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Abstract

The scope of this thesis is the detection of interference in Vehicular ad-hoc networks 
(VANETs) just utilizing the received power of signals, stochastic processes and the ma­
chine learning algorithm Expectation Maximization.The objectives of the report are the 
simulation for different possible profiles and types of noise attacks (jamming) at the phys­
ical layer.VANETs and communication systems between vehicles including threats and 
hazards on them, is a groundbreaking field whose research is current and expected to be 
at the peak over the following years as the launching of intelligent driving systems, that 
limit human intervention and attribute higher safety effectiveness, will be prepared.The 
results and estimations of detection of malicious attacks using the algorithm are consid­
ered satisfactory and it is concluded that it is feasible to be applied.

Π ΕΡΙΛΗΨ Η

Η διπλωματική αυτή αποσκοπεί στην ανίχνευση παρεμβολής σε δίκτυα αυτοκινήτων .Χρησι­
μοποιώντας απλά την λαμβανόμενη ισχύ των σημάτων, στοχαστικές διεργασίες και τον 
machine learning αλγόριθμο Μεγιστοποίησης Προσδοκίας, επιχειρείται η προσομοίωση για 
διάφορα προφίλ και τύπους επιθέσεων θορύβου στο φυσικό επίπεδο.Τα ασύρματα δίκτυα 
επικοινωνίας μεταξύ κινούμενων οχημάτων και οι απειλές και κίνδυνοι που αντιμετωπίζουν 
είναι ένας πρωτοποριακός τομέας, η έρευνα πάνω στον οποίο βρίσκεται σε πλήρη εξέλιξη 
και αναμένεται να βρεθεί στην αιχμή τα επόμενα χρόνια καθώς θα προετοιμάζεται η έλευση 
"έξυπνων’ και αυτοματοποιημένων συστημάτων οδήγησης που θα ελαχιστοποιούν την αν­
θρώπινη παρέμβαση και θα έχουν καλύτερες επιδόσεις στην ασφάλεια.Τα αποτελέσματα και 
οι εκτιμήσεις της ανίχνευσης κακόβουλων επιθέσεων με τη χρήση του αλγορίθμου κρίνονται 
ικανοποιητικά και συμπεραίνεται ότι μπορεί να χρησιμοποιηθεί στην πράξη.
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1 Theoretical background

1.1 Platoon survey

According to the European Commission 25,500 people were killed on the roads in 2016. 
For every death on Europe’s roads there are an estimated 4 permanently disabling in­
juries such as damage to the brain or spinal cord, 8 serious injuries and 50 minor in- 
juries.Autonomous cars are evolving intelligent vehicles navigating without human in- 
put.They obtain formations in rows (Platoons) to circulate at high speeds through high- 
ways.Their occupants will delegate the driving tasks to a fully automated system that 
will use ways to share information like position, velocity and tension, in order to keep a 
small distance between cars and move fast in a very efficient way, leading to increase of 
the capacity of the roads.This concept is expected to attribute lots of benefits.The energy 
consumption (fuel combustion or electrical energy stored) and the consequent environ­
mental impact will be lower due to speed fluctuation restraints.Human factors will not 
need to operate any manipulations during the platooning stage and manual driving will 
be happening into neighbourhoods and dense populated areas.Furthermore, circulating 
in a tight platoon implies reduced air resistance.If automation be applied in parking, a 
huge saving of space is going to be gained.Generally, as an outcome, a much more efficient 
use of the current highways with reduced traffic jams and congestion will occur.Each ve­
hicle will be equipped with on board technology (ultrasonic sensors, Global Positioning 
System (GPS), cameras, and micro controllers) to measure the distance with its prede­
cessor, the speed difference (Autonomous cruise control) and side intervals among objects 
in regard with the lanes of the motorway as long as the density of the circulation on the 
neighbouring lanes [1].The itinerary will be submitted in advance but alterations one 
the route are going to be feasible anytime and be handled with the optimal and safest 
way.As a consequence constant road particularities like junctions,interchanges and toll 
stations will be expected.Safe procedures for vehicles to join or leave the platoon will be 
anticipated.Vehicles will be up to date about critical data from the infrastructure rela­
tive with current road and road surface conditions (such as slippery road), forthcoming 
traffic lights,forward rules that demand speed modification, exact position of obstacles , 
priority assignments for emergency vehicles and temporary lane merging or detours due 
to roadworks.Roadside motion sensors and cameras installed along the highway, pro­
vide supervision and instant notification to the management application that controls 
the highway dynamically.Infrastructure of the motorway also gets shared data from ve­
hicles, either forwarded messages by other nodes obtained by communication channels 
or measurements collected by their equipment.As an example, awareness of ice on the 
driveway may be achieved with the use of infrared radiation that is related with thermal 
radiation.All objects emit radiation proportional to the fourth power of the temperature 
of the object.The warmer the object, the more radiation emitted.The wavelength band 
in which the object releases radiation energy is dependent on the object’s composition, 
e.g. radiation emitted by a gas is decided by thin spectral lines or band spectra.By 
measuring the emissivity, it becomes district weather the surface is asphalt or ice.Such 
data gathered by the vehicles could be shared.In case of a high-risk emergency situation 
like animal wandering, an irregular appearance of pedestrian or bicycle, a sudden decel­
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eration of a vehicle caused by breakdown etc, a possible collapse of some of the system’s 
component’s and collisions despite the prevention policies, alert messages emerge.Based 
on radio tranceivers along road sections, a procedure recognizes hazards and broadcasts 
assistance to the involving with the incident vehicles, plus warnings and directions to 
the following ones.The development of algorithms that can resolve the problem of the 
intersections is necessary for the users, so they can share relevance data between different 
platoons or vehicles that approaching the intersection.

1.2 VANETs

To ensure the smallest possible space between vehicles, it is necessary a robust and 
stable communication between participants in the platoon.Vehicular ad-hoc networks 
(VANETs) have recently attracted the interest of researchers and industry due to their 
potential to improve road safety and capacity.There are two main protocol stacks for ve­
hicular communication systems, one supporting exchange of data among vehicles (V2V 
communications) and the other one concerns between vehicles and the roadside infras­
tructure (V2I/I2V).These two families of standards correspond to the IEEE Wireless 
Access in Vehicular Environments (WAVE), adopted in the United States, and the ETSI 
ITS-G5 in Europe.At the physical and medium access control layers, both protocol stacks 
rely on the IEEE 802.11p standard, an amendment to the IEEE 802.11a Wi-Fi technol- 
ogy.In comparison with the typical wi-fi operation channel bandwidth was reduced from 
20Mhz to 10Mhz in order to mitigate the effects of multipath propagation like intersym­
bol interference(ISI) and Doppler shift.As a consequence bit rate was modified to the 
half, from 3 up to 27 Mbps instead of 6 up to 54 Mbps.The IEEE 802.11p PHY is based 
on the Orthogonal Frequency Division Multiplexing (OFDM) policy.The IEEE 802.11p 
MAC sublayer is the IEEE 802.11 Distributed Coordination Function (DCF), which 
is based on the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) 
scheme, protocol where a transmitter attempts to detect the presence of a carrier signal 
from another node before attempting to transmit.If a carrier is sensed, the node waits 
for the transmission being in progress to end before initiating its own transmission of 
the intended message.The IEEE 802.11p MAC mechanism has been improved to reduce 
the process time of the algorithm.In addition, there are no authentication nor associa­
tion in the MAC layer.When a vehicle want to join the network, It receives a WAVE 
non-IP message to configure the vehicle to join the Basic Service Set (BSS), avoiding 
the overhead introduced by the registration and authentication procedures, commonly 
present in wireless local area networks.In order to guarantee that vehicular communica­
tions will not suffer from any type of interference from unlicensed devices, the Federal 
Communications Commission (FCC) in the United States and the European Conference 
of Postal and Telecommunications Administrations (CEPT) in Europe, allocated a ded­
icated spectrum band at 5.9 GHz. In America, a bandwidth of 75 MHz was reserved, 
while in Europe only 50 MHz were assigned.This spectrum was divided into smaller 10 
MHz wide channels in the American case to better cope with multipath fading and a 
5 MHz guard band at the low end was also included. As a result, there are 7 different 
channels for IEEE WAVE operation and 5 for the case of ETSI ITS-G5.In Europe, 30 
MHz (3 channels) are reserved for road safety in the (ITS-G5A) band and 20 MHz are
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assigned for general purpose (ITS-G5B) band.In fact, the European tolling systems op­
erating in the 5.8 GHz frequency band and wireless communication systems operating 
near the 5.9 GHz frequency band cause serious problems to the performance of vehicular 
networks.Adjacent Channel Interference (ACI) can severely impair the integrity of the 
messages received by a radio unit, whenever simultaneous communications occur in the 
nearby channels.This phenomenon causes packet loss and if consolidated, results in large 
values of Packet Error Rate (PER).A realistic study proved that the IEEE 802.11p tech­
nology's supported communication range between vehicles or vehicles and infrastructure, 
can reach in a highway scenario up to 880 metres for the line of sight (LOS) and 58 to 
230 metres in the none line of sight (NLOS) [2].A mobile peer receives signals either 
from the predecessor vehicles or the motorway static infrastructure.All received signal 
with strength below a certain threshold are considered ambient and generated from the 
presence and dissemination between other nodes so they are included in the noise level. 
Multihop broadcast protocols are essential to reduce collision due to congestion and 
waiting time of emergency messages.On the receiver’s MAC sublayer, only packets sent 
by the sender can pass the Cyclic Redundancy Check (CRC).CRC is an error detecting 
code.the Packet Delivery Ratio (PDR) is measured by using the ratio of the number of 
packets passing the CRC check with respect to the number of total received packets (or 
preambles).The successfully received packets should be sent either by the sender or by 
the compromised vehicle[3].At the sender side, the PDR can be calculated by keeping 
track of how many acknowledgements it receives from the receiver.

1.3 Jamming

The greatest challenge about VANETs is the security issue.Trustworthiness is vital when 
it comes to messages critical to life that is not permitted to be dropped or modified 
by a threat.Denial of service (DoS) attacks to VANET can aim at different layers with 
variations of three basic techniques: buffer overflow at Network Layer and above, pro­
tocol violation at Medium Access (MAC) sublayer (data link layer) and signal inference 
by a radio emitter, called jammer, at Physical (PHY) layer [4].If too many packets are 
buffered in the MAC layer, the newly arrived packets will be dropped.It is also possible 
that a packet stays in the MAC layer for too long, resulting in a timeout and packets 
being discarded.A jammer transmits electromagnetic energy to clash or block legitimate 
communications on the wireless medium.Moreover, given that 802.11 operates on rel­
atively few frequency bands, multiple jamming devices operating on different channels 
can significantly hurt the performance in spite of using frequency hopping.The dominant 
way to defend against a jamming attack is retreat strategy: Channel Surfing to switch on 
another channel when the current frequency is blocked and Spatial Retreat to move on 
another location if the area involves interference.Jamming cannot be avoided by regular 
security mechanisms such as authentication, digital certificates, or encryption, because 
the jammer is often disregarding higher layers,focusing on the lower ones[5].Jamming 
attack models can be used by adversaries to defuse the operation and reliability of a 
wireless network[6].There are several jammer profiles and strategies:

3
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• flat/constant jamming: jammers characterized by brute force considered the most 
disruptive as they indiscriminately affect all ongoing communication.All blocks 
are jammed with equal power.The power spectral density of the signal broadcast 
is flat across the entire bandwidth.This is achieved by transmitting continuously 
radio signal that represents random bits and does not follow any MAC procedure.

• deceptive jamming: jammers transmit semi-valid packets.In this case the packet 
header is valid but the payload is useless.Instead of sending out random bits, the 
deceptive jammer constantly injects regular packets to the channel without any 
time interval between subsequent packet transmissions.As a result, a legitimate 
peer will be mocked, forced into repeated backoffs believing there is a valid trans- 
mittion in progress.

• random jamming: jammers that interchange periodically between trying to impede 
the channel and sleeping mode.During the first jamming period, the jammer emits 
for a random period of time (it can behave either like a constant jammer or a 
deceptive jammer) while in the sleeping mode, the jammer is offline for random 
amount of time.

• smart/reactive jamming: protocol aware jammers able to target specific data or 
control packets.In this type of attack, the enemy detects the resource blocks actively 
used by the targeted user and allocates its power accordingly.In such case, the 
jammer stays quiet and senses.It decides to react only when a transmission occurs 
and overlaps with it, with raised power.This sort of jammer attempts to corrupt 
and modify the contents of the packet, invalidate its checksum so it will not be 
considered by the receiver.

Attackers usually prefer the rush hours when speeds are much lower and the network 
traffic is higher.
The figure 1.1 is taken by [7] shows the performance of a reference VANET receiver 
under the influence of RF jamming in the form of PDR vs SNIR curves obtained from 
measurements in an anechoic chamber.These curves show that a Constant Jammer is 
more devastating than a Reactive Jammer.While 80% PDR is achieved at 5dB power 
without interference, the same PDR is only achieved at 10 dB when a Reactive Jammer 
is active and at 22 dB when a Constant Jammer is present:
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2 RPMs

Most widely used stochastic Radio Propagation Models (e.g., Free Space, TwoRay- 
Ground Reflection, Rayleigh Fading model, Ricean Fading model, Shadowing model, 
Log-distance Path Loss and mix ones) rely on the overall statistical properties of the 
environment.Free Space model is not considering obstacles in city environments and the 
received signal power is based on three factors: the sender-receiver distance, antenna 
gains, and the transmitted power.Two-Ray Ground model demonstrates better perfor­
mance than the Free Space model.Received signal strength can be predicted from long 
distance.However, two-ray is not concerned with the height and width of the nodes.It 
only assumes the received energy, which is the sum of direct LOS path and reflected path 
from the ground.In fact, there are different sizes of vehicles (i.e., cars, trucks, buses, and 
vans) on the roads.In Rayleigh Fading mode there is one dominant path and multiple 
indirect signals.The random multipath components are added to the LOS and can be 
seen as a Direct Current (DC) component in the random multipath in Rayleigh distri- 
bution.Similarly, the Ricean model considers indirect paths between the sender and the 
receiver.It only focuses on a single exact path and multiple reflected signals.Rayleigh and 
Ricean Fading are considering fast fading and caused by scattering while slow fading fol­
lows log-normal shadowing and occurs due to reflections of hill, building and obstacle.In 
Shadowing model a Gaussian random variable is added to the path loss to account for 
environmental influences.The radio signals are set to some particular values, which make 
it not suitable for real urban environments.Radio Propagation Model with Obstacles 
models obstacles, RPMO but when there are no obStacles, RPMO behaves like Two-ray 
Ground, so distance attenuation is not taken into account.Mahajan model behaves like 
Two-ray Ground, adding the influence of obstacles and the distance attenuation,but it 
is designed for the 802.11b environment.The LOS between two communicating vehicles 
(cars) runs a high risk of interruption due to the presence of large vehicles such as buses 
and trucks.To develop a realistic radio propagation model for highly dynamic VANET 
is computationally challenging, and moving obstacles makes them more complicated.

The radio signals in VANETs can potentially be obstructed by different radio obsta- 
cles.The wavelength of the radio signals in 5.9 GHz frequency band is approximately 5 
cm; therefore, they have relatively less penetrating power in comparison to technologies 
such as GSM that typically operates in 1800 MHz frequency band.In other words, radio 
signals in the 5.9 GHz frequency band are obstructed by static objects (e.g. buildings, 
dense vegetation, and advertising boards) and moving objects (e.g. large buses, trailers 
and delivery trucks that impede radio signals) present in the VANETs environment.Thus, 
vehicular communication built on IEEE 802.11p standards suffers from a relatively small 
effective coverage communication area, and potential disruption that results in signal at­
tenuation (e.g. due to radio obstacles) The tunnel geometry, electromagnetic properties 
of the tunnel's material, antenna characteristics and radio obstacles also affect the radio 
propagation in tunnels.
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2.1 Free Space Propagation Model

A large scale propagation model assumes that there is only the LOS path between the 
transmitter and the receiver.The received power Pr at a distance d from the transmitter 
is given by Friis Equation:

Pr(d) = P, G, Gr  i2·1)

where Pt  is the transmitted power, Gt  and Gr are the transmitter and receiver antenna 
gains, L is the system loss and λ is the wave length in meters.

2.2 Shadowing Model

The shadowing model consists of two parts.The first part is the path loss component 
which is used to predict the received power at distance d from a known reference power 
at distance do.The second part is the log-normal shadowing which reflects the variations 
of the received power at certain distance d from the transmitter.It is a log-normal dis­
tribution or Gaussian distribution if measured in dB.Therefore the overall shadowing 
model is represented as:

PL (dB) 

or Pr (dB)

where PL dO ^  d(dB)

so Pr (dB)

but PL d0(dB) 

from (1),(2): Pr (dB)

10logioP
Pr

l° l°gi0Pr  = 10logi0Pt  — PL (dB) 
d

PL d0(dB) +  lOnlogio — + χ σ

d
lOlogioPt  -  PL dO(d B ) -  lOnlogio — -  χ σ 

10l°gloPt  — 10logioPr (dO)
d

10logioPr = 10logioPr (dO) — 10nlogio —

(1)

(2)

χ σ

(2.2)

we can obtain the recieved power at reference distance d0 (PrdO) by the Friis equation. 
n is the path loss exponent witch fluctutates from 2.7 to 3.5 for urban areas. χ σ is the 
PDF of the Normal(Gaussian) distribution with zero mean and adB value from 4 to 12 
dB for outdoor environment

χ σ = N  (yt;O,a2)
V 2

yi
-β 2°2

πσ 2
1

The Free Space and Two-Ray models are deterministic radio propagation models.They 
assume a successful reception of the signal if the received signal strength (RSS) is greater 
than a threshold.This means that their communication range is an ideal circle and they 
always determine the same RSS for the same distance.While in reality and because of 
the multipath propagation effects, the RSS is a random variable makes the successful
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detection of the signal not certain.The shadowing, Rayleigh, Ricean and Nakagami are 
probabilistic propagation models and their successful reception of the signal is a decreas­
ing function of the distance.

8
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3 EM (estimation-maximization)

Because of high complexity of Maximum-Likelihood (ML) estimate, the EM iterative 
algorithm that provides an attractive alternative to computing ML is proposed.In this 
case where the information of a priori estimated parameters is not given, and the ob­
serve data is incomplete, an easy-to-use iterative algorithm to compute the parame­
ters of ML is proposed, and this algorithm guarantees convergence to get the maxi­
mum estimate.Expectation-maximization(EM) algorithm is an effective machine learn­
ing method when probability distributions of data samples are modeled by a Gaussian 
mixture model (GMM).EM algorithm is used for clustering and probability density es­
timation of a given data set.Recent applications of clustering and density estimation 
often require low-power consumption such as sensor networks and mobile terminals.The 
EM algorithm has been used in a lot of applications including system identification, 
array processing, medical imaging, and time series analysis.It works with a complete 
data specification, and iterates between estimating the log likelihood of the complete 
data using the observed (incomplete) data and the current parameter estimates(E-step), 
and maximizing the estimated log-likelihood function to obtain the updated parameter 
estimates (M-step).The algorithm converges, under certain regularity conditions, to a 
stationary point of the observed log likelihood function, where each iteration cycle in­
creases the likelihood of the estimated parameters.The EM algorithm has disadvantage 
in the computation time due to repeat operations until convergence when the operations 
are adopted to a large data set, e.g. images or sounds.Although there are some fast 
computational methods of EM algorithm, e.g. parallel computing or data segmentation.

Step  1

Initialize mixture ratio an, mean vector μη, covariant matrix Ση.

Step  2 (E step )

Calculate the responsibility

l(Vn,m ) anN (xm; μn, Ση)
Σ ^ - 1 ajN(xm; μ,, Σ^) (3.1)

where n is an identifier of distribution, m is an identifier of input data.The conditional 
distributions within each class are Gaussian.

Step  3 (M  step)

Update the parameters by

9
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1 M— 1
μ Γ  = μ  Σ  Y(Vn,m)xm , for the means,

Mn m=0 
new i M — 1
Σ  =  M  Σ  Y(yn, m)(xm -  μ ^ )(xm -  )T , for the variances (3.2)
n Mn m=0

on™ = , for the probabilities (ratios)

where M is the number of samples and Mn = Σ M= 0 Y (yn, m).

Step  4

Repeat Step 2 and Step 3 until the parameters convergence.The simulation of the jam­
ming detection model regards two possible classes.These two labels are designated to 
have, different unknown means μ and variances although initial values are assumed.The 
mixture ratio terms are equivalent to probabilities.According to Bernoulli distribution if 
a label’s a is q ,the opposite’s is 1-q [8],[9].

10
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4 Implementation

The implementation was elaborated, is a mathematical research of different jamming 
scenarios under the above RPM’s.MATLAB was used for the process and computational 
results of the methods.The basic structure is set by a platoon of vehicles that keep con­
stant distance between them and they support VANET’s communication architecture 
and a range of applications.The usage of EM algorithm intended to achieve classifica­
tion of the two specific cases.The first one that there is no occurrence of interference 
created by an external malicious factor and the second one that the referential exis­
tence affects the radio communication.The outer factor essentially attempts a jamming 
attack by generating noise.The selection of this algorithm is based to the manipulation 
of cases when the data are incomplete or even unknown.If hidden unobserved labels C  
were accessible, then the estimation for the parameters would be easy via Maximum- 
Likelihood.Getting all the points for which Ci = N  (noise class) and using those to 
estimate μ and a 2.Moreover in our experimental environment there is no access to any 
legitimate information about packets and data stream transmitted or received correctly 
by the affiliated vehicles.Subsequently there is no metric or ratio of error detection, error 
correction, flow control like PDR and no outcome about the quality of the communica­
tion channel.
The received signal strength indicator (RSSI) is a measurement of the power present 
in a received radio signal.IEEE 802.11 devices often make the measurement available 
to users.In our simulation the power level is evaluated by consideration of geometry, 
velocity, distance, transmit power and RPM’s as mathematical models that represent 
how the signals decay or attenuate.The signal to interference plus noise ratio (SINR) is 
defined as the power of a certain signal of interest divided by the sum of the interfer­
ence power (from all the other interfering signals) and the power of some background 
noise.It is supposed that adjacent vehicles in platoon are network peers that have es­
tablished sessions after having their authentication verified.The jammer does not have 
rights to this access mechanism but operates in order to disrupt.Therefore,the power 
received from the jammer is additive to the Gaussian noise w.During the simulation an 
adherence with the maintenance the transmit power in the same level with the power 
the jammer emits is observed.Every vehicle sets a session with the following vehicle.In 
a supposed system where every vehicle’s emitted power is adjusted to 100mW (-10dB) 
in environment without path loss, and the interval between the vehicles is 5 metres, the 
received power from the vehicle after next (10 metres away) 5.69mW and from the next 
to it (15 metres away) is 2.5mW including with the thermal noise in w which is set as 
one by ten of the transmit power (10mW or -20dB).Of course in real environments this 
value fluctuates.The real aim of this research is to overcome a deterministic approach 
that classifies as jamming case every occasion the level of the noise surpasses a prefixed 
value.
The noise plus interference The SINR is the indication utilized by the EM algorithm.Random 
variable S I N R i C R  is observed as measurement for each district time of the experi- 
ments.It is assumed that there is an unobserved label Ci C {N, W } referring to the class 
of existence or absence of noise.The mixing coefficients are the probabilities of the two 
cases πΝ and are always initialized as 0.5 and 1 - 0.5 =  0.5 .Both variances σ2 for
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the two cases, varN (with noise) and varW (without noise) are initially equal to 1. 
The conditional distributions within each class are Gaussian:

p S I N R i lCi (sinri lci ) =  Π N(sinr i ; μ ^ σ 2) ^
c

c) (4.1)

The posterior probability for Ci = W  is derived as

Y (Vn ,m ) nwN(sinri; μ w , σ2)
nw N(sinr^ μW, σ2) + πΝN(sinrp μΝ, σ2)

qd(W ) (4.2)

and similarly is obtained the one for the noise case.
This is an unsupervised learning problem.It is not intended the observation the noise/with- 
out noise labels for the data, but the acknowledgement of parameters based on those 
labels.The expected values(mean) μw (without noise) and μΝ (with noise) are parame­
ters initialized somehow and going to be estimated.

• μw , μΝ are given primary values to begin solving the hidden variables (qci(Ci)).This 
is the E step.

• the acquired hidden variables are now set and via the posterior distribution and 
optimize the parameters (means).This is the M step.

This process is repetitive and during the iterations, except from the estimation of means 
and variances for the noise an no noise classes, the optimization of the probabilities of 
the two cases happening is attempted.

12
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5 Results

5.1 Static jammer that transmits for limited time period

In this scenario, transmitter and receiver vehicles are moving to a direction keeping 
constant distance 5 metres between them.A static jammer is set so as angle formed by line 
segment bounded by jammer and receiver at t=0.0 seconds and line of platoon direction 
is 50°.The initial distance between jammer and receiver is 75 metres.The jammer detects 
the velocity of the vehicles, therefore has the ability to compute the time needed for 
the receiver to reach the point where the above line segment becomes vertical to the 
line.Using this information, the jammer remains silent and starts radiating from 1.8s 
before this theoretical intersection time point until 2.2s after, and returns to silence 
(lasting for duration equal to the first one).
The velocity of vehicles is comes to be very significant and affects the results as 5.1 shows 
for means μW = 1.92797 , μΝ =  1.40497 :

13
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Figure 5.2: enlargement

The initial means μΝ and μW affect crucially too.Assuming Rx velocity equal to 10m/s, 
noise will really happen at 39% of counted time.Taking as input different means:

Table 5.1: indicative measurements of static jammer with respect to initial means
static jammer

initial μ ^  , μΝ optimal μW , μΝ optimal varW, varN estimated πΝ
2.50 , 1.24 
2.34 , 1.72 
2.18 , 1.48

2.1222 , 2.1221
2.1223 , 2.1218
2.1223 , 2.1210

3.722876 , 3.722874 
3.72289 , 3.72287 
3.7230 , 3.7228

51.7 % 
50.5 % 
50.04 %

The Mean Squared Error (MSE) of total the received power (signal strength on the 
receiver) as it deviates between an ideal channel to this noisy channel:

Σ ”. ,  ( P M ,  -  P n m m )2 ^  0.00000174
n

Trying to estimate the Bit Error Rate (BER) utilizing the Error Function , in the case 
of QPSK modulation and considering the channel as AWGN and not a fading one,since 
the MSE is too low.

B E R  =  0.5 * erfc(\JEb/N o)

Considering a bitrate 15Mbps and Bandwidth of the channel 10MHz (Hz = 1/s), we get

Eb/N o = Bw * SINR/Bitra te  = 2/3 * S I N R

14
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as it is showed in5.3.

Figure 5.3: hypothetical plot of BER for static jammer

5.2 Constant jammer

in this scenario the jammer follows the receiver from behind or sideways having the 
same velocity (independently of the magnitude of it) as the platoon.It is assumed that 
the distance between the receiver and the legit transmitter is 5 metres.The jammer 
has only two states, originally remaining inactive and invisible until the attack mode is 
activated.The receiver has to distinguish sets, which include as objects ,variables that 
have the same common value.The distance the jammer keeps from the receiver is very 
critical here.
For the a case similar with D below (but with noise at 61% of its length) 5.4 and means 

=  1.92797 , =  1.40497 :
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Figure 5.4: plot of constant jammer estimation for variable distance

Initial expected values also play key role again.Executing the following experiments ac­
cording to free space propagation model for different μW and μΝ for jammer at 5 metres 
range too:

• for intermediate jamming interference that starts and ends covering a percentage 
30% of time,among absention of the jammer:

Table 5.2: indicative measurements of constant jammer with respect to initial means,case A
constant jammer

initial μw , μΝ optimal μW , μΝ optimal varW, varN estimated πΝ
2.34 , 1.24 1.8028 , 1.8026 0.528322 , 0.528322 54.1%
2.18 , 1.40 1.8028 , 1.8024 0.528323 , 0.528322 52.1%
2.02 , 1.72 1.8030 , 1.8019 0.528323 , 0.528323 50.7%
1.86 , 1.48 1.8070 , 1.7907 0.528467 , 0.528341 50.1%

• for inactivity at the beginning for 28% of testing time before jammer’s awakening 
and continuous attack (82% noise circumstance):

Table 5.3: indicative measurements of constant jammer with respect to initial means,case B
constant jammer

initial μw , μΝ optimal μw , μΝ optimal varW, varN estimated πΝ
2.5 , 1.24 2.18 , 0.29 1.1664 , 3.431 93.0%
1.38 , 1.0 0.6374 , 0.6373 1.049023 , 1.049023 81.5%
1.38 , 1.24 2.17 , 0.256 1.193 , 3.419 90.5%
1.22 , 1.0 0.63739 , 0.63731 1.049023 , 1.049023 74.3%
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• for jamming attack designated from the beginning of the experiment, lasting for 
the 66% of its duration:

Table 5.4: indicative measurements of constant jammer with respect to initial means,case C
constant jammer

initial μ-w , μΝ optimal μw , μΝ optimal varW, varN estimated πΝ
2.50 , 1.72 1.23389 , 1.23384 5.6348 , 5.6348 72.9%
2.34 , 1.48 1.23389 , 1.23383 5.6348 , 5.6348 68.1%
2.18 , 1.96 1.2339 , 1.2338 5.6348 , 5.6348 63.6%
2.02 , 1.72 1.2339 , 1.2338 5.6348 , 5.6348 59.5%
1.86 , 1.72 1.2339 , 1.2337 5.6348 , 5.6348 56.1%

• for vicious intervention from the inception of timing and again before the end for 
a total of 52% combined with neutrality in the middle:

Table 5.5: indicative measurements of constant jammer with respect to initial means,case D
constant jammer

initial μ-w , μΝ optimal μw , μΝ optimal varW, varN estimated πΝ
2.34 ,1.96 1.4557 , 1.4556 0.62675 , 0.62675 61.8%
2.18 , 1.24 1.4557 , 1.4556 0.62675 , 0.62675 58.1%
2.02 , 1.24 1.4558 , 1.4555 0.62675 , 0.62675 55.0%
1.86 , 1.48 1.4558 , 1.4554 0.62675 , 0.62675 52.6%
1.54 , 1.00 1.4558 , 1.4548 0.62675 , 0.62675 50.1%

• last, if there is no noise and the only impairment at the channel is the Additive 
White Gaussian Noise.Some consecutive estimated probabilities (%)for different 
means are showed below :

Table 5.6: indicative measurements of constant jammer.case of a zero noise appearance
99.9 82.1 18.5 39.5 97.8
16.2 34.3 42.6 76.9 57.3
43.6 69.8 54.7 56.8 17.4
87.5 35.8 17.5 100.0 NaN

It is clear that a receiver could easily identify the case.

5.3 Random jammer

Supposing a condition, there is a jammer attempting to mislead the receiver.It also 
holds a stable velocity as the platoon remains holds distance from Receiver, equal with 
the transmitter-receiver’s one.On the contrary to constant jammer case, this kind of

17



5. RESULTS Thesis Report 2017

attacker awakes from the sleeping mode and and randomly interchanges radio link time 
slots with intermission ones.This policy aims to deception of technics detecting a vicious 
conjugation.
5.5 compares the level of the desired signal of the preceding vehicle of the receiver to the 
level of background noise.

Figure 5.5: SINR affected by random jammer

For the total sum of assault moments reaching 48.6% of experiment’s period and under 
use of the free space model and the jammer fixed 5 metres away, the behaviour of the 
algorithm is again depended just to the initialization of the means μΜ and μΝ according 
is displayed in the following table:

Table 5.7: indicative measurements of random jammer with respect to initial means
random jammer

initial μw , μΝ optimal μΜ , μΝ optimal varW, varN estimated πΝ
2.18 , 1.24 1.16865 , 1.16863 1.626968 , 1.626968 63.0%
2.02 , 1.48 1.16865 , 1.16862 1.626968 , 1.626968 59.3%
1.86 , 1.0 1.16865 , 1.16861 1.626968 , 1.626968 56.2%
1.70 , 1.48 1.16860 , 1.16857 1.626968 , 1.626968 53.6%
1.54 , 1.24 1.1686 , 1.1684 1.626968 , 1.626968 51.8%
1.38 , 1.24 1.1687 ,1.1681 1.626968 , 1.626968 50.5%

For assault moments reaching 51.6% of the experiment, 5.6 shows how distance between 
jammer and reveiver affects estimation.
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GeThe Mean Squared Error (MSE) of total the received power (signal strength on the 
receiver) as it deviates between an ideal channel to this noisy channel:

Σ ί .  -  Pngisy-j)2 ^  0.0005197
n

. Since MSE is again low the channel can be considered to be AWGN.The 5.7 displays 
the relation between BER and SINR per bit.

0.6 0.8 1 1.2 1.4 1.6 1.8
Eb/No

Figure 5.7: hypothetical plot of BER for random jammer
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5.4 Jammer closes with the receiver

In this set-up, the jammer is originally waiting in a spot.When the target shows up, 
the device is capable of tracking receiver’s velocity and the angle θ, formed between 
platoon’s direction line and the one passes through receiver and jammer on a moment 
after a time that processes and configures the right settings.Furthermore, it chooses the 
angle φ, formed between the path it will move approaching the motorway (how long it 
will be) and the platoon’s direction line.Then it adjusts its acceleration to obtain the 
velocity needed in order to meet the receiver at the point on the vertex.It stops on the 
limit before collision. There are two different cases depending both angles exposed in 
5.8 and 5.9:
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Utilizing the Shadowing model for path loss exponent n =  3 and σ^Β =  7 and considering 
θ =  50° and φ =  20°, for absent jammer at the beginning, noise at 55.5% of time as 
velocity defined at 5 m/s :

Table 5.8: indicative measurements of rush jammer with respect to initial means
rush jammer

initial μw , μΝ optimal μΜ , μΝ optimal varW, varN estimated πΝ
2.50 , 2.44 2.2258 , 2.2255 10.805 , 10.805 50.9%
2.34 , 1.0 2.2258 , 2.2236 10.805 , 10.805 50.1%
2.34 , 1.96 2.2258 , 2.2236 10.805 , 10.805 50.1%

5.10 displays how velocity affects estimated ratio for means μΜ = 1.92797 , μΝ = 1.40497
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MSE = 0.0000441 and 5.11 dislays BER - SINR graph

5.5 Oncoming Jammer from the opposite direction

In this scenario , the jammer moves to the platoon's opposite direction on an adjacent 
lane.It is capable of tracking victim’s exact velocity and adjusts its own velocity equal 
with it.It just has also knowledge about the distance between the two lanes(vertical
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distance when antennas aligned) and the angle between the connective line with the 
receiver and the vertical distance θ, the time the assault starts, before vehicles meet each 
other.For V = 1.8 m/s, and silence just after the beginning (preparation of jammer) 
and before the completion of the experiment when the vehicles are away and out of 
range, with noise at 49.3% of counted time, the selection of the initial means is again 
determined factor.Estimation is also depended on velocity variations.Numerical results 
were produced by the use of Shadowing model for path loss exponent n = 3 and adB = 
7 and considering θ = 82° and the velocity of receiver adopted by jammer is 1.8 m/s.

Table 5.9: indicative measurements of oncoming jammer
oncoming jammer

initial μw , μΝ optimal μW , μΝ optimal varW, varN estimated πΝ
2.50 , 1.72 1.9813 , 1.9812 46.595 , 46.595 53.3%
2.34 , 1.24 1.9813 , 1.9810 46.595 , 46.595 51.7%
2.18 , 1.24 1.9814 , 1.9806 46.595 , 46.595 50.5%
2.02 , 1.48 1.9825 , 1.9740 46.603 , 46.595 50.0%

Figure 5.12 shows how velocity affects for means μW = 1.92797 , μΝ = 1.40497 .

The MSE of the power in the channel is evaluated approximately: 0.000189 so graph 
5.13 shows BER as function of SINR.
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Figure 5.13: hypothetical plot of BER for oncoming jammer
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6 Discussion

As a review of our results, the behaviour of the algorithm is satisfying.It always detects 
the jamming when occurs.Suitable initializations are important for the first means of 
the two probable cases.When the jamming percentage is lower than half, the estimated 
probability of jammng fluctuates around 50% but when it surpasses it, the algorithm 
is much more accurate and returns a much more precise estimation.The velocity of the 
moving vehicles affects in some kinds of attacks.
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7 Conclusion

In this report the adequacy of Expectation Maximization algorithm for detection of 
jamming interference for vehicles moving in platoons was investigated.The outcomes of 
the algorithm for different profiles of jamming cases were computed and its judgement 
of what is happening in the last period of some seconds was estimated.
It is concluded that it is feasible EM algorithm to be used in vehicular networks, when 
critical messages, crucial for life are delivered and possibility of them to be modified, 
or dropped is urgent to be verified rapidly hence defense strategies will be activated 
immediately.
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