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Abstract

This work is focused ίη estab!ishing a recent!y deve!oped and enhanced numerical tool

for modeling and simulating complex gas distribution systems that operate undeI" any vacuum

conditions. Such systems have lately received considerab!e attention due to their app!icability

and optimization potential ίη a vast number of industrial processes and techno!ogicaI

app!ications. The wide range of ΡΓeSSUΓes and chaΓacterίstίc !engths inside the network !ead to

conditions that are beyond the app!ication of the c!assic Navier-Stokes theory, as the gas cannot

be considered as a continuous medium and kinetic mode!ing is required.

At first the basic concepts of gas distribution systems and the gονeΓΠίng equations such

as the mass and energy conservation equations are examined and then the methodo!ogy for

siInulating such systems is presented and benchmarked. Then, the deve!oped a!gorithm is applied

to mode! the ITER primary pumping system. The boundary conditions of the network i.e. the

pressures at the fixed grade nodes are taken to be constant, assuming steady-state conditions.

Qualitative results for the flow patterns ίη the cassettes and a!ong the divertor ring, as well as the

throughputs for various operational scenarios ίη both the burn and dwell phases are presented

and compared with existing results. The agreement with published results is found to be

satisfactory considering the complexity of the prob!em and the fact that the presented and

previousIy published approaches are based οη different principals.

Ιη addition, an exp!icit hybrid tiIne ίntegΓatίοn method is introduced ίη this work ίη order

to simulate time-dependent networks with minima! computational effort. The explicit coupling is

justified by the time scaIe separation of the kinetic and macroscopic levels of the problem. The
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hΥbΓid coupling methodology is also benchl11aΓked and applied to simulate the puιηp down of the

ITER vacuuιη vessel between successive plasma shots as a tΓansient pΓOblem.

This study is an additional step in a long-time effΟΓt towaΓds establishing the developed

integι-ated algΟΓithm as a veΓified and ΡΓΟlηίsίng computational toοl fOJ" silηulatil1g gas

distΓibutiοn systems at any level of ΓaΓefactiοn.
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Μοντελοποίηση δικτύων αγωγών αερίων σε όλο το εύρος του αριθμού Knudsen:

Εφαρμογή στο σύστημα άντλησης του αντιδραστήρα σύντηξης ITER

Νικόλαος Βασιλειάδης

ΠανεπιστήμιοΘεσσαλίας, ΤμΙ1μα ΜηχανολόγωνΜηχανικών, 2016

Επιβλέπων: Βαλουγεώργης Δημήτριος, Καθηγητής, Τμήμα Μηχανολόγων Μηχανικών,

Πανεπιστιιμιο Θεσσαλίας

Περίληψη

Η εν λόγω εργασία επικεντρώνεται στην παρουσίαση ενός πρόσφατα αναπτυγμένου

αριθμητικού εργαλείου για την μοντελοποίηση και προσομοίωση πολύπλοκων δικτύων αγωγών

αερίων που λειτουργούν κάτω από ποικίλες συνθήκες κενού. Τέτοια συσηΊματα έχουν λάβει τα

τελευταία χρόνια ιδιαίτερη προσοχή λόγω της ευρείας εφαρμογής τους και των δυνατοτήτων

βελτιστοποίησης που προσφέρουν σε ένα μεγάλο αριθμό βιομηχανικών διεργασιών και

τεχνολογικών εφαρμογών. Το ευρύ φάσμα των πιέσεων και των χαρακτηριστικών μηκών στο

εσωτερικό του δικτύου οδηγούν το αέριο σε συνθήκες που είναι πέρα από το πεδίο εφαρμογής

της κλασικής θεωρίας Navier-Stokes, ενώ απαιτείται η χρήση κινητικής θεωρίας, καθώς το αέριο

δεν μπορεί πλέον να θεωρηθεί ως συνεχές μέσο.

Αρχικά εξετάζονται οι βασικές έwοιες των συστημάτων διανομής αερίων και οι

εξισώσεις που τα διέπουν, όπως οι εξισώσεις διατήρησης μάζας και ενέργειας ενώ έπειτα

παρουσιάζεται και ελέγχεται η μεθοδολογία για την προσομοίωση των συγκεκριμένων

συστημάτων. Στην συνέχεια, ο αλγόριθμος χρησιμοποιείται για την προσομοίωση του

συστήματος άντλησης του αντιδραστήρα ITER. Οι οριακές συνθήκες του δικτύου στους

κόμβους γνωστής πίεσης λαμβάνονται σταθερές, υποθέτοντας συνθήκες σταθερής λειτουργίας

του αντιδραστήρα . Στην συνέχεια, παρουσιάζονται ποιοτικά αποτελέσματα για την ροή μέσα

στα cassettes του αντιδραστήρα και κατά μήκος του τόρου, καθώς και οι προκύπτουσες μαζικές

παροχές για διάφορα σενάρια λειτουργίας τα οποία συγκρίνονται με ήδη υπάρχοντα

αποτελέσματα. Η συμφωνία με δημοσιευμένα αποτελέσματα είναι αρκετά ικανοποιητική
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λαμβάνοντας υπόψη την πολυπλοκότητα του προβλήματος και το γεγονός ότι η προσέγγιση της

παρούσας εργασίας διαφέρει από την αντίστοιχη δημοσιευμένη μεθοδολογία.

Επιπλέον, στο πλαίσιο της εργασίας προτείνεται μια ρητή υβριδtΚ11 μέθοδος η οποία

απαιτεί ελάχιστο υπολογιστικό φορτίο για την προσομοίωση δικτύων που λειτουργούν σε μη

μόνιμες συνθήκες. Η εφαρμογή της παραπάνω μεθόδου δικαιολογείται από την μεγάλη διαφορά

των χρονικών κλιμάκων που χαρακτηρίζουν το κινητικό και μακροσκοπικό επίπεδο του

προβλήματος. Η συγκεκριμένη μέθοδος επαληθεύεται και εφαρμόζεται για την προσομοίωση

του δικτύου του ITER ως πρόβλημα μη μόνιμων συνθηκών.

Η παρούσα μελέτη αποτελεί ένα επιπλέον βήμα στην καθιέρωση του κώδικα ως ενός

υπολογιστικού εργαλείου για την προσομοίωση δικτύων διανομής αερίων που λειτουργούν σε

οποιεσδιlποτε συνθιlκες αραιοποίησης.
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Chapter 1: Introduction

1.1 Introduction to gas distribution systems

Internal f10ws ίη pipelines and ducts are commonly encountered ίη all parts of ουΓ

industrialized society. From delivering natural gas and other industrial gases υρ to particle

accelerators and fusion reactors, engineers have designed and constructed untold kilometers of

relatively large-scale piping systems. Smaller piping units are also ίη abundance: ίη pneumatic

controls, ίη heating and air conditioning systems, and ίη pulmonary f10w systems, to name οηlΥ a

few. The governing equations for the simulation of such systems require the pressure drop inside

a pipe to be expressed as a function of the f10w rate ΟΓ the gas velocity and thus ΡΓeSSUΓe driven

f10ws have been thoroughly investigated over the years.

One of the eaΓlίest and most widely used expressions being the Hagen-Poiseuille law,

which was derived independently by Gotthilf ΗeίηΓίch Ludwig Hagen ίη ]839 and Jean Leonard

ΜaΓίe Poiseuille ίη ]838, and published by Poiseuille ίη ] 840 and ]846:

ΔΡ 32μϊϊ

ΔL =-----rJ2 (1.1 )

ΡΓessure dΓίveη f10w Γesults through tubes weΓe then expanded from lamiηaΓ to turbulent

conditions by the Darcy-Weisbach equation which Γelates the ΡΓeSSUΓe L0SS due to friction along

a given pipe length to the aveΓage velocity of the gas. The DaΓCΥ-Weisbach equation contains a

dimensionless fΓίctίοη factoI" known as the DaΓCΥ fΓίctίοη factoΓ, which was plotted against the

Reynolds number for vaΓίοus values of the Γelatίve roughness by Lewis FeΠΥ Moody to publish

the widely known Moody's dίagΓam, ίη ]944.

ΗοweveΓ, ίη many gas dίstΓίbutίοη processes the conveying gas ΓaΓefactίοη Γaηges from

the fΓee moleculaI" υρ to the hydrodynamic lίmίt and thus these f10ws must be tackled by kinetic

theory. Κinetic theory approaches the gas as a huge amount of atoms moving randomly ίη all

directions colliding with each other, ratheI" than a continuous medium as ίη classic f1uid

dynamics. Kinetic modeling can be successfully implemented to study ΓaΓefίed ΡΓeSSUΓe dΓίveη



f]ows and obtain similar results with those described above [ΟΓ the ΡΓessure dIΌP of a rarefied gas

along a tube. Finally, using the above ΓesuΙts sίlηulatίοn of gas distribution systems can be

extended to the whole range of gas raΓefactίοn

1.2 The Knudsen number and flow regimes

Ιη ΓaΓefίed gas f]ows the ΡaΓameter that chaΓacteΓίΖes the flow is the Knudsen number Κn

intIΌduced aΓOund 1909 [1], defined as:

where λ is the mean fΓee path of the gas, defined as the aveΓage distance that gas particles travel

between successive collisions and L is the chaΓacteΓίstίc length of the problem. Ιη many cases it

is necessary to define the Knudsen number as:

wheΓe φ is a f]ow quantity. The later definition of the Knudsen number is more general and can

locally chaΓacterίΖe the flow rarefaction. For the Hard SΡheΓe model and [ΟΓ a single

monoatomic gas the mean free path can be eΧΡΓessed as [2]:

(1.2.1 )

(1.2.2)

λ
Kn=­

L

Κn = λ!dφl
φ c/x

λ = 111

J2πd 2ρ
(1.2.3)

wheΓe In is the moleculaI" lηass, d is the diameteI" of the molecule and Ρ is the mass density of the

gas. The Knudsen numbeI" can also be eΧΡΓessed by the widely known Mach (Μα) and Reynolds

(Re) numbers as:

2



Κn =Jπr Μα
2 Re

(1.2.4)

wheΓe r is the specific heat ,"atio of the gas. ΑΙteΓΠatίνeΙΥ, instead of the Knudsen number the

,"arefaction ΡaΓameteΓ is also commonly used:

δ=ΡL=J;
μι/ο 2Κn

(Ι .2.5)

whel'e Ρ is the gas ΡΓeSSUΓe, μ is the absolute viscosity, ιιο =~2kBT / η1 is the most pΓObable

velocity and k B the Boltzmann constant. Both the Knudsen nunlbeI" and ΓaΓefactίοη paraIlleteI" aI'e

ιηeaSUΓes of gas ΓaΓefactίοη and deΡartuΓe fΓοm l0cal equίlίbΓίum. ΑCCΟΓdίηg to the Κnudsen

numbeI" the flow ,"egimes can be defined as shown ίη Table Ι.

Table Ι: Flow Γegίιηes with ,"espect to the Knudsen numbeI"

Range of Κn Flow ,"egime GονeΓηίηg Equations ΝuηιeΓίcal aΡΡΓοach

Κn ---+ Ο Continuum EuleI"

(inviscid)

Κn < 10-3 Continuum NavieI" Stokes

(viscous) Typical CFD schemes

]0-3 < Κn < ]0-1 Slip NavieI" Stokes with

(viscous) Slip boundaι-y conditions,

GeηeΓa1ίΖed equations

10-1 < Κn < 10 ΤΓaηsίtίοη Bo1tzmann Analytical Illethods,

(Knudsen) Κinetic models VaΓίatίοηal methods,

Discγete Velocity

Method,

IntegΓO-Moιllent Method

Direct Simulation Monte

CaΓ1ο

3



10 < ΚI1 FΓee moleculaI" ΒοltΖιηann and kinetic Method of

model without collision chaΓacteΓίstίcs,

Test ParticJe Monte

CaΓΙο

When the Κnudsen nun1beI" is mall and the f10w is ϊη the continuun1 Γegίn1e and the

EuleI" and NavieI" Stokes equations with ηο slip bounda.-y conditions can be Llsed with high

aCCUΓaCΥ. As the Knudsen numbeI" is incγeased and the f10w ιηοves to the slip Γegiιηe, the ηο slip

bοundaΓΥ conditions do ηοι 110ld and thus velocity slip and temρeΓatuΓe jUIηρ bοundaΓΥ

conditions [3] must be applied alongside with the NavieI" Stokes aPPIΌach. As the Κnudsen

numbeI" is fUΓtheΓ incγeased and the f10w enteΓS the tΓansίtiοn and fΓee molecular Γegίmes the

Newton, FΟUΓieΓ and Fick tΓanSΡΟΓt laws fai Ι and the continuum aPPIΌach collap es. lt is ϊη those

Γegίmes that ηοη equilibΓίum phenomena appeaI" and the f10w can only be in1ulated by kinetic

theo.-y [4, 5].

The Boltzmann eqLIation, while valid ϊη all f10w Γegίmes, is utilized on!y ίη the fΓee

n10lecular ιιρ to the tΓansίtίοn Γegime due to the high computational cost involved. The dίΓect

solution of the Boltzmann eqLIation is a veΓΥ cοιηρutatiοnallΥ deιηandίng pIΌcess and thus

ceΓtaίn methods have been developed to οveΓcοme this. One of them is the LIse of kinetic models

which deteΓmίnίsticallΥΓeρΙace the collision ρaΓt of the Boltzmann eqLIation. Ιη ΟΓdeΓ fOI" a model

to be accepted it IΊ1LISt sati fy the collision invaΓίants, the Η-theΟΓelη and PIΌvide the conect

values fOI" the tΓanSρΟΓt coefficients. The ιηοst well-known k.inetic ιηοdel aΓe the BGK [6], the

Shakhov [7] and tl1e Ellipsoidal [8] ιηοdels fOI" monoaton1ic single gase , the Holway [9] and

Rykov [10] model fOI" po!yatomic single ga f10ws and the ΜCCΟΓmak [11] mode! fOI" gas

miχtuΓes. The fΟΓn1u!atiοn of the Boltzmann eqLIation and the BGK model are ΡΓesented ϊη

Appendix Α fOI" comp!eteness.

AnotheI" n1ethod developed to οveΓcοιηe the dίΓect olution of the Boltzmann equation ί

the DίΓect Simulation Monte CaΓ!Ο method [12]. Ιη this srochastic method the f10w domain is

discγetized and a nLImbeI" of simu!ating ρaΓtίcles ί dίstΓibuted ίη ide with each ρaΓtίcΙe

simu!ating a ΙaΓge nLImbeI" of ΓeaΙ partic!es. The real motion of the particles is divided into two

parts. The first paΓt is the fΓee motion of the paΓtic!es calculated by thei .. respecti ve ve!ocities and

the tίιηe step, while the second ρaΓt i the collision of the particles which is simulated
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stochastically. Then, the macroscopic quantities of interest are calculated using the simulator

particIes which are sampled for a large number of tilne steps. It is noted that like all stochastic

methods the DSMC suffers fΓOm statisticaI noise, especiaIly ίη creeping f1ows.

1.3 Thesis structure and objectives

The siInulation of gas distribution systems has always been a popuIar fieId of engineering

due to its vast applicability and optimization potential ίη industrial and technological pΓOcesses.

RecentIy the growing deveIopment of large vacuum systems has constituted the ability to

simulate such systems mandatory. Thus, the thesis aim is to establish a recently developed and

enhanced numerical tool for simulation of gas distribution systems operating under any vacuum

conditions. Ιη addition, the introduced aIgorithm is implemented to simulate various steady state

and tΓansίent scenarios of the ITER primary vacuum system. ITER is an experimental fusion

("eactor which is undeI" constγuction ίη Cadarache, FΓance [13] and its vacuum systems are

considered as the most complex ones WΟΓldwίde. The thesis is outIined as follows:

• Ιη Chapter 2 the literature ("eview is ΡΓesented. It includes the lineal" and nonlineal"

solutions of pressure dΓίven f10ws thΓOugh tubes of circular cross section as well as the

end effect theory. Methodologies aΙΓeadΥ applied to siInulate gas networks ίη all f10w

regimes and the most widely known applications of such systems aΓe also ΡΓesented.

• Ιη Chaptel" 3 an intΓOduction to the basic concepts and gοveΓnίng equations of gas

dίstΓίbutίοn systems is included. The ΡΓίncίΡals, methodologies and structures of both the

steady state and transient algorithms developed aΓe also included heΓe. Finally,

benchmaΓk [esults fOl" a total of three netWΟΓks ΟΡeΓatίng under rough vacuum aΓe

pΓOvided for both algorithms to enSUΓe their validity.

• Ιη ChapteI" 4 the ITER divertor system geοmetΓΥ is studied initially and then vaΓίοus

operation scenarios are simuIated. The operational scenarios include the simulation of the

burn and dwell phase at steady conditions and both qualitative and quantitative ΓesuΙts are

5



presented. The sίιηu!atίοn of the dwelI pha e as a transient ΡΓΟbΙeιη using an explicit

coupling lηethοd is also examined here.

• Ιη Chapter 5 a umlηarΥ of the the is with the corresponding concluding remarks are

presented.
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Chapter 2: Literature review

2.1 Rarefied pressure driven flows

Over the years rarefied single gas ΡreSSUΓe driven flows through cίΓcuΙar tubes have

attracted considerable attention due to theiI" wide applicability ίη industrial pΓOcesses and

technological applications operating ίη the whole Γaηge of the Knudsen ηumbeΓ. The pΓOposed

methodology of simulating gas distribution systems ΟΡeΓatiηg undeI" ΓaΓefίed conditions includes

the computed mass f10w Γates thΓOugh single pipe elements, which aΓe stoΓed Ίη a data base [ΟΓ

the needs of the ηetWΟΓk algorithm and thus a liteΓatuΓe survey of ΡΓessure dΓίveη f10ws is

deemed necessaι-y. Ιη most cases , the f10w is numerical1y solved either stochastical1y based οη

the DSMC method ΟΓ deteΓmίηίstίcal1Υ based οη the kinetic modeling by directly solving the

Boltzmann equation ΟΓ based οη suitable kinetic models as deSCΓίbed ίη Chapter 1. VeΓΥ good

agreement between cOHesponding Γesu!ts obtained by all methods has been οbseΓved across al1

flow regimes [ΟΓ tubes of vaΓίοus lengths over Γadίus Γatίοs as well as for various ΡΓeSSUΓe Γatίοs.

Moreover, computational ΓesuΙts match very wel1 to available eΧΡeΓίmeηtal data.

The f10w configuration of a ΡΓessure dΓiveη f10w as shown ίη Fig. 1 is wel1 known but it

is also described heΓe for completeness and clarity. Consider two vessels that aΓe connected by a

tube of length L and radius R and are maintained at constant ΡΓessures ΡΑ' Ps and temΡeΓatuΓes

Flo\ direction)

P=!ΊJ

Τ=Τσ
ι

---------

L

Ι

Ι

Ι

Ι

Ι

Ι

Ι

ι

r R ι

_._._._._.~._._._._._._.~._._._.J._.

Figure Ι: Pressure dιiven f10w configuration
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Due to the pressure difference of the two reservoirs there is an axisYInInetric flow ίη the axial

direction with the Inacroscopic quantities varying ίη the axial and radial directions. At the open

boundaries (dotted Iines) the gas is at Γest and the incoming distributions are the locaΙ

Maxwellian ones. The voluIne of the two reservoirs is taken laΓge enough to justify the boundary

conditions implenlented. At the tube walls (solid lines) purely diffusive gas SUΓface interaction is

cοnsίdeΓed while aIong the symmetι-y axis at r = Ο purely specular reflection is considered. The

flow cοnfίgUΓatίοn is a five dimensional one (two dimensions ίη the physical space and three ίη

the molecular velocity space) and is defined by three dimensionless ΡaΓaιηeters: the Γeference gas

rarefaction ρaΓameteΓ, the ΡreSSUΓe ratio and the aspect ratio denoted as δΑ = PAR/ flAUA ' ΡΒ / ΡΑ

and L/ R ΓesρectίvelΥ. Although the flow configuration seeIns quite simpIe the computational

effort ΓequίΓed to solve the nonlinear pΓOblem is cοnsίdeΓable and thus linearization is ΡeΓfοnηed

to save computational resources.

FOI" very long tubes L/ R» 1 the infinite caρίllaΓΥ theΟΓΥ, where the flow is considered

as fully developed, can be applied. ΡΓessure is assumed to vary only ίη the flow direction and

thus only a cΓOss section of the tube must be solved. Extensive tabulated results for the non-

dimensional flow rate GFD(δ) may be easily found ίη the literature [14]. Τη addition, a highly

accurate inteΓpolation fΟΓmula has been ΓecentlΥ ίntlΌduced [15]:

G (δ) = 1.505+0.0524δ
Ο75

Iηδ +(δ +1.018) δ
FD 1+ 0.738δΟ78 4 1.073 + δ

Following a well-known ΡΓΟcedUΓe the mass flow Γate is written as:

wheΓe

8
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is cοιηΡuted by integrating C(J) between the inlet and outlet raΓefactίοn Ρaraιηeters δΑ and δΒ

respectiveIy accordingly defined by the conesponding ΡreSSUΓes ΡΑ and ΡΒ . Moreover, it has

been shown that ίη the case of circular tubes the integration procedure is not necessary and C'

can be simply computed with high accuracy as:

(2.1.4)

The assumption of a fully developed f10w significantly reduces the computational cost. However,

the assumption of fully developed flow is not always fulfilled ίη practice, leading to a significant

elTor ίη f10w rate estίιηatίοn because of the capiIlaIΎ inlet and outlet influence. For medium

caΡίllaΓίes, the end effects can be taken ίηto account by introducing the concept of the effective

Iength, i.e. the ΓeaΙ caΡίlΙaΓΥ L length is cοπected by an additional Iength ΔL. The end effect

conection was initially calculated for slow viscous f10ws [16] and then the same idea was used

[ΟΓ ΓaΓefίed gas f10ws through mοdeΓatelΥ long channels [17, 18]. Once the end effect cοπectίοns

at both the inlet and the outlet Γegίοns have been calculated the Γeduced f10w Γate thΓOugh the

caΡίlΙaΓΥ can be con1puted as:

(2.1.5)

ΟΙ' by intΓOducing Eq. 2.1.4 as:

(2.1.6)

As descγibed ίη [19] the end effect cοπectίοns can be computed dίΓectΙΥ, i.e. only the inlet and

outlet Γegίοns aΓe cοnsίdeΓed using the fully developed f10w as the bοundaΓΥ condition. The

knowledge of this quantity cίΓcuιηvents the solution of the complete pΓOblem and Γeduces

significantIy the computationaI effΟΓt without the loss of aCCUΓaCΥ. The idea is sίιηίlar to that
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applied to the veIocity slip and teιηΡerature jutηp ΡrοbΙelηs [20], where only the Knudsen layer is

considered using the aSytηptotic behavior ίη the gas bulk as the boundaI'y condition. Following

the above plΌcedure the length corrections ΔLίll , ΔLoιιι can be calculated as a function of only the

rarefaction paratηeter at the inlet and outlet of the tube and are ΡΓesented ίη Appendix Β. Ιη

addition, a fΟΓn1uΙa that inteΓpoIates the above data with a tηaxitηutη deviation of 0.8% has been

deduced:

ΔL =Ο 68 + 1.399
R . δOO~2 Εχρ(0.677δ) + 2.950δΟ631

(2. Ι.7)

The great advantage of the infinite capillary and end effect theoΓY is that the ditηensionless

solutions solely depend οη the gas ΓaΓefactίοn paratηeteJ' and not οη the ΡΓeSSUΓe and aspect

Γatίοs. ΗοweveΓ, both theΟΓίes aΓe based οη linear kinetic analysis and aΓe valid when specific

criteria hold [21]. Το satisfy this requίΓetηent and after son1e extensive nun1erical

experitηentation the ιηass flow rate is obtained according to the above analysis PlΌvided that

L / R ~ 1Ο and the inlet rarefaction ρaraιηeteΓ δ:ς 100.

Ιη the case of L/ R < 10 and if the ρΓessure ratio is stηall i.e. ΡΒ / ΡΑ > 0.9 the flow can be

cοnsίdeΓed as lineaI' even ίη shΟΓt tubes and the solution is obtained by solving the linearized

BGK equation ίη the whole flow field instead of a CIΌSS section [22]. The tηass flow Γate is

obtained by:

(2.1.8)

where the ditηensionless flow I'ate WL1N is cοιηΡuted flΌtη the velocity field inside the tube as:

(2. Ι .9)

The dίιηensίοnΙess flow rate WLIN is calculated ίη tertηs of the Γarefactiοn ρaΓatηeteΓ δ and the

aspect Γatίοs of the tube. It is obvious that the cOtηputational effoΓt is Γeduced solely οη the fact
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that with the lίneaΓίΖatίοn of the f]ow the ρι'eSSUΓe Γatίο ΡΒ / ΡΑ ρaΓaιηeteΓ IS eIiminated.

Indicative ΓesuΙts of WL1N aΓe PIΌvided ίη Appendix Β.

If the CΓίteΓίa descγibed above do not hold i.e. if L/ R s 10 and ΡΒ / ΡΑ S 0.9 the f]ow is

cοnsίdeΓed as nonIineaI" and must be tackIed based eitheI" οη the DίΓect SiInulation Monte Cat'lo

nlethod [23, 24] ΟΓ οη nonlineaI" k.inetic nl0del equations solved by the ρaΓaΙleΙίΖed dίSCΓete

velocity method [25-27]. The Inass f10w Γate thΓοugh the tube is obtained by:

(2.1.10)

wheΓe WNL is the diInensionless nonlineaI" f]ow ΓaΓe that depends οη aII thΓee f]ow ρaΓameteΓS

deSCΓίbed above (δ, L / R and ΡΒ / ΡΑ ). The ΡΓeSSUΓe dίffeΓence between the inlet and the outlet

of the tube is then given by:

Ρ - Ρ = Ρ (ι-ΡΒ J= ΜΝΙΙΙΟ (1- ΡΒ J
Α Β Α Ρ Γο Ρ

Α WNL νπR- Α

(2.1.11 )

It is obvious that this case is the most coInputationaIly demanding one and extensive

computations have been ρeΓfΟΓmed to ρΓeρaΓe an adequate laΓge and dense data base oveI" a wide

Γange of the involved ρaΓaιηeteΓS. Indicative ΓesuΙts of aΓe ΓeΡΟΓted at Appendix Β.

The I'esults and fΟΓmulas PIΌvided by both IineaI" and nonIineaI" kinetic theoΓY aΓe used ίη

ΟΓdeΓ to have an explicit eΧΡΓessίοn of the ΡΓeSSUΓe dΙΌΡ inside a tube as a function of the f]ow

Γate fOΓ all f10w ρaΓameteΓS. The above can be used to develop a gas dίstΓίbutίοn system solveΓ ίη

the whole Γange of the Κnudsen numbeI" as it wiII be descγibed beJow. Ιη ΟΓdeΓ to decγease

conlputational effΟΓt only ΡΓeSSUΓe dΓίven f10ws thIΌugh cίΓculaΓ tubes aΓe cοnsίdeΓed ίη this

WΟΓk. Ιη the case of channels with aΓbίtΓalΎ CΙΌSS section the f]ow is siInulated by cοnveΓtίng the

nοncίΓcu]aΓ CΓΟSS section to an equivalent cίΓcuΙaΓ one based οη two dίffeΓent aPPIΌaches. Ιη the

fίΓst aPPIΌach the Γadίus of the equivalent cίΓcuΙaΓ channel is defined aCCΟΓdίng to the hΥdΓauΙίc

Γadίus concept [28], while ίη the second one it is defined by equating the aΓeas of the nοncίΓculaΓ

and cίΓcuΙaΓ CΙΌSS sections [29].
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2.2 Network solvers

Α survey of algorithms that have been already developed ίη the past ΥeaΓS for modeling

gas networks is provided. Ιη the hydrodynamic regime computational algorithms dedicated to the

hydraulic design and optimization of gas pipe networks (e.g. compressed air, natural gas, etc.)

are well established [30-35] and widely available. Such software is the Pipe20 16 computational

package that has been under development since 1973 from the University of Kentucky [36].

Pipe2016 analyzes, one-dimensional, isothermal f10w for ideal and non-ideal vaΓίable density

gases and can accommodate laΓge networks, l00ped systems and multiple l0ad and supply points.

Ιη addition, several scenarios can be set υρ ίη a single model such as load ΟΓ supply changes and

open ΟΓ closed valves. Pipe2016 offers an integrated GUI from which the user can provide all the

required input data such as the piping elements length and diameter, pipe fittings (e.g. bends, T's,

reducers, etc.), node load ΟΓ supply as well as compressors and fans. For the simulation of the

gas network the lίnear pressure L0SS at each tube is taken from the Darcy-Weisbach equation as

where fD is the Darcy friction factoΓ, L and D are the length and diameter of the pipe, while Ρ

and V aΓe the mean density and velocity of the gas inside the pipe. The Darcy friction factor is

calculated from well-known empirical eΧΡΓessίοns and depends οη the chaΓacteΓίstίcs of the f10w

inside the tube. The pressure L0SS due to pipe fittings is given following the K-method [37] as:

where Κ is the [esistance coefficient taken from the sοftwaΓe's ίntegΓated lίbΓaΓίes. FOl" the

description of the pressure-temperature relation inside the network the Ideal Gas law, while Νοη­

Ideal Gas and Constant Density Gas analyses are also available.

Ιη the free molecular regime particle collisions are negligible and thus the collision part

of the Boltzmann equation is neglected. These types of f10ws are usually solved stochastically by

using the Test ΡaΓtίcle Monte Carlo method (TPMC). The TPMC closely [esembles the DSMC

(2.2.1)

(2.2.2)ΔΡ=κ
ρν2

2

ΔP=f ~ρν2
D D 2
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method by excluding the collisions between parιicles. The flow domain is discretized οηlΥ at its

boundaries and ηο internal discretization is required. lnitially a large nuιηber of sίιηuΙatίηg

parιicles is dίstΓίbuted at the domain boundaries with each ρaΓtίcΙe sίlηulatίηg a laΓge number of

real ιηοlecules. Then, the simulating particles stochastically move inside the f10w domain

following rectilinear trajectories and can only collide with the domain's bοundaΓΥ surfaces.

Oepending οη the type of boundary that a particle collides with, the particle can then be reflected

ejther sρeculaΓIΥ ΟΓ diffusively, abSΟΓbed by the surface ΟΓ removed fIΌm the f10w domain jf the

boundaι-y is an open surface. Because the ιηοvemeηt of parιicles is independent of each other, the

TPMC method can be easily parallelized and thus ίι can PIΌvide fast ,"esults. It can be readily

seen that the Test ΡaΓtίcle Monte Carlo can be used to simulate gas distribution systems that

operate at fΓee molecular conditions. One of the ιηοst populaJ" and widely available

computational tools for moleculaJ" f10w simulations is Molflow+ that has been under continuous

development and addition of new features at CERN since 1991 [38]. FOI" the simulation of gas

distribution systems the user must PIΌvide the network geοιηetrΥ through CAO ρrοgraιηs and

thus pipes with aΓbίtraΓΥ CΙΌSS sections and fittings can be geοn1etΓίcallΥ ,"epresented with high

accuracy. Gas tanks and pumps can be ίιηρlelηeηted with specific boundary surfaces while

supplies ΟΓ demands at ceΓtaίη points of the network can also be given. lη addition, Molflow+

offers the capability of transient simulations which can be of major importance ϊη gas networks

analysis.

Recently, ITERVAC a numerical tool for gas network simulations has been developed at

the ΚaΓlsruhe Institute of Technology (ΚΙΤ) for gas network calculations ίη the whole range of

the Knudsen number [39]. The input data aΓe provided through a GUI that allows the user to

build 20 networks. Then, ITERVAC uses semί-eιηρίΓίcaΙ expressions to deteΓmίne the mass

f10w ,"ates inside a pipe as a function of the coιTesponding ΡΓeSSUΓe dIΌP between the

hydIΌdynamic and fΓee moleculaJ" limits. The expression [ΟΓ the f10w ,"ate is given as:

Μ = F πD/~ οΡ
8ι/ο ΟΧ

(2.2.3)

wheΓe DI1 is the hΥdΓaulίc diameteJ" of the tube Uo =J2ksT / m is the most PIΌbable velocity and

F is given as a function of four fitting ΡaraιηeteΓS:
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(2.2.4)

Taking the limit of Eq. (2.2.4) ιη the VISCOUS regime (Κn -+ Ο) the value C, of can be

determined as:

lim F =!l = F ~ C = 4#
KI1~O \,1.\'(' ι

Κn f D Re
(2.2.5)

where f D is the Darcy fΓiction factol' and Re is the Reynolds nuιηbeΓ. Α ιηΟΓe general appΓOach

is to take CI as:

(2.2.6)

Tak.ing the limit of Eq. (2.2.4) ίη the free ιηοleculaΓ Γegίιηe (Κn -+ (0) the following eΧΡΓessίοn

for the fitting ΡaΓametersΡaΓameters C2 and C3 can be obtained:

(2.2.7)

Assuming an isοtheΓmal, isotropic Maxwellian dίstΓibutiοn insjde a ciΓculaΓ channel Eq. (2.2.7)

becοιηes:

C3+C4= 2W ~
#D

(2.2.8)

where W is the dimensionless free moleculaΓ flow rate thΓOugh the ciΓcu!ar tube. The remaining

fitting parameter C~ is taken as a fixed Ρaraιηeter that descγibes the beaιηing effects. Values fOΓ

the four coefficients are presented for some common tube CΙΌSS sections ίη Table 2.
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Table 2: Fitting parameters of Eq. (2.2.4) for common tube cross sections

Geometry Clatll C2 C3 C~

Circular 1.000 Ι .116 0.329 1.400

Rectangular (1 χΙ) 1.124 1.486 0.574 1.400

Rectangular (2χ 1) 1.029 1.666 0.732 1.400

Triangular 1.200 1.340 0.963 1.400

For short channels (Ι Ι D" < 80) C2 and C3 are weighted by a cοπectίοn factor while CJ

IS cοπected for entrance and exit effects. Extensive computationaI and experimental

benchmarking of ITERVAC's empiricaI expressions has been performed, with a highest

deviation of 3% at the viscous and free molecular regimes, increasing υρ to 40% for the

transition regime.

2.3 Applications of vacuum gas distribution systems

As alΓeadΥ mentioned many technological applications can be modeled as gas networks

ΟΓ require the utilization of some kind of gas dίstΓίbutίοn system. Typical examples include

micro-filtering processes, flows through porous media, vacuum chambers for CD/DVD

metallization and chip fabrication. Two of the largest vacuum systems are found at the LaΓge

Hadron Collider (LHC) l0cated near Geneva ίη the FΓance-SwίtΖerΙand bΟΓdeΓ and the ITER

experimental fusion Γeactor now under cοnstΓuctίοn ίη Cadarache, France.

The fίΓst start-up of LHC ίη 2008 constituted it as the biggest operational vacuum system

ίη the world, operating at a variety of ΡreSSUΓe leveΙs and using an impressive array of vacuum

technologies. The LHC features three separate vacuum systems: one for the beam pipes, one fOl"

insulating the cryogenically cooled Inagnets and one for insulating the helium dίstΓίbutίοn lίne.

The fίΓst system is used to avoid the collisions of molecules inside the acceleratoI" while the two

lateΓ ones are used as a thermal insulator for the cΓYomagnets and the helium lίne. The thΓee

separate vacuum systems sum υρ to ίη a total of 104 kiΙοmeteΓS of piping. The insulating vacuum
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equivalent ω son1e 10--1 Pa is made υρ of an impres ive 50 kn1 of piping while the ,"eInaining 54

km of pipes under vacuum aΓe the beaIn pipes with a ΡΓessure level in the order of 10-9 υρ ω

10- Pa. Due ω the uΙtΓa-hίgh vacuum condition Inet at the LHC InoleculaJ" flO\V conditions are

assumed and thus Molflow+ has been used for in1ulating the three seΡaΓate vacuum system .

The successful ΟΡeΓatίοn of the ITER fusion ,"eactoJ" requίΓes the constant conditioning

and moniroring of the vacuuIn vessel. With a voluιne of 1400 1113 and 8500 1113 ,"espectively, the

ITER vacuuIn vessel aIΊd cγyostat range aInongst the largest vacuuIn systen1S ever ω be built.

VaclluIn pllmping iS required ρΓίΟΓ ω staΓtίπg the fusion ,"eactioIΊ ω eliIniIΊate all sources of

organic molecules that would otherwise be broken ιιρ ίπ the hot plasIna. VacLluIn pumpiIΊg iS also

(-equired ω cγeate low deIΊsity about oIΊe million tiInes l0wer than the density of air. Mechanical

pumps and powerful cryogenic pump evacuate the aiJ" οω of the vessel and the cryostat llntil the

ΡreSSUΓe inside has dropped ω one millionth of ΠΟΓmaΙ atmospheric pressure. Considering the

voluIne of ITER, this ΟΡeΓatίοn will take 24 ω 48 hΟUΓS. The main pun1ping systems are the six

torus exhaust pun1ps, the four cryopumps fOJ" the neutΓal beaJn injection sy tem used ίπ plasIna

heatiIΊg, aIΊd the two cryopumps fOJ" the ITER cryostat ω maiιHain the l0w ΡΓeSSUΓe required for

the operation of the SΙΙΡeΓcοnductίng IΊ1agnet . Dlle ω ITER's wide vacuum conditions ranging

fΓοm the free moleculaJ" υρ ω the slip regime a numerical ωοl that can simulate gas dίstΓίbutίοn

systems ίπ the whole range of the Knudsen nllmbeJ" is required.
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Chapter 3: Gas distribution systems

3.1 Geometrical components

It is worthwhile to eχaιηίηe the geοmetΓίcal components that compose a typicaI ηetWΟΓk.

Α gas distιibution system can be cοηsίdeΓed as a dίΓected liηeaΓ graph consisting of a finite

number of nodes and pipes and the solution of the above gΓaΡh consists of the pressure ίη each

node and the mass flow ["ate ίη each pipe. Nodes are divided into two categories: inneI" and fixed

grade nodes. Inner nodes have an unknown pressure but aΓe allowed to have a demand ίη flow

["ate while fixed gΓade nodes have a known pressure and cannot have a demand ίη flow rate. Α

pipe οη the other hand descιibes the adjacency between two nodes of the ηetWΟΓk and is

characterized by its length L, and diameter D. The above two components are considered as the

primary ones, as they can fully define any network. ΗοweveΓ, secondaι-y geometrical

components that consist of ΡΓίmarΥ ones can be defined, such as the loops and the pseudoIoops

of the ηetWΟΓk. Α loop is a closed pipe path, while a pseudoIoop is a pipe path connecting two

fixed grade nodes. ΑCCΟΓdίηg to graph theoι-y for a well-defined network that consists of Ρ pipes,

n inner nodes, f fixed grade nodes and Ι Ioops the following relation must hold:

Ρ =n + 1+ (f -1)

... ;>."

4 ••>" 3 1I 6

.. .. .. -:: ..
"<-' 5

2
3

Figure 2: Geometrical components of an example network.
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Το clarify each cοιηΡοnent an example network is shown ίη Fig. 2. The above network consists

of 7 nodes {Ι ,2,3,4,5,6,7} from which 5 are inner nodes {2,3,4,5,6} and 2 are fixed grade nodes

{1,7} and 8 pipes describing the connections between nodes {1-2, 2-3, 3-4, 2-4, 3-5, 5-6,4-6, 6­

7}. AIso 2 loops and Ι pseudoloop can be defined respectively by their pipe paths {2-3-4, 3-5-6­

7}, {1-4-7-8 }. Assumi ng that the pressure drop in each pipe ί is a function of the ιηass flow rate

denoted by F(Mi) then the system of equations is as follows:

Ι. ΕneΓgΥ balance equations for each piping element:

Ρι -~ = F(M I )

~ -~ = F(M 2 )

~ -~ =F(M 3 )

~ - ~ = F(M~)

2. Mass continuity equations for each inneI" node:

~ - Ps = F(M s )

R, -~ = F(M 6 )

~ -~ = F(M 7 )

Ρ6 - Ρι = F(M g )

(3.1.2)

Μι -Μ 2 -Μ4 =0

M 2 -M3 -M s =0

Μ 3 +Μ~ - Μ 7 = Q4

M s-Μ6 = Qs

M 6 +M7 -Mg =0

(3.1.3)

Solving the 13 equations described above will provide the 13 unknown quantities of the netWΟΓk

i.e. the 5 ΡΓeSSUΓe values at each inner node and the 8 mass flow Γates at each pipe. Ιη ordeI" to

use an ίteΓatίve numeΓίcal scheιηe to solve this ΡΓοblem it is necessaΓy to Γeduce the initial set of

equations to a system that only contains the unknown mass flow rates. This can be achieved by

combining the eneΓgΥ balance equations along the secondary geοmetΓical components of the

netWΟΓk. Thus, fOI" the 2 loops of the SΥstelη the eneΓgΥ balance equations aΓe given as:

-F(M 2 )+ F(M~)-F(M3)=0

F(M3) + F(M 7) - F(M6 ) - F(Ms) =Ο
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For the pseudoloop of the network the energy balance equation is:

F(M I ) + F(M.j) + F(M 7) + F(M8) = Ρι - Ρ7 (3.1.5)

For the loops and pseudoIoops equations the f10w iS considered positive if the direction of its

cοπeSΡοηdίηg pipe agrees with the direction ίη which the loop ΟΓ pseudoloop iS defined,

otherwise the f10w iS considered negative. The reduced set of equations is given as follows:

- F(M 2 ) + F(M.j) - F(M 3 ) =Ο

F(M 3 ) + F(M 7 ) - F(M 6) - F(M 5 ) = Ο

F(M I )+F(M.j)+F(M7 )+F(M8 ) = Ρι -Ρ7

Μι -Μ2 -M.j =0

Μ2 -Μ3 -Μ5 =0

Μ3 +M.j -Μ7 =Q.j
Μ5 -Μ6 = Q5

Μ6 +Μ 7 -Μ 8 =0

(3.1.6)

It is observed that the initial set of 13 equations is reduced to 8. The reduced system of equations is Iinear

and can be solved by Gauss elitηination for the unknown flow rates.

3.2 Governing equations

As described above the governing equations consist of the mass conservation equations at

each inner node and the energy ba1ance equations at each loop and pseudoloop of the network.

Thus a generalized set of governing equations can be determined for any network. The mass

conservations equations are expressed as:

(3.1.7)
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where the index 1~ ί ~ 17 refers each of the η inner nodes of the network, while the summation

index j refers to the pipes connected to node ί. The sign of the f10w rate is taken positive or

negative when the f10w is into ΟΓ out of the node respectively. The energy balance equations for

the closed loops of the network are described as:

[Σ (±)Δ Pj ] =Ο
J k

(3.1.8)

where the index 1~ k ~ l denotes the closed loops of the network, while the summation index

refers to the pipes that constitute the lοορ k. The pressure drop is taken positi ve if the direction

of pipe j agrees with the direction that lοορ k is defined, otherwise it is taken as negative. The

energy balance equations for the pseudoloops connecting two fixed grade node of the network

are given by:

[ Σ(±)ΔΡί+ΔΗ] =0
) πι

(3.1.9)

where the index Ι ~ 111 ~ f -1 refers to the f -Ι pseudoloops of the network, while the

summation index j refers to the pipes that constitute pseudoloopln and ΔΗ is the pressure

difference between the two fixed grade nodes connected via pseudoloop 111. Here again the

pressure drop is taken positive if the direction of pipe j agrees with the direction ίη which

pseudo1oop 111 is defined, otheIwise it is taken as negative. Based οη the above the fina1

generalized system of equations will consist of 17 + l + f -1 equations that can be solved for the

unknown Ρ mass f10w rates according to re1ation 3.1.1.

3.3 Identification of loops and pseudoloops

As described, with the use of the closed loops and pseudoloops of the network the initial

system of equations can be reduced to a set of equations that contains οηlΥ the unknown f10w
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rates. For the identification of the Ι loops and f - Ι pseudoJoops of the netWΟΓk the well-known

Depth FίΓst Search algorithIll [40] is used. The DFS is an algorithIll for searching ΟΙ' tΓaveΓsίng

tΓee and graph structured data. The algΟΓίthΙll starts flΌΙll an arbitrary node and traverses the

network thΓOugh the pipe connections until all nodes have been tΓaveΙΙed once.

Thus, the iIllpleIllentation of the algorithm ίη order to identify a set of f -1 independent

pseudoloops of the netWΟΓk is straightforward. The DFS PΓOcedure starts fΓOm the fίΓst fixed

gΓade node and tΓaveΓses the gΓaρh until anotheΓ fixed gΓade node is found. When this CΓiteΓίοn is

met the path between the two nodes is stoΓed and the above ΡΓΟcedUΓe is ,"epeated until all

,"emaining fixed gΓade nodes have been found. This will always Γesu!t ίη an independent set of

f - Ι pseudoloops, provided that the netWΟΓk is well defined.

Οη the otheI" hand, the identification of a set of Ι independent loops is much more

complicated. The DFS algΟΓίthm can be easily used to aΓbίtΓaΓΥ identify loops fΓOm a given

network, howeveI" the closed loops eχtΓacted by this ΡΓΟcedUΓe aΓe not guaΓanteed to be lίneaΓIΥ

independent. The cOlllputational effΟΓt to check the independence of this extracted set of loops is

fOΓlllidable if not prohibitive. Thus, a "spanning tΓee" method [41] must be iIllpleIllented. Ιη the

ρΓesent WΟΓk, two successive DFS algΟΓithΠ1S aΓe used to impleIllent the spanning tΓee Illethod.

The first DFS aΙgΟΓίthm stans fΓOm an aΓbίtΓaΙΎ node and tΓaveΓses the whole netWΟΓk via the

pipe connections. At each node the algorithIll checks fOI" pipes that connect the cuITent node with

nodes that have been alΓeadΥ visited. If such pipes exist they aΓe deleted fΓΟΠ1 the initial netWΟΓk

and aΓe stoΓed ίη an adjacency aITay. AfteΓ the fίΓst DFS ρrοcedUΓe has been completed Ι pipes

will have been deleted and the ,"emaining netWΟΓk will have been ,"educed to a tΓee netWΟΓk that

contains ηο loops. Then, each pipe deleted is individually added back to the tΓee netWΟΓk which

now will contain a single lοορ. Α second DFS aΙgΟΓithm is iIllpleIllented to eχtΓact and stoΓe the

pipe path of this single loop and the pipe eleIllent that has been added is again deleted. The above

ΡΓΟcedUΓe is ΓeΡeated fOI" all the pipes stoΓed and will always PΓOvide an independent set of Ι

closed loops, given a well-defined netWΟΓk.

Αη exaIllple of the lοορ eχtΓactίοn ΡΓΟcedUΓe is shown ίη Fig. 3. Ιη this case the fίΓst DFS

a)gΟΓίthm will staΓt at node {1} and will then visit nodes {2,3,4}. At node {4} a pipe connecting

node {4} with a previously visited node, nan1ely node {2} is found and thus it is deleted fΓOIll the

netWΟΓk. The DFS will continue to visit nodes {6,5} and will delete the pipe connecting nodes

{5} and {3}. FrοΠ1 node {5} the aΙgΟΓίthm will backtΓack to node {6} and will stop by tΓaveΓsίng
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to node {7} as all nodes ofthe network have been visited once. Then, pipe {2-4} will be added

back to the network and a DFS procedure wi 11 start from node {2} to extract lοορ {Ι}. Pipe {2-4}

is then deleted and the procedure is repeated for pipe {3-5} ίη order to extract lοορ {Il}. The

procedure stops when all the deleted pipes have been processed.

Initial network

Spanning tree nenvork

6ι----~

5

Extraction of lοορ Ι

Extraction of lοορ 11

4 6 7 Ρ7

..........)......

"
....< .

Ι-----?( )--~~3)---~

Figure 3: Extraction of loops in an example network.
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3.4 Integrated steady-state algorithm

Ροτ the initialization of the integrated steady-state code the ίηρω data must be provided.

The ίηρω data are the geometrical components of the netWΟΓk (inner nodes, fixed grade nodes,

pipe elements) and the operational data (demand at each inner node, pressure at each fixed grade

node, length and diameter of each piping element). Once the geometrical and operational data are

provided an iterative procedure between the pressure drop equations and the network's mass and

energy balance equations is implemented:

ι. Αι all inner nodes of the network, pressure values are assumed and the ΡΓessure

difference ίη each tube is calculated.

2. The c10sed loops and pseudo1oops of the network are identified.

3. The rarefaction parameter at each pipe end is estimated.

4. The values of the dimensionless f10w Γates [ΟΓ each tube are interpolated from the

availab1e kinetic data bases.

S. The system of mass and energy balance equations (3.1.7), (3.1.8), (3.1.9) is solved by

applying the Gauss elimination with partia1 column pivoting to compute the mass f10w

rates at each tube.

6. ΡΓeSSUΓe drop equations (3.1.2) are used to update the pressure at each inner node.

7. The updated pressure values are compared with the ones ίη Step 3 and the procedure is

iterated υροη convergence.

Α detailed logic diagram of the steady-state algorithm is shown ίη Fig. 4.
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Identify Ioops
and pseudoIoops
of the network

Assume pressure
vaIues at interior

nodes Ρ.,

Compute the
dimensionless flow
rate G· at each tube

SoIve the system of
mass and energy

balance equations

Update the pressure
vaIues at each
interior node

Figure 4: Logic diagram of the integrated steady-state algorithnl.

Some pitfalIs of the above methodology that may arise are mentioned below for clarity

and completeness. If the network geometry given as ίηρυι is ηοΙ welI defined the algorithm

colIapses. Some cases that falI ίη the above category are nodes that have ηο pipe connection with

the rest of the network, pipes that connect a node with itself and wrong numbering of either the

nodes ΟΓ the pipes of the network. AIso for the numerical scheme to converge ίι is mandatory
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that a solution of the given network exists. The unconditional convergence of steps Ι to 7 is

guaranteed only when node pressures and gas supplies are given as boundary conditions to the

network while when node demands are imposed the network solution can be constituted

infeasible.

3.5 Time dependent gas distribution systems - Hybrid scheme

Ιη many cases, gas distribution systems operate under transient conditions instead of

steady-state. The time dependency of a network can originate from various sources such as non­

constant node demand ΟΓ supply, valve events ΟΓ tanks with variable pressure. Ιη this study only

the latter case is considered. It is clear though that for all of the above cases the time must be

discretized and the whole network must be solved at each time step with variable conditions. The

above methodology while easy and straightforward ίη its implelnentation is computationally

demanding for small ΟΓ medium sized distribution systems and prohibitive for large networks.

Thus for complex distribution systems with thousands and nodes and pipes a hybrid model must

be applied. Το clarify the hybrid coupling it is auxiliary to consider the simple network shown ίη

Fig.5.

7

6

}--_.....;5_~5

Figure 5: Transient example network.

Assume without the L0SS of generality that fixed-grade node {Ι} is a tank of infinite

volume while fixed-grade node {7} represents a tank of finite voluIne ν with an initial pressure

Ρι > Ρι . It is observed that gas from node {7} will f10w towards node {Ι} due to the pressure
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dίffeΓence and thus the ΡΓeSSUΓe at node {7} will gΓaduaΙΙΥ decγease until the netWΟΓk I'eaches a

steady state. It ί also cleaΓ that the plΌcess ίη the finite volume chambeΓ and the ΡΓοcess of the

gas flow thlΌugh the netWΟΓk aΓe coupled. ΗοweveΓ, and explicit-type coupling of the two

ρΓοcesses as descγibed ίη [42,43] can be applied. The time that characteΓίΖes the flow inside a

tube is defined as the time needed to CIΌSS the tube Γadίus with the most ΡΓοbable velocity of the

gas and is PlΌvided below:

R
(3.5.1 )

wheΓe R iS the tube Γadίus and Ι/ο iS the most plΌbable ve!ocity of the conveying gas. Whi!e the

chaΓacteΓistίc tinle of the ΓeseΓvοίΓ iS given as:

V
t =-­
Μ R2

Ι/ο

(3.5.2)

wheΓe V iS the vo!uιne of the ΓeseΓvοίΓ. It iS οbseΓved that [ΟΓ typica! systeIns V» R3 and

theΓefΟΓe tM Ο t
II1

• Thus a ΡΓeSSUΓe change inside a ΓeseΓvοίΓ has a quasi-steady Γesροnse by the

flow Γates of the netWΟΓk which allows the explicit coupling of the two nlode!s. ΜΟΓe

specifically, it iS stated that the hΥbΓίd coupling method can be applied when tM / t
II1
~ Ι ο. The

chambeΓ ΡΓeSSUΓe iS assumed to follow the Ideal Gas Law and thus the ΡΓeSSUΓe change can be

WΓίtten as:

cIP(t) = 111RgT

dt V
(3.5.3)

wheΓe R iS the conveying gas constant, Τ is the temρeΓatuΓe of the chambeΓ, and /11 iS the Jnass
g

flow inseI·ting ΟΙ' eχeΓtίng the chambeΓ. Ιη the simple case that the netWΟΓk contains only one

finite volume tank, the gas flow /11 can be WΓitten as a function of only the chambeΓ's ΡΓeSSUΓe

and thus Eq. (3.5.3) is Γeduced to an ΟΓdίnaΓΥ dίffeΓentίal equation which can be explicitly solved

26



with respect to the chamber' s pressure P(t). For the mass flow rate lj1 the network must be

solνed for νarious chamber pressures ίη order to create a data base. Then, ln can be interpolated

with respect to Ρ(ι) and the pressure eνolution inside the chamber is easily deriνed by explicitly

integrating equation Eq. (3.5.3). Ιι is clear that once the mass flow rate data base is known the

computational effort required to integrate Eq. (3.5.3) is minimal compared to the solution of the

fully-coupled plΌblem. Howeνer, ίη the general case where the network contains Ν finite νolume

tanks Eq. (3.5.3) must be solνed indiνiduallyfor eνery tank:

Ιn order to express each n1, the creation of a data base with Ν dimensions is required. Thus, ίι

where the mass f10w rate inserting ΟΓ exerting νessel ί depends οη the pressures of each chamber

and must be written as:

is stated that hybrid-coupling although νalid for networks with Ν finite νolume νessels, is

computationally efficient for υρ to Ν :ς 2.

(3.5.4)

(3.5.5)

, ί =1,2....,Ν
dPΙ(t) = ln;RgI;

c/t v:

lj1;=F(PΙ,~"",PN)' ί=1,2 ....,Ν

3.6 Benchmarking

Το νerify the code and its accuracy three benchmark problems will be solνed two of them

being steady-state plΌblems while the remaining one being time-dependent. The first benchmark

network which belongs ίη the slip flow regime (lΌugh νacuum) is shown ίn Fig. 6. Ιn this gas

rarefaction range the Naνier Stokes equations subject to slip boundary conditions are still νalid

and well established hydlΌdynamic network solνers may be implemented [44]. Thus a

comparison between the corresponding results is plausible.
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Figure 6: First steady state benchmark network.

The network shown ίη Fig. 6 consists of 14 tubes, 9 junction nodes {2, 3, ... 1Ο} , 2 fixed

pressure nodes{ Ι, 11}, 4100ps and 1 pseudoloop. The tubes of the network have various lengths

and diameters ίη the wide range of 2 :s L/R :s 1200 and are tabulated ίη Table 4. The conveying

gas is argon (Ar) at reference temperature Το= 293.7 Κ with the following properties: molar mass

m = 39.95 g/mole, gas constant R = 208 J/kg/K viscosity μ= 2.280χ10-5 Pa s. The pressures at

nodes 1 and 11 are fixed at 2 Pa and 0.4 Pa respectively. For generality purposes a demand equal

to 2χ 10-7 kg/s has been added at node 8. The sample netWΟΓk described above is solved via both

the present kinetic netWΟΓk algΟΓίthm and a Matlab solveI" based οη the hydrodynamic equations

with velocity slip boundaIΎ conditions [44]. The cοmΡaΓίsοn of the pipe flow Γates and node

ΡΓessures between the two approaches aΓe provided ίη Tables 3 and 4. It is cΙeaΓΙΥ οbseΓved that

theΓe is a very good agΓeement between the results of the two approaches with the higher

deviations being for the ΡΓeSSUΓe 0.65% at node 8 and fOI" the mass flow Γates 2.9% at tube 13.
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Table 3: Pressure [Pa] at the nodes of the sarnple network shown ίη Fig. 6.

Node

number

2 3 4 5 6 7 8 9 10 Ι Ι

Kinetic

code

2.0 1.418 0.895 0.716 1.337 0.781 0.715 1.107 0.929 0.664 0.400

Hydro- 2.0 1.4130.8960.7181.3320.7790.7161.0990.9250.661 0.400

dynamjc

code

Table 4: Tube mass flow rate [Kg/s] of the sample network shown ίη Fig. 6.

Tube Nodes Length Diameter ΑveΓage Kinetic Hydrodynamic

L [m] D[m] δα l11ass flow rate mas flow rate

[Kg/s] [Kg/s]

Ι 1- 2 20 0.20 2] .4 1.66χ 10-6 1.67 χ 10-6

2 2-3 5 0.10 7.25 3.35 χ 10-7 3.33 χ 10-7

3 3 - 4 6 0.15 7.58 3.30χ 10-7 3.28 χ 10-7

4 2-5 100 0.50 43.2 1.33χI0-6 Ι .34χ 10-6

5 3 - 6 60 0.10 5.26 5.14χlO-9 5.04 χ 10-9

6 4-7 0.4 0.40 18.0 3.30χ 10-7 3.28 χ 10-7

7 5-6 20 0.10 6.65 8.55 χ 10-8 8.37 χ 10-8

8 6-7 2 0.20 9.39 9.38 χ 10-7 9.53 χ 10-7

9 5-8 8 0.20 ]5.3 1.24χ10-6 1.26χ 10-6

10 6-9 80 0.40 21.5 -8.48χlO-7 -8.65 χ 10-7

11 7 -10 2.5 0.25 10.8 1.27 χ 10-6 1.28 χ 10-6

12 8-9 30 0.30 19.2 1.04χ 10-6 1.06χ 10-6

13 9 -10 15 0.15 7.49 1.96χ10-7 1.90 χ 10-7

14 10 - 11 1.5 0.15 5.01 1.46 χ 10-6 1.47 χ 10-6
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The second benchmark network belongs ίη the sIip regime and is shown ίη Fig. 7. The

above network consists of 24 tubes, 20 junction nodes, 4 fixed pressure nodes, 5 loops and 3

pseudoloops. The tubes of the network have various lengths and diameters ίη the range of Ι Ο :::;

L/R :::; 300. The conveying gas is air at reference temperature Το= 293.7 Κ with the following

properries: molar mass m = 28.319 g/mole, gas constant R = 286.9 J/kg/K, viscosity μ=

1.837χ1Ο-5 Pa s. The pressure at node 1 is fixed at 1 Pa while the pressure at nodes 15, 18,20 is

set to 1Ο Pa. AIso at nodes 7 and 8 a demand of to 1χ Ι 0-6 kg/s has been added. The comparison

between the two approaches for the pipe mass flow rates as well as for the node pressures is

provided ίη Tables 5 and 6. It is observed that the higher deviations of the two applΌaches are

0.16% for the pressures at node 6 and 1.9% for the mass f10w rates at tube 18. The good

agreement between the two approaches is justified by the rarefaction regime of the network, as

well as the L/R range of the pipes.

Qs

Ι ρ\IΕ------{2

Figure 7: Second steady state benchΠ1ark network.
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Τable 5: Τube mas flow rate [Kg/s] of the ample network shown ίη Fig. 7.

Τube odes Length Diameter Average Κinetic HydlΌdynamic

L [m] D [ιη] δο mass flow rate nlas f]ow rate

[Kg/s] [Kg/s]

Ι 2-1 10 0.50 53.17 2.00χ IO-o~ 2.00χ Ι o-o~

2 3 - 2 15 0.20 67.33 5.18χlο-Ο5 5. Ι 9 χ 10-05

3 4-3 12 0.50 259.6 -Ι .50 χ IO-o~ - Ι .5 Ι χ Ι o-o~

4 5 - 2 2.5 0.50 76.08 1.48 χ Ι o-o~ 1.49 χ Ι o-o~

5 4-5 18 0.25 83.67 9.62 χ 10-05 9.66χ 10-05

6 5-6 4 0.40 63.14 1.00χ 10-06 1.00χ 10-06

7 7-4 12 0.20 72.81 -5.39χ 10-05 -5.39χ 10-05

8 7-5 20 0.40 74.94 5.29χ 10-05 5.29χI0- 05

9 7-8 20 0.50 108.3 1.00χ 10-06 1.00χlο-Ο 6

10 9-3 8 0.40 217.3 2.02 χ Ι o-o~ 2.02 χ IO-o~

Ι Ι 10 - 9 10 0.20 115.0 1.03χ 10-05 ] .04χ 10-05

12 13 - 9 10 0.40 231.1 1.92 χ lo-o~ ] .92 χ 10-o~

13 13 - 10 5 0.25 148.3 9.75 χ 10-06 9.89χ 10-06

14 14- 13 15 0.10 62.95 1.08 χ 10-06 1.08χ 10-06

15 15 - 14 4 0.50 33 1.6 1.08χ 10-06 1.08χ 10-06

16 Ι 1-10 10 0.50 295. Ι 5.53 χ 10-07 5.52 χ 10-07

17 12 - Ι Ι 14 0.20 118.3 5.53 χ 10-07 5.52 χ 10-07

18 12 - 13 15 0.10 59.42 -5.50 χ 10-08 -5.61 χ 10-08

19 16 - 13 12 0.50 302.5 2.00χ Ι o-o~ 2.0 Ι χ IO-O~

20 16 - 12 10 0.10 60.31 4.98 χ 10-07 4.96χ 10-07

21 17 - 16 30 0.50 317.5 2.0] χ lo-o~ 2.0IχIO-O~

22 ]8 - ] 7 5 0.50 329.8 1.99 χ 10-o~ 1.99 χ IO-O~

23 ]9 - 17 15 0.25 164.4 1.91χlο-Ο6 1.94χ 10-06

24 20- ]9 20 0.25 165.3 ].9IχlO-Ο6 ] .94χ 10-06
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Table 6: Pressure [PaJ at the nodes of the sample netwOl'k shown ίη Fig. 7.

Node Kinetic ΗΥdlΌdΥηaιηίc Node J(j netic ΗΥdlΌdΥηaιηίc

numbeI' Code code nunlber Code code

Ι 1.000 1.000 Ι Ι 8.899 8.891

2 2.207 2.210 12 8.932 8.924

3 7.946 7.937 13 8.987 8.980

4 7.711 7.701 14 10.00 10.00

5 2.382 2.386 15 10.00 10.00

6 2.378 2.382 16 9.257 9.251

7 3.268 3.264 17 9.893 9.892

8 3.262 3.260 18 10.00 10.00

9 8.439 8.430 19 9.939 9.939

10 8.898 8.890 20 10.00 10.00

The network shown ίη Fig. 7 is now sinlu1ated as a time dependent Ρrοb1eιη ίη ΟΓder to

benchιηaΓk the hybrid ίηtegΓatίοn code. ΑΙΙ the operational data described above ho1d (geometry,

fixed ΡΓessures, demands, conveying gas) with the exception of nodes 15,18 and 20 which aΓe

now connected to a ΓeseΓvοίr with a vο1uιηe of 50 ιη 3 . Thus the initial ΡreSSUΓe of 1Ο Pa will

change according to the mass balance of the reseΓvοίΓ until a steady-state has been Γeached. The

ηetWΟΓk descγibed above is tack1ed both with the hΥbΓίd integration code and by directly solving

the full tίιηe-deΡeηdeηt Ρrοb1eιη with the kinetic code. FoI' the hΥbΓίd ίntegΓatίοη the steady state

kinetic algΟΓίthιη is used to create a data base between the ΡΓessure of the l'eseΓvοίΓ and the mass

flow Γate exiting the reservoiΓ and then the ίηtegΓatίοη of the reselΎοίΓ'S ιηass balance equation is

ΡerfΟΓmed as descγibed ίn chapteΓ 3.5. ΡΟΓ the simulation of the fuIl tίιηe-deΡeηdeηt a ηetWΟΓk

has to be solved ίn which the ρΓessure of the ΓeseΓvοίΓ at nodes 15,18 and 20 is defined by the

idea1 gas 1aw ίη each time step. The advantage of the fully coup1ed PIΌb1em is that aIl the

ΡΓeSSUΓes and mass flow Γates of the network are PlΌvided fOΓ each time step while the hΥbΓίd

simulation only provides the finite vο!uιηe tank ΡreSSUΓe. Ιη Figs. 8 and 9 the ρreSSUΓe of specific

nodes and the ιηass f10w of ceΓtaίη tubes over 200 s is ΡΓeseηted. It is observed that fOΓ the

indicative nodes ΡΓesented, the ρreSSUΓes decrease ιηοηοtonίcalΙΥ and show a sίιηίlar qualitative

behaviOl'. The same behavior is οbseΓved fOΓ the ιηass f10w Γates ίη Fig. 9.
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Figure 8: Pressure evolution for nodes 2, 8, 9 and 16 of the gas network shown ίη Fig. 7.

Figure 9: Mass f10w rate evolution for pipe 1,5,6, 13 and 19 of the gas network hown ίη Fig. 7.



The pressure evolution of the tank with respect to time is shown ίη Fig. Ι Ο for both

approaches. Α perfect agreement is observed between the hybrίd-couplingmethod and the direct

simulation of the full time dependent network as the higher deviation over the course of 1000 s is

below 0.02%. The CPU used for both simulations was an Intel ί5-6200υ at 2.3 GHz and the

computational time required for the direct transient simulations was 231.2 s while only 0.8 s for

the hybrid coupling.
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2

Direct simulation
- - - - Hybrid simulation

Figure ]Ο: Comparison of pressure evolution inside the finite volume tank with the direct and hybrid
schemes.
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Chapter 4: The ITER primary vacuum pumping system

4.1 Geometry

The successful operation of ITER requires the ΙaΓgest and more complex vacuum systems

yet to be built. The vacuum spaces comprise the main tokamak, the CΓΥοstat vacuum fOl" thermal

insu1ation of the superconducting coils, four neutΓal beam injectors and auxiliary vacuum for

diagnostic, radio frequency heating systems and cryogenic circuits. The ITER tokamak wil1 be

fuel1ed with equimolar DT and wil1 requίΓe neutralized gas ίη the dίveΓtor to be pumped out ίη

ordeI" to balance the fuel1ing and [emove the fusion helium and other impurities ϊη the exhaust.

The initial ITER design has undergone continuous [evisions in order to reduce costs and solve

engineering issues associated with its performance.

The most recent geometric configuration of the ITER diveΓtoΓ is visualized ίη the 2012

CAΤΙΑ drawings of the ITER di vertoI" section, which provide detailed geοmetΓίcal data of the

divertor ring with the 54 cassettes and interconnecting paths as wel1 as of the pumping ducts and

ports. These drawings have been used within the ITER Physics acti vities of the 2012-13

European Fusion Development Αgreeιηent (EFDA) program to simulate the neutΓal gas f10w ίη

the divertor pumping system. Fol1owing the 2012 drawings and the associated reports [45-47] as

wel1 as the recently published work [48], the divertor pumping system has been approximated by

the ρίpe network shown ίη Figs. 11 and 12. Αl1 cassettes are considered identical to each other

and are sequential1y numbered (1-54).

Fig. 11 shows a view of the cross section along a cassette connected to a pump and the

cοπeSΡοndίng pipe netWΟΓk approximating the geοmetΓΥ of the actual gas f10w path along the

cassette cross section. The [egions of the dome, the inner and outer divertoI" arm gaps as wel1 as

the inlet and the outlet slots are indicated. The channel f10w configurations of the uppel" and

l0wer parts of the cassette are approximated by 25 and 16 channels respectively of various

lengths and diameters. The upper part consists of nodes 1 to 26 and the l0wer part of nodes 27 to

43. They are interconnected with 2 pipes resulting to a total of 43 channels and 43 nodes per

cassette. The 6 nodes {1, 10, 14, 18,26, 43} with given ΡΓessure (fixed grade nodes) are

specified. Through these nodes the pipe network [epresenting the f10w along a cassette is open to

the plasma side. Six out of the 54 cassettes, and ιηοre specifical1y cassettes 11, 17,29,35,47 and
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53, are connected to the six cryopumps located at ports 4,6,10,12,16 and 18 respectively [47].

The pumping duct nodes connecting each of the six cassettes to the corresponding pump are

shown for a typical case in Fig. 11. Finally, the II nodes {6, 9,13,17,21,28,31,33,35,38, 40}

connecting this cassette to its adjacent cassette ίη the toroidal direction, defined as toroidal

connection nodes, are also presented in Fig. 11. The pipe network simulating the geometry of the

actual gas flow path between adjacent cassettes in the toroidal direction along the divertor ring,

as well as through the gaps between the cassettes facing the plasma side οη a plane normal to the

toroidal direction is shown in Fig. 12.

Figure 11: View of the cross section along a cassette connected to a pump and schematic representation of

the cοπeSΡοndίηgpipe network approximating the geometry of the actual gas flow path.

According to the 2012 drawings the distance between adjacent cassettes is 20 mm. The

11 connection pipes between two cassettes (5 for the upper part and 6 for the lower part)

originated from the corresponding toroidal connection nodes, mentioned in the description of

Fig. 11, are shown and create the segment of the pipe network representing the gas flow in the

toroidal direction. Ιη addition, the middle points of these II pipes are interconnected, as

Inner divertor
arm gapOuter divertor

arm gap

• Pumplng Duct Nodes

• Flxed Grade Nodes

ο Toroidal Connection Nodes

e .•
................

• Upper Part Nodes

ο Lower Part Nodes
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demon trated ίn Fig. Ι 2, ίn order to produce the egment of the pipe network representing the

geometry of the gas f10w through the gap openings between the cassettes which is open to the

pIasma side. It consi t from 19 channels defined by the so-called 15 gap nodes including the 4

fixed grade nodes {45, 48, 53, 56} where the pressure is given, all shown ίn Fig. 12. Thus, the

pipe network ίn Fig. 12 consists of 2 χ 11 + 19 =41 channels.

ο Τoroldal Connectlon Nodes

• Gap Nodes

• Flxed Grade Nodes

Inner target

Outer target

Figure 12: Schematic representation of the pipe network approxin1ating the geometry of the actual gas

f10w between adjacent cas ettes ίη the toroidal direction aIong the divel10r ring and through the gaps

between the cassettes facing the plasma side.

The whole pipe network for the ITER divertor pumping system consists of the 43 + 41 =
84 channels per cassette times 54 cassettes ρlυ 8 channels per pump times 6 pumps resulting to

a total of 4584 pipes. The total number of nodes is 3168. At each cassette with the associated gap

theΓe aΓe a total of Ι Ο fixed gΓade nodes (indicated ίn Figs. Ι Ι and 12). Thus the total number of
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fixed pressure nodes is equal to 540 plus the 6 fixed grade nodes at the inlet of the pUInpS. The

total number of loops and pseudoloops are 1417 loops and 545 "espectively.

Τπ order to convert a pipe of arbίtΙ'aΓΥ CΙΌSS section to its respective cίΓcuΙaΓ one the

concept of the equivalent diaIneter has been applied ίπ this study. The exact ιηeaSUΓeιηents of all

the piping eΙeΠ1ents lengths and diaIneters aΓe pΓOvided ϊπ Table 7.

Table 5: ode nUΠ1bers, length and diameter of all piping elenlents shown ίπ Figs. 11 and 12.

Pipe Length Dίaιηeter Pipe Lengtll Dίaιηeter Pipe Length Diaιηeter

nodes [m] [ιη] nodes [nl] [nl] nodes [nl] [ιη]

] - 2 0.251 0.310 28 - 29 0.192 0.714 47 - 89 0.010 0.998

2-3 0.186 0.266 29 - 30 0.356 0.380 33 - 50 0.010 0.533
3-4 0.121 0.073 30 - 3] 0.534 0.622 50 - 91 0.010 0.533

4-5 0.186 0.257 3 Ι - 32 0.534 0.622 35 - 52 0.010 0.668

5-6 0.269 0.352 32 - 33 0.469 0.283 52 - 93 0.010 0.668

6-7 0.269 0.352 33 - 34 0.469 0.283 38 - 55 0.010 0.624

7 - 8 0.169 0.108 34 - 35 0.568 0.352 55 - 96 0.010 0.624

8-9 0.379 0.290 35 - 36 0.568 0.352 40 - 58 0.010 0.539

9 - 10 0.073 0.151 36 - 37 0.250 0.197 58 - 98 0.010 0.539

9 - 11 0.230 0.475 37 - 38 0.624 0.248 45 - 46 0.210 0.159

9 - 33 0.379 0.290 38 - 39 0.624 0.248 48 - 49 0.196 0.128
11 - 12 0.145 0.183 39 - 40 0.161 0.372 53 - 54 0.196 0.129

12 - 13 0.545 0.348 40 - 41 0.]61 0.372 56 - 57 0.192 0.]57

13 - 14 0.279 0.445 41 - 42 0.300 0.133 46 - 44 0.135 0.156

13 - 15 0.545 0.346 42 - 43 0.250 0.333 46 - 47 0.668 0.160

15 - 16 0.197 0.103 6 - 46 0.010 0.891 49 - 50 0.329 0.145

16 - 17 0.304 0.217 46 - 64 0.0]0 0.891 51 - 52 0.379 0.180

17 - 18 0.104 0.140 9 - 49 0.010 0.606 54 - 55 0.3] 5 0.149

17 - 19 0.304 0.217 49 - 67 0.010 0.606 57 - 58 0.383 0.157

19 - 20 0.183 0.120 13 - 51 0.010 0.828 46 - 49 0.750 0.106

20 - 21 0.142 0.329 51 - 71 0.010 0.828 49 - 51 0.107 0.106

21 - 22 0.142 0.329 17 - 54 0.010 0.626 5 Ι-54 0.105 0.106

22 - 23 0.149 0.251 54 -75 0.010 0.626 54 - 57 0.629 0.099

23 - 24 0.116 0.075 21 - 57 0.010 0.813 44 - 47 0.108 0.143

24 - 25 0.147 0.214 57 - 79 0.010 0.813 47 - 50 0.100 0.119

25 - 26 0.239 0.156 28 - 44 0.010 0.667 50 - 52 0.104 0.082

1 - 27 0.559 0.239 44 - 86 0.010 0.667 52 - 55 0.144 0.080

27 - 28 0.192 0.714 31 - 47 0.010 0.998 55 - 58 0.785 0.099
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4.2 Results of the ITER diνertor primary pumping system

Simulations have been performed to model the burn and dwell phases for various divertor

dome pressures. The ίηρω parameters are the ones prescribed ίη [48]. They have been obtained

from the B2-EIRENE code modeling an ITER scenario where the plasma consists mainly from

deuterium with the ratio of the fusion over the input poweI" to be equal to QDT= 1Ο and the power

entering the scrape-off layer equal to 100 MW. These ίηρω parameters have been also used ίη

[49]. Following [48], three dίffeΓent pressure scenarios at the burn phase cοπeSΡοndίng to total

pressures of 2.6 Pa, 4.1 Pa and 9.9 Pa are simulated. They are related to low, medium and high

dome pressure scenarios. Since only the dominant deuterium gas fraction is considered the

resulting partial pressures at the 1Ο fixed grade nodes aΓe given ίη Table 8 and they are the same

with the data ofTable 1 ίη [48].

Table 6: Partial pressure [Pa] of deuterium (D2) at fixed pressure nodes for the three operating

scenarios ίη the burn phase [48].

Node CοπeSΡοndίnglocatίon Low-p Mid-p High-p

number ίη [48]

1 Ε 8.2χ 10-4 1.0χ 10-3 8.lχlO- 4

10 D 3.65 7.20 15.0

14 C 1.85 3.10 7.82

18 Β 10.4 12.5 23.6

26 Α 6.7 χ 10-5 2.6χ 10-4 8.8χ 10-4

43 Α 6.7 χ 10-5 2.6 χ 10-4 8.8χ 10-4

45 Upper part of gap, outer target 0.20 0.30 0.30

48 Lower part of gap, outer target 8.30 18.5 33.7

53 Lower part of gap, inner target 32.3 42.7 70.1

56 Upper part of gap, inner target 0.08 0.20 0.60

The same pressures aΓe glven to the fixed grade nodes ίη all 54 cassettes and the

associated gaps between the cassettes. The operating temΡeratuΓe is set at 420 Κ and the

conveying gas is deuteΓίum (D2) with moleculaI" mass m = 4.0282 g/mole, gas constant Rg=

2064.1 J/kg/K, and viscosity μ= 1.590 χ 10-5 Pa s. The lίmίtίng pumping speed of the

cι-yopumps, has been taken into cοnsίdeΓatiοn and for D2 was set equal to 55 m3/s. Thus,
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simulations have been peIformed ίη an iterative manner to meet this requirement. More

specifically, initially a l0w pressure is given at the inlet of each cryopump, resulting to a

pumping speed much Iarger than the Ιίιηίtίηg value. Then, each pump ΡΓeSSUΓe is ίηCΓeased

gΓaduallΥ untiI the Γesultίηg thΓOughput and inlet pump ΡreSSUΓe correspond to the ΡΓeSCΓίbed

pumping speed limit. Based οη these data the l0cal gas rarefaction ίη the ηetWΟΓk vaΓίes ίη a

wide range of the Knudsen number fΓOm the free molecular lίmίt thΓOugh the transition up to the

slip Γegίme.

4.2.1 Burn Phase

The configuration described above is impIemented to simulate the thΓee-dίmeηsίοηal gas

flow pattern ίη the 2012 ITER divertoI" ΡΓimarΥ pumping system. FOI" the input data of Table 8

qualitative results aΓe PΓOvided, including the produced gas flow ρatteΓηs ίη each cassette as well

as ίη the open gaps between adjacent cassettes and along the divertoI" Γίηg.

Outer divertor

arm gap

Inner divertor

arm gap

Figure 13: Direction of the gas f]ow ίη the pipe network sinlulating the actual gas f]ow path ίη the cross

section along a cassette connected to a ρυιηρ in the bum phase.
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Ιη Fig. 13 the gas f10w path ίη a cross section along a cassette, as described ίη Fig. 11, is

shown. This f10w pattern is qualitatively the same ίη all thΓee pressure sceηaΓίοs investigated ίη

the burn phase and applies to all 54 cassettes. The gas enters from the pIasma chambeI" ίηto each

cassette via the outer slot fixed grade node 10. One pan of the gas remains ίη the uppeI" pan of

the cassette and f10ws ίη opposite dίΓectίοηs ΓetuΓηίηg finally back ίηto the plasma from the fixed

grade nodes at the dome, the inneI" slot and also the inneI" and outeI" divenor arm, defined by the

nodes 14, 18,26 and 1 respectively. AnotheI" pan of the gas reaches the l0wer ΡaΓt of the cassette

and then is seΡaΓated with one fraction f10wing towaΓd vacuum pump and the Γemaίηίηg one

ΓetuΓηίηg to the plasma via the outeI" and inneI" divel10r aΓm gap nodes 1 and 43 ΓeSΡectίνelΥ.

Also strong recirculation is observed behind the outeI" divel10r arm gap with the gas pumped

from nodes 3 Ι and 33 finally escaping back to the plasma through node 1.

Inner target

Outer target

Figure 14: Direction of the gas f10w ίη the ρίpe network si mulating the actual gas f10w path between

adjacent cassettes ίη the toIΌidal direction along the divertor ring and through the gaps between the

cassettes facing the plasnla side ίη the burn phase.
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Ιη Fig. 14 the gas flow path along the dίveΓtoΓ ("ing and ίη the open gaps between adjacent

cassettes, as deSCΓibed ίη Fig. 12, is shown. It is c!eaΓΙΥ seen that gas is eηteΓίηg the gap ηetWΟΓk

fΓοm the high ΡΓeSSUΓe fixed gΓade nodes 48 and 53 ίη the 10weΓ pan and is ΓetuΓηiηg back to the

plasma fΓOm the l0w ΡΓeSSUΓe fixed gΓade nodes 45 and 56 ίη the uppeI" ρaΓΙ This ΓecίΓcuΙatίοη

f10w ρatteΓη is the same ίη all 54 cassettes. The gas which Γemaίηs ίη the gap ηetWΟΓk flows

towaΓd the inneΓ ΟΓ outeI" taΓgets and then it is conveyed to the adjacent cassettes via the Ι]

ίηteΓcοηηectίηg channels ίη the toΓOidal dίΓectίοη. The f10w along the divenoI" ("ing via the

toΓOidal connections is quite complex and dίffeΓS depending οη the location of the toΓOidal

ίηteΓcοηηectίηg channel (if it is ίη the inneΓ ΟΙ' outeI" paI1 of the gap) as well as οη the cassette

position with ΓegaΓd to the pumping ΡΟΓts. ΗοweveΓ, it is cleaΓ that the bu1k of the gas being

pumped out is conveyed a10ng the dίveΓtoΓ ("ing thΓοugh the toΓOidal connections l0cated at nodes

31 and 33 at the l0weΓ pan of the cassettes while gas is ΓecίΓcuΙatίηg thΓOugh most of the

("emaining toΓOida1 connections to finaIly f10w back to the plasma chambeΓ.

Α detaiIed quantitative deSCΓiρtίοη of the gas f10w cοηfίgUΓatίοη ίη teΓms of the deduced

thΓOughputs is now PΓOvided. Ιη Figs. 15 and Ι 6 the computed thΓOughputs ίη the bUΓη phase

towaΓd the pumps and the p1asma Γesρectίve1Υ aΓe pIotted ίη teΓms of the dome ΡΓeSSUΓe with

four pumps ("unning. The ορeΓatίng pumps aΓe the ones located at ρuιηρίηg ρΟΓts 4, 6, 1Ο and 12.

Due to the gΓeat uηceΓtaίηtΥ of the gap ηetWΟΓk Illodeling a sensitivity analysis of the Γesults is

aIso ΡΓοvίded. Ιη this sensitivity ana1ysis two eχtΓa sceηaΓίοs aΓe investigated. At fίΓst the gap

width is set to 1Ο ιηm and then ηο gap between cassettes is assuιηed. The Γesults of these two

scenarios aΓe aIso ΡΙΌvίded ίη Figs. 15 and 16. As expected ίη all the cases as the dome ρΓessure

incγeases the thΙΌughρuts aΓe also incγeased Illonotonically. A1so, as the gap size is decγeased

both thΓOughputs towaΓd the pumps and the pIasma aΓe decγeased. FUΓtheπηΟΓe, cοmρaΓiηg

between the throughputs ίη Fig. 15, it is noted that when the gap width is ("educed fΓOm 20 mm to

1Ο mm the pump thΓOughput is Γeduced ίη the low, medium and high ρΓessure dome sceηaΓiοs

about 20%, 19% and Ι 2%. While the cοπesροηdίηg Γeductίοηs ίη Fig. Ι 6 fOΓ the throughputs

towaΓd the p1asma aΓe 53%, 51 % and 42%. Thus, it is stated that the aΓea of the gap between the

cassettes affects mΟΓe dΓastίcallΥ the f10w towaΓd the plasma ΓatheΓ than the flow towaΓd the

Ρuιηρs. This ΓemaΓk is also supported by the thΓOughput ("eductions ίη the lίηlίtίηg ηο gap

sceηaΓίο, where the reductions aΓe much hίgheΓ. ΒΥ taking the ("atios of the cοπesροηdίηg

thΓOughputs towaΓd the pumps and the p1asma plotted ίn Figs. 15 and 16 it is deduced that fOI" the
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20 mm gap width and the low pressure scenario only 6% of the incoming throughput is pumped,

while the remaining 94% is returning to the plasma chamber. As the dome pressure is increased

the ratios of the pumped gas is slightly increased. Ιι is also increased as the gap size is reduced

becoming about 10% for the Ι Ο mm gap and 13% for the ηο gap case.

Ιη addition, ίη Figs. Ι 5 and 16 a comparison with the throughputs reported ίη [48] for the

20 mm gap width is performed. The relative error between the computed throughputs ίη [48] and

the present ones is 4 - 22% ίη the f10w toward the pumps and 32 - 50% ίη the f10w toward the

plasma. Ιη both cases ίι is seen that the cοmΡaήsοn improves as the dome pressure increases.

Taking ίηto account the complexity and the different geometrical interpretations of the simulated

network and also, the introduced theoretical approximations, the observed discrepancies between

the two approaches are reasonable and the overall agreement ίη the results ίη the burn phase is

considered as very satisfactory.
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Figure 15: Computed throughputs toward the pun1ps ίη the bum phase versus dome pressure with 4

pumps running and various gap widths; cοπeSΡοndίng results ίη [48] are also included.
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Figure ]6: Computed throughputs toward the plasma ίη the burn phase versus dome pressure with 4

pumps running and various gap widths; corresponding results ίη [48] are also included.

The computational investigation οη the sensitivity of the results ίη teΓms of the prescribed

geometrica\ data, which has been ΡeΓfΟΓmed ίη Figs. 15 and 16 with ΓegaΓd to the size of the

inter-cassette gap, is continued with regard to the pipe Γadίί ίη the network. More specifically, the

importance of the Γadίus size of all pipes ίη the toroida\ direction interconnecting the 54 cassettes

is investigated. Simu\ations have been ΡeΓfΟΓmed by Γeducίηg the Γadίί of all toroida\ connections

by 20% cοmΡaΓed to the ones which have been used ίη Figs. 15 and 16 with the 20 mm gap

width. It has been οbseΓνed that this Γadίus Γeductίοη has a small effect οη the throughputs ίη all

thΓee dome ΡΓeSSUΓes. Ιη particu\aI" fOI" all dome ΡreSSUΓes the pump throughput is s\ight\y

Γeduced (\ess than 3%), whi\e the cοπeSΡοηdίηgp\asma throughput is maΓgίηallΥ ίηCΓeased (\ess

than 1%). The fact that the pump throughput is Γeduced is expected due to the higheI" ΡΓeSSUΓe

drop ίη the toroida\ dίΓectίοη obstγucting the gas to be conveyed a\ong the dίνeΓtoΓ Γίηg ίη ΟΓder

to be pumped out, which yie\ds a small increase ίη the backf10w of the gas. The ίmΡΟΓtaηce of

the radius size of all pipes ίη the cross section a\ong a cassette fOI" all 54 cassettes is a\so

investigated. Simu\ations have been performed by modifying the Γadίί of all pipes of the cassette

ηetWΟΓk by ±20% compared to the ones which have been used ίη Figs. \5 and \6 with the 20 mm
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gap width. It has been found that when the Γadίus of all pipes is Γeduced by 20% the thlΌughput

towaΓd the pumps is inueased about 5%, while the backflow thlΌLIghput is decreased about 7%.

Τhe situation is reversed ίη the 20% radius increase, wheΓe the pump throughput is decreased

about 8% and the backflow throughput is inueased about Ι O%.Τhese results are οη an aνeΓage

basis for all three dome pressures with the corresponding results for each pressure sceηaΓίο to be

close to the average values. More detailed results of the sensitivity analysis both ίη the tolΌidal

and cassette networks are provided ίη Τable 9. Based οη the above sensitivity analysis it is stated

that the pipe network output is not stlΌngly affected by varying the radii of the pipes of the

network (along a cassette οΙ' between cassettes). Furthermore, it may be concluded that the error

which may be introduced due to the substitution of the ITER noncircular channels with

equivalent ciΓcuΙaΓ ones, ceΓtaiηΙΥ has ηο qualitative effect οη the resulting f10w patterns and

affects weakly the resulting pump and plasma thlΌughputs. Οη the contrary, as it has been seen

before, the size of the area of the inter-cassette gaps facing the plasma is of major importance

and therefΟΓe it ιηust be estimated carefully and accurately.

Τable 7: Τhroughputs [Pa m3 s-l] for the thΓee sensitivity analysis scenarios

Pressure Reference scenario ΤOlΌidal I'adi ί Cassette Γadii Cassette Γadiί

scenarιo (20mιη gap) reduction (20%) Γeductίοη (20%) ί nuease (20%)

Το Pumps

Low-p 457.4 445.2 491.5 417.9

Mid-p 808.5 788.5 866.2 740.6

High-p 1629.4 1593.6 1694.9 1537.3

Το Plasma

Low-p 7324.1 7324.7 6969.7 7832.9

Mid-p 12066.9 12073.1 11140.9 13204.8

High-p 22702.8 22711.6 21026.8 25784.8

Ιη Fig. 17, the case of all six pumps running simultaneously in the burn phase operating

mode results is shown. Τhe four pump results are also included. Both throughputs towaΓd the

pumps and the ΡΙaslηa νeΓSUS the dome ΡreSSUΓe aΓe plotted. It is seen that with all six pumps

running the f10w toward the ρuιηρs is increased about 50% independent of the dome pressure.

Οη the contrary the f10w toward the ΡΙasιηa is slightly decreased by less than 2%. Τhese ΓesuΙts

are for the 20 mm gap width but all remarks aΓe also valid for the other two gap cases.
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Figure 17: Computed throughputs toward the pumps and the plasma ίn the burn phase versus dome

pressure with 4 and 6 punlps running.
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As described ίπ [50] the regeneration process of each cryopump demands 600 s and is

divided ίπto four parts: cryogen cold mass recovery, cryo-panel warm up, evacuation and cryo­

panel re-cool. Thus for the demanding 3000 s non-inductive burn phase scenario the six

cryopumps are envisaged to operate under a pumping sequence ίπ which four of the cryopumps

are running and two of them are ίπ regeneration. For this operating scenario the present ITER gas

distribution network is simulated using both the low and high pressure data of Table 8. The

computed throughputs for each operating pump and the resulting total throughput are given ίπ

Tables 1Ο and Ι ι. Ιι is noted that ίπ all six operational sequences the total throughput is very

close to each other and ίπ each operational sequence all individual pump throughputs are well

balanced. ΑΙΙ these are ίπ favor of moving smoothly from one operating sequence to the next.
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Table 8: Throughputs [Pa m3 s-l] for various operating pump sequences for the 3000s non­

inductive scenario ίη the Iow dome pressure (R denotes regeneration).

6

R
114.9

114.9

R
117.2

117.2

464.2

6

R

408.6

408.6

R
414.5
414.5

1646.2

5

5

R
114.9

113.7

113.7

114.9

R
457.2

R
408.7

405.9

405.9

408.7

R
1629.2

Pumping sequence

3 4

Pumping sequence

114.0 117.2

116.9 117.2

R R
118.2 114.9

R 114.9

114.6 R
463.7 464.2

3 4

406.5 414.5

413.9 414.5

R R
416.6 408.6

R 408.6
407.9 R
1644.9 1646.2

2

2

114.9

R
117.2

117.2

R
114.9

464.2

408.6

R
414.5

414.5

R
408.6

1646.2

114.6

R
118.2

R
116.9

114.0

463.7

407.9

R
416.6

R
413.9

406.5

1644.9

18

4

6
10
12
16

Total

18

4

6

10
12

16

Total

Pump port

Pump ρΟή

----------------------------

Table 9: Throughputs [Pa m3 s-l] for various operating pump sequences for the 3000s non­

inductive scenario ίη the high dome pressure (R denotes regeneration).

4.2.2 Dwell Phase

Ιη the dwell phase the vacuum vessel needs to be pumped down to the base pressure

between the 400 s burn of successive plasma pulses. After the plasma pulses the exhaust gases

which are enclosed ίη the vacuum vessel are at rest and thus a constant pressure is assumed

inside the vacuum chamber. This pressure is then given as the boundary condition to all the fixed

grade nodes facing the vessel ίη order to simulate the dwell phase. For the input data described

above again both qualitative results are provided, including the produced gas flow patterns ίη

each cassette as well as ίη the open gaps between adjacent cassettes.
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Outer divertor
armgap

Inner divertor
arm gap

Figure 18: Direction of the gas f10w ίη the pipe network sinluJating the actual gas f10w path ίη the CΙΌSS

section along a cassette connected to a pump ίη the dwell phase.

Ιη Fig. 18 the gas flow path ίη a cross section along a cassette connected with a direct

pump is shown. This flow pattern is qualitatively the same ίη the whole range of pressures

investigated ίη the dwell phase. The gas enters the cassette thIΌugh all the fixed grade nodes

located at the outer and inner divertor arm gaps, outer and innei" slots as well as the dome of the

cassette. The gas which enters thIΌUgh the upper part of the cassettes flows either to the lower

ΡaΓt ΟΓ towards adjacent cassettes. The gas entering fIΌm the lower part though the outer divertor

gap of the cassette along with the gas fraction of the upper part, flow toward the pump of the

cassette via the three interconnecting ducts. Ιη Fig. 19 the flow path ίη the gap between adjacent

cassettes is shown. Ιι is οbseΓνed that the gas enters the gap though the four fixed grade nodes

and splits ίηto two parts. The one flows immediately to the adjacent cassette through the toroidal

connections located at the upper part of the cassette. The other flows downwards and exits the

gap through the toIΌidal connections located at the lower part of the cassette.
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Outer target

Inner target

Figure 19: Direction of the gas f10w ίη the pipe network simulating the actual gas f10w path between

adjacent cassettes ίη the toroidal direction along the divertor ring and through the gaps between the

cassettes facing the plasma side ϊη the dwell phase.

Next, simulation results for the dwell phase scenario are ΡΓesented in Fig. 20, wheΓe the

thΓOughputs aΓe plotted in teΓms of the dome ΡΓeSSUΓe νarying between 10-5 and Ι Ο Pa with the

case of fouI" and six pumps running. The gap between the cassettes is taken 20 mm. Again the

thΓOughput is monotonically incγeased with the dome ΡΓeSSUΓe. With the two additional pumps

running the throughput is incγeased about 50% cοmΡaΓed to the case of fouI" pumps at ΟΡeΓatiηg

(same as in the bUΓη phase). The six pump configuration is lnostly cοnsideΓed for the dwell phase

wheΓe higher thΓOughputs may be needed [50]. The coΓTesponding thΓOughputs ίn [48] aΓe also

included fOI" comparison pUΓposes. They are about 1.5 to 1.8 times higher than the ΡΓeseηt ones.

Once again due to the pΓOblem complexity these discγepancies aΓe weII within the expected

maΓgiη eΠΟΓS. It is import:ant to note that again in the dwell phase all the qualitative flow

chaΓacteΓίstίcs οbseΓved heΓe fOI" the νaΓiοus input geοmetΓical and ΟΡeΓatίοnal data, aΓe similaI"

to the coΓTesponding ones ΓeΡοrt:ed ίη [48].
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Figure 20: ConΊputed throughputs ίn the dweIl phase versus dome ΡΓe UΓe running with 4 (υρ) and 6

(down) pumps; cοπeSΡοndίng re ults ίn [48] are also included.
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where ΚΙ is the initial outgassing rate in Pan13
/ s, t is the dwell phase elapsed time and n is

the decay index. Ιη ΟΓder to estimate the initial outgassing rate the procedure described in [52] is

followed and is taken as 3.5 ΚΙ =Ρα/η
3

/ s. The decay index was separately ΓeΡοπed as

n=-0.73 ίη [51] and as n=-2/3 in [53]. Ιη the CUΓΓeηt study both values of n aΓe examined.

The differential equation descγibing the pressure evolution in the ITER vacuum vessel can be

fΟΓmuΙatedby considering the n1ass ba!ance as:

4.2.3 Time-dependent

The ITER vacuum vesse! has to be pumped down to a termina! ΡΓeSSUΓe of :::; 0.5 mPa in

the shΟΓtest available pumping time being 1400 s. The main gas l0ad during dwell pumping is

hydrogen isotopes implanted as eηeΓgetίc particles during the previous DT p!asma dischaΓge and

thus Deuterium is selected as the conveying gas in the following simulations. FΓοm eΧΡeΓimeηtal

and theoretical studies the outgassing rate from the beryllium wall is found to follow a decay

poweI" law with respect to time fΓοιη an initial outgassing Γate. From measurements of outgassing

in JET [51] the temΡΟΓal evolution of the outgassing was found to follow the equation:

(4.2.1 )

(4.2.2)

=Kt"qoιιrga.r;; 1

V (/Ρ Κ" . RT-= It -nl
(/t

wheΓe V is the vessel vo!ume taken 1400 n13
, Τ is the temΡeΓatuΓe of the vessels, R is the

conveying gas constant and /n is the mass f10w rate pumped out of the vessel due to the

cryopumps. The outgassing from the beΓΥΙΙium wall is assumed to stan at 1 s and a typical dome

pressure at the end of the bUΓη phase is taken as the initia1 condition for Eq. (4.2.1):

Ρ(1) = 10 Ρα (4.2.3)

For the solution of Eq. (4.2.2) the explicit hybrid coupling Inethod described ίη ChapteI" 3 is

implemented. Ιη Fig. 21 the pressure of the vacuum vessel is shown fOI" an outgassing Γate
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Κι =3.5 Ρα /113 / s, a decay index n =-0.73 and for 400 Κ oνer the course of 1000 s. It is

obserνed that after the first 200 s the pressure eνolution is independent from the initial conditions

of the νacuum νessel. Thus, it is stated that the quantity of engineering interest i.e. the νacuum

νessel pressure at the end of the 1400 s dwell phase is independent from the ίηί tial condition

giνen at Eq (4.2.2).

Tίme [5]

Ρ(1)=1Ε+1 Pa
Ρ(1)=1Ε+Ο Pa
Ρ(1 )=1 Ε -1 Pa
Ρ(1 )=1 Ε -2 Pa

......
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Figure 21: Vacuum vessel pressure distribution over the fιrst 1000 s of the dwell phase for various initial

conditions.

Ιη Figs. 22 and 23 the νessel pressure after the 1400 s dwell pumping is presented for

νarious temperature and for n =-0.73 and n =-2/3. For the simulations two different pumping

setups are considered: a) the 4 pump scenario where it is assumed that the cryopumps at ports 4,

6, 10, 12 are running while the pumps located at ports 16 and 18 are regenerating and b) the 6

pump scenario where all pumps are operating. For both decaying indexes it is obserνed that the

end pressure linearly depends οη the initial outgassing rate and is decreased as the temperature

inside the νessel is increased. Ιη addition, ίη the case of the six pumps the pressure at the end of
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the dwell phase is 33% lower than the four pumps scenario independently of the decaying index

and temperature values. Ιη the case of Τι =-0.73 even for an outgassing rate of 1Ο Pain3
/ s

which is quite higher than the vaIue expected, the vacuum vessel can be pumped down

successfully for all temperatures examined. However, ίη Fig. 22 it is made clear that the above is

not true specifically for the cases of 400 and 600 Κ.

π=-0.73
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02: 600 Κ (4 Pumps)
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Figure 22: Vacuum vessel pressure at the end ofthe 1400 s dwell phase versus the initial outgassing rate

with a decaying index n=-0.73 for various temperatures and pumping setups.
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Figure 23: Vacuum vessel pressure at the end ofthe 1400 s dwell phase veΓSUS the initial outgassing rate

with a decaying index n=-0.73 for various temperatures and pumping setups.
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Chapter 5: Concluding remarks

Ιη the present work an integrated software tool for lηοdelίng and simulation of steady­

state complex gas distribution systems operating over the whole range of the Knudsen number

has been presented and validated. The algorithm's architecture and structure are similar to these

of typical hydrodynamic codes, supplemented with a robust kinetic data base ίη order to provide

the required f10w rates depending οη the geometrical and operational network data. The present

work is an extension of a previous algorithm which was limited to relatively sma11 networks that

main1y consisted of long channels. The present more advanced and generalized algorithm

circumvents these pitfalls by enhancing the kinetic data base to include f10w rates through short

channe1s and by imp1ementing an advance subroutine to determine the network loops and

pseudoloops. Furthermore a hybrid integration scheme using a data base derived from the

steady state code has been suggested and benchmarked for simulating transient netWΟΓks that

consist of υρ to two finite volume chambers.

Ιη addition, the feasibility and effectiveness of both ΡΓesented a1gorithms ίη simulating

laΓge gas netWΟΓks is demοnstΓated by simulating the 2012 ITER ΡΓίmaι-Υ pumping system.

Results of the f10w patterns and paths along the cassettes and the dίveΓtoΓ [ing as well as the total

throughput for various pumping scenarios and dome pressures aΓe provided. For the steady state

results an extensive cοmΡaΓίsοn has been ΡerfΟΓmed with a [ecent WΟΓk [41], providing excellent

qua1itative agreement and satisfactory quantitative agΓeement taking into account the prob1em

comp1exity and the different phi1osophy of the two approaches. The vacuum vesse1 pressure at

the end of the dwell phase has been also estimated fOl" two decaying indexes as well as fOl"

various temΡeΓatures and outgassing [ates and it can be safe1y assumed that the 1400 s dwell

pumping load is manageab1e.

It is believed that the deve10ped gas distribution netWΟΓk a1gorithm has a lot of potential

ιη SUΡΡΟΓtίng futuΓe design WΟΓk ίη laΓge vacuum systems of fusion machines and partic1e

accelerators with close cοlΙabΟΓatίοnwith on-site engίneeΓS.
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Appendix Α: Basic definitions ίη kinetic theory

If we consider a 6 dimensional space (phase space) that describes a gas molecule position

r... = (Χ, Υ, Ζ) and its molecular νelocity ~ = (ξι, ξ" ξ) the simplest function that contains the

desired information is the distribution function denoted as !(r...,ξ,t).Τhe distribution function is

defined as the number of gas molecules that at certain time t haνe position r... and νelocity ξ

and obeys the Boltzmann equation. Assuming a monoatomic gas subject to an external force

f(r..., t) per unit mass the position r... and νelocity ξ of the gas molecule which does not collide

with other molecules will change to ξ' = ξ + Fdt and r...' = r... + ξdt ίη the time interνal dt . Ιη the

absence of collisions is clear that:

!(r...', ξ', t + (/t) d r...'dξ' = !(r..., ξ,t) d r... d ξ
- --

(ΑΙ)

Τhe Jacobian of the transformation lS equal to one if Fis independent of ξ and thus the

following expression holds:

!(r...',ξ',t+dt) = !(r...,ξ,t)

If collisions are considered Eq. (Α2) must be altered to:

!(r...',ξ',t+dt) = !(r,ξ,t)+(8f) dt
- - 3t ω/l

(Α2)

(Α3)

Expanding the left hand side of Eq. (Α3), discarding second order terms and letting dt tend to

zero the following equation is obtained:

(Α4)
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Equation (Α.4) is incomplete unless the change rate of the distribution function due to molecular

collisions is specified. Ιη the derivation of the Boltzmann equation only binary collisions are

taken ίηto account. The collision term is split ίηto two seΡaΓate teΓnιs as:

(Α.5)

The first one denoted by R+ is the gain of molecules that are outside of d ~ d ξ and will be found

ίη d~'dξ' due to a collision while the second one denoted by R- is the L0SS of ιηοlecules that are

initially inside d~dξ and will ηοΙ Γeach d~'dξ' due to a collision. Το compute the two terms ίι

is woι1hwhile to exarnine the configuration of a binary collision as shown ίη Fig. Α.Ι. Consider'

two types of ιηοlecules (type Ι and type 2) with velocities ~l '~2 befΟΓe the collision velocities

~l"~~ afteI' the collision, deSCΓίbed ΓeSΡectίveΙΥ by the distribution functions ΙΙ 'Ι2'!ι',Ι;. The

collision of two molecules is descγibed by the impact Ρaraιηeter b, the azimuthal angle φ and

the relative collision velocity befΟΓe and afteI' the collision denoted by f =~2 -~I and

f' = ~~ -~I' ΓeSΡectίvelΥ·

g'

9

b

Ζ

Figure Α. ]: Configuration of a binary collision
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Ιη the above configuration lηοlecu!e of type ! is considered stationary whi!e mo!ecu!e of type 2

is incident with relative ve!ocity g and leaving with velocity g'. For such a col1ision to occur ϊη

the time interva! (It the center of ιηο!ecu!es must !ie inside a cylinder with vo!ume gb(lt(lbdφ.

The mo!ecu!es that are inside the col1ision cy!inder and have velocity f2 alΌund (I'i) are

12gb(lb(lφd'i)(lt. Such a col1ision is associated with particles of type 1 with veIocity fI around

dfI and thus the expected number of such coIlisions is fιI2gbdb(lφdfl(lf2d!..(lt. The type of

col1isions described above is associated with the L0SS term R- which can be now ca!cu!ated as:

R- =ffffιl2gb(lbdφdf2

The gain term can be similar!y computed as:

(Α.6)

(Α.7)

ΒΥ replacing the col1ision teΓm ϊη Eq. (Α.4) with Eqs. Α.6 and Α.7 the Bo!tzmann equation is

obtained as:

(Α.8)

Because the direct so!ution of the Bo!tzmann equation is computational1y fΟΓmidab!e, suitab!e

kinetic mode!s have been developed that can adequate!y siιηu1ate the col1ision tenη. The most

wide1y known and implemented col1ision mode! is the BGK kinetic mode! suggested by

ΒhatnagaΓ,Gross and KlΌok ίη 1954 and is presented here:

[
81 81 81 J (Μ )-+ξ'-+Έ'- =V 1 - 1
8t - 8!.. 8ξ
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where ν is the collision frequency and Γ" ί the Maxwellian dίstΓίbutίοn. Α hoΓtcomingof the

BGK lηοdel is that ίι cannot provide the COJTect expressions fOl" both the viscosity and thermal

conducti νίΙΥ of the gas.

The solution of either the Boltzmann equation ΟΓ a suitabJe kinetic model ΡΓοvίdes the

di tΓibutίοn function ίn the whole domain, while the maCΓοscορίc quantities of ίnteΓest can be

eΧΡΓessed thlΌugh the dίstΓίbutίοn. The ιηοst cοmιηοn maCΓοscορίcquantities aΓe plΌvided:

n{Ι-, ι) =ff{I-,~, t)d~

ιι{Ι-, ι) =f~f(L.,~, t)d~

111 f( )'Τ (Ι-, ι) = ξ - ιι (Ι-, ι) - f (Ι-, ξ, ψιξ
3k n{Ι-, ι) - - -

111f( )'P(L., ι) =3 ~ - ιι (L., ι) - f (I-,~, t)d~
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Appendix Β: Kinetic data for various f10w setups

As described ίη Chapter 2 the infinite capiIIary theory can be extended fIΌm long to

medium tubes by introducing the end effect theory. The end effect corrections depend only οη

the rarefaction parameter of the tube inlet and outlet region and are presented ίη Table Β.Ι for

completeness.

Table Β.Ι : Length increment ΔL Ι R for νarious νalues of the rarefaction parameter δ [16]

δ 0.005 0.05 0.1 0.2 0.4 0.6 0.8 1 2

ΔLI R 2.22 1.72 1.52 1.33 1.16 1.07 1.01 0.964 0.841
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

δ 4 6 8 10 CfJ

ΔLI R 0.735 0.704 0.688 0.682 0.680

Ιη the case of a pressure driνen f10w with a small pressure difference (ΡΑ / ΡΒ > 0.9) the

f10w can be considered lίnear eνen for short tubes and thus the lίnear BGK model can be

implemented. The f10w depends only οη the rarefaction parameteI" and the geOlηetrίcal Γatίο of

the tube. The solution of the lίnear problem proνides the dimensionless f10w rates which are

presented for νarious νaIues of the rarefaction parameter and dimensionless length ίη Table Β.2

Tab]e Β.2: Flow rate thIΌugh a tube fOl" νaΓίοus νalues of the rarefaction parameter and

dimension]ess ]ength, based οη the ]jnear BGK kinetic mode] with diffuse boundary conditions

[19].

LIR δ

Ο 0.1 1 2 5 ]0

Ο 0.999 ].04 1.37 1.72 2.77 4.35

1 0.672 0.696 0.892 1.1 Ο 1.70 2.63

5 0.3] 1 0.316 0.373 0.440 0.642 0.988

10 0.19] Ο. ]92 0.217 0.251 0.362 0.554
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As described ίη Chapter 2 ϊη the case L/ R::; 10 and ΡΑ /ΡΒ ::; 0.9 cannot be considered as

linear and the problem must be tackled either with the DSMC lnethod ΟΓ with suitab1e non1inear

kinetic models solved by the paral1elized discrete velocity method. The nonlinear f10w depends

οη aIl three f10w parameters and the dimensionless f10w rate for indicative values of the f10w

ΡaΓameters aΓe ΡΓeseηted ϊη Table Β.3.

Table Β.3: F10w [ate through a tube for various values of the ΓaΓefactίοη ΡaΓameteΓ, ΡΓeSSUΓe

Γatίο and dimensionless length, based οη the non1inear ES kinetic model with diffuse boundaι-y

conditions.

L/R ΡΒ / ΡΑ δ

Ο 0.0] ο. ] 1 2 5 10 20

Ο 0.1 0.900 0.903 0.923 1.07 1.18 1.35 1.45 1.50

0.5 0.500 0.502 0.5]8 0.653 0.778 1.04 1.22 1.30

0.9 0.100 0.100 0.105 0.140 0.176 0.280 0.432 0.584

0.1 0.605 0.606 0.619 0.713 0.788 0.931 1.06 1.17

0.5 0.336 0.337 0.345 0.428 0.505 0.692 0.888 1.05

0.9 0.0672 0.0675 0.0700 0.0908 0.112 0.170 0.264 0.415

5 0.1 0.279 0.280 0.283 0.312 0.341 0.423 0.537 0.701

0.5 0.155 0.156 0.158 0.182 0.207 0.280 0.398 0.581

0.9 0.0310 0.0311 0.03] 8 0.0378 0.0444 0.0641 0.0976 0.164

10 0.1 ο.] 71 ο.] 72 0.173 ο.] 85 0.200 0.249 0.328 0.462

0.5 0.0954 0.0955 0.0963 0.106 0.119 0.160 0.229 0.359

0.9 0.0190 0.0191 0.0193 0.0219 0.0253 0.0359 0.0543 0.0917
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