 

At the beginning of prediction procedure the user must provide the model with the inputs. 

Then the model classifies the given inputs based on the training data set to perform the 

appropriate fitting. Basically, the network’s algorithm passes the inputs through the existing 

learning path in which is involved the whole architecture of neural network (weights, biases, 

neurons, hidden layers etc.) and so it estimates the requested output values. It should be 

mentioned that this automatic process is very quick. Through the learning path the network is 

already able to identify the given inputs, as like classifying them into the training data set to 

compare them with similar values. Thus, the network is able to provide outputs in every 

circumstances.    

 

 

5.4  Networks’ performance and accuracy  

 

Since the prediction process is performed and having the input – target pairs, we are able to 

examine the network’s accuracy and performance. More specifically, these two factors are 

defined in general by the mean squared error and the R-value. At the end of the training 

procedure the model calculates the mean squared error of the neural network which 

characterizes model’s performance. This error value should be close to zero in order to 

achieve better accuracy. The mean squared error is calculated as it is shown below: 

 

  

     
 

 
                    

 

 

   

 

 

 

The network’s MSE is estimated by using all the target values from the data set and the 

corresponding predicted outputs. The next diagrams show the correlations between the MSE 

and the number of iterations. 
 



21 
 

 
Diagram 5.1 MSE – epochs diagram for the machine 4BSAXF18. 

 

 

 

 

 

 
Diagram 5.2 MSE – epochs diagram for the machine 2BSAXF20. 

 



22 
 

 
Diagram 5.3 MSE – epochs diagram for the machine NF671. 

 

 

 

 

 

 
Diagram 5.4 MSE – epochs diagram for the machine NM111. 

 

 

 

 

 

It is obvious that during the training process the mean squared error decreases, as the number 

of iterations increases. The best training performance is achieved at the end of the training. 

 



23 
 

Other critical factors that affect network’s performance and accuracy are the R-value 

(coefficient of correlation) along with R
2
 – value (coefficient of determination). The R-value 

is used to measure the correlation between actual and predicted values and it computes the 

direction and strength of the linear relationship between them. An R-value close to one is 

preferable as it shows that the network has achieved the best fitting performance. 

 

 
Diagram 5.5 The R – Value for the machine 4BSAXF18. 

 

 

 
Diagram 5.6 The R – Value for the machine 2BSAXF20. 

 



24 
 

 
Diagram 5.7 The R – Value for the machine NF671. 

 

 
Diagram 5.8 The R – Value for the machine NM111. 

 

 

 

 

 

Coming across an R-value close to one allows us to perform accurate predictions. However, it 

is necessary to supply the network with a proper amount of data, in order for it to function 

precisely even when the given inputs are out of the training bounds. Otherwise, the neural 

network becomes disoriented. Furthermore, the distributions of the data are playing crucial 

role in model’s accuracy as the concentration of the training points characterizes the whole 

system. 



25 
 

 

It is worth mentioning that the output results of the neural network models consist of decimal 

values. These values describe the number of failures which obviously in practice should be 

integer numbers. However, these decimal numbers could be conceived in theory as a ‘rate of 

failure’ which differs to any known theoretical probability value. As a result, it can be 

received as a measurement of how close the machine is to failure. Having to deal with a data 

driven model, this is something distinguishable and should not be confused with the concepts 

derived from the probability theory. 

 

Last but not least, the models perform well on short term predictions but as prediction periods 

build up, accuracy decreases (due to the lack of long term data). In order to test the prediction 

accuracy of every model, we perform the training procedure without using the last five 

provided data cells. These last five data cells were the ones used as target values for this 

comparative process.  

 

Machine 4BSAXF18 

 
Prediction (number of failures) Target (number of failures) Error (%) 

354.700 353 0.48 

354.900 354 0.25 

355.300 355 0.08 

356.400 356 0.11 

365.900 357 2.40 
Table 5.2 Prediction accuracy table. 

 

Machine 2BSAXF20 

 
Prediction (number of failures) Target (number of failures) Error (%) 

245.300 247 0.68 

245.310 248 1.00 

245.314 249 1.40 

245.316 250 1.87 

246.700 251 1.70 
Table 5.3 Prediction accuracy table. 

 

Machine NF671 

 
Prediction (number of failures) Target (number of failures) Error (%) 

108.700 109 0.27 

111.600 110 1.40 

112.010 111 0.90 

112.410 112 0.36 

112.240 113 0.67 
Table 5.4 Prediction accuracy table. 

 

 

 

 

 

 



26 
 

 

 

Machine NM111 

 
Prediction (number of failures) Target (number of failures) Error (%) 

165.500 164 0.91 

169.150 165 2.50 

172.250 166 3.70 

172.530 167 3.30 

173.150 168 3.00 
Table 5.5 Prediction accuracy table. 

 

Improving the network’s accuracy is not an easy task but there are many steps which could 

lead us to the right direction. At first, changing the number of neurons and hidden layers via 

trial & error is a common way to start. As it is mentioned in a previous chapter, the number 

of these basic parts depends on the amount of the existing data. If that is not enough, the next 

step is to choose another training function that fits the data properly. 

 

 

5.5 Implementation in production scheduling  
 

On the topic of production optimization, scheduling is a key part. Manufacturing and 

production industries run on timelines, where it must be insured that all the processes are 

completed in proper sequence as efficiently as possible. The areas of production scheduling 

are the raw material procurement, the staff administration and the machinery operations 

which is the main focus of this thesis. The virtues of the created model are numerous and they 

have a great impact on manufacturing procedure. For instance, the ability to predict 

machine’s failure gives the opportunity to optimize the production planning by adopting a 

suitable maintenance schedule. It should be pointed out that the main idea of this thesis 

concentrates on figuring out the estimated time of the first failure before and after the first 

maintenance. In practice, this is depicted in the following diagrams: 

 
Diagram 5.9 Productive time – rate of failure diagram for the machine 4BSAXF18. 



27 
 

    
Diagram 5.10 Productive time – rate of failure diagram for the machine 2BSAXF20. 

 

 

The X-axis refers to the machine’s productive time, while the Y-axis refers to the failure rate.  

On the one hand, the blue line describes the way that the rate of failure changes as the 

productive time increases, when the number of maintenance is equal to zero. On the other 

hand, the orange line describes the way that the rate of failure changes as the productive time 

increases when the number of maintenance is equal to one. When the graph reaches the line 

Y=1, the machine fails so it needs to be repaired. The parallel to the Y-axis discontinuous line 

show how the failure rate falls, because maintenance occurs at this time. So, these diagrams 

can be used for providing information regarding the exact maintenance time schedule to 

prevent machine from failure. It is really valuable having this knowledge from the diagram, 

as usually the machine’s maintenance time is less than the time to restore. As a result, the 

whole production system becomes more efficient and less expensive. Moreover, another 

significant information that can be received is that the user gets insight of how close the 

machine’s state is to failure at every time of production. In cases that the industry owns a 

certain amount of capital for maintenance process, it is vital for the company to design an 

economic - timeline machine’s plan. In other words, if the company owns a specific amount 

of money referring to maintenance cost then the machine’s durability for this specific amount 

of money becomes known.  

 

Lastly, it should be mentioned that for the machines NF671 and NM111, the quantity and the 

sequence of their data did not allow the formation of the corresponding diagrams.   

    
 

6 Statistical distributions 
 

6.1 Useful statistical distributions 
 

At the beginning of this chapter, we are going to examine some useful statistical distributions 

concerning the productive time values. Through this process, the pattern behind these values 

will be defined, providing us with helpful information. In probability theory, the statistical 

distribution is a function which produces the probabilities of occurrence of different possible 

outcomes. As long as the input parameters are the productive time and the number of 



28 
 

maintenance, conditional probability distribution can be used for the productive time when 

the number of maintenance is known to be a particular value. 

 

The method used for finding the best distributions is described as follows: 

 

1. Fitting different probability distributions to the data and selecting the best one. 

2. Performing a Kolmogorov - Smirnov goodness-of-fit statistical test for the best fitted 

distribution.  

 

The Kolmogorov - Smirnov test measures the distance between the cumulative distribution 

functions of the reference distribution and the empirical distribution function of the sample. 

The aim of this process is to find which empirical distribution (if any) is the most suitable for 

any given sample of data.  

 

The candidate statistical distributions considered are:   

 

• Beta  

• Birnbaum-Saunders  

• Exponential  

• Extreme value 

• Gamma  

• Generalized extreme value  

• Generalized Pareto  

• Inverse Gaussian  

• Logistic  

• Log-logistic  

• Lognormal  

• Nakagami  

• Normal  

• Rayleigh  

• Rician 

• T-location scale  

• Weibull  

 

A brief description of some of the most common distributions follows below: 

 

 

   

 Weibull distribution  

 

The Weibull distribution is one of the most widely used lifetime distributions in reliability 

theory. It is a versatile distribution that can take on the characteristics of other types of 

distributions, based on the value of the shape parameter, k.  

The Weibull distribution is given by the following function: 

 

           
 

 
 
 

 
       

 
 
      

                                       

  

 

 



29 
 

where the variable x and the parameters λ and k are positive real numbers. 

The Weibull distribution is depicted in the following graph: 

 

 
Diagram 6.1 The Weibull pdf. 

 

 Exponential distribution 

 

The exponential distribution is one of the most commonly used continuous distributions. It is 

used to define the elapsed time between two sequential events. 

The exponential distribution is given by the following function: 

 

       
 

 
  

 
  

 

Where both variables x and α are positive real quantities. 

The exponential distribution is depicted in the following graph: 

 

 
Diagram 6.2 The expontential pdf. 

 



30 
 

 

 

 Generalized Pareto distribution  

 

The generalized Pareto distribution (GPD) is a part of continuous probability distributions. It 

is often used to model the tails of another distribution. It is defined by three parameters: 

location μ, scale σ, and shape ξ. Although sometimes it is specified by scale and shape, it 

could sometimes be described only by its shape parameter.  

The generalized pareto distribution is given by the following function:  

 

            
 

 
    

   

 
 
  

 
   

 
 

 

Where                    
The generalized pareto distribution is depicted in the following graph: 

 

 
 

Diagram 6.3 The generalized pareto pdf. 

 

 

 Log-normal distribution 

 

The lognormal distribution is used in reliability analysis with its main application to be 

maintainability analysis of time to repair.  

The log-normal distribution is given by the following function: 

 

         
 

     
 
   

        

    
 

 

Where     and μ     
The log-normal distribution is depicted in the following graph: 

 



31 
 

 
Diagram 6.4 Log-normal pdf. 

 

 Normal distribution 

 

In probability theory, the normal distribution is commonly used in the natural sciences to 

represent real valued random variables whose distribution is unknown. 

The normal distribution is given by the following function: 

 

         
 

      
 
  

      

    

 

Where μ         , x          and σ
2
    

The normal distribution is depicted in the following graph: 

 

 
Diagram 6.5 Normal distribution. 

 

 

 



32 
 

We used Matlab software in order to observe which of the above distributions fits the data, 

based on maximum likelihood estimation. The Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC) were used with the aim of choosing the best 

distribution model, by estimating the quality of each model compared to other models. From 

all the candidate distribution fitting models, the preferred model is the one which has the 

minimum AIC or BIC value. The equation that estimates the AIC value is given as follows: 

   =2 −2   (    ), where     describes the maximum value of the likelihood function and k 

refers to the number of estimated parameters. In like manner, the BIC value is calculated by 

the equation:    =( ) −2   (    ). The AIC and BIC are not test models in the sense of 

testing a null hypothesis, as they do not provide any insight about the absolute quality of the 

model.  

 

To find out which distribution describes the data the best, Kolmogorov-Smirnov goodness-of-

fit statistical test was performed. This test introduces a significance p-value to examine the 

divergence between the empirical distribution function of the sample and the cumulative 

distribution function of the reference distribution. The p-value must be larger than a 

significance level a, to accept the null hypothesis that the sample is drawn on the best 

distribution. The significance level used in the performed tests was  =0.05. 

 

6.2 Relevant diagrams  

 
In this section of our thesis, we are going to represent some helpful diagrams with the aim of 

raising reader’s understanding. These diagrams are comprised of the data’s distribution and 

several histograms for each machine. To be more precise, probability density function plots 

are going to be presented, regarding the discrete productive time and in cases of small data 

sample, these plots are replaced by histograms. To form the distribution plots we used the 

command ‘allfitdist’ in Matlab software which provides a number of possible fitting 

distributions along with the corresponding significant parameters (AIC, BIC etc.). Although 

this command produces many possible distribution fittings for every situation (machine), on 

each plot are depicted only the most probable ones. The following plots refer to the possible 

distribution fittings of the productive time values, at every situation. After examining the 

plots’ results we are able to decide which of the featured distributions are worthy of taking 

part to the Kolmogorov – Smirnov test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 

Machine: 4BSAXF18 

 

 
Diagram 6.6 Distribution fittings for the entire productive time data set. 

 

 

 
Diagram 6.7 Distribution fittings for the productive times that refer to zero maintenance. 

 

 

 

 

 



34 
 

 
Histogram 6.1 Productive time values when the number of maintenance is equal to 1. 

 

 

 
Histogram 6.2 Productive time values when the number of maintenance is equal to 2. 

 

 

Data set Distribution Mean value Variance value 

Entire productive 

times 
Gamma 47.283 4 629.300 

Productive times with 

zero maintenance 
Weibull 18.798 706.771 

Productive times with 

a single maintenance 
- 74.340 2 353.200 

Productive times with 

two maintenances 
- 143.835 6 581.300 

Table 6.1 Mean – var table. 



35 
 

Machine: 2BSAXF20 

 

 

 
Diagram 6.8 Distribution fittings for the entire productive time data set. 

 

 

 
Diagram 6.9 Distribution fittings for the productive times that refer to zero maintenance. 

 



36 
 

 
Histogram 6.3 Productive time values when the number of maintenance is equal to 1. 

 

 
Histogram 6.4 Productive time values when the number of maintenance is equal to 2. 

 

Data set Distribution Mean value Variance value 

Entire productive 

times 
Weibull 66.661 11 117 

Productive times with 

zero maintenance 
Gamma 29.564 1 772.5 

Productive times with 

a single maintenance 
- 80.180 3 972.5 

Productive times with 

two maintenances 
- 135.211 8 992.3 

Table 6.2 Mean – var table. 

 



37 
 

Machine: NF671 

 

 
Diagram 6.10 Distribution fittings for the entire productive time data set. 

 

 

 
Diagram 6.11 Distribution fittings for the productive times that refer to zero maintenance. 

 



38 
 

 
Histogram 6.5 Productive time values when the number of maintenance is equal to 1. 

 

 
Histogram 6.6 Productive time values when the number of maintenance is equal to 2. 

 

 

Data set Distribution Mean value Variance value 

Entire productive 

times 
Weibull 152.588 37 177 

Productive times with 

zero maintenance 
Gamma 65.202 5 732.3 

Productive times with 

a single maintenance 
- 176.347 27 586 

Productive times with 

two maintenances 
- 303.206 61 303 

Table 6.3 Mean – var table. 



39 
 

Machine: NM111 

 

 
Diagram 6.12 Distribution fittings for the entire productive time data set. 

 

 

 
Diagram 6.13 Distribution fittings for the productive times that refer to zero maintenance. 

 



40 
 

 
Histogram 6.7 Productive time values when the number of maintenance is equal to 1. 

 
Histogram 6.8 Productive time values when the number of maintenance is equal to 2. 

 

Data set Distribution Mean value Variance value 

Entire productive 

times 
Weibull 91.183 16 246 

Productive times with 

zero maintenance 
Gamma 65.620 5 528.700 

Productive times with 

a single maintenance 
- 153.941 15 873 

Productive times with 

two maintenances 
- 420.451 202 240 

Table 6.4 Mean – var table. 

 

 



41 
 

7 Conclusions 

 

The goal of this thesis was to generate neural network models, which could predict future 

machine failures by taking into account two input parameters (productive time and number of 

maintenance). Essentially, the models provide the user with the opportunity to decide the 

optimal time period in which the maintenance process should be performed. 

 

The main idea, in which the models were developed, was to compute the cumulative number 

of faults according to the two input descriptors. However, the fundamental objective in 

manufacturing decision problems is to predict the proper time of maintenance in order to 

avoid machine’s failure. This crucial question can be addressed by the interpretation of the 

productive time – rate of failure diagram (chapter 5.5) so to optimize the production chain 

planning. 

 

Concerning the application of neural networks and their performance, it can be concluded 

that NN models are pretty reliable and trustworthy as the provided results are reasonable and 

accurate. Nevertheless, having a representative and a broad based data set, it’s critical for the 

neural network’s solid functionality.  

 

Last but not least, some of the suggested future research plans could include the direct 

implementation of neural networks to production industries. For example, the real time 

production supervision through sensors which are connected in a wider network can be 

applied. In this way, this dynamic network could take efficient decisions regarding all the 

possible problematic situations. All this procedure is integrated into a further sector called 

internet of things, where the neural network science plays an instrumental role. 

 

In the end, hundreds of industries could feasibly use neural networks not only to operate more 

efficiently, but also to target new audiences, develop new products or improve consumer’s 

safety. 

 

    

 

 

 



42 
 

Bibliography  

 
1. Nachimuthu Karunanithi, Darrell Whitley and Yashwant K. Malaiya, Colorado State 

University, ‘Using neural networks in reliability prediction’. 

2. Anahid Jalali, Clemens Heistracher, Alexander Schindler, Bernhart Haslhofer, 

Austrian Institute of Technology, Tanja Nemeth, Robert Glawar, Wilfried Sihn, 

Fraunhofer Austria, Peter De Boer, Infineon Technologies Austria AG, ‘Predicting 

time to failure of plasma etching equipment using machine learning’. 

3. Jorge Hurtado and Diego Alvares, Universidad National de Colombia, ‘Neural 

network based reliability analysis: a comparative study’. 

4. Howard Demuth and Mark Beale, ‘Neural network toolbox for use with matlab’. 

5. Primoz Potocnik, University of Ljubljana, ‘Neural networks: Matlab examples’. 

6. Apostolos Stamatakis and Spyridon Botsis, University of Thessaly, ‘Reliability and 

maintainability analysis in semiconductor manufacturing’. 

7. J. A. Anderson, ‘An Introduction to Neural Networks’, MIT Press, Cambridge (1995). 

8. S. Haykin,’ Neural Networks: A Comprehensive Foundation’, Second Edition, 

Prentice Hall, Upper Saddle Point (1999). 

9. R. Lippmann, ‘An Introduction to Computing with Neural Networks’, IEEE ASSP 

Magazine, 4-22 (1987). 

10. M. McCord Nelson and W.T. Illingworth, ‘A practical guide to Neural Nets’, 

AddisonWesley (Reading, Mass), 1991.  

11. N. K. Bose and P. Liang, ‘Neural Networks Foundamentals with Graphs, Algorithms 

and Applications’, McGraw-Hill, New York (1996). 

12. Joarder Kamruzzaman, Monash University, Rezaul K. Begg, Victoria University, 

Ruhul A. Sarker, University of New South Wales, ‘Artificial neural networks in 

finance and manufacturing’. 

13. Charu C. Aggarwal, IBM T.J. Watson Research Center ‘Data mining: the textbook’ 

14. Samuel H. Huang and Hong – Chao Zhang, ‘Artificial neural networks in 

manufacturing: Concepts, applications and perspectives’. 

15. Joseph Rocca, ‘A gentle journey from linear regression to neural networks’, [Online]. 

Available:https://towardsdatascience.com/a-gentle-journey-from-linear-regression-to-neural-

networks-68881590760e . 

16. “Semiconductor,” [Online]. Available: https://en.wikipedia.org/wiki/Semiconductor.  
17. L. Monch, J. W. Fowler and S. J. Mason, Production Planning and Control for 

Semiconductor Wafer Fabrication Facilities, vol. 52, S. Ramesh, Ed., Springer, 2013, 

pp. 11-13, 20-22.  

18. T. Pomorski, “Major Revision Update for SEMI E10 Specification for Definition and 

Measurement of Equipment Reliability, Availability, and Maintainability (RAM),” 

[Online]. Available: http://www.semi.org/en/semi-e10-specification-equipment-

reliability-availability-and-maintainability.  

19. ‘List of probability distributions’, [Online]. Available:  

https://en.wikipedia.org/wiki/List_of_probability_distributions?fbclid=IwAR2Tpk1Y

d1lEQfD9c08agsHLw-lQ9rl09bZmowqLOTOSF1GKDcdIIUEAb8k 

https://towardsdatascience.com/a-gentle-journey-from-linear-regression-to-neural-networks-68881590760e
https://towardsdatascience.com/a-gentle-journey-from-linear-regression-to-neural-networks-68881590760e
https://en.wikipedia.org/wiki/List_of_probability_distributions?fbclid=IwAR2Tpk1Yd1lEQfD9c08agsHLw-lQ9rl09bZmowqLOTOSF1GKDcdIIUEAb8k
https://en.wikipedia.org/wiki/List_of_probability_distributions?fbclid=IwAR2Tpk1Yd1lEQfD9c08agsHLw-lQ9rl09bZmowqLOTOSF1GKDcdIIUEAb8k


43 
 

20. Matthew Stewart, Phd researcher at Harvard University, ‘The actual difference 

between statistics and machine learning’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 
 

Appendix 
 

A.1 Matlab codes 

 

In this section of thesis, it is going to be presented the majority of the Matlab codes used not 

only for the neural network models’ creation but also for the proper exportation of the 

corresponding diagrams and calculations. 

 

The following codes were used for the production of the neural networks and the prediction 

process. 

 

Machine 4BSAXF18 

 

clear all; 

close all; 

clc; 

%--- Data insertion ---% 

k=1;  

m=0; 

prod=0; 

j=1; 

[~,~,num]=xlsread('4B-PROC.xlsx');                % Data import from excel files 

for i=1:51867     

    if strcmp(num(i,3),'1AVAILABLE')==1;           

        prod=prod+(cell2mat(num(i,6)))/3600.;    % Calculation of the cumulative  

    end                                                                  % productive time (hours) 

    if strcmp(num(i,3),'2MAINTENANCE')==1 

        m=m+1;                                  % Calculation of the cumulative number of maintenance 

    end                                                

    if strcmp(num(i,3),'3REPAIR')==1;            

        faults(j)=j;                            % Calculation of the cumulative  number of faults   

        productive(j)=prod;                      

        maintenance(j)=m;                                      

        if j==1             

            distprod(j)=productive(j); 

            distmain(j)=maintenance(j); 

        else                                                                    % Computing every discrete 

            distprod(j)=productive(j)-productive(j-1);    % productive time and number of 

            distmain(j)=maintenance(j)-maintenance(j-1);  % maintenance 

        end                                                

        if distprod(j)>0.02                                      % We finally skip input values 

            newprod(k)=productive(j);                     % of discrete productive time 

            newmain(k)=maintenance(j);                 % that are less than 1.2 minutes 

            newfaults(k)=k;             

            if j==1 

                newdistprod(k)=productive(j); 

                newdistmain(k)=maintenance(j); 

            else 



45 
 

                newdistprod(k)=productive(j)-productive(j-1); 

                newdistmain(k)=maintenance(j)-maintenance(j-1); 

            end   

            k=k+1; 

        end 

        j=j+1;                                            

    end 

end 

z=mean(newdistmain); % Mean value of number of maintenance 

y=mean(newdistprod); % Mean value of productive time 

x(1,:)=newprod;    % Cumulative productive time and cumulative number of maintenance 

x(2,:)=newmain;    % are used as inputs to our neural network 

  

%--- Definition of inputs,targets,hidden layer's neurons ---% 

inputs=x; 

targets=newfaults;     % The cumulative number of faults constitutes the output of NN 

hiddenlayer1size=69;   % The network has one hidden layer with 69 neurons 

  

%--- Creation of the neural network ---%  

trainFcn = 'trainbr';      % Bayesian regulation training function is used in this case 

net=fitnet(hiddenlayer1size,trainFcn );  

  

%--- Deviation of samples ---% 

 net.divideFcn = 'dividerand';        % Divide data randomly 

 net.divideMode = 'sample';           % Divide up every sample 

 net.divideParam.trainRatio = 70/100;   % 70 percent of samples are used for training 

 net.divideParam.valRatio = 15/100;     % 15 percent of samples are used for validation 

 net.divideParam.testRatio = 15/100;    % 15 percent of samples are used for testing 

  

%--- Training procedure and results of the NN ---%  

 [net,tr] = train(net,inputs,targets);       %Training session 

 outputs = net(inputs);                      %Results of the NN 

 errors = gsubtract(outputs,targets);        %Error values of NN 

 performance = perform(net,targets,outputs);  %Mean square error value 

  

%--- Mining final values of weights and biases ---% 

 weights1=net.IW{1};  %The input to hidden layer weights 

 weights2=net.LW{2};  %The hidden to output layer weights 

 bias1=net.b{1};      %The input to hidden layer bias 

 bias2=net.b{2};      %The hidden to output layer bias  

  

%------- Prediction -------% 

 prompt='Give the Cumulative Productive Time : '; 

 o(1,1)=input(prompt); 

 prompt='Give the Cumulative Number of Maintenance : '; 

 o(2,1)=input(prompt); 

 sample=net(o); 

 if sample<0 

  sample=0; 

 end 



46 
 

 predictions=sample 

 

 

 

Machine 2BSAXF20 

 

clear all; 

close all; 

clc; 

%--- Data insertion ---% 

k=1;  

m=0; 

prod=0; 

j=1; 

[~,~,num]=xlsread('2B.xlsx');              % Data import from excel files 

for i=1:34333     

    if strcmp(num(i,3),'1AVAILABLE')==1;           

        prod=prod+(cell2mat(num(i,6)))/3600.;   % Calculation of the cumulative  

    end                                                                % productive time (hours) 

    if strcmp(num(i,3),'2MAINTENANCE')==1 

        m=m+1;                                  % Calculation of the cumulative number of maintenance 

    end                                          

    if strcmp(num(i,3),'3REPAIR')==1;            

        faults(j)=j;                            % Calculation of the cumulative  number of faults   

        productive(j)=prod;                      

        maintenance(j)=m;                                      

        if j==1             

            distprod(j)=productive(j); 

            distmain(j)=maintenance(j); 

        else                                              % Computing every discrete 

            distprod(j)=productive(j)-productive(j-1);    % productive time and number of 

            distmain(j)=maintenance(j)-maintenance(j-1);  % maintenance 

        end                                                

        if  distprod(j)>0.02                              % We finally skip input values 

            newprod(k)=productive(j);                     % of discrete productive time 

            newmain(k)=maintenance(j);                    % that are less than 1.2 minutes 

            newfaults(k)=k;             

            if j==1 

                newdistprod(k)=productive(j); 

                newdistmain(k)=maintenance(j); 

            else 

                newdistprod(k)=productive(j)-productive(j-1); 

                newdistmain(k)=maintenance(j)-maintenance(j-1); 

            end   

            k=k+1; 

        end 

        j=j+1;                                            

    end 

end 

z=mean(newdistmain);  % Mean value of number of maintenance 



47 
 

y=mean(newdistprod);  % Mean value of productive time 

 

% We start from the second data pair as the first cell contains a productive time value that     

affects the network’s proper functionality and accuracy  

 

x(1,1:250)=newprod(2:251);    % Cumulative productive time and number of maintenance 

x(2,1:250)=newmain(2:251);    % are used as inputs to our neural network 

  

%--- Definition of inputs,targets,hidden layer's neurons ---% 

inputs=x; 

targets(1:250)=newfaults(2:251);     % The cumulative number of faults constitutes the output  

hiddenlayer1size=30;   % The network has one hidden layer with 30 neurons 

  

%--- Creation of the neural network ---%  

trainFcn = 'trainbr';    % Bayesian regulation training function is used in this case 

net=fitnet(hiddenlayer1size,trainFcn );  

  

%--- Deviation of samples ---% 

 net.divideFcn = 'dividerand';        % Divide data randomly 

 net.divideMode = 'sample';           % Divide up every sample 

 net.divideParam.trainRatio = 70/100; % 70 percent of samples are used for training 

 net.divideParam.valRatio = 15/100;   % 15 percent of samples are used for validation 

 net.divideParam.testRatio = 15/100;  % 15 percent of samples are used for testing 

  

%--- Training procedure and results of the NN ---%  

 [net,tr] = train(net,inputs,targets);       %Training session 

 outputs = net(inputs);                      %Results of the NN 

 errors = gsubtract(outputs,targets);        %Error values of NN 

 performance = perform(net,targets,outputs); %Mean square error value 

  

%--- Mining final values of weights and biases ---% 

 weights1=net.IW{1};  %The input to hidden layer weights 

 weights2=net.LW{2};  %The hidden to output layer weights 

 bias1=net.b{1};      %The input to hidden layer bias 

 bias2=net.b{2};      %The hidden to output layer bias  

  

%------- Prediction -------% 

 prompt='Give the Cumulative Productive Time : '; 

 o(1,1)=input(prompt); 

 prompt='Give the Cumulative Number of Maintenance : '; 

 o(2,1)=input(prompt); 

 sample=net(o); 

 if sample<0 

  sample=0; 

 end 

 predictions=sample 

 

 

 

 



48 
 

 

Machine NF671 

 

clear all; 

close all; 

clc; 

%--- Data insertion ---% 

k=1;  

m=0; 

prod=0; 

j=1; 

[~,~,num]=xlsread('nf.671.xlsx');              % Data import from excel files 

for i=1:11460     

    if strcmp(num(i,3),'1AVAILABLE')==1;           

        prod=prod+(cell2mat(num(i,6)))/3600.;   % Calculation of the cumulative  

    end                                                                % productive time (hours) 

    if strcmp(num(i,3),'2MAINTENANCE')==1 

        m=m+1;                                  % Calculation of the cumulative number of maintenance 

    end                                          

    if strcmp(num(i,3),'3REPAIR')==1;            

        faults(j)=j;                            % Calculation of the cumulative    

        productive(j)=prod;                     % number of faults   

        maintenance(j)=m;                                      

        if j==1             

            distprod(j)=productive(j); 

            distmain(j)=maintenance(j); 

        else                                                                 % Computing every discrete 

            distprod(j)=productive(j)-productive(j-1);    % productive time and number of 

            distmain(j)=maintenance(j)-maintenance(j-1);  % maintenance 

        end                                                

        if distprod(j)>0.02                               % We finally skip input values 

            newprod(k)=productive(j);                     % of discrete productive time 

            newmain(k)=maintenance(j);                    % that are less than 1.2 minutes 

            newfaults(k)=k;             

            if j==1 

                newdistprod(k)=productive(j); 

                newdistmain(k)=maintenance(j); 

            else 

                newdistprod(k)=productive(j)-productive(j-1); 

                newdistmain(k)=maintenance(j)-maintenance(j-1); 

            end   

            k=k+1; 

        end 

        j=j+1;                                            

    end 

end 

z=mean(newdistmain); % Mean value of number of maintenance 

y=mean(newdistprod); % Mean value of productive time 

x(1,:)=newprod;    % Cumulative productive time and cumulative number of maintenance 

x(2,:)=newmain;    % are used as inputs to our neural network 



49 
 

  

%--- Definition of inputs,targets,hidden layer's neurons ---% 

inputs=x; 

targets=newfaults;     % The cumulative number of faults constitutes the output of NN 

hiddenlayer1size=23;   % The network has one hidden layer with 23 neurons 

  

%--- Creation of the neural network ---%  

trainFcn = 'trainbr';  % Bayesian regulation training function is used in this case 

net=fitnet(hiddenlayer1size,trainFcn );  

  

%--- Deviation of samples ---% 

 net.divideFcn = 'dividerand';        % Divide data randomly 

 net.divideMode = 'sample';           % Divide up every sample 

 net.divideParam.trainRatio = 70/100; % 70 percent of samples are used for training 

 net.divideParam.valRatio = 15/100;   % 15 percent of samples are used for validation 

 net.divideParam.testRatio = 15/100;  % 15 percent of samples are used for testing 

  

%--- Training procedure and results of the NN ---%  

 [net,tr] = train(net,inputs,targets);       %Training session 

 outputs = net(inputs);                      %Results of the NN 

 errors = gsubtract(outputs,targets);        %Error values of NN 

 performance = perform(net,targets,outputs); %Mean square error value 

  

%--- Mining final values of weights and biases ---% 

 weights1=net.IW{1};  %The input to hidden layer weights 

 weights2=net.LW{2};  %The hidden to output layer weights 

 bias1=net.b{1};      %The input to hidden layer bias 

 bias2=net.b{2};      %The hidden to output layer bias  

  

%------- Prediction -------% 

 prompt='Give the Cumulative Productive Time : '; 

 o(1,1)=input(prompt); 

 prompt='Give the Cumulative Number of Maintenance : '; 

 o(2,1)=input(prompt); 

 sample=net(o); 

 if sample<0 

  sample=0; 

 end 

 predictions=sample 

 

 

 

 

 

 

 

 

 

 



50 
 

 

Machine NM111 

 

clear all; 

close all; 

clc; 

%--- Data insertion ---% 

k=1;  

m=0; 

prod=0; 

j=1; 

[~,~,num]=xlsread('nm.111.xlsx');              % Data import from excel files 

for i=1:3959     

    if strcmp(num(i,3),'1AVAILABLE')==1;           

        prod=prod+(cell2mat(num(i,6)))/3600.;   % Calculation of the cumulative  

    end                                                                % productive time (hours) 

    if strcmp(num(i,3),'2MAINTENANCE')==1 

        m=m+1;                                  % Calculation of the cumulative number of maintenance 

    end                                          

    if strcmp(num(i,3),'3REPAIR')==1;            

        faults(j)=j;                            % Calculation of the cumulative    

        productive(j)=prod;                     % number of faults   

        maintenance(j)=m;                                      

        if j==1             

            distprod(j)=productive(j); 

            distmain(j)=maintenance(j); 

        else                                              % Computing every discrete 

            distprod(j)=productive(j)-productive(j-1);    % productive time and number of 

            distmain(j)=maintenance(j)-maintenance(j-1);  % maintenance 

        end                                                

        if distprod(j)>0.02                               % We finally skip input values 

            newprod(k)=productive(j);                     % of discrete productive time 

            newmain(k)=maintenance(j);                    % that are less than 1.2 minutes 

            newfaults(k)=k;             

            if j==1 

                newdistprod(k)=productive(j); 

                newdistmain(k)=maintenance(j); 

            else 

                newdistprod(k)=productive(j)-productive(j-1); 

                newdistmain(k)=maintenance(j)-maintenance(j-1); 

            end   

            k=k+1; 

        end 

        j=j+1;                                            

    end 

end 

z=mean(newdistmain); % Mean value of number of maintenance 

y=mean(newdistprod); % Mean value of productive time 

x(1,:)=newprod;    % Cumulative productive time and cumulative number of maintenance 

x(2,:)=newmain;    % are used as inputs to our neural network 



51 
 

  

%--- Definition of inputs,targets,hidden layer's neurons ---% 

inputs=x; 

targets=newfaults;     % The cumulative number of faults constitutes the output of NN 

hiddenlayer1size=15;   % The network has one hidden layer with 15 neurons 

  

%--- Creation of the neural network ---%  

trainFcn = 'trainbr';  % Bayesian regulation training function is used in this case 

net=fitnet(hiddenlayer1size,trainFcn );  

  

%--- Deviation of samples ---% 

 net.divideFcn = 'dividerand';        % Divide data randomly 

 net.divideMode = 'sample';           % Divide up every sample 

 net.divideParam.trainRatio = 70/100; % 70 percent of samples are used for training 

 net.divideParam.valRatio = 15/100;   % 15 percent of samples are used for validation 

 net.divideParam.testRatio = 15/100;  % 15 percent of samples are used for testing 

  

%--- Training procedure and results of the NN ---%  

 [net,tr] = train(net,inputs,targets);       %Training session 

 outputs = net(inputs);                      %Results of the NN 

 errors = gsubtract(outputs,targets);        %Error values of NN 

 performance = perform(net,targets,outputs); %Mean square error value 

  

%--- Mining final values of weights and biases ---% 

 weights1=net.IW{1};  %The input to hidden layer weights 

 weights2=net.LW{2};  %The hidden to output layer weights 

 bias1=net.b{1};      %The input to hidden layer bias 

 bias2=net.b{2};      %The hidden to output layer bias  

  

%------- Prediction -------% 

 prompt='Give the Cumulative Productive Time : '; 

 o(1,1)=input(prompt); 

 prompt='Give the Cumulative Number of Maintenance : '; 

 o(2,1)=input(prompt); 

 sample=net(o);  

 predictions=sample  
 

 

 

 

 

 

 

 

 

 

 

 



52 
 

 

The following code was used for the formation of the distribution diagrams. 

 

function [D PD] = allfitdist(data,sortby,varargin)  

%% Check Inputs 

if nargin == 0 

    data = 10.^((normrnd(2,10,1e4,1))/10); 

    sortby='BIC'; 

    varargin={'CDF'}; 

end 

if nargin==1 

    sortby='BIC'; 

end 

sortbyname={'NLogL','BIC','AIC','AICc'}; 

if ~any(ismember(lower(sortby),lower(sortbyname))) 

    oldvar=sortby; %May be 'PDF' or 'CDF' or other commands 

    if isempty(varargin) 

        varargin={oldvar}; 

    else 

        varargin=[oldvar varargin]; 

    end 

    sortby='BIC'; 

end 

if nargin < 2, sortby='BIC'; end 

distname={'beta', 'birnbaumsaunders', 'exponential', ... 

    'extreme value', 'gamma', 'generalized extreme value', ... 

    'generalized pareto', 'inversegaussian', 'logistic', 'loglogistic', ... 

    'lognormal', 'nakagami', 'normal', ... 

    'rayleigh', 'rician', 'tlocationscale', 'weibull'}; 

if ~any(strcmpi(sortby,sortbyname)) 

    error('allfitdist:SortBy','Sorting must be either NLogL, BIC, AIC, or AICc'); 

end 

%Input may be mixed of numeric and strings, find only strings 

vin=varargin; 

strs=find(cellfun(@(vs)ischar(vs),vin)); 

vin(strs)=lower(vin(strs)); 

%Next check to see if 'PDF' or 'CDF' is listed 

numplots=sum(ismember(vin(strs),{'pdf' 'cdf'})); 

if numplots>=2 

    error('ALLFITDIST:PlotType','Either PDF or CDF must be given'); 

end 

if numplots==1 

    plotind=true; %plot indicator 

    indxpdf=ismember(vin(strs),'pdf'); 

    plotpdf=any(indxpdf); 

    indxcdf=ismember(vin(strs),'cdf'); 

    vin(strs(indxpdf|indxcdf))=[]; %Delete 'PDF' and 'CDF' in vin 

else 

    plotind=false; 

end 



53 
 

%Check to see if discrete 

strs=find(cellfun(@(vs)ischar(vs),vin)); 

indxdis=ismember(vin(strs),'discrete'); 

discind=false; 

if any(indxdis) 

    discind=true; 

    distname={'binomial', 'negative binomial', 'poisson'}; 

    vin(strs(indxdis))=[]; %Delete 'DISCRETE' in vin 

end 

strs=find(cellfun(@(vs)ischar(vs),vin)); 

n=numel(data); %Number of data points 

data = data(:); 

D=[]; 

%Check for NaN's to delete 

deldatanan=isnan(data); 

%Check to see if frequency is given 

indxf=ismember(vin(strs),'frequency'); 

if any(indxf) 

    freq=vin{1+strs((indxf))}; freq=freq(:); 

    if numel(freq)~=numel(data) 

        error('ALLFITDIST:PlotType','Matrix dimensions must agree'); 

    end 

    delfnan=isnan(freq); 

    data(deldatanan|delfnan)=[]; freq(deldatanan|delfnan)=[]; 

    %Save back into vin 

    vin{1+strs((indxf))}=freq; 

else 

    data(deldatanan)=[]; 

end  

  

%% Run through all distributions in FITDIST function 

warning('off','all'); %Turn off all future warnings 

for indx=1:length(distname) 

    try 

        dname=distname{indx}; 

        switch dname 

            case 'binomial' 

                PD=fitbinocase(data,vin,strs); %Special case 

            case 'generalized pareto' 

                PD=fitgpcase(data,vin,strs); %Special case 

            otherwise 

                %Built-in distribution using FITDIST 

                PD = fitdist(data,dname,vin{:}); 

        end 

         

        NLL=PD.NLogL; % -Log(L) 

        %If NLL is non-finite number, produce error to ignore distribution 

        if ~isfinite(NLL) 

            error('non-finite NLL'); 

        end 



54 
 

        num=length(D)+1; 

        PDs(num) = {PD}; %#ok<*AGROW> 

        k=numel(PD.Params); %Number of parameters 

        D(num).DistName=PD.DistName; 

        D(num).NLogL=NLL; 

        D(num).BIC=-2*(-NLL)+k*log(n); 

        D(num).AIC=-2*(-NLL)+2*k; 

        D(num).AICc=(D(num).AIC)+((2*k*(k+1))/(n-k-1)); 

        D(num).ParamNames=PD.ParamNames; 

        D(num).ParamDescription=PD.ParamDescription; 

        D(num).Params=PD.Params; 

        D(num).Paramci=PD.paramci; 

        D(num).ParamCov=PD.ParamCov; 

        D(num).Support=PD.Support; 

    catch err %#ok<NASGU> 

        %Ignore distribution 

    end 

end 

warning('on','all'); %Turn back on warnings 

if numel(D)==0 

    error('ALLFITDIST:NoDist','No distributions were found'); 

end 

  

  

%% Sort distributions 

indx1=1:length(D); %Identity Map 

sortbyindx=find(strcmpi(sortby,sortbyname)); 

switch sortbyindx 

    case 1 

        [~,indx1]=sort([D.NLogL]); 

    case 2 

        [~,indx1]=sort([D.BIC]); 

    case 3 

        [~,indx1]=sort([D.AIC]); 

    case 4 

        [~,indx1]=sort([D.AICc]); 

end 

%Sort 

D=D(indx1); PD = PDs(indx1);  

%% Plot if requested 

if plotind; 

    plotfigs(data,D,PD,vin,strs,plotpdf,discind) 

end  

end   

  

  

function PD=fitbinocase(data,vin,strs) 

%% Special Case for Binomial 

% 'n' is estimated if not given 

vinbino=vin; 



55 
 

%Check to see if 'n' is given 

indxn=any(ismember(vin(strs),'n')); 

%Check to see if 'frequency' is given 

indxfreq=ismember(vin(strs),'frequency'); 

if ~indxn 

    %Use Method of Moment estimator 

    %E[x]=np, V[x]=np(1-p) -> nhat=E/(1-(V/E)); 

    if isempty(indxfreq)||~any(indxfreq) 

        %Raw data 

        mnx=mean(data); 

        nhat=round(mnx/(1-(var(data)/mnx))); 

    else 

        %Frequency data 

        freq=vin{1+strs(indxfreq)}; 

        m1=dot(data,freq)/sum(freq); 

        m2=dot(data.^2,freq)/sum(freq); 

        mnx=m1; vx=m2-(m1^2); 

        nhat=round(mnx/(1-(vx/mnx))); 

    end 

    %If nhat is negative, use maximum value of data 

    if nhat<=0, nhat=max(data(:)); end 

    vinbino{end+1}='n'; vinbino{end+1}=nhat; 

end 

PD = fitdist(data,'binomial',vinbino{:}); 

end 

   

  

function PD=fitgpcase(data,vin,strs) 

%% Special Case for Generalized Pareto 

% 'theta' is estimated if not given 

vingp=vin; 

%Check to see if 'theta' is given 

indxtheta=any(ismember(vin(strs),'theta')); 

if ~indxtheta 

    %Use minimum value for theta, minus small part 

    thetahat=min(data(:))-10*eps; 

    vingp{end+1}='theta'; vingp{end+1}=thetahat; 

end 

PD = fitdist(data,'generalized pareto',vingp{:}); 

end 

  

   

function plotfigs(data,D,PD,vin,strs,plotpdf,discind) 

%Plot functionality for continuous case due to Jonathan Sullivan 

%Modified by author for discrete case 

  

%Maximum number of distributions to include 

%max_num_dist=Inf;  %All valid distributions 

max_num_dist=4; 

  



56 
 

%Check to see if frequency is given 

indxf=ismember(vin(strs),'frequency'); 

if any(indxf) 

    freq=vin{1+strs((indxf))}; 

end 

  

figure 

  

%% Probability Density / Mass Plot 

if plotpdf 

    if ~discind 

        %Continuous Data 

        nbins = max(min(length(data)./10,100),50); 

        xi = linspace(min(data),max(data),nbins); 

        dx = mean(diff(xi)); 

        xi2 = linspace(min(data),max(data),nbins*10)'; 

        fi = histc(data,xi-dx); 

        fi = fi./sum(fi)./dx; 

        inds = 1:min([max_num_dist,numel(PD)]); 

        ys = cellfun(@(PD) pdf(PD,xi2),PD(inds),'UniformOutput',0); 

        ys = cat(2,ys{:}); 

        bar(xi,fi,'FaceColor',[160 188 254]/255,'EdgeColor','k'); 

        hold on; 

        plot(xi2,ys,'LineWidth',1.5) 

        legend(['empirical',{D(inds).DistName}],'Location','NE') 

        xlabel('Value'); 

        ylabel('Probability Density'); 

        title('Probability Density Function'); 

        grid on 

    else 

        %Discrete Data 

        xi2=min(data):max(data); 

        %xi2=unique(x)'; %If only want observed x-values to be shown 

        indxf=ismember(vin(strs),'frequency'); 

        if any(indxf) 

            fi=zeros(size(xi2)); 

            fi((ismember(xi2,data)))=freq; fi=fi'./sum(fi); 

        else 

            fi=histc(data,xi2); fi=fi./sum(fi); 

        end 

        inds = 1:min([max_num_dist,numel(PD)]); 

        ys = cellfun(@(PD) pdf(PD,xi2),PD(inds),'UniformOutput',0); 

        ys=cat(1,ys{:})'; 

        bar(xi2,[fi ys]); 

        legend(['empirical',{D(inds).DistName}],'Location','NE') 

        xlabel('Value'); 

        ylabel('Probability Mass'); 

        title('Probability Mass Function'); 

        grid on 

    end 



57 
 

else 

      

%Cumulative Distribution 

    if ~discind 

        %Continuous Data 

        [fi xi] = ecdf(data); 

        inds = 1:min([max_num_dist,numel(PD)]); 

        ys = cellfun(@(PD) cdf(PD,xi),PD(inds),'UniformOutput',0); 

        ys = cat(2,ys{:}); 

        if max(xi)/min(xi) > 1e4; lgx = true; else lgx = false; end 

        subplot(2,1,1) 

        if lgx 

            semilogx(xi,fi,'k',xi,ys) 

        else 

            plot(xi,fi,'k',xi,ys) 

        end 

        legend(['empirical',{D(inds).DistName}],'Location','NE') 

        xlabel('Value'); 

        ylabel('Cumulative Probability'); 

        title('Cumulative Distribution Function'); 

        grid on 

        subplot(2,1,2) 

        y = 1.1*bsxfun(@minus,ys,fi); 

        if lgx 

            semilogx(xi,bsxfun(@minus,ys,fi)) 

        else 

            plot(xi,bsxfun(@minus,ys,fi)) 

        end 

        ybnds = max(abs(y(:))); 

        ax = axis; 

        axis([ax(1:2) -ybnds ybnds]); 

        legend({D(inds).DistName},'Location','NE') 

        xlabel('Value'); 

        ylabel('Error'); 

        title('CDF Error'); 

        grid on 

    else 

        %Discrete Data 

        indxf=ismember(vin(strs),'frequency'); 

        if any(indxf) 

            [fi xi] = ecdf(data,'frequency',freq); 

        else 

            [fi xi] = ecdf(data); 

        end 

        %Check unique xi, combine fi 

        [xi,ign,indx]=unique(xi); %#ok<ASGLU> 

        fi=accumarray(indx,fi); 

        inds = 1:min([max_num_dist,numel(PD)]); 

        ys = cellfun(@(PD) cdf(PD,xi),PD(inds),'UniformOutput',0); 

        ys=cat(2,ys{:}); 



58 
 

        subplot(2,1,1) 

        stairs(xi,[fi ys]); 

        legend(['empirical',{D(inds).DistName}],'Location','NE') 

        xlabel('Value'); 

        ylabel('Cumulative Probability'); 

        title('Cumulative Distribution Function'); 

        grid on 

        subplot(2,1,2) 

        y = 1.1*bsxfun(@minus,ys,fi); 

        stairs(xi,bsxfun(@minus,ys,fi)) 

        ybnds = max(abs(y(:))); 

        ax = axis; 

        axis([ax(1:2) -ybnds ybnds]); 

        legend({D(inds).DistName},'Location','NE') 

        xlabel('Value'); 

        ylabel('Error'); 

        title('CDF Error'); 

        grid on 

    end 

end  

end 

 

 

 


