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ABSTRACT 

The purpose of this thesis is the development of a Low-Density Parity-Check (LDPC) 

channel coding system for space communications. Specifically, the implementation of 

the encoder and a belief-propagation decoder of the following LDPC codes: the C2 

LDPC code that is a modification of a regular (4,32) code, which has a code rate of 

approximately 7/8 and a set of nine LDPC codes that belong to the Accumulate, Repeat-

by-4, and Jagged Accumulate (AR4JA) family codes with selected code rates 1/2, 2/3 

and 4/5. A simulation of the aforementioned codes has been conducted in a BPSK 

AWGN channel to evaluate their performance. These codes are to be used in a real 

space channel in order to face the phenomenon of Superior Solar Conjunction, where 

any signals from and to a spacecraft travel through the solar corona. 

 

ΠΕΡΙΛΗΨΗ 

Ο σκοπός αυτής της διπλωματικής εργασίας είναι η ανάπτυξη κωδίκων Low-Density 

Parity-Check (LDPC) για συστήματα διαστημικής επικοινωνίας. Συγκεκριμένα, η 

υλοποίηση του κωδικοποιητή και ενός belief-propagation αποκωδικοποιητή των 

παρακάτω LDPC κωδίκων: ο C2 LDPC κώδικας που είναι μια τροποποίηση του ενός 

(4,32) κώδικα, με ρυθμό κώδικα κατά προσέγγιση 7/8 και ένα σετ από εννιά LDPC 

κώδικες που ανήκουν στην οικογένεια των Accumulate, Repeat-by-4, and Jagged 

Accumulate (AR4JA) κωδίκων με επιλεγμένους ρυθμούς κώδικα 1/2, 2/3 και 4/5. Έχει 

υλοποιηθεί μια προσομοίωση των ανωτέρω κωδίκων σε BPSK AWGN κανάλι για να 

αξιολογηθεί η επίδοσή τους. Οι κώδικες θα χρησιμοποιηθούν σε ένα αληθινό 

διαστημικό κανάλι προκειμένου να αντιμετωπίσουν το φαινόμενο της ανώτερης 

ηλιακής συνόδου, όπου τα σήματα από και προς ένα διαστημόπλοιο περνάνε μέσα από 

το ηλιακό στέμμα. 
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1. Introduction 

Since the beginning of time, humanity has been interested in exploring and 

understanding the Universe. It is easily seen throughout history that people observed 

the physical phenomena, developed mathematical models and constructed powerful 

systems in order to discover the solar system and everything that lies beyond. 

Nowadays, the ability to travel in space has given many answers to those questions, as 

well as raised new ones, making it of even greater need to continue these missions. 

During a mission in space, a spaceship remains in constant communication with its 

base on earth, so as to exchange information about its status and findings. However, 

there is a period called Superior Solar Conjunction, when the spaceship is on the 

opposite side of the sun from earth and the radio interference from the sun makes the 

communications impossible. As a result, for a number of days the spaceship has to be 

placed on a safe mode until the connection can be restored [1]. 

This thesis focuses on solving this particular problem with channel coding, so that 

the connection between the earth and the spaceship is maintained at all times. The 

proposed channel coding schemes for the reduction of BER (Bit Error Rate) in such 

conditions are the Low-Density Parity-Check (LDPC) codes [2]. The LDPC codes are 

error-correction binary block codes with large codeword length, designed to achieve a 

greater coding gain. 

Two sets of LDPC codes are presented in this thesis, one for transmissions that take 

place near the earth and one for those in the deep space [3]. The first one is the C2 code, 

a quasi-cyclic high-rate LDPC code which is the modification of a regular (4, 32) code 

with size (8160, 7136) and a rate of approximately 7 8⁄ . The second, is a set of nine 

LDPC codes of the AR4JA (Accumulate, Repeat-by-4 and Jagged Accumulate) family 

with selected block lengths 1024, 4096, 16384 and code rates of 1 2⁄ , 2 3⁄  and 4 5⁄ . 

The aforementioned codes are employed in a system that can be represented in figure 

1.1. The system consists of a transmitter that sends a message which is initially encoded 

into a codeword and then sent through the channel. The channel may affect the bits of 

the transmitted codeword with noise, but the receiver will use an error-correcting 

decoder to detect the erroneous bits and correct them to get the right message. 

 

Transmitter Encoder Channel Decoder Receiver

Figure 1.1: The system model 

 

In the next sections the implementation of this system will be described in detail. In 

section 2, the encoding algorithm of the LDPC codes is presented, the belief 

propagation decoder can be found in section 3 and a simulation of these codes for the 

case of a BPSK AWGN channel in section 4, providing the corresponding experimental 

results. In section 5, future research on this subject is discussed. 

 

  



7 
 

2. The Encoder 

An encoder is the device that takes as input the information bits and returns the 

corresponding codeword as the output. 

 

A. The Matrices 
 

A LDPC code is described by its parity check matrix 𝐻, i.e. the parity check 

equations, which is an important tool of the encoder. The parity check matrix consists 

of circulant submatrices, which are determined by their first-rows, calculating the rest 

of the rows as a one-bit right shift of the previous row. The resulting block-circulant 

parity check matrix is of low density, hence the naming of the codes. In more detail, 

the encoder transforms this matrix into its dense generator matrix 𝐺. 

Consequently, the matrices of the aforementioned codes presented in [2] are:  

For the C2 code, the encoder uses the generator matrix of the systematic (8176, 7154) 

subcode illustrated in figure 2.2, which derives from the parity check matrix of the basic 

(8176, 7156) code illustrated in figure 2.1. The Ai,js represent the parity check matrix 

circulants of size 511×511, whilst the Bi,js represent the generator matrix circulants, 

both are specified by their first rows as described in table 2.1 and table 2.2 respectively. 

 

 
Figure 2.1: Base Parity Check Matrix of the Basic LDPC Code 

                    Source: [2] 

 

 
Figure 2.2: Generator Matrix of the Systematic Subcode 

         Source: [2] 
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         Table 2.1: Parity Check Matrix Circulants 

  Source: [2] 
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Table 2.2: Generator Matrix Circulants 

       Source: [2] 
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For the nine AR4JA codes, the encoder uses the generator matrices that derive from the 

parity check matrices computed by the following equations. The first equation 

calculates the parity check matrix for code rate 1 2⁄ , the second for 2 3⁄  and the third 

for 4 5⁄ : 

 

𝐻1 2⁄ = [

0𝑀 0𝑀 𝐼𝑀

𝐼𝑀 𝐼𝑀 0𝑀

𝐼𝑀 𝛱5 ⊕ 𝛱6 0𝑀

     

0𝑀

𝐼𝑀

𝛱7 ⊕ 𝛱8

    
𝐼𝑀 ⊕ 𝛱1

𝛱2 ⊕ 𝛱3⨁𝛱4

𝐼𝑀

] 

 

𝐻2 3⁄ = [

0𝑀 0𝑀

𝛱9 ⊕ 𝛱10⨁𝛱11 𝐼𝑀

𝐼𝑀 𝛱12 ⊕ 𝛱13⨁𝛱14

   |

 
 𝐻1 2⁄

 
] 

 

𝐻4 5⁄ = [

0𝑀 0𝑀

𝛱21 ⊕ 𝛱22⨁𝛱23 𝐼𝑀

𝐼𝑀 𝛱24 ⊕ 𝛱25⨁𝛱26

   

0𝑀

𝛱15 ⊕ 𝛱16⨁𝛱17

𝐼𝑀

   

0𝑀

𝐼𝑀

𝛱18 ⊕ 𝛱19⨁𝛱20

   |

 
 𝐻2 3⁄

 
] 

 

The 𝐼𝑀 is the 𝑀×𝑀 identity matrix, the 0𝑀 is the 𝑀×𝑀 zero matrix and 𝛱𝐾 is an 𝑀×𝑀 

permutation matrix with entries of 1 in row 𝑖 and column 𝜋𝐾(𝑖) as specified by the 

equation 𝜋𝑘(𝑖) =
𝑀

4
((𝜃𝑘 + ⌊4𝑖/𝑀⌋)𝑚𝑜𝑑4) + (𝜑𝑘(⌊4𝑖/𝑀⌋, 𝑀) + 𝑖)𝑚𝑜𝑑

𝑀

4
, where 

𝑖 𝜀 {0, 𝑀 − 1} and functions 𝜃𝑘, 𝜑𝑘 are defined in tables 2.3 and 2.4.  

The submatrix size 𝑀 which is determined by the length of the information block as 

well as each code’s rate can be found in table 2.5. 

 
Table 2.3: Description of 𝜽𝒌, 𝝋𝒌(𝟎, 𝑴), 𝝋𝒌(𝟏, 𝑴) 

     Source: [2] 
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Table 2.4: Description of 𝜽𝒌, 𝝋𝒌(𝟐, 𝑴), 𝝋𝒌(𝟑, 𝑴) 

     Source: [2] 

 
 

Table 2.5: Values of Submatrix Size 𝑴 for the nine AR4JA codes 

        Source: [2] 
 

Information 

block length 𝑘 

Submatrix size 𝑀 

Rate 𝟏 𝟐⁄  Rate 𝟐/𝟑 Rate 𝟒 𝟓⁄  

1024 512 256 128 

4096 2048 1024 512 

16384 8192 4096 2048 

 

 

B. The Encoding Algorithm 
 

For the description of the algorithm, we define the following variables: 𝑢 represents 

the message (the uncoded word) with 𝑘 bits length, 𝑐 is the resulting codeword with 𝑛 

bits length, 𝐻 the parity check matrix and 𝐺 the generator matrix of 𝐻 as determined 

above. 

To calculate the codeword, the encoder performs matrix multiplication between the 

message and the generator matrix: 

𝑐 = 𝑢𝐺 
Based on this operation, a faster method can be used. For that reason, instead of 

using the whole generator matrix 𝐺, the right side of the matrix that contains the 

circulants, i.e. the last 𝑛 − 𝑘 columns of 𝐺 includes the information needed, this new 

matrix is called 𝐵. 

These codes are systematic in their first symbols, i.e. the first 𝑘 bits of the codeword 

are the message bits, while the remaining 𝑛 − 𝑘 parity bits are computed in the 

following way: 
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The first message bit is multiplied by the first row of 𝐵 and the result is placed in an 

accumulator. Then, the next message bit is multiplied by the second row of 𝐵 and the 

result is added to the accumulator. This process continues until all message bits are used 

and afterwards, it is repeated for the remaining rows of 𝐵. The resulting codeword is a 

concatenation of the 𝑘 message bits and the 𝑛 − 𝑘 bits of the accumulator. 

Regarding the C2 code and the set of AR4JA codes, the encoder is employed 

according to the following: 

The input given to the C2 encoder is the 7136-bit message. This message is extended 

by a prefix of 18 zeros so as to form a 7154-bit vector, which can be multiplied by the 

generator matrix of the (8176, 7154) subcode when inserted in the encoder algorithm. 

The result of this multiplication will be an 8176-bit vector consisting of 18 prefixed 

zeros, 7136 message bits and 1022 parity bits. From these bits, the 18 zeros are 

discarded and 2 zeros are appended, producing a C2 codeword of 8160 bits seen in 

figure 2.3. 

 
Figure 2.3: C2 Codeword 

 

Considering the set of nine AR4JA codes, there are three cases of input: the 1024, 4096 

and 16384-bit message. The message is inserted in the encoder algorithm without any 

modification and according to which code rate is chosen between 1 2⁄ , 2 3⁄  and 4 5⁄ , 

the suitable generator matrix is used for the multiplication. The last 𝑀 bits of the 

product are punctured, (the value of 𝑀 being specified in table 2.5) and the resulting 

codeword can be seen in figure 2.4. For each case the encoder returns a codeword of 

different length 𝑛, displayed in table 2.6. 

 

 
Figure 2.4: AR4JA Codeword 

 

 
Table 2.6: Size (𝒏, 𝒌) of each AR4JA code 

                  Source: [2] 

Information 

block length 𝑘 

Codeword length 𝑛 

Rate 𝟏 𝟐⁄  Rate 𝟐/𝟑 Rate 𝟒 𝟓⁄  

1024 2048 1536 1280 

4096 8192 6144 5120 

16384 32768 24576 20480 
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3. The Decoder 

A decoder is the device that takes as input the received codeword and reconstructs it to 

its original form even if it has been corrupted by the noise of the channel. 

 

A. Message-Passing Decoding 
 

The algorithms used to decode LDPC codes are called message-passing decoding 

algorithms. The term derives from the fact that decoding takes place on a Tanner graph, 

where messages are iteratively exchanged between the nodes. A specific message-

passing algorithm is belief propagation, also known as the sum-product algorithm. In 

this case, the messages are probabilities, often represented by log likelihood ratios, 

which show the level of belief a node has regarding the value of a codeword bit. 

A Tanner graph is a bipartite graph consisting of two sets of nodes, the variable 

nodes that represent the codeword bits and the check nodes that represent the parity 

check equations, the structure can be seen in figure 3.1. 

There are two types of messages passed along the Tanner graph edges: 

The message passed from a variable node 𝑖 to a check node 𝑗, which is the probability 

that 𝑖 has a certain value, considering the observed value of that node and the values 

given to 𝑖 in the previous iteration by all the corresponding check nodes connected to it 

except for 𝑗. 

The message passed from a check node 𝑗 to a variable node 𝑖, which is the probability 

that 𝑖 has a certain value, considering all the messages given to 𝑗 in the previous iteration 

by all the corresponding variable nodes except for 𝑖. 
These messages are passed along the edges until the valid codeword is found or the 

maximum number of iterations is reached. 

 
Check nodes

Variable nodes  
Figure 3.1: Tanner Graph 

 

B. The Decoding Algorithm 
 

The decoder introduced in this thesis uses the sum-product algorithm [4], an iterative 

soft-decision message-passing decoding algorithm, which takes as input the probability 

of each received codeword bit (a priori probabilities) and returns the maximum a 

posteriori probabilities in the form of log-likelihood ratios. Within each iteration, the 

algorithm checks whether all the parity check conditions are satisfied and if not, it 

continues until they are or until the maximum number of iterations is reached. 

 

For the description of the algorithm consider the following: 
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The information exchanged about each codeword bit, is its probability of being zero or 

one. In order to address both of these states, the log-likelihood ratio (LLR) form is used: 

𝐿(𝑐𝑖) = log𝑒

𝑝(𝑐𝑖 = 0)

𝑝(𝑐𝑖 = 1)
 

When 𝑝(𝑐𝑖 = 0) > 𝑝(𝑐𝑖 = 1) then 𝐿(𝑐𝑖) > 0 and the codeword bit value is considered 

zero 𝑐𝑖 = 0. 

When 𝑝(𝑐𝑖 = 0) < 𝑝(𝑐𝑖 = 1) then 𝐿(𝑐𝑖) < 0 and the codeword bit value is considered 

one 𝑐𝑖 = 1. 

As a result, the bigger the absolute value of 𝐿(𝑐𝑖), the more reliable the decision towards 

the codeword bit value is. 

 

INPUT 

 The variable 𝑟𝑖 represents the a priori probabilities of each codeword bit 𝑖 given by 

the channel as input to the decoder: 

𝑟𝑖 = log𝑒

𝑝(𝑐𝑖 = 0)

𝑝(𝑐𝑖 = 1)
 

 𝐻 represents the parity check matrix as specified in section 2.A and it is used in 

order to determine whether the computed codeword 𝑦 is a valid one, hence 

providing the termination condition to the algorithm, through the verification of: 

𝐻𝑦𝑇 = 0 

 𝐼𝑚𝑎𝑥 represents the maximum number of iterations that the decoder algorithm is 

granted, making it the second termination condition. 

 

MESSAGES 

 The update message 𝑉𝑗𝑖 from variable node 𝑖 to check node 𝑗 is the LLR of the 

probability that bit 𝑖 is a one. 

Initially: 𝑉𝑗𝑖 = 𝑟𝑖 

Afterwards: 𝑉𝑗𝑖 = ∑ 𝑈𝑗′𝑖 + 𝑟𝑖𝑗′≠𝑗  

 The update message 𝑈𝑗𝑖 from check node 𝑗 to variable node 𝑖 is the LLR of the 

probability that parity check 𝑗 is satisfied by bit 𝑖. 

𝑈𝑗𝑖 = log𝑒

1
2 +

1
2

∏ tanh
𝑉𝑗𝑖′

2𝑖′≠𝑖

1
2 −

1
2

∏ tanh
𝑉𝑗𝑖′

2𝑖′≠𝑖

 

 

𝑈𝑗𝑖 = log𝑒

1 + ∏ tanh
𝑉𝑗𝑖′

2𝑖′≠𝑖

1 − ∏ tanh
𝑉𝑗𝑖′

2𝑖′≠𝑖

 

 

        𝑈𝑗𝑖 = 2 tanh−1 (∏ tanh
𝑉𝑗𝑖′

2
𝑖′≠𝑖

) 

 

OUTPUT 

 The variable 𝐿𝑖 represents the calculated probability of each codeword bit 𝑖 as a 

result of the decoding process. 
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SUM-PRODUCT ALGORITHM 
Sum_Product(𝐻, 𝐿𝐿𝑅(𝑦), 𝐼𝑚𝑎𝑥){ 

// A priori probabilities 

 𝑟 = 𝐿𝐿𝑅(𝑦) 
 

// Construction of D 

 For 𝑗 = 1: 𝐻𝑟𝑜𝑤𝑠 

       𝑘 = 1 

      For 𝑖 = 1: 𝐻𝑐𝑜𝑙𝑠 

            If (𝐻(𝑗, 𝑖) = 1) 

        𝐷{𝑗}(𝑘) = 𝑖 // Check 𝑗 includes bit 𝑖 
        𝑘 = 𝑘 + 1 

            End 

      End 
 End 

 

// Construction of S 

 For 𝑖 = 1: 𝐻𝑐𝑜𝑙𝑠 

       𝑘 = 1 

       For 𝑗 = 1: 𝐻𝑟𝑜𝑤𝑠 

            If (𝐻(𝑗, 𝑖) = 1) 

        𝑆{𝑖}(𝑘) = 𝑗 // Bit 𝑖 is included in check 𝑗 

        𝑘 = 𝑘 + 1 
             End 

       End 

End 
 

// Variable messages initialization 

 For 𝑖 = 1: 𝐻𝑐𝑜𝑙𝑠 

       For 𝑗 𝜀 𝑆{𝑖} 

             𝑉𝑗𝑖 = 𝑟𝑖 

       End 

 End 
 

// Iterations 

 𝑖𝑡𝑒𝑟 = 1 

 𝑣𝑎𝑙𝑖𝑑 = 1 
 

 While (𝑖𝑡𝑒𝑟 ≤ 𝐼𝑚𝑎𝑥 & 𝑣𝑎𝑙𝑖𝑑 ≠ 0) // Termination conditions 

// Check messages 

       For 𝑗 = 1: 𝐻𝑟𝑜𝑤𝑠 

             For 𝑖 𝜀 𝐷{𝑗} 

        𝑈𝑗𝑖 = 2 tanh−1 (∏ tanh (
𝑉𝑗𝑖′

2
)𝑖′𝜀 𝐷{𝑗}

𝑖′≠𝑖

) 

             End 
       End 

 

// Codeword validation 

       For 𝑖 = 1: 𝐻𝑐𝑜𝑙𝑠 

             𝐿𝑖 = ∑ 𝑈𝑗𝑖𝑗 𝜀 𝑆{𝑖} + 𝑟𝑖 

             If (𝐿𝑖 ≤ 0) 

        𝑦𝑖 = 1 
             Else 

        𝑦𝑖 = 0 
             End 
       End 

 

       𝑣𝑎𝑙𝑖𝑑 = 𝐻𝑦𝑇 // Check constructed codeword 

 

// Variable messages 

       If (𝑣𝑎𝑙𝑖𝑑 ≠ 0) 

             For 𝑖 = 1: 𝐻𝑐𝑜𝑙𝑠 

        For 𝑗 𝜀 𝑆{𝑖} 

   𝑉𝑗𝑖 = ∑ 𝑈𝑗′𝑖𝑗′𝜀 𝑆{𝑖}

𝑗′≠𝑗

+ 𝑟𝑖 

        End 
             End 

       End 
 

       𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 
End 

 Return (L) 

} 
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A priori probabilities: 

The a priori probability of each received codeword bit is placed in variable 𝑟. 

 

Construction of D and S: 

Extract information from the parity check matrix 𝐻 about the connections between 

parity check equations and bits, in order to place it within 𝐷 and 𝑆. 

𝐷 discloses the information of which bits are included in a parity check equation. 

Whereas, 𝑆 includes the reverse, meaning within which parity check equations a bit is 

included. 

 

Variable messages initialization: 

Each variable node 𝑖 sends the message 𝑉𝑗𝑖 to each connected check node 𝑗. 𝑉𝑗𝑖 contains 

the probability of bit 𝑖, initialized as the a priori probability 𝑟𝑖. 

 

Iterations: 

Since the initialization process is done, the iterations begin until one of the two 

termination conditions is true. The variable 𝑖𝑡𝑒𝑟 represents the counter of the iterations 

with the limit of 𝐼𝑚𝑎𝑥. Whereas, the variable 𝑣𝑎𝑙𝑖𝑑 initialized with the value of one, 

once it turns to zero, denotes the construction of a valid codeword and the iterations 

stop. 

 

Check messages: 

Each check node 𝑗 returns the message 𝑈𝑗𝑖 to each connected variable node 𝑖. 𝑈𝑗𝑖 

contains the calculated a posteriori probability for variable node 𝑖, based on the 

connected variable nodes except for 𝑖. 
 

Codeword validation: 

In order to check whether a valid codeword has been constructed, each variable node 𝑖 
adds its a priori probability and the received check messages to calculate the current 

LLR of each codeword bit. These probabilities correspond to a bit value of zero when 

the LLR is positive and a bit value of one when the LLR is negative, thereby 

establishing the resulting codeword y. 

A codeword is valid when the equation 𝐻𝑦𝑇 = 0 is true. So, if the result of the 

multiplication is zero, the codeword is found, the algorithm is terminated and the 𝐿𝑖 

probabilities are returned. Otherwise, the codeword is not valid and if the maximum 

number of iterations (𝐼𝑚𝑎𝑥) is not exceeded, a new iteration starts. 

 

Variable messages: 

If a valid codeword is not yet found, each variable node 𝑖 sends the message 𝑉𝑗𝑖 to each 

connected check node 𝑗. 𝑉𝑗𝑖 takes its new value, which contains the calculated 

probability of bit 𝑖, based on the connected check nodes except for 𝑗 and the a priori 

probability known for bit 𝑖. 
 

  



17 
 

Regarding the C2 code and the set of AR4JA codes, the decoder is employed 

according to the following: 

The input given to the C2 decoder is the codeword of 8160 bits. This codeword is 

extended by a prefix of 18 zeros, which transformed in LLRs will take a very big 

positive value and the last two bits of the codeword, corresponding to the appended 

zeros are removed, producing a vector of 8176 bits as input to the decoder algorithm. 

From the resulting codeword (according to figure 2.3) the 18 prefixed zeros are 

removed along with the 1022 last parity bits, in order to present the 7136-bit decoded 

message. 

Considering the set of nine AR4JA codes, there are nine cases of input as seen in table 

2.6. In every case, 𝑀 zero LLRs are appended to the 𝑛-bit codeword according to table 

2.5 in order to represent the punctured bits. This codeword is inserted in the decoder 

algorithm. From the resulting codeword, the first (𝐻𝑐𝑜𝑙𝑠 − 𝑀) ∙ 𝑐𝑜𝑑𝑒 𝑟𝑎𝑡𝑒 bits 

represent the decoded message. 

 

C. Other Decoding Algorithms 
 

The implementation of these LDPC codes with other decoding algorithms such as 

the Min-Sum, the SVS Min-Sum [5], GSVS Min-Sum [6] and the Quantized-BP [7] 

algorithms, showed that even though these are of lower complexity, they still do not 

perform as good as the Belief-Propagation (Sum-Product) algorithm described above. 
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4. Performance 

A simulation of the aforementioned codes has been conducted in Matlab (Matrix 

Laboratory) to evaluate their performance in the AWGN (Additive White Gaussian 

Noise) channel.  

The chosen modulation scheme is BPSK (Binary Phase-Shift Keying) and the metric 

of comparison used is BER (Bit Error Rate) in each selected SNR (Signal to Noise 

Ratio), defining the number of error bits that occur compared to the total bits within a 

transmitted codeword. The decoder algorithm iterations (𝐼𝑚𝑎𝑥) are set to the optimal 

value of 200 and the number of data blocks sent varies from 1000 to 10000 according 

to the simulation, specifically 10000 for the 1
2⁄ 4096, 1

2⁄ 1024, 2
3⁄ 4096,

2
3⁄ 1024, 4

5⁄ 16384, 4
5⁄ 4096, 4

5⁄ 1024 AR4JA codes and 1000 for the 1
2⁄ 16384,

2
3⁄ 16384 AR4JA codes and 7 8⁄ 7136 C2 code. 

 

The performance curves can be seen in figure 4.1. The AR4JA codes with lower 

code rate 1/2 and 2/3 are suitable for low SNR environments between 0.4db and 2.4db, 

where they can decode the received message establishing an error rate of almost 10−5. 

Whereas, the 4/5 AR4JA codes along with the 7/8 C2 code, perform better within the 

SNRs of 2.4db and 4db, introducing the same error rate on the order of 10−5. 

 

Figure 4.1: The BER for the set of AR4JA codes and the C2 code. 
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The results were compared to the ones presented in literature [3] and show that there 

is a distance lower than 0.1db between them, placing them within the acceptable limits 

and in most cases revealing an even better performance than those in theory suggest. 

The results can be seen in figure 4.2. 

 

Figure 4.2: The BER compared to theory for the set of AR4JA codes and the C2 code. 
The black curves represent the theoretical values. The colored curves from left to right: 

1
2⁄ 16384, 1

2⁄ 4096, 1
2⁄ 1024, 2

3⁄ 16384, 2
3⁄ 4096, 2

3⁄ 1024, 4
5⁄ 16384, 4

5⁄ 4096, 4
5⁄ 1024 𝐴𝑅4𝐽𝐴 𝑐𝑜𝑑𝑒𝑠, 

 7 8⁄ 7136 𝐶2 𝑐𝑜𝑑𝑒. 
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5. Conclusion 

 

In this thesis the C2 LDPC code and a set of nine AR4JA LDPC codes have been 

proposed for space communications [3]. Specifically, the system containing the encoder 

and the belief-propagation decoder employed for these particular codes has been 

described in detail and the performance of the codes has been evaluated in Matlab. 

The results of these simulations demonstrate that these codes can be effectively used 

in a deep space environment with a very low SNR. 

As future research, the development of the encoder and decoder in a FPGA (Field-

Programmable Gate Array) platform is recommended, with consideration to these 

LDPC codes. 
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