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SUMMARY 

    Arsenic is a metalloid which occurs in various forms (organic and inorganic) and 

concentrations in environment from natural occurrence, but also from anthropogenic activity. 

From a biological and toxicological perspective, there are three major groups of arsenic 

compounds: inorganic (arsenic combined with elements such as: oxygen, sulfur, chlorine), 

organic (combined with carbon and hydrogen) and arsine gas (the most toxic). Human 

exposure to arsenic can occur over a lifetime, from water and food consumption, as well as 

from exposure to soil, dust, air, and  breast milk (EFSA, 2009; Rebelo and Caldas, 2016).  

Arsenic  ranks first on the Agency for Toxic Substances and Disease Registry - ATSDR 

(ATSDR, 2015) meaning it manifest great toxicological concern to humans. From the various 

forms of arsenic, the most harmful to human health are the inorganic forms. Inorganic 

arsenic is associated with numerous adverse effects in humans, both cancerous and non-

cancerous. 

    Arsenic contamination in drinking water is a major environmental issue. Many populations 

across the world, particularly, India and Bangladesh, face a public health crisis from their use 

of groundwater, which is contaminated with high levels of Arsenic, as their source of drinking 

water (Alam et al., 2002; Khan et al., 2003). Recent studies made in Greece have identified 

increased contamination in some areas. An appropriate understanding of the chemical 

properties of arsenic and its behavior to the environment and human body, are critical in 

predicting and estimating human health related risks. Using a Biologically Based Dose 

Response (BBDR) model we can estimate the potential individual risk and consequently 

population health risk from the internal dose or else, biologically effective dose, obtained 

from a Physiologically Based Pharmacokinetic (PBPK) model. PBPK models can describe 

the mechanisms of absorption, distribution, metabolism and elimination (ADME) of chemicals 

in the body allowing us to obtain the internal concentration of arsenic to the target organs.  

    In this case, a PBPK model which takes into consideration distribution within human body 

of both inorganic arsenic (Arsenite and Arsenate) and the two main metabolites 

(Dimethylarsinate and Monomethylarsonate) was used. Coupling a PBPK model with a 

Biological Based Dose Response Model, allowed the quantitative estimation of health risk in 

individual and population level, due to aggregate arsenic exposure. In addition, the use of the 

PBPK model allowed the utilization of Arsenic biomonitoring data for reconstructing exposure 

and then estimate the associated As related risks in global scale. The challenge of this study 

was the connection of dose-response modelling approaches no longer to the external 

concentration of arsenic, but to the internal exposure at the different target organs, 

accounting for gender susceptibility differences as well. Based on the water contamination 

levels, the estimated risks ranged from 10-7 to 10-4, depending on the contamination levels. 
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INTRODUCTION 

ARSENIC 

GENERAL INFORMATION OF ARSENIC 

     Arsenic is a metalloid existing in Group 15, number 33 of the periodic table, which means 

it has properties in between those of metals and nonmetals. Inorganic arsenic is a naturally 

occurring metalloid found in water, air, soil, many kind of rocks such as volcanic rock, 

minerals, ores, organic matter and food  (Rebelo and Caldas, 2016). The origin of Arsenic 

begins from red giant stars and supernovas, rather than from the Big Bang (Henke, 2009). 

Arsenic exists in -3, 0, +3, and +5 valence oxidation states (Mohan and Pittman, 2007) and in 

a variety of chemical forms (organic and inorganic) resulting its complexity of chemistry in the 

environment. Inorganic arsenic is comprised of arsenite (trivalent form) and arsenate 

(pentavalent form) (Georgopoulos et al., 2007). The most common trivalent inorganic arsenic 

compounds are: arsenic trioxide (As2O3), sodium arsenite (NaAsO2), and arsenic trichloride 

(AsCl3). It is generally accepted that the inorganic species, AsIII and AsV, are the predominant 

species in most environments (Andrianisa et al., 2008). The pentavalent arsenic pentoxide 

(As2O5) has high solubility in water so we assume that the chief (EPA, 1984) chemical form 

of inorganic arsenic in public water supplies would be the pentavalent inorganic form. 

Inorganic arsenic is generally found in drinking water as either arsenate AsV or arsenite AsIII. 

AsV is found primarily in oxygenated waters in his stable form, whereas As III is detected more 

frequently in reducing or low oxygen environment (Postma et al., 2007). Although AsV tends 

to be less toxic compared to AsIII, it is thermodynamically more stable due to it predominates 

under normal conditions and becomes the cause of major contaminant in groundwater 

(Chutia et al., 2009). Most arsenic compounds are colorless, tasteless, odorless powders 

that do not evaporate. Thus, it i usually difficult to tell if arsenic is present in the food, water, 

or air (ATSDR, 2007).  

BIOTRANFORMATION 

     Arsenic cannot be destroyed in the environment but it can only change forms by reacting 

with several elements or molecules present in the environment, or even by the action of 

bacteria that live in soil or sediment. Arsenic can get into lakes, rivers, or groundwater by 

dissolving in rain or snow or thought the discharge of industrial wastes. Arsenic species have 

an affinity for clay mineral surfaces and organic matter and this can affect their environmental 

behavior. Bioaccumulation of arsenic in the aquatic environment is dependent on 

environmental conditions, trophic status within the food chain and route of uptake (Williams 

et al., 2006). Three major modes of arsenic biotransformation have been found to occur in 
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the environment: (1) redox transformation between arsenite and arsenate, (2) reduction and 

methylation of arsenic, and (3) biosynthesis of organoarsenic compounds. From these 

processes, a complex biogeochemical cycling of compounds is formed (WHO. et al., 2001; 

Williams et al., 2006). 

 

Figure 1. Core concepts of Arsenic biogeochemical cycling.  

As shown in the Fig.1 Arsenic is released into the atmosphere (primarily as As 2O3) 

where it exists mainly absorbed on particulate matter. These particles are dispersed 

by the wind and are returned to the earth (wet or dry deposition) (O.W. and J.M., 

2012). Arsines released from microbial sources in soils or sediments undergo 

oxidation in the air (Tamaki and Frankenberger, 1992), reconverting the arsenic to 

non-volatile forms (Parris and Brinckman, 1976), which settle back to the ground. 

Natural low-temperature biomethylation and reduction to arsines also releases 

arsenic into the atmosphere. When found in the soil arsenic can undergo biological 

transformation ending up in groundwater. Right geochemical conditions will control 

whether arsenic will leach in water i.e. water with high pH or relatively little 

dissolved oxygen. About 60% of anthropogenic arsenic emissions to the global 

atmosphere originate from flue gases emitted by copper ore smelter and coal -

combustion facilities (Henke, 2009). Arsenic is emitted into the atmosphere by high-

temperature processes such as coal-fired power generation plants, burning 

vegetation and volcanism (human and natural activity) . World arsenic production in 

the year 2008 was estimated to be 53,500 tonnes (As 2O3), whereof less than 1,500 
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tonnes was estimated to be produced within the EU (Chain, 2009; USGS, 

2014).Global natural emissions have been estimated to be 7900 tonnes per year, 

while anthropogenic emissions are about three times higher. Improvements of 

industrial processes have led to substantial decreases of the emis sions of arsenic 

from the metal industry. 

EXPOSURE 

    Exposure to arsenic for the general population may occur through inhalation 

(contaminated air due to industrial emissions or flue gas from coal-combustion power plants 

and ore smelters, cigarette smoking), dermal absorption (CCA-treated wooden decks and 

playground structures (Hemond and Solo-Gabriele, 2004), ingestion of food, water and soil in 

the environment, while occupational exposure to arsenic may occur from production of wood 

preservatives, herbicides, and insecticides (Henke, 2009). Human exposure to arsenic 

occurs primarily through the consumption of water and seafood, particularly shellfish (EFSA, 

2009). The most common long term exposure to inorganic arsenic is contaminated water. 

From the forms of Arsenic in drinking water, and its resultant metabolism, an individual may 

be exposed internally to at least six different arsenicals (Cohen et al., 2007). As said above, 

arsenic occurs in the environment in different forms but inorganic arsenic is the most toxic 

one. Inorganic arsenic is mostly found in meats, poultry, dairy products, mushrooms, tea and 

cereals (Velez et al., 1996). The major food contributors to inorganic arsenic are vegetables 

(24%), fruits (18%), rice (17%), beer and wine (12%). Approximately 10% of the total arsenic 

exposure from foods is the inorganic toxic form. Like all the molecules found in the universe, 

once arsenic is found in our body, a biological process begins which aims its elimination from 

our system. These process is called “ADME”, a pharmacokinetic abbreviation for absorption, 

distribution, metabolism and excretion.  

DESCRIPTION OF ARSENIC KINETICS  

ABSORPTION 

    Absorption is defined as the process by which a drug proceeds from the site of 

administration to the site of measurement (usually blood, plasma, or serum). When Arsenic 

enters the body barriers is readily transported to the cell (Schuhmacher-Wolz et al., 2009) 

where it binds to hemoglobin, plasma proteins and leukocytes. Then is redistributed to the 

liver, kidney, lung, spleen and intestines (WHO, 2007). Arsenic can cross cell membranes by 

passive diffusion or carrier protein mediated transport (Mann et al., 1996a) and bond to 

intracellular components, favoring its accumulation (Georis et al., 1990). Absorption from 

food is assumed to occur primarily in the small intestine (Henke, 2009) where is nearly 

completely absorbed (80%) after ingestion (Duker et al., 2005). The absorption of arsenic 
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from the GI tract to the liver is described by using first-order kinetics. As concern the skin, 

dermal absorption of inorganic arsenic residue on the surface of objects is low (Wester et al., 

1993) dermal exposure is assumed to be insignificant in this study, but inorganic arsenic may 

accumulate in skin, bone, liver and kidney.  

DISTRIBUTION 

    After being absorbed, arsenic is widely distributed to almost all organs. In the bloodstream, 

arsenic is distributed between the plasma and the erythrocytes. Only metabolites present in 

the plasma are considered available for distribution to the tissues, because arsenic bounds 

to RBCs, therefore considered unavailable for exchange with tissues (Mann et al., 1996a). 

The form of the Physiologically Based PharmacoKinetic models (This will be discussed later in 

this essay) depends predominantly on the rate of the tissue/blood distribution of the 

compounds (Baláž and Lukáčová, 1999). When all the incoming compound is available for 

distribution in the tissues, this behavior is referred as perfusion-limited uptake (Andersen, 

1991). 

METABOLISM 

    It is likely that metabolism of arsenic, like other toxic metals, is associated with the 

conversion of the most potentially toxic forms of this element to the less toxic form, followed 

by accumulation in or excretion from the cell. Two metabolic pathways for As(i) have been 

described, an enzymic arsenic reduction/methylation pathway (Buchet and Lauwerys, 1985) 

and an alternative pathway involving nonenzymatic formation of arsenic-glutathione 

complexes. Fig.2 next page depicts the Arsenic metabolic pathways used later in the PBPK 

model formulation.  

Institutional Repository - Library & Information Centre - University of Thessaly
09/05/2024 08:24:17 EEST - 18.117.98.51



13 
 

«UNIVERSITY OF THESSALY» 
«Postgraduate Study Department of Biochemistry and Biotechnology» 

«TOXICOLOGY» 

 

 

Figure 2. Arsenic metabolism pathways.  

    As seen in Figure 2, Reduction of AsV produces AsIII which is a substrate for AS3MT to 

methylate, to form MMAV. MMAV is reduced to MMAIII which is methylated by AS3MT (or 

using SAM as a methyl donor) to form DMAV. DMAV is further reduced to form DMAIII. The 

modelled metabolic pathways included in addition rates of oxidation of trivalent arsenicals to 

their respective pentavalent forms. A third metabolic pathway has recently been described 

where involves initial binding of inorganic arsenic to sulfhydryl groups of cysteinyl moieties on 

proteins, followed by reductive methylation catalyzed by AsIII, AS3MT and using the methyl 

group donor SAM to form MMAV and DMAV (ATSDR, 2007)  Quantitative description of 

arsenic metabolic pathways is further complicated by the inhibitory influence of metabolites 

on methylation (Easterling et al., 2002; Kenyon et al., 2001; Styblo et al., 1996). 

   Reduction of AsV, MMA, and DMAV takes place very rapidly and can occur by either 

enzymatic or non-enzymatic mechanisms (El-Masri and Kenyon, 2008a; Zakharyan et al., 

2005). Mitochondria can work as reactors, where they take up AsV, rapidly reduce it, and 

export the formed AsIII (Németi and Gregus, 2002). Methylation of inorganic arsenic 

facilitates the excretion of inorganic arsenic from the body, as the end-products are readily 

excreted in urine, for this reason, the methylation of arsenic was viewed as a detoxification 

pathway (Buchet and Lauwerys, 1985). However, the methylation of inorganic arsenic may 
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be a toxificaton-activation process, due to the great biological activity of trivalent methylated 

arsenic metabolites with proteins and even DNA (Kitchin, 2001).  

     A single enzyme has been identified, AS3MT, that catalyzes both the oxidative 

methylation of trivalent arsenicals and the reduction of pentavalent arsenicals (Waters et al., 

2004a; Waters et al., 2004b) but also others enzymes support those processes, such as 

GSTO1 (Chowdhury et al., 2006; Zakharyan and Aposhian, 1999), which is widely distributed 

in human tissues. Recently a new enzyme AdoMet dependent methyltransferase (Thomas et 

al., 2004) has been reported.  

    Two genes are responsible for arsenic metabolism: human nucleoside phosphorylase 

(hNP) and human glutathione S-transferase omega 1-1 (hGSTO 1-1), (Yu et al., 2003). 

Polymorphisms in those genes have been discovered. Studies in humans suggest the 

existence of a wide difference in the activity of methyl-transferases, and the existence of 

polymorphisms. Genetic polymorphism that have been examined include AS3MT, 

cystathione-β-synthase, Glutathione-S-transferase π1, ω1, methylenetetrahydrofolate 

reductase, and N-6 adenine- specific DNA methyltransferase 1 (ATSDR, 2007). Individuals 

with polymorphisms associated with a higher MMA: DMA ratio in urine may be more 

susceptible to arsenic-induced toxicity.  

   Children seem to have their own way dealing with arsenic. The first metabolic pathway is 

more active in adults than children, but the second methylation step is more active in children 

than adults (Chowdhury et al., 2003). Due to this reason, fetuses and babies may be 

protected by increased methylation of arsenic during pregnancy and breastfeeding (Gurbay 

et al., 2012). Fängström et al. (2008) found that arsenic in blood plasma does not pass easily 

through the mammary glands and arsenic in breast milk correlated negatively with DMA%. 

Thus, indicating that breast-feeding protects the infant from exposure to arsenic (Fängström 

et al., 2008). The same conclusion came also from Carignan et al. (Carignan et al., 2015). 

EXCRETION 

    Arsenic is excreted in the urine primarily through the kidneys. Humans excrete a cocktail 

of inorganic, monomethylated and dimethylated forms of arsenic. The pentavalent 

metabolites MMAV and DMAV are less toxic than arsenite or arsenate (ATSDR, 2011). 

Approximately 50% of excreted arsenic in human urine is dimethylated and 25% is 

monomethylated, with the remainder being inorganic. Other less important routes of 

elimination of inorganic arsenic include feces, incorporation into hair and nails, skin 

desquamation, and sweat. The whole-body biological half-life of ingested arsenic is about 10 

hours, and 50-80% is excreted over 3 days (Casarett and Klaassen, 2008). 
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MODE OF ACTION 

    The toxicity of arsenic, including cancer, is most likely due to multiple mechanisms. The 

mechanisms responsible for the adverse effects associated with arsenic, probably occur 

through multiple independent and interdependent mechanisms (Duker et al., 2005; NRC, 

2001). Two general types of mechanisms appear to be involved in arsenic-induced toxicity: 

(1) formation of reactive oxygen species (ROS). Arsenic can disrupt the oxidative 

phosphorylation, leading to free radical formation. Pentavalent arsenic may be transformed 

to a substitute for inorganic phosphate in glycolysis, leading to uncoupling of oxidative 

phosphorylation and loss of ATP formation (TOXNET, 2016). Arsenic-induced ROS 

generation has been associated with numerous effects on cellular targets (Hubaux et al., 

2013), which can directly damage cellular components or lead to a cascade of effects in 

response to oxidative stress (alterations in intracellular oxidation/reduction reaction, 

decreased glutathione levels, lipid peroxidation, damage to proteins, disruption of 

mitochondrial membrane, genomic instability through damage to DNA). The current 

consensus in studies with cultured cells, experimental animals, and humans is the fact that 

arsenic causes oxidative stress through the generation of reactive oxygen species (Fujino et 

al., 2005; Kumagai and Sumi, 2007).  (2) interaction of arsenic metabolites with cellular 

macromolecules. Arsenic can interfere with essential enzymatic functions and transcriptional 

events in the cells. Inorganic arsenic exerts epigenetic effects (Bodwell et al., 2006; Reichard 

et al., 2007). Trivalent species are more potent cytotoxicants, genotoxicants and inhibitors of 

enzymes compared to pentavalent arsenicals (El-Masri and Kenyon, 2008a). One of possible 

mechanisms for higher toxicity is the higher affinity for thiol compounds (Shiobara et al., 

2001) and generation of reactive oxygen species (Nesnow et al., 2002). Exposure to 

inorganic arsenic has been shown to modify the expression of a variety of genes related to 

cell growth and defense, including the tumor suppressor gene p53, as well as to alter the 

binding of nuclear transcription factors (TOXNET, 2016).  
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Figure 3. Carcinogenic mechanisms of arsenic transformation . 

Fig.3 explains how ingested arsenic undergoes biotransformation process and how those 

can result to carcinogenic activity. (1) Biotransformation could lead to arsenic excretion, 

when conjugated with glutathione. (2) Biotransformation generates reactive oxygen species 

(ROS), that induce single-strand (ssDNA) and double-strand (dsDNA) breaks by inducing 

oxidative damage. The process can also inhibit DNA break repair mechanisms (Martinez et 

al., 2011). Additionally, ROS can act as co-carcinogens. Furthermore, the requirement of S-

adenosyl methionine (SAM) for arsenic biotransformation can lead to depletion of SAM, 

which is the substrate for DNA methylation. Recently, a study showed that exposure to 

arsenic triggers a shift in microRNA expression and revealed an induction of cell cycle 

progression and failure of apoptosis supporting the idea of inorganic arsenic carcinogenic 

activity (Sturchio et al., 2014).  

    Unlike many carcinogens, arsenic is not a mutagen in bacteria and acts weakly in 

mammalian cells, but can induce chromosomal abnormalities, aneuploidy, and micronuclei 

formation. In vitro studies showed that AsIII exposure to humans from drinking water can lead 

to the formation of micronuclei (Johnson, 2007). Arsenic can also act as a co-mutagen 

and/or co-carcinogen (Casarett and Klaassen, 2008). Although a large amount of research is 

available on arsenic’s mode of action, the exact nature of carcinogenic action is not yet clear 
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(NRC, 2001). The proposed Mode of Action include alteration in DNA repair, change in DNA 

methylation, suppression of cell cycle check point protein (p53), altered expression of growth 

factor and oxidative stress. 

ADVERSE EFFECTS  

CARCINOGENICITY 

    Inorganic arsenic has been classified by the IARC (IARC, 1973) in Group 1 as 

carcinogenic to humans on the basis of increased incidence of cancers at several sites 

where people were exposed. IARC (2004) has classified arsenic as a known human 

carcinogen, associated with tumors of the skin, lung, and urinary bladder, and possibly 

kidney, liver, and prostate. A ranging risk of 10-4 to 10-7 was developed by EPA (ATSDR, 

2007). An established association between human arsenic exposure and human cancer has 

been known for many years (Chen et al., 1992; Wu et al., 1989). A clear dose-response 

relation between Arsenic and drinking water for cancer in kidney, lung and bladder has been 

reported in Argentina (Hopenhayn-Rich et al., 1998) and a high lung cancer mortality in 

Japan (Tsuda et al., 1995). Arsenic is contributing to cancer (Bernstam and Nriagu, 2000; 

Clewell et al., 1999) of the skin (Yu et al., 2000), lungs (Ferreccio et al., 2000; Lubin et al., 

2000), kidney, liver and bladder (Bates et al., 1992; Chen and Wang, 1990; Smith et al., 

1992). Trivalent methylated arsenicals are responsible for the toxicity and carcinogenicity of 

environmental arsenic (Hirano et al., 2004; Nesnow et al., 2002). MMAIII and DMAIII have 

been suggested as potential contributors to arsenic-induced carcinogenicity (Bernstam and 

Nriagu, 2000; Kitchin, 2001). DMAV  on the other hand, is a urinary bladder carcinogen and 

tumor promoter in rats (Cohen et al., 2006). The most common pathway of exposure to 

inorganic arsenic for the general population is via the drinking water. Early effects of 

exposure to arsenic in drinking water included pigmentation changes and hyperkeratosis 

(Alam et al., 2002; Mazumder et al., 1998; Smith et al., 2002b). These skin lesions may 

develop into more serious and disabling forms, including cancer (Haque et al., 2003). In the 

Table below, several endpoints concerning exposure to inorganic arsenic and cancer are 

summarized.  
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Table 1. Toxicological cancer endpoints for inorganic arsenic using evidence from 

human studies 

Chronic exposure - Inhalation 

Exposure  LOAEL   Form Ref. 

1->30y 0.213M (serious) CEL: lung cancer AsIII Enterline et al. 1987a 

19.5y 

0.064M (serious) CEL: lung cancer 0.064 mg/kg/day for 

liver and lung cancer corresponds to  

4,48 mg/day for a weight of 70 kg 

AsIII (Enterline et al., 1987) 

3m->30y 0.05M (serious) CEL: lung cancer (3.5mg/day) AsIII (Jarup et al., 1989) 

1->30y 0.38M (serious) CEL: lung cancer AsIII (Lee-Feldstein, 1986) 

>25y 0.29M (serious) CEL: lung cancer AsIII (Lubin et al., 2000) 

14.8y 0.3M (serious) CEL: lung cancer AsIII (Welch et al., 1982) 

Intermediate Oral Exposure 

0.5-14y 
0.05 (serious) hyperpigmentation with keratosis, 

possibly pre-cancerous 
 (Huang et al., 1985) 

4mo 
0.06F (serious)persistent extensive hyperkeratosis of 

palms and soles 
 (Wagner et al., 1979) 

Systemic Oral Exposure 

>8y 
0.0012 (less serious) increased risk  

of premalignant skin lesions 
 (Ahsan et al., 2006) 

4y 
0.1 F (serious) de-pigmentation  

with hyperkeratosis, pre-cancerous 
As(III) 

(Bickley and Papa, 

1989) 

NS 
0.009 (serious) hyperpigmentation 

 with keratosis, pre-cancerous 
 

(Guha Mazumder et al., 

1988) 

Cancer 

NS 0.0011 CEL: lung cancers (0.077 mg/day)  (Ferreccio et al., 2000) 

NS 0.018 CEL: lung cancer mortality 1.26 mg/day  (Guo, 2004) 

NS 0.018 CEL: bladder cancer  Guo and Tseng 2000 

>1y 
0.0075 CEL: basal or squamous skin carcinoma 

 (0.525 for 70kg) 
 (Haupert et al., 1996) 

5y 
0.033 CEL: lung, urinary tract cancer  

2.31 mg/day for a weight of 70 kg 
As(III) (Tsuda et al., 1995) 

22-34y 

0.014 CEL: basal cell and squamous cell carcinomas of 

the skin, hemangio endothelioma of the liver 0.014  

mg/kg/day for fatal liver tumor and 22 year of exposure, 

corresponds to 0.98 mg/day for a weight of 70 kg 

 (Zaldivar et al., 1981) 
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     Despite all the information about carcinogenesis to human beings, development of a 

reliable animal model system for arsenic-induced carcinogenicity has been difficult  (Ng et 

al., 1999), indicating marked variation in sensitivity towards arsenic toxicity between species 

(Vahter, 1999). The difficulties in this area could be due to species-specific differences in 

detoxification, metabolism, or uptake and accumulation in target tissues. There are major 

qualitative and quantitative interspecies differences, for example in methylation (Hsueh et al., 

1998; Mann et al., 1996b). Another example is the Trimethylarsine oxide (TMAO), the final 

metabolite of inorganic arsenic in some animal species, but has never been found in human 

urine (Yoshida et al., 1997). Some animal species even lack arsenic methylation capacity, 

perhaps as an adaptation mechanism (Casarett and Klaassen, 2008). Only in the last 

decade has the metal been demonstrated to cause cancer in animals under specific 

exposure scenarios. 

OTHER HEATH IMPACTS 

    Epidemiological studies have indicated that ingested inorganic arsenic is associated with 

chronic diseases such as dermal, cardiovascular, neurological effects and mellitus diabetes 

(Chiou et al., 2001; EPA, 2005; Lamm et al., 2006; O’Bryant et al., 2011; Smith et al., 

2002a). Inorganic arsenic can cause reproductive toxicity, including increases in fetus 

mortality, underweight newborns, spontaneous abortions, eclampsia, and birth defects 

(Rebelo and Caldas, 2016). Exposure during childhood or in the uterus may have adverse 

reproductive outcomes for mothers inducing changes in cognitive development of children. 

Developmental and neurodevelopmental effects have been observed in infants and children 

following prenatal and early life exposure to arsenic in drinking water ((ATSDR). 2007). 

Arsenic may cause Raynaud’s phenomenon (Kumagai and Sumi, 2007). Studies in Chile 

indicate that ingestion of 0.6-0.8 ppm As in drinking water (corresponding to doses of 0.02-

0.06 mg As/kg/day) increases the incidence of Raynaud’s disease and cyanosis of fingers 

and toes. Additionally, arsenic may cause hematological diseases like anemia, leucopenia 

and thrombocytopenia (Santra et al., 2013) Several metals have been known for a long time 

to be associated with immune-mediated pathological effects (Becking, 1995). 

    Vascular diseases (BlackFoot Disease), (Tseng, 2002) and cardiovascular diseases 

(Navas-Acien et al., 2005) occur from chronic exposure to arsenic. Systemic exposure from 

the other hand is linked to irritations of the skin and mucous membranes (Sun et al., 2007; 

Valenzuela et al., 2005). The clinical manifestations of chronic arsenic intoxication are 

referred to as arsenicosis (hyperpigmentation and keratosis) (Liao et al., 2009). Cumulative 

prevalence ratios of skin lesions increase with increasing arsenic exposure and age (Liao et 

al., 2008) for both males and females (Tseng et al., 1968). Quick exposure results in acute 
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effects characterized by vomiting, abdominal colics, and diarrhea (Caussy, 2003). 

Neurotoxicity is mainly reported with acute exposure from deliberate poisoning or suicide, or 

at high concentration in drinking water.  

ARSENIC POISONING 

   Historically, worries over metals have principally been exist due to their acute toxicity. 

However, as natural and occupational standards become more intense, cases of acute metal 

toxicity are progressively phenomenal. 50 ppb had been the standard for arsenic in drinking 

water in United States since 1942. Tseng et al. (Tseng et al., 1968) showed that in area of 

Taiwan, there were many skin cancers, accompanied by Black Foot Disease. The effected 

persons were exposed to wells with large amount of arsenic therein. This is perhaps the first 

public mention that arsenic in water supplies caused these ailments. About this time there 

were problems noticed in Chile, were unusual number of skin problems in West Bengal were 

observed.  There was large pressure on the EPA to lower the standard for arsenic in water 

supplies. For over 100 years’ toxicologists had depended on rats and mice to give warning 

about arsenic adverse effects while arsenic widespread pollution continued.  After the 

discovery in Bangladesh and West Bengal, the living laboratories, arsenic has been found in 

water supplies all over the world. High concentration of arsenic in drinking water have been 

found in many countries (Asia, Argentina, Taiwan, China, Latin America, Mexico, Greece, 

Turkey, Finland, Spain, Romania, Hungary, Pakistan, Vietnam), in Bangladesh particularly 

the number of people suffering from exposure vastly exceeds the number affected by the 

catastrophic accident at Chernobyl. Arsenic-induced vascular effects have been reported in 

Chile, Mexico, India, and China, but these effects do not compare in magnitude or severity to 

Blackfoot disease in Taiwanese populations, indicating other environmental or dietary factors 

may be involved. Based on the risk of developing cancer from chronic exposure to inorganic 

arsenic in drinking water, the United States lowered the Maximum Contaminated Levels 

(MCL) for arsenic from 50 to 10ppb (EPA, 2001).   

    

INTRODUCTION TO INTERNAL DOSE MODELLING 

PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELS 

    PBPK models can describe the mechanisms of absorption, distribution, metabolism and 

elimination (ADME) of chemicals in the body. These models typically represent the organism 

as a set of physiological compartments, describing the transport between these, based on 

physiological processes, such us blood circulation (Nestorov, 2003). PBPK modelling 

requires several parameters. The parameter set of the PBPK model, includes 
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anatomical/physiological (cardiac output, tissue blood flow, tissue volumes and weight), 

physicochemical (partition coefficients), and biochemical parameters (maximal velocity for 

metabolism: Vmax, Michaelis affinity constant: Km). Generally, the set is divided in two 

distinctive subsets: (i) a drug-specific subset, which characterizes the pharmacokinetic 

properties of the particular molecule and is derived from experimental data, and (ii) a drug-

independent subset, which is derived from the underlying physiological processes.  

    A PBPK model is derived by compartments. Those compartments correspond different 

organs or tissues in the body, connected by flow rates (Jones and Rowland-Yeo, 2013). 

Generally, those compartments include the main tissues of the body: adipose, bone, brain, 

gut, heart, kidney, liver, lung, muscle, skin, blood, and spleen. Each tissue is typically 

described as either perfusion rate limited or permeability rate limited (Jones et al., 2006). 

Perfusion rate-limited kinetics tends to occur for small lipophilic molecules where the blood 

flow to the tissue becomes the limiting process (Rostami-Hodjegan et al., 2012). Permeability 

rate-limited kinetics occurs for larger polar molecules where the permeability across the cell 

membrane becomes the limiting process. In this case, the tissue is divided into essentially 

two compartments, representing the intracellular space and the extracellular space which are 

separated by a cell membrane that acts as a diffusional barrier. 

    The assessment of potential toxic effects resulting from chemical exposure often involves 

comparing predicted environmental media concentrations with those known to cause toxic 

effects. Toxic effects are however the result of internal tissue concentrations, rather than 

external media concentrations (Cahill et al., 2003). Internal dose refers to the amount of a 

chemical that reaches the human tissue of interest. This task of estimating concentrations in 

specific tissues resulting from chemical exposure is addressed by Physiologically Based 

PharmacoKinetic models. PBPK models are developed in order to organize and describe the 

available information about the pharmacokinetic processes giving an approximation of the 

chemical behavior. Based on the available bulk of information, the procedure can be briefly 

described as: (1) specification of whole body model structure and tissue model structure, (2) 

equation writing, and (3) parameter specification and/or estimation (Nestorov, 2003).  

    Those models provide a quantitative mechanistic framework by which chemical-specific 

parameters can be used to predict the plasma or tissue concentration – time profiles of 

chemicals (Jones and Rowland-Yeo, 2013; Rostami-Hodjegan, 2012). The major power of a 

PBPK model is the use of different amounts of administered doses for different exposures 

scenarios. PBPK modeling of metals requires special considerations as compared to most 

other chemical species such as drugs and solvents.  Metals are often present in multiple 

media in the ambient environment including groundwater, soil, air. Thus, chronic exposure is 

an intrinsic part of day-to-day life. Many of the factors that influence the uptake and 
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disposition of metals differ significantly from those that control the pharmacokinetics of 

organic compounds (Campain, 2005). Accurate estimation of the risks posed by arsenic 

exposure to human beings requires effective integration of epidemiological and other human 

studies in a PBPK model. Through this mechanism we can potentially gain a clearer picture 

of the relationship between administered and target tissue dose and the resulting toxic 

effects in humans. To determine the biologically relevant target tissue dose and health 

effects we must consider the: a) chemical form and bioavailability of Arsenic in environment, 

including food (Chowdhury et al., 2003; EPA., 1998), b) routes and pathways of exposure 

(Zartarian et al., 2006). 

      PBPK models are constructed using a series of differential equations that are 

parameterized with known physiological variables and represent a quantitative mechanistic 

framework by which ADME of chemicals can be described in the body. Solving the equations 

provides the prediction of tissue dose. PBPK model equations are derived from the law of 

mass action. Once the equations describing the whole body PBPK model, are written and 

validated, they need to be coded in a particular software language for subsequent estimation 

and or simulation. In this case study acslX http://acslx.com/ from the Aegis Technologies 

Group, Inc. was used, which is a software environment adept for developing continuous 

dynamic processes and systems, providing a programming language for the model code, 

numerical solutions for the ordinary differential equations that define the system being 

modeled, and a graphical output of the simulations results.  

REVIEW OF PBPK MODELS OF ARSENIC 

    Several authors have worked on a development of a PBPK model for arsenic. The 

simplest PBPK model for arsenic came from Yu  (Yu, 1999). This investigator, using short-

term oral exposures in rat and mouse, modeled the movement of inorganic arsenic, and did 

not differentiate between AsV and AsIII. In addition, the metabolism of arsenic through 

methylation was briefly considered, with MMA and DMA modeled as excreted metabolites 

whose movement was not accounted for as active arsenic species in the blood or tissue 

groups. In subsequent work, the model was expanded to more closely fit the human child, 

while including all arsenic species, and considering both reductive metabolism and 

methylation. A similar arsenic pharmacokinetic model was described by Menzel et al. 

(Menzel et al., 1994) considering all major forms of arsenic in submodels linked through 

metabolic processes. This model had several unique aspects, one of which was its steady-

state approach to estimating the blood-to-organ ratio of arsenic and its metabolites. The 

model was never validated.  

Institutional Repository - Library & Information Centre - University of Thessaly
09/05/2024 08:24:17 EEST - 18.117.98.51

http://acslx.com/


23 
 

«UNIVERSITY OF THESSALY» 
«Postgraduate Study Department of Biochemistry and Biotechnology» 

«TOXICOLOGY» 

 

    Mann and co-workers developed a PBPK model for arsenic in hamsters and rabbits (Mann 

et al., 1996b), which was subsequently scaled to humans (Gentry et al., 2004; Mann et al., 

1996a). This model included consideration of inhalation exposure and deposition of As 

particles in three lung compartments, and diffusion-limited distribution of arsenic to the 

tissues. The scaled model was tested with experimental data from several studies (Buchet et 

al., 1981; Vahter and Envall, 1983). Mann et al. suggested that the reduction of AsV to AsIII 

can be modeled as a first-order oxidation/reduction reaction. Recently, Gentry and 

colleagues extended the model developed by Mann to the mouse (Gentry et al., 2004). 

These investigators analyzed data from several published studies on experimental arsenic-

mediated carcinogenesis in multiple strains of laboratory mice. The ultimate goal of this 

exercise was to correlate differences in tissue dosimetry and metabolism of arsenic to strain -

specific carcinogenic potency of the metal. Although not actually describing development of a 

true PBPK model, recent work by Kitchin et al.  links the pharmacokinetics of arsenic to its 

toxicological effects (Kitchin et al., 1999). These investigators carried out detailed time-

course studies in rats on the relationship among administered dose of sodium arsenite, 

tissue dose of As(i) in the liver and kidney, and the biological endpoint of heme oxygenase 

induction.  

    An integrated, biologically based, source-to-dose assessment framework for modeling 

multimedia/multipathway/multiroute exposures to arsenic was presented by Georgopoulos et 

al (Georgopoulos et al., 2007) where the results indicated that the food intake pathways is 

the dominant contributor to total exposure and dose to arsenic. Recently, Stamatelos et al. 

(Stamatelos et al., 2011) reported a cellular-level toxicokinetic model which applies in mass 

action kinetics in order to predict the concentrations of trivalent and pentavalent arsenicals in 

hepatocytes.  

    A PBPK model was developed by El-Masri et al. (El-Masri and Kenyon, 2008a) using 

updated biochemical data, to estimate the levels of arsenic and its metabolites in human 

tissues and urine after oral exposure to AsV, AsIII or organoarsenical pesticides. The model 

consists of interconnected individual PBPK models for inorganic arsenic AsV and AsIII, MMAV 

and DMAV. The inhibitory effects of AsIII on the methylation of MMA III to DMA, and MMAIII on 

the methylation of AsIII to MMA were modeled as noncompetitive. Each submodel was 

constructed using flow limited compartments, which implies that the transport barriers 

between the free molecules of chemical in blood and tissue are negligible, and equilibration 

between free and bound fractions in blood and tissue is rapid, describing the mass balance 

of the chemicals. 
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METHODOLOGY 

ARSENIC PBPK/BBDR MODEL STRUCTURE 

PBPK MODEL  

    The diagram of the PBPK model developed for Arsenic is presented in Fig.4. The model 

estimates levels of arsenic and its metabolites in tissues and urine after oral and inhalation 

exposure to either AsV or AsIII. There are two routes of exposure: oral and inhalation and 

several pathways, such as drinking water, cooking water, food consumption, smoking, 

breathing. The model, based on El-Masri and Kenyon’s model formulation, is composed of 

four individual PBPK models (see Fig. 4) for AsV, AsIII, MMA and DMA linked together by the 

transformation of AsIII to MMAV and DMAV, and the transformation of MMA III to DMAV 

(methylation). The inhibitory effects of AsIII on the methylation of MMA III to DMAV, and MMAIII 

on the methylation of AsIII to MMAV were assumed to follow a non-competitive mechanism. 

This assumption can be based on studies from the literature (El-Masri and Kenyon, 2008b).  

Reduction of the pentavalent arsenicals is assumed to follow a first order reaction, because 

of the ubiquitous availability of thiols such as glutathione in most tissues (Hayakawa et al., 

2005).  

  

 

Figure 4. Schematic of the overall PBPK model for inorganic arsenic and methylated 

metabolites. 
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Block arrows to the GI tract lumen (circle): oral exposure to As III, AsV, MMAV and 

DMAV; • small dashed line: reduction of AsV to AsIII (GI, lumen, liver, lung and 

kidney); reduction of MMAV and DMAV to their respective trivalent forms (lung, liver 

and kidney) oxidation of AsV, MMA III and DMA III to their respective pentavalent forms 

(liver, kidney and lung); • large dashed line: methylation of As III and MMA III (liver and 

kidney); • curved arrows: urinary excretion.   

Reduction is assumed to take place before methylation in the liver, kidney and lung. The 

oxidation/reduction of inorganic arsenic takes place in the plasma, but the reduction can also 

occur intracellularly (Cohen et al., 2006; Kumagai and Sumi, 2007; Mann et al., 1996a). The 

model used Michaelis-Menten kinetics for the methylation of AsIII  that takes place mainly in 

the liver cytosol by enzymatic catalysis and kidney but has also been observed in lung and 

testes (Georis et al., 1990; Healy et al., 1998; Vahter, 1999). The main methylation pathway 

in the body is via methionine and its activated form SAM (Vahter, 2000). The model foresees 

that 90% of the administrate AsV dose is immediately reduced to AsIII in the GI lumen. 

In our case, where we need to study the chemical As(i) and its metabolites, the correct 

approach was a structural variation of a PBPK model for each of the compounds linked 

together. This situation reflects the fact that metabolism of the liver becomes the input 

process to the PBPK models of the individual metabolites. Each of the four PBPK model 

were developed using flow limited compartments describing the mass balance of the 

chemicals in multiple tissues. The tissues have been chosen to account the potential 

exposure routes (oral, dermal, inhalation), target organs (lung, liver, skin, and kidney) and 

metabolic sites (liver and kidney) of Arsenic and its metabolites. Brain and heart are also 

included because they contain significant amount of inorganic arsenic (Benramdane et al., 

1999; Saady et al., 1989).The mass balance is expressed as a mathematical equation with 

appropriate parameters carrying biological significance: 

  

    

  
                                                                              

Where:    represents the volume of tissue group I,    is the blood flow rate to tissue group i, 

    is the concentration of chemical j in arterial blood, and     and      are the 

concentrations of chemical j in tissue group I and in the effluent venous blood from tissue I, 

respectively.          is the rate of metabolism for chemical j in tissue group i,        

represents the rate of elimination from tissue group i,          represents the uptake of the 

chemical from dosing, and             represents protein binding of the chemical in the 

tissue.  
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    Once the PBPK model equations are written, their parameters need to be specified and/or 

estimated. Physiological and biochemical parameters are the parameters characterizing the 

anatomical structure, physiological and biochemical processes of the subject researched. 

Those parameters are also called drug-independent parameters. Among those: bodyweight 

and tissue/organ/fluid weights and volumes, cardiac output, regional and tissue blood flows 

etc. Compound-specific parameters are parameters characterizing processes such as 

binding (fraction unbound in blood, plasma or tissues), partition-solubility (blood:plasma ratio 

or tissue:plasma distribution coefficients) or permeability (permeability surface area products) 

of the chemical in the various tissues and in blood (Andersen, 1991). Partition coefficients 

can enable the fate of pollutants in the body, and are a pre-requisite of any PBPK analysis 

(Abraham et al., 2015). 

    An understanding of the key ADME mechanisms for a particular compound together with 

well-defined and measured drug-specific parameter is key to prediction success. 

Physiological parameters and partition coefficients for each tissue compartment were 

obtained from the literature (El-Masri and Kenyon, 2008a). The analysis presented in this 

work does not include inherent interindividual metabolic variability (i.e., all variability is 

attributed to physiological and activity variation). The numerical values of the physiological 

and biochemical parameters (El-Masri and Kenyon, 2008a) are reported in Table 2. The 

metabolic parameters are shown in Table 3. 

Table 2. Physiological and biochemical parameters used within the Arsenic PBPK model 

 

Tissue 
Tissue 

Volume (L) 

Blood Flow 

(L/min) 

Tissue/Blood 

Partition Coefficients 

   ASV ASIII MMA DMA 

GI 1.2 1 2.7 8.3 2.2 2.1 

Skin 2.6 0.26 7.9 7.4 2.61 2.4 

Brain 1.4 0.63 2.4 2.4 2.2 3.3 

Heart 0.35 0.2 7.9 7.4 2.61 2.4 

Kidney 0.28 1 8.3 11.7 4.4 3.8 

Liver 1.82 0.31 15.8 16.5 3.3 3.3 

Muscle/other 55.5 1.8 2.1 6.7 1.3 1.3 

Lung 0.56 5.2 7.9 7.4 2.61 2.4 

blood 5.53 - - - - - 
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Table 3. Metabolic parameters used within the Arsenic PBPK model 

PARAMETER DESCRIPTION VALUE UNITS 

DMA 

Ka Oral absorption 0.007 min−1 

Kred  Reduction of DMA 0.004 min−1 

Kox Oxidation of DMA III 0.65 unitless 

Kurine/DMA  Urine Excretion Const 0.13 min−1 

MMA 

Ka  Oral Absorption 0.007 min−1 

Kred Reduction of MMA 0.008 min−1 

Kox Oxidation of MMA III 0.63 unitless 

Vmax 

(MMAIII→DMA)  Methylation of MMA III 

6.6×10-7  mole/min 

Km (MMAIII →DMA) 3×10−6 M 

Kinh Noncompetitive Const 

inhibition 

4×10−5 M 

Kurine/MMA Urine Excretion Const 0.3 min−1 

Inorganic Arsenic 

Ka (Asv) Oral absorption 0.003 min−1 

Ka (AsIII)  0.004 min−1 

Kred Reduction of AsV 0.003 min−1 

Kox Oxidation of As III 0.25 unitless 

Vmax (AsIII →MMA) 

Methylation of As 

 

5.3×10-7 mole/min 

Km (AsIII →MMA) 3×10−6 M 

Vmax (AsIII →DMA) 2×10−6 mole/min 

Km (AsIII →DMA) 3×10−6 M 

Kinh Noncompetitive inhibition 

const 
4×10−5 

M 

Kurine/As Urine Excretion Const 0.07 min−1 
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    The model simultaneously evaluates the distribution, conversion, and losses of chemical 

species. Conventional Michaelis-Menten kinetic parameters are used to determine the 

reaction rates. Reactions follow first-order kinetics at low concentrations, and a maximum 

reaction rate is approached at high concentrations.  The distribution of the four forms of 

arsenic within the different organs is described through linear dynamic equations, which can 

be expressed as in Equation: 

       

  
                                                                                           (2) 

Where:        state variable vector which describes the chemical amount in each assigned 

target organ,        input vector expressing the dose rate of chemical entering the organisms, 

[K] state matrix which describes the diffusion exchange rate between target organs and [B] 

constant input matrix with describes the exchange rate into target organs. 

    Renal excretion is modeled as a series of processes(Bridges and Zalups, 2005; Buchet et 

al., 1981). Kidney is the site of urinary excretion for AS III, ASV, MMAV, DMAV, MMAIII, DMAIII; 

excretion of MMAIII and DMAIII occurs also from lung and liver, considering this as an overall 

estimate of clearance of the chemicals from tissues where they are formed. As a metalloid, 

arsenic undergoes biotransformation to produce polar methylated metabolites which can be 

used as substrates for various transporters (El-Masri and Kenyon, 2008a). 

    Model simulations were tested against available data from other studies using human 

subjects (Lee 1999). The author investigated the kinetics of inorganic arsenic ingestion in 

humans. Subjects recruited for this study were three males and two females aged 23–60 

years. On the morning of the exposure day, subjects were allowed to consume their normal 

breakfast. One hour before their noon meal, volunteers were asked to completely empty their 

bladders. Then they consumed a solution containing 100 μg of sodium arsenate (AsV) or 

sodium arsenite (AsIII). For the next 12 hours all voided urine was collected. Urine samples 

were then analyzed for As, MMA, and DMA. The calibrated overall model was evaluated 

against data provided from these human studies. The results of the model simulation in 

comparison to data for the arsenite experiment are given in Fig.5. Results show a good 

agreement between the experimental data and the modeled ones. The PBPK model provides 

generally better results when it simulates initial dose of AsV (right box) rather than of AsIII (left 

box). For both the exposures scenarios, among the four Arsenic chemical forms tracked by 

the model, AsIII, AsV and MMA are predicted with a high level of accuracy both in terms of 

actual values of and in terms of shape of the curve which is related to the kinetic of arsenic. 
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Figure 5. Validation of the Arsenic PBPK model 

    PBPK model should include those tissues and organs that are essential for the 

pharmacokinetics of the compound (this means that an adequate model should consists of a 

fairly large number of tissue/organs). Also, the complexity must be limited for practical 

reasons (need of data and information, numerical and computation time problems). In this 

case study, PBPK model is integrated with a Biologically Based Dose-Response approach 

(PBPK/BBDR) in order to derive internal organ concentrations from external exposure and 

link these concentrations to the health effects.  

BBDR MODEL 

    Dose-response assessment, is the estimation of the relationship between dose or level of 

exposure to arsenic, and the incidence of an effect (Leeuwen, 2007). BBDR models provide 

the substrate for simulations that link mode of action research with predicted physiological 

consequences of exposures (Andersen et al., 2002). Once the internal doses are calculated 

via the PBPK model, the next step is to link the internal dose with the health point considered 

to assess the quantitative risk associated with the given exposure (Clewell et al., 2007; 

Conolly and Andersen, 1993). The result is a quantitative estimate of health risk relevant to 

specifics health end-points in the exposed population. 

    A risk assessment not taking into account the different species but considering only total 

arsenic, would lead to a considerable overestimation of the health risk related to arsenic 

exposure (Chain, 2009), therefore it is required to relate the toxicity of all the forms of arsenic 

found in the PBPK model, to the toxicity of the trivalent arsenic. An in vitro study with human 

epidermal keratinocytes showed the relative toxicities: AsIII > MMAIII > DMAIII > DMAV > 

MMAV > AsV (Vega et al., 2001).  Among the different forms in which arsenic can be found, 
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the most toxic is arsenite, followed by arsenate, then the two organic metabolites. However, 

more recent studies report that the trivalent form of MMA and DMA are likely to be as 

biologically active as arsenite. Thus, the toxicity order of Arsenic metabolites may be 

described as follows: DMAIII, MMAIII > AsIII > AsV > DMAV, MMAV> TMAO. In general, the 

toxicity of pentavalent species is lower than that of trivalent by the order of 10 -3 to 10-4 

(Hirano et al., 2004; Vega et al., 2001). This may be explained by the faster uptake rate of 

AsIII in endothelial cells (Hirano et al., 2003). . 

Table 4.Relative toxicity of arsenic species to trivalent inorganic arsenic.  

Arsenic form AsIII equivalent mole (for 1 

mole of compound) 

Toxicity 

Arsenite – As(III) 1 1 

Arsenate – As(V) 1 1/35 

Trivalent Monomethylarsonate MMA(III) 0.605 1 

Pentavalent Monomethylarsonate MMA(V) 0.536 1/85 

Trivalent Dimethylarsinate DMA(III) 0.620 1 

Pentavalent Dimethylarsinate DMA(V) 0.543 1/85 

. 

Steps for using PBPK model estimated Internal Dose in Dose-Response Model for arsenic 

was (Andersen et al., 2005): 

1) Identify toxic effects in people, and determine health endpoints from experimental data 

associated with arsenic exposure 

2) Use an appropriate PBPK model to estimate the internal tissue dose metric for various 

routes of administration, at various doses, for specific exposure scenarios 

3) Development of a dose-response model based on the relationship between internal 

dose and health points. 

4) Estimate the probability of the health risks in humans based on the internal tissue dose 

calculated during human exposures 

 

Step 3 allows us to develop and parameterize a three-stage model (administered dose-

internal dose-cancer probability) for cancer growth that links internal doses to health risk 

probability. In developing BBDR models it is necessary to evaluate the effect of dose on 

biological parameters of the model. The effects can be described empirically, as has usually 

been done, or mechanistically. For the cancer models the stochastic aspect involves some 

probability of division, death, or mutation that occurs randomly (Andersen et al., 2002). 

Trying to quantify the relation between dose and response probability, it is useful to 
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decompose the relation between exposure and health risk probability. In this case one 

relation links the administered dose to the internal dose of arsenic and its metabolites, the 

other links internal dose to cancer probability. In probabilistic terms it can be explained as 

follows (Armitage and Doll, 1954).  

    The dose-response relation between exposure and risk can be denoted by        that 

indicates that the probability of cancer at time t is determined by the history of arsenic 

exposure x up to time t. The risk depends on exposure, or else, the history     of inorganic 

arsenic in different organs. This situation can be diagrammed as             . This means     

determines   and     determines    . Thus, the dose-time-response relation        may be 

written as by                        The        component corresponds to the relation of a 

PBPK model (mapping the exposure dose history     into time courses     of inorganic 

arsenic in different organs) and        represents an internal dose-response function. The 

general curve which better describes such relationship is in the form of Hill equation (Cox 

and Ricci, 1992): 

                                                                                                       

where: P(y) = lifetime probability of the health effect, y = biologically effective dose of the 

toxicant at the target organ (internal dose), b, c, d = parameters calculated fitting a multistage 

model to the experimental dataset.   

    The most common way for calculating mortality (or any other toxic effect) through a dose-

effect relationship, is to relate mortality to the pollutant concentration. The pathology model 

for arsenic uses two different equations for deriving the prevalence of fatal cancer within a 

given population. These include the Hill equation and an exponential equation (Ling and 

Liao, 2007) alternatively to the Hill equation:  

                                          
                                                                               and, 

  
           

 

      
       

                                                                                                

Where: P = prevalence of the health effect,      = human maximum prevalence of those 

exposed to the contaminant,     
 = internal arsenic concentration in human target organ i 

(μg/g),       
  = 50% effect concentration (μg/g) of PMAX for target organ, a, b, c = parameters 

calculated fitting a multistage model to the experimental dataset.  , n = Hill coefficient which 

is a measure of cooperativity, an n>1 represent a sublinear (sigmoidal) response indicating 

positive cooperatively, and n<1 represent a subpralinear response. 
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DATASET COLLECTION AND EXPOSURE SCENARIOS 

   The health effects associated to arsenic vary greatly upon several risk modifiers, such as 

the dose, the duration, and the route of exposure, as well as age, gender, diet, family traits, 

lifestyle, and state of health.  

Arsenic contaminated areas in Greece 

    The regions where arsenic is found in Greek groundwater sources are classified in three 

major categories (Katsoyiannis et al., 2015): (1) The geothermal regions, such as in 

Chalkidiki and in Aridaia region of Northern Greece, (2) The rivers’ alluvial deposits such as 

those in the basins of Aksios, Nestos and Strymon rivers, and (3) Aquifers, influenced by 

mineralization, resulting in arsenic mobilization over the centuries.  

 

Figure 6 . Arsenic contaminated areas in Greece. 

The above figure is a geochemical map of Greece, the lowest As concentrations are 

represented by the smallest-pen-circle symbol, contracting to the highest As concentrations 
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that are shown by the biggest-gray-circle symbol. Sources are presumably related to 

fertilizers, pesticides, municipal wastes, and coal combustion in thermal power plants. Also, 

there are facts indicating that serious contamination of the environment in Greece, with 

regard to As, is attributed to combustion of fossil fuels it is believed that the natural 

(geological) sources of As are equally significant and mainly concern As-containing ores in 

active and abandoned mining areas, geothermal/hydrothermal waters due to faults (northern 

Greece) and volcanic activity (southern Greece), coals (mainly lignite in exploited and 

unexploited deposits), As-minerals in various rock types such as metamorphic rocks, and, 

certainly, the mineral dust flux derived from Sahara desert. The most important and 

persisting source of As exposure to the Greek populace appears to be the geothermal and 

hydrothermal fluids arising from faults as well as the volcanic activity which, in turn, affect 

underground, surface, and marine aquatic environments (Gamaletsos et al., 2013). 

EXPOSURE ESTIMATES OF ARSENIC IN GREECE 

Arsenic concentration in water 

    Concentrations of arsenic in groundwater, are usually less than 10 μg/L (0.1-2 μg/L) but 

they can reach 5000 μg/L in some areas (Smedley and Kinniburgh, 2002). Drinking water 

generally contain an average of 2 μg/L of arsenic, although higher levels have been 

measured (ATSDR, 2007). Surface waters are also used for drinking water, but they 

generally contain lower arsenic concentrations than groundwaters. The average arsenic 

content of seawater is about 1.5-1.7 μg/L Several studies have been made across Greece, 

estimating arsenic concentrations in different media such as groundwater, irrigation wells, 

drinking water and geothermal waters. A brief review of existing studies is summarized in 

Table 5. 

Table 5. Arsenic concentration in different areas of Greece. 

Area Concentration Source Ref. 

Petralona, area of Chalkidiki 1.500-2.000μg/L 
Geothermal, 

Irrigation wells 

(Katsoyiannis et al., 

2015) 

Triglia, Central Macedonia 200-400μg/L, As(V) 
Geothermal, 

Irrigation wells 

(Katsoyiannis et al., 

2015) 

Katsiki Mountain and Petralona, 

area of Chalkidiki 

As range:0.001 - 1.840,  

median: 0.013, mean: 0.311 

mg/L, CV:194 (n=30) 

Groundwater (Kouras et al., 2007) 

Chalkidiki prefecture, Northern Gr. Water: As: 1000μg/L Groundwater 
(Casentini et al., 

2011) 

Central Macedonia (Petralona- Chalastra As range: 180-40μg/L, Groundwater 
(Meladiotis et al., 

2002) 
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Triglia, Therma-Nigrita, Loutraki-

Aridea) Northern Gr. 

Triglia: 40-160ppb, Chalkidiki and 

Pellla Prefecture: 80-2000 ppb 

Aksios and Kalikratia areas in 

N.Gr. 21 locations 

As range=: 10–70 μg/L (n-21), 

As(III)/As(tot) Aksios: 58%, 

Kalikratia: 10% 

Groundwater 
(Katsoyiannis et al., 

2007b) 

Kavala/ Nikisiani 25-30μg/L 
Mineralization, 

Drinking water 

(Katsoyiannis et al., 

2015) 

Kalloni Gulf, Lesvos Island, 

Polichnitos 
Average As: 2.9μg/L Groundwater (Aloupi et al., 2009) 

Aksios delta/Ghalastra 15-30μg/L As(III) Drinking water 
(Katsoyiannis et al., 

2015) 

Aksios delta/ Malgara 
Total As: 20μg/L, 

As(III): 14μg/L 
Groundwater 

(Katsoyiannis et al., 

2008) 

Aksios delta/Malgara 35-40μg/L,As(III) Drinking water 
(Katsoyiannis et al., 

2015) 

Aksios delta/Platy 35-45μg/L, As(III) Drinking water 
(Katsoyiannis et al., 

2015) 

Nestos Delta/ Keramoti 20-27μg/L, As(III) Drinking water 
(Katsoyiannis et al., 

2015) 

Eastern Thessaly/ Agia & 

Mpourmoulithra 
20-35μg/L, 40-60μg/L 

Underground 

water, Spring 

water, As(V) 

(Katsoyiannis et al., 

2015) 

Eastern Thessaly region 

(Sotiritsa, Ano Polydedri) 

As range: 1–125, 

mean: 12, μg/L (n=26) 
Groundwater 

(Kelepertsis et al., 

2006) 

Lakes Doirani, Volvi, Koronia 10-80μg/L, Koronia: 13-75μg/L 
Lakes 

deposits 

(Katsoyiannis et al., 

2015) 

Polykastro Kilkis 20-40μg/L 
Mineralization, 

Drinking water 

(Katsoyiannis et al., 

2015) 

Thessaloniki, Industrial area, delta 

of Axios river 

tAs range: 4–130, Median: 6, 

average: 46 μg/L, 
Groundwater 

(Katsoyiannis and 

Katsoyiannis 2006) 

Thessaloniki, N-NW area 
As median: 5.7, 

range:1-237μg/L, (n=99) 
Groundwater (Voutsa et al., 1994) 

Thessaloniki, Prefecture, 

agricultural areas 

As mean: 2.9, Max: 23.7, 

Median: 0.1ppb (n=52) 
Groundwater 

(Fytianos and 

Christophoridis, 

2004) 

Greece 

As concentration in geothermal water: 30-4,500 

μg/L. Regions close to alluvial deposits 

range: 15-100μg/L. 

Areas affected by mining activity: 20-

60μg/L(Katsoyiannis et al., 2015) 

(Katsoyiannis et al., 

2015) 
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   Arsenic analyses in various kinds of waters of Greece revealed that its concentration in tap 

water of 24 big Greek cities did not exceed the new Maximum Contaminant Level (MCL) of 

10 μg/L. Moreover, analysis of 125 tap water samples of smaller cities and communities, 

mainly from Northern Greece, showed that the highest percentage of them (86.4%) complied 

with the new MCL of 10 μg/L. This percentage was lower (73.6%) in the underground waters 

used for irrigation. Bottled waters were the least polluted, containing arsenic less than 5 μg/L 

in general. On the contrary, most of the thermal mineral waters analyzed contained more 

than 10 μg/L arsenic (Mitrakas, 2001). The ranges of arsenic concentrations in the table 

above, have been summarized in single concentrations. 

Water consumption rate 

   For estimating the exposure to arsenic from drinking water, a daily consumption rate is 

needed. A study evaluated the total water intake of Greek Adults in two different groups. 

Total water intake was 3 L/day in study A; and 2.3 L/day in study B (Athanasatou et al., 

2016). Another similar study showed the water intake in general population in Greece was 

2.8 l/day in winter and 3.8 l/day in summer (Malisova et al., 2013). A consumption rate of 2 

L/day per person was assumed in this study. The water intake varies widely among humans, 

depending on climate, occupation, and human population, between 2 and 5 l/day (Hough et 

al., 2010). 

Arsenic concentrations in air 

    Background concentrations of the mean total arsenic concentrations in air range from <1 

to 3 ng/m3, but concentrations in cities may range up to 200 ng/m3 (ATSDR, 2007).The 

concentration of As in PM2.5 particles were measured at two sites in the Athens basin 

(Patission Street and Renis), and industrial area (Thomaidis et al., 2003). The geometric 

means were 0.79, 0.77, 1.14 ng/m3 respectively. Seasonal variation indicated that 

temperature and relative humidity affects positively the concentrations. Another study, 

collected aerosol samples of PM10 particles during summer and winter from two sites of 

Messogia Basin, northeast of Athens (Vassilakos et al., 2007). The mean value of arsenic 

concentration was 14.7 ± 7.3 (range: 8.48-38.1 ng/m3) and 4.62 ± 2.79 (range: 2.10-11.9 

ng/m3) in Spata and Koropi respectively. Pulmonary exposure may contribute up to 

approximately 0.14μg/ kg bw/day in a smoker and about 0.01 μg/kg bw/day in a non -smoker, 

and more in polluted areas.  Considering 70 kg b.w. and a daily ventilation volume of 20m3, 

the inhaled amount of arsenic would be around 0.001 μg/kg b.w. per day in background 

situations and up to 0.03 μg/kg b.w. per day in polluted urban areas (EPA, 1984). For 

Greece, according to HEIMTSA project, the estimated inhaled amount was 0.0028 μg/ kg bw. 

Regarding the first study conducted above, the range of arsenic in air was 0.0022-0.0033 
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μg/kg bw, which it compares very well with the inhalation exposure assumed in this study 

from HEIMTSA project.  

Arsenic in contaminated food items 

    EFSA has created the Comprehensive Food Consumption Database which is a source of 

information on food consumption across the European Union (EU). It contains detailed data 

for a number of EU countries. The statistics on food consumption are reported in grams per 

day (g/day) and grams per day per kg of body weight (g/kg bw per day). Indicative table of 

food items in EU from the Data Collection and Exposure Unit (DATEX) (EFSA) in in mg/kg 

Samples from AT: Austria, BE: Belgium, CZ: Czech Republic, DE: Germany, DK: Denmark, 

EE: Estonia, ES: Spain, FI: Finland, FR: France, GB: Great Britain, HU: Hungary, NO: 

Norway, PL: Poland, SE: Sweden, SK: Slovak Republic 

Table 6. Total arsenic contamination in food items mostly used for consumption 

across European Union 

Food Subgroup N <LOD Type P5 Median Mean P95 Max SAF 

Cereal-based mixed dishes 86 38% LB 0.0000 0.0029 0.0157 0.0960 0.1640 23% 

   UB 0.0014 0.0096 0.0283 0.1133 0.2300  

Cereal grains excluding rice 2215 77% LB 0.0000 0.0000 0.0147 0.0600 5.6620 22% 

   UB 0.0060 0.0262 0.0405 0.0700 5.6620  

Rice grains 1122 9.8% LB 0.0000 0.1100 0.1362 0.3600 1.1800 4.5% 

Cereal products (not specified 379 58% LB 0.0000 0.0000 0.0133 0.0750 0.1800 15% 

type)   UB 0.0050 0.0200 0.0284 0.0750 0.1800  

Cereal products, excluding 1004 60% LB 0.0000 0.0000 0.0107 0.0528 0.8900 29% 

rice based products   UB 0.0030 0.0120 0.0297 0.0750 0.8900  

Rice based products 314 28% LB 0.0000 0.1000 0.1422 0.3900 1.9800 4.5% 

Bran and germ 13 - LB 0.7100 1.6300 2.1338 6.2400 6.2400 2.0% 

Cereals and cereal products 5047 54% LB 0.0000 0.0000 0.0542 0.2200 6.2400 77% 

excluding dishes   UB 0.0050 0.0400 0.0733 0.2250 6.2400  

Chocolate and chocolate 558 66% LB 0.0000 0.0000 0.0125 0.0400 0.3850 33% 

based products   UB 0.0085 0.0200 0.0313 0.0700 0.3850  

Other sugar and sugar 1403 79% LB 0.0000 0.0000 0.0140 0.0500 1.0700 67% 

products   UB 0.0007 0.0120 0.0324 0.0800 1.0700  

Animal fats and oils 142 69% LB 0.0000 0.0000 0.0075 0.0400 0.1200 23% 

   UB 0.0020 0.0100 0.0147 0.0400 0.1200  

Vegetable fats and oils 232 78% LB 0.0000 0.0000 0.0062 0.0400 0.0990 55% 

   UB 0.0050 0.0135 0.0337 0.1000 0.2000  

Butter 254 71% LB 0.0000 0.0000 0.0055 0.0380 0.0970 22% 

   UB 0.0020 0.0080 0.0116 0.0400 0.0970  

Vegetable soups 22 59% LB 0.0000 0.0000 0.0050 0.0220 0.0260 1.0

%    UB 0.0007 0.0045 0.0110 0.0500 0.0500  

Leafy vegetables 1232 58% LB 0.0000 0.0000 0.0162 0.0560 1.0000 21% 

Root vegetables 656 74% LB 0.0000 0.0000 0.0044 0.0210 0.1280 16% 

   UB 0.0030 0.0100 0.0145 0.0400 0.1280  

Stem vegetables 272 89% LB 0.0000 0.0000 0.0103 0.0500 0.4000 4.0

% 
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   UB 0.0030 0.0100 0.0211 0.1000 0.4000  

Peeled potatoes 72 17% LB 0.0000 0.0015 0.0019 0.0053 0.0073 58.3

%    UB 0.0006 0.0015 0.0020 0.0053 0.0073  

Other potatoes 618 85% LB 0.0000 0.0000 0.0033 0.0160 0.2270 41.7

%    UB 0.0017 0.0100 0.0156 0.0500 0.2270  

Berries and small fruits 571 84% LB 0.0000 0.0000 0.0025 0.0110 0.2900 26% 

   UB 0.0020 0.0100 0.0129 0.0250 0.2900  

Other fruits 1763 85% LB 0.0000 0.0000 0.0063 0.0290 2.1950 70% 

   UB 0.0012 0.0100 0.0172 0.0412 2.1950  

Dried fruits 144 71% LB 0.0000 0.0000 0.0132 0.0550 0.2200 4.0% 

   UB 0.0070 0.0210 0.0269 0.0650 0.2200  

Coffee (Powder) 103 67% LB 0.0000 0.0000 0.0157 0.0740 0.2400 60% 

   UB 0.0050 0.0120 0.0235 0.0740 0.2400  

Tea and other infusions 586 54% LB 0.0000 0.0000 0.0595 0.2700 1.4400 26% 

(Powder or dry leaves)   UB 0.0005 0.0105 0.0666 0.2700 1.4400  

Cocoa (Powder or cocoa 245 50% LB 0.0000 0.0100 0.0409 0.1550 0.8300 14% 

bean)   UB 0.0100 0.0500 0.0683 0.1550 0.8300  

Coffee, tea, cocoa 17 5.9% LB 0.0000 0.0013 0.0044 0.0400 0.0400 -% 

expressed as liquid   UB 0.0005 0.0013 0.0044 0.0400 0.0400  

Beer and substitutes 602 72% LB 0.0000 0.0000 0.0054 0.0180 0.4500 79% 

   UB 0.0010 0.0080 0.0161 0.0780 0.4500  

Wine and substitutes 1006 50% LB 0.0000 0.0010 0.0061 0.0220 0.1110 20% 

   UB 0.0023 0.0083 0.0110 0.0240 0.1110  

Other alcoholic beverages 249 49% LB 0.0000 0.0002 0.0085 0.0200 0.6860 1.0% 

and substitutes   UB 0.0002 0.0050 0.0115 0.0300 0.6860  

Bovine, sheep and goat 2102 77% LB 0.0000 0.0000 0.0039 0.0220 0.0990 20% 

meat   UB 0.0020 0.0100 0.0137 0.0300 0.2000  

Pig meat 2013 81% LB 0.0000 0.0000 0.0037 0.0200 0.1000 42% 

   UB 0.0030 0.0090 0.0128 0.0500 0.1000  

Poultry meat 2099 73% LB 0.0000 0.0000 0.0050 0.0240 0.9800 12% 

   UB 0.0030 0.0100 0.0137 0.0400 0.9800  

Other meat 504 58% LB 0.0000 0.0000 0.0077 0.0420 0.1600 0.20

%    UB 0.0028 0.0080 0.0141 0.0450 0.2000  

Processed meat products 1721 68% LB 0.0000 0.0000 0.0051 0.0230 0.1510 16% 

   UB 0.0030 0.0100 0.0162 0.0600 0.1510  

Bivalve molluscs 664 0.30

% 

LB 0.8800 2.4044 3.4075 7.7610 150.00 0.10

%    UB 0.8800 2.4044 3.4078 7.7610 150.00  

Cephalopods 189 1.1% LB 0.0540 1.1000 3.9223 14.600 66.800 3.0

%    UB 0.0560 1.1000 3.9232 14.600 66.800  

Crustaceans 344 2.0% LB 0.1180 2.0290 5.6907 26.000 100.40 0.10

%    UB 0.1180 2.0290 5.6910 26.000 100.40  

Other seafood and seafood 150 11% LB 0.0000 1.5950 11.922 45.300 68.797 0.80

% products   UB 0.0030 1.5950 11.923 45.300 68.797  

Seafood and seafood 1347 2.0% LB 0.0540 2.2000 5.0111 21.270 150.00 4.0

% products   UB 0.0590 2.2000 5.0115 21.270 150.00  

Fish and fish products 3503 8.3% LB 0.0000 0.5800 1.4526 5.0275 195.00 95% 

   UB 0.0100 0.5800 1.4549 5.0275 195.00  

Fish based preparations 233 9.9% LB 0.0000 0.5810 1.1524 4.0700 20.170 1.0

% 

Institutional Repository - Library & Information Centre - University of Thessaly
09/05/2024 08:24:17 EEST - 18.117.98.51



38 
 

«UNIVERSITY OF THESSALY» 
«Postgraduate Study Department of Biochemistry and Biotechnology» 

«TOXICOLOGY» 

 

   UB 0.0230 0.5810 1.1573 4.0700 20.170  

Total for Fish and seafood 5083 6.7% LB 0.0000 0.8400 2.3818 9.8880 195.00 100

%    UB 0.0120 0.8400 2.3837 9.8880 195.00  

Total for Eggs 140

4 

76% LB 0.0000 0.0000 0.0042 0.0240 0.1820 100

%    UB 0.0020 0.0100 0.0117 0.0300 0.1820  

Milk and dairy drinks 2366 84% LB 0.0000 0.0000 0.0026 0.0150 0.1660 57% 

   UB 0.0013 0.0080 0.0104 0.0300 0.1660  

Dairy based products 693 77% LB 0.0000 0.0000 0.0068 0.0120 0.6600 30% 

   UB 0.0025 0.0090 0.0184 0.0600 0.6600  

Cheese 837 78% LB 0.0000 0.0000 0.0065 0.0400 0.2400 13% 

   UB 0.0030 0.0100 0.0188 0.0600 0.2400  

Total for Tap water 153

65 

75% LB 0.0000 0.0000 0.0013 0.0060 0.4700 100

%    UB 0.0002 0.0010 0.0022 0.0062 0.4700  

N: number of samples; LOD: limit of detection; LB: lower bound; UB: upper bound; P5: 5th percentile; P95: 95th percentile; 

Max: maximum; SAF: sampling adjustment factor 

 
 

   The European Commission Scientific Cooperation project found that total arsenic 

concentrations in most foods other than fish, seafood and rice were in the low range of 

0.0005 to 0.020 mg/kg; exceptions were dry tea and coffee powder (0.144 mg/kg), salt and 

spices (0.097-0.219 mg/kg) and food supplements such as algae preparations (2-42 mg/kg) 

(all expressed on a dry mass basis). The average total arsenic concentrations in a mix of 

marine and freshwater fish and other seafood ranged from 0.100 to 1.8 mg/kg. The high 

concentration of total arsenic in shrimp has been recognized since the beginning of the 20th 

century (Chapman, 1926). Concentrations of inorganic arsenic were low in all the Atlantic 

cod analyzed (<0.001 mg/kg), even in fish with high concentrations of total arsenic (Sloth et 

al., 2005). Tuna was the only fish species with concentration of inorganic arsenic higher than 

0.001 mg/kg (i.e. 0.008 mg/kg, total arsenic 0.9 mg/kg). The concentrations of inorganic 

arsenic in shrimp were <0.001 mg/kg for all samples analyzed. The highest levels of 

inorganic arsenic were found in crustaceans and with concentrations in blue mussels ranging 

from 0.001 to 4.5 mg/kg. The percentage of inorganic arsenic to total arsenic in fish fillets for 

about 20 species caught in the open sea off the Norwegian coast was 0.1 % (except for tuna 

fish which was about 9 %), and for blue mussels the percentage was on average 1 %. 

   The main contributor to dietary exposure to As(i) is the food group “Grain-based processed 

products”. Other important contributors are rice, milk and drinking water (Authority, 2014). 

Officials studies for the estimated human exposure to inorganic arsenic in Greece are not 

available. However, data on the average diet for rice food products in Greece have been 

delivered by a European project called DAFNE (Data Food Network) it was found that the 

citizens consume about 16g of grain-based processed products (main contributor to 
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exposure of inorganic arsenic) were consumed per person per day, putting rice in the list as 

the top consumed foods in Greece (Pasias et al., 2013).  

    In contrast, terrestrial foods often have a higher proportion of inorganic arsenic due to 

contaminated groundwater. In a UK study, total arsenic concentrations in pure baby rice 

ranged from 0.120 to 0.470 mg/kg with a median of 0.220 mg/kg while inorganic arsenic 

levels ranged from 0.060 to 0.160 mg/kg, with a median of 0.110 mg/kg. The percentage of 

inorganic to total arsenic ranged from 33 % to 68 % with a median of 57 %. In a Swedish 

study, the mean concentration of total arsenic in long grain brown rice of 0.240 mg/kg was 

similar to that of parboiled white rice at 0.210 mg/kg, whereas white rice contained 

considerably less arsenic (0.100 mg/kg). The concentration of inorganic arsenic averaged 

0.110 mg/kg, or 64 % of the total arsenic (Jorhem et al., 2008). Some common food items 

(bread, rice, milk, pork meat, chicken meat, cabbage and potatoes) from the Slovak Republic 

were collected and analyzed for total arsenic concentrations. Rice contained the highest 

average concentration of arsenic of 0.158 mg/kg. The major proportion of the arsenic in rice 

seemed to be inorganic. Also, potatoes at 0.033 mg/kg and poultry meat at 0.028 mg/kg 

contributed to arsenic exposure, although arsenobetaine accounted for more than 80 % in 

the poultry meat. When the potatoes were peeled the concentrations of arsenic were lowered 

to 0.0023 mg/kg. 

Arsenic concentration in soil 

   Arsenic in soil could be derived from both natural and anthropogenic sources. Atmospheric 

pollution and application of phosphate fertilizers appear to be major contributors to the 

anthropogenic arsenic deposition in agricultural soils. Atmospheric deposition of arsenic into 

soil has generally decreased over the last 20 years in Europe (DG Environment, 2000) . 

Background arsenic levels in surface soils range from 0.1 to 55 mg/kg, with mean values 

often around 5 mg/kg (Matschullat, 2000). Mean sediment arsenic concentrations may range 

from 5 to 3000 mg/kg. The concentration of arsenic in forest soil samples influenced by 

industrial activities were reported to range from 120 to 252 mg/kg dry mass. 
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Figure 7. Different forms of Arsenic in the various environmental compartments  

Assessment of multimedia transfer 

    As discussed in Chapter 1. arsenic ends up in food, plants and tap water, depending from 

the geochemical conditions, and from groundwater in a similar way. In order to estimate the 

arsenic contamination in food and tap water, we must calculate the amount transferred, 

(multimedia transfer) by assuming that food and tap water will be contaminated in a similar 

way from the concentration found in the groundwater in that specific area. This was done by 

the environmental fate model WATSON in the Health and Environment Integrated 

Methodology and Toolbox for Scenario Assessment (HEIMTSA) project.  Using the 

concentration of arsenic in groundwaters, given in the Table 5. we can estimate the food and 

tap contamination of those areas to assess the total oral intake form dietary (food) and non-

dietary (water) pathways. Data are obtained from the Health and Environment Integrated 

Methodology and Toolbox for Scenario Assessment (HEIMTSA) project. In this project 

Integrated Water and Soil Environmental Fate, Exposure and Impact Assessment Model of 

Noxious Substances in Europe (WATSON) model was used to estimate both concentration 

in terrestrial and aquatic environmental median as well as human exposure though ingestion 

of various food items and through drinking water. In addition, exposure via inhalation were 

calculated on the base of concentration in air in each capita.   
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     In general, the concentration in soil and rice (the major contributor to arsenic dietary 

exposure) and various crops (both in mg/kg) is associated with the following formula (Santra 

et al., 2013): 

                                                                                                                                

                                                                                 

Uptake of As by plants occurs primarily through the root system. Because arsenic is not 

readily translocated to the shoots, the edible plant parts are generally low in As (<2 mg kg). 

Because As is highly toxic to plants at concentrations that do not yet affect animal or human 

health, crop damage or even failure is usually assumed to occur before As levels in shoots 

are of concern for animal or human health (Gulz et al., 2005). Tuberous vegetables 

accumulate higher amount of arsenic than leafy vegetables and leafy vegetables followed by 

fruity vegetable. The highest arsenic accumulation is observed in potato, brinjal, arum, 

amaranth, radish, lady's finger, cauliflower whereas lower level of arsenic accumulation is 

observed in beans, green chili, tomato, bitter guard, lemon and turmeric. The root, shoot and 

leaf tissue of rice plant contain mainly inorganic AsIII and AsV while the rice grain contains 

predominantly DMA (85 to 94%) and AsIII. Using the above information, we can estimate the 

food concentration to Arsenic in the Mediterranean diet. 

Table 7. Time-integrated accumulated country-specific concentrations of arsenic in 

fresh water and fresh water sediment as output of the environmental fate module of 

the WATSON model for scenarios in the year 2010 including direct and indirect 

releases into fresh water and agricultural soils [µg As/L water or µg As/kg  Sediment (dry 

weight)]. 

 HEIMTSA 2010 BAU 
Country  Freshwater Freshwater 
Greece Body Sediment 
 1.27 30.53 

 

Table 8. Time-integrated accumulated country-specific concentrations of arsenic in different 

terrestrial compartments as output of the environmental fate module of the WATSON model 

for scenarios in the year 2010 including direct and indirect releases into fresh water and 

agricultural soils [mg As/kg soil (dry weight)]. 

 HEIMTSA 2010 BAU 
Country  arable land  non-vegetated pasture (semi-)natural 
Greece (unspecified) soil/rock grassland 

 

ecosystems 

 1.86 1.19 1.93 4.44 

 

Institutional Repository - Library & Information Centre - University of Thessaly
09/05/2024 08:24:17 EEST - 18.117.98.51



42 
 

«UNIVERSITY OF THESSALY» 
«Postgraduate Study Department of Biochemistry and Biotechnology» 

«TOXICOLOGY» 

 

Overall, the steps for estimating daily intake for a given area in Greece include: 

1)  The information based on EFSA’s dietary survey for calculating the amounts of different 

food items consumed in Greece per day, 

2) The estimated of WATSON model, for assessing As multimedia environmental fate to 

estimate the contamination of food items, plants and tap water, starting from known arsenic 

levels groundwater in different areas in Greece. In cases where only the arsenic 

concentration in drinking water was known a mean value of 40μg/L total arsenic in 

groundwater was used to estimate the residues in food items 

 Accounting for all the above, the complete picture of dietary and non-dietary arsenic intake 

was formed for several areas in Greece.  

Table 9. Total arsenic intake from food, water ingestion and inhalation in specific 

areas in Greece using known levels of Arsenic in drinking water. Using the 

environmental fate module of the WATSON model  combined with known 

concentrations of arsenic in groundwater we obtain different exposure concentration 

in food (shaded blocks). 

Area Source 
Levels of 

As μg/L 

Tap water 

μg/kg bw 

Food 

μg/kg bw 

Inhalation 

μg/kg bw 

Total intake 

μg/kg bw 

Petralona Irrigation wells 1.500 30.82 1.49 0.0028 32.32 

Chalkidiki prefecture, N.Gr. Groundwater 1000 0.059 12.21 0.0028 12.27 

Triglia Irrigation wells 

200 

4.11 1.4 0.0028 5.63 

Island of Kos Drinking water 4.11 1.49 0.0028 5.63 

Thessaloniki NW.Gr. Groundwater 0.05 3.23 0.0028 3.29 

Aksios, Kalikratia Groundwater 50 0.05 1.55 0.0028 1.61 

Thessaloniki, delta of 

Aksios 
Groundwater 46 0.05 1.50 0.0028 1.56 

Aksios delta, Malgara, 

Ghalastra, Platy, 

Keramote, Kavala, 

Nikisiani, Polykastro Kilkis 

Drinking water 30 0.61 1.49 0.0028 2.11 

Kavala, Nikisiani, Nestos 

Delta/Keramoti 
Drinking water 25 0.51 1.49 0.0028 2.02 

Serres 
Drinking water 

Groundwater 

20 0.41 1.49 0.0028 1.93 

10 0.20 1.49 0.0028 1.76 

Eastern thessaly, Lesvos 

Island 
12 0.05 1.12 0.0028 1.18 

Kalloni Gulf, Lesvos Island Groundwater 2.9 0.05 1.02 0.0028 1.08 
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EXPOSURE ESTIMATES STARTING FROM BIOMONITORING DATA 

    Biomonitoring is a commonly used practice for assessing human exposure environmental 

contaminants, and arsenic is one of the most commonly biomonitored heavy metal. Samples 

of hair, nails, urine, saliva, sweat or blood are collected and analyzed for Arsenic compounds 

and their metabolites. Levels of arsenic or its metabolites are used as biomarkers of arsenic 

exposure. Biomarkers present a time-variable concentration profile associated with temporal 

patterns of exposure and elimination kinetics (WHO, 2015). 

    The arsenic metabolites are excreted mainly in urine (El-Masri and Kenyon, 2008a) with 

concentrations generally ranging from 5 to 20 μg/L, but may exceed 1000 μg/L (Waseem and 

Arshad, 2016). The concentration of metabolites of inorganic arsenic in urine (MMA, DMA) 

reflects the absorbed dose of inorganic arsenic on an individual level (WHO. et al., 2001). In 

humans, the relative proportions of As species in the urine are usually about 10-30% As(i), 

10-20% MMA, and 60-70% DMA (Orloff et al., 2009). Speciated metabolites in urine 

expressed either as inorganic arsenic or as the sum of metabolites [As(i)+ MMA + DMA] 

provide the best quantitative estimate of recently absorbed dose of arsenic.  Urine is the 

most frequently used biological medium for biomonitoring. Urine is a readily, easily collected 

with good reference range sample matrix which is accessible in large volumes. One can 

monitor the drug in the urine in order to obtain selected pharmacokinetic parameters of a 

drug as well as other useful information such as the bioavailability of a drug. There is a direct 

proportional relationship between the observed plasma concentration and/or the amount of 

drug eliminated in the urine and the exposure dose of a chemical. Measuring the urinary 

concentration of Arsenic is useful in assessing recent exposure to Arsenic, and high-quality 

reference ranges are available for urinary Arsenic concentrations. Normal human levels of 

arsenic are <1μg/L in blood, <100μg/L in urine and ≤ 1 ppm in nails and hair (ATSDR, 2007). 

Blood arsenic is a useful biomarker in the case of stable chronic high-level exposure but 

Arsenic is rapidly cleared from blood, and speciation of its chemical forms in blood is difficult. 

Arsenic in hair and nails can be indicators of past arsenic exposure, provided care is taken to 

prevent external arsenic contamination of the samples. Arsenic in hair may also be used to 

estimate relative length of time since an acute exposure. The reference range for arsenic in 

human hair lies in the range of 0.0003–0.34 μg/g. 

    PBPK models are powerful tools and can be used additionally to estimate the 

biomonitoring equivalent levels (BEs). Those levels, represents the concentration of the 

parent chemical or its metabolite, in a biological sample, and is consistent with the 

established reference values for intake levels (WHO, 2015). The BE value for arsenic is 
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6.4μg/L and the intake-based reference value is 0.3μg/kg/day. PBPK model, gives us the 

opportunity from limited data for human excretion of arsenicals in urine, to be used to 

estimate the exposure. In case of Greece, biomonitoring data for arsenic are missing. In 

Greece currently there is no established human biomonitoring system organized by the 

competent and local/regional authorities for public health protection. A Project called: Cross-

Mediterranean Environment and Health Network – CHROME-LIFE (http://www.crome-

life.eu/) will allow researchers to assess different levels of environmental exposure, age 

windows, socioeconomic and genetic variability in four demonstration sites, including 

Greece.  

    The exposure conversion factor (ECF) method, proposed by Tan et al. (2006), assumed 

that the relationship between biomarker and dose can be approximated by a linear function 

for exposure reconstruction purposes. This approach involves three steps: (1) generating 

samples for forward model runs from distributions of possible exposure, physiological, and 

biochemical parameters, (2) running the forward model using a set of input samples from 

these distributions, and (3) inverting the distribution of output (i.e. simulated biomarker levels) 

to obtain an ‘‘ECF.’’ Using the ECF and the distribution of observed biomarkers, the possible 

exposures for that particular biomarker distribution can then be estimated through a 

straightforward convolution (Tan et al., 2006). In a typical application of this simple method, 

the PBTK model can be run using a unit dose or concentration value, and various samples 

from the possible distributions of parameters such as activities, physiological parameters, 

biochemical parameters, biomarker sample times, etc., to generate a set of biomarker levels. 

These levels then provide the distribution of biomarkers for a unit exposure metric, which can 

be inverted to obtain an ECF in units of the exposure metric divided by biomarker level units.  

The ECF can then be multiplied by the values of available biomonitoring data (e.g. from 

biomarker databases such as NHEXAS or NHANES) to produce an estimate of dose 

distributions for the corresponding population. This convolution is performed by multiplying 

samples from the biomarker distribution with samples from the ECF distribution. The 

aggregate samples then provide the distribution of reconstructed exposures. Though this 

method is conceptually simple and straightforward to use, as it involves direct generation of 

samples of the corresponding statistics from these samples, the ECF can be highly sensitive 

to the assumptions of the prior distributions. Furthermore, the assumption of linearity can 

sometimes produce unreasonably large tails in the distribution of reconstructed exposure 

metrics, especially when exposures occur infrequently, and the sampling time relative to the 

last exposure is unknown. 
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Table 10. Biomonitoring studies around the world using Arsenic biomarkers in urine. Those studies were used to calculate the 

external intake dose by using the exposure conversion factor to calculate the individual risk and health impact to fatal cancer.  

 

Study design Sample 

Type 

As concentration 

(μg/L) 

Calculated Intake dose 

using ECF, mole/min 

Calculated Intake dose 

using ECF, μg/kg bw 
Ref 

Concentration of various toxic 

elements 
Urine 

As: Median: 12.5 

range: 4.8-200 
2.0147E-11 0.31 (Genuis et al., 2011) 

Location: Germany region with As 

in soil Participants: n= 218 (North) 

and n=76 (South) nonexposed 

subjects Aim: determination of the 

internal exposure to As 

Urine 

North: Median: 3.21,  

range: 0.1-18.32  

 

South: Median: 6.20 

 range:0.29-23.8 

North:5.17374E-12 

 

 

South:9.9929E-12 

North: 

0.08 

 

South: 

0.15 

(Gebel et al., 1998) 

Male diabetics and normal subjects, 

Hyderabad, Sindh, Pakistan 
Urine 

Non-smokers control:  

3.39–5.61(4.7) 

 Smoker control:  

4.88 –5.96 (5.41) 

Non-smokers control: 

7.57527E-12 

Smoker control 

8.71961E-12 

Non-smokers control: 

0.12 

Smoker control 

0.13 

(Waseem and 

Arshad, 2016) 

Adults selected from various 

countries in Pakinstan 
Urine 

Mean = 20 

 Range 10-30 
3.22352E-11 0.50 

French National Survey on Nutrition 

and Health 2006-7 (adults) 
Urine Mean = 11.96 1.92766E-11 0.30  

Non Occupationally exposed 

adults, Belgium 
Urine Mean = 15.4 2.48211E-11 0.38 

(Waseem and 

Arshad, 2016) 
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Occupationally unexposed UK 

adults  
Urine Median = 10.48 1.68912E-11 0.26 

Flemish Human Biomonitoring 

Program (FLEHS II: 2007-11), 

Belgium, Females 

Urine Geometric Median: 17.2 2.77222E-11 0.43 

(Waseem and 

Arshad, 2016) USA (NHNES) 2011-15 Urine Geometric Median: 6.85 1.10405E-11 0.17 

Canadian Health Measures Survey 

Cycle 2&3, 2009-13 
Urine Mean: 9.2 1.48282E-11 0.23 

Aim: Relationship of exposure, age, 

group, city factors with urinary 

arsenic Location: Chile, n=756 

Urine 

Antofagasta:  

Students Median: 49.8 

Santiago:  

Students mean: 27.8 

Temuco:  

Students mean: 17.2 

Antofagasta: 

8.02656E-11 

Santiago 

4.48069E-11 

Temuco 

2.77222E-11 

Antofagasta: 

1.24 

Santiago 

0.69 

Temuco 

0.43 

(Caceres et al., 2005) 

Location: Winkelman and Hayden 

(Arizona) Aim: relationship of 

arsenic in house dust to inorganic 

urinary arsenic (n=404) 

Urine 

Total Arsenic  

(Hayden): 14.4,  

Total Inor. Arsenic: 12.6 

Total Arsenic 

(Winkelman): 12.3 

Total Inor. Arsenic: 11.7  

Hayden 

2.32093E-11 

 

Winkelman 

1.98246E-11 

 

Hayden 

0.36 

 

Winkelman 

0.31 

 

(Hysong et al., 2003) 

Study: Excretion of As among 

adults in urine after 24h water 

intake Location: Yaqui Valley, 

Sonora, Mexico, July 2001-May 

2002. 

Urine 

Total As: 

 

 64.5μg/L (Esperanza) 

29.5(Cocorit) 

38.4 (Pueblo Yaqui) 

Esperanza 

1.03958E-10 

Cocorit 

4.75469E-11 

Pueblo Yaqui 

Esperanza 

1.60 

Cocorit 

0.73 

Pueblo Yaqui 

(Meza et al., 2004) 
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6.18915E-11 

 

0.95 

 

As(III): 14 (Esperanza), 3.3(Cocorit), 6.3 (Pueblo Yaqui) 

As(V): 1.7 (Esperanza), 1.3(Cocorit), 1.6 (Pueblo Yaqui) 

MMA(V): 6.3 (Esperanza), 4.2(Cocorit), 2.9 (Pueblo Yaqui) 

DMA(V): 34.6 (Esperanza), 18.8(Cocorit), 17.3 (Pueblo Yaqui) 

Aim: Comparison of arsenic 

concentrations species of non-

exposed and exposed subjects to 

As, after consuming fish Location: 

U.K. 
Urine 

As(III): Control: 0.4, 

Exposed: 0.6 (n=9) 

  Control: 1.36999E-11 

 

Exposed: 4.86751E-11 

Control: 0.21 

 

Exposed: 0.75 (Morton and Mason, 

2006) 

 DMA: controls: 4.6, exposed: 7.3, (n=34) 

MMA: controls: 0.7, exposed: 0.5 (n=34) 

As(V): controls: 2.8, exposed: 3 (n=9) 

Aim: pattern of excretion of arsenic 

compounds in urine to adults in 

exposed area Location: 

Bangladesh  

Urine 

Total arsenic: 175.7 exposed to contaminated water 300 2.83186E-10 4.36 
(Chowd

hury et 

al., 

2003) 

Total arsenic: 385.5 exposed to contaminated water 340 6.21333E-10 9.58 

Total arsenic: 560.2 exposed to contaminated water 540 9.02907E-10 13.92 

Total arsenic: 494.7 exposed to contaminated water 460 7.97337E-10 12.29 

Study: Urine samples (3000) from 

residents of a community 

surrounding an arsenic-emitting 

copper smelter 

Urine 

Arsenite: 20+y: Males: 2.1, Females: 1.2   
 

 
 

(Kalman et al., 1990) 
MMA: 20+y: Males: 2.3, Females: 1.7  Males:  

2.09529E-11, 

Females: 

1.49894E-11 

Males:  

0.32 

Females 

0.23 

DMA: 20+y: Males: 6.4, Females: 6.4  

Sum: 20+y: Males: 13, Females: 9.3  
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RESULTS 

 

EXPOSURE SCENARIO IN GREECE 

 

    The water amount drunk per day, food consumption and the amount inhaled are inputs to 

the PBPK model as ingestion or inhalation rates (mole/min). This has allowed the calculation 

of internal concentrations (Table 10) which cause the fatal cancer individual probability 

reported in figures 8, 9, 10, 11. The values of individuals were then multip lied by the total 

population resulting in the estimated overall number of deaths attributable to the specific 

cancer on country basis.   

Table 11. Internal concentrations obtained from the simulations run in the PBPK 

model, after reaching a steady-state condition, for each individual case with different 

amounts of contamination either in groundwater or drinking water. The internal 

concentration is the amount of total arsenic, inorganic and organic species after 

having transformed to the equivalent toxicity compared to Arsenite.   

 

Once the internal concentrations are known, linking those to the specific health event 

probabilities will allow obtaining the individual risk and the health impact of the population to 

fatal cancer studied. 

Arsenic 

contamination level 

(μg/L)  

Internal Concentration (mg/L) 

Lung Kidney Liver Skin 

Vlung=0.56 Vkidney=0.28 Vliver=1.82 Vskin=2.6 

(Groundwater) 2.9 6.9E-05 2.1E-04 6.6E-05 1.6E-05 

(Groundwater) 12 7.7E-05 2.2E-04 7.2E-05 2.3E-05 

(Tap water) 10 7.5E-05 2.4E-04 7.2E-05 1.8E-05 

(Tap water) 20 8.4E-05 2.6E-04 8.1E-05 1.9E-05 

(Tap water) 25 8.9E-05 2.6E-04 8.6E-05 2.1E-05 

(Tap water) 30 9.3E-05 2.8E-04 9E-05 2.2E-05 
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Figure 8.Individual Risk of Fatal Skin Cancer to several areas in Greece. 
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Figure 9. Individual Risk of Fatal Liver Cancer to several areas in Greece.  
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Figure 10. Individual Risk of Fatal Kidney Cancer to several areas in Greece.  
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Figure 11. Individual Risk of Fatal Lung Cancer to several areas in Greece.  
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Figure 12.Individual Risk and Health Impact assessment  of fatal liver cancer using biomonitoring data from different countries 
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Figure 13. Individual Risk and Health Impact assessment of fatal kidney cancer using biomonitoring data from di fferent countries 

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1.000 

T
o
ta

l 

M
a
le

 

F
e
m

a
le

 

T
o
ta

l 

M
a
le

 

F
e
m

a
le

 

T
o
ta

l 

M
a
le

 

F
e
m

a
le

 

T
o
ta

l 

M
a
le

 

F
e
m

a
le

 

T
o
ta

l 

M
a
le

 

F
e
m

a
le

 

T
o
ta

l 

M
a
le

 

F
e
m

a
le

 

T
o
ta

l 

M
a
le

 

F
e
m

a
le

 

T
o
ta

l 

M
a
le

 

F
e
m

a
le

 

T
o
ta

l 

M
a
le

 

F
e
m

a
le

 

T
o
ta

l 

M
a
le

 

F
e
m

a
le

 

T
o
ta

l 

M
a
le

 

F
e
m

a
le

 

T
o
ta

l 

M
a
le

 

F
e
m

a
le

 

T
o
ta

l 

M
a
le

 

F
e
m

a
le

 

T
o
ta

l 

M
a
le

 

F
e
m

a
le

 

T
o
ta

l 

M
a
le

 

F
e
m

a
le

 

T
o
ta

l 

M
a
le

 

F
e
m

a
le

 

T
o
ta

l 

M
a
le

 

F
e
m

a
le

 

T
o
ta

l 

M
a
le

 

F
e
m

a
le

 

T
o
ta

l 

M
a
le

 

F
e
m

a
le

 

T
o
ta

l 

M
a
le

 

F
e
m

a
le

 

Exp Hill Exp Hill Exp Hill Exp Hill Exp Hill Exp Hill Exp Hill Exp Hill Exp Hill Exp Hill 

0,0E+00 

5,0E-06 

1,0E-05 

1,5E-05 

2,0E-05 

2,5E-05 

3,0E-05 

3,5E-05 

4,0E-05 

4,5E-05 

H
e
a
lt

h
 I
m

p
a
c
t 

In
d

iv
id

u
a
l 
R

is
k

 
Individual Risk and Health Impact - Fatal KidneyCancer 

Individual risk Health impact 

Canada 

Germany 

Pakistan 

France 

Chile 

U.K. 
U.S. 

Arizona 

Institutional Repository - Library & Information Centre - University of Thessaly
09/05/2024 08:24:17 EEST - 18.117.98.51



56 
 

«UNIVERSITY OF THESSALY» 
«Postgraduate Study Department of Biochemistry and Biotechnology» 

«TOXICOLOGY» 

                                                                                                                                                                                     

 

Figure 14. Individual Risk and Health Impact assessment of fatal skin cancer using biomonitoring data from different countries  
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Figure 15. Individual Risk and Health Impact assessment of fatal lung cancer using biomonitoring data from different countries  
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DISCUSSION 

    Arsenic is an ubiquitous mineral in nature and its acute and chronic toxicity has been well 

documented. Arsenic contamination of groundwater is widespread and there are a number of 

regions where arsenic contamination of drinking water is significant. The goal of the present 

study was to estimate an overall risk of fatal cancer of Greek population due to external daily 

arsenic exposure from dietary and non-dietary pathways. In this case study we estimated the 

individual risk of exposure to arsenic and its metabolites via ingestion of food and water and 

inhalation, using both the developed PBPK model and the pathology model for the Greek 

population. Dose response functions based on two different statistical methods were used, 

namely the exponential formulation and the Hill equation. In both cases, the dose-response 

functions showed an approximately linear relationship between dose and health response at 

low doses.  

    A positive association between arsenic exposure and internal organ cancer (lung, liver, 

kidney, skin) has been indicated. The fact that DMA is produced by methylation in the liver, 

excreted via the kidneys and later stored in the bladder accounts for other tumor 

localizations. The fact that humans excrete more MMA than any other species may be a 

factor in their apparently higher sensitivity to arsenic-induced carcinogenesis. The evaluation 

of arsenic carcinogenicity can be summarized (IARC, 2004):  

- There is sufficient evidence in humans that arsenic in drinking-water causes cancers 

of the bladder, lung and skin. 

- There is sufficient evidence in experimental animals for the carcinogenicity of 

dimethylarsinic acid. 

- There is limited evidence in experimental animals for the carcinogenicity of sodium 

arsenite, calcium arsenate and arsenic trioxide. 

- There is inadequate evidence in experimental animals for the carcinogenicity of 

sodium arsenate and arsenic trisulfide. 

- Taken together, the studies on inorganic arsenic provide limited evidence for 

carcinogenicity in experimental animals. 

    The exact mode of action of arsenic remains puzzled. More laboratory and clinical 

research is needed to define the mechanisms by which arsenic induces cancer to clarify the 

risks at lower doses. Skin, lung, liver and kidney fatal cancers have been chosen as health 

end-points, as the riskiest organs. In 2014, 11.321 cases of fatal cancer were reported in 

Greece (0.1% of the total population) (http://www.statistics.gr/el/statistics/-

/publication/SPO12/) while in 2012 the 9.975 had been reported. From 11.321 deaths, 7.2% 

were malignant cancer of peritoneum organs, 6.6% cancers of respiratory system, 4.4% 
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neoplasms of urinary organs and 2.4% skin cancers. Those epidemiological reviews 

corroborate well with our estimates where lung fatal cancer was the most noteworthy highest 

individual risk for both males and females, followed by liver, kidney and skin. 

    Individuals ingest water both directly, and indirectly through ingestion of water added to 

food and drinks as part of preparation. Total drinking water intake refers to the ingestion of 

water for both drinking and food preparation purposes (Hough et al., 2010). In this study, 

water used for food preparation was not taken into account. In addition, water consumption 

rate may differ from winter to summer, especially in Greece where high temperatures remain 

unaltered during summer, expanding the need of consumption. A consumption rate of 2L/day 

was assumed in this study without considering the water added for food preparation and 

varieties in the amount of drinking water through the season.  Arsenic residues were 

estimated in several food items and tap water, considering the contamination of those from 

groundwater. Starting from known arsenic levels groundwater in different areas in Greece 

and using the estimates of WATSON environmental fate model for assessing As multimedia 

environmental fate, we estimated the contamination of food items and tap water. In this study 

the differences of the daily intake for the age dependent dietary was not accounted.  In 

addition, differences in the diet among the Greek residents were also not taken into account.  

    When groundwater contamination was considered, nourishment intake changed 

significantly; for instance, example in the scenario where groundwater is contaminated with 

1000μg/L, the daily food intake dose was 8.5 mg/day, while in case where food 

contamination was not considered (e.g. 30μg/l in drinking water in Kavala), intake from food 

was estimated equal to 1mg/day. This highlights the importance of considering the complete 

environmental fate of arsenic including food chain. In this case, food is another major 

contributor to arsenic exposure as well. As a result, critical epidemiological reviews carried 

out in arsenic contaminated areas (e.g. Taiwan and Bangladesh) which were utilized to 

derive carcinogenic guidelines from world organizations, might lack the incomplete exposure 

picture due to inadequate exposure (including food intake) data. Thirteen different scenarios 

were evaluated for various regions in Greece where data were available. The arsenic 

contamination levels in groundwater ranged from 2.9 μg/L to 1000 μg/L. The total arsenic 

daily intake from tap water was 0.05-30.8 μg/kg bw (3.5-2157 μg/l or 0.03-21 mg/day). The 

assessments of total dietary arsenic intake were 1.02-12.41 μg/kg bw (71.4-854.7 μg/day or 

0.7-8.5 mg/day). Lastly, the total arsenic daily intake was estimated: 1.08-32.3μg/kg bw 

(75.6-2262 μg/day or 0.76-22.6 mg/day). These estimates could be used to contrast the 

Greek population risk with regulatory thresholds. 
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Joint Food and Agriculture Organization/World Health Organization Expert Committee on 

Food Additives (JECFA) 2010 (WHO, 2010), determined the inorganic arsenic BMDL0.5 in 

human: 3 μg/kg b.w./day (ranged 2-7 μg/kg b.w./day). The BMDL0.5 was identified for 

malignancies of the lung and skin, as well as skin lesions (Chain, 2009). The values of our 

interest is the range referring to total arsenic exposure estimates from our study: 1.08-32 

μg/kg b.w/day. In case of total arsenic exposure, the value 1.08μg/kg b.w/day is based to 

exposure of 2.9 μg/L in groundwater resulting to 1 μg/kg b.w./day from food, and 0.05μg/kg. 

b.w./day from tap water, in areas such as Lesvos island, Kalloni Gulf. This is the minimum 

exposure scenario to inorganic arsenic considered in this work. The PBPK/BBDR model 

demonstrated an individual risk 10-6 developing fatal skin cancer, 10-5 for lung and liver 

cancer for both genders. 10-5 for kidney fatal cancer to females and 10-6 for males. The 

Benchmark Dose is the dose range within which arsenic is likely to cause a small but 

measurable effect on a human body organ. Even in the case of the minimum contamination 

(2.9μg/L) in groundwater, we are still in the scope of concerning risk (10-5 – 10-6), thus, 

highlight the need of broader research concerning inorganic arsenic exposure to human 

health and eventual a revision of the standard values. 

 

EPA has recommended a standard of 10 μg/L (10 ppb) for drinking water. In Serres, the 

drinking water arsenic concentration varies from 10 to 20 ppb. The simulation model 

reflected a similar response to fatal cancer between the two scenario with negligible 

differences. More in detail, in case of 10 and 20 ppb contaminated water the individual risk 

for skin, lung, liver and kidney range from 10-5 to 10-6 for both genders. Probability of fatal 

cancer to internal organs occurs also to concentration below 10ppm, which indicates the 

urgency of lowering the arsenic Maximum Contaminated Level.   

Arsenic PTWI is 0.015 mg/kg b.w. Based to our results, total daily arsenic intake ranges from 

1.08-32 μg/kg/bw. The PTWI is translated to a daily basis of 2.1 μg/kg b.w./day. The cases 

which PTWI is exceeded concern the following areas: Petralona, Chalkidiki prefecture, 

Triglia, Island of Kos, and Thessaloniki NW. The total arsenic daily intake in those areas 

were estimated 32, 12, 5.6, 3.29 μg/kg b.w. respectively (the other areas had values <2.1 

μg/kg b.w./day). The contaminated groundwater in those areas is 1500,1000, 200 μg/L. 

respectively. The individual risk for the most organs ranges from 10-4 – 10-5 and 10-4 for lung 

cancer. In the other areas, where PTWI is below the standard range (1.08-1.61 μg/kg 

b.w./day) the individual risk generally ranges from 10 -5 – 10-6 for kidney and skin, 10-5 for fatal 

lung and liver cancer. The PTWI is the maximum amount of a contaminant to which a person 

can be exposed per week over a lifetime without an unacceptable risk of health effects 

(WHO, 2007). The Minimal Risk Levels (MRLs) for acute oral exposure of arsenic is 5μg/kg 
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bw/day while for the chronic oral exposure the MRL is 0.3 μg/kg bw/day (ATSDR, 2016) 

where all the scenarios exceed the chronic oral exposure standard. The Committee noted 

that the established provisional tolerable weekly intake (PTW1) 2.1 μg/kg b.w./day for 

inorganic arsenic was in the region of the BDML05 and therefore was no longer appropriate 

(WHO, 2010). This PTW1 was therefore withdrawn by the Committee. No new tolerable 

intake level could be established. 

Based on studies found in the literature (Ferreccio et al., 2000)  it was found that after 

systemic exposure of 0.077mg/day of arsenic, lung cancer is developed to humans. Our 

results for arsenic exposure are 0.7 - 22 mg/day. Those estimated values, compared to 

toxicological studies in the literature, compared to the individual risk found from PBPK/BBDR 

model (10-4), confirming the great risk some regions in Greece are. Other studies in humans 

are found in the literature to confirm the risk found in this case (Guo, 2004; Lubin et al., 2000; 

Welch et al., 1982; Zaldivar et al., 1981).  Another Important finding to be noted is the fact 

that a safe level for arsenic in the air has not been established yet (WHO, 2010). 

    Several studies worldwide have been made to estimate the total arsenic exposure. A study 

in the U.S estimated the total inorganic arsenic intake from food, water, soi l ingestion and 

from airborne particle inhalation. The results ranged from 1.8 to 11.4 μg/day  for males and 

from 1.3 to 9.4 μg/day for females (Meacher et al., 2002). However, another study in U.S 

showed that exclusively dietary intake may range from 1 to 20 μg/day (Johnson, 2007).  

Those studies recommend that arsenic contamination usually varies within a country, 

implying that exploration of arsenic contamination in water must be done at individual 

residues of the same country. Arsenic exposure routes and chemistry for the general 

population are more complex, because it varies according to several factors, such us: 

geochemistry, local pollution, living conditions, lifestyles, and activity patterns of the exposed 

populations. Additionally, the 1/3 of the total population smokes cigarettes, highlighting the 

need of exposure studies to arsenic due to smoking. 

    Outlining our results, the individual risk in Greece for skin fatal cancer range from 10-4 in 

highly contaminated irrigation wells reaching the amount of 1500μg/L, in areas such as 

Petralona (Chalkidiki), to 10-6 in zones where the concentration in groundwater or drinking 

water shifts from 2.9 to 50μg/L. In instances of Chalkidiki prefecture, Triglia or Kos island, 

groundwater and drinking water separately reach the amount of 200μg/L, the individual risk is 

10-5. It has also to be noted that exposure to arsenic results in gender dependent differences 

in response. Males showed higher risk (one-fold range of magnitude up) contrasted with 

females. Males are more prone to develop skin cancer since ultraviolet exposure and stress 

induce immunosuppression in the human skin, and this effect is stronger in males (Dorak 
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and Karpuzoglu, 2012). Males additionally appear to be at more serious hazard compared to 

females to develop lethal liver cancer. There are known physiological distinction that may 

clarify this difference between gender (Dorak and Karpuzoglu, 2012; Naugler et al., 2007). 

For instance, in the worst scenario where groundwater is tainted with 200μg/L (Thessaloniki 

NW area) of arsenic, the individual risk for liver fatal cancer is one-fold range of magnitude 

up for males compared to females (10-4 versus 10-5). The individual risk for fatal kidney 

cancer, range from 10-4 for females and 10-5 for males up to 10-6. Females presented a 

higher individual risk compared to males (one-fold order of magnitude). This might be 

explained from gender dependent differences in toxicokinetics, since women present a 

higher capacity from methylation of MMA  (Hsueh et al., 1998). MMA is methylated to DMAV 

which is more toxic to the female urinary bladder, which is reflected as sensitivity to 

carcinogenesis (Shen et al., 2006). The urinary system includes also the kidneys; we can 

assume that there may be a link of higher toxicity of DMAV to female kidneys. Additionally, 

the methylation of inorganic arsenic may be a toxificaton-activation process, due to the great 

biological activity of trivalent methylated arsenic metabolites with proteins and even DNA 

(Kitchin, 2001). Males have higher morbidity and mortality rates from lung cancer due to 

higher frequency of smoking, but female are at greater risk to develop it (Kiyohara and Ohno, 

2010). These sex disparities were relatively modest. The individual risk for lung cancer is the 

highest in concentration of 200μg/L arsenic in water (10-4) compared to the other organs. In 

our study, males demonstrate higher risk than the females in most of the cases (lung, liver 

and skin), while females show an increased risk on fatal kidney cancer. Different 

physiological and bioaccumulation properties on women and men may influence distribution 

of chemical as well as the extent rate of accumulation and release from adipose tissue. The 

gender difference in cancer susceptibility is one of the most consistent findings in cancer 

epidemiology (Dorak and Karpuzoglu, 2012). In general, males have worse overall survival, 

higher mortality rates due to cancer (44.85% for males, instead of 38.08% for females) and a 

lifetime probability of developing cancer (Cook et al., 2011; Greenlee et al., 2000). Universal 

mechanisms related to gender differences in cancer incidence and, thus, mortality include 

antioxidative capacity, gender chromosome complement, aneuploidy, aberrations, gene 

expression, hormones, and immunocompetence. Biological factors may influence kinetics 

and toxicity of chemicals, which behave differently in men and women, sometimes under the 

direct influence of sex hormones (Vahter et al., 2007). Other gender differences include 

lifestyle factors such as: exposure conditions in the working or general environment, 

smoking, dietary factors, physical activity, cosmetics use and stress factors. The different 

associations between arsenic and various cancers deserve further exploration including the 

gender. 
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   Assessment from biomonitoring urinary excretion data exhibited a lower individual risk, in 

both genders. Although biomonitoring provides the most complete picture of intake from 

multiple pathways and sources, uncertainties related to this process have to be discussed. 

This are mainly attributed to the rapid arsenic excretion via the urinary system, hence, the 

use of spot samples might result in intake underestimates. In addition, several factors play an 

essential role, such as the frequency of sampling, the creatinine clearance, as well as 

gender, age and genetic factors that affect metabolism and renal excretion susceptibility.  In 

addition, the inconsistency of the analytical methods results in different limits of detection, 

sensitivity, accuracy, introducing additional uncertainty in the results. It is noteworthy that 

exchange among the various forms of reduced and oxidized arsenic forms can occur also 

non-enzymatically, depending on oxygen tension, pH and presence of endogenous 

reductants, making the measurement of arsenic in biological samples difficult (Thomas et al., 

2004). The total arsenic intake (μg/kg bw) calculated from the biomonitoring data showed a 

broad range between the countries. The highest intake estimates (14 μg/kg bw/day) were 

calculated for Bangladesh, resulting in the highest individual risk in men and females (10 -5 - 

10-6), as well as in the highest mortality rates (868-3454).     Arsenic in Bangladesh has 

attracted much attention since 1990s, as a result of the high contamination levels in well-

water. Since this time, significant progress has been made and the number of people 

exposed to arsenic levels exceeding the Bangladesh drinking-water quality standard has 

decreased approximately 40%. Despite these efforts, it has been estimated that about 20 

million to 45 million people in Bangladesh are at risk of exposure to arsenic levels higher 

than the national standard of 50 μg/L and the WHO guideline level of 10 μg/L respectively. 

Today, arsenic compounds are regulated in Regulation (EC) No 1907/2006 of the European 

Parliament and of the Council on the REACH. In Annex XVII, amended in 2009 (ECHA, 

2009), it is stated that arsenic compounds shall not be placed on the market, or used, as 

substances or in mixtures, intended for use to prevent the fouling by micro-organisms, plants 

or animals. On the other hand, the lowest intake of 0.15 μg/ kg bw was estimated in 

Germany, where the individual risks ranged from 10-6 in the case of lung cancer to 10-5 for 

fatal skin cancer, and a respective low health impact of 0.3 for skin mortality to 90 cases for 

lung mortality.  
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     The model makes the following significant assumptions: All chemical transport is based 

on passive and facilitated transport mechanisms; dermal uptake is insignificant and is not 

included; the chemical is lost only by reaction, urination and exhalation; the modeled human 

is an adult 70kg, and is not growing; the physiological processes and parameters do not 

change as a result of prolonged chemical exposure. Systemic circulation of MMA III and 

DMAIII, which are formed by the reduction of the pentavalent form, in not considered. 

Exposure to organic arsenical forms (DMA, MMA) to the initial dose are not considered. To 

determine the biologically relevant target tissue dose and health effects we must consider the 

presence of other contaminants (Diacomanolis et al., 2014; Hays et al., 2006) and the 

Individual variability in metabolism, depending on genetic makeup and developmental stage 

(Meza et al., 2005; Skroder Loveborn et al., 2016)  Factors such as dose, age, gender 

(Hsueh et al., 1998; Shen et al., 2006), ethnicity, (Meza et al., 2005) and smoking contribute 

only minimally to the large inter-individual variation in arsenic metabolism observed in 

humans due to genetic polymorphisms (Yu et al., 2003), nutrition and dose exposure. Future 

studies should be designed incorporating the susceptibility to arsenic (e.g., smoking, diet, 

genetics). Gender-related differences in methylation have been reported, which results in 

women indicating a higher capacity for methylation of monomethylarsonic acid (MMA) 

(Hsueh et al., 1998). DMAV is more toxic to the female urinary bladder, in accord with 

sensitivity to carcinogenesis (Shen et al., 2006).  

    Although the internal dosimetry modelling provided major advantages for assessing the 

risks of arsenic, there are additional challenges that have to be addressed, so as to further 

advancing the description of toxicokinetics. Future work may involve a thorough assessment 

on differences of chemical impact on human body in relation to gender. Different 

physiological and bioaccumulation properties on women and men may influence distribution 

of chemical as well as the extent rate of accumulation and release from adipose tissue. 

Vahter et al. (2007) reported, for example, gender differences in the vulnerability of the 

kidney to damage or cancer subject to a toxicant, and more generally, differences in rates of 

cancer in organ such as brain, kidney, liver, GI tract, and dermal system. The studies of 

gender differences should involve both PBPK modelling and dose response modelling. 

Similarly, age dependent differences should be taken into account. This however would 

require an extensive data set, which, especially for PBPK modelling, is missing. Information 

on physiology and biology in different ethnic populations and disease group are also lacking. 

PBPK modeling is considered to be complex and data intensive. However, as our knowledge 

of physiology and biochemical processes improves, especially in different disease states, 

even more sophisticated models will be developed. PBPK models are a very promising tool 

(Huang et al., 2013; Rostami-Hodjegan et al., 2012) that will provide additional insides in the 
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risk assessment process. The use of PBPK modelling in understanding exposure and 

improving risk assessment and health impact is widely recognized, and PBPK models are 

incorporated in computational platforms for exposure and risk assessment (Sarigiannis et al., 

2015) (Georgopoulos et al., 2008). 

DECONTAMINATION OF DRINKING WATER  

   Greece seems to be highly contaminated in some areas such as the Chalkidiki prefecture 

which is a highly visited and touristic area in summer. The most important action in affected 

communities is the prevention of further exposure to arsenic by the provision of water with 

minimum As content for drinking, food preparation and irrigation of food crops. There are a 

number of options to reduce levels of arsenic in drinking-water. 

PHYSICOCHEMICAL TECHNOLOGIES 
Lime precipitation: Lime precipitation has been used to reduce arsenic concentrations from 

high levels (e.g., hundreds of mg/L) to moderate levels (e.g., 1 to 5 mg/L).  Precipitation is 

typically followed by clarification or filtration for solids removal. 

Oxidation: Oxidation is a chemical process typically used in conjunction with other 

processes for arsenic removal.  As3+ (As(III) or arsenite) is more soluble in water and less 

available for precipitation/adsorption reactions than its As5+ (As(V) or arsenate) relative. 

Coagulation/filtration: A cost-effective approach for arsenic removal is coagulation and 

precipitation (chemical processes) followed by filtration (a physical process), which is termed 

coagulation/filtration (CF) in the water treatment industry.  Common coagulants used for 

arsenic are iron salts and aluminum sulfate (alum). 

Adsorptive media (AM): AM is another common technology for arsenic removal that can be 

used in place of or to augment CF.  As with coagulants, most adsorptive media are iron-

based; variations include titanium dioxide, zirconium, and other ion exchange resins. 

Ion Exchange (IX): The ion exchange (IX) process differs from the AM process in that IX 

media is meant to be regenerated periodically and reused after arsenic adsorption. IX media 

is typically regenerated with sodium hydroxide and sodium chloride, which creates a liquid 

waste containing a high concentration of arsenic.  Since waste disposal may be problematic, 

IX is not typically used for arsenic removal. 

Reverse osmosis: Membrane separation technologies are attractive arsenic treatment 

processes for small water systems. RO is a pressure-driven membrane separation process 

capable of removing arsenic from water by means of particle size, dielectric characteristics, 

and hydrophilicity/hydrophobicity. 
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BIOLOGICAL METHODS 
 

It was shown that arsenic can be removed by direct adsorption or co-precipitation on the 

preformed biogenic iron or manganese oxides, whereas the oxidation of As(III) was induced 

by the iron-oxidizing bacteria and leads to improved overall removal efficiency of arsenic 

content. 

Biological manganese removal: The removal of dissolved manganese (Mn2+) from 

groundwaters is generally accomplished by oxidation, followed by precipitation and (sand) 

filtration for the removal of the oxidized insoluble products (Knocke et al., 1991). Iron and 

manganese are often associated with elevated arsenic concentrations of geogenic origin in 

groundwaters (Katsoyiannis et al., 2007a; Rowland et al., 2011).  The distribution of 

inorganic arsenic species [As(III), As(V)] in natural waters is mainly dependent on redox 

potential and pH conditions. Generally, adsorption of As(III) onto iron or manganese oxides is 

less efficient than of As(V);  therefore, the immobilization of As(III) is enhanced by the 

preliminary oxidation of As(III) to As(V) (Katsoyiannis and Zouboulis, 2006). 

Biological iron removal: Iron-containing groundwaters have been traditionally treated by 

chemical oxidation, promoted with the vigorous aeration and/or the addition of chemical 

oxidizing agents 

Use of plug flow reactors combined with microfiltration: A modification of the traditional 

biological iron and manganese oxidation taking place in fixed bed bioreactors is the use of 

plug flow reactors followed by membrane microfiltration  (Katsoyiannis et al., 2013). The PR-

MF (hybrid plug flow reactor-microfiltration (PR-MF)) process efficiently removed iron, 

manganese, and arsenic without the use of chemical reagents for oxidation or pH 

adjustment, and without the need for regular regeneration or backwashing, following the 

principles of green chemistry. 

Phytoremediation for arsenic removal by aquatic macrophytes: Phytoremediation of 

toxic contaminants can be readily achieved by aquatic macrophytes or by other floating 

plants since the process involves biosorption and bioaccumulation of the soluble and 

bioavailable contaminants from water. A large number of aquatic macrophytes have been 

studied for the phytoremediation of toxic metals from waters, such as Microspora and Lemna 

minor and Typha latifolia (Chakrabarty, 2015). 

Arsenic removal by bacteria and algae: In water treatment, the critical step is the oxidation 

of As(III) to As(V), because As(V) is more efficiently removed by traditional methods, such as 

coagulation with iron and aluminum salts, ion exchange, lime softening, and adsorption on 

specific media. Therefore, in water treatment, the identification of bacteria that can oxidize 
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As(III) is of high importance. The main bacteria that are able to oxidize As(III) are iron-

oxidizing bacteria, such as L. ochracea or G. ferruginea, which work well at pH values 

relevant to groundwater treatment and therefore have found wide application in water 

treatment plants, as described earlier in the text (Chakrabarty, 2015). 
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