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Abstract 

In this Thesis a model predictive control strategy is presented to solve the trajectory 

tracking problem for an unmanned quadcopter. The control of a quadcopter is a 

difficult task as its dynamical behavior, which in this work is obtained via Newton 

Euler formalism, exhibits nonlinear, under-actuated and strongly coupled terms, as 

well as multi input - multi output features. The proposed controller is divided into 

two sub-control schemes: the first scheme is responsible for the position, whereas the 

second one for the attitude control of the quadrotor. The tasks of successfully 

reaching a certain set point in space and tracking a reference trajectory are performed 

with two different kinds of tuning by the predictive controller. The simulation results 

validate the effectiveness of the proposed control strategy. 

Keywords: Automatic control, Model predictive control, Quadcopter, Trajectory 

Tracking, Unmanned vehicles 
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ΠΕΡΙΛΗΨΗ 

Σε απηή ηε δηπισκαηηθή εξγαζία παξνπζηάδεηαη κία κέζνδνο ειέγρνπ κέζσ 

πξνβιεπηηθνύ κνληέινπ γηα ηελ επίιπζε ηνπ πξνβιήκαηνο ηεο παξαθνινύζεζεο 

ηξνρηάο ζην ρώξν από έλα κε επαλδξσκέλν ηεηξαθόπηεξν. Ο έιεγρνο ελόο 

ηεηξαθόπηεξνπ απνηειεί έλα δύζθνιν έξγν θαζώο ε δπλακηθή ηνπ ζπκπεξηθνξά, ε 

νπνία ζε απηό ηελ εξγαζία πεξηγξάθεηαη κέζσ εμηζώζεσλ Newton Euler, 

επηδεηθλύεη κε γξακκηθνύο θαη ηζρπξά ζπδεπγκέλνπο όξνπο όπσο θαη 

ραξαθηεξηζηηθά πνιιαπιώλ εηζόδσλ - εμόδσλ. Ο πξνηεηλόκελνο ειεγθηήο ρσξίδεηαη 

ζε δύν ζηξαηεγηθέο ειέγρνπ. Η κία είλαη ππεύζπλε γηα ηε ζέζε ηνπ, θαη ε δεύηεξε 

γηα ηνλ έιεγρν ηεο ζηάζεο ηνπ ζην ρώξν. Τα πξνβιήκαηα ηεο επηηπρνύο άθημεο ζε 

ζπγθεθξηκέλν ζεκείν ηνπ ρώξνπ θαη ηεο παξαθνινύζεζεο πεγαίαο ηξνρηάο 

εθηεινύληαη κε δύν δηαθνξεηηθέο βαζκνλνκήζεηο ησλ παξακέηξσλ ηνπ ειεγθηή. Τα 

απνηειέζκαηα ησλ πξνζνκνηώζεσλ επηβεβαηώλνπλ ηελ απνδνηηθόηεηα  ηεο 

πξνηεηλόκελεο κεζνδνινγίαο. 

Λέξεις Κλειδιά: Απηόκαηνο έιεγρνο, Έιεγρνο πξνβιεπηηθνύ κνληέινπ, 

Τεηξαθόπηεξν, Παξαθνινύζεζεο ηξνρηάο, Με επαλδξσκέλν όρεκα 
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Chapter 1 

Introduction 
 

In the last decades great interest has been raised around vertical take-off and landing 

unmanned aerial vehicles (UAV).A quadrotor helicopter is a vehicle equipped with 

four propellers which makes it possible to reduce the size of each rotor and to 

maintain or to increase the total load capacity, when compared with a helicopter with 

one main rotor. As a result the design and maintenance cost are reduced allowing 

flight in many different environments. 

Some of the advantages of the quadrotor are related to its high maneuverability, its 

agility, its stationary flight (hovering) and its ability for vertical take-off and landing. 

The ample set of abilities that the quadrotor possess has led to a growing 

implementation in several industries (surveillance, rescue, research area, 

photography, etc).  

The control of a quadrotor is not an easy task due to its under actuated nature and 

strongly coupled dynamics. From the six outputs of its dynamic system only a 

maximum of four can be controlled, as it has only four control inputs. A variety of 

control strategies have been proposed in order to deal with the problem of attitude 

and altitude stabilization. 

The first control methods that were implemented to solve the above problem made 

use of linear control algorithms such as Proportional-Integral-Derivate (PID)[1-4]and 

Linear Quadratic Regulator (LQR)control[5].The disadvantage of such control 

strategies is that stability is only limited to a certain domain during flights. However, 

the use of nonlinear control methods has expanded the controllability and stability of 

quadrotors. 

Nonlinear control methods were used to control the system such as linearization, 

saturation, integral back stepping,𝐻∞  control, sliding model control.Back-stepping 

controller generates commands to the four rotors to drive the quadrotor to track the 

desired values. Integral back-stepping approach was applied into the autonomous 
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flight of the quadrotor to solve the nonlinear control problem[5-8].Sliding mode 

control method alter the dynamics of the quadrotor by application of a discontinuous 

control signal that forces the system to slide along it's behavior[9-12].In linearization 

methods a nonlinear controller based on a decomposition into a nested structure and 

feedback linearization is implemented[13-15]. Another effective nonlinear control 

method dealing with the tracking a trajectory tracking is via H infinitive control[16, 

17]. 

In this Thesis the solution of the path tracking problem was solved with the help of a 

different kind of control strategy, namely Model Predictive Control (MPC)[18-

21].The MPC controller makes predictions by using a dynamical model. This is 

possible by solving an optimization problem which gilds an optimal sequence of 

inputs that brings the model predictions as close as it gets to the desired values. The 

preview capability and the fact that it can handle constraints, makes MPC a very 

effective control strategy in dealing with nonlinear systems. 

In this work a model predictive controller is used to track a reference trajectory for a 

quadrotor. The main work presented in this Thesis focuses on solving the problem of 

tracking a desired path and attitude stabilization of the quadcopter. The system is 

decoupled into two subsystems, namely one dealing with the problem of path 

following and another one dealing with attitude stabilization. An error-state space 

predictive controller is used to solve the position control, while attitude stabilization 

is achieved via PID controllers. 

In order to successfully track a reference trajectory the right tuning must be 

implemented to the predictive controller. This is not an easy task as it involves tuning 

in two different levels, one for the PID and one for the MPC parameters as bothe sets 

have a strong impact on the close loop performance. 

 

The rest of this Thesis is organized as follows: 

In Chapter 2 the quadrotor's dynamic model is presented. The basic movements of 

the quadrotor are shown and the system's dynamic behavior is explained with the 

help of the Newton Euler form. 
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In Chapter 3 the concept of the PID control algorithms is explained. The 

implementation of such controllers on the quadrotor model is performed in order to 

achieve a set of reference values. 

In Chapter 4 the control strategy behind trajectory tracking is developed. Position 

control and attitude control structures show the way of tracking the desired set of 

values at each time instant. 

In Chapter 5 the results of a case study on quadrotor control are presented. The 

efficiency and the robustness of the MPC-PID controllers is shown through 

simulations performed in Matlab/Simulink . 

In Chapter 6, we draw conclusions and set directions for future work. 
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Chapter 2 

Quadcopter dynamics and system 

2.1 The concept of UAV 
An unmanned aerial vehicle (UAV) is an aircraft without the presence of a pilot. 

Although the initial use of UAVs was for military purposes soon the use expanded in 

various sectors such as scientific, surveillance, aerial photography and product 

deliveries. This Thesis focuses on the analysis of rotary wings UAV .These kind of 

vehicles can hover, take off and land vertically and fly with high maneuverability. 

A quadrotor, also called as quadcopter belongs to the family of rotary wing UAV. It 

uses four motors with four propellers that create the necessary thrust in order to lift 

the aircraft. Each rotor has a propeller fitted to an independent dc motor which 

converts electrical energy to mechanical. Two motors of the quad rotate clockwise 

and the  two other counter clock wise. As a result of the upper rotation of the motors 

the torque that is created from each rotor is cancelled by the torque of the opposite 

corresponding one. This configuration of pairs rotating in opposite direction 

eliminates the need of a tail rotor which counterbalances the torque created by the 

rotation of the main rotor in the conventional helicopter. 

 

2.2 Basic commands 
The four electrical motors that are responsible for the motion of the aircraft are 

limiting the number of variables that can be controlled during the flight. That means 

that the quadrotor is an under-actuated system with 6 degrees of freedom. Thus, from 

the six degree of freedom (D.O.F.) it can reach a desired set point to a maximum of  

four. The 4 variables that are chosen to be controlled are related to the four basic 

movements that ensure attitude and altitude stabilization. 

As it was mentioned above the control of the quadrotor is obtained by changing the 

angular velocities Ωi(i=1,2,3,4) of the propellers . Each rotor creates thrust and 
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torque about its center of location. The proper change of the propellers speed leads to 

smooth movement of the vehicle in space. 

 In hovering condition all the propellers rotate with the same angular velocity in 

order to counterbalance the force due to gravity. In this state the quadrotor performs 

stationary flight and no forces or torques move it from its position. 

 

 

 

          Left Ω4                         Body frame                Front Ω1 

                                                            𝑧𝐵 

                                                        𝑥𝐵      𝑦𝐵 

 

           Back Ω3                                                                         Right Ω2 

 

Earth frame  𝑧𝐸 

                   𝑦𝐸              𝑥𝐸 

 

Figure 2.1:Simplified quadrotor during hovering state 

 

In order to make the quadrotor fly,4 variables should be chosen to be controlled. The 

best four variables to control the aircraft are related to the four basic movement of 

the helicopter, which are: 
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Throttle (U1) 

This command is generated by increasing (or decreasing) all of the angular velocities 

Ω1, Ω2, Ω3, Ω4,  by the same amount. This action leads to a vertical force with respect 

to the body frame that raises or lower the quadcopter. In this case the speed of each 

propeller is equal to ΩH +Δσwhere ΩH is the hovering angular speed and Δσis an 

positive variable which represent an increase in lift.Δσ cannot be to large so that the 

model won't be affected by strong non linearities. 

 

Left  ΩΗ+ Δω                       𝐳                        Front ΩΗ+ Δω 

 

 

 

Back ΩΗ+ Δω                                               Right   ΩΗ+ Δω 

 

 

Figure 2.2:Throttle Movement 

 

 

Roll (U2) 

This command is provided by increasing (or decreasing) the left propeller's speed 

and by decreasing (or increasing) the right one. This leads to a torque  along the 

XBODY axis which makes the quadrotor turn. The overall vertical thrust  is the same as 

in the hovering, hence this command leads only to a roll angle acceleration. Likewise 

with Throttle movement Δσ cannot be toν large in order to not be influenced by non 

linearities.  
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       Left   ΩΗ+ Δω                𝚽                  Front ΩΗ 

 

 

 

    Back   ΩΗ                                                                            Right ΩΗ-Δω 

 

 

Figure 2.3:Roll Movement 

 

 

 

Pitch (U3) 

This command is similar to the roll and it is provided by increasing (or decreasing) 

the eat propeller speed and by decreasing (or increasing)  the front one. It leads to a 

torque along the YBODY  axis which makes the quadrotor turn. The overall vertical 

trust is the same as in the hovering, hence this command leads only to a pitch angle 

acceleration. As in the previous command Δσ are chosen small enough in order to 

maintain an unchanged vertical thrust. 

 

 

    Left  ΩΗ                                          𝚯                   Front    ΩΗ-Δω 

 

 

 

Back   ΩΗ+ Δω                                                 Right  ΩΗ 

 

 

Figure 2.4:Pitch Movement 
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Yaw (U4) 

This command is provided by increasing(or decreasing)the front and back propellers' 

speed simultaneously and by decreasing (or decreasing) the left-right ones at the 

same time. This leads to a torque along the ZBODY axis which makes the quadrotor 

turn. The yaw movement is possible due to the fact that the left-right propellers rotate 

counter-clockwise while the front -back couple rotate clockwise. Hence, when the 

overall torque is unbalanced, the helicopter spins around ZBODY .The total vertical 

thrust is the same as in the hovering, hence this command leads only to a yaw angle 

acceleration. The positive variable Δσ is chosen small enough so that the vertical 

thrust will remain unchanged as in the previous movements. 

   Left  ΩΗ+Δω                     𝚿                               Front  ΩΗ-Δω 

 

 

 

 

 Back ΩΗ- Δω                                                 Right ΩΗ+Δω 

 

Figure 2.5:Yaw Movement 

2.3 Mathematical Model 
The mathematical model of the quadrotor describes the link between the movement 

and attitude with the external influences and input values. Knowing the 4 angular 

velocities of the propellers it is possible to predict the attitude and altitude of the 

quadcopter. The present model is based on the following assumptions: 

 Quadrotor is a rigid body. 

 Quadrotor has a symmetrical structure (the inertia  matrix is diagonal). 

 The center of mass and the body fixed frame origin coincide. 

 The propellers are rigid. 
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 To describe the motion of a 6 D.O.F. rigid body two reference frames are used: 

 The earth inertial frame (E frame) 

 The body fixed frame (B frame) 

 

2.3.1 Kinematics 
The linear position of the quadrotor is defined in the inertial frame x-y-z axes withξ. 

The angular position is described in the inertial frame with three Euler angles θ-ζ-ς 

(η).Vector q contains the linear and angular position vectors. 

                                                         𝝃 =   𝑥  𝑦  𝑧  𝑇                                                 (2.1) 

                                                        𝜼 =   𝜑  𝜃  𝜓  𝑇                                                 (2.2) 

                                                             𝒒 =    𝝃  𝜼   𝑇                                                 (2.3) 

In the body frame the linear velocities are defined by VB and the angular velocities by 

v. 

                                                          𝑽𝑩   =    𝑢  𝑣  𝑤  𝑇                                                (2.4)                                                                                            

                                                        𝒗  =    𝑝  𝑞  𝑟  𝑇                                                 (2.5) 

 The rotational matrix  from the body frame to the inertial frame is : 

 

𝑹 =  

𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜃  𝑠𝑖𝑛𝜑 − 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜃  𝑐𝑜𝑠𝜑 + 𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝜑
 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝜃  𝑠𝑖𝑛𝜑 + 𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝜃  𝑐𝑜𝑠𝜑 − 𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜑

−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜑
 (2.6) 

 

With the above matrix is possible the transformation of the measured linear 

velocities from the one coordinate system to the other. Matrix R is orthogonal thusR
-

1
=R

T
. 

Respectively angular velocities are transformed from the inertia to the body frame 

with the transformation matrix Wη.From body frame to the inertial frame the 

transformation matrix isW
-1
η . 
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𝜼 = 𝑾𝜼
−𝟏  𝒗  

𝜑 

𝜃 

𝜓 
 =  

1 𝑠𝑖𝑛𝜃 𝑡𝑎𝑛𝜃 𝑐𝑜𝑠𝜃 𝑡𝑎𝑛𝜃
0 𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜃
0 𝑠𝑖𝑛𝜑/𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜑/𝑐𝑜𝑠𝜃

  
𝑝
𝑞
𝑟
      (2.7) 

 

  𝒗 = 𝑾𝜼 𝜼       
𝑝
𝑞
𝑟
 =  

1 0 −𝑠𝑖𝑛𝜃
0 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑
0 −𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜑

  

𝜑 

𝜃 

𝜓 
                 (2.8)  

As it was mentioned above the quadrotor has a symmetric structure with four arms 

aligned with the body x and y axis. Thus the inertia matrix I is a diagonal one : 

               𝑰 =   

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

                                        (2.9) 

Each  rotor i, with angular velocity ωi creates force fi in the direction of the rotor axis 

.The angular velocity of the rotor also create torque τMi. Where k is the lift constant 

and b is the drag constant. 

                                   fi = b Ω
2
i                                             (2.10) 

                                  τMi =d Ω
2
i                                             (2.11) 

The combination of forces  fi creates thrust U1in the direction z of the body frame. 

Torque τB consists of the pitch torque τθ around YB axis, the roll torque τφ around XB 

axis, the yaw torque τψaround ΖB axis. 

       𝑼𝟏 =   𝑓𝒊

4

𝑖=1

= 𝑘 𝛺𝑖
𝟐

4

𝑖=1

                                                   (2.12) 

          𝑻𝑩 =  
0
0
𝑈1

                                                                         (2.13) 

𝝉𝑩 =  

𝜏𝜑
𝜏𝜃
𝜏𝜓

 =   

𝑙 𝑏 (−𝛺2
2 + 𝛺4

2)

𝑙 𝑏 (−𝛺1
2 + 𝛺3

2)

𝑑 (+𝛺2
2 + 𝛺4

2 − 𝛺1
2 − 𝛺3

2)

                        (2.14) 
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2.3.2 Newton-Euler model 
Using the Newton Euler equations the translational and rotational dynamics of the 

quadcopter are described. In the body frame, the force required for acceleration of 

mass and the centrifugal force are equal to the gravity and total thrust of rotors. 

                           𝑚 𝑽𝑩
 +  𝑣 ×  𝑚 𝑽𝑩 =  𝑹𝑇𝑮 +  𝑻𝐵             (2.15) 

In the inertial frame the centrifugal force is nullified. As a result, the acceleration of 

the quadrotor derives from the gravitational force   the magnitude and the direction 

of the thrust. 

                                     𝑚 𝝃 = 𝑮 + 𝑹𝑇𝑻𝐵                                         (2.16) 

 
𝒙 
𝒚 
𝒛 

 = −𝑔  
0
0
1
  +

𝑈1

𝑚
 

𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜑
𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 − 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜑

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑
                (2.17) 

In the inertial frame the angular acceleration of the inertia the centrifugal forces and 

the gyroscopic forces are equal to the external torque. 

                                     𝐼 𝒗 +  𝒗 ×  𝑰 𝒗 +  𝜞 = 𝝉                         (2.18) 

𝒗 =  𝜤−𝟏   
𝑝
𝑞
𝑟
  ×   

𝐼𝑥𝑥   𝑝
𝐼𝑦𝑦  𝑞

𝐼𝑧𝑧  𝑟
 − 𝐼𝑟  

𝑝
𝑞
𝑟
  ×   

0
0
1
 𝜔𝛤 +  𝝉                  (2.19) 

 

 
𝒑 
𝒒 
𝒓 

 =   

 𝐼𝑦𝑦 − 𝐼𝑧𝑧   𝑞 𝑟/𝐼𝑥𝑥  

 𝐼𝑧𝑧 − 𝐼𝑥𝑥   𝑝 𝑟/𝐼𝑦𝑦

 𝐼𝑥𝑥 − 𝐼𝑦𝑦   𝑞 𝑟/𝐼𝑧𝑧

 − 𝐼𝑟  
𝑞/𝐼𝑥𝑥

−𝑝/𝐼𝑦𝑦
0

 𝜔𝛤 +   

𝜏𝜑/𝐼𝑥𝑥
𝜏𝜃/𝐼𝑦𝑦
𝜏𝜓/𝐼𝑧𝑧

    (2.20) 

In which  ωΓ=ω1 -ω2 +ω3 -ω4 .The angular accelerations move from the inertial frame 

to the body one with the transformational matrix  W
-1
η . 

     𝜼 =  
𝑑

𝑑𝑡
 𝑾𝜼

−𝟏  𝒗 =  
𝑑

𝑑𝑡
 𝑾𝜼

−𝟏  𝒗 +  𝒗                                        2.21  
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   Hence the mathematical model that describes the translational  dynamics for the 

helicopter in a system of equations is: 

 
 
 

 
 𝑥 =

1

𝑚
 cos𝜓 sin 𝜃 cosφ + sin 𝜓𝑠𝑖𝑛𝜑 𝑈1

𝑦 =
1

𝑚
 𝑠𝑖𝑛𝜓 sin 𝜃 cosφ− cos 𝜓𝑠𝑖𝑛𝜑 𝑈1

𝑧 = −𝑔 + 
1

𝑚
 𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜑 𝑈1

                                    (2.22)   

 
 

2.4 State Space Modeling 
The mathematical model that describes the translational (2.22) and rotational (2.21) 

dynamics of the system will be defined by using a state space representation. This 

new model of the system's dynamics is a set of first-order differential equations. 

A general state-space representation of a linear system can be written in the 

following form: 

𝑥  𝑡 = 𝐴(𝑡) 𝑥 𝑡 + 𝐵 𝑡 𝑢(𝑡)                     (2.23) 

where𝑥 is the state vector , 𝑢  is called the input vector 𝐴 is the state matrix 𝐵 is the 

input or control matrix. 

The state space form is created by writing equations (2.21) and (2.22) in the form of 

(2.23) and  results to the following equations: 

   𝑥1 = 𝑥  

    𝑥2 = 𝑥1  

 𝑥3 = 𝑦 

   𝑥4 = 𝑥3  

 𝑥5 = 𝑧 

                                                𝑥6 = 𝑥5                                    (2.24) 

  𝑥7 = 𝜑 
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   𝑥8 = 𝑥7  

 𝑥9 = 𝜃 

   𝑥10 = 𝑥9  

  𝑥11 = 𝜓 

    𝑥12 = 𝑥11  

 

                            𝑥 1 = 𝑥2  

 𝑥 2 =
1

𝑚
  cos 𝑥7 sin 𝑥9 cos 𝑥11 + sin  𝑥11 sin  𝑥7 𝑈1 

                            𝑥 3 =  𝑥4 

𝑥 4 =
1

𝑚
  𝑠𝑖𝑛 𝑥7 sin 𝑥9 cos 𝑥11 − cos  𝑥11𝑠𝑖𝑛 𝑥7 𝑈1 

                           𝑥 5 =  𝑥6 

                           𝑥 6 = −𝑔 +  
1

𝑚
  𝑐𝑜𝑠 𝑥7 𝑐𝑜𝑠 𝑥9 𝑈1                                 (2.25) 

                           𝑥 7 =  𝑥8 

                           𝑥 8 =  𝑥12  𝑥10
𝐼𝑦𝑦 −𝐼𝑧𝑧

𝐼𝑥𝑥  
−

𝛺𝑟  𝐼𝑟  

𝐼𝑥𝑥
 𝑥4 +

𝑙 

𝐼𝑥𝑥
𝑈2 

                           𝑥 9 =  𝑥10  

                          𝑥 10 =  𝑥12  𝑥8
𝐼𝑧𝑧−𝐼𝑥𝑥

𝐼𝑦𝑦  

+
𝛺𝑟  𝐼𝑟  

𝐼𝑦𝑦
 𝑥8 +

𝑙 

𝐼𝑦𝑦
𝑈3 

                          𝑥 11 =  𝑥12  

                          𝑥 12 =  𝑥10  𝑥8
𝐼𝑥𝑥 −𝐼𝑦𝑦

𝐼𝑧𝑧  
+

𝑙  

𝐼𝑧𝑧
𝑈4 
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where 

 
 
 

 
 
𝑈1 = 𝑘 (+𝛺2

2 + 𝛺4
2 + 𝛺1

2 + 𝛺3
2)

𝑈2 = 𝑙 𝑏  −𝛺2
2 + 𝛺4

2                    

𝑈3 = 𝑙 𝑏  −𝛺1
2 + 𝛺3

2                    

𝑈4 = 𝑑 (+𝛺2
2 + 𝛺4

2 − 𝛺1
2 − 𝛺3

2)

𝛺𝑟 =   +𝛺2 + 𝛺4 − 𝛺1 − 𝛺3     

                                                    (2.26) 

 

The above set of twelve first order nonlinear differential equations represents the 

mathematical model of the system. This system is solved with the help of Runge-

Kutta numerical methods. The solution of this system in each time instant gives the 

position of the quadrotor in space. 



15 
 

Chapter 3 

PID Control 
 

3.1 Theory 
PID control systems have emerged from the early 1920s. The first practical 

application of these controllers was  for the automated steering of ships. Since then 

PID control techniques have been implemented widely in the manufacturing industry 

with success. The reasons behind the common and universal use of such controllers 

include its simple structure, its good performance for a variety of processes and the 

fact that  they are tunable without a specific model of the controlled system. 

The acronym PID stands for the Proportional, Integral and Derivative actions of the 

controller. This three-term controller is a control loop feedback mechanism that 

calculates an error value e(t) as the difference between a desired set point and a 

measured process variable. Based on the error, a correction is implemented based on  

the proportional, integral and derivative terms. 

A block diagram of a PID controller in feedback loop is shown in figure 3.1 in which 

r(t) is the desired value or set point ,and  y(t) is the measured process value. 

 

 

                  r(t)                e(t)                                                       +     u(t)                   y(t) 

                  +                                                      +             

                       -                                                        + 

 

 

 

 

 

Figure 3.1:Block diagram of PID controller 

 

Σ 

 

Plant Σ 

𝑷               𝑲𝑷𝒆(𝒕)  

𝑰𝑲𝑰  𝒆 𝝉 𝒅𝝉
𝒕

𝟎

 

𝑫               𝑲𝑫

𝒅𝒆(𝒕)

𝒅𝒕
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In the above scheme u(t) is the manipulated variable, e(t) the error between the 

desired value r(t) and the plant output y(t).KP ,KI ,KD denote the coefficients  for the 

proportional ,integral and derivative terms, respectively. 

The basic idea of a PID controller is to continuously evaluate an error over time e(t) 

as the difference between the desired value r(t) and  the process value y(t) and to 

apply a correction based on proportional integral and derivative terms. As the time 

progresses the control variable u(t) is adjusted in a way that the error is minimized. 

 

   The three main terms of the PID model are defined below. 

 P 

With the help of the above term a correction is applied to the control variable 

which is proportional to the error .A main drawback of the proportional 

control is that it cannot eliminate the residual between the set point and the 

actual value . 

 

 

 I 

Term I integrates the past error values over time. After the application of the 

proportional control the integral control comes in order to eliminate the 

residual error by adding up the past values of errors. Even though this 

component increases the overshoot and the settling time it can eliminate the 

steady error completely. 

 

 D 

This term estimates the future behavior of the error based on its current  rate 

of change. In a way derivative terms tends to reduce the effect of the 

produced error using a control based on the rate of error change. This part 

helps to decrease the overshoot, the settling time and controls the  dampening 

effect in systems. 
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The right selection of the proportional integral and derivative gain constants KP,KI 

,KD steers the process value to the desired set point given, with the minimal 

overshoot, settling time and rise time. The selection of the above components can be 

quite challenging in order to achieve optimal behavior. Optimal behavior is possible, 

by reserving the requirements of regulation and command tracking. The first 

requirement is obtained by staying at the given set point despite external disturbance, 

and the second by implementing different set point values.  

 

The control function of the PID controller can be expressed mathematically in the 

time domain as : 

𝒖 𝒕 =  𝑲𝑷𝒆 𝒕 + 𝑲𝑰  𝒆 𝝉 𝒅𝝉 +
𝒕

𝟎

 𝑲𝑫

𝒅𝒆(𝒕)

𝒅𝒕
                             (3.1) 

 

In the Laplace domain the above PID structure is written in the form: 

                  𝒖 𝒔 = 𝒆 𝒔  𝑲𝑷 + 𝑲𝑰

𝟏

𝒔
+  𝑲𝑫 𝒔                                (3.2) 

 

 

3.2 Altitude and height control 
The quadrotor is an under actuated system which means that from the six D.O.F. can 

reach only a maximum amount of  desired values even to the number of inputs. As 

the number of inputs is only four, the same number of values can be controlled. The 

selection of the controlled values are related to the four basic movements that are 

mentioned in the chapter 2. 

Thus the four main values that are chosen to be controlled will be z height, pitch 

angle θ,roll angle φ, yaw angle ψ.These four values are the key to establish altitude 

stabilization and height stabilization for the quadrotor. 

In order to control the quadrotor and maintain it in a certain position the values of the  

propellers rotational speed have to be found. This process is also known inverse 

dynamics .These kind of operation is not always possible and in many cases not 
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unique. In order to create an inverse model for the quadrotor some simplifications 

should be done. 

The most important concepts of the dynamics are summarized in equations (2.20) 

and (2.22) in the chapter 2 .By taking into account these two equations (3.3) is  

created. Equation (3.3) shows the relation between the quadrotor accelerations 

according to the basic movements. 

 

 
 
 
 
 
 
 

 
 
 
 
 
 𝑥 =

1

𝑚
  cos𝜓 sin 𝜃 cosφ + sin 𝜓𝑠𝑖𝑛𝜑  𝑈1

𝑦 =
1

𝑚
  𝑠𝑖𝑛𝜓 sin 𝜃 cosφ− cos 𝜓𝑠𝑖𝑛𝜑  𝑈1

   𝑧 = −𝑔 +  
1

𝑚
  𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜑  𝑈1                        

 

𝑝 =
 𝐼𝑦𝑦 − 𝐼𝑧𝑧   

𝐼𝑥𝑥
𝑞 𝑟  −

𝐼𝑟
𝐼𝑥𝑥

𝑞 𝜔𝛤 +
𝜏𝜑

𝐼𝑥𝑥
        

𝑞 =
 𝐼𝑧𝑧 − 𝐼𝑥𝑥   

𝐼𝑦𝑦
𝑝 𝑟 −

𝐼𝑟
𝐼𝑦𝑦

 𝑝 𝜔𝛤 +
𝜏𝜃
𝐼𝑦𝑦

        

𝑟 =  
 𝐼𝑥𝑥 − 𝐼𝑦𝑦  

𝐼𝑧𝑧
 𝑟 𝑞 +

𝜏𝜓

𝐼𝑧𝑧
                             

  

                                   

          (3.3)   

 

Another system of equations that relates basic movements with the propellers' 

squared speed is described via (3.4). 

 
 
 

 
 

 𝑈1 = 𝑏   +𝛺2
2 + 𝛺4

2 + 𝜔1
2 + 𝜔3

2   

         𝑈2 = 𝑙  𝑏  −𝛺2
2 + 𝛺4

2                         

     𝑈3 = 𝑙  𝑏  −𝛺1
2 + 𝛺3

2                     

     𝑈4 = 𝑑   +𝛺2
2 + 𝛺4

2 − 𝛺1
2 − 𝛺3

2  

      

      𝛺𝛤  =  𝛺1 − 𝛺2 + 𝛺3 − 𝛺4                   

                    (3.4)   

The quadrotor dynamics must be simplified a lot in order to provide a model which 

can be implemented in the control. Equation  (3.2) will be rearranged according to 

some considerations. 
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Firstly it is assumed that the motion of the quadrotor is near to the hovering 

condition, as result small angular changes occur especially for the roll and pitch 

angles. 

The angular accelerations refer to its body fixed frame .They are different from the 

accelerations of the Euler angles which determine the attitude in the earth frame. 

After the hovering assumption for the quadrotor the acceleration equations have been 

refer directly to the Euler angle accelerations. 

The number of the propellers shows the number of variables that can be controlled 

during the flight. Since there are four, only four can be controlled. As it has been 

stated the Euler angles φ,θ, ψand height z will be controlled eliminating the equations 

which describe the x and y positions. 

After the above assumptions  the equation (3.5) will describe the quadrotor dynamics 

which will be used in control. 

 
 
 
 
 

 
 
 
   𝑧 = −𝑔 +  

1

𝑚
  𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜑  𝑈1  

  𝜑 =
𝑈2

𝐼𝑥𝑥
                                             

                                                        

𝜃 =
𝑈3

𝐼𝑦𝑦
                                     

 𝜓 =
𝑈4

𝐼𝑧𝑧
                                       

      

         

                          (3.5)   

 

 

                       zd , φd ,θd ,ψd                                               U                             Ω 

 

 

                                                    z , φ ,θ,ψ 

 

 

 

Figure 3.2:Block diagram of attitude and height control 

 

Control 

Algorithm via 

PID 

Inverted 

Movement 

Matrix 

Set Point 

Quadrotor 

Dynamics 
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The above block describes the control loop of a quadrotor that performs the task of 

reaching a set of four desired values. The block control algorithm receives the 

desired values from the task and the measured values from the block quadrotor 

dynamics. The output of the control continues to the inverted movement matrix 

which  relates the four basic movements with the rotational speeds of the propellers. 

In particular: 

 

 Control Algorithm via PID block: 

This block receives the values from the set point and the dynamics block and 

provides a signal for each basic movement U. Basic movements are 

transformed from acceleration commands in this block with the use of 

equation (3.5).The estimation of the accelerations command is possible with 

PID control. 

 

 Inverted Movement Matrix: 

This Block computes the propellers' speed from the four basic movements. 

The computations needed for this process are shown in equation (3.6). 

 

 

 
 
 
 
 

 
 
 
  𝛺1

2 =
1

4 𝑏
𝑈1 −  

1

2 𝑏 𝑙
𝑈3 −

1

4 𝑑
𝑈4                            

  𝛺2
2 =

1

4 𝑏
𝑈1 −  

1

2 𝑏 𝑙
𝑈2 +

1

4 𝑑
𝑈4                       

  𝛺3
2 =

1

4 𝑏
𝑈1 +  

1

2 𝑏 𝑙
𝑈3 −

1

4 𝑑
𝑈4                       

 𝛺4
2 =

1

4 𝑏
𝑈1 +  

1

2 𝑏 𝑙
𝑈2 +

1

4 𝑑
𝑈4                      

      

        

                    (3.6)   
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3.3 PID Algorithm 
In this section the control algorithm is analyzed in detail. The control algorithm 

block is the heart of the control loop.PID structure is used here to calculate the 

acceleration commands in order to estimate the basic movements using equations 

(3.5) .Each acceleration command is estimated individually based on the desired and 

measured values .Thus the number of PID blocks needed are equal to the number of 

acceleration commands. 

Control Algorithm via PID block consists from four inner control algorithms that 

ensure height and attitude stabilization. The structure of these control algorithms is 

shown below: 

 Roll Control φangle 

  

φd 

 

                                                                  +                + 

                  +         eφ                                                                       +            U2 

φ            - 

                                                                                     + 

 

 

 

 

Figure 3.3:Block diagram of Roll control 

 

In the above figure the sequence of action in order to produce the roll command U2is 

shown.φd(rad) represents the desired roll angle value given by the user and φ(rad) the 

measured roll angle .eφ(rad) is the roll error and U2 describes the roll torque 

command (N m).KPφ,KIφ,KDφ (s
-2

) are the three control gain parameters. Finally Ixx(N 

m)is the moment of inertia around x axis. The contribution of  Ixxis mandatory to the 

roll command U2 based on the equation (3.5). 

 

 

Σ KPφ 

KIφ 

KDφ 

ΙXX 

 𝑒 𝜏 𝑑𝜏
𝑡

0

 

Σ 

𝑑𝑒(𝑡)

𝑑𝑡
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 Pitch Control for θ angle 

 

θd 

 

                                                                                      + 

                +           eθ                                                                      +            U3 

θ            - 

                                                                                     + 

 

 

 

Figure 3.4: Block diagram of Pitch control 

 

 

In figure (3.4) the sequence of action in order to produce the pitch command U3it is 

shown.θd(rad) represents the desired roll angle value given by the user and θ(rad) the 

measured roll angle .eθ(rad) is the roll error and U3describes the pitch torque 

command (N m).KPθ,KIθ,KDθ (s
-2

) are the three control gain parameters. Finally Iyy(N 

m)is the moment of inertia around y axis. The only difference between roll and pitch 

commands it that the pitch one acts around y axis .The contribution of  Iyyis 

mandatory to produce the pitch command U3 based on the equation (3.5). 

 Yaw Control for ψangle 

ψd 

 

                                                                                      + 

                  +        eψ                                                                      +             U4 

ψ            - 

                                                                                     + 

 

 

 

Figure 3.5:Block diagram of Yaw control 

 

Σ KPψ 

KIψ 

KDψ 

ΙZZ 

 𝑒 𝜏 𝑑𝜏
𝑡

0

 

Σ 

𝑑𝑒(𝑡)

𝑑𝑡
 

 

Σ KPθ 

KIθ 

KDθ 

ΙYY 

 𝑒 𝜏 𝑑𝜏
𝑡

0

 

Σ 

𝑑𝑒(𝑡)

𝑑𝑡
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Figure (3.5) shows the sequence of action in order to produce the yaw command 

U4.ψd(rad) represents the desired yaw angle value given by the user and ψ(rad) the 

measured yaw angle .eψ(rad) is the yaw error and U4describes the yaw torque 

command (N m). KPψ, KIψ, KDψ (s
-2

) are the three control gain parameters. Finally Izz 

(N m)is the moment of inertia around z axis. The contribution of  Izz is mandatory to 

produce the yaw command U4based on the equation (3.5). 

 

 

 

 Height Control for z altitude 

zd                                                                                      G 

 

                                                                        +            + 

                  ez                                                                    +                      + 

z 

                                                                        +                      U1 

 

 

 

 

Figure 3.6: Block diagram of Height control 

 

 

Finally, figure (3.6) shows the sequence of action in order to produce the altitude 

command U1. zd (m) represents the desired height value given by the user and z(m) 

the measured height value. eZ (m) is the height error and U1 describes the thrust 

command (N). KPZ, KIZ, KDZ (s
-2

) are the three control gain parameters. G (m s
-2

) is 

the acceleration due to gravity and m (kg) the mass of the quadrotor. Part 

𝑚

𝑐𝑜𝑠𝜑  𝑐𝑜𝑠𝜃
completes the transformation of the altitude acceleration to the thrust 

command U1based on the equation (3.5). 

Σ KPZ 

KIZ 

KDZ 

𝒎

𝒄𝒐𝒔𝝋 𝒄𝒐𝒔𝜽
 

 𝑒 𝜏 𝑑𝜏
𝑡

0

 

Σ 

𝑑𝑒(𝑡)

𝑑𝑡
 

 

Σ 
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The above 4 control algorithms are necessary in order to reach a desired set point 

ensuring altitude and attitude stabilization.PID is a simple and effective controller 

which deals sufficiently with the nonlinear dynamics of our model. The four above 

control algorithms deal with reaching a constant set point which does not change 

over time. In the next chapter a new controller will be introduced for the purpose of 

controlling the position of the quadrotor. This new controller called MPC provides 

the capability of tracking a reference trajectory. The position control is achieved by 

controlling not only altitude z but also the x, y directions who change over time. In 

this thesis the PID algorithms that will be used deal only with attitude control, 

controlling the task of reaching the desired values for the Euler Angles φ, θ, ψ. 
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Chapter 4 

Model Predictive Control 
 

In this chapter a technique for automatic control which makes predictions about 

future outputs of a process will be introduced. This controller named MPC (Model 

Predictive Controller) solves an on line optimization problem on each time step using 

the plants' model. The implementation of this control algorithm settles with the 

difficult task of non linear and time variant  system control with success. 

 

4.1 The idea of Model Predictive Control 
The use of predictive control has appeared in automatic control systems since the 

early 1980s. Since then, these methodologies have been widely implemented in the 

process industries as well as for academic purposes. The unique ability of making a 

prediction on the future outputs and optimizing the current timeslot is the reason of 

its wide utilization in industries. 

The basic concept behind MPC control is to make predictions for the future outputs 

of a dynamic model using the current measurements and the model. These 

predictions are made by making the appropriate changes on the input variables. 

The main advantages of the MPC controllers follow: 

 MPC can handle Multi-input Multi-output systems. 

 MPC can handle constraints. 

 They can be used in many different kind of processes, linear and nonlinear. 

 They are easy to be implemented by the working payroll. 

As it is shown, the implementation of MPC controllers offers a wide variety of  

advantages to the industrial and academic use. However these methodologies also 

present some drawbacks. Firstly, the augmented complexity of an MPC controller 

creates difficulties in solving the optimization problem. Another serious drawback 

has to do with the extraction of the system's model which in a lot of cases is a very 
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difficult task. Last, in order to use these controllers for industrial purposes a PC-

based control system is needed. 

 

 

Figure 4.1: Block diagram of MPC controller 

 

 

Figure 4.1 shows the basic structure of an MPC system. 

 

A detailed sequence of moves of an MPC controller will be referred in order to 

analyze the way that this type of controller reaches a desired given task. 
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At each time step k the predictions about the future plant outputs are calculated based 

on a model of the system for a predetermined horizon hp. The prediction horizon hp 

is the number of the predicted future time steps and shows how far the controller 

predicts in to the future. The predicted outputs 𝒚 (𝒌 + 𝒊) where i=1,..,hpare based  on 

the past input outputs of the system and the future control moves 𝒖(𝒌 + 𝒊 − 𝟏) ,i 

=1,2...,hc-1. 

The number of control moves to until the future time step hc-1 is called control 

horizon and is symbolized by hc. Inside the control horizon, the control moves 

change, while outside they remain constant. The control horizon moves u are 

estimated by optimizing a cost function J. The cost function that is often selected is a 

summation of quadratic errors in order to minimize the difference between the 

predicted future outputs and the desired given set points. The control horizon is 

chosen always smaller than the prediction horizon .Usually only the first couple of 

control moves have a significant effect on the predicted output behavior. 

After the estimation of control moves u(k+i-1) for i=1,...,hc-1 at time instant, only 

the first one u(k) is implemented in the system and the remaining ones are rejected. 

After applying u(k) the real desired output y(k) is calculated. Now the prediction and 

the control horizon shifts forward by one time step and the  MPC controller repeats 

the same cycle of calculations to compute the optimal u for the next time step k+1. 

Because of the forward moving nature of the prediction horizon, MPC is also 

referred to as receding horizon control 
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                                                        Set Point 
                             y           
 
                                               𝑦    
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Figure 4.2: MPC methodology for a SISO system 
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The previous figure shows the sequence of moves followed by a single input single 

output (SISO) system to reach a certain set point. At time instant k the system is at 

position 𝒚𝒌(recent output). Taking into account the past inputs-outputs and the future 

inputs the MPC controller produces the predicted future outputs  

𝒚 for a prediction horizon 𝒉𝒑. In order to achieve these predicted future outputs a set 

of future control action 𝒖𝒌+𝟏are estimated  for a control horizon 𝒉𝒄. From the set of 

future control actions only the first is implemented to the real system and the rest are 

rejected. After applying control action  𝒖𝒌the system move to a new position 𝒚𝒌+𝟏for 

time k+1. The prediction horizon together with the control horizon shift forward to 

time step k+1 and the MPC controller calculates a new set of future control action 

𝒖𝒌+𝟏 . 

 

In the next section, an MPC algorithm named Error State Space Predictive Control 

(E-SSPC) will be introduced in order to complete the task of tracking a reference 

trajectory. 

 

 

 

4.2 Controller Design based on E-SSPC 

 

4.2.1 Position Control 

A augmented vector  𝜉  𝑡 =  𝑥 𝑡  𝑢 𝑡  𝑦 𝑡  𝑣 𝑡  𝑧 𝑡  𝑤 𝑡  𝑇defines the state of the 

system, where u(t),v(t),w(t), are the linear velocities of the quad rotor's body frame. 

The position  subsystem in equation (2.22) can be rewritten as 

𝜉   𝑡 =

 
 
 
 
 
 
 
 

𝑢 𝑡 

𝑢𝑥 𝑡 
𝑈1 𝑡 

𝑚

𝑣 𝑡 

𝑢𝑦 𝑡 
𝑈1 𝑡 

𝑚

𝑤 𝑡 

−𝑔 + 𝑐𝑜𝑠𝜃 𝑡 𝑐𝑜𝑠𝜑 𝑡 
𝑈1 𝑡 

𝑚  
 
 
 
 
 
 
 

( 4.1) 
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Where  

              𝑢𝑥 𝑡 = cos 𝜓  𝑡 sin 𝜃  𝑡 cos 𝜑  𝑡 + sin 𝜓  𝑡 𝑠𝑖𝑛𝜑 𝑡  (4.2) 

    𝑢𝑦 𝑡 = sin 𝜓  𝑡 sin 𝜃  𝑡 cos 𝜑  𝑡 − cos 𝜓  𝑡 𝑠𝑖𝑛𝜑 𝑡  

In the above subsystem it is assumed that there are no external disturbances. 

 

System (4.1) can be decoupled into two subsystems which control altitude z and 

motion in x-y plane, respectively. 

For the altitude z subsystem the model is given by : 

𝜉  𝑧 𝑡 =  
𝑤(𝑡)

−𝑔 + 𝑐𝑜𝑠𝜃 𝑡 𝑐𝑜𝑠𝜑 𝑡 
𝑈1(𝑡)

𝑚

 (4.3) 

 

where𝜉  𝑡 =  𝑧(𝑡)  𝑤(𝑡) 𝑇 

The reference trajectory is provided to the controller off-line. The trajectory is time-

varying, thus a virtual reference model with same dynamics as the quadrotor (virtual 

quadrotor) is created. It is assumed that there is no external disturbance to the virtual 

reference which results to the following reference for the quadrotor dynamics: 

𝜉  𝑟𝑧 𝑡 =  
𝑤𝑟(𝑡)

−𝑔 + 𝑐𝑜𝑠𝜃 𝑡 𝑐𝑜𝑠𝜑 𝑡 
𝑈1𝑟(𝑡)

𝑚

  (4.4) 

 

with the augmented vector given by  𝜉 𝑟𝑧 𝑡 =  𝑧𝑟(𝑡)  𝑤𝑟(𝑡) 𝑇which represents the 

reference state. 

 

The reference control input  can be obtained: 

𝑈1𝑟
 𝑡 =

𝑚  𝑧 𝑟 𝑡 + 𝑔 

𝑐𝑜𝑠𝜃 𝑡 𝑐𝑜𝑠𝜑(𝑡)
                             (4.5)      
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      By subtracting the virtual system (4.4) from the position  system (4.3) a position 

error model  can be described as: 

𝜉  
 
𝑧 𝑡 =  

𝑤 𝑡 − 𝑤𝑟(𝑡)

𝑐𝑜𝑠𝜃 𝑡 𝑐𝑜𝑠𝜑 𝑡 
 𝑈1 𝑡 −𝑈1𝑟(𝑡) 

𝑚

          (4.6) 

where𝜉  𝑧 𝑡 = 𝜉 𝑧 𝑡 − 𝜉 𝑟𝑧 𝑡  is the position error vector ,𝑤  𝑡 = 𝑤 𝑡 − 𝑤𝑟(𝑡) is the 

velocity error in direction z ,𝑢 𝑧 𝑡 = 𝑈1 𝑡 − 𝑈1𝑟
(𝑡) is the control input error. 

 

𝜉 
  
𝑧 𝑡 =  

𝑤  𝑡 

𝑐𝑜𝑠𝜃 𝑡 𝑐𝑜𝑠𝜑 𝑡 
𝑢 𝑧 𝑡 

𝑚

                       (4.7) 

 

Now the state error vector is defined: 

 

𝑥𝑧 𝑡 = 𝜉  𝑧 𝑡 =  
𝑧  𝑡 

𝑤 𝑡 
 =  

𝑧 𝑡 − 𝑧𝑟(𝑡)

𝑤 𝑡 − 𝑤𝑟(𝑡)
        (4.8) 

Using Euler's method system (4.7) can be rewritten for  the time instant k+1  based 

on the initial current time k. Δt is the sampling time where Δt=tk+1-tk. 

 
𝑧 (𝑘 + 1)
𝑤 (𝑘 + 1)

 =  
𝑧 𝑘 − 𝑧𝑟(𝑘)

𝑤 𝑘 − 𝑤𝑟(𝑘)
 + 𝑑𝑡  

𝑤 𝑘 − 𝑤𝑟(𝑘)

𝑐𝑜𝑠𝜃 𝑘 𝑐𝑜𝑠𝜑 𝑡 
𝑢 𝑧 𝑘 

𝑚

  

𝑥𝑧 𝑘 + 1 =  
1 𝑑𝑡
0 1

 𝑥𝑧 𝑘 +  
0

𝑑𝑡

𝑚
𝑐𝑜𝑠𝜃 𝑘 𝑐𝑜𝑠𝜑 𝑘 

 𝑢 𝑧 𝑘  

𝑥𝑧 𝑘 + 1 = 𝐴𝑧  𝑥𝑧 𝑘 + 𝐵𝑧 𝑘 𝑢 𝑧 𝑘               (4.9) 

 

where matrices 𝐴𝑧  and 𝐵𝑧(𝑘) are in the following form : 

 𝐴𝑧 =  
1 𝑑𝑡
0 1

  , 𝐵𝑧 𝑘 =  
0

𝑑𝑡

𝑚
𝑐𝑜𝑠𝜃 𝑘 𝑐𝑜𝑠𝜑 𝑘  (4.10) 
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 Euler angles θ,φ ,ψare regarded as time varying parameters . 

The control law is designed to minimize the cost  function JZ  and is defined by: 

𝐽𝑧 =  𝑥 𝑧 − 𝑥 𝑟𝑧  
𝑇
𝑄𝑧 𝑥 𝑧 − 𝑥 𝑟𝑧  +  𝑢  𝑧 − 𝑢  𝑟𝑧  

𝑇
𝑅𝑧 𝑢  𝑧 − 𝑢  𝑟𝑧  +  𝛺 𝑥 𝑧(𝑘 + 𝑝   / 𝑘) −

 𝑥𝑟𝑧(𝑘+𝑝  / 𝑘)  (4.11) 

where𝑄𝑧  and 𝑅𝑧  are diagonal positive weight matrices  𝑝  is the prediction horizon, 

𝑐  is the control horizon. 𝑥 𝑧and𝑢  𝑧are in the following form: 

𝑥 𝑧 =

 
 
 
 
 
𝑥 𝑧(𝑘 + 1 /𝑘)

.

.

.
𝑥 𝑧(𝑘 + 𝑝  /𝑘) 

 
 
 
 

 , 𝑢  𝑧 =

 
 
 
 
 

𝑢  𝑧(𝑘 /𝑘)
.
.
.

𝑢  𝑧(𝑘 + 𝑐 − 1 /𝑘) 
 
 
 
 

 (4.12) 

where𝑥 𝑧(𝑘 + 𝑗 /𝑘)is the prediction of the plant output for the time instant k+j at time 

k . 

The reference vectors are: 

𝑥 𝑟𝑧 =

 
 
 
 
 
𝑥𝑟𝑧 (𝑘 + 1 /  𝑘) − 𝑥𝑟𝑧 (𝑘/  𝑘)

.

.

.
𝑥𝑟𝑧 (𝑘 + 𝑝  /𝑘) − 𝑥𝑟𝑧 (𝑘/  𝑘) 

 
 
 
 

                        (4.13) 

𝑢  𝑟𝑧 =

 
 
 
 
 

𝑈1𝑟
(𝑘 /  𝑘) − 𝑈1𝑟

(𝑘 − 1/  𝑘)
.
.
.

𝑈1𝑟
(𝑘 + 𝑐 − 1 /  𝑘) − 𝑈1𝑟

(𝑘 − 1/  𝑘) 
 
 
 
 

(4.14) 

the terminal state cost is defined as :∶ 𝛺 𝑥 𝑧(𝑘 + 𝑝   / 𝑘) −  𝑥 𝑟𝑧 (𝑘 + 𝑝   / 𝑘)   

 

𝛺 𝑥 𝑧(𝑘 + 𝑝   / 𝑘) −  𝑥 𝑟𝑧 (𝑘 + 𝑝   / 𝑘)  = 

 𝑥 𝑧(𝑘 + 𝑝   / 𝑘) −  𝑥 𝑟𝑧 (𝑘 + 𝑝   / 𝑘)  𝐺𝑧 𝑥 𝑧(𝑘 + 𝑝   / 𝑘) −  𝑥 𝑟𝑧 (𝑘 + 𝑝   / 𝑘)  𝐺𝑧(4.15) 

where GZ is a diagonal positive weight matrix of terminal states. 
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The prediction of the plant output is computed using the equations (4.9) and we 

obtain 

                           𝑥 𝑧 𝑘 + 1 = 𝑃𝑧(𝑘/𝑘) 𝑥𝑧 𝑘 + 𝐻𝑧 𝑘/𝑘 𝑢  𝑧 𝑘              (4.9) 

where matrices 𝐻𝑧  and 𝑃𝑧   are written as follows : 

                                                   𝑃𝑧  
𝑘

𝑘
 =

 
 
 
 
 
 
𝐴𝑧

𝐴2
𝑧

.

.

.
𝐴𝑝

𝑧 
 
 
 
 
 

                                            (4.10) 

 

𝐻𝑧 𝑘/𝑘 =

 
 
 
 
 
 

𝐵𝑧 𝑘/𝑘 0                       …

𝐴𝑧  𝐵𝑧 𝑘/𝑘 𝐵𝑧 𝑘 + 1/𝑘                       …
⋮ ⋮                       ⋱

𝐴𝑧
𝑝−2𝐵𝑧 𝑘/𝑘 𝐴𝑧

𝑝−3𝐵𝑧 𝑘 + 1/𝑘 …

𝐴𝑧
𝑝−1𝐵𝑧 𝑘/𝑘 𝐴𝑧

𝑝−2𝐵𝑧 𝑘 + 1/𝑘 …

0
0
⋮
0

𝐵𝑧 𝑘 + 𝑐 − 1/𝑘  
 
 
 
 
 

   (4.11) 

For simplicity a vector FZ: 

𝐹𝑧 =  𝐴𝑧
𝑝−1𝐵𝑧 𝑘/𝑘 𝐴𝑧

𝑝−2𝐵𝑧 𝑘 + 1/𝑘 … 𝐵𝑧 𝑘 + 𝑐 − 1/𝑘       (4.12) 

where𝑥 𝑧 𝑘 + 𝑝/𝑘 = 𝐴𝑧
𝑝𝑥𝑧 + 𝐹𝑧𝑢  𝑧  

Minimizing the cost function JZ the control law is constructed as : 

𝑢  𝑧0
=  𝐻𝑧

𝑇𝑄𝑧𝐻𝑧 + 𝑅𝑧 + 𝐹𝑧
𝑇𝐺𝑧𝐹𝑧 

−1
∗ 

 𝐻𝑧
𝑇𝑄𝑧(𝑥 𝑟𝑧 𝑘 − 𝑃𝑧𝑥𝑧(𝑘)) + 𝑅𝑧𝑢  𝑟𝑧 + 𝐹𝑧

𝑇𝐺𝑧(𝑥 𝑟𝑧 (𝑘 + 𝑝/𝑘) − 𝐴𝑧
𝑝𝑥𝑧(𝑘))   (4.13) 

 

 

At each time instant k only 𝑢  𝑧(𝑘/𝑘)needs to be estimated. Thus the control input for 

the altitude z at time k is: 

           𝑈1(𝑘) = 𝑢  𝑧(𝑘/𝑘) + 𝑈1𝑟
(𝑘)             (4.14) 
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The motion in x-y plane can be designed on the basis of E-SSPC method. The 

dynamic model is given by : 

             𝜉  𝑥𝑦  𝑡 =

 
 
 
 
 

𝑢(𝑡)

𝑢𝑥(𝑡)
𝑈1(𝑡)

𝑚

𝑣(𝑡)

𝑢𝑦(𝑡)
𝑈1(𝑡)

𝑚  
 
 
 
 

                        (4.15) 

where𝜉 𝑥𝑦  𝑡 =  𝑥(𝑡) 𝑢(𝑡) 𝑦(𝑡) 𝑣(𝑡)  and the reference control inputs are: 

        𝑢𝑥𝑟
 𝑡 =

𝑥 𝑟 𝑡  𝑚

𝑈1 𝑡 
 , 𝑢𝑦𝑟

 𝑡 =  
𝑦 𝑟 𝑡  𝑚

𝑈1 𝑡 
          (4.16) 

The position error can be described  as : 

    𝜉  
 
𝑥𝑦  𝑡 =

 
 
 
 
 

𝑢 (𝑡)

𝑢 𝑥(𝑡)
𝑈1(𝑡)

𝑚

𝑣 (𝑡)

𝑢 𝑦(𝑡)
𝑈1(𝑡)

𝑚  
 
 
 
 

                                     (4.17) 

where𝜉  𝑥𝑦  𝑡 = 𝜉 𝑥𝑦  𝑡 − 𝜉 𝑥𝑦𝑟
(𝑡) is the position error vector  ,𝑢 (𝑡) and 𝑣 (𝑡) stands 

for velocity errors ,𝑢 𝑥 𝑡  and 𝑢 𝑦 𝑡 are the control input errors. 

Define  𝑥𝑥𝑦  𝑡 = 𝜉  𝑥𝑦  𝑡  the nominal system is : 

𝑥 𝑥𝑦  𝑡 =

 
 
 
 
 

𝑢 (𝑡)

𝑢 𝑥(𝑡)
𝑈1(𝑡)

𝑚

𝑣 (𝑡)

𝑢 𝑦(𝑡)
𝑈1(𝑡)

𝑚  
 
 
 
 

                                            (4.18) 

The system can be discretized using Euler's method into the following form: 

𝑥𝑥𝑦  𝑘 + 1 = 𝐴𝑥𝑦  𝑥𝑥𝑦  𝑘 + 𝐵𝑥𝑦  𝑘 𝑢 𝑥𝑦  𝑘              (4.19) 

 

where matrices 𝐴𝑥𝑦  and 𝐵𝑥𝑦  𝑘 are in the following form: 
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𝐴𝑥𝑦  =  

1
0
0
0

𝛥𝑡
1
0
0

0
0
1
0

0
0
𝛥𝑡
1

 ,    𝐵𝑥𝑦  𝑘 =

 
 
 
 

0
𝛥𝑡

𝑚
𝑈1(𝑘)

0
0

0
0

𝛥𝑡

𝑚
𝑈1(𝑘)

0  
 
 
 
             (4.20) 

and  𝑢  𝑥𝑦  𝑘 =  𝑢 𝑥(𝑘) 𝑢 𝑦(𝑘) 𝑇 

Following the same procedure with the control law for the altitude subsystem by 

minimizing the cost function JXY the control law is constructed: 

𝑢  𝑥𝑦0
=  𝐻𝑥𝑦

𝑇𝑄𝑥𝑦𝐻𝑥𝑦 + 𝑅𝑥𝑦 + 𝐹𝑥𝑦
𝑇𝐺𝑥𝑦𝐹𝑥𝑦  

−1
∗ 

 𝐻𝑥𝑦
𝑇𝑄𝑥𝑦 (𝑥 𝑟𝑥𝑦  𝑘 − 𝑃𝑥𝑦𝑥𝑥𝑦 (𝑘)) + 𝑅𝑥𝑦𝑢  𝑟𝑥𝑦 + 𝐹𝑥𝑦

𝑇𝐺𝑥𝑦 (𝑥 𝑟𝑥𝑦 (𝑘 + 𝑝/𝑘) −

𝐴𝑧𝑝𝑥𝑥𝑦(𝑘)) (4.21) 

 

where𝑄𝑥𝑦 , 𝑅𝑥𝑦 and 𝐺𝑥𝑦 are diagonal positive weight matrices. The control input is 

𝑢  𝑥𝑦0
= 𝑢  𝑥𝑦 . the control inputs at time  k can be written as: 

 
𝑢𝑥(𝑘)
𝑢𝑦(𝑘)

 =  
𝑢 𝑥(𝑘/𝑘)
𝑢 𝑦(𝑘/𝑘)

 +  
𝑢𝑥𝑟

(𝑘)

𝑢𝑦𝑟
(𝑘)

                           (4.22) 

 From equation (4.2) it is obtained that: 

  𝑢𝑥 𝑘 = cos 𝜓  𝑘 sin 𝜃𝑟  𝑘 cos 𝜑𝑟  𝑘 + sin 𝜓  𝑘 𝑠𝑖𝑛𝜑𝑟 𝑘      (4.23) 

  𝑢𝑦 𝑘 = sin 𝜓  𝑘 sin 𝜃𝑟  𝑘 cos 𝜑𝑟  𝑘 − cos 𝜓  𝑘 𝑠𝑖𝑛𝜑𝑟 𝑘  

Combining equations (4.21),(4.22),(4.23)  the reference angles  𝜑𝑟  , 𝜃𝑟  can be 

computed which is necessary for the inner loop. Reference Euler's angles 𝜑𝑟  , 𝜃𝑟  

are time varying angles which change at each time k according  to input control. 

In order to calculate these two angles we set 𝝍𝒓 = 𝟎 in order to solve a 2 x 2 system. 

 

𝜑𝑟 = sin−1(  𝑢𝑥 𝑘 sin 𝜓𝑟 −   𝑢𝑦 𝑘 cos 𝜓𝑟)(4.24) 

𝜃𝑟 = sin−1(
  𝑢𝑥  𝑘 cos 𝜓𝑟+  𝑢𝑦  𝑘 sin 𝜓𝑟

cos 𝜑𝑟
)(4.25) 
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                                                              𝑈1𝑟
 

   𝑧𝑟  

 

                                                            𝑢  𝑧                       +     U1 

                                                                               +             

 

 

                                                                  𝑢𝑥𝑟
,𝑢𝑦 𝑟

                                     U2 ,U3   ,U4 

                                                        

                                                                           +                           𝜓𝑟 = 0                    

𝑥𝑟 , 𝑦𝑟                                                               +                                                               

                                                                  𝑢  𝑥𝑦        𝑢𝑥 ,𝑢𝑦                    𝜑𝑟 , 𝜃𝑟      

 

 

 

Figure 4.3: MPC diagram for position control 

 

 

 

 

 

 

 

4.2.2 Attitude Control 
The attitude control is the key in order to control the quadrotor with success. In order 

to develop the attitude controller  the rotational dynamics are considered. The system 

of equations are expressed based on (3.3): 

Virtual 

Quadrotor 

MPC z Quadrotor 

Virtual 

Quadrotor 

MPC x-y Convert 

Inner 

Loop 
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𝑝 =
 𝐼𝑦𝑦 − 𝐼𝑧𝑧   

𝐼𝑥𝑥
𝑞 𝑟  −

𝐼𝑟
𝐼𝑥𝑥

𝑞 𝜔𝛤 +
𝜏𝜑

𝐼𝑥𝑥
        

𝑞 =
 𝐼𝑧𝑧 − 𝐼𝑥𝑥   

𝐼𝑦𝑦
𝑝 𝑟 −

𝐼𝑟
𝐼𝑦𝑦

 𝑝 𝜔𝛤 +
𝜏𝜃
𝐼𝑦𝑦

        

𝑟 =  
 𝐼𝑥𝑥 − 𝐼𝑦𝑦  

𝐼𝑧𝑧
 𝑟 𝑞 +

𝜏𝜓

𝐼𝑧𝑧
                             

                             4.26  

Under the assumptions that were mentioned at chapter 3 the above system of 

equations leads to the following form: 

                                     

    

  𝜑 =
𝑈2

𝐼𝑥𝑥
                                             

                                                        

𝜃 =
𝑈3

𝐼𝑦𝑦
                                     

 𝜓 =
𝑈4

𝐼𝑧𝑧
                                       

      

         

     4.27  

The objective of the attitude controller is to ensure that the attitude of the quadrotor 

described by its Euler's angles φ,θ ,ψtracks the desired trajectory values φr,θr ,ψr 

asymptotically. In order to achieve the above goal the control inputs U2 ,U3 ,U4 

should be estimated in such a way that Euler's angles will follow the desired 

trajectory attitude angles which are derived from the position controller by relations 

(4.24) and (4.25). 

PID controllers provide a simple and thus agood response for controlling the attitude 

of the quadrotor ,and to design the control  inputsU2 ,U3 ,U4 .  

Three independent channels are considered one for each of Euler's angle. As a result 

3 PID blocks will be created one for each Euler angle, respectively. 

PID controllers: 

 

𝑢𝜃 𝑡 =  𝐾𝑃𝜃 (𝜃𝑟(𝑡) − 𝜃(𝑡)) +  𝐾𝐷𝜃 (𝜃 𝑟(𝑡) − 𝜃(𝑡) )

𝑢𝜑 𝑡 =  𝐾𝑃𝜑 (𝜑𝑟(𝑡) − 𝜑(𝑡)) +  𝐾𝐷𝜑 (𝜑 𝑟(𝑡) − 𝜑(𝑡) )

𝑢𝜓 𝑡 =  𝐾𝑃𝜓 (𝜓𝑟(𝑡) − 𝜓(𝑡)) +  𝐾𝐷𝜓 (𝜓 𝑟(𝑡) − 𝜓(𝑡) )

 (4.28) 

Where   𝐾𝑃𝜃  𝐾𝐷𝜃 ,  𝐾𝑃𝜑 ,  𝐾𝐷𝜑 ,  𝐾𝑃𝜓 ,  𝐾𝐷𝜓  are positive gain values . 
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By estimating the virtual control inputs 𝑢𝜃 𝑡 , 𝑢𝜑 𝑡 ,𝑢𝜓 𝑡  with the help of PID 

controllers the Roll command U2 ,Pitch command U3 and Yaw command U4can be 

estimated using (4.28) and (4.27). 

𝑈2 = 𝐼𝑥𝑥𝑢𝜑

𝑈3 = 𝐼𝑦𝑦𝑢𝜃

𝑈4 = 𝐼𝑧𝑧  𝑢𝜓

(4.29) 
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Figure 4.4: Control Structure of Quadrotor 
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Figure 4.4 depicts the overall strategy in order to control the position and attitude of 

the quadrotor with the MPC and PID controllers which were described in chapters 3 

and 4. 
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Chapter 5 

Case study: Control of a simulated 

quadcopter 
 

This chapter aims in demonstrating the simulation results of the quadrotor flight. The 

proposed control scheme was fully programmed in Matlab and the simulations where 

performed in Matlab/Simulink using the solver ode45, which solves a system of 

ODEs at each time instant to calculate the quadrotor's position and attitude.  

 

In order to perform the simulations the values shown in Table 5.1were assigned to 

the quadrotor parameters.  

 

Symbol Description Value Unit 

l Arm Length 0.24 m 

m Mass of the quadrotor 1 kg 

Ix Body Moment of Inertia 

around x axis 

8 ∙10
-3 

 N m s
2 

IY Body Moment of Inertia 

around y axis 

8 ∙10
-3

 N m s
2
 

IZ Body Moment of Inertia 

around z axis 

14.2 ∙10
-3

 N m s
2
 

Ir Rotational Moment of Inertia 1.08 ∙10
-6

 N m s
2
 

b Thrust Coefficient  54.2∙10
-6

 N  s
2
 

d Drag Coefficient 1.1 ∙10
-6

 N m s
2
 

g Acceleration due to Gravity 9.81 m s
-2

 

    

Table 5.1: Parameters for Simulation 
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5.1 Open loop simulations for the basic movements 
In this section the four basic movements of the quadrotor will be simulated. The 

purpose of this simulation is to show how the quadrotor moves in space by changing 

its angular velocities. In the following tests the results are based on a open loop 

system  of the quadrotor. This means that the quadrotor does not reach a desired 

value by feedback control .Alternating the four angular velocities by the right values 

leads to a different command. The commands that will be demonstrated have been 

mentioned in chapter 2 and include: throttle ,roll ,pitch and yaw command. 

 

5.1 .1 Throttle Command 
This command is generated by increasing all the angular velocities of the quadrotor 

by the same amount. This leads to an angular acceleration around z axis which raises 

the quadrotor higher . 

In order to produce the throttle command the angular velocities should all have same 

value, e.g.𝜴𝟏 = 𝜴𝟐 = 𝜴𝟑 = 𝜴𝟒 = 𝟐𝟓𝟎 (
𝑟𝑎𝑑

𝑠
) 

 

 

 

 

 

 

 

 

 

 

The simulation results are shown in the figs 5.2, 5.3, 5.4 
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Figure 5.2: Response of z and ψparameters for Throttle Command 
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Figure 5.3: Response of x and φparameters for throttle Command 

 

 

Figure 5.4: Response of y and θ parameters for throttle Command 
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The above 6 diagrams show the response of the quadrotor when the 4 angular 

velocities take the value 250 rad/s. The only parameter that change over time is the 

height z .The 5 remaining parameters x, y, θ, ζ, ς stay unchanged. As it is shown in 

figure 5.2by applying the throttle movement only the height increases over time  

which means that the quadcopter moves upwards . 

 

5.1 .2 Roll Command 
This command is generated by increasing the angular velocity Ω4by a small amount 

ΔΩ and by decreasing by the same amount the angular velocity Ω2 while maintaining 

the rest angular velocities Ω1 and Ω3 at hovering state. This leads to torque around x 

axis and an angular acceleration of θ. . 

In order to produce the Roll command the angular velocities should be set in the 

following way: 

 𝜴𝟏 = 𝜴𝟑 = 𝜴𝒉𝒐𝒗𝒆𝒓𝒊𝒏𝒈 = 𝟐𝟏𝟐.𝟕𝟏𝟖  
𝑟𝑎𝑑

𝑠
 , 

𝜴𝟒 = 𝟐𝟏𝟓  
𝑟𝑎𝑑

𝑠
 , 

𝜴𝟐 = 𝟐𝟏𝟏  
𝑟𝑎𝑑

𝑠
  

 

 

 

The simulation of Roll command are is shown in figures 5.5, 5.6, 5.7 
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Figure 5.5: Response of z and ψ parameters for Roll Command 

 

Figure 5.6: Response of y and φ parameters for Roll Command 
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Figure 5.7: Response of x and θ parameters for Roll Command 

 

The above six diagrams show the movement of the quadrotor while it performs the 

roll command. As it is shown form the diagrams the Euler's angle θ,ψremain almost 

unchanged . The height z remains unchanged . The main change by applying the Roll 

command is that the Euler angle φincreases its value over time. This change in angle 

φresults in motion in y-plane as it is shown from figure 5.6. 

 

 

 

 

5.1 .3 Pitch Command 
This command is generated by increasing the angular velocity Ω3 by as small amount 

ΔΩ and by decreasing by the same amount the angular velocity Ω1while maintaining 

the remaining angular velocities Ω2 and Ω4  at hovering state. This leads to torque 

around y axis and an angular acceleration of θ. . 
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In order to produce the Pitch command the angular velocities should be set in the 

following way: 

𝜴𝟐 = 𝜴𝟒 = 𝜴𝒉𝒐𝒗𝒆𝒓𝒊𝒏𝒈 = 𝟐𝟏𝟐.𝟕𝟏𝟖  
𝑟𝑎𝑑

𝑠
 , 

𝜴𝟑 = 𝟐𝟏𝟔  
𝑟𝑎𝑑

𝑠
 , 𝜴𝟏 = 𝟐𝟏𝟎 

𝑟𝑎𝑑

𝑠
  

The simulation of Pitch command are shown in figures 5.8, 5.9, 5.10: 

 

 

Figure 5.8: Response of z and ψ parameters for Pitch  Command 
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Figure 5.9: Response of x and θ parameters for Pitch Command 

 

Figure 5.10: Response of y and φ parameters for Pitch Command. 
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The above six diagrams show the movement of the quadrotor while it performs the 

pitch command. As it is shown form the diagrams the Euler's angle φ,ψremain 

unchanged . The height z is remaining unchanged . The main change by applying the 

Pitch command is that the Euler angle θincreases its value over time. This change in 

angle θresults in motion in x-plane as its shown from figure 5.9. 

 

5.1.4 Yaw Command 
This command is generated by increasing the angular velocitiesΩ4and Ω2by a small 

amount ΔΩ and simultaneously  decreasing by the same amount the angular 

velocitiesΩ1and Ω3. This leads to torque around z axis and an angular acceleration of 

ς. As a result of this action the quadrotor turns around its self in the z axis . 

In order to produce the Yaw command the angular velocities should be set in the 

following way: 

 

 

𝜴𝟐 = 𝜴𝟒 = 𝟐𝟏𝟓  
𝑟𝑎𝑑

𝑠
  

𝜴𝟑 = 𝜴𝟏 = 𝟐𝟏𝟏  
𝑟𝑎𝑑

𝑠
  

 

 

 

 

The simulation for the Yaw command are shown in figures 5.11, 5.12, 5.13: 
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Figure 5.11: Response of z and ψ parameters for Yaw  Command 

 

5.12: Response of x and θ parameters for Yaw Command 
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Figure 5.13: Response of y and φ parameters for Yaw Command. 

 

The above six diagrams show the movement of the quadrotor while it performs the 

yaw command. The goal by performing this command is to change its direction in 

ςangle while maintaining the other unchanged. As it is shown from figure 5.10 the 

quadrotor change its angle ς over time . This leads to a change in altitude z by 

performing this change in angle. The other parameters x, y, φ, θremain unchanged as 

the diagrams 5.12 and 5.13 show. 

 

 

 

5.2 Closed loop simulations using PID Controllers 
Because of the under-actuated nature of the quadrotor from the 6 D.O.F. only a 

maximum of four can be controlled successfully. The parameters chosen for control 

are related to the four basic movement that the quadrotor performs in order to flight 
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in 3-D space. The parameters altitude z and Euler's angles φ,θ,ψwere chosen to be 

controlled based on the Throttle U1, Roll  U2 ,Pitch U3 and Yaw U4  commands . 

PID controllers were used in these simulations in order to achieve the requested set 

points of z ,φ, θ ,ψ .Four PID controllers where used one for each parameter. The 

controllers where tuned manually with the criterion of minimizing the sum of square 

error (SSE), which can be calculated as follows: 

𝑆𝑆𝐸 =  (𝑥𝑖 − 𝑥𝑑)2𝑛
𝑖=1                        (5.1) 

where n is the number of observations 𝑥𝑖  is the i-th observation and 𝑥𝑑 the desired set 

point value. 

Choosing the parameters of the PID controllers manually is difficult task as it needs a 

great deal of trial and error tries. The process of the tuning starts by picking 3 values 

for the P, I and D gains. Then the SSE is measured. By changing the gains by a little 

the new SSE is measured. If the new SSE is smaller than the previous one the last 

values of the PID controller are kept and a new set of gains are chosen. This 

procedure continues until the SSE is considered small enough. 

A selected set of tries is shown in the following Table by performing manual tuning 

of the four PID controllers based on minimizing the SSE: 

Height Roll-Pitch Yaw 

 

Table 5.2: Tuning for PID parameters 

𝑷𝒛 𝑰𝒛 𝑫𝒛 𝑵𝒛 𝑺𝑺𝑬𝒛 𝑷𝝋 𝑰𝝋 𝑫𝝋 𝑵𝝋 𝑺𝑺𝑬𝝋 𝑷𝝍 𝑰𝝍 𝑫𝝍 𝑵𝝍 𝑺𝑺𝑬𝝍 

1 1 1 20 780.8 0.19 0.009 0.97 6 0.425 0.8 0.05 4.1 8 2.842 

1 0.5 0.9 20 451.2 0.2 0.009 1 6 0.422 0.6 0.05 3.5 8 2.792 

1 0.1 0.9 20 368.2 0.25 0.009 1 5 0.4123 0.3 0.001 3.5 8 2.744 

0.5 0.1 0.9 10 319.2 0.26 0.01 1.2 5 0.3978 0.3 0 3.5 4 2.331 

0.4 0.01 0.8 6 277.6 0.28 0.01 1.5 4 0.377 0.27 0 3.1 2 2.192 

0.4 0.001 0.78 2 232.4 0.33 0.01 1.8 4 0.366 0.26 0 3.15 2 2.185 

0.39 0.001 0.78 2 232 0.39 0.012 1.9 5 0.3634 0.25 0 3.15 2 2.184 
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As Roll and Pitch are symmetrical motions, the same tuning was used for both PID 

controllers. 

 

The best tuning parameters where given in bold for the 4 PID controllers. 

The initial conditions of the quadrotor 's position are [x y z θ ζ ς] = [ 0 0 1 0 0 0].  

The quadrotor at time t=0 (s) is performing a stationary flight at altitude z=1(m). 

 

 

5.2.1  Reaching a certain altitude z 
At the first set of simulations a desired height of  z = 5 (m) is given while the rest of 

the Euler angles are set to 0, thus performing the Throttle movement in space. 

 

 

Figure 5.14: Response of z and ψparameters 



54 
 

 

Figure 5.15: Response of x and θparameters 

 

Figure 5.16: Response of y and φparameters 
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5.2.2 Reaching a certain Euler angle θ 
At the second set of simulations a desired Euler angle of  θ = 0.2 (rad) is given, while 

the rest of the Euler angles are set to 0 at altitude z=1 (m),thus performing the Roll 

movement. 

 

 

Figure 5.17: Response of z and ψparameters 
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Figure 5.18: Response of x and θparameters 
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Figure 5.19: Response of y and φparameters 

5.2.3 Reaching a certain Euler angle ζ 
At the next set of simulations a desired Euler angle of  ζ = 0.3 (rad) , the rest of the 

Euler angles are set 0 at altitude z=1 (m)performing Pitch movement. 

 

 

Figure 5.20: Response of z and ψparameters 
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Figure 5.21: Response of x and θparameters 

 

Figure 5.22: Response of y and φparameter 
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5.2.4 Reaching a certain Euler angle ς 
A desired Euler angle of  ς = 1 (rad) is given, while the rest of the Euler angles are 

set 0 at altitude z=1 (m) performing only yaw movement. 

 

 

Figure 5.23: Response of z and ψparameters 
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Figure 5.24: Response of x and θparameters 

 

Figure 5.25: Response of y and φparameter 
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5.2.5 Reaching a complex set of desired values 
The following simulations test the task of reaching a multiple  set of set point values. 

The reference values set were: z=4 (m),φ=0.1(rad), θ=0.13(rad),ψ=0.3 (rad). 

 

 

Figure 5.26: Response of z and ψparameters 
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Figure 5.27: Response of x and θparameters 

 

Figure 5.28: Response of φ and y parameters 
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5.3 Closed loop simulations using MPC 
In this section the quadrotor will perform a group of simulations in order to evaluate 

the efficiency of the predictive controllers. While the predictive controller is 

responsible for the position control, PID controllers are used in order to control the 

attitude of the quadrotor. Two kind of simulations will be examined. In the first set of 

simulations the quadrotor will try reaching a desired set point in space while in the 

second the objective will be to track a certain path. 

 

 

 

5.3.1 Reaching a certain point in space 
The initial conditions of the quadrotor 's position are [x y z θ ζ ς] = [ 0 0 0 0 0 0] 

.The weight matrices of the Model Predictive Controllers are adjusted in the 

following way: 

𝑝 = 18 , 𝑐 = 18 , 

𝑄𝑧 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(15, … ,15)where𝑄𝑧 is a 𝑝  𝑏𝑦 𝑝   matrix 

𝑅𝑧 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(1, … ,1)where𝑅𝑧 is a 𝑐  𝑏𝑦 𝑐  matrix 

𝐺𝑧 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(30, … ,30)where𝐺𝑧 is a 2 𝑏𝑦 2 matrix 

𝑄𝑥𝑦 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(15, … ,15)where𝑄𝑥𝑦 is a 2 ∙ 𝑝  𝑏𝑦 2 ∙ 𝑝   matrix 

𝑅𝑥𝑦 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(5, … ,5)where𝑅𝑥𝑦 is a 2 ∙ 𝑐  𝑏𝑦 2 ∙ 𝑐  matrix 

𝐺𝑥𝑦 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(20, … ,20)where𝐺𝑥𝑦 is a 4 𝑏𝑦 4 matrix 

The gains of the three PID controllers responsible for the attitude control we tuned 

manually with the following values: 

𝑁 = 16 

𝐾𝑃𝛷 = 1 , 𝐾𝐷𝛷 = 19 
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𝐾𝑃𝜃 = 1 , 𝐾𝐷𝜃 = 19 

𝐾𝑃𝜓 = 1 , 𝐾𝐷𝜓 = 18 

The matrices where tuned manually with trial and error procedure, where the 

objective was to minimize the sum of square errors between the desired values and 

the predicted outputs for x y and z parameters. 

The reference desired coordinates for the simulation in space are: 

 

𝑥𝑟 = 9  𝑚 ,𝑦𝑟 = 8  𝑚 , 𝑧𝑟 = 10(𝑚) 

 

 

Figure 5.29: Response of x parameter 
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Figure 5.30: Response of y parameter 

 

 

Figure 5.31: Response of z parameter 
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The goal of achieving a certain set of coordinates on 3-D space is managed with 

success. In the three previous diagrams all the parameters reach the set point value. 

The responses of all three parameters share some characteristics in common. First,  

there is no maximum swing above the given value eliminating the overshoot 

phenomenon. Second, there are no oscillations of the responses eliminating the 

ringing effect . Finally, the time for reaching the final value ,known as settling time 

is quite small. 

 

Figure 5.32: Response for the task of reaching a certain point in space 
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5.3.2 Task of tracking a reference trajectory in space 
 

The weight matrices of the  Model Predictive Controllers are adjusted in the 

following way: 

𝑝 = 18 , 𝑐 = 18 , 

𝑄𝑧1 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑙( 35 5 )where𝑄𝑧 is a 2 𝑏𝑦 2  matrix 

𝑄𝑧 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝑄𝑧1,… , 𝑄𝑧1)where𝑄𝑧 is a 𝑝  𝑏𝑦 𝑝   matrix 

𝑅𝑧 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(0.01, … ,0.01)where𝑅𝑧 is a 𝑐  𝑏𝑦 𝑐  matrix 

𝐺𝑧 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(50  5)where𝐺𝑧 is a 2 𝑏𝑦 2matrix 

𝑄𝑥𝑦 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝑄𝑥𝑦1,… , 𝑄𝑥𝑦1)where𝑄𝑥𝑦 is a 2 ∙ 𝑝  𝑏𝑦 2 ∙ 𝑝   matrix 

𝑄𝑥𝑦1 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙( 40 8 )where𝑄𝑥𝑦1is a 2 𝑏𝑦 2  matrix 

𝑅𝑥𝑦 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(5, … ,5)where𝑅𝑥𝑦 is a 2 ∙ 𝑐  𝑏𝑦 2 ∙ 𝑐  matrix 

𝐺𝑥𝑦 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(100 10 100 10)where𝐺𝑥𝑦 is a 4 𝑏𝑦 4matrix 

 

The gains of the three PID controllers responsible for the attitude control we tuned 

manually with the following values: 

𝑁 = 16 

𝐾𝑃𝛷 = 1 , 𝐾𝐷𝛷 = 19 

𝐾𝑃𝜃 = 1 , 𝐾𝐷𝜃 = 19 

𝐾𝑃𝜓 = 1 , 𝐾𝐷𝜓 = 18 
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5.3.2.1 Task of tracking a reference circle trajectory 
 

The reference trajectory used in the simulation is a circle in the Euclidean space  

𝑥𝑟 =
1

2
cos(

𝜋 𝑡

20
) 𝑚 , 𝑦𝑟 =

1

2
sin(

𝜋 𝑡

20
) 𝑚 , 𝑧𝑟 = 3 − 2 cos(

𝜋 𝑡

20
) 𝑚  , 𝜓𝑟 = 0 𝑟𝑎𝑑 

 

Figure 5.33: Response of x parameter 
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Figure 5.34: Response of y parameter 

 

Figure 5.35: Response of z parameter 
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Figure 5.36: Response of Euler angleφ 

 

Figure 5.37: Response of Euler angleθ 
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Figure 5.38: Response of Euler angleψ 

 

Figure 5.39: Response for the following a circle Trajectory in Space 
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Figures 5.33 ,5.34, 5.35 and 5.38 exhibit the ability of the system to track the 

reference trajectory given. As the simulation progresses in time the position errors 

between the actual and the reference values is minimized. After a short time window 

the trajectory of quadrotor movement is stabilized and it follows smoothly the 

reference one . From the figures 5.36, 5.37 the efficiency of the PID controllers to 

track the  reference Euler's is shown. Angles θand ζ display a ringing effect at the 

first seconds of their simulation. This is caused until the quadrotor enters the 

trajectory of the circle. Angle ςremains close to reference value during the 

simulation. Lastly figure 5.36 display the vehicle' s circle movement in 3 D space. 

 

 

 

 

 

 

 

 

 

 

 

5.3.2.2 Tracking a reference spiral trajectory 
The reference trajectory used in the simulation is a helix in the Euclidean space  

 

𝑥𝑟 =
1

2
cos

 𝑡

2
 𝑚 , 𝑦𝑟 =

1

2
sin

 𝑡

2
 𝑚 , 𝑧𝑟 = 1 +

 𝑡

10
 𝑚  , 𝜓𝑟 = 0 𝑟𝑎𝑑 
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Figure 5.40: Response of x parameter 

 

Figure 5.41: Response of y parameter 
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Figure 5.42: Response of z parameter 

 

Figure 5.43: Response of Euler angleφ 
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Figure 5.44: Response of Euler angleθ 

 

Figure 5.45: Response of Euler angleψ 
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Figure 5.46: Helix Trajectory in Space 

 

Figures 5.40, 5.41, 5.42 and 5.45 show the ability of the system 's tracking the 

reference trajectory given. The predictive controller performs a quick and smooth 

tracking as it is shown in figures 5.40 ,5.41, 5.42. Figures 5.43, 5.44, 5.45 depict the 

efficiency of the attitude controllers to track the  reference Euler's angles. The figures 

show that the Euler's angles follow the reference trajectory with ease. Finally figure 

5.46 display the vehicle's helix movement in 3 D space. 
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Chapter 6 

Conclusions 
 

The goal of this Thesis was to derive a mathematical model for an unmanned 

quadrotor, and develop a control algorithm to track a reference trajectory in space 

and verify the performance of this controller via simulations results. 

First, a control strategy was applied to solve the problem of stabilizing the desired 

states which include quadrotor's altitude and Euler's Angles. This was possible with 

the help of four PID controllers which were tuned manually. The simulations of the 

closed loop system show the efficiency of the tuning performed in chapter 5.2. 

An important objective of this Thesis was to develop a control scheme that enables 

the quadrotor to track a reference trajectory. To be more specific, a model predictive 

control strategy was proposed in order to follow the desired path. Simulation results 

implemented in Matlab/Simulink verify that the control strategy designed in this 

Thesis can smoothly and effectively track time-varying quadrotor trajectories.  

Tuning the parameters and the constants of both model predictive and PID 

controllers was a challenging task. In the case of the predictive control, it was shown 

that 2 different kind of tunings were needed in order to perform with success the 

tasks of reaching a certain set point in space and tracking a reference trajectory. 

Future research plans, include replacing the automatic tuning procedure with 

optimization methods, which are expected to improve the performance and tracking 

ability of the reference path. This is possible using meta-heuristic search methods as 

particle swarm optimization (PSO). Another interesting direction is to integrate in the 

MPC scheme nonlinear modeling techniques, e.g. neural networks.   
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