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Περίληψη

Οι ανοιχτές πόρτες σε μία υπηρεσία μπορούν να θεωρηθούν ως αδυναμία του συστήματος καθώς

επιτεθέμενοι μπορούν να αποκτήσουν πολύτιμες πληροφορίες από την εξέταση τους. Ο μηχανισμός

Αυθεντικοποίησης Μοναδικού Πακέτου (ΑΜΠ) λύνει το παραπάνω πρόβλημα, εφόσων επιτρέπουν

την αυθεντικοποίηση χρηστών χωρίς την απαίτηση για σύνδεση.

Η Περιφέρεια Ασφάλισης Καθορισμένης από Λειτουργικό (ΠΑΚΛ), χρησιμοποιεί το ΑΜΠ

σαν μηχανισμό αυθεντικοποίησης για να δημιουργήσει ένα μηχανισμό ο οποίος ονομάζεται "Black
Cloud" και παρέχει πρόσβαση σε υπηρεσίες προστατευμένες πίσω από αυτό. Ο στόχος αυτής
της διπλωματικής είναι να παρουσιάσει και να υλοποιήσει τα πρωτοκολλα ΑΜΠ και ΠΑΚΛ, να

σχολιάσει τη λειτουργία τους αλλά και να τα δοκιμάσει απέναντι σε κοινούς τύπους επιθέσεων.



Abstract

Open ports on a service can be a vulnerability since attackers can gain valuable information
by scanning them. Allowing only authorized users to access these ports would protect a ser-
vice from hackers trying to gather intellingence about it before attacking. The Single Packet
Authentication (SPA) is a mechanism that solves this issue by allowing clients to authenticate
themselves without using a connection. The Software Defined Perimeter is a protocol which
utilizes SPA in order to provide access to protected services which are secured behind a con-
struction reffered to as a ’Black Cloud’. The aim of this thesis is to provide implementations
for the SPA and SDP protocols, prove their efficiency against port scanning and DoS attacks
and present/discuss their architecture.
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Chapter 1

Introduction

1.1 The Importance of Computer Security
Nowadays, more than ever, business and the society as a whole are linked to computer technol-
ogy in multiple ways, and are therefore also strongly affected by its malfunctions and security
breatches. Poor security practices may cost firms huge amounts of money [11]. They can also
have a severe impact on human activities or even human lives. In order to understand the
escalating demand for protection against computer attacks, one may refer to indicative recent
events in the field of computing.

On May 2017 the WannaCry ransomware worm [23], a worm that either encrypts the victims
data or threatens to publish them unless a ransom is paid, infected over 300,000 computers by
exploiting a vulnerability in Microsoft Windows systems. This was a devastating hit to public
services using outdated software and hardware. The main exploits used by this ransomware
were EternalBlue and DoublePulsar, which were created by the National Security Agency and
became available to the public through the Shadow Brokers group, months before the attack.
Fortunately, Microsoft had released patches to fix them. Even though the WannaCry worm was
dealt with, a lot of users can still be victims of the aforementioned tools. Here the key to the
exploitation was the outdated software running on the victim’s machines. Since a great number
of users depend on obsolete operating systems, such attacks can happen again. However, this
attack demonstrates a common pattern among computer threats. When a network of hosts or
a host is infected, the damage is inflicted on the machine and not the user’s physical self.

Unfortunately, security issues and hacking apply to many more products that are based on
computer technology. Electronic security locks, for example, are widely used by hotels, public
services etc. On July 2012, at the Black Hat security conference, Cody Brocious presented
a mechanism able to crack an electronic keycard system developed by a leading figure in the
electronic locks field [10]. What is perhaps more impressive is that the mechanism used a simple
Arduino Board. In practice this means that someone with $26 (the price of an Arduino) could
gain access to a victim’s physical space. Along the same lines, a handful of vulnerabilities were
found on software running on web cameras and baby monitors, allowing hackers to gain control
of them [8]. Although only a certain brand was affected by this hack, researchers reported that
other brands might have similar vulnerabilities.

Another disturbing incident recently took place at a university: several Internet of Things
devices were hacked and used to create a botnet which tried to launch denial-of-host attacks
on the university’s network by sending multiple DNS requests [1]. Although this attack was
not harmful to anything other than the university’s network, the possibility of hackers gaining
access to and controlling a whole team of devices can be alarming.
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The aforementioned incidents were down to poorly designed and exploitable systems on the
hacked products. The first example was a common network attack which aimed to acquire
money from its unfortunate victims, and used sophisticated tools in order to gain access to
their systems. The other examples, despite being even simpler to perpetrate, managed to get
access to devices interconnected with our daily physical activities: web cameras, security locks,
university appliances - in other words, Internet of Things (IoT) devices. It is crucial to develop
mechanisms that prevent such incidents from happening and provide secure access to services
throughout networks.

1.2 Building a Black Cloud using SDP
All of these attacks have something in common, namely the attacker knows important infor-
mation about its targets such as their open ports, message types, applications running. This
intelligence can be obtained by the services running on the networked machines. A solution
would be for the services to restrict access only to a set of predefined clients. It is obvious,
this is a static and highly impractical solution. However, it is possible that a more viable and
efficient solution exists today.

In an effort to combat the risk of network attacks, the Defense Information System Agency
(DISA) introduced the Software Defined Perimeter (SDP) project [6]. The project’s aim is to
create a so-called Black Cloud: a network that cannot be scanned by any foreign hosts while
providing access to services hidden behind the cloud. A basic component of SDP is the Single
Packet Authorization (SPA) mechanism [28], which is used to authorize a client before it can
actually connect and access the services of a given host. More concretely, SPA allows clients
to transmit authentication information and achieve authentication with another server across
closed network ports. Thus, the servers can block access to all of their ports and then allow
only authenticated users to connect with them.

The Black Cloud consists of a network of hosts connected together. Every host authenticates
itself to the others via the SPA authentication mechanism. Each host is invisible to illegitimate
hosts, since it blocks access to all of its ports, therefore the entire Black Cloud structure, since
it is composed of such hosts, is theoretically invisible.

The SDP provides to its clients the ability to request access to different services from
providers across the Black Cloud network. The services are hidden behind the SDP’s complex
structure and the clients can not access them directly but through the intermediate nodes of
the system which are used as gateways.

The SDP is relatively similar to Network Access Control (NAC) [4], namely it tries to define
a set of protocols/solutions in order to securely connect network nodes to each other based on
certain policies. However, it can also provide support for network devices, and therefore it can
be used as an IoT security mechanism. Another advantage that SDP has over NAC is that
SDP can create secure communication tunnels within its structure, between applications (or
services) and clients, called Dynamic Tunnel Mode. This is similar to a VPN connection and
is used to combat most network attacks.

1.3 Contributions
The Waverly Labs (a tech startup located in New York City) has started providing an SDP im-
plementation using NodeJS and Michael Rashe’s fwknop version of the SPA Protocol. However,
only some components of this project are open source and can be accessed online. Another
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company, founded after this thesis began, Cyxtera technologies, also provides a platform using
SDP technology to provide security to their client’s systems. Furthermore, Verizon has, since
2016, also supplied an SDP platform to its customers. Unfortunately, both solutions are closed
source.

This thesis provides implementations of both the SPA and the SDP protocol, as lightweight,
reliable and efficient open source libraries. These are written in the same programming language
(Python), making them easier to debug and expand. Also, the SPA implementation is made
available separately, as a standalone authorization application, or as a Python library that can
be used from within other application programs and protocols. Finally,based on the SPA and
SPD libraries, we provide an application that enables safe internet browsing even when using
the HTTP protocol, by exploiting the dynamic tunnel mode of SDP.

1.4 Thesis Outline
The rest of the thesis is structured as follows. Chapter 2 provides a basic background in
computer security, network attacks, defense mechanisms and practices. Chapter 3 discusses the
SPA protocol and its implementation, while the SDP protocol (which relies an the SPA protocol)
and its implementation is discussed in Chapter 4. Chapter 5 presents a simple application
build by using the SDP library while it also tests the SDP implementation against the popular
denial-of-service attack. Chapter 6 describes support that was developed on top of the SDP
protocol, which enables HTTP-based interactions with servers that reside behind a Black Cloud.
Chapter 7 provides an evaluation of the implementation, in terms of complexity and overhead.
Finally, Chapter 8 concludes the thesis and discusses possible improvements and extensions.
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Chapter 2

Background

2.1 Common Network Attacks
The main target of this thesis is to build a reliable security system that provides mechanisms to
minimize the risk of attacks. In the following we briefly describe the commonly used network
attacks.

• Sniffing [9]: A sniffer is a host that can monitor data sent through the network and
therefore read and edit them. Sniffing Attacks can be prevented by using strong cryptog-
raphy mechanisms in order to obfuscate the transmitted data(Symmetric or asymmetric
cryptography such as RSA, DES, AES etc.).

• Port Scanning [12]: A program that scans a systems open network ports for informa-
tion such as network services it provides and protocols used in order to later search for
vulnerabilities. The attack is carried out by sending various packets to the targets ports
(such as a simple ping message). A firewall can prevent this kind of attacks by blocking
input to these ports.

• Identity Spoofing [14]: A host can change its address in order to pretend it is someone
else. To prevent this the digital signature system, used with asymmetric cryptography, is
used in order to authenticate users. Also, the Public Key Infrastructure(PKI) manages
digital certificates, which are linked with different hosts, and uses them to authenticate
users globally.

• MiTm Attack [13]: Man-In-The-Middle attack occurs when a third host intervenes be-
tween a communication and performs various actions such as disrupting or eavesdropping
their exchanged packets. The third host here can pass messages from the sending party
to the receiving one while using identity spoofing to change its address. Such an attack
cannot always be prevented. However, encrypting the exchanged messages can minimize
the inflicted damage.

• Replay Attacks [34]: When a MiTm attack is performed and packets are received by
the sender, the next step is forwarding them to the receiver. Using this technique the
attacker can acquire passwords that will be helpful in order to decrypt the encryption
used. To counter this attack communication protocols include the Nonce value in their
packets. A Nonce is a value that is unique for each packet. If a message is replayed then
the nonce will be the same for more than one packet thus proving a malfunction in the
communication system.
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• Data Modification: The process of altering the data on a transmitted packet. Hashing
algorithms (such as MD5 or SHA) are used here in order to avoid such attacks by creating
the message’s footprint in the form of a hash code. A received message that produces a
different hash code has been altered during communication.

• DoS attacks [22]: Denial of services attacks are performed by sending multiple packets
to host until it is unable to handle other requests. The firewall can be a helpful ally when
dealing with this kind of attacks by blocking undesired input and output.

2.2 Cryptography
The need for encryption arises when two parties want to communicate with each other via an
open channel and still be certain that only they can properly interpret the data and no third
party can interfere in any way with the transmitted messages. In addition, it is usually desired
for each side to confirm the identity of the other side. There are two main encryption techniques
used, symmetric and asymmetric algorithms [32].

Symmetric algorithms depend on a shared key, which is used to encrypt and decrypt the
data. Some examples of symmetric algorithms are RSA, Diffie-Helman (not for encryption or
decryption but used in key exchange), El Gamal, and Elliptic Curve Cryptography [16].

In asymmetric encryption the public key is used to encrypt the data and the private to
decrypt them. During communication a host shares its public key with the network and other
hosts use this to encrypt the data they intend to send to it. When the data is received they are
decrypted using the hosts private key. Asymmetric algorithms need more computing resources
to implement compared to Symmetric ones. Due to that, these mechanisms are commonly used
to exchange symmetric keys between hosts before moving on to symmetric encryption for the
rest of the communication. Some of the most commonly used cryptographic algorithms are
DES, AES, Serpent, Blowfish and Twofish [15].

Another requirement of secure communication is that the message transmitted is not mod-
ified in any way, be it by a malicious third party or by random channel interference/noise.
Cryptography solved this problem by introducing cryptographic one-way hash functions [24].
These functions take as input data and link it with an output of obfuscated text. Given the
resulting obsfucated text of an one-way hashing function, it is very difficult to obtain the text
used as input to this function. In other words, hash functions provide the fingerprint of the
message. A host has to send a packet, as well as its hash, while the recipient has to determine
if the packet’s hash matches the one that was sent alongside the packet. If not, then the packet
has been modified. Some hashing algorithms are SHA, Whirpool, MD5, HMAC, and MD6.

2.3 Defense mechanisms and practices
In order to defend against the preceding attacks, computer networks use a plethora of security
tools that provide safe communication between two or more parties. Most of these methods
use the cryptography algorithms that were described in the previous section. Below are some
common security mechanisms that provide defense against attacks in the network:

• PKI [18]: Public Key Infrastructure can be described as a public dictionary that links
public keys with their owners, making it easy for applications to validate the origin of the
sender.
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• TLS/SSL [29]: SSL and its successor TLS are communication protocols that ensure safe
transactions via the following steps: (i) initial handshake and selection of common hash
and cipher functions; (ii) validation of the server’s certificate on the client side (using
PKI); (iii) creation and exchange of symmetric key using public key cryptography or
Diffie-Helman’s algorithm; (iv) communication then initiates while using the symmetric
key to encrypt and decrypt data;

• SSH [35]: Secure SHell provides secure shell access to a remote host. It achieves that
using similar practices as TLS/SSL (without the PKI step).

• SFTP [26]: SSH FTP (like FTP), is used for transferring files through the network.
However, being built on top of SSH, it also provides reliable data streams between hosts.

• VPN [31]: A Virtual Private Network simulates a private network for end users even
though data is sent through public or shared networks making sure that unwanted hosts
can not connect or access the shared data. SSH, TLS/SSL, PKI and a variety of other
protocols are used to ensure the VPN’s functionality.

• Firewall [21]: A firewall is the software that controls incoming and outgoing network
packets to a system. Through it, the system can block hazardous traffic, untrusted IP’s
and allow access to sensitive resources only to trustworthy hosts. The firewall consists of
a number of rules (also reffered to as firewall rules), which are instructions that dictate
to the system what should be done with a specific type of packet. The DROP rule, for
example, is used in order to deny packets that fit a specific criteria, while the ACCEPT
rule acts in the opposite way. Rules are grouped into chains. The three default chains
are INPUT (manage incoming packets), FORWARD (manage packets forwarded through
a system) and OUTPUT (manage packets sent).

• Virtual Machine [33]: A virtual machine is an OS on top of the running OS. It runs
on software instead of hardware and if used as a security measure it acts as a ’decontam-
ination chamber’.

• Reverse-Proxy: A proxy redirecting requests from clients to a service and vice versa.
The clients do not communicate directly with the service and are unaware of its real
location and protocols it may uses. Such a mechanism can protect services from attacks
and help manage server load.

Some of these mechanisms (such as SSL, AES encryption, Firewall, etc) have been exten-
sively used throughout this thesis.
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Chapter 3

Single Packet Authorization

3.1 Introduction
In order to exploit a vulnerability, a hacker has to first discover and scan the target system.
Open ports are a good starting point for the perpetrator since they provide a way to discover
which services the target machine is providing. One may then check for and exploit correspond-
ing service-specific security issues in a variety of ways, e.g., sniffing and/or altering transmitted
data, performing man-in-the-middle attacks, denial-of-service attacks, gaining access or control
the target machine via buffer overflows, etc.

The process of scanning is quite easy. The attacker can send packets to target open ports
and wait for a response. Based on this response the attacker can gain valuable information
about which services run on which ports. For example, nmap [20] is an excellent tool that
automates such processes.

A service that regularly deals with client requests could eliminate the threat of scanning
by using the firewall to block attackers and allowing firewall access only to legitimate clients.
However in this scenario, proper users need to authenticate themselves before establishing a
connection. This concept is called “authentication prior to connection”.

So far, two implementations exist that try to achieve this: Port-Knocking, and its evolution
(implemented in this project), Single Packet Authorization (SPA). Both are explained in the
following sections.

3.1.1 Port-Knocking
The first approach that was proposed to achieve authentication prior to connection is the so-
called Port-Knocking Protocol [19]. In order to open a TLS connection with a service running
on a server, the client first has to send packets to several different ports belonging to the server
according to a predefined sequence: the ports to be addressed and the sequence in which they
have to be addressed constitute a secret message/passphrase. The server blocks access to all its
ports, but monitors the network traffic towards them. When a valid port sequence is identified,
the server adds a new firewall rule to allow the sender to communicate with the machine. This
process is illustrated in Figure 3.1.

However, the port-knocking sequence can be monitored and replayed by a third party (a
replay-attack). Anyone over a local subnet can monitor each of the clients’ transmissions, and
then replay the exact same packets to the same ports in order to gain access to the system, as
illustrated in Figure 3.2.

Another problem is that the effective information passed from the client to the server is
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client server

Knock on port A

Knock on port B

Knock on port C

Knock on port D

Valid port sequence

Allow SSH Connection

SSH Connect

Figure 3.1: Indicative port knocking sequence.

bob eve server

Knock on port A

Knock on port A

Knock on port B

Knock on port B

Knock on port C

Knock on port C

Knock on port D

Valid port sequence

Knock on port D

Valid port sequence

Figure 3.2: Replay attack for port knocking.
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the port field of the TCP and UDP protocols, which is only 2 bytes long. This means that in
order to support a secret message or passphrase of size B one must make B/2 separate packet
transmissions. In fact, the process takes even longer as one needs to introduce a time delay
between these transmissions, in order to avoid any out-of-order delivery of the sequence packets.

Last but not least, client authorization may fail (the server may consider the client as
unauthorized) even if it provides the right sequence of knocks, if a second malicious user spoofs
fake port-knock requests at the same time. This attack is not as sophisticated as a replay
attack, but can cause trouble with very little effort/intelligence on the part of the attacker.

3.2 Introduction to the SPA
A new mechanism, the so-called Single Packet Authorization (SPA), which has similarities to
the port-knocking concept, was presented at the Black Hat conference in 2005 by two research
groups (MadHat unspecific and Simple Nomad). In the following years, Michael Rash used
the SPA concept to produce his own implementation (open source, available on Github) of the
protocol, called fwknop. fwknop is currently the most popular SPA implementation and a part
of the work produced during this thesis has been inspired by it.

3.2.1 The SPA Protocol
Like port-knocking, SPA achieves the authentication of a client to a server. It is assumed that
they both own a shared secret seed, which is used for the encryption and decryption of the
exchanged messages.

The server behaves in a similar way to port-knocking. It blocks access to all ports, and
then passively monitors the network for incoming packets. However, instead of port knocks,
the server looks for SPA packets. The server also adds new firewall rules to allow authenticated
clients to connect with it. The proccess is illustrated in Figure 3.3.

Figure 3.3: The SPA protocol

The client sends an SPA packet when it wants to access a specific port on the server. As
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in port-knocking, the port to be made eventually accessible to the client, is assumed to be
agreed a priori by both the client and the server. More specifically, the SPA packet includes
the following information:

• AID : the unique ID of the client that sends this packet

• RANDOM : a random alphanumeric produced by the client before sending the packet

• PASSWORD : the password of the client (also known by the server)

• NEW_SEED : the new value of the shared seed for the next transaction

• MD5_HASH : a hash of the previous values

These values are encrypted using the shared secret seed. The SPA packet consists of the
encrypted values along with the AID of the client that is sent in plaintext (used by the server
to find the right key for decrypting the packet’s contents).

When the server receives a packet that has the expected SPA format, it identifies the client
that sent the packet by using the AID value which is encapsulated in the packet. The server then
uses the shared key that is associated with the client to decrypt the values included within the
packet. If the decryption of the values was succesful, the authentication of the client completes
if the PASSWORD in the packet matches the one that is known to server for that client, the
hash of the received values matches the MD5_HASH value received, and the RANDOM value
has not been used in a previous SPA packet sent by this client. After the authentication of the
client, the server grants access to the predefined port, and sets their shared secret key to the
NEW_SEED value received.

3.2.2 Changes to original Protocol
In the original SPA protocol the NEW_SEED value is not included in the SPA packet. It was
introduced in this version of SPA in order to provide greater security in the SPA architecture.

SPA packets are exchanged through a public network where any attacker can sniff and cap-
ture them. Given that the AID is in plaintext, an attacker that captures the SPA packet knows
the identity of the client that sent it. Then, the attacker can perform a Known Plaintext attack,
using as input the SPA packets captured in order to obtain the client’s seed and PASSWORD.
This attack, although quite demanding in terms of time and processing resources, is possible,
and in fact it is already widely used against other protocols.

By introducing the NEW_SEED value in the SPA packet, and by letting the server change
the seed to NEW_SEED after each successful authentication, Known Plaintext attacks are
deemed useless. Even if the secret seed used to encrypt an SPA packet is obtained by the
attacker, the next SPA packet sent by the same client will use a different seed for encryption.

3.3 The SPA implementation
In order to test and study SPA, a Python implementation of the protocol was developed, called
spa_lib. This section provides a detailed presentation of the structure of the implementation
and the mechanisms used during the development of this library. The spa_lib application pro-
gramming interface (API) will not be explained in detail in this section. A list and description
of the classes and functions provided by this library is given in Appendix A.
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3.3.1 SPA server : Listener Daemon and Firewall
The server part of SPA is a daemon thread that runs in the background. The spa_lib provides
the SPAListener class, which is the representation of the server. This class extends the Python
Thread class (as defined in Python’s threading library). To start the execution of the SPAL-
istener daemon thread, users of spa_lib should initiate a SPAListener object and later call its
start function. Once started, this daemon thread will start to monitor the network for SPA
packets, authenticate the clients that sent those packets, and configure its firewall accordingly.
In addition, the SPAListener also provides additional functions that can be used to manually
change the firewall.

The SPAListener maintains a file structure used to store client-related information such as:
the cient AID, the PASSWORD, the encryption seed(s), and RANDOM values used in previous
SPA packets.

The daemon thread uses the Linux iptables command to configure the firewall of the host
machine. Initially, it adds a rule to deny/block incoming packets to every port of the system.
Two firewall rules can be used for this purpose: the DROP and the REJECT rule. Both lead to
packet being dropped, but the REJECT rule also responds with an PORT_UNREACHABLE
packet to the sender of the dropped packet. Our implementation uses the DROP rule in order
to have a “silent” system that is more difficult to trace by an attacker (else, the attacker would
be able to infer that the machine exists and is running, and that its ports are being blocked
explicitly by a firewall rule).

Everytime the daemon thread authenticates a client, an ALLOW rule is added to the firewall
for the IP address of the client. This rule is configured to allow new or already established
connections. Each rule in the firewall is linked with a label, so that the SPAListener can edit
or delete existing rules by refering to it.

The spa_lib also provides the add_firewall_rule and delete_firewall_rule functions, which
can be used to insert new rules or delete existing rules in a “manual” way. Another useful
function is the set_rule_established function, which sets an existing rule to accept packets only
from established and not from new connections.

3.3.2 The SPA packet
The SPA packet is a UDP packet sent through the network to a random port with destination
the IP address of the server. The structure of an SPA packet is given in Table 3.1.

Table 3.1: Structure of SPA packet

Name Size Position Description
AID 32B b0-b31 The unique ID of the client
Delimiter 1B b32 The ’:’ character
ENC 152B b33-b184 The encrypted DAT string
Delimiter 1B b185 The ’:’ character
MD5_HASH 16B b186-b221 The hash of the packet

When the client creates the packet, the values to be encrypted (AID, PASSWORD, NEW_SEED,
RANDOM) are packed into a single string (here, referred to as DAT), which is then encrypted
using the SHA-256 symmetric key algorithm using the secret seed which is shared with the
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server. The output of the encryption consistutes the ENC field of the SPA packet. The
MD5_HASH is produced by using the DAT string as input to the MD5 hashing function.

3.3.3 Sending SPA packets
The spa_lib provides the send_spa function in order to send SPA packets, which is described
in pseudocode below:

Algorithm 1: send_spa function
Data: aid, password, seed, new_seed, server_ip

1 random = create_random();
2 dat = pack_into_string([aid, password, new_seed, random]);
3 enc = aes_encrypt(dat, seed);
4 md5_h = md5(dat);
5 to_send = pack_into_string([aid,’:’,enc,’:’,md5_h]);
6 rand_port = get_random_port();
7 UPD.send(ip, rand_port, data = to_send);

3.3.4 Checking if client is authenticated
The spa_lib also provides the port_is_open function, which checks if a certain port on the server
is open and ready to accept connections. This function must be called after the execution of
the send_spa function to check whether the SPA authentication has been successful. In case
the client was indeed authenticated, the user of spa_lib is expected to change the secret seed
they share with the server to the NEW_SEED value. An example of using the spa_lib to send
a SPA packet is presented below:

Algorithm 2: Use of the spa library
Data: aid, password, seed, new_seed, server_ip, server_port

1 new_seed = produce_new_seed(size=32);
2 nof_tries = 0;
3 while 1 do
4 spa_lib.send_spa(aid, password, seed, new_seed, server_ip);

/* in case the server has allowed access to the firewall exit the loop
*/

5 if spa_lib.port_is_open(server_ip, server_port) then
6 break;
7 end

/* loop until maximum number of failed retries */
8 if nof_tries > MAX_TRIES then

/* unreachable server */
9 exit();

10 end
11 nof_tries += 1;
12 end

/* change user info, set seed for next communication to new_seed */
13 edit_my_info(seed=new_seed);
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3.3.5 SPA server : SPA packet authentication

The SPAListener daemon thread handles SPA authentication. When it captures a packet
from the network, it checks to see if it has a structure that matches the expected SPA packet
structure (as defined in the previous subsection). If this is not the case, the packet is rejected
immediately. Otherwise, the SPAListener starts the authentication proccess. As a first step,
it uses the seed it shares with the client that sent the packet, to decrypt the encrypted string
ENC. This produces the DAT string, which contains the AID, PASSWORD, RANDOM and
NEW_SEED values. Afterwards, the SPAListener checks if the PASSWORD value received
matches the password of the corresponding client (AID). Then, it computes an MD5 hash of the
DAT string, and checks if this is equal to the MD5_HASH that was included in the SPA packet.
By comparing the two MD5 hashes, the SPAListener checks if the encrypted information was
not modified by a third party during the travel of the packet.

The SPAListener also keeps, for each client, a list of RANDOM values that were included
in previously sent SPA packets. In case an SPA packet from an client contains a RANDOM
value that already exists in this list, the packet is considered as a replay packet and authenti-
cation fails. If the credentials of the SPA packet are valid and the client is authenticated, the
SPAListener adds a rule to its firewall to accept traffic from the packets’ originator IP address
(acquired from the src field of the UDP packet), and adds the RANDOM value of the packet
to the list of used RANDOM values for this clients. Figure 3.4 depicts this proccess.

client server

Send SPA

Validate SPA

Set client’s seed to NEW_SEED

Allow IP

Init Connection

Change old seed to NEW_SEED

Figure 3.4: Successful SPA authentication

A problematic scenario may occur if right after the authentication succeeds, and the SPAL-
istener changes the secret seed it shares with the client to the NEW_SEED value included in
the last SPA packet received, one of the two parties terminates. In this scenario, the shared
secret key will differ between the server and the client and the authentications attempts by the
client will fail (as displayed on Figure 3.5). To deal with this problem, the SPAListener always
stores two seeds for each client: the current shared secret seed, and the one used in a previous
transaction, referred to as the OLD_SEED. If the authentication fails for the current seed, the
SPAListener repeats the authentication process using the OLD_SEED to decrypt the packet.

The overall authentication process is presented in the algorithm below.
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Algorithm 3: SPAListener Daemon Thread execution
Data: client_files, firewall

1 while 1 do
2 packet = sniff_network();
3 if !is_spa_format(packet) then
4 continue;
5 end
6 spa = parse_spa(packet);
7 client = client_files.get_user(spa.get_aid());
8 seed = client.get_seed();
9 pwd = client.get_pwd();

10 dat = spa.decrypt(seed);
11 e_aid, d_pwd, random, new_seed = unpack_from_dat(dat);

/* authenticate client */
12 if e_aid != aid OR d_pwd != pwd then

/* if authentication fails repeat with old seed */
13 dat = spa.decrypt(seed);
14 e_aid, d_pwd, random, new_seed = unpack_from_dat(dat);
15 if e_aid != aid OR d_pwd != pwd then
16 continue;
17 end
18 end
19 md5_h = md5(dat);
20 e_md5 = spa.get_md5();

/* check for modification */
21 if md5_h != e_md5 then
22 continue;
23 end

/* check for replay */
24 if (client.random_replay(aid, seed, random)) continue;

/* add new seed, mark current seed as old */
25 client.add_seed(new=new_seed, old=seed);

/* add random value to be linked with the old seed */
26 client.add_random_to_seed(seed, random);

/* authentication complete, allow client in firewall */
27 ip = get_ip_from_packet(packet);
28 firewall.allow(ip);
29 end

3.4 Discussion

The SPA protocol inserts an additional layer of security to a system, and it can be used to
protect and secure multiple kinds of services. To achieve this, it makes extensive use of the
firewall. The different layers of security created by the SPA are illustrated in figure 3.6.
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client server

Send SPA encrypted with SEED

Sniffed SPA, using SEED to decrypt

Success, updating client seed to NEW_SEED

Failure

Restart

Restart

Send SPA encrypted with SEED

Sniffed SPA, using NEW_SEED to decrypt

Failure, do nothing

Figure 3.5: NEW_SEED change - Problematic scenario

Figure 3.6: SPA : An additional security layer

3.4.1 SPA vs Port-Knocking
SPA is a solution that maintains the basic ideas of port-knocking, such as authorization prior
to connection and untraceable ports, while trying to address some of its drawbacks.

Some of SPA’s benefits vs. port-knocking are:

• Immunity against Replay-Attacks : By using the RANDOM field, SPA is impervious to
Replay attacks.

• Fewer packets : Only one packet sent, compared to the number of packets required by
the port-knocking sequence.

• Packet sniffing is harmless : Even if the contents of the SPA packet are acquired through
sniffing, the data would be of no use to the attacker since they would be encrypted.
However, sniffing port-knocking packets reveals the port-knocking sequence.
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• IP spoofing can not affect authentication : By using IP spoofing, an attacker could disrupt
the port-knocking authentication proccess of a client. However this does not affect the
authentication of clients.

Overall SPA can be considered as an improvement to the port-knocking protocol.

3.4.2 Limitations of SPA
Even though SPA seems to provide security against most computer network attacks, high
skilled hackers can still exploit the system. An attacker could monitor the network until an
SPA authentication attempt is made by a client, wait until the server authenticates the client
and allows it in its firewall, and then use IP spoofing to hijack the session. In that case,
the problem is solved if the protected service does its own authentication check. However
the attacker, instead of trying to hijack the client’s service can also perform a DoS attack
on the open port by using IP spoofing. So, the SPA is also susceptible to DoS attacks, but
only advanced and skilled hackers can perform them. This issue is also addressed in the next
chapter, as SPA can not solve it using its current structure.
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Chapter 4

Software Defined Perimeter (SDP)

As explained earlier in this thesis, open network ports in a system can lead to a multitude of
separate attacks. SPA was introduced in order to make authentication before connection to a
server possible, making the server’s ports untraceable by foreign hosts. This concept can be
used by various applications as a means to improve security and avoid attacks.

The Software Defined Perimeter (SDP), also called Black Cloud, utilizes the SPA protocol
in order to provide access to services, by protecting the system from attacks such as server
scanning, denial of service, operating system and application vulnerability exploits, and man-
in-the-middle attacks (assuming the attacker is not already inside the system).

The Cloud Security Alliance (CSA) has published a software specification document upon
which this implementation was based. The CSA’s proposal is similar to a DMZ(demilitarized
zone): it isolates one or more services behind a perimeter (the SDP) while clients can access
and gain access to services only through the gateway’s of the SDP (as shown on figure 4.1).

Figure 4.1: SDP protecting a service

The architecture and functionality of SDP can provide multiple applications such as: (i) En-
terprise Application Isolation: Highly valuable enterprise applications can be isolated be-
hind a Black Cloud while allowing authorized clients to access them. (ii) Cloud Technology:
Multiple clients can be connected through a cloud which uses an SDP to provide various services
to each client dynamically. (iii) Internet of Things: Everyday objects could be connected to
an SDP in order to secure data aggregation, component registration and other actions.

In the following sections the SDP protocol will be presented as well as its implementation
which was created during this thesis.
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4.1 Architecture
SDP consists of two components: the SDP Controller (sCTL) and the SDP Hosts. An SDP
host can either be an Initiating Host (IH) or an Accepting Host(AH).

The SDP Controller (sCTL) manages and authenticates SDP hosts while it also decides
which of them communicate with each other.

IH represents the client entity. The IH can request access and communicate with services
via the SDP system.

The SDP uses AH as gateways to services (thus they are also refered to as SDP Gateways).
Their function is similar to a reverse-proxy: they redirect data received from clients to the
corresponding services and then forward the services responses back to the clients. The phrase
’AH protects a service’ is used to symbolize that an AH is configured to act as a gateway for a
service.

The AH connects and stays connected to an sCTL until its termination. The IH connects
to the sCTL in order to search for available services. When the IH selects the service it wants
to use, the sCTL instructs it to connect to the corresponding AH which provides these services.
The full architecture can be seen on Figure 4.2.

Both AH and sCTL use the SPA, developed through this thesis, in order to authenticate
their clients. This means that once started, both hosts will configure their firewall with a strict
DROP-all-packets rule. Later on, firewall access will be provided only to authenticated clients.

Figure 4.2: SDP architecture as illustrated on CSA’s whitepaper

4.2 The SDP Protocol
The SDP protocol defines the authentication, communication and structure of the hosts in the
SDP system (IH, AH, sCTL). The main components of this protocol are:
(i) AH initialization: Where AH connects to the sCTL and acquires information about
the services it is going to protect. (ii) IH initialization: Where IH connects to the sCTL
and acquires information regarding the available services in the SDP system. (iii) AH-IH
connection: Where IH connects to an AH. (iv) Dynamic tunnel mode: Where an IH uses
the AH as a gateway to a service.

The following subsections provide insight to each one of these steps. In the last subsection
the changes made to the original SDP protocol are discussed.
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4.2.1 SDP Authentication
In the SDP protocol the sCTL serve IH and AH entities, and AH entities serve IH entities. An
entity shall be considered as an SDP server if it provides services to other entities, therefore
since the sCTL serves IH and AH entities is an SDP server. An SDP client is an entity that
is provided services by an SDP server, thus IH is an SDP client. Since AH provides services
to IH entities and requests services from the sCTL it is considered both an SDP client (when
dealing with the sCTL) and an SDP server (when serving an IH). The SDP Servers use the
SPA protocol as an authentication mechanism, this means that they run an SPA server as
a background daemon thread (therefore access to all ports is initially blocked by the SPA
server’s firewall configuration). Once the SDP client authenticates itself to the SDP Server
they exchange messages over SSL connections.

The SDP uses a 2-step authentication mechanism. In the first step the SDP client needs
to authenticate to the SPA server, running as a daemon thread on the SDP server, in order to
gain firewall access to the SDP Server. On the second step the SDP client needs to authenticate
itself to the SDP server as well. This process is illustrated on figure 4.3.

Figure 4.3: SDP’s 2-step authentication mechanism

Once the SDP client is authenticated to the SPA server and gains firewall access to the
SDP server, it has to authenticate itself once again. In order to authenticate to the SDP server
the SDP client must first connect to the SDP server, through an SSL connection and send a
LOGIN or OPEN_CON_REQ packet. The LOGIN packet is used for IH-sCTL and AH-sCTL
communication while the OPEN_CON_REQ for IH-AH.

Since the SDP uses the SPA protocol, its hosts are also identified by the identification value
that the SPA protocol uses, the AID value. For this reason the LOGIN and the OPEN_CON_REQ
packets contain the AID of the SDP client that wants to login to the SDP server and another
field called E_AID which is the result of encrypting the client’s AID value by using the secret
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seed that this client shares with the SPA server. The SDP client is considered authenticated
to the SDP server if the decryption of the E_AID value produces the AID. If an SDP client
is authenticated the SDP server responds with an LOGIN_RESP (response to the LOGIN
packet) or a OPEN_CON_RESP (response to the OPEN_CON_REQ packet). On the other
hand, if SDP Client fails to authenticate itself, the SDP Server terminates their connection.
The entire process is depicted on figure 4.4.

client server

SPA

Validate SPA

Allow client

Open TLS connection

LOGIN

Compare AID and D(E_AID,client_seed)

LOGIN_RESP

Figure 4.4: SDP Client authenticates to SDP Server

4.2.2 AH initialization

Once an AH has been initiated it needs to connect with an sCTL. The first step in this proccess
is to authenticate to the sCTL’s SPA server by sending an SPAp. Afterwards the AH sends a
LOGIN packet to authenticate to the sCTL and complete the 2-step authentication proccess.
Once the AH has been authenticated, sCTL will respond with an LOGIN_RESP.

Upon authentication of the AH, sCTL checks its configuration files and finds out which
services must be provided by this AH. Afterwards the sCTL notifies the AH about these services
by sending it a AH_SERVICES packet. An AH_SERVICES packet contains a list of services
and information about each one of them such as : service type, IP, port, name and the unique
ID of the service.

After receiving the AH_SERVICES packet, the AH is ready to act as a gateway to each
one of the services included in this packet. The proccess is depicted on figure 4.5.

AH sCTL

LOGIN

LOGIN_RESP

AH_SERVICES

Figure 4.5: AH initialization
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4.2.3 IH initialization

The IH is the representation of the client of the SDP system. Its first action is to authenticate
to the sCTL via the 2-step authentication proccess (SPA and LOGIN).

Afterwards the IH can perform a service query via an IH_QUERY packet. The information
included in IH_QUERY packets consists of the fields ’name’, ’type’ and ’service_id’. This
packet can be used to find information about available services matching a specific query (by
setting the name and type fields of the packet). Once the sCTL receives an IH_QUERY packet,
which requests service-specific information, it responds with an IH_SERVICES packet, which
contains information regarding the services requested such as their name, type and unique IDs.
Another use of the IH_QUERY packet is to explicitly ask for a connection to a specific service
by setting the service_id field of the packet to the ID of the corresponding service. Upon
receival of such a packet, the sCTL searches for an available AH that is able to provide the
service to the IH. It later sends an IH_AUTH packet to this AH to inform it about the IH
request to connect with one of the services it protects, this packet contains the AID of the
IH, the ID of the requested service and a seed to be used in order to decrypt and encrypt
data transmitted during the authentication of this IH. The AH prepares for the connection and
notifies the sCTL that it is ready to accept the client with an IHA_ACK. This packet includes
the port which will be opened for the IH after it completes its authentication to the SPA server.

Finally, the sCTL notifies the IH with an AH_READY packet about the AH that is going
to be used as a gateway to the requested service. Information such as the IP and port of the
SDP server running on AH as well as the seed to use during its authentication to the AH are
included in this packet. When this packet is received by the IH the communication with the
AH can finally begin. The work of the sCTL is finished so it terminates the connection with
the IH. Figure 4.6 displays this interaction.

IH sCTL AH

LOGIN

LOGIN_RESP

IH_QUERY {type,name}

IH_SERVICES

IH_QUERY {service_id}

IH_AUTH

IHA_ACK

AH_READY

Ready to connect

Figure 4.6: IH Initialization
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4.2.4 IH-AH connection/DTM mode
After the IH initialization an AH is ready to accept connections from this IH. However the
IH still needs to perform the 2-step authentication in order to authenticate itself to the AH
(in order to prevent session hijacking). Therefore the IH authenticates itself via SPA to the
SPA server background thread of the AH and later on, it sends an OPEN_CON_REQ to
authenticate itself to the AH. Througout the 2-step authentication the IH uses the seed sent
to it by the sCTL in the AH_READY packet. Once authenticated the AH will initiate a
connection with the service that this IH wants to use.

The last and final component of the SDP protocol is the Dynamic Tunnel Mode (DTM).
By using the AH as a gateway to the requested service, the IH sends to the service data
encapsulated inside SDP packets called DATA packets. The AH will later unpack the SDP
packet and send its payload to the service, while also forwarding its response back to the IH.
When the IH has finished communicating with the services it sends an CONN_CLOSE packet
to the AH to terminate the connection. The entire proccess can be seen at figure 4.7.

IH AH Service

Authentication with SDP is complete!

OPEN_CON_REQ

OPEN_CON_RESP

Dynamic Tunnel Mode

DATA

Service_data

Service_data

DATA

Dynamic Tunnel Mode

CONN_CLOSE

Figure 4.7: IH-AH connection and the Dynamic Tunnel Mode

4.2.5 Changes to the original protocol
Two major changes have been made to the original protocol proposed by CSA. The 2-step
authentication and the addition of the IH_QUERY and the modification of the IH_SERVICES
packets. Both will be explained below.
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2-Step authentication

The inital protocol did not refer to the SDP server authentication. It stated that the basic
authentication is completed once the SDP client has been authenticated to the corresponding
SPA server. Also the LOGIN packet did not contain any information. However, once an SDP
client has been authenticated to an SPA server and has gained firewall access to the SDP server,
an attacker could use IP spoofing to hijack its session. In order to protect the system against
session hijacking the extra authentication step between the SDP client and the SDP server was
introduced.

The IH_QUERY-IH_SERVICES Packets

In the original protocol the IH_QUERY did not exist and the IH_SERVICES had a different
form. The SDP specification stated that once an IH has been logged in to the sCTL, the sCTL
would have to notify every available AH about it via an IH_AUTH. Thus, every AH would
accept requests from this user. Also, the IH_SERVICES packet sent to the IH would contain
a list of every available service as well as a list of AH entities that provide it.

However, in this implementation, the IH should explicitly select the service it is going to
use and then the sCTL selects an AH to serve it. This architecture was selected because
it minimizes the number of exchanged messages and the amount of information which every
AH needs to store. In a real life scenario, where an sCTL would have been connected with
multiple AH nodes, each time an IH would connect to the sCTL, IH_AUTH packets would
have to be sent from the sCTL to every connected AH. Obviously the number of IH would be
much greater than the number of AH so that means that this proccess would be repeated very
often. Assuming that there areNAH AHs in the SDP system, a total of NAH + 1 packets would
have to be sent for every logged in IH (where the final packet is the IH_SERVICES). The
current implementation sends only four to six packets regardless of the number of AH in the
system. Furthermore, the size of the IH_SERVICES packet in the old implementation would
also increase over time as more AH are added to the system.

4.3 Implementation

During this thesis an implementation for SDP was created. This implementation, called
sdp_proto, is available for use. In this section various implementation choices, made while
developing the libraries for the SDP system, will be discussed.

4.3.1 The SDP packet

The standard SDP packet is displayed on table 4.1 When the packet is received, the receiver
handles the data field based on the OP value. The OP value signifies the operation to be
performed, available operations are LOGIN, LOGIN_RESP, IH_SERVICES, etc.
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Table 4.1: SDP Packet Structure

Name Size Position Description
OP 1B b0 Operation to be performed
LENGTH 4B b1 - b4 Length of Payload
DATA LENGTH b5-

b(LENGTH+4)
The Payload

For a detailed list of the SDP packets used in this system one needs to refer to Appendix
C.

4.3.2 Communication between hosts
The hosts use SSL connections in order to communicate with each other. So far only the AH
and the sCTL run an SSL server, since they are SDP servers. In this implementation, to save
resources and time, all SSL servers (sCTL and connected AHs) use the same pair of private
and public keys. In future implementations AH SSL servers could use a different private key
which would be obtained by the IH via the AH_READY packet.

4.3.3 ACK messages
Even though SSL, provided in the original SDP protocol, offer an efficient and reliable network-
level service, an ACK system for the application layer was also required for the new implemen-
tation. SDP did not include instructions or details on ACK packages. The figure 4.8 displays
the ACK messages scheme.

hostA hostB

ACTION

ACTION_ACK

Figure 4.8: Simple ACK scheme

The ACK packets are (i) AHS_ACK: Sent by the AH to the sCTL to indicate that the
lists of services has been received. (ii) IHA_ACK: Sent by the AH to the sCTL to indicate
that it is ready to connect with an IH. (iii) LOG_ACK: Sent by an SDP client to an SDP
server when the SDP authentication is complete. Detailed information on ACK packets is
provided in Appendix C.

4.3.4 Preventing DoS in the SDP system
It was mentioned in subsection 3.4.2 that a DoS attack is possible on SPA after the SPA
server authentication with the SPA client. Since the firewall allows connections from requests
originating from the SPA client’s IP, an experienced attacker could spoof his/her IP and start
a DoS attack on the open port. This is displayed on figure 4.9.
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client attacker server

Client: Send SPA

Validate SPA

Allow firewall access for client IP

Use client’s IP

Client: SYN Packet

Client: SYN Packet

Client: SYN Packet

Client: SYN Packet

Client: SYN Packet

Figure 4.9: SYN attack on SPA mechanism

Each firewall rule that allows SPA client connections, matches new or established con-
nections. The SDP system stops DoS attacks by setting this rule to match only established
connections once the SDP Client has successfully logged in to the SDP Server (by using the
set_rule_to_established function of the SPAListener class from spa_lib). Attackers are not able
to authenticate themselves to the SDP system, due to the 2-step authentication mechanism,
and during each failed attempt the SDP Server would terminate their connection. Eventually,
once the SDP client authenticates itself, the SDP Server will block access to new connections
originated by its IP and only the established connection of this client will be preserved. This
is displayed on figure 4.10.

client attacker server

Client: Send SPA

Validate SPA

Allow firewall access for client IP

Use client’s IP

Client: SYN Packet

Client: SYN Packet

Client: SYN Packet

Client: Send LOGIN

Allow only established connections from client IP

Server: Send LOGIN_RESP

Client: SYN Packet

Client: SYN Packet

Figure 4.10: Preventing SPA-DoS attacks on SDP
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In the scenario where the SDP client does not authenticate itself to the SDP server after
the SPA authentication, the firewall will still accept connections from the client’s IP and the
DoS attack would be possible until the client logs in. In this implementation it was assumed
that the SDP client will always try to authenticate itself after the SPA packet so no precautions
were taken to solve this problem. However, creating a background daemon thread, which blocks
access to the firewall if a connection has not been made after a specific period of time, would
easily solve the problem.

4.3.5 SDP Library
The SDP Library developed in this thesis exports the following classes/modules : sdp_IH,
sdp_AH and sdp_CTL. An analytical description of the API is provided in the Appendix A
and B. The scripts named startCtl.py and startAH.py, use the sdp_AH and sdp_CTL APIs
to set up and run the sCTL and the AH respectively.

Whenever an application wants to use the SDP system it has to use the sdp_IH API.
The sdp_IH acts as a middleware. It logs into the SDP system by using the given IH-client
credentials (such as AID, PASSWORD and SEED), before forwarding application packets to
services. In the following pages, an application using the sdp_IH module will be considered as
an IH itself.

The API of the emphsdp_proto library is given in Appendix B.
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Chapter 5

Proof of concept

5.1 The Ping-Pong Application
In order to test the SDP library, a simple ’ping pong’ application was developed. The client
sends TCP packets containing the message ’Ping!’ as a payload, while a service responds with
’Pong!’ whenever such a packet is received. Since it was necessary to demonstrate the SDP
implementation’s usability and features, only two machines were used. One of them hosted the
Controller, the AH and the service (machine2-192.168.0.97), while the other hosted the Ping
application (machine1-192.168.0.106). The client sending the Ping message (hereafter referred
to as the Ping application) uses the sdp_IH to forward the packets, through the SDP system,
to the service which responds with a Pong (hereafter referred to as the Pong service). Figure 5.1
depicts the setup.

Figure 5.1: Testing enviroment

5.1.1 Controller - Accepting Host
When the SDP Controller is initialized, it immediately configures the firewall of the hosting
machine to drop all incoming connections. In order to check the INPUT chain for the firewall
the iptables [25] linux command was used.

machine2@VM_sCTL # iptables -L INPUT
Chain INPUT ( policy ACCEPT )
target prot opt source destination
DROP all -- anywhere anywhere
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After the sCTL’s initialization, the Pong Service and the AH are activated. The AH is situated
in the same network as the sCTL (therefore the sCTL considers the AH as localhost). By
initializing the connection and providing a valid SPA packet, the AH gets the Controller to
configure the firewall settings such that the AH is allowed to communicate with the Controller.

machine2@VM_sCTL # iptables -L INPUT
Chain INPUT ( policy ACCEPT )
target prot opt source destination
ACCEPT tcp -- localhost anywhere cstate NEW , ESTABLISHED
DROP all -- anywhere anywhere

It was expected that, since the AH also initializes its own firewall and blocks access to all its
ports, it would have inserted a new DROP all rule into the INPUT chain. However, the AH,
before blocking incoming connections, checks if the sCTL is running on its local system. If it
is, then the AH does not add the DROP rule since the SPAs daemon running on the sCTL has
already inserted it.

As discusssed in section 4.1.1, after this authentication phase, a new session is created for
the AH, and then the AH receives a list of the services that it is going to provide from the
sCTL.

machine2@VM_sCTL # python startCtl .py
2018 -01 -24 09:56:36 ,453 - SDP_access - WARNING - Started TLS server on

port 7000
2018 -01 -24 09:56:36 ,454 - SDP_access - WARNING - Started SPA server
2018 -01 -24 09:56:43 ,090 - SDP_access - INFO - Got new connection from

address : 127.0.0.1
2018 -01 -24 09:56:43 ,105 - SDP_access - INFO - New login request from

client : e83bf2f40b4b11e7932a48e2440c8ced . Creating new AH session
2018 -01 -24 09:56:43 ,108 - SDP_access - DEBUG - Sending services to AH

with aid : e83bf2f40b4b11e7932a48e2440c8ced

machine2@VM_AH # python startAH .py
2018 -01 -24 09:56:43 ,093 - AHost_access - WARNING - Connected with Controller .

Starting TLS Connection
2018 -01 -24 09:56:43 ,106 - AHost_access - INFO - Connected with server .

Session ID : e189e258 -00ec -11e8 -8438 -646 e69b26c4f
2018 -01 -24 09:56:43 ,110 - AHost_access - INFO - Updated list of services

5.1.2 Controller - Initiating Host
As mentioned in the previous section 3.1, the first step of every attacker is to scan a system and
try to acquire as much information as possible from it. By using nmap to scan the machine2
system from the machine1 terminal, it is proven that it is impossible to gain information by
port scanning:

machine1@VM_IH #nmap -O 192.168.0.97

Starting Nmap 7.01 ( https :// nmap.org ) at 2018 -01 -22 15:30 PST
Nmap scan report for 192.168.0.97
Host is up (0.0011 s latency ).
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All 1000 scanned ports on 192.168.0.97 are filtered
Too many fingerprints match this host to give specific OS details

OS detection performed . Please report any incorrect results at
https :// nmap.org/ submit / .

Nmap done: 1 IP address (1 host up) scanned in 15.52 seconds

As expected, machine2, although detectable in the network, is impervious to analysis.
The next step for the Ping application is to use the sdp_IH and connect with the sCTL.

this will start a chain of events:
First, after succesful authentication, a new entry is added on the protected machine’s fire-

wall.

machine2@VM_sCTL # iptables -L INPUT
Chain INPUT ( policy ACCEPT )
target prot opt source destination
ACCEPT tcp -- 192.168.0.106 anywhere cstate NEW , ESTABLISHED
ACCEPT tcp -- localhost anywhere cstate NEW , ESTABLISHED
DROP all -- anywhere anywhere

Afterwards, the IH initiates a TCP connection with the controller. The Ping application/IH
performs a query asking for the Pong Service. The sCTL notifies the available AH, exchanges
client information and forwards information about the available AH to the IH. Then, it termi-
nates the connection with the IH.

machine2@VM_sCTL # python startCtl .py
.
.
.
2018 -01 -24 09:57:16 ,659 - SDP_access - INFO - Got new connection from

address : 192.168.0.106
2018 -01 -24 09:57:16 ,675 - SDP_access - INFO - New login request from

client : e83bf2f40b4b11e7932a48e2440c8ceC . Creating new IH session
2018 -01 -24 09:57:17 ,669 - SDP_access - WARNING - [!] Request from user

e83bf2f40b4b11e7932a48e2440c8ceC to connect with AH
e83bf2f40b4b11e7932a48e2440c8ced

2018 -01 -24 09:57:18 ,205 - SDP_error - ERROR - Session :
f58bea3a -00ec -11e8 -8438 -646 e69b26c4f terminated by host

The final step is the data exchange between the Ping application and the Pong service. The
AH, after receiving the IH_AUTH packet sent by the sCTL, can authenticate SPA packets sent
by the IH. When the SPA authentication is completed, the IH logs in to the AH, performs the
data exchange and terminates its connection to the SDP system.

machine2@VM_AH # python startAH .py
.
.
.
2018 -01 -24 09:57:18 ,152 - AHost_access - WARNING - New client with aid

e83bf2f40b4b11e7932a48e2440c8ceC
---Seed: 2 DIFXTTKGKQUAOF4H19DNJQQH27W1BGL
---Service : 2
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2018 -01 -24 09:57:18 ,153 - AHost_access - WARNING - Started IH SSL Listener
on port 6767

2018 -01 -24 09:57:18 ,570 - AHost_access - WARNING - Got new connection from
address 192.168.0.106

2018 -01 -24 09:57:18 ,630 - AHost_access - WARNING - Got CONN_OPEN message
from user with aid e83bf2f40b4b11e7932a48e2440c8ceC

machine1@VM_IH # python ping.py --sdp
2018 -01 -24 09:57:16 ,679 - IHost_access - INFO - Connected with server .

Session ID : f58bea3a -00ec -11e8 -8438 -646 e69b26c4f
2018 -01 -24 09:57:18 ,161 - IHost_access - INFO - AH is available at

address : 192.168.0.97:6767
2018 -01 -24 09:57:18 ,205 - IHost_access - WARNING - Got instruction to

terminate Controller connection
2018 -01 -24 09:57:18 ,205 - IHost_access - WARNING - Listener is terminated
2018 -01 -24 09:57:18 ,748 - IHost_access - INFO - Authenticated with AH for

service 2
----- Starting send Sequence
-----Ending send Sequence
2018 -01 -24 09:57:19 ,254 - IHost_access - WARNING - [!] Got Instruction to

terminate IH

The output of the Pong Service is presented below:

machine2@VM_AH # python pong.py --tcp
Accepted TCP client at address ( ’127.0.0.1 ’ , 41886)
Got ’ PING! ’from client 192.168.0.97
Sent ’Pong ’ message
Got ’ PING! ’from client 192.168.0.97
Sent ’Pong ’ message
Got ’ PING! ’from client 192.168.0.97
Sent ’Pong ’ message
Got ’ PING! ’from client 192.168.0.97
Sent ’Pong ’ message
Got ’ PING! ’from client 192.168.0.97
Sent ’Pong ’ message
Got ’ PING! ’from client 192.168.0.97
Sent ’Pong ’ message
Got ’ PING! ’from client 192.168.0.97
Sent ’Pong ’ message
Got ’ PING! ’from client 192.168.0.97
Sent ’Pong ’ message
Got ’ PING! ’from client 192.168.0.97
Sent ’Pong ’ message
Got ’ PING! ’from client 192.168.0.97
Sent ’Pong ’ message

Once authenticated in the SDP system, machine1 can finally use nmap to scan the protected
machine and acquire more information about the host.

machine1@VM_IH #nmap -O 192.168.0.97

Starting Nmap 7.01 ( https :// nmap.org ) at 2018 -01 -22 15:14 PST
Nmap scan report for 192.168.0.97
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Host is up (0.13s latency ).
Not shown: 997 closed ports
PORT STATE SERVICE
80/ tcp open http
443/ tcp open https
514/ tcp filtered shell
Device type: WAP| general purpose |storage -misc
Running (JUST GUESSING ): Actiontec embedded (99%) , Linux 3.X|2.4.X (99%) ,
Microsoft Windows 7|2012| XP (96%) , BlueArc embedded (91%)
OS CPE: cpe :/h: actiontec :mi424wr -gen3i cpe :/o:linux: linux_kernel cpe :/o:

linux: linux_kernel :3.2 cpe :/o:linux: linux_kernel :2.4.37 cpe :/o: microsoft
: windows_7 cpe :/o: microsoft : windows_server_2012 cpe :/o: microsoft : windows_xp
:: sp3 cpe :/h: bluearc : titan_2100

Aggressive OS guesses : Actiontec MI424WR -GEN3I WAP (99%) , Linux 3.2 (98%) ,
DD -WRT v24 -sp2 (Linux 2.4.37) (97%) , Microsoft Windows 7 or Windows

Server 2012 (96%) , Microsoft Windows XP SP3 (96%) , BlueArc Titan 210
0 NAS device (91%)

No exact OS matches for host (test conditions non -ideal ).

OS detection performed . Please report any incorrect results
at https :// nmap.org/ submit / .

Nmap done: 1 IP address (1 host up) scanned in 44.63 seconds

5.2 DoS attack scenario
In the second and final section of this chapter, SDP is tested against one of the threats it claims
to be most efficient against, DoS attacks. The attack was executed using codingplanets tool
Overload-DoS [3] which can be found on github.

One of the most prominent DoS attacks is SYN-ACK attack. The attack is famous due to
its simplicity and effectiveness. The core concept is exploiting the TCP handshake mechanism.
TCP uses a handshake in order to initialize a connection. During this handshake three messages
are exchanged:

1. SYN : Sent by the client to the server.

2. SYN-ACK : Sent by the server to the client to acknowledge the SYN packet.

3. ACK : Sent by the client to the server to acknowledge the transaction

During those steps, both parties exchange information between them such as the sequence
numbers and window sizes which are going to be used throughout the communication.

As soon as the SYN packet is received by the server, it initializes a connection and waits for
its completion. If the ACK packet is not received after a predefined period of time, the server
terminates the connection. Thus, the server is allocating resources, even if the connection has
not properly started.

SYN attacks, or half-open attacks, use this knowledge to increase server load to the point
which, it will not be able to provide services to new clients. this attack, sends multiple SYN
packets, without responding with the ACK packet when the SYN-ACK is received. In this way
the server uses resources to initialize connections and waits for pending ACK packets, while
the SYN requests multiply. Figure 5.2 displays the attack.

The attack will be demonstrated using machine1 and machine2 from section 4.4. The first
step, is to use the Overload-DoS script, on machine1(192.168.0.106), to initiate a DoS attack
against the Pong service, which runs on machine2(192.168.0.97) and port 8080.
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Figure 5.2: SYN-ATTACK example

machine1@attacker # python Overload -DoS.py -target 192.168.0.97 -port 8080\
-threads 1 -syn

[*] You have enough permisson to run Overload -v1.0
[*] SYN flood started on: 192.168.0.97

The -syn option, instructs the program to perform a SYN attack on target 192.168.0.97 and
port 8080, using only one thread. Every packet sent through this program, is sent using a
different spoof ip address.

The program netstat [5] provides network connection information. During the attack, ma-
chine2 gets the following output using netstat with the options -t, in order to get the tcp
connections, -n to get numerical addresses, -p to obtain program PID and -a for including
listening and non listening sockets in the results.

machine2@victim # netstat -antp
Active Internet connections ( servers and established )
Proto Recv -Q Send -Q Local Address Foreign Address State
PID/ Program name
tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN
-
tcp 0 0 127.0.0.1:6379 0.0.0.0:* LISTEN
-
tcp 0 0 127.0.0.1:8080 0.0.0.0:* LISTEN
18558/ python

.
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.

.
tcp6 0 0 127.0.0.1:8080 224.202.114.192:54321 SYN_RECV
-
tcp6 0 0 127.0.0.1:8080 232.91.230.174:54321 SYN_RECV
-
tcp6 0 0 127.0.0.1:8080 231.137.68.99:54321 SYN_RECV
-
tcp6 0 0 127.0.0.1:8080 227.118.65.237:54321 SYN_RECV
-
tcp6 0 0 127.0.0.1:8080 237.229.29.194:54321 SYN_RECV
-
tcp6 0 0 127.0.0.1:8080 225.74.183.222:54321 SYN_RECV
-
tcp6 0 0 127.0.0.1:8080 230.35.178.14:54321 SYN_RECV
-
tcp6 0 0 127.0.0.1:8080 237.59.127.188:54321 SYN_RECV
-
tcp6 0 0 127.0.0.1:8080 232.52.24.245:54321 SYN_RECV
-

.

.

.

The first thing to note here is that a lot of tcp sockets are on the SYN_RECV state, meaning
that they have obtained a connect request (SYN packet) and they wait for the ACK message. It
is also obvious that, despite being sent from the same machine, every request seems to have been
made by a different IP. this is because Overload-DoS, uses IP spoofing, to hide the attacker’s
address in the network. Therefore, without the SDP protection, the system is vulnerable to
DoS attacks.

In the second test to be performed, the Ping application was hosted alongside AH, sCTL
and the Pong service on machine2. Ping Application (similarly to 4.4) was connected, via the
IH API, to the SDP system and exchanged packets with the Pong service. machine1, on the
other hand, was trying to perform a DoS attack on machine2, in the same port and address it
used in its previous attempt.

machine1@attacker # python Overload -DoS.py -target 192.168.0.97 -port 8080\
-threads 1 -syn

[*] You have enough permisson to run Overload -v1.0
[*] SYN flood started on: 192.168.0.97

However, this time, the SDP protects the hosts, and does not allow packets from unautho-
rized users to enter the SDP system. In order to prove its efficiency, netstat was once again
used.

machine2@victim # netstat -atnp
Proto Recv -Q Send -Q Local Address Foreign Address State
PID/ Program name
tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN
-
tcp 0 0 127.0.0.1:6379 0.0.0.0:* LISTEN
-
tcp 0 0 0.0.0.0:6767 0.0.0.0:* LISTEN
-
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tcp 0 0 127.0.0.1:8080 0.0.0.0:* LISTEN
5995/ python
tcp 0 0 0.0.0.0:4369 0.0.0.0:* LISTEN
-
tcp 0 0 127.0.1.1:53 0.0.0.0:* LISTEN
-
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN
-
tcp 0 0 0.0.0.0:7000 0.0.0.0:* LISTEN
-
tcp 0 0 0.0.0.0:15672 0.0.0.0:* LISTEN
-
tcp 0 0 127.0.0.1:5432 0.0.0.0:* LISTEN
-
tcp 0 0 0.0.0.0:25672 0.0.0.0:* LISTEN
-
tcp 0 0 127.0.0.1:8080 127.0.0.1:37664 ESTABLISHED 5995/ python
tcp 0 0 127.0.0.1:37664 127.0.0.1:8080 ESTABLISHED -
tcp 0 0 127.0.0.1:4369 127.0.0.1:55063 ESTABLISHED -
tcp 0 0 127.0.0.1:52966 127.0.0.1:7000 ESTABLISHED

It is obvious, that no SYN packets reached the Pong Application this time. The attack was
unsuccessfull, since the SDP system blocked it, and the hosts are protected. Most importantly,
communication can still take place inside the system, while the clients and the service are
protected.

This example further proves the CSA claims about the efficiency of the SDP.
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Chapter 6

The hSDP module

6.1 Motivation
The hSDP was developed in order to demonstrate the functionality of the SDP protocol for the
case of browsing. The ’h’ in its name stands for the HTTP protocol[17], which is used by web
applications to access and interact with online content.

In practice, the hSDP is a module, used by the IH and AH libraries, which modifies the SDP
packet’s payload before sending it or after its receipt, when dealing with HTTP connections.

HTTP is an insecure service, which does not encrypt the transmitted data. By encapsu-
lating HTTP packets inside SDP packets the hSDP provides to the HTTP protocol security
mechanisms that were previously missing from it such as encryption and client authentication
(similar to HTTPS[30]). A service (such as a website) would be benefited by using such a
mechanism as it would have the SDP system acting as a reverse-proxy. Network traffic would
be redirected to the AHs of the system before being forwarded to the actual website. There-
fore, DoS, and other types of attacks, would not affect directly the website servers but the
intermediate network nodes (AHs of the SDP system).

6.2 The functionality of hSDP
HTTP requests are series of raw text, which describe the request and its options. A typical
HTTP request is provided bellow:
GET / HTTP/1.1
Host : www. e−ce . uth . gr
Connection : keep−a l i v e
Cache−Control : max−age=0
User−Agent : Moz i l l a /5 .0 (X11 ; Linux x86_64 )
Upgrade−Insecure−Requests : 1
Accept : t ex t /html , app l i c a t i o n /xhtml+xml , app l i c a t i o n /xml ;
Accept−Encoding : gzip , d e f l a t e , br
Accept−Language : en−US, en ; q=0.9
Cookie : _ga=GA1.2 .1074060408 .1508268236

A response to this request would be :
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HTTP/1 .1 200 OK
Date : Sun , 03 Dec 2017 20 : 35 : 45 GMT
Server : Apache
Content−Encoding : gz ip
Vary : Accept−Encoding
Keep−Al ive : t imeout=5, max=88
Connection : Keep−Al ive
Transfer−Encoding : chunked
Content−Type : t ex t /html ; cha r s e t=UTF−8
<RESPONSE DATA>

hSDP’s primary aim is to encapsulate these requests into SDP packets.
When the IH sends DATA packets to an HTTP service, it uses the hSDP module to handle

them. When these packets are received from the AH they are once again handled by the hSDP
module. Each HTTP request that needs to be sent through the SDP system must be provided
along with an unique identification number (ID) by the program that uses the sdp_IH. The IH,
with the use of the hSDP module, links this request with the given ID and later dissassembles
it to smaller packets (depending on the request’s initial size). Each of this packets is inserted
into a seperate DATA packet (DATA packets encapsulating HTTP payloads are called hSDP
packets). The packets are then sent to the appropriate AH.

Once the AH gathers hSDP packets, it assembles them together, by using the hSDP, to form
the inital HTTP request which is later forwarded to the HTTP service. Upon the receipt of the
HTTP response, the AH once again uses the hSDP module to split it into hSDP packets and
forwards them to the IH. The IH collects the hSDP packets and creates the HTTP response.
The response is returned to the program along with the ID that the corresponding HTTP
request was provided with.

6.3 hSDP packet structure

The hSDP packets are illustrated in table 6.1. The field serial_no reffers to the serial number

Table 6.1: hSDP DATA payload

Name Field
data The actual HTTP payload
con_id The unique ID for the connection
serial_no The serial number of the payload
is_last If this is the final packet in the request

of this packet, which specifies its position in the hSDP packet set. The field con_id is the
unique identification number for the HTTP REQUEST that this hSDP packet belongs to while
is_last field contains a boolean value which is set to true in case the packet is the last in the
set.
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6.4 Testing hSDP
In order to test the mechanism two different scripts were created, ih_proxy and ah_proxy. A
browser application, is able to send requests and receive responses through the SDP system,
by redirecting its HTTP REQUEST packets to the local ih_proxy instance (by TCP send or
another connection type such as TLS/SSL).

The ih_proxy script, uses the IH API to forward its packets through the SDP system while
the ah_proxy is a script which runs as a service. Its main functionality is to act as a proxy and
forward incoming HTTP packets to their destinated services and then redirect the responses
back to the clients that made the requests.

6.4.1 Implementation
In this implementation, the AH protects the ah_proxy service, which means that IHs can access
this service through it. The Chromium Browser was used to generate network traffic which
was later redirected to the ih_proxy. The process, which can be seen on figure 6.1, is defined
bellow.

Algorithm 4: Sending packets through hSDP
1: The browser creates an HTTP request and forwards it to the ih_proxy.
2: ih_proxy receives the incoming traffic. Using the IH API, it encapsulates the packets

received into hSDP packets and then forwards them, using send_data function, to the AH
which it is linked with.

3: AH gets the incoming packages from ih_proxy, parses them to an HTTP REQUEST
packet and sends it to ah_proxy.

4: ah_proxy receives the REQUEST from the AH, forwards it to its actual destination (a
website) and waits for its response. When the response is received it redirects it back to
the AH.

5: AH gets the received HTTP RESPONSE from the ah_proxy, dissassembles it into hSDP
packets and then forwards them to ih_proxy.

6: ih_proxy checks for new SDP packets, using the IH API’s get_data function. When the
packets are received from the AH, it assembles them to an HTTP Response and forwards
it to the browser.

7: The browser uses the HTTP RESPONSE to display the content received from ih_proxy.

6.4.2 Usage Instructions
In order to run a full demo of the application one has to :

• Start the sCTL: python startCtl.py

• Start an AH: python startAH.py

• Start the ah_proxy service: python ah_proxy.py

• Start the ih_proxy client: python ih_proxy.py

• Set chromium browser to redirect HTTP requests to the ih_proxy: chromium –proxy-
server="http=127.0.0.1:8000;"
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• Visit an HTTP website on the Chromium browser

Figure 6.1: hSDP in action
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Chapter 7

Complexity and Performance
Evaluation

This chapter presents an evaluation of the SDP implementation. First, the complexity of
the iplementation is reported in terms of lines of code (LOC). Then, an analytical model
for estimating the overhead of SDP operations is presented, based on a breakdown of the
most important overhead costs that can be measured on an individual basis. End-to-end
measurements are also performed, and the results are compared with the predictions of the
model.

7.1 Implementation size
During this thesis two python libraries were produced, spa and sdp_proto. The cloc program
was used to calculate the total number of lines for each of those projects. The results can be
seen on table 7.1.

Table 7.1: LOC for the projects created

Library Language LOC
spa Python 464
sdp_proto Python 3177

During implementation the following python libraries were used : python-iptables, pycrypto,
bs4, uuid, scapy, netifaces, config, pyyaml.

The source files require 190kB of space.

7.2 Performance model
To assess the overhead of SDP without having to perform end-to-end measurements that re-
quire a more complex tesbed setup, we construct an analytical model that takes into account
simpler/fundamental cost factors that can be measured individually using a much simpler setup.

The basic cost variables of the proposed model are summarized in Table 7.2.
The cost of simple operations (such as additions, multiplications, loop and if statements)

were not taken into consideration as they do not produce significant overhead.
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Table 7.2: Cost Factors

UDPsnd send UDP packet
SSLcon setup a typical SSL connection
SSLsnd send a message via SSL
CFGr read the configuration from a file
CFGw update configuration file contents
AESe encrypt data using AES algorithm
AESd decrypt data using AES algorithm
MD5m create md5 hash
FWadd add firewall rule
FWrm remove firewall rule

The overhead of SDP is broken down into different components, which will be discussed in
the following subsections.

7.2.1 SPA authentication

A basic operation in SDP is for the client to authenticate itself via SPA. The respective cost
(delay) for this can be expressed as

SPAauth = SPAauthclient
+ UDPsnd + SPAauthserver

where SPAauthclient
is the time required for the client to prepare the SPA packet, UDPsnd is

the cost for sending the SPA packet to the server, and SPAauthserver is the time required for
the server to validate the packet and perform the necessary operation in order for the client to
be able to connect to it.

In turn, SPAauthclient
can be expressed as

SPAauthclient
= MD5m + AESe

where, MD5m is the cost for computing the MD5 hash of the SPA packet, and AESe is the
cost for encrypting the string with the AID, RANDOM, PASSWORD and NEW_SEED values
in order to produce the ENC field of the SPA packet.

Also, SPAauthserver can be expressed as

SPAauthserver = CFGr + AESd + MD5m + CFGw + FWadd

where CFGr is the time required to read the configuration information for the sender (seed
for this transaction, previous random values), AESd is the time required to decrypt the ENC
field of the SPA packet, MD5m is the time required to compute the MD5 hash of the packet,
CFGd is the time required to update/write the configuration for the sender, and FWadd is the
time required to add a firewall rule in order to accept SSL connections from the client (if the
authentication was successful).

44



7.2.2 SSL client authentication
Once the client is authenticated via SPA, it has to complete the authentication procedure by
authenticating itself to the sever once again, this time via SSL. The respective cost can be
expressed as

SSLauth = SSLcon + AESe + SSLsnd + CFGr + AESd + 2 ∗ SSLsnd

where SSLcon is the cost for setting up the SSL connection, AESe is the cost for the client to
encrypt its AID that is stored in the E_AID of the LOGIN request, the first SSLsnd is the
cost for sending the LOGIN request over the SLL connection, CFGr is the cost for the server
to read the configuration information for the connecting client, AESd is the cost for decrypting
the AID, and the last two SSLsnd is the cost for sending to the client a LOGIN_RESP to
which the client responds (after initializing a session object) with an LOG_ACK so that the
controller can do the same.

7.2.3 Total authentical cost
Thus, the total cost for a client to authenticate itself with a server is

SDPauth = SPAauth + SSLauth

with SPAauth and SSLauth as already discussed above.

7.2.4 Service exchange cost
Once the SSL authentication has been completed, IH and AH both perform additional queries.
AH to receive the services it is going to provide, and IH to connect with a service via an
AH with estimated cost SDPinitAH

, SDPinitIH
respectivelly. These actions are considered as

initialization actions in the SDP system.
The SDPinitAH

can be expressed as:

SDPinitAH
= SDPauth + CFGr + SSLsnd + CFGw + FWadd + SSLsnd

where SDPauth is the cost of the SDP authentication, CFGr is the required cost for the con-
troller to read the services AH provides from the configuration files, SSLsnd the cost of sending
the AH_SERVICES packet, CFGw the required cost for the AH to update service information
on its configuration files, FWadd to add new firewall rules to allow communication with the
services and SSLsnd is the cost of the final AHS_ACK packet send to the Controller.

Due to the complexity of the IH-AH authentication the overall cost has to be broken down
in four different components

SDPinitIH
= SDPauth + Q_t + St + SDPauthIH−AH

where SDPauth is the cost of the SDP authentication, Q_t is the cost of the query performed
by the IH to get the available services, S_t the required cost for finding an available AH, and
SDPhandIH−AH

the required cost to perform an SDP authentication with the AH.
The service query cost can be calculated as:

Qt = 2 ∗ SSLsnd
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The first SSLsnd is the cost required from the IH to send the IH_QUERY packet and the
second SSLsnd the cost required from the sCTL to respond with an IH_SERVICES packet.

The discovery of an AH has a total cost of :

St = SSLsnd + CFGr + SSL_snd + CFGw + SSL_snd + SSLsnd

St = 4 ∗ SSLsnd + CFGr + CFGw

where the first SSLsnd is the time required to send the IH_SERVICES packet from the IH,
to indicate the service it intends to use, CFGr the cost required for the sCTL to read its
configuration file in order to select an appropriate AH, the second SSLsnd is the required cost
to notify the available AH via an IH_AUTH packet, CFGw the cost required for the AH to
change its configuration files, with information about the new IH, and the final two SSL_snd
is the cost for sending the IHA_ACK from the AH to the sCTL and the AH_AUTH from the
controller to the IH.

The SDPauthIH−AH is equal to SDPauth since the exact same actions are required in order
to authenticate a client to the sCTL and an IH to an AH. Therefore

SDPauth = SDPauthIH−AH

7.2.5 Data exchange
DTM, is the actions performed by the IH to exchange data with a service via an AH. Its cost
can be calculated as

SDPserv = SSLsnd + Sproc + SSLsnd

where the first SSL_snd is the required cost for sending the DATA packet from the IH to
the AH, Sproc are the service related costs (processing info, sending and receiving to and from
the AH respectivelly) and the final SSL_snd is the required time for forwarding the service
response to the IH. (In calculating the prediction for the performance cost of the SDPserv, Sproc

will be consider minimal).
A complete communication between an IH and a service can be calculated as

SDPsevtotal
= N ∗ SDPserv

where N is the number of packets sent.

7.2.6 Logout cost
In the end of the communication between two hosts a LOGOUT packet must be sent. Its cost
is calculated as

SDPlogout = SSLsnd + FWrm

where SSLsnd is the cost required to send the LOGOUT packet and FWrm the cost required
from one of the hosts to remove the other from its firewall. In IH-sCTL and AH- communi-
cation the sCTL is always the one to remove the client from the firewall, while in the IH-AH
communication, the AH removes the the IH ip from its firewall.

46



7.3 Direct performance measurements
In order to prove the validity of the performance model created above, and to demonstrate the
SDP performance results, each of the basic costs was measured using various scripts. After-
wards, using the equations created in 6.2 and the calculated basic factors, an estimation of the
actual SDP performance was calculated for each action. This aproximation was later compared
with the actual SDP performance in order to prove the validity of the performance model.

Every test and measurement was taken on a Acer-Aspire 5 laptop, the aspects of which can
be seen on table 7.3.

Table 7.3: Acer-Aspire 5 A515-51-572Q

CPU Intel Core i5-7200U 2.5GHz
RAM 8GB DDR4
Filesystem 256GB SSD

Each test was performed 100 times.

7.3.1 Measuring basic factors
Each of the previously declared basic factors, was tested and measured in order to find its
execution time. The results are presented on table 7.5.

Table 7.4: Metrics Results

Metrics Results
Factor Value (sec)
UDPsnd 0.01
SSLcon 0.0023
SSLsnd 0.000108
CFGr 0.0004
CFGw 0.0003
AESe 0.00039
AESd 0.00001
MD5m 0.000002
FWadd 0.001
FWrm 0.0014

Notes on results:

• UDPsnd requires a total of 0.01s which seems like an extreme amount of time, considering
it is a UDP packet. However SPA uses python’s Scapy library to send the SPA packet ,
which adds an extra overhead to its packets [7].

• The size of the hashed/encrypted values provided as input to the MD5/AES functions
while calculating its performance time, were equal to the fields used in the SPA itself.

47



7.3.2 SDP handshake measurements
Using the equations created in the previous section and the metrics, an approximation for the
expected SDP authentication time can be calculated between two hosts. Therefore

SPAauthclient
= 0.000002 + 0.00001 = 0.000012s

SPAauthserver = 0.0004 + 0.000002 + 0.00001 + 0.0003 + 0.001 = 0.002s

SPAauth = 0.000012 + 0.01 + 0.002 = 0.012

SSLauth = 0.0023 + 0.00039 + 0.000108 + 0.0004 + 0.00001 + 2 ∗ (0.000108) = 0.003s

SDPauth = 0.012 + 0.003s = 0.015s

The SDP authentication int the end-to-end measurements was calculated as equal to 0.01985s.

7.3.3 SDP data exchange measurements
Before measuring the SDPserv, the service query performed by the IH in order to find an
available AH must be calculated.

Qt = 2 ∗ (0.000108)s = 0.000216s

St = 0.000216s + 2 ∗ (0.000108) + 0.0004 + 0.003 + 2 ∗ (0.000108) = 0.004s

SDPinitIH
= 0.015 + 0.004 + 0.015 = 0.035

During the performance tests, the execution time of SDPinitIH
was calculated as 0.036521ms.

Since the results satisfy the model, the next step is to proceed to SDPserv.

SDPserv = 3 ∗ (0.000108) + Sproc = 0.0003 + Sproc

The test service used for the metrics, responds to message received via TCP. The cost of this
service is minimal, so Sproc is considered to be equal to 0. The overall cost can be calculated as

SDPserv = 0.0003s

The results gathered from end-to-end measuring on the process of sending packets to a service
via an IH indicated that SDPserv = 0.000716s.

7.3.4 Results
The final results are presented on table 7.5.

Table 7.5: Final Results

Action Prediction(sec) Result(sec)
SDP Authentication 0.015 0.0198
IH initialization 0.035 0.036521
SDP send 0.0003 0.000716
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It is evident that the prediction model managed to predict correctly the outcomes of the
SDPauth and SDPinitIH

procedures. However the prediction for SDPsnd is two times faster than
the actual result. During the calculation of the SDPserv prediction, the Sproc value was not
taken into consideration (its value represented the performance cost of the actions done by the
service during data exchange). In the performance tests, the service was a simple TCP server
which responded to TCP packets. The overall cost of sending and receiving TCP packets was
calculated to 0.000236sec. Therefore the deviation of the final result from the prediction was
created by the cost of exchanging TCP packets with the service.
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Chapter 8

Conclusion and Future Work

8.1 Future Ideas and implementations
The aim of this thesis was to create an SDP implementation, based on the specification docu-
ment by CSA, as well as introduce new concepts and strategies to improve the system structure.

However the final implementation, has plenty of room for improvements and new ideas.
Since the system was built with future implementations and extendability strongly into consid-
eration, new features are fairly easy to implement and program using the existing mechanisms
and structures.

8.1.1 Extended Controller API and new features
So far the SDP Controller API is very simple, it only consists of the start_server function which
starts the controller and the add/edit_host, add/edit_AH functions which add new hosts into
its configuration files.

However new API calls could be introduced to the controller, some ideas are the following

• get_AH_stats(aid) : returns various info for AH with the corresponding aid, number of
clients, running time, client information, workload, number of running processes

• stop_host(aid) : terminates connection with specific host, IH or AH

• disable_ah(aid) : the CTL could use this function to disable temporalily some AHs when
they are idle to save resources. Whenever an AH is disabled it transfers its state to the
other active AHs and then it redistributes its clients to them to continue their operations

• enable_ah(aid) : activates AH when the network traffic increases

The final bullets adds a new important feature that currently is missing from the SDP
implementation, IH-AH persistant state. Right now the connections are stateless, every time
one of the hosts disconnects, it has to repeat the whole process again before connecting to an
AH again. With some minor changes, the IH could connect to the AH again, and continue its
previous actions.

A better algorithm for finding the appropriate AH for an IH_QUERY could also be created.
The current solution to this is a simple Round Robin algorithm, each time a different AH is
served. However choosing the new AH based on its number of clients and other factors could
improve the implementation and distribute the performance load.
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Finally, controller should be also able to connect and link AHs together so that requests
could be redirected through more than one AH. This would proven to be an efficient mechanism
as AH could be arranged into graphs or trees to distribute traffic through the network and not
only act as end nodes.

8.1.2 Distributed sCTL structure
The current implementation can support only one sCTL. Such an architecture does not require
a complicated file structure to store user data and information, so files are an appropriate
solution for storage. However, an important addition to the SDP system would be to support
more than one Controllers. A noSQL distributed database (such as MongoDB) could be used
to exchange information between the controllers so that the system could scale easily.

The distributed controller structure could later be shaped in a tree-based structure, in order
to support efficiently a greater number of clients. AHs could dynamically decide the controller
to connect with and controllers could be able to exchange AHs between each other. Generally,
a communication protocol for inter-sCTL communications is crucial to be developed, in order
to create a structure that could be used in real-life applications and systems.

8.1.3 SDP Catalog Services
It was previously mentioned that clients in the SDP system should have a shared seed, for the
communication encryption, beforehands. This creates a question, regarding the acquirement
of the seed. SDP Catalog Services would be a dedicated server which handles such problems.
Through it a client could register to the SDP application, in order to acquire its seed and aid
and use them to connect with the SDP Controller. This web service could also have more uses
such as:

• Inform the client of the controller closer to their location

• Serve information about specific controllers, such as IP, aid and make requests to get seed
in order to connect with them

• Provide authentication, in the spirit of PKI, so that the client is sure that it is commu-
nicating with a valid SDP Controller

8.1.4 SDP Platform
As far as the current implementation is concerned, the client can connect and request access to
any service on the SDP system. However, a future step would be to personalize this process, so
that every client is linked only with specific services, and has its own profile inside the system,
thus building the SDP platform (in the form of an application or a website). Through it, and by
using the SDP Catalog Services, the user would be able to register new services and components
to the system, see and communnicate with already existing services and customize its profile
in a user friendly manner.

8.2 Epilogue
The primary aim of this thesis, was to implement/discuss the SDP and SPA protocols and
mention their benefits. In general, both protocols provide an extra security layer for the ser-
vices they protect, which means that an attacker would have to penetrate and exploit multiple
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security mechanisms in order to inflict damage to its target. The SPA protocol provides au-
thentication prior to connection: clients can be authorized to a server without the need to
establish a connection with it, therefore the server can block all its ports via the firewall and
allow access to them only to authenticated clients. The SDP on the other hand, uses the SPA
to authenticate its clients (IHs) and then provides them with gateways (AHs) to services hidden
behind its structure.

As far as originality is concerned, SDP uses mechanisms that have been extensivelly used in
the past: the AH strongly resembles a reverse-proxy, host-to-host communication uses protocols
such as SSL/TLS, its architecture is similar to NAC and the firewall has been a basic tool in
the security engineer’s arsenal for years. However, the real breakthrough in SDP is not the
SDP protocol per se, but the use of SPA as an authentication mechanism.

The SPA is a considerably new technology (proposed in 2005) which has not, yet, been
extensivelly used in the computer field or the market. Similar to every new technology, a way
to hack the SPA authentication system might be discovered in the future. However, due to the
architecture of the SDP, even if SPA is hacked and exploited by attackers who will manage to
find a way to penetrate the SPA firewall, the protected services will remain protected behind
the Black Cloud. Whichever the damage is, it will be inflicted on the intermediate nodes who
act as gateways to the services (AHs) and not to the services themselves. In that case, the
engineers of the SDP system will soon discover the vulnerability, using the SDP’s log files and
will attempt to fix it. Even if a big amount of time is required to fix the issue, more AH nodes
can be added to the system in order to handle the clients requests. Attackers would then have
to rediscover the AH nodes and attack each one of them. This proccess (attack AH - create
new AH) will be repeated as long as the attack lasts. Overall, the SDP seems to be successful
in its primary goal, to protect its services, as even zero-day exploits (exploits that are used for
the very first time) found in its most important security mechanism (the SPA), will not inflict
damage upon them.

However, one can never be certain that a security mechanism will never be compromised.
For example, a major security flaw was recently found on WPA2[2], a mechanism that, until
now, was considered secure and replaced other insecure protocolls such as WPA. It is very
possible that similar flaws will be discovered in the SDP system as well.

The primary aim of computer security is to provide defense against a multitude of attacks.
However, in order to provide security against a threat, the threat has to be defined. The security
engineers try to provide security against attacks that have already been used in the past.
Security cannot be provided against attacks that have never been used before, only security
measures can be taken, that once again have been designed based on previous experience. It
is obvious that the attackers will always be one step ahead from the security engineers trying
to stop them. The SDP creates security by creating multiple layers that secure its protected
services. However each one of this layers might be broken in the future. This however does not
deem this solution inefficient because a solution can never be considered efficient in general.
As a matter of fact, the various tests executed during this thesis show that the SDP provides
security against many popular computer attacks used today.

Security mechanisms exists because threats exist, and as long as threats exist and evolve so
will the defense mechanisms built against them.
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Appendix A

SPA API

The library spa provides two modules. The first one is a function that sends SPA packets,
while the second one is a server class, which configures the firewall, and sniffs the network for
SPA packets(AH and sCTL use this class while IH uses the sending function). The SPA API
is presented bellow

Class sdpCtl.spa_libspaListener(id,user_file, tls_p = 443, interface, block_all = True,
no_seed_renewal = False, allowed_ips = []) Initializes a spaListener which sniffs for packets
on interface. id is a unique identification, which will be added in the comments of every added
rule in order to display its creator. user_file is the user file which contains client information
(clients who are allowed to access the SDP system). tls_p is the port to allow connections on
when a host is authenticated. block_all boolean, if set to true, adds the DROP all rule (for
example AH does not add this firewall rule if it is in the same machine as the sCTL). When
no_seed_renewal is set to true, AH does not change the seed of the client to the NEW_SEED
value sent within the SPA packet. In case the block_all mode was set to true, allowed_ips is
the list of IPs to be allowed on the network before blocking all connections (AHs add the IP of
the controller).

• run()
Starts sniffing packets. This function is non blocking. spaListener will run on a thread
in the background.

• add_host(aid, password, seed)
Adds a new host entry with these fields

• start_server()
Start main execution thread

• is_alive()
Checks if the spaListener is still running.

• terminate()
Terminates the spaListener.

• remove_client(aid)
Removes client identified by aid from the user_file.
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• add_user_entry(aid, password, seed)
Creates a new user entry with the input fields.

• edit_user_entry(aid, password = None, reset_rand = False, seed = None)
Edits user identified by aid. In case reset_rand is set to true, it deletes previously used
random numbers linked with this client.

• add_firewall_entry(ip, label)
Add a new allow policy for ip, add label on the rule comments.

Function send_spa(aid, password, seed, new_seed, ip) Send an SPAp using the creden-
tials given to address ip.
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Appendix B

SDP API

The existing API for the SDP application is presented bellow.

Class sdpCtl.sdpCtl(aid, ssl_p, server_crt, server_key) Initializes the controller with the cor-
responding aid, listens on port ssl_p for connections and uses the files server_crt and server_key
to create ssl connections.

• add_AH(aid, services)
Adds a new AH entry with these fields

• add_host(aid, password, seed)
Adds a new host entry with these fields

• set_AH_services(self, aid, services)
Sets the services for a specified AH

• start_server()
Start main execution thread

• run()
This function blocks execution until sCTL has been closed.

• terminate_ctl()
Terminates all connections and threads of the controller.

Class sdpHost.IH(aid, password, seed, ssl_port) Initializes an IH with the respective aid.
The password is used for user authentication whereas the seed for host authentication. The
ssl_port is the controller port to connect with.

• req_login()
Logs in to the controller. Returns true if log in was successful, false otherwise.

• send_query(query_json)
Sends an IH_QUERY. The query_json has been defined at 4.3.3. Returns True in case
of success and false in the opposite scenario

• get_query_response()
If the send_query function has been used, without requesting for a direct connection with
an AH (by setting the service_id field), then the result of the query can be acquired by
calling this function. The result is a json describing the available services or an empty
dictionary in case of error.
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• has_available_host(service_id)
Returns true or false whether, the IH, knows an available AH to connect to for the
provided service.

• get_available_host(service_id)
Gets information of the AH host that provides the corresponding service if the query has
been succesfull.

• connect_with_AH(server_crt, service_id)
Connects with the AH for a service. Returns the MUX, if the AH approved the connection
or null in the opposite case. Uses server_crt file to create ssl_connection and authenticate
to AH.

• send_data(MUX, data)
Sends data to channel created with AH with the corresponding MUX.

• get_data(MUX, timeout = QUEUE_CHECK)
Gets data from channel created with AH with the corresponding MUX. This call is not
blocking and will return null if no data is found in channel after a timeout (QUEUE_CHECK
is equal to 2s)

• terminate_host()
Terminates all the connections and thread listeners initiated during the execution of the
IH.

Class sdpHost.AH(aid, password, seed, host_crt, host_key, ctl_ssl_p, ah_ssl_p,) Initial-
izes an AH with the respective aid. The password is used for user authentication whereas the
seed for host authentication with the controller. The ctl_ssl_port is the controller port to
connect with. The host_crt is for creating an ssl connection with the controller. The host_key
is for creating an ssl server on port ah_ssl_p in order to listen for IH clients.

• req_login()
Logs in to the controller. Returns true if log in was successful, false otherwise.

• run()
This function blocks execution until AH has been closed.

• terminate_host()
Terminates all the connections and thread listeners initiated during the execution of the
IH.
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Appendix C

SDP packets

C.1 LOGIN1

The first packet to be exchanged. Through the LOGIN packet, AH is authorized, and a new
session is created by sCTL. E_AID is decrypted using the users’ shared secret key and then
compared to the AID field in order to authenticate user. The packet is displayed on table C.1.

Upon registration to the sCTL, the AH also creates its own firewall. Like the sCTL, it drops
all incoming connections and packets except those coming from the Controller. Any client that
wishes to communicate with the AH must authenticate itself via SPA.

Table C.1: LOGIN packet

Field Value
OP 0x01
LENGTH 64
DATA AID/E_AID

C.2 LOGIN_RESP
The response to LOGIN packet contains the identification number of the created session as well
as the maximum time in msec from the last communication between the AH and the sCTL
until the connection is closed (keepAlive value). The packet is displayed on table C.2

C.3 LOGOUT
This message is sent, either by the Controller to the AH or vice versa, in order to indicate the
end of the communication. Whoever gets this message first assumes that the connection is over
and terminates the session. The packet contains only the LOGOUT packet code : 0x03. The
logout process can be seen on figure C.1

1The SDP specification document stated that the LOGIN packets should not include any other fields except
from the packet header. However, in order to provide an additional layer of security, the AID and E_AID fields
have been inserted.

58



Table C.2: LOGIN_RESP packet

Field Value
OP 0x02
LENGTH 64
DATA SESSIONID/KEEP_ALIVE

hostA hostB

Logout

Close Connection

Close Connection

Figure C.1: Logout procedure

C.4 KEEP_ALIVE
Indicates that the client is alive. This packet is sent periodically by both members of the
connection to keep the session open. In case of delay, the Controller or the AH terminates the
connection (as seen on figure C.2). The packet contains only the KEEP_ALIVE packet code
which is 0x04

hostA hostB

KEEP_ALIVE

KEEP_ALIVE

KEEP_ALIVE

Big time interval

Close Connection

Figure C.2: Keep alive periodical send

C.5 AH_SERVICES
This packet is sent by sCTL to AH to inform it about the list of services it is going to provide.
The list is formatted as a json array which contains the following fields:

• id : the id of the service
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• name : the name of the service

• ip : the address of the service

• port : the port of the service

• type : the type of service (http, tcp, etc.). This instructs the AH how to connect with
the service

When the list is received, the AH adds rules to the firewall allowing communication with
these services. The packet structure is displayed on table C.3.

Table C.3: AH_SERVICES packet

Field Value
OP 0x06
LENGTH LEN
DATA SERVICES_JSON

C.6 IH_AUTH
Sent by the sCTL to the AH when an IH user has been successfully authenticated and wants
to use a service that this AH provides. The IH info is stored in a json object with the following
fields:

• aid : the aid of the IH

• seed : the seed to use in the connection with the IH

• service_id : the id of the service requested

As soon as this message is received, the AH is ready to accept SPA packets from the IH.
The packet is depicted on table C.4.

Table C.4: IH_AUTH packet

Field Value
OP 0x07
LENGTH LEN
DATA IH_INFO_JSON

C.7 LOGIN
The first packet to be exchanged. Using a LOGIN packet, the IH is authorized and a new session
is created by the Controller. The LOGIN packet has already been displayed on table C.1.
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C.8 LOGIN_RESP
The response to LOGIN packet contains the identification number of the new session. It is
shown on table C.5.

Table C.5: LOGIN_RESP packet(IH-sCTL)

Field Value
OP 0x02
LENGTH 64
DATA SESSION_ID

In contrast with the AH-Controller LOGIN_RESP, the KEEP_ALIVE field is not used
here. sCTL terminates connection after an predefined period if the IH is inactive or when the
IH has found an available AH to connect with.

C.9 LOGOUT
This message is sent by the Controller to the IH or vice versa in order to indicate the end
of communication. Whoever gets this message assumes that the connection is over and ter-
minates the session. This packet is exactly the same with the LOGOUT packet in AH-sCTL
communication.

C.10 IH_QUERY2

When an IH has finally logged in, it can ask the controller to provide it with either a full set
of services that it can use, or a subset thereof, by submitting a specific query. The query is a
json object and its fields can be seen below:

• name : the name of the service

• type : the type of the service

• service_id : the ID of the service

When the IH is sure about the service it intends to use, it sends an IH_QUERY to the
sCTL setting the service_id field with only the ID of the corresponding service. The sCTL
then starts the procedure of connecting the IH with the designated AH. The packet is depicted
on table C.6

C.11 IH_SERVICES3

After an IH_QUERY packet has been received, the IH_SERVICES packet is sent by the sCTL
to the IH in order to inform the latter about the list of services matching the IH’s query. The
services list is a json object whose fields are described bellow

2This packet type did not exist in the SDP’s specification.
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Table C.6: IH_QUERY packet

Field Value
OP 0x08
LENGTH LEN
DATA QUERY_JSON

• name : the name of the service

• type : the type of the service

• service_id : the ID of the service

The packet structure is shown on table C.7

Table C.7: IH_SERVICES packet

Field Value
OP 0x06
LENGTH LEN
DATA SERVICES_JSON

C.12 AH_READY4

After receiving the IH_SERVICES packet with the service_id field set, the sCTL selects an
appropriate AH to handle the request and informs it about the new IH through an IH_AUTH
packet. When AH has acknowledged the AH_AUTH, the sCTL sends an AH_READY packet
to the IH to inform it about its new gateway to the service. The packet includes information
about the AH in json format, which is described below:

• ip : the IP address of the AH

• seed : the seed to be used during the communication

• service_id : the ID of the service that it is going to provide

The AH_READY packet format is depicted on table C.8

C.13 LOG_ACK
A client sends this to the server to acknowledge the receipt of the LOGIN_RESP packet. The
packet is sent once the client has initialized a session. Once the server receives this message, it
sets the clients session to active. The packet’s code is 0x10.

3The IH_SERVICES message, did not exist in the original SDP protocol but was built into the implemen-
tation developed as part of this thesis.

4This packet was introduced in this version of SDP and was not included in the prototype
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Table C.8: AH_READY packet

Field Value
OP 0x09
LENGTH LEN
DATA AH_INFO_JSON

C.14 AHS_ACK
The AH sends this ACK to the sCTL in order to acknowledge the receipt of the AH_SERVICES
packet. It is sent once the AH allows the new services to connect with it via its firewall. After
receiving this packet, the sCTL can assign IHs to this AH for the services it provides. The
packet’s code is 0x11.

C.15 IHA_ACK
The AH sends this ACK to Controller in order to acknowledge the receipt of the IH_AUTH
packet. It is only sent once the AH has updated its configuration files with client-related data.
When this packet is received, the sCTL sends the AH_READY packet to the IH . The packet’s
code is 0x12.

C.16 OPEN_CONN_REQ5

Much like the LOGIN packet, the OPEN_CONN_REQ packet is used by the IH in order to
ask AH to to connect with it (using the shared seed, exchanged on the service query step, in
order to validate). The packet is displayed on table C.9. The AH opens a connection with the
requested service during the communication. In case the communication fails, it sends an error
message to the IH and terminates their connection.

Table C.9: OPEN_CONN_REQ packet

Field Value
OP 0x07
LENGTH 64
DATA AID/E_AID

C.17 OPEN_CONN_RESP
The OPEN_CONN_RESP packet is used as a response to the OPEN_CONN_REQ packet.
It contains the MUX for this session. A MUX is a 32-byte string containing the service_id

5This packet follows the LOGIN packet structure and was introduced in this implementation
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(first 16 bytes) and the session_id (last 16 bytes). In order to refer to this service, the IH and
AH have to use this MUX. The packet structure is displayed on table C.10.

Table C.10: OPEN_CONN_RESP packet

Field Value
OP 0x08
LENGTH 32
DATA MUX

C.18 CONN_CLOSE
The CONN_CLOSE packet ends the connection between the IH and AH. The code of this
packet is 0x0A.

C.19 DATA
The DATA packet is service data encapsulated inside an SDP packet, which is either forwarded,
via the AH, to either the service or the IH. The packet is displayed on table C.11.

Table C.11: DATA packet

Field Value
OP 0x09
LENGTH LEN
DATA SERVICE_PAYLOAD
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Appendix D

Using SDP

The SDP and SPA libraries were implemented using Python 2.7.12. The current implementa-
tions can only run on machines using Linux.

In order to download the latest Python 2 and Python’s package manager one has to execute
the following commands:
Debian

$sudo apt install python python -pip

Red Hat

$sudo yum install python python -pip

Suse

$sudo zypper install python python -pip

After the python installation the user must install the required python libraries

pip install python - iptables pycrypto bs4 uuid scapy\
netifaces pyyaml crypto

The APIs for SDP and SPA are now ready to use.
Examples of SPA and SDP use have been provided on the following files:

• sdp_proto/startCTL.py : Starts the SDP Controller

• sdp_proto/startAH.py : Starts an SDP AH and connects it with the controller

• sdp_proto/startAH.py : Starts an SDP AH and connects it with the controller

• sdp_proto/ping_client.py : The ping application described in the 4th and 6th chapters

• sdp_proto/pong_service.py : The pong service described in the 4th and 6th chapters

• sdp_proto/ih_proxy.py : The IH proxy built on chapter 6

• sdp_proto/ah_proxy.py : The proxy service built on chapter 6
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