Diploma Thesis

Development of a LDPC channel coding system for
space communications

Avéantuén kwdikov LDPC yia cuotuoto,
OLOLOTNUKNG ETKOVOVIOG

By
Adam Eleni

Department of Electrical and Computer Engineering

University of Thessaly

Supervisor:
Dr. Antonios Argyriou

Volos, 2016

ABSTRACT

The purpose of this thesis is the development of a Low-Density Parity-Check (LDPC)
channel coding system for space communications. Specifically, the implementation of
the encoder and a belief-propagation decoder of the following LDPC codes: the C2
LDPC code that is a modification of a regular (4,32) code, which has a code rate of
approximately 7/8 and a set of nine LDPC codes that belong to the Accumulate, Repeat-
by-4, and Jagged Accumulate (AR4JA) family codes with selected code rates 1/2, 2/3
and 4/5. A simulation of the aforementioned codes has been conducted in a BPSK
AWGN channel to evaluate their performance. These codes are to be used in a real
space channel in order to face the phenomenon of Superior Solar Conjunction, where
any signals from and to a spacecraft travel through the solar corona.

HEPIAHYH

O oKOTOG OTHG TNE SMAMUATIKNG epyaciag givar 1 avartuén kodikov Low-Density
Parity-Check (LDPC) ywo cuothpoto SloTniKiG ETIKOWVOVING. ZUYKEKPIUEVA, M
vAomoinon Tov kmdwomomtn kai evoc belief-propagation amoxwdikomom) TOV
napakato LDPC kwdikov: o C2 LDPC kddwkag mov gival pio Tpomonoincn Tov evog
(4,32) x®dwka, pe puOud koK katd tpocséyylon 7/8 kot éva oet and evvia LDPC
KOOIKEG OV aVNKOLV oTnv otkoyévela tov Accumulate, Repeat-by-4, and Jagged
Accumulate (AR4JA) kodikmv pe emieypévoug puBuovg kmdka 1/2, 2/3 ko 4/5. Exet
viomomOel pia Tpocopoimon TV aveotépm Kmdikov ce BPSK AWGN kavdil yuo vo
alohoynBel n emidoon tovg. Ot kddkeg Bo ypnowomomBovv ce €va aAndvod
SOTNUIKO KOVOAL TPOKEWEVOL VO OVIILETOTIGOVY TO (QOIVOUEVO TNG OVATEPNG
NAMOKNG GLVOSOV, OTOV TOL CLLATA OO KOt TTPOG £VOL O1OGTNUOTAOL0 TEPVAVE LEGA AUTTO
TO NMOKO CTEULLAL.

ACKNOWLEDGEMENTS

With the completion of my thesis, | would like to express my sincere gratitude to my
supervisor Dr. Antonios Argyriou for inspiring me with this project and guiding me
with his valuable ideas through this interesting time of research.

I would also like to acknowledge Dr. Athanasios Korakis for his collaboration.
Moreover, | would like to thank my friends for their company and assistance even when
difficult times came.

| am especially grateful to my family for giving me the opportunity to follow my dreams
and encouraging me throughout all these years. This thesis is dedicated to you, because
without your support none of this would have been possible.

To my family,
Diana, George, Anni & Kyriakos

CONTENTS

S o oo (1 o4 { [0 o 1R N 6
PN I [=Yg (ol o (=] N 7
AL MaALTICES. .o 7
B. The Encoding Algorithm.....................ooinll. 11
SN I 0 [0 B T=T oo o =] o 13
A. Message-Passing Decoding...............ccooeiiiiinnin. 13
B. The Decoding Algorithm.......................cl 13
C. Other Decoding Algorithms...............cocoviiinnnnn, 17
O T (0] g T= T (o0 18
ST O10] 0 [o] [111 (0] o TR 20
T =] (=] < 0L 21

1. Introduction

Since the beginning of time, humanity has been interested in exploring and
understanding the Universe. It is easily seen throughout history that people observed
the physical phenomena, developed mathematical models and constructed powerful
systems in order to discover the solar system and everything that lies beyond.
Nowadays, the ability to travel in space has given many answers to those questions, as
well as raised new ones, making it of even greater need to continue these missions.

During a mission in space, a spaceship remains in constant communication with its
base on earth, so as to exchange information about its status and findings. However,
there is a period called Superior Solar Conjunction, when the spaceship is on the
opposite side of the sun from earth and the radio interference from the sun makes the
communications impossible. As a result, for a number of days the spaceship has to be
placed on a safe mode until the connection can be restored [1].

This thesis focuses on solving this particular problem with channel coding, so that
the connection between the earth and the spaceship is maintained at all times. The
proposed channel coding schemes for the reduction of BER (Bit Error Rate) in such
conditions are the Low-Density Parity-Check (LDPC) codes [2]. The LDPC codes are
error-correction binary block codes with large codeword length, designed to achieve a
greater coding gain.

Two sets of LDPC codes are presented in this thesis, one for transmissions that take
place near the earth and one for those in the deep space [3]. The first one is the C2 code,
a quasi-cyclic high-rate LDPC code which is the modification of a regular (4, 32) code
with size (8160, 7136) and a rate of approximately 7/8. The second, is a set of nine
LDPC codes of the AR4JA (Accumulate, Repeat-by-4 and Jagged Accumulate) family
with selected block lengths 1024, 4096, 16384 and code rates of 1/2, 2/3 and 4/5.

The aforementioned codes are employed in a system that can be represented in figure
1.1. The system consists of a transmitter that sends a message which is initially encoded
into a codeword and then sent through the channel. The channel may affect the bits of
the transmitted codeword with noise, but the receiver will use an error-correcting
decoder to detect the erroneous bits and correct them to get the right message.

Transmitter —»| Encoder Decoder [» Receiver

Figure 1.1: The system model

In the next sections the implementation of this system will be described in detail. In
section 2, the encoding algorithm of the LDPC codes is presented, the belief
propagation decoder can be found in section 3 and a simulation of these codes for the
case of a BPSK AWGN channel in section 4, providing the corresponding experimental
results. In section 5, future research on this subject is discussed.

2. The Encoder

An encoder is the device that takes as input the information bits and returns the
corresponding codeword as the output.

A. The Matrices

A LDPC code is described by its parity check matrix H, i.e. the parity check
equations, which is an important tool of the encoder. The parity check matrix consists
of circulant submatrices, which are determined by their first-rows, calculating the rest
of the rows as a one-bit right shift of the previous row. The resulting block-circulant
parity check matrix is of low density, hence the naming of the codes. In more detail,
the encoder transforms this matrix into its dense generator matrix G.

Consequently, the matrices of the aforementioned codes presented in [2] are:
For the C2 code, the encoder uses the generator matrix of the systematic (8176, 7154)
subcode illustrated in figure 2.2, which derives from the parity check matrix of the basic
(8176, 7156) code illustrated in figure 2.1. The Aijs represent the parity check matrix
circulants of size 511x511, whilst the Bijs represent the generator matrix circulants,
both are specified by their first rows as described in table 2.1 and table 2.2 respectively.

AE.I Al.i AE.S A2.4 Ali AZ.S AE.? AZ.B AJ.B AZ.IU Al.ll AE.IJ AE.IS AJ.H AE.IS

|:A1.1 Al.l Alj Al.al- Al.i A1.6 Al.? Al.E AI.Q Al.lﬂ Al.ll Al.ll A1.13 Al.l-l 4

Figure 2.1: Base Parity Check Matrix of the Basic LDPC Code

Source: [2]
'T0o00O0O0ODO0OOOO0OO0OOO0O0 B, B]
0I 000O0O0OO0OO0OO0O0OGO0O0O0 By, B,
00I 0O0O0OO0OO0OOOOO0O0O0 By, B,
000IO0O0OO0OO0OOOOGO0O0O0 B,, B,
000O0TOOOOOOO0O0 0 By, B,
000O0O0OTIO0OO0O0OO0O0O0O0 0 By By
000O0O0O0OTOOO0OO0OO0O0O0 By, B,
0000O0OO0OO0OTOOO0OO0O0O0 By, B,
0000O0OO0OO0OOCTIOOOOGO B, By,
000O0O0O0O0OO0OOTIOOO0 0 By, By,
000O0O0O0OO0OO0OO0OOTIOGO0O0 By, By,
000O0O0O0O0OO0OO0OO0OOTIO0O0 By By,
000O0O0O0OO0OO0OO OO OO OOTI 0 Bs, By,
000O0O0O0OO0OO0OO0OOOOO0TI B, B,

Figure 2.2: Generator Matrix of the Systematic Subcode
Source: [2]

L15

Al.lﬁ
Al.lﬁ

Table 2.1: Parity Check Matrix Circulants

Source: [2]
1's position in 1t
Circulant row of circulant

A 0.176

A1l 12.239
Ais 0. 352

A 24,431
Ars 0.392

Are 151, 409
A 0,351

Ais 9.359

Ars 0.307

A 53,320
Ain 0.207

Ain 18, 281
A 0.399

A 202, 457
Avs 0,247

s 36, 261
Asy 99,471
Azs 130, 473
Aoy 198, 435
Ass 260, 478
Aas 215, 420
Aag 282, 481
A 43,396
Aas 193, 443
Azs 273, 430
P 302, 451
Aan 96,379
Aan 191, 386
Aan 244, 467
Ao 364,470
Ao 51,382
Axte 192, 414

Table 2.

2: Generator Matrix Circulants
Source: [2]

1st row of circulant

Circulant (Leftmost number: octal, Following numbers: hexadecimal)

by 1 55BF36CC55283DFEEFERBCACFFO4EIEBDS06T7T10988EZ5048De752542693C0E206
BDZ2DCEFCDZFEZ2BEBGBD Y6 CERATEF40932ARARSBCS3AD20RAZAGCEEBB461E43T758C

b2 6E55RAE0BE98AS0RA3051 38
CEST71280B3ECE12363EER cg

ba s 62B21CFOAEE(E49FAETETDIEAESS1C1CD194CATTS01EOFCFRBCESRETBYCFET9C10E
CF793%E10F8550c61848A4E0AYEYEDE7DABSEDARA] BC16E8CEEZBARCDDEABLE

ba2 64BT1F486AD5T125660C4512247B225F001 7TBAE49CE6C1114EFEOORTORBORB2E A
87%0748D29€6A593FR4FD2CEDTARFTTS0F0CTIBI1AR E334'“CT:JDEEAEFLU716

by 3 1D618083FFEBAR30DBESFAF33020987TDEOLIFS2BS
E 1FAFD7EC1612CEe22B111R369D57T90F55

b3z

04DF1DD77F1

CZ0C1FBS70DTDDTRLIZ1SEARCER4BZBTT2E2651BOFFET13DF:

263BCOE324A87EZDCIADE4COFLOARASE5EDES05946EE16TATICFO4ADIA

B ; 35851FEEEF20C20229 :9485333345E6655:EC‘51°"33454655€38&D4FC
DEB2DE4B455485107037DFL 38581782 6F1ED0L

b2 7E81CFTF278360E28F1262B22F40BF340 BFB
BFDDD2ES2A2E6742BADE533B51B2BDEEC37TE

bs 188157aF41330744BAE0LDAGZY5E0EBTIR44081E111FEIBEETS31D0TREEBFTE23
ZE065F752D4F218D39BECSBF20AESBAFF172ATF1IFE0EEBFSARC3C4343736C2

5.2 5DB0LE00TC1T5B5C0DDEBAL42440E2C29CEA13EBBCEODYSASBAE3R4ECROET4T4E
89476CY2E33D1c4BFFY432c1CELIO031DFF441B0B1752059B49%8304F47%46443082E

ba E0CDIFLCZB2A1612657EBCTC1420332CA245C0756F78744CB07966C3E13264388
TSB:ZCC”933:94loﬁ¢12735a315 B3531ZEEF0DS5248F7B73ESBOF412BF76DB4

bs2 434BEY7BYBCOF3E4B502CEDBDES1D0A03BES96146DEBEF11D4BE33033E05EDC2E
FBOEF25EBF314135E66T75B7608B66FTFF3392308242930025DDC4BRBE5CDTBEE

br 5 766855125CFDCE04DAFEDBE366)EBGE6420230ED4EQN49DF11DAZE3STCS4FEZSEE
A01F5681D95544CTRALES 3?,3Jh;:ELF5DL:EPE754EFDEGAEFA€DfBE:FlE_4c

b2 222975D32524687FES60A6D146311 ;aE“GC“571'““
A32A0506C42AFOF466EES611FCSFEFT4E4359638

bs 5 14B5SFYBEBDSSFCOEYB4EE453CE%63ENS2Z14TABSTACIEOEBETSDY A3 08ET2608FACS
E00D7BL55DEECBIEACTEEF45B46E523073692DET45FDF10724DDA3EFD093B1C

[1BT1AFFBE117BCFBBSDO02AYIFERLS

ESFZ9B3704TFYCABYEBCET60405CE2

ba 1

J00BRB4ERGGSE

SAZA0GCBATFAE4C4RR0B835ACRAB10123436

SFTEEYZBDCEGYCE3FADYGT1B3CFAEBRZTRBSD0OC3DYCAES10316D4BDE
c48E

BE1152B3F4034

ba2

SBTFEGE0BRL

(ER4ZFEFOEDSB41920F82023085C106FEBC1FS6BS6TA1425T021BC

EEJEEJSBEB5BJEFEDEJC3ED4IE:958;4L?$CDEU1563473649;EED;”*1ED$95E
Bg SESBZB33EFEZD0E64RAZZ26DEANADCDITSD5Y32EEICF401B336445DAFFT75754C
A56630716EC1RA43F963D55%865CTF01TF53830514306645%822CART2C152F6ER2
big2 2CDBE140CBRA3TDEODO261259F63ARZRA420AEFR1FECEGG6 1 DBASCE2ZDFGCAL1 TB4AE1D
2BC1F06BASODFDOERBFELIED3B8T601062E2276R4987TA19ATOB460C54F2]
b1 JEF1FF249]192F2ERF06348B8E26 TEEEY94ETT60595C4FAEFFAOIE4 24
C74FBlehC4CEO1BCO0ED33ADAFFYT523EESBD1412691cENS02FF2F
b1z 63267840D00243276F41CE1156D1868F24E02F31D3A1B86ACESOGCET41662B40B
4EFDFBY0F7eC1ADDES4DS20RFREB342 SFAOZEQ0635743F50BS42F0
Dy 4109DR2A24E41B1F375645229581D4BT7EAEC36A1ZDARG4EY1CT64CC43CCEC]L
CBCSBS5CBFF48ABBY1003602BEF43DEEC4A62104B506L2CDCSDBD4103431DBE
biaz 21B85E3BCTO0T6BAS1AADEB]1 99CACE0BCDTOEBZ45BR74927136EGDEDDS2TDFOG53D
ClOA1CBES1BSBES3FFT538FA138B335738F4315361ABFACT3BF405593AEZ22RES
Biaq 22B8B45775A262505B47288E065B2 SBJhF'”“E_BDDB 356B3592CEY92EFS6A35LB4L
AZ2TT7eTDETZF058CE48445TCe5A8CCDDOEFZ225ABASEET&STRTFOESATDCLTEFYT2
biaz 2630CeFT7987BESOCFSARD3S3R6EDBOBEACC 716591 79EAST435E44411BCTDS566136
DFASB3019F3443DEEE4C60540BC4E31DCEADS14D755AFS5A6225B5D695 72652
Dyay T2T3EB342518E097TBICIFSFEF322150AFFSE11184782BSBDSRIDEDTIES4578B0OA
C72ZD7BF45EBCTED3%12094371FFBATEREFABFACCO3AG2BS40CECIDEEYDFBTEE
bia2 0BTER12042793307045B283D7305ES3DEF74725034E77D25D3FF043ADCSFERSEL
BEDBT70AYGBAR] 6E35EFBS 7595 2EARTERLET6DFODSFO97590E1AZASTRO25573E

For the nine AR4JA codes, the encoder uses the generator matrices that derive from the
parity check matrices computed by the following equations. The first equation
calculates the parity check matrix for code rate 1/2, the second for 2/3 and the third
for 4/5:

Oy Opm Iy Op Iy @11,
Hijpp=|Iu Iy Op Iy 11, © 11311,
Iy I[Is@I, 0, II,PIlg Iy
0y 0y
Hy 3 = |1lo @ I110®11;4 Iy Hiz
Iy I, @ 1,301,
Ou Ou O Op
Hyys = |lT31 @ ;D113 Iy 1,5 @ 1,611, 7 Iy Ha/s
Iy Iy, @ 1151154 Iy g @ 11,9115

The I, is the MxM identity matrix, the 0,, is the MxM zero matrix and I1x is an MxM
permutation matrix with entries of 1 in row i and column m (i) as specified by the

equation 1, (i) = = (8 + |4i/M])mod4) + (@i (|4i/M], M) + i)mod =, where
i € {0,M — 1} and functions 8, ¢, are defined in tables 2.3 and 2.4.

The submatrix size M which is determined by the length of the information block as
well as each code’s rate can be found in table 2.5.

Table 2.3: Description of 8y, ¢ (0, M), @, (1, M)

7 55 42 68 86 687 1427 11 40 108 183 424 816 1551
9 7 118 177 168 752 989 26 15 14 153 134 452 2041
26 12 33 170 506 867 1925 9 11 30 177 152 290 1383
17 2 126 89 489 323 270 17 18 116 19 492 778 1790

Source: [2]
#(0,M) d(1,M)

k| a M=27_ 2% M=27. 29
1|3 1 59 16 160 108 226 1148 0 0 0 0 0 0 0
2|0 22 18 103 241 126 618 2032 27 32 53 182 375 767 1822
3|1 0 52 105 185 238 404 249 30 21 74 249 436 227 203
4 | 2 26 23 0 251 481 32 1807 28 36 45 65 350 247 882
5|2 0 11 50 209 96 912 485 7 30 47 70 260 284 1989
6 | 3 10 7 29 103 28 950 1044 1 29 0 141 84 370 957
7|0 5 22 115 90 59 534 717 8 44 59 237 318 482 1705
8 | 1 18 25 30 184 225 63 873 20 29 102 77 382 273 1083
9|0 3 27 92 248 323 971 364 26 39 25 55 169 886 1072
10| 1 22 30 78 12 28 304 1926 24 14 3 12 213 634 354
11| 2 3 43 70 111 386 409 1241 4 22 88 227 67 762 1942
12| 0 8 14 66 66 305 708 1769 12 15 65 42 313 184 446
13| 2 25 46 39 173 34 719 532 23 48 62 52 242 696 1456
14| 3 25 62 84 42 510 176 768 15 55 68 243 188 413 1940
15| 0 2 44 79 157 147 743 1138 15 39 91 179 1 854 1660
16 | 1 27 12 70 174 199 759 965 22 11 70 250 306 544 1661
17| 2 7 38 29 104 347 674 141 31 1 115 247 397 864 587
18| 0 7 47 32 144 391 958 1527 3 50 31 164 80 82 708
19| 1 15 1 45 43 165 984 505 29 40 121 17 33 1009 1466
20| 2 10 52 113 181 414 11 13120 21 62 45 31 7 437 433
21| 0 4 61 86 250 97 413 1840 2 27 56 149 447 36 1345
22| 1 19 10 i 202 158 925 709 5 38 54 105 336 562 867

2

1

2

3

10

Table 2.4: Description of 8y, @ (2, M), @1 (3, M)

Source: [2]
a(2,M) a(3,M)
M=2". 2% M=27. 2"

k | &

1|3 0 0 0 0 0 0 o o o0 0 0 0 0 0
2|0 12 46 8 35 219 254 318 13 44 35 162 312 285 1189
3 (1 30 45 119 167 16 790 494 19 51 97 7 503 554 458
4 |2 18 27 89 214 263 642 1467 14 12 112 31 388 809 460
5|2 10 48 31 84 415 248 757 15 15 64 164 48 185 1039
6|3 16 37 122 206 403 899 1085 20 12 93 11 7 49 1000
710 13 41 1 122 184 328 16300 17 4 99 237 185 101 1265
8 |1 9 13 69 67 279 518 64 4 7 94 125 328 82 1223
9 |0 7 9 92 147 198 477 689 4 2 103 133 254 898 874
10| 1 15 49 47 54 307 404 1300 11 30 91 99 202 627 1292
11| 2 16 36 11 23 432 698 148 17 53 3 105 285 154 1491
12| 0 18 10 31 93 240 160 777 20 23 6 17 11 65 631
13| 2 4 11 19 20 454 497 1431 8 29 39 97 168 81 464
14| 3| 23 18 66 197 294 100 659 22 37 113 91 127 823 461
15| 0 5 54 49 46 479 518 352 19 42 92 211 8 50 844
16| 1 3 40 81 162 289 92 1177 15 48 119 128 437 413 392
17|2| 290 27 96 101 373 464 836 5 4 74 82 475 462 922
18| 0 11 35 38 76 104 592 1572 21 10 73 115 85 175 256
19| 1 4 25 83 78 141 198 348 17 18 116 248 419 715 1986
20| 2 8 46 42 253 270 856 10400 9 56 31 62 459 537 19
21| 0 2 24 58 124 439 235 779 20 9 127 26 468 722 266
22 |1 11 33 24 143 333 134 476 18 11 98 140 209 37 471
23| 2 11 18 25 63 399 542 191 31 23 23 121 311 488 1166
24 | 1 3 37 92 41 14 545 1393 13 8 38 12 211 179 1300
25| 2 1s 35 38 214 277 777 1752] 2 7 18 41 510 430 1033
26| 3 13 21 120 70 412 483 1627 18 24 62 249 320 264 1606

Table 2.5: Values of Submatrix Size M for the nine AR4JA codes

Source: [2]
Information Submatrix size M
block length & Rate 1/2 Rate 2/3 Rate 4/5
1024 512 256 128
4096 2048 1024 512
16384 8192 4096 2048

B. The Encoding Algorithm

For the description of the algorithm, we define the following variables: u represents
the message (the uncoded word) with k bits length, c is the resulting codeword with n
bits length, H the parity check matrix and G the generator matrix of H as determined
above.

To calculate the codeword, the encoder performs matrix multiplication between the
message and the generator matrix:

c =uG

Based on this operation, a faster method can be used. For that reason, instead of
using the whole generator matrix G, the right side of the matrix that contains the
circulants, i.e. the last n — k columns of G includes the information needed, this new
matrix is called B.

These codes are systematic in their first symbols, i.e. the first k bits of the codeword
are the message bits, while the remaining n — k parity bits are computed in the
following way:

11

The first message bit is multiplied by the first row of B and the result is placed in an
accumulator. Then, the next message bit is multiplied by the second row of B and the
result is added to the accumulator. This process continues until all message bits are used
and afterwards, it is repeated for the remaining rows of B. The resulting codeword is a
concatenation of the k message bits and the n — k bits of the accumulator.

Regarding the C2 code and the set of AR4JA codes, the encoder is employed
according to the following:
The input given to the C2 encoder is the 7136-bit message. This message is extended
by a prefix of 18 zeros so as to form a 7154-bit vector, which can be multiplied by the
generator matrix of the (8176, 7154) subcode when inserted in the encoder algorithm.
The result of this multiplication will be an 8176-bit vector consisting of 18 prefixed
zeros, 7136 message bits and 1022 parity bits. From these bits, the 18 zeros are
discarded and 2 zeros are appended, producing a C2 codeword of 8160 bits seen in
figure 2.3.

| 8160 hits C2 codeword |

0 o |y U, P, v | Pyl 0 |0

| | I |

11 11 1

18 prefized reros 7138 message bits 1022 party bits 2 appended zeros
(discarded)

Figure 2.3: C2 Codeword

Considering the set of nine AR4JA codes, there are three cases of input: the 1024, 4096
and 16384-bit message. The message is inserted in the encoder algorithm without any
modification and according to which code rate is chosen between 1/2, 2/3 and 4/5,
the suitable generator matrix is used for the multiplication. The last M bits of the
product are punctured, (the value of M being specified in table 2.5) and the resulting
codeword can be seen in figure 2.4. For each case the encoder returns a codeword of
different length n, displayed in table 2.6.

1 n hits AR4JA codeword |

u 1 . Uk Pl . Pﬂ-]i Pl . P:\I
| kmessage bits | -k parity bits | | M parity bits i
(punctured)
Figure 2.4: AR4JA Codeword
Table 2.6: Size (n, k) of each AR4JA code
Source: [2]
Information Codeword length n
block length k Rate 1/2 Rate 2/3 Rate 4/5
1024 2048 1536 1280
4096 8192 6144 5120
16384 32768 24576 20480

12

3. The Decoder

A decoder is the device that takes as input the received codeword and reconstructs it to
its original form even if it has been corrupted by the noise of the channel.

A. Message-Passing Decoding

The algorithms used to decode LDPC codes are called message-passing decoding
algorithms. The term derives from the fact that decoding takes place on a Tanner graph,
where messages are iteratively exchanged between the nodes. A specific message-
passing algorithm is belief propagation, also known as the sum-product algorithm. In
this case, the messages are probabilities, often represented by log likelihood ratios,
which show the level of belief a node has regarding the value of a codeword bit.

A Tanner graph is a bipartite graph consisting of two sets of nodes, the variable
nodes that represent the codeword bits and the check nodes that represent the parity
check equations, the structure can be seen in figure 3.1.

There are two types of messages passed along the Tanner graph edges:

The message passed from a variable node i to a check node j, which is the probability
that i has a certain value, considering the observed value of that node and the values
given to i in the previous iteration by all the corresponding check nodes connected to it
except for j.

The message passed from a check node j to a variable node i, which is the probability
that i has a certain value, considering all the messages given to j in the previous iteration
by all the corresponding variable nodes except for i.

These messages are passed along the edges until the valid codeword is found or the
maximum number of iterations is reached.

Check nodes

N N N N N N
o/ \/ N N N /

Variable nodes

Figure 3.1: Tanner Graph

B. The Decoding Algorithm

The decoder introduced in this thesis uses the sum-product algorithm [4], an iterative
soft-decision message-passing decoding algorithm, which takes as input the probability
of each received codeword bit (a priori probabilities) and returns the maximum a
posteriori probabilities in the form of log-likelihood ratios. Within each iteration, the
algorithm checks whether all the parity check conditions are satisfied and if not, it
continues until they are or until the maximum number of iterations is reached.

For the description of the algorithm consider the following:

13

The information exchanged about each codeword bit, is its probability of being zero or
one. In order to address both of these states, the log-likelihood ratio (LLR) form is used:
p(c; = 0)
L(¢;) = log, ———=
(Cl) Oge p(ci — 1)
When p(c; = 0) > p(c; = 1) then L(c;) > 0 and the codeword bit value is considered
zeroc; = 0.
When p(c; = 0) < p(c; = 1) then L(c;) < 0 and the codeword bit value is considered
onec; = 1.
As aresult, the bigger the absolute value of L(c;), the more reliable the decision towards
the codeword bit value is.

INPUT

e The variable r; represents the a priori probabilities of each codeword bit i given by
the channel as input to the decoder:

p(c; = 0)

‘plci=1)

e H represents the parity check matrix as specified in section 2.A and it is used in
order to determine whether the computed codeword y is a valid one, hence
providing the termination condition to the algorithm, through the verification of:

HyT =0

o a4, represents the maximum number of iterations that the decoder algorithm is

granted, making it the second termination condition.

1; = log

MESSAGES
e The update message Vj; from variable node i to check node j is the LLR of the
probability that bit i is a one.
Initially: V;; = r;
Afterwards: Vj; = Xjro; Ujr; + 1
e The update message U;; from check node j to variable node i is the LLR of the
probability that parity check j is satisfied by bit i.

1 + L [1i7+; tanh =%
2 2 2
U; =log,

] 1 Vji’
) Hilii tanhT

Vit

1 + [];74; tanh 5

Uji = lOge Vir

1 —[];/+; tanh]21

V..[
Uji =2 tanh_l (1_[tanh %)

i'#i

OuUTPUT

e The variable L; represents the calculated probability of each codeword bit i as a
result of the decoding process.

14

SUM-PRODUCT ALGORITHM

Sum_Product(H, LLR(y), Imax){
/I A priori probabilities
r = LLR(y)

/I Construction of D
Forj = 1: Hrows
k=1
Fori = 1:Hcols
IfF(H(,i) =1)
D{j}(k) =i /I Check j includes bit i
k=k+1
End
End
End

/I Construction of S
Fori = 1:Hcols
k=1
For j = 1: Hrows
IfF(H(,i) =1)
S{i}(k) =j /I Bit i is included in check j
k=k+1
End
End
End

/I Variable messages initialization
Fori = 1:Hcols
For j € S{i}
Vii=m;
End
End

/I Iterations
iter =1
valid = 1

While (iter < Imax & valid # 0) // Termination conditions
/I Check messages
Forj = 1: Hrows
For i € D{j}

Vo
Uy = 2tanh™" { [/, pgjy tanh (%))
i'#i
End
End

/I Codeword validation
Fori = 1:Hcols
Li=YjespUutm

If(L; <0
yi=1
Else
yi=0
End

End
valid = Hy” /I Check constructed codeword
/I Variable messages

If (valid # 0)
Fori =1:Hcols

For j € S{i}
Vi =XjresiyUjri + 13
J'#j
End
End
End
iter = iter + 1
End
Return (L)

15

A priori probabilities:
The a priori probability of each received codeword bit is placed in variable r.

Construction of D and S:

Extract information from the parity check matrix H about the connections between
parity check equations and bits, in order to place it within D and S.

D discloses the information of which bits are included in a parity check equation.
Whereas, S includes the reverse, meaning within which parity check equations a bit is
included.

Variable messages initialization:
Each variable node i sends the message V}; to each connected check node j. V;; contains
the probability of bit i, initialized as the a priori probability r;.

Iterations:

Since the initialization process is done, the iterations begin until one of the two
termination conditions is true. The variable iter represents the counter of the iterations
with the limit of I,,,,,. Whereas, the variable valid initialized with the value of one,
once it turns to zero, denotes the construction of a valid codeword and the iterations
stop.

Check messages:

Each check node j returns the message Uj; to each connected variable node i. Uj;
contains the calculated a posteriori probability for variable node i, based on the
connected variable nodes except for i.

Codeword validation:

In order to check whether a valid codeword has been constructed, each variable node i
adds its a priori probability and the received check messages to calculate the current
LLR of each codeword bit. These probabilities correspond to a bit value of zero when
the LLR is positive and a bit value of one when the LLR is negative, thereby
establishing the resulting codeword y.

A codeword is valid when the equation HyT = 0 is true. So, if the result of the
multiplication is zero, the codeword is found, the algorithm is terminated and the L;
probabilities are returned. Otherwise, the codeword is not valid and if the maximum
number of iterations (I,,,4,) IS not exceeded, a new iteration starts.

Variable messages:
If a valid codeword is not yet found, each variable node i sends the message V; to each
connected check node j. Vj; takes its new value, which contains the calculated

probability of bit i, based on the connected check nodes except for j and the a priori
probability known for bit i.

16

Regarding the C2 code and the set of AR4JA codes, the decoder is employed
according to the following:
The input given to the C2 decoder is the codeword of 8160 bits. This codeword is
extended by a prefix of 18 zeros, which transformed in LLRs will take a very big
positive value and the last two bits of the codeword, corresponding to the appended
zeros are removed, producing a vector of 8176 bits as input to the decoder algorithm.
From the resulting codeword (according to figure 2.3) the 18 prefixed zeros are
removed along with the 1022 last parity bits, in order to present the 7136-bit decoded
message.
Considering the set of nine AR4JA codes, there are nine cases of input as seen in table
2.6. In every case, M zero LLRs are appended to the n-bit codeword according to table
2.5 in order to represent the punctured bits. This codeword is inserted in the decoder
algorithm. From the resulting codeword, the first (Hcols — M) - code rate Dbits
represent the decoded message.

C. Other Decoding Algorithms

The implementation of these LDPC codes with other decoding algorithms such as
the Min-Sum, the SVS Min-Sum [5], GSVS Min-Sum [6] and the Quantized-BP [7]
algorithms, showed that even though these are of lower complexity, they still do not
perform as good as the Belief-Propagation (Sum-Product) algorithm described above.

17

BER

10°

10

10

10

10"

10

10

4. Performance

A simulation of the aforementioned codes has been conducted in Matlab (Matrix
Laboratory) to evaluate their performance in the AWGN (Additive White Gaussian
Noise) channel.

The chosen modulation scheme is BPSK (Binary Phase-Shift Keying) and the metric
of comparison used is BER (Bit Error Rate) in each selected SNR (Signal to Noise
Ratio), defining the number of error bits that occur compared to the total bits within a
transmitted codeword. The decoder algorithm iterations (I,,,,) are set to the optimal
value of 200 and the number of data blocks sent varies from 1000 to 10000 according

to the simulation, specifically 10000 for the 1/,4096, 1/,1024, 2/54096,
2/51024,%/-16384,%/< 4096,%/- 1024 AR4JA codes and 1000 for the 1/,16384,
2/ 16384 AR4JA codes and 7/ 7136 C2 code.

The performance curves can be seen in figure 4.1. The AR4JA codes with lower
code rate 1/2 and 2/3 are suitable for low SNR environments between 0.4db and 2.4db,
where they can decode the received message establishing an error rate of almost 107>,
Whereas, the 4/5 AR4JA codes along with the 7/8 C2 code, perform better within the
SNRs of 2.4db and 4db, introducing the same error rate on the order of 107°.

BPSK AWGN channel - Iterations (Data blocks): 1000 - 10000

—+*— LDPCC2
—— LDPC 1/2 16384 AR4JA

LDPC 4/5 1024 AR4JA
—&— LDPC 4/5 4096 AR4JA
—— LDPC 4/5 16384 AR4JA
. —— LDPC 1/2 1024 AR4JA
— — —&— LDPC 1/2 4096 AR4JA
A S LDPC 2/3 16384 AR4JA
\ ~ e —
AN . LDPC 2/3 1024 AR4JA
\\ \\ \\\ \ \ \ LDPC 2/3 4096 AR4JA
\ \ \GEAN
‘\ \\ ‘\ ‘\ N N x
\ \ N\ \ R Y A Y
\ \ N\ \ A\ AN \
\ \ N\ \ AN \
\ \ AN \ .\ \
Y AN \ N\ AN
N\ \ \ N\ N\
A Y \ \ AN \
AN \ \ N\ A%
\ \ X X
N\ Y % \ \
N\ \ N\ \
; \ N\ \
\ N \
\ X \
\ \ \
\ \ \
\ A\ \
\\ \\
X
0.5 1 15 2 25 3 35 4
E,/N, [dB]

Figure 4.1: The BER for the set of AR4JA codes and the C2 code.

18

The results were compared to the ones presented in literature [3] and show that there
is a distance lower than 0.1db between them, placing them within the acceptable limits
and in most cases revealing an even better performance than those in theory suggest.
The results can be seen in figure 4.2.

Iterations (Data blocks): 1000 - 10000
10

m-z ! ;\ ARRY \ \&\ -\\
\5\\ NN
| A\

BER
=
[S]

\ \ \
N D

// //
/

0 05 1 15 2 25
E,/N, [dB]

w

35 4 4.5

Figure 4.2: The BER compared to theory for the set of AR4JA codes and the C2 code.
The black curves represent the theoretical values. The colored curves from left to right:

1/,16384,1/,4096,1/,1024,2/516384,2/54096,2/5 1024, %/ 16384, %/ 4096,%/< 1024 AR4JA codes,
7/47136 C2 code.

19

5. Conclusion

In this thesis the C2 LDPC code and a set of nine AR4JA LDPC codes have been
proposed for space communications [3]. Specifically, the system containing the encoder
and the belief-propagation decoder employed for these particular codes has been
described in detail and the performance of the codes has been evaluated in Matlab.

The results of these simulations demonstrate that these codes can be effectively used
in a deep space environment with a very low SNR.

As future research, the development of the encoder and decoder in a FPGA (Field-
Programmable Gate Array) platform is recommended, with consideration to these
LDPC codes.

20

6. References

[1].Planned Science Data During Reduced STEREO Science Operations [Online]
Available: http://stereo-ssc.nascom.nasa.gov/solar_conjunction_science.shtml
[2]. TM Synchronization and Channel Coding. Recommendation for Space Data System
Standards, CCSDS 131.0-B-2. Blue Book. Issue 2. Washington D.C.: CCSDS,

August 2011.

[3]. TM Synchronization and Channel Coding—Summary of Concept and Rationale.
Report Concerning Space Data System Standards, CCSDS 130.1-G-2. Green Book.
Issue 2. Washington, D.C.: CCSDS, November 2012.

[4].S. J. Johnson, “Introducing Low-Density Parity-Check Codes" [Online]
Available: http://sigpromu.org/sarah/SJohnsonLDPCintro.pdf

[5].A. A. Emran and M. Elsabrouty, "Simplified variable-scaled min sum LDPC
decoder for irregular LDPC codes,” 2014 IEEE 11th Consumer Communications
and Networking Conference (CCNC), Las Vegas, NV, 2014, pp. 518-523.
doi: 10.1109/CCNC.2014.6940497

[6].A. A. Emran and M. Elsabrouty, "Generalized simplified variable-scaled min sum
LDPC decoder for irregular LDPC codes,” 2014 IEEE 25th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC),
Washington DC, 2014, pp. 892-896. doi: 10.1109/PIMRC.2014.7136292

[7]1.J. K. S. Lee and J. Thorpe, "Memory-efficient decoding of LDPC codes,"
Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.,
Adelaide, SA, 2005, pp. 459-463. doi: 10.1109/1SIT.2005.1523376

21

