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Abstract 

 
MIPS (Microprocessor without Interlocked Pipeline Stages) is a microprocessor that 

was designed years ago but still remains one the most popular and ideal examples of 

RISC architecture. The majority of universities and higher education colleges instruct 

its instruction set architecture to students, introducing them into computer design 

and organization. 

A lot of tools and hardware description languages were created allowing engineers 

to implement their designs in an easier and more efficient way. SystemVerilog is a 

hardware description language that is mainly used for design verification. However, 

it might as well be used for implementation of synthesizable complex designs. 

The aim of this project is the design and implementation of a synthesizable MIPS 

core that can be used for integration in Field-Programmable Gate Array based 

systems. This thesis describes MIPS architecture, including memory hierarchy and 

floating-point unit, and presents a way of implementation using SystemVerilog 

hardware description language. 
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Περίληψη  

 
Ο μικροεπεξεργαστής MIPS σχεδιάστηκε πριν πολλά χρόνια, εντούτοις αποτελεί 

ένα από τα πλέον δημοφιλή και ιδανικά παραδείγματα της αρχιτεκτονικής 

επεξεργαστών RISC. Η πλειοψηφία των διεθνών πανεπιστημίων και των 

ανωτάτων εκπαιδευτηρίων διδάσκουν την αρχιτεκτονική του, εισάγοντας τους 

φοιτητές στην οργάνωση και σχεδίαση υπολογιστών. 

Πολλά εργαλεία και γλώσσες περιγραφής υλικού έχουν δημιουργηθεί 

επιτρέποντας στους μηχανικούς  την υλοποίηση των σχεδίων τους με εύκολο και 

αποδοτικό τρόπο. Η γλώσσα περιγραφής υλικού SystemVerilog χρησιμοποιείται 

κυρίως για την επαλήθευση ψηφιακών κυκλωμάτων. Παρ’ όλα αυτά μπορεί 

κάλλιστα να χρησιμοποιηθεί και για τη σχεδίαση και υλοποίηση συνθέσιμων 

πολύπλοκων σχεδίων. 

Σκοπός αυτής της εργασίας είναι η σχεδίαση, υλοποίηση και σύνθεση του 

πυρήνα του μικροεπεξεργαστή MIPS, το οποίο μπορεί να χρησιμοποιηθεί σε 

συστήματα που βασίζονται στη χρήση μιας πλατφόρμας FPGA. Στην παρούσα 

διπλωματική εργασία θα περιγράψουμε την αρχιτεκτονική MIPS, 

περιλαμβάνοντας την ιεραρχία μνήμης και τη μονάδα κινητής υποδιαστολής, 

και θα παρουσιάσουμε τον τρόπο υλοποίησης του με τη χρήση της γλώσσας 

περιγραφής υλικού SystemVerilog. 
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Chapter 1 

 

Introduction 
 

This thesis presents the way that theory of MIPS instruction set architecture can be 

applied into practice by implementing a MIPS core. It can be divided in six major 

parts. The first part describes MIPS microprocessor. This part begins with a quick 

description of the instruction set architecture (Section 2.1) by referring the instruction 

types that MIPS supports and the way they are encoded. Section 2.2 continues with a 

presentation of pipelining technique and how it is applied and controlled in MIPS. In 

section 2.2.3 specifically we analyze all hazards that may arise by given examples 

and describe how we can confront these problems. 

We continue in third chapter of this thesis by analyzing the way that CPU of MIPS 

was implemented and illustrate an abstract way that code was written. Section 3.1 

describes how every pipeline stage was implemented and section 3.2 analyzes how 

we solved the structural and the control hazards, and how we implemented the data 

hazard unit to deal with all data hazards including the way that pipeline is stalled. 

After discussing all the theory background of MIPS architecture and presenting the 

way that execution pipeline was implemented, we discuss about memory hierarch 

and caching technique. We begin chapter 4 by describing the basic organization of 

cache memories, what their purpose is, how memory is mapped to cache and how 

cache lines are replaced and written. In next section we describe how we 

implemented a parameterized set-associative cache and the way it interacts with 

CPU and main memory. Moreover, in section 4.2.3 we explain how cache is 

controlled and which cache line replacement policy was chosen to be implemented 

and why. 

In next chapter we begin with a short description of floating-point numbers’ 

representation formats including the IEEE-754 standard. In section 5.4 we discuss 
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about the floating-point instruction set and in section 5.5 we explain how we 

designed and implemented floating-point unit. In this section we present the way 

that floating-point arithmetic and data transfer instructions were implemented, 

about how we control FPU and what problems and hazards were faced and solved 

after integrating FPU into the core system. 

Finally, in last chapter (Ch. 6) we come in conclusion, presenting the summary report 

of synthesis and discussing about future work that can be done. 
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Chapter 2 

 

MIPS Microprocessor 

 
MIPS (Microprocessor without Interlocked Pipeline Stages) is a RISC (Reduced 

Instruction Set Computer) instruction set architecture which was designed by John L. 

Hennessy at Stanford University. As a RISC instruction set architecture, it consists of 

a small non-complex instruction set, illustrating four underlying principles of 

hardware design; simplicity favors regularity, smaller is faster, good design 

demands compromise and make the common case fast [1]. It was developed by MIPS 

Technologies (formerly MIPS Computer Systems, Inc.) and currently is in possession 

of Imagination Technologies Group plc, a British-based company [3] [4]. MIPS 

instruction set is very popular because it is widely used for academic purposes, 

introducing students of Computer Engineering in Computer Design and 

Architecture. MIPS implementations were widely used on early commercial RISC 

CPUs and nowadays are mainly used in embedded systems, network, Internet of 

Things (IoT), digital home and mobile applications [3]. 

Early MIPS architectures were 32-bits and later versions were 64-bits following the 

progress of Computer Science. The first MIPS instruction set was MIPS I CPU 

instruction set which was introduced in 1985. It has been extended in a backward-

compatible way; latest architecture versions include former ones. This allows 

processors that implement the latest architecture versions to run binary programs 

that are produced by previous processors [3]. The different revisions which have 

been introduced are MIPS I (1985), MIPS II (1990), MIPS III (1992), MIPS IV (1994), 

MIPS V (1996), MIPS32/MIPS64 (1999) and recent releases of MIPS32/MIPS64. There 

are also plenty of application-specific extensions. 

https://en.wikipedia.org/wiki/MIPS_Technologies
https://en.wikipedia.org/wiki/MIPS_Technologies
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2.1 MIPS Instruction Set Architecture 

MIPS architecture supports up to 4 coprocessors. Coprocessor 0 is the system control 

coprocessor, coprocessor 1 is an optional floating point unit and coprocessors 2 and 3 

are undefined optional coprocessors [3]. It has 32 general-purpose registers (Table 

2.1) and another 32 floating-point registers each one of 32 bits. Usually a 32-bits data 

group is called word, representing the fundamental data unit in a computer. 

 

Register 

Name 

Register 

Number 
Use Preserved across a call? 

$zero 0 The constant value 0 N.A. 

$at 1 Assembler temporary No 

$v0-$v1 2-3 
Values for function results 

and expression evaluation 
No 

$a0-$a3 4-7 Arguments No 

$t0-$t7 8-15 Temporaries No 

$s0-$s7 16-23 Saved temporaries Yes 

$t8-$t9 24-25 Temporaries No 

$k0-$k1 26-27 Reserved for OS kernel No 

$gp 28 Global pointer Yes 

$sp 29 Stack pointer Yes 

$fp 30 Frame pointer Yes 

$ra 31 Return address Yes 

 

 

2.1.1 Basic Instruction Set  

The basic instruction set consists of arithmetic and logical instructions, control flow 

instructions, memory access instructions, coprocessor and other miscellaneous 

instructions [2] [3] [4]. 

 

Arithmetic and Logical instructions 

The main purpose of using registers is to store data that processor needs in order to 

complete an operation. Processor uses data from two registers and produces the 

expected outcome storing it in the destination register. For instance, processor can

Table 2.1 MIPS general-purpose registers. 
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add the data from two registers and store the result in another register, 

implementing the operation of addition. All arithmetic and logical operations are 

executed by a unit called Arithmetic Logic Unit (ALU). MIPS instruction set 

architecture also supports operations between a register and a 16-bit immediate. This 

immediate value is treated as signed integer for arithmetic and control flow 

instructions and as unsigned for logical instructions.  

Multiplication and division are more complicated arithmetic operations and require 

many steps to be completed. Hence, processors have independent multiplication and 

division units. Multiplying an m digit number by an n digit number results in an     

m + n digit, at most. Dividing two numbers leads to the production of a quotient and 

a remainder. Therefore, in MIPS architecture two 32-bit registers are used to contain 

the result. These registers are not general-purpose and are called HI and LO. 

Multiplication instruction produces a 64-bit result which is stored in these registers; 

low half is stored in LO register and high half is stored in HI register. Division 

instruction produces a 32-bit quotient and a 32-bit remainder that are stored in LO 

and HI registers respectively. 

Data Transfer instructions 

General-purpose registers are used for simple and small operations satisfying the 

first two principles of hardware design. This limits the amount and restricts the 

structure of the data that can be processed. That’s why there is a crucial need for 

more data space which can be found in the memory system of the processor. 

Processor can use registers for computations and memory system for storing the 

results and the processed data. This design rule is implemented with data transfers 

between registers and memory. MIPS instruction set includes load and store 

instructions that transfer data between coprocessor 0 and memory system and 

between all coprocessors.  

There are data transfer instructions for ranging size data transfers such as byte, half 

word and word, for treating loaded data as signed or unsigned and for aligned or 

unaligned memory access. This kind of data transfers use the base addressing mode 

which in particular means that an offset is added to a base register in order to get the 

memory access address. This offset must be sign extended before it is added to base 

register. MIPS architecture uses byte addressing, thus words must be aligned 

(multiples of 4) since MIPS addresses each byte. If a word memory access address is 

not a multiple of 4 then an address access exception will be thrown [3]. Data transfers 

can also be made between coprocessors and between coprocessors and memory 

system. Moreover, special data transfer instructions allow access to HI/LO registers.
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R-Type format 

Conditional branches and jumps 

In computer science, programs are not executed in a straight-line way. Different 

parts of a code need to be executed depending on the input data and on the data 

created during the computation. The address of the instruction that is currently 

executed is maintained in a special 32-bit register named Program-Counter (PC). 

There are specific control flow instructions that guide the computer to execute 

another part of the instruction space such as branches and jumps. Branch instructions 

compare the data of two general-purpose registers and jump to an address 

depending on the comparison result whereas jump instructions unconditionally 

jump to that address. MIPS architecture supports PC-relative conditional branches 

and unconditional jumps. Jump addresses can be given in a pseudo-direct way using 

26 bits for the jump target or in an absolute way via a register that contains the jump 

target. There is also support for saving a return link address in a general purpose 

register for subroutines ($ra). 

 

2.1.2 MIPS instruction representation 

Basic MIPS instruction set was discussed above, and now we must analyze how 

processor distinguishes and handles these instructions. Every instruction is a 32-bit 

binary representation. This word is separated in a few bit fields. These fields define 

the instruction category, the immediate values, the branch and jump offsets, the 

source and destination registers, the instruction operations and the binary shift bit 

amount (for constant shift operation instructions). There are three specific binary 

instruction formats: the R-type, the I-type and the J-type format. 

R-type format 

In R-type instructions all data values that are used by these instructions are 

maintained and stored in general-purpose registers. R-type instructions do not 

require immediate value, jump target offset, memory address displacement or 

memory address to specify an operand. R-type format includes all ALU instructions 

except of immediate ALU instructions, register-direct jump instructions and HI/LO 

data transfer instructions. Figure 2.1 illustrates the R-type instruction format. 

 

Opcode Rs Rt Rd Shamt Funct 

 

Figure 2.1 
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We shall now describe what these fields represent: 

 Opcode is the operation code of the instructions 

 Rs indicates the first source register 

 Rt indicates the second source register 

 Rd indicates the destination register 

 Shamt indicates the shift amount for constant shift instructions 

 Funct specifies the ALU and shift operation 

Every type of instruction has its own opcode distinguishing it from others. All R-type 

instructions have opcode 000000. The funct field specifies which operation must be 

made. In all constant shift instructions, Rt field indicates the register that contains the 

word which will be shifted and specifically in variable shift instructions Rs field 

indicates the shift amount value. Rs field also specifies the register that holds the 

jump address in register-direct jump instructions and the data that is going to be 

stored into HI/LO registers in HI/Lo data transfer instructions. Examples of how R-

type instructions are binary represented are given in Figure 2.2. 

 

  

 Opcode Rs Rt Rd Shamt Funct 

ADD $8, $7, $3 000000 00111 00011 01000 00000 100000 

SRL $14, $8, 9 000000 00000 01000 01110 01001 000010 

SRLV $2, $1, $3  000000 00001 00011 00010 00000 000110 

JR $13 000000 01101 00000 00000 00000 001000 

JALR $6 000000 00110 00000 11111 00000 001001 

MFHI $9 000000 00000 00000 01001 00000 010000 

MTHI $2 000000 00010 00000 00000 00000 010001 

 

    

 

 

 

 

 

31                                  26   25                    21    20                    16   15                    11   10                      6    5                                       0 

Figure 2.2 Binary representation examples of R-type instructions. 
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I-Type format 

I-type format 

I-type instruction format (Figure 2.3) includes all the immediate arithmetic and 

logical instructions, all branch instructions and all coprocessors-memory data 

transfer instructions. All opcodes except 000000, 00001x, and 0100xx are used for I-

type instructions. 

 

Opcode Rs Rt Immediate 

 

 

The immediate value is represented by a 16-bit field, thus immediate value can be 

defined in the signed values range of -215 up to +215- 1. So, immediate arithmetic and 

logical instructions can have a minimum -32.768 and a maximum 32.767 immediate 

value. Furthermore, that means that we can’t address ranges of memory larger than 

32.768 bytes (or 8192 words). Branches use a PC-relative addressing mode because of 

the fact that branch target address is always near to the current program counter. 

Branch target address is computed in the following way: 

PC = PC + 4 + sign extend (immediate ← 00) 

This means that two zeros are inserted to the LSB end of the immediate value 

(similar to shift left logical by two times) in order to create a value divisible by 4. It is 

then sign extended to 32-bits and finally added to the next instruction address       

(PC + 4). Thus, the range of possible addresses is   PC - 217 up to PC + [217 – 4]. That 

means that we can branch 128 KB backward and almost 128 KB forward to the 

current PC. 

Rs and Rt fields indicate the source and destination registers and immediate field 

contains the 16-bit immediate value. In coprocessor’s 0 LW instructions the data 

contents of Rs register are added with the sign extended immediate value to produce 

the memory access address and the memory load data are stored in Rt register. In 

SW instructions the data of Rt register is going to be stored in memory. Binary 

representation examples of I-type instructions are shown below in Figure 2.4. 

 

 

 

Figure 2.3 
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31                                         26   25                                                                                                                                                                                                          0  

J-Type format 

 

 

 Opcode Rs Rt Immediate 

ADDI $21, $3, 88 001000 00011 10101 0000000001011000 

BEQ $17, $8, 2007 000100 10001 01000 0000011111010111 

LW $14, 8 ($9)  100011 01110 01001 0000000000001000 

SW $13, 92 ($6) 101011 01101 00110 0000000001011100 

  

 

 

J-type format 

J-type format (Figure 2.5) consists of jump and jump-and-link instructions. In MIPS 

instruction set architecture designers have made a compromise that all instructions 

would have a word size and a 6-bit opcode field, satisfying the third principle of 

hardware design. Therefore jump instructions can have a 26-bit field for the jump 

target address. All J-type instructions use the opcode values 00001x. 

 

Opcode Address 

 

 

Jump target address is computed by concatenating the 4 MSB bits of PC with the 

word-aligned 26-bit immediate value; hence the maximum address value can be     

226 - 1. In order to make the 26-bit word aligned we follow the same way as in 

branches, therefore the range of possible addresses is PC - 228 up to PC + [228 – 4], so 

we can have maximum jumps of 256 MB (or 64 million instructions). 

PC = {PC [31:28] , (address ← 00)} 

This addressing mode is called pseudo-direct addressing because 4 bits of the PC are 

used to compute the address. For larger jumps we should use jump register 

instructions where the jump address is 32-bits. Jump register instructions can jump 

anywhere in the 4GB address space. We can see two examples of J-type instructions 

in Figure 2.6. 

Figure 2.5 

31                                 26   25                  21    20                  16   15                                                                                                0 

Figure 2.4 Binary representation examples of I-type instructions. 
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 Opcode Immediate 

J 19081966 000010 01001000110010101011101110 

JAL 210388  000011 00000000110011010111010100 

 

 

 

2.2 MIPS Pipeline 

Single cycle processors execute every instruction in one cycle, achieving an optimal 

CPI (Clocks Per Instruction) equal to 1. The clock period must be as large as the most 

time-consuming instruction. In basic MIPS architecture this instruction is LW 

instruction. Single cycle processors are easy to implement but they lack of 

performance because clock cycle is too long. Moreover, memory and every functional 

unit are not utilized efficiently. Therefore, multi cycle processors were implemented 

for a better overall performance. The idea was to make simple and small operations 

in a small clock cycle. Every instruction now is completed in more than one clock 

cycles and each instruction’s individual operation is executed in one cycle. In 

addition, every functional unit can be used more than once per instruction in 

different clock cycles. Multi cycle processors can achieve better throughput but they 

have higher CPI measure. 

 

2.2.1 Instruction pipeline datapath 

Instruction pipelining is a technique implemented in order to increase the 

performance of multi cycle processors while maintaining a small clock period and a 

CPI measure close to 1. Pipelining implements a parallel execution of instructions’ 

individual operations; multiple instructions are overlapped in execution [1].  

MIPS instructions can take up to five steps in order to be executed, however as we 

will see not all instructions really need five steps to be completed. These steps also 

separate MIPS datapath (Figure 2.7) into 5 fundamental stages which have their own 

functional units and need one cycle to perform all the individual operations needed.

31                                 26   25                                                                                                                                                           0 

Figure 2.6 Binary representation examples of J-type instructions. 
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These stages are defined as: 

1. Instruction Fetch (IF): An instruction is read from memory and PC is 

incremented. 

2. Instruction Decode (ID): Fetched instruction is decoded into specific format 

fields and opcode is translated into control signals and read registers.  

3. Execution (EX): An ALU operation is performed and jump/branch addresses 

are computed. 

4. Memory (MEM): Read or Write data memory. 

5. Write Back (WB): Result is stored in the destination register 

 

 

 

 

 
 

 

 

 

 

We can see that in IF stage, the instruction that is read from instruction memory 

(indexed from the current PC) and the next instruction address (PC+4) are stored in 

IF/ID pipeline register. In ID stage IF/ID pipeline register is read to get the fetched 

instruction. This instruction is decoded into the corresponding format fields and 

register file is read in order to get the ALU execution operands. All necessary control 

signals (we will discuss about control signal later) are generated in the meanwhile. 

All the decoded information, the next instruction address, the control signals and the 

register file read data are stored in ID/EX pipeline register for usage in next stage. In 

EX stage, ID/EX pipeline register is read in order to get all useful data and control 

Figure 2.7 Basic Pipelined MIPS datapath. Pipeline stages are separated by the 

pipeline registers (in colour). Each pipeline register contains data useful to the next 

stage. The name of a pipeline register defines the stage transition. 

IF ID EX MEM WB 
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signals. This stage executes the ALU operation for ALU instructions, computes the 

branch and jump target addresses and decides whether a branch is taken or not. The 

ALU result, the jump and branch target addresses, the second register file data read 

operand, the comparison result (Zero bit) of branch instructions and the control 

information are stored in EX/MEM pipeline register for usage in next stages.  

 

In MEM stage the data memory is accessed, hence we need the memory address and 

the memory write data which are read from the EX/MEM pipeline register. Zero bit 

and jump/branch target addresses are also read in order to complete the jump/branch 

and transfer control to another part of the instruction space. The only operation left is 

to write back the data loaded from memory or the ALU result into register file, 

therefore these data and control information are stored in MEM/WB pipeline register 

from the EX stage and read in WB stage. We can record every instruction’s stage at 

every clock cycle in a diagram like the one shown in Figure 2.8. 

 

 1 cc 2 cc 3 cc 4 cc 5 cc 6 cc 7 cc 8 cc 9 cc 

LW $8, 0 ($9) IF ID EX MEM WB     

ORI $16, $17, 28   IF ID EX MEM WB    

ADD $14, $8, $9    IF ID EX MEM WB   

SW $21, 88 ($3)    IF ID EX MEM WB  

SUB $21, $21, $14     IF ID EX MEM WB 

 

    

 

 

 

2.2.2 Controlling pipeline 

In ID stage the fetched instruction is decoded, generating all the necessary control 

signals. These control signals enable the functional units, control their operation, 

enable or disable their access and control all multiplexors preventing from pipeline 

flow errors. Control signals are generated depending on the opcode of the 

instruction; opcode value defines the operation and the format of the instruction. 

Control signals are propagated to the stage needed through the pipeline registers. 

There is a list of control signals in Figure 2.9 with a short description of their 

operation. 

  

Figure 2.8 Multiple Clock-Cycle Pipeline diagram. This diagram illustrates the cycle 

by cycle execution flow of five instructions. Instructions are executed in a top-down 

way and clock cycle moves from left to right. MEM stage of ORI, ADD and SUB 

instructions is just for data propagation to WB stage, as these instructions do not 

access data memory. 
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The ALU is controlled by a 2-bit control signal named ALUOp which is also 

generated in ID stage. Depending on this signal, a 4-bit signal is generated, defining 

the ALU operation in EX stage. Figure 2.10 shows the way that ALU is controlled 

and Figure 2.11 shows the pipelined MIPS datapath including the control signals. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 ALU operation control signals. In LW and SW instructions ALU 

computes the memory access address by adding the offset and the base register. In 

branch instructions, comparison is made by subtracting the values of the source 

registers. Hence, in LW, SW and BEQ instructions the generated ALU control signal 

does not depend on the function code. In all R-type instructions the ALU control 

input depends on the function code.  

Figure 2.9 Pipeline datapath control signals. The control unit generates three 1-bit 

signals (RegDst, ALUSrc and PCSrc) to control multiplexors, three 1-bit signals 

(RegWrite, MemRead and MemWrite) to control register file and data memory, and 

a 2-bit signal (ALUOp) for the ALU operation control. 
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PCSrc signal is always set to 1 throughout all stages, except in jump or branch cases,  

so that next instruction address is stored. In EX stage the RegDst, ALUOp and 

ALUSrc signals must have proper values; in immediate operand instructions ALUSrc 

must be 1 so that the 16-bit immediate operand is chosen. In MEM stage Branch 

signal must be 1 in case of branch instructions and when the branch is taken (Zero 

signal is set to 1) PCSrc sends the branch target address to the PC register. In 

addition, MemRead and MemWrite signals should be set properly for a memory 

read or write access. Finally, in WB stage RegWrite allows writes in register file when 

is set, and MemtoReg signal chooses between the memory read data or the ALU 

result. 

 

2.2.3 Pipeline hazards 
 

Despite the fact that every instruction is executed in order, there are cases that some 

instructions cannot continue with their execution because they need data that 

previous instructions produce. There are also cases that two or more instructions 

need the same functional unit at the same clock cycle and cases that an instruction is 

improperly fetched because of wrong control flow decisions; this means that the 

Figure 2.11 Pipelined MIPS datapath with control signals. Control signals are 

generated in ID stage by control unit and propagated to the next pipeline stages. 

PCSrc is now generated by performing the AND logic operation on Zero bit and 

Branch control signal. 
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correct instruction cannot be executed in the proper clock cycle. These cases lead to 

an imperfect pipelined instruction execution and are called structural, data and 

control hazards respectively [1]. 

 

Structural hazards 

 

In MIPS microprocessor all functional units can be used once in a clock cycle. What if 

two instructions need to use a functional unit in the same clock cycle? This problem 

is called structural hazard and refer to the conflict of instructions for a functional unit 

usage. MIPS instruction set was designed to be pipelined so that structural hazards 

can be easily avoided. In addition, data memory and instruction memory are 

separated so that there is no memory structural hazard. 

 

Data hazards 

 

These hazards arise from the data dependency between two instructions. More 

specifically, an instruction cannot continue its execution because a data value that is 

produced by a previous instruction is not available in the right clock cycle. Consider 

the following examples with their pipeline diagrams: 

 

 1 cc 2 cc 3 cc 4 cc 5 cc 6 cc 

ADD $8, $7 ,$3 IF ID EX MEM WB  

MUL $16, $8, $9  IF ID EX MEM WB 

       

       

SLL $14, $8, 9 IF ID EX MEM WB  

LW $20, 8 ($14)  IF ID EX MEM WB 

       

       

LW $20, 21388 ($9) IF ID EX MEM WB  

ADD $21, $13, $20  IF ID EX MEM WB 

      
 

 

LW $20, 21388 ($9) IF ID EX MEM WB  

SW $20, 1048($7)  IF ID EX MEM WB 

 

 

We can easily notice that in the 4th clock cycle MUL instruction is going to use wrong 

data because the $8 register is written in 5th clock cycle. Therefore, we have a data 

dependency between ADD and MUL instructions. In second example, the memory 

access address is computed in the EX stage (4th clock cycle) but the correct data of $14 

register are available in the 5th clock cycle. In third example, LW writes the memory 
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read data in $20 register in the 5th clock cycle while ADD instruction uses the $20 

contents in the 4th clock cycle leading to wrong result. In last example we have a data 

dependency between MEM stages. This happens when a SW instruction is depended 

on a LW instruction. In this example, the write data of SW instruction are available in 

the end of the 5th clock. That means that wrong data are going to be stored in 

memory. 

 

Then how are we going to deal with this problem? There are three ways to eliminate 

this problem. We can design compilers that re-order the instructions so that the 

depended instruction is executed at least two clock cycles later; register file is written 

in the first half of the clock cycle and read in second half, thus a register can be 

written and then read in the same clock cycle. Compilers re-order the instructions 

creating delay slots between the depended instruction and the instruction that 

produces the wanted result, and fill them with other instructions. The main problem 

of this approach is that there are much more data dependencies in a usual code than 

compilers can handle.  

 

The second approach is just to stall the depended instruction for 2 clock cycles 

suspending the execution of the pending instruction and those that follow. This is an 

easy solution but the overall delay is very long. We can imagine these stalls like 

“bubbles”. Pipeline bubbles practically mean that there is not work to do. These 

bubbles are implemented by inserting NOP (No Operation) instructions that simply 

do not do anything. 

 

 The best solution is to send the desired data, right after they are produced, to the 

stage that they are needed. The technique that data is send from one pipeline stage to 

another is called forwarding or bypassing. In our examples, we can send the result of 

the ADD instruction from the EX stage to the EX stage of the depended MUL 

instruction. In the second example, we can forward the result data from the EX stage 

of SLL instruction to the EX stage of the LW instruction. In the third example though, 

the desired data are available in the MEM stage of LW instruction. This means that 

we cannot only forward them to the EX stage of ADD instruction because they are 

available in the next clock cycle. Therefore, a stall is unavoidable. Data dependency 

of R-type instruction after a LW instruction is settled by stalling the pipeline and 

forwarding the desired data from the MEM stage of LW instruction to the EX stage of 

R-type instruction. In the last example, we can send the memory read data from the 

MEM stage of LW instruction to MEM stage of SW instruction so that the correct 

data are written in memory. We can see the data forwards in the Figure 2.12. 
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 1 cc 2 cc 3 cc 4 cc 5 cc 6 cc 7 cc 

ADD $8, $7, $3 IF ID EX MEM WB   

MUL $16, $8, $9  IF ID EX MEM WB  

        

        

SLL $14, $8, $9 IF ID EX MEM WB   

LW $20, 8 ($14)  IF ID EX MEM WB  

        

        

LW $20, 21388 ($9) IF ID EX MEM WB   

NOP  
     

 

ADD $21, $13, $20   IF ID EX MEM WB 

        

LW $20, 21388 ($9) IF ID EX MEM WB   

SW $20, 1048($7)  IF ID EX MEM WB  

        

 

 

 

Control hazards 

 

 

Control hazards refer to the hazards that arise from control flow instructions and the 

fact that branch decision is made in the EX stage. More specifically, until branch 

decision is made, two more instructions are fetched. That means that pipeline cannot 

always fetch the right instruction. Thus, we need to settle this problem. There are two 

main solutions; pipeline stall on every branch instruction and branch prediction. In 

the first solution (see Figure 2.13) we just have to wait until branch outcome is 

determined before fetching next instruction. In order to decrease pipeline stalls, the 

branch decision is taken in the ID stage. This enhancement demands more hardware 

for the branch condition check, the computation of the branch target address and for 

the PC update. The main problem of this approach is that stalling the pipeline on 

every conditional branch becomes unacceptable. 

 

 

 

 

 

 

 

 

 

Figure 2.12 Forward technique in MIPS pipeline. Data forward is represented with 

a green arrow from the stage that forwarded data is produced to the stage that is 

received. We can forward data between EX stages, MEM stages and between MEM 

and EX stage. In LW – R-type data dependency, bubbles are inserted for a single 

cycle stall.  
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 1 cc 2 cc 3 cc 4 cc 5 cc 6 cc 7 cc 8 cc 9 cc 

ADD $8, $7, $3   IF ID EX MEM WB     

BEQ $16, $9, 1908  IF ID EX MEM WB    

SUB $21, $4, $6   IF ID EX MEM WB   

.          

.          

.          

SLL $14, $8, $9    IF ID EX MEM WB  

          

          

ADD $8, $7, $3   IF ID EX MEM WB     

BEQ $16, $9, 1908  IF ID EX MEM WB    

NOP   
     

  

.          

.          

.          

SLL $14, $8, $9    IF ID EX MEM WB  

 

 

 

 

 

 

 

In real life every human can make decisions depending on some predictions he 

makes. For example, someone decides to take an umbrella if the weather is cloudy 

because it is possible to rain. Prediction can also be applied in branch instruction. In 

branch predictions, we assume that every branch is always untaken. In this case if 

the prediction is correct, there is no penalty in the execution time and pipeline 

proceeds at full speed. With this approach we can noticeably decrease the pipeline 

stalls. For a more realistic approach, because not all branches are untaken, we can 

predict some branches as taken and some others as untaken. There are two methods 

for more realistic branch prediction, the static and the dynamic methods. Static 

branch prediction is based on typical branch behavior while dynamic records recent 

history of a small amount of branches assuming that future behavior will continue 

the trend. In all cases, when prediction is wrong, pipeline is stalled while fetched 

instructions are flushed. The correct instruction is then fetched. Figure 2.14 shows the 

pipelined MIPS datapath including the hazard detection and forwarding data units. 

For further information about branch prediction and a more detailed description of 

MIPS microprocessor you can refer to Computer Organization and Design 4th 

edition, written by David A. Patterson and John L. Hennesy. A list of MIPS 

instructions and their opcode values can be seen in Appendix. 

 

Figure 2.13 MIPS pipeline control hazard. The branch decision is made in the ID 

stage of BEQ instruction in 3rd clock cycle. We can see that SUB instruction is 

incorrectly fetched in the first example. In the second example pipeline is stalled 

preventing from fetching wrong instructions. Instruction is fetched right after branch 

outcome is determined. 
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Figure 2.14 Pipelined MIPS datapath with hazard detection and forwarding units. 

This figure does not include figure’s 1.15 control unit and connections for simplicity 

reasons. 
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Chapter 3 

 

Implementation of MIPS coprocessor 0 

 
We have discussed about MIPS coprocessor 0 in chapter 2 and now it is time to 

describe the way we implemented its architecture. The first thing we have to do is to 

implement the pipeline stages. Therefore, we need to implement all four pipeline 

registers and all the functional units such as instruction and data memories and the 

ALU. The WB stage is just a selection of write back data that are sent to decode unit; 

hence we do not implement it as a separate unit. 

 

3.1 Implementing pipeline stages 

MIPS coprocessor 0 begins an instruction execution by fetching it from instruction 

memory. We consider instruction memory as a black box for now and we will 

discuss about it in details later in memory hierarchy chapter (Ch. 4). Instruction 

memory has a 32-bit memory address input and provides a 32-bit memory data read 

output depending on this address. 

 

3.1.1 Instruction Fetch unit 

The fetch unit implements the instruction fetch logic. It has to read an instruction in 

every clock cycle from instruction memory, increment PC by 4 and set the new PC. 

The fetched instruction and the PC+4 values are stored in the IF/ID pipeline register. 

New PC can be the next instruction address (PC+4), the branch target address or the 

jump target address. Hence, the fetch unit should be implemented as shown below in 

Figure 3.1. We can also see the pseudocode of this unit in Figure 3.2. 
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3.1.2 Instruction Decode unit 

Decode unit is in charge of the instruction decode, the control signals generation and 

reading and writing the register file. This unit reads the fetched instruction from the 

IF/ID pipeline register, decodes it, and generates the pipeline and ALU control 

signals depending on the decoded instruction’s opcode field. The decoded 

instruction’s fields and the pipeline control signals are maintained in SystemVerilog 

Figure 3.1 Fetch unit diagram. 

Figure 3.2 Fetch unit implementation pseudocode 
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structures. The sign-extended immediate value is also stored as a decoded 

instruction’s field. These structures are propagated to all pipeline stages through the 

pipeline registers.  

 

Register file is written in the WB stage and must be written only when it is permitted. 

Therefore, decode unit should have a register file write enable input which is 

practically a control signal read from MEM/WB pipeline register. Register file can be 

written and read in the same cycle. That means that we must enable writing and 

reading a register in the same clock cycle. This can be implemented by checking the 

decoded source destination registers and the destination register. If one of the source 

registers is equal to the write back destination register that means we need to write 

and read in the same cycle, so we just have to send the write back data to the next 

stage. Furthermore, $0 register has always a zero value; we must take care of not 

writing data into $0 register. In link jumps we must write in register file the address 

of next instruction. Do not forget that the destination register of link jump 

instructions is register $31. A control signal that indicates a link jump will select $31 

destination register. We can see the decode unit diagram and the implementation 

pseudocode in Figures 3.3 and 3.4. 

 

 
 

 

 

 

 

 

Figure 3.3 Decode unit diagram. 
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Figure 3.4 Decode unit implementation pseudocode 
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3.1.3 Instruction Execution unit 

The execution’s unit main purpose is to perform the ALU operation. The ALU 

operation is based on the ALUOp control signal and on the Funct field of the 

decoded instruction. The ALU operation operands and control signals are read from 

the ID/EX pipeline register. ALU operand B can be also the sign extended immediate 

value and it is controlled by the ALUSrc control signal. Execution unit also computes 

the branch and jump target addresses and decides whether the branch is taken or 

not. Branch is taken for BEQ instruction when branch on equal signal is true and 

Zero bit is set, whereas Branch is taken for BNE instruction when branch not equal 

signal is true and zero bit is not set. For these computations, PC+4 (read from ID/EX 

pipeline register) and PC values are needed. Based on the RegDst control signal, 

execution unit decides whether destination register is Rd or Rt. Figure 3.5 illustrates 

the diagram and Figure 3.6 the pseudocode of the execution unit. 

 

 

 
 

 

 

 

 

 

 

Figure 3.5 Execution unit diagram. 
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3.1.4 Instruction Memory Access unit 

This unit implements the MEM stage logic of the pipeline. In this stage we need only 

to access data memory. Data memory is read or written at a specified 32-bit address. 

The memory data object that is read or written varies in size which is controlled by 

control signals generated in the ID stage. This data size can be a byte, half-word or a 

word. Simultaneous memory read and write are not allowed; an error signal is 

generated otherwise. Memory write data is the register file operand B that is read 

from EX/MEM pipeline register; Rt register of SW instruction contains the store data. 

We consider data memory as a black box for the purposes of this chapter as we did 

for the instruction memory. In chapter 4 we will describe in details the memory 

hierarchy. Figures 3.7 and 3.8 show the diagram and the pseudocode of memory 

access unit. 

Figure 3.6 Execution unit implementation 

pseudocode 
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Figure 3.7 Memory Access unit diagram. 

 

Figure 3.8 Memory Access unit implementation 

pseudocode 
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We now have to integrate those units in a bigger system that implements the 

pipeline. We also insert pipeline registers between all stages and PC register. These 

registers are just entities of SystemVerilog register data type. 

 

3.2 Confronting Pipeline hazards 

This datapath supports R-type signed and unsigned instructions, memory access 

instructions, I-type signed and unsigned instructions, branches and all jumps 

including register direct jumps. The next step is to take pipeline hazards into 

consideration. At first, we will deal with the control hazards and then with the data 

hazards. Branch instruction’s decision is taken in EX stage. When a branch is 

detected, pipeline continues its execution, fetching the following instructions. When 

the branch is taken, two instructions have been fetched and need to be flushed. In 

this implementation, when the branch taken signal is set, we have to flush the IF/ID 

and the ID/EX pipeline registers. This can be made easily by setting all their fields to 

zero value. This action generates bubbles preventing from executing the instructions 

that were incorrectly fetched. As regards to the structural hazards, we follow the 

separate instruction and data memory model and take care that every functional unit 

is used by only one instruction in a clock cycle, therefore structural hazards are 

eliminated. 

 

3.2.1 Data Forward unit 

Data forward unit detects the data hazards and forwards the right data where they 

are needed. We must first deal with the data dependencies after an ALU instruction. 

ALU instructions produce their result in the EX stage. Therefore, we do not have to 

wait for the result to be written in register file; we can forward it right after it is 

produced instead. Moreover, ALU result is forwarded from the EX/MEM pipeline 

register, where it is stored, to the EX stage of instructions that need it to continue 

their execution. ALU data dependency can also exist between ALU instructions 

where the ALU result is produced two cycles before the execution of the second 

instruction, thus we need to forward ALU result data from MEM/WB to the EX stage 

of the depended instruction. Execution stage data dependency is detected by 

checking for register number equality. The first instruction’s destination register 

must be at least equal to one source register of the depended instruction. We still 

have to consider some restrictions of MIPS architecture; we know that register $0 has 

always a zero value and that not all instructions write back data into register file. 

Register file write back is controlled by a write enable control signal. Hence, we need 

to forward only when the register file write enable signal and the destination 
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2 

register, both read from EX/MEM or MEM/WB pipeline registers, are 1 and not the 

$0 register respectively. 

 

ADD $8, $7, $3 

MUL $16, $8, $9 

 

SLL $14, $8, $9 

LW $20, 8 ($14) 

 

ADD $8, $7, $3 

SUB $22, $22, $23 

MUL $16, $8, $9 

 

ADD $8, $7, $3 

MUL $8, $8, $9 

SUB $9, $21, $8 

 

 

 

 

 

The second forward connection also resolves the load data dependency after a LW 

instruction. In this case though, we forward the memory read data from the 

MEM/WB pipeline stage to the EX stage of the depended instruction, instead of the 

ALU result. If there is a load data dependency between LW and the right-following 

instruction (load-use data dependency) we have to stall the depended instruction for 

one cycle and then forward the memory read data from MEM/WB pipeline register 

to the EX stage. Load-use data dependency is detected when the LW instruction is 

decoded. In the ID stage we have to check if the generated memory read signal is set, 

indicating a LW instruction. If it is set, we have to check then if there is a load-use 

data dependency. This can be achieved by checking for equality between the 

destination register of the decoded LW instruction and the source registers of IF/ID 

pipeline registers.  

 

If the instruction that immediately follows the LW instruction is SW and the 

depended register is not the source register but the destination register of SW, we 

have to forward the load data from MEM/WB pipeline register to the MEM stage of 

SW instruction. We can detect this data hazard by checking the memory read control 

signal of MEM/WB pipeline register (indicates a LW instruction), the memory write 

control signal of EX/MEM pipeline register (indicates a SW instruction) and then 

check if the destination register numbers of MEM/WB and EX/MEM pipeline 

registers are equal which means that we have a dependency. The data forward 

1 

1 

1 

1 

Figure 3.9 Data Forwarding paths Path 1 and 2 show the data forwarding to EX 

stage from EX/MEM and MEM/WB pipeline registers. Notice in last example that the 

most recent dependency has the biggest priority, therefore data is forwarded from 

path 1.  

IF 

Unit 

 

 

ID 

Unit 

 

 

EX 

Unit 

 

 

MEM 

Unit 

 

 

IF/ID ID/EX EX/MEM MEM/WB 
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diagram contains one more connection from MEM/WB pipeline register to MEM 

stage as shown in Figure 3.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

We now have to implement the forward data unit. The inputs of this unit are the 

source registers read from ID/EX pipeline register, the destination register and the 

control signals read from EX/MEM and MEM/WB pipeline registers. It checks for the 

forwarding conditions and generates forward signals that control multiplexors. 

These multiplexors select the forwarded data in EX and MEM stage when there is a 

data dependency. The diagram of the forward unit and the forward conditions can 

be seen in Figures 3.11 and 3.12. Pseudocode is shown in Figure 3.13. 

 

 

 

 

 

Figure 3.10 Data Forwarding paths including MEM to MEM data 

forward 

IF 
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ID 

Unit 

 

 

EX 

Unit 

 

 

MEM 

Unit 
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2 

1 

IF/ID ID/EX EX/MEM MEM/WB 

Figure 3.11 Data Forward unit diagram. 
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Forward to EX 

 

EX hazard 

 

 if( EX/MEM.RegWrite and (EX/MEM.RegRd ≠ 0) and (EX/MEM.RegRd = ID/EX.RegRs) ) 

then ForwardA = 10 

 if( EX/MEM.RegWrite and (EX/MEM.RegRd ≠ 0) and (EX/MEM.RegRd = ID/EX.RegRt) ) 

then ForwardB = 10 

 

MEM hazard 

 

 if( MEM/WB.RegWrite and (MEM/WB.RegRd ≠ 0)  

 and (MEM/WB.RegRd) = ID/EX.RegRs) 

 and not ( EX/MEM.RegWrite and (EX/MEM.RegRd ≠ 0) 

 and (EX/MEM.RegRd = ID/EX.RegRs) ) ) 

then ForwardA = 01 

 if( MEM/WB.RegWrite and (MEM/WB.RegRd ≠ 0)  

 and (MEM/WB.RegRd) = ID/EX.RegRt) 

 and not ( EX/MEM.RegWrite and (EX/MEM.RegRd ≠ 0) 

 and (EX/MEM.RegRd = ID/EX.RegRt) ) ) 

then ForwardB = 01 

 

Forward to MEM 

 

 if( MEM/WB.RegWrite and (MEM/WB.RegRd ≠ 0)  

 and (MEM/WB.RegRd) = EX/MEM.RegRd) 

 and (not MEM/WB.ReadMem and EX/MEM.WriteMem) ) 

then ForwardToMem = 01 

 if( MEM/WB.RegWrite and (MEM/WB.RegRd ≠ 0)  

 and (MEM/WB.RegRd) = EX/MEM.RegRd) 

 and (MEM/WB.ReadMem and EX/MEM.WriteMem) ) 

then ForwardToMem = 10 

 

  

 

Figure 3.12 Forward Conditions Forward to EX conditions control the data forward to 

EX stage and Forward to MEM conditions control the data forward to MEM stage. 

Forwarding to MEM stage is needed for data dependency to SW instructions. Notice 

that the second case of forwarding to MEM is a SW after LW destination register 

dependency. Data is forwarded from MEM stage of LW to MEM stage of SW. There is 

no need for pipeline stall. 
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We now have to modify the execution and memory access units in order to use these 

forwarded data correctly. Note that execution unit can use the forwarded data as 

ALU operand A or ALU operand B.  Hence, we have to insert multiplexors that 

select data for ALU operand A and ALU operand B based on the ForwardA and 

ForwardB signals. The same tactic is followed in the memory access unit; we insert 

multiplexor to select the memory write data, based on the ForwardToMem signal. 

 

 

Figure 3.13 Data Forward unit implementation pseudocode 
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Figure 3.14 Modified Execution unit diagram. Data Forwarding to EX 

stage is now supported. RF Write Back Data can be MEM/WB ALU out 

or MEM/WB memory read data. 

Figure 3.15 Modified Memory Access unit diagram. Data Forwarding 

to MEM stage is now supported. 
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3.2.2 Data hazard stall unit 

We have implemented all the necessary data forwards but we also have to 

implement the stall unit so that load-use data dependency is resolved. Data is 

correctly forwarded to EX stage but we have to delay the depended instruction by 1 

clock cycle. As mentioned before, the check for load-use data dependency is made 

during the ID stage of LW instruction. Stall unit needs the Rs and Rt fields of the 

fetched instruction that is read from IF/ID pipeline stage, the destination register of 

the decoded instruction which is read from ID/EX pipeline register and the memory 

read enable control signal read from ID/EX pipeline register. We also have to check if 

the depended instruction is SW, because in that case we don’t have to stall the 

pipeline; data is forwarded from MEM stage of LW to MEM stage of SW. Therefore, 

the just generated memory write control signal is needed.  

This unit generates an output stall signal when the ID/EX read memory control 

signal is 1 (indicating a LW instruction) and the currently generated write memory 

control signal is 0 ( indicating that the depended instruction is not SW). At the same 

time, ID/EX destination register and at least one of the source fields of the instruction 

word must be equal. When stall signal is generated, pipeline must wait for one cycle. 

We implement pipeline stall by setting the control signals of ID/EX pipeline register 

to zero and preventing from PC update while the stall signal is set. The current 

instruction and the following instruction are decoded and fetched again. Instruction 

fetch unit must be also modified in order to read the instruction memory only when 

there is no stall signal. So, line 15 of the instruction fetch unit implementation 

pseudocode (Figure 3.2) is modified to: 
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Chapter 4 

 

Memory System hierarchy 

 

Till now we have assumed instruction and data memories as black boxes. In this 

chapter we will discuss about memory hierarchy and memory implementation. 

There are forms of data storage that vary in access time and size such as registers and 

RAM that CPU can directly access. These are processor components that enable the 

instruction’s execution.  

Registers are very small and very expensive components because accessing them 

must be very fast and multi-directional. On the contrary, RAM is a very big and at 

the same time very slow data storage component. Registers are used as data storage 

components in cases that fast access is needed and RAM memory in other cases. 

RAM is the main memory component of CPU; it is a very big and slower than 

registers memory component. The data produced by a program’s execution is 

extremely larger than the data storage space that registers can provide, hence 

continuously writing and reading RAM has a drastic impact on processor’s 

performance. Therefore, a problem of an effectively fast and large enough data 

storage component has arisen.  

Engineers have come to a solution by designing a memory hierarchy model (Figure 

4.1) which consists of several data storage levels; small and fast memory components 

are combined and utilized with big and slow memory components giving the 

impression of a single, very large and very fast memory. This solution is based on the 

observation that programs tend to use the same set of data items or nearby sets over 

and over again. The trend of using the same data item is known as temporal locality 

and the trend of using nearby data items is known as spatial locality. These types of 

data item reference locality form the principle of locality, a very crucial principle in 

computer science. In practice, memory system hierarchy is a set of data storage
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components with different storage capacities, costs and access times.  Memory 

hierarchy levels differ in speed and size; every level closer to CPU is smaller and 

faster. In order to improve processor’s performance, one more memory level is 

placed between CPU registers and RAM. This type of memory is called Cache 

memory. 

 

4.1 Cache memory 

Cache memory is a smaller and faster than RAM memory component and is located 

in CPU. It is practically a very fast copy of RAM. Cache memory is designed to 

contain the data from frequently used memory locations, taking the advantages of 

locality principles. The size of cache memory (usually 4, 8 and 16 KB or MB) is much 

smaller than the main memory because it must be included in the processor chip and 

because cache memories are really expensive. The minimum amount of information 

that can be stored in cache is called block or line. A cache request means that 

processor needs data that are very likely stored in cache. If the cache memory 

contains indeed the requested data, we have a cache hit and request is quickly 

served. If the cache memory does not contain the requested data then we have a 

cache miss. When a cache miss occurs, processor requests the lower level of memory 

hierarchy (main memory) for retrieving the line containing the requested data. The 

critical problem of cache misses is that the lower memory level is much slower. That 

means that there is a penalty in memory access time because the requested data must 

be read from main memory. After lower memory level access, cache must be 

updated with the requested data and finally data must be delivered to processor. 

 

 

 

 

Figure 4.1 Memory System Hierarchy. Access time and cache size 

increase as we go to lower levels. Lower levels are also cheaper to 

implement. Data is copied between only two adjacent levels at a time [1]. 
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4.1.1 Multi-level cache 

In order to decrease the miss penalty, engineers have inserted additional levels of 

caching. This technique uses a multi-level cache so that the requested data is found 

in the next cache level avoiding the search in RAM. It is practically a cheap 

expansion to the cache with slower, cheaper and bigger additional lower cache 

levels, but still faster than the main memory. The multi-level cache can consist of 

three levels; L1, L2 and L3 levels. If a cache miss is occurred in L1 cache then the 

requested data is searched in L2 cache. If there is a hit in L2 cache, the requested data 

is stored in L1 cache and delivered to processor. If there is a miss, the requested data 

will be searched in L3 cache. If there is a miss in all three cache levels, the requested 

data will be retrieved from main memory with a bigger penalty though. 

 

4.1.2 Cache memory mapping 

There are three techniques used to map memory lines to cache lines. These 

techniques are direct mapping, fully associative mapping and set-associative 

mapping [1] [2] [11]. 

Direct mapping 

In direct mapping each memory line can be mapped directly to one and only location 

in cache. This means that each location in RAM has one specific place in cache where 

the data will be held. Memory lines are mapped to cache lines using the following 

formula: 

(Block address) modulo (Number of blocks in cache) 

That means that memory line j is mapped to cache line j modulo 256 for a cache with 

256 lines. In Figure 4.2 we can see the organization of a direct-mapped cache and the 

way memory address is translated. 
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The memory address is divided in three fields; the tag, the index and the byte offset 

field. The byte field defines the byte in the line. If the line size is M then the bits 

needed to specify the byte offset are log2M. The index field defines the cache line. If 

cache has N lines then the index field has log2N bits. Tag field contains the rest part 

of the address and is used to check whether a word in the cache corresponds to the 

requested word. If a memory address is L bits then tag bits are L – M – N. There is 

also a valid bit entry. This flag indicates whether the cache line contains valid data or 

not.  

A cache entry search is made by comparing the tag field with the tag entry in the line 

that is indexed by the index field. If valid bit is set and data is found request is served 

and hit signal reports a cache hit. It is the simplest way of mapping but it has a high 

miss rate. One solution to the high miss rates is to increase the cache line size [12] 

[13]. Increasing the cache size though, results in less cache line entries. Therefore, the 

competition for cache line entries is getting bigger. This can result in a very quick 

replacement of cache lines, which is practically opposed to the locality principles, 

Figure 4.2 Direct-mapped Cache This cache has 1024 

lines, which means that log21024 = 10 bits are used for 

index field. The line size is 32 bits, so we have 4 bytes in 

a cache line and byte offset field is log24 = 2 bits. The 

remaining 32 – 10 – 2 = 20 bits are the tag field bits.   
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limiting the benefits in the miss rate. Hence, reasonable cache line sizes are chosen. 

Figure 4.3 shows the relation between cache miss rate and cache line size. 

 

 

 

 

Fully associative mapping 

Direct mapping has a major contention problem. Two memory lines can be mapped 

in the same cache line, so one must take the place of the other even if cache is really 

empty. Associative mapping technique deals with this problem; any memory line 

can be mapped anywhere in cache. This technique has the best hit rate because there 

is less competition for cache entries but another problem arises. How can we locate 

the cache line where the data is stored since it can be stored in any cache line? This 

means that we have to check all cache entries in order to locate the requested data. 

Therefore, fully associative mapping improves cache utilization, as all cache lines 

will be used, but at the expense of speed. Parallel check of all cache tags can be a 

reasonable tactic to speed up the check but it is expensive and requires more circuit 

complexity. This technique is feasible only for very small cache memories [10]. The 

index field is no more useful, therefore memory address is divided into tag and byte 

offset fields. 

Set-associative mapping 

The set-associative mapping is practically a compromise technique. It is a 

combination of the direct mapping and the fully associative techniques. The cache is 

now divided into sets and every set contains multiple cache lines. In this technique, 

Figure 4.3 Cache miss rate and cache line size relation. This 

diagram is based on the results of SPEC92 benchmark. Note that 

increasing the cache line to a size nearly equal to the cache size 

increases the miss rate. 
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every memory line is mapped to one and only set in cache (Direct mapping) but it 

can be mapped to any line in the set (Fully associative). The cache lines that a set 

consists vary from 2 to 16. This technique is surely cheaper and faster than the fully 

associative mapping, has a lower miss rate, but it is yet slower than direct mapping. 

The set that contains a requested memory line is given by the formula: 

(Block address) modulo (Number of sets in the cache) 

 A cache that contains M lines in total is called N-way set associative cache for some 

N that divides M. Every set consists of N lines and is indexed by the index field of 

memory address. Direct and fully associate mapping techniques are extreme 

versions of set-associative technique. Direct mapping is the 1-way set associative 

case; every set has one way, hence one cache line, so every memory line is mapped to 

one cache line. On the other hand, fully associative is a set-associative case where N 

is equal to the lines that cache contains in total. In that case cache consists of one set 

and every memory line can be mapped anywhere in this set. Even though direct-

mapped caches have more conflict misses due to their lack of associativity, their 

performance is still better than set-associative caches when the access time costs for 

hits are considered [13]. Figure 4.4 illustrates a 4-way set-associative cache. 

 

 

 

 

Figure 4.4 Organization of a 4-way set-associative cache.  Index field 

is used to select the set. Every tag in a set is compared to the given tag. 
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4.1.3 Cache line replacement algorithms 

When a cache miss occurs, the requested data must be stored in cache after it is 

retrieved from the lower level. In direct mapped caches, there is only one possible 

cache line each time that will be replaced if occupied. In set-associative caches if all 

the possible cache lines in the set are occupied, where will the requested data be 

stored? The answer is given by an algorithm which defines the way that cache lines 

are replaced. There are several cache line replacement algorithms because there is no 

common wisdom about the best one [14]. We will discuss about Bélády's algorithm, 

LRU, MRU, FIFO and random replacement algorithms. All these algorithms except 

Bélády's and random replacement utilize a history of the references in cache. Note 

that in fully associative caches, all cache lines are candidates for replacement. 

 

Bélády's algorithm 

Bélády's algorithm is an optimal replacement algorithm. In this algorithm the cache 

line that is chosen to be bumped out of cache is the one that will not be used for the 

longest time in the future. This algorithm is practically impossible to be implemented 

because we are not able to know when a cache line will be needed in the future. In 

some cases we can predict the behavior of a program but still it is not enough. 

Bélády's algorithm is a very good metric though; we can compare the results of other 

replacement algorithms and retrieve important information about the effectiveness 

of a replacement algorithm. 

Least Recently Used algorithm (LRU) 

This algorithm is the most commonly used. The cache line that will be replaced is the 

one not used for the longest time. In order to implement this algorithm, additional 

complexity is added to the cache circuitry; we need flags that indicate when a cache 

line was last referenced. The implementation of LRU is getting much more difficult 

to implement as the associativity increases. Because of this fact, a lot of algorithms 

such as PLRU (Pseudo LRU) were proposed to reduce the hardware cost of LRU by 

approximating the LRU algorithm [14].   

FIFO algorithm (First-In – First-Out) 

FIFO algorithm just replaces the cache lines in a sequential order. The one that was 

stored first in set (also the one that is the longest time in set) will be replaced. 
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Most Recently Used algorithm (MRU) 

This algorithm is equivalent to the LRU with the difference that the cache line that 

was last referenced will be replaced. The implementation is also similar to LRU. 

MRU is the best algorithm for cycle references (e.g. loop) [15].   

Random replacement algorithm 

It is the simplest to implement algorithm because it does not take cache reference 

history into consideration. In this algorithm the cache line that will be replaced is 

chosen randomly. This algorithm has tolerable results in most cases. 

 

4.1.4 Cache Write strategies 

There are two main strategies for writing data in cache: write through and write back 

strategies [1] [16]. 

 

Write through strategy 

In write through strategy, data must be written in cache and in the lower memory 

hierarchy level. This strategy is easy to implement, offers safety because the lower 

memory hierarchy always contains a copy of the updated data, but it is quite slow 

because two writes must be made each time. 

Write back strategy 

In write back strategy, data is written only in cache. The modified cache line is 

written in lower memory hierarchy level only when the cache line is replaced. But 

how hardware can know when cache line is modified? For this purpose, a flag bit 

called dirty bit is inserted in cache. Dirty bit indicates, when set, that the cache line is 

modified. If dirty bit is set, this strategy directs to write data in the lower memory 

hierarchy level. This strategy offers very fast writes and low overall writes latency 

because multiple writes are gathered and then performed together in one write. 

However, it is very hard to implement and there is a risk because the lower memory 

hierarchy is not always consistent with the cache. 
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Write policies in case of write miss 

In case of write miss, there are two policies that we can follow. Write allocate which 

writes data in cache and then a write-hit operation follows and no-write allocate 

which does not write data in cache but only in the lower memory hierarchy. 

Therefore, write through strategy uses no-write allocate policy in order to avoid 

back-to-back writes as write through strategy writes data in the lower memory 

hierarchy level. Furthermore, write back strategy uses write allocate policy hoping 

that there will be subsequent read or write hits [16]. 

 

4.2 L1 cache implementation 

 

4.2.1 Setting up cache 

The memory system consists of a L1 cache and the main memory. We are now ready 

to implement the L1 cache which will be used in instruction and data memories. The 

cache will be parameterized allowing us to choose the cache size, the line size and 

the associativity. Cache size and cache line must be given in Bytes and the 

association ways in integer value. In our design cache size is 4096 Bytes (4KBytes), 

block size is 8 Bytes (2 words) and set associativity ways are 4.That means that we 

need 3 bits for the byte offset field. We have 4KBytes/8Bytes = 512 cache lines, thus 

we have 512 cache lines / 4 ways = 128 cache lines in each way; hence index field size 

is 7 bits. Consequently, tag field size is 32 – 7 – 3 = 22 bits. In order to compute these 

values a unit that computes a log2 value was implemented. This unit gets a 32-bit 

vector, and outputs the log2 value of this vector. Cache is implemented with registers. 

For the tag comparison, tag comparator units are dynamically generated depending 

on the associativity. Every tag comparator compares the tag of one way to the tag 

value of the given address. Hit signal is generated by checking all tag comparators 

output and the valid bit of the requested cache line. Main memory is 1MB size 

(parameterizable) and is implemented as a two dimensional array. 

 

4.2.2 Implementing the interface 

The next step is to implement the way CPU, Cache and RAM interact with each 

other. For this purpose we implement an interface that consists of a few request and 

response structures. When CPU requests to read or write cache we need the memory 

address that will be translated, the write data and a read or write bit informing cache 

for the operation service. In case of a read cache request, if cache contains the 

requested cache line, a hit occurs and cache responses with the read data, hit signal 
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and a bit that informs CPU that the request is served. For a cache read miss, cache 

informs CPU by setting a miss signal. When a cache read miss occurs, then the 

requested data must be retrieved from main memory and then written back in cache. 

Cache generally must be able to read or write data in main memory. Therefore, cache 

to main memory request contains two bits that define if we have to read or write the 

main memory, a chip select signal, an output enable signal, a vector for the memory 

access address and a vector for the write data. The main memory’s line is of two 

words size. The main memory responses with the requested data, a valid bit that 

indicates the validation of read data and a signal that informs that the memory 

response is done. Table 4.1 shows the interface between CPU, cache and main 

memory. 

 

Request Structure Fields 

CPU to Cache 

32-bits Access address 

64-bits Data to write in Cache 

Read Signal 

Write Signal 

Cache to RAM 

32-bits Access address 

64-bits Data to write in RAM 

Chip Select Signal 

Write Enable Signal 

Read Enable Signal 

Output Enable Signal 

Response Structure Fields 

Cache to CPU 

64-bits Data returned from Cache 

Hit Signal 

Miss Signal 

Done Signal 

RAM to Cache 

64-bits Data returned from RAM 

Valid Signal 

Done Signal 

 

 

4.2.3 Implementing the cache controller 

Cache behavior is controlled by a controller. Controller is implemented as an FSM 

determining about the operations of the cache. This FSM consists of five stages. On 

reset signal cache is in an idle mode which means that there is no operation to be 

made. After this idle stage, cache controller directs cache to be in a read or write 

mode. Cache now is ready to accept read or write requests from CPU. If there is a 

Table 4.1 Interface between CPU, Cache and RAM. All 

vectors are parameterizable. 
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read hit, requested data is outputted while the done bit is set indicating that cache 

read is done successfully. Cache continues to be in read/write mode. If a read miss 

occurs, cache controller directs cache to request the data in main memory.  

Cache is now in a ram request mode, requesting for a read service. In this stage ram 

is requested to return the data to cache and when data is ready (ram data is ready 

when ram response valid and done bits are set), they are written in cache. Cache 

controller searches for an empty cache line in the set by checking the valid bit in 

every way. If there is not free cache line, cache controller writes the data in a random 

chosen cache line in the set. We will describe later how random replacement policy is 

implemented. When the requested data is successfully written in cache, cache is 

again directed in the read/write mode and cache response done signal is set. In cases 

that cache is in a read/write mode but neither hit nor miss signal is set, then cache 

controller directs cache in an error stage informing CPU than a cache read/write error 

occurred. 

The requested data is now found, so there is read hit and cache read data is delivered 

to CPU. Remember that cache line has a two-word size which means that it contains 

two words while CPU utilizes 32-bit instruction or data vectors. Therefore, we must 

select which word is needed from the data that was just read from the cache line. 

This is implemented by selecting the needed bytes depending on the byte offset 

value. If the MSB of the byte offset is 0 then we select the first word of the cache line 

(Byte 0 – 3). If it is 1 we select the second word (Byte 4 – 7) instead. 

The write strategy that we are going to follow is write through with write allocate 

policy because our future goal is to support write back with write allocate strategy. 

Therefore, when a write hit occurs, cache controller updates the cache line and 

directs cache to request RAM for a write service while cache remains in a read/write 

mode waiting for the next requests. When a write miss occurs, controller directs 

cache to request RAM for a write service and brings the cache line in cache. When 

writing data in RAM is done, controller directs cache to request a read service from 

RAM. When RAM has served the request, data is written in cache by controller and 

then cache returns again in the read/write mode waiting for the next request while 

cache response done signal is set. In case that there is a write request but none of hit 

or miss signals are set, cache is directed to an error stage. Note that simultaneous 

read and write are not allowed. Figure 4.5 illustrates the cache controller FSM. 
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4.2.4 Implementing random replacement policy 

Random replacement policy is very easy to implement and has moderate results. In 

our 4-way associative cache random policy works fine well. We don’t need to change 

hardware in order to maintain a history of cache line references but we only need to 

implement a random way to choose one of the four cache lines in a set to replace. 

There are true random number generators (TRNG) that generate random numbers 

from a physical process such as thermal or atmospheric noise. In our case, we will 

implement a pseudo-random number generator; the same sequence of numbers is 

repeated after time. In digital design, an entity called left feedback shift register 

(LFSR) is used for pseudo-random number generation. This entity is just a shift 

register whose input is a linear function of its previous state. There are two 

commonly used LFSR formats; the Fibonacci and the Galois LFSR [17]. We will 

implement a 4-bit Fibonacci LFSR (Figure 4.6). The initial state (also called seed) of 

this LFSR is 1001 (9 in decimal system) and is set on reset signal. Note that generated 

numbers are in the range of 1-15 so we need to restrict this range in 0-3, hence a 

modulo operation is applied to the current state of LFSR. 

Figure 4.5 Cache controller FSM 
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4.3 Integrating cache into system 

After implementation, we have to integrate cache in our system. An instruction cache 

and a data cache are instantiated in fetch unit and memory access unit. Of course we 

have to take care about connections. A ram response structure and a cache request 

structure are respectively defined as input and output in fetch unit. We also have to 

assign PC to the CPU request address and set the CPU request read signal in order to 

read a cache line. Pipeline execution is continued only when instruction cache has 

served the request, hence when cache response done signal is set. After reading a 

cache line, we must select the right word depending on the MSB of the Byte offset. 

Figure 4.7 shows how we should modify fetch unit pseudocode to support memory 

cache. 

 

 

 

Figure 4.6 Fibonacci LFSR diagram. The feedback 

input is generated by an XOR gate. 

Figure 4.7 Modified Instruction Fetch unit pseudocode to support 

caching. 
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Integrating data cache in our system is a similar process. We instantiate data cache in 

memory access unit taking care for the connections. A CPU to data cache request 

structure is defined and assigned with the correct values. A RAM response structure 

is defined as an input, containing the RAM read data and the done signal, and a 

cache response structure is defined as an output. We have to select again the right 

data word. When a data cache miss occurs, pipeline must be stalled. Therefore, a stall 

signal is generated for all the time that data cache miss signal is set. In Figure 4.8 we 

can see the modified memory access unit pseudocode. 

 

 

 

 

 

 

 

Figure 4.8 Modified Memory Access unit pseudocode to support caching. 
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Chapter 5 

 

Implementation of MIPS coprocessor 1 

 
As mentioned, MIPS coprocessor 0 is in charge of the system control and coprocessor 

1 is a Floating-Point Unit (FPU) also called Floating-Point Accelerator (FPA). The 

FPU instruction set includes all floating-point operations defined by the Floating- 

Point Arithmetic IEEE Standard (IEEE-754). All coprocessor instructions use opcode 

0100xx where last two bits specify the coprocessor number. Thus all floating-point 

instructions use opcode 010001. 

MIPS FPU has two 32-bits control registers for controlling the FPU and additional 32 

registers of 32-bits each, called single precision registers. These registers are used 

only for FPU operational purposes and are notated as $f0-$f31. $f0 register is not a 

special register as $zero of coprocessor 0; it can hold any value, not just zero. The 

IEEE-754 standard defines also an instruction group for double precision floating- 

point arithmetic which needs 64-bit operands. Hence, in order to support double 

precision arithmetic, recent MIPS architectures include 32 64-bits floating-point 

registers however it is not backward-compatible [3]. Older versions can support 

double-precision arithmetic by grouping single precision floating-point registers in a 

pair of two. This technique results in 16 pairs of 64-bits in total, each one named by 

the first register name; $f0 is the first double precision pair, $f2 is the second double 

precision pair, $f4 is the third double precision pair, etc. 

 

5.1 Floating Point formats in IEEE 754 standard 

The IEEE-754 standard defines floating-point number formats, floating-point 

arithmetic operations, conversions between other number formats, and floating-point 

exceptions [3] [9]. It is the most common representation for real numbers on 

computers. Floating-point numbers in IEEE-754 define single and double precision 
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Single Precision IEEE-754 format 

         31          30                                                                    23    22                                                                                                                                                               0 

Figure 5.1 

floating-point numbers. These numbers are stored following a scientific floating- 

point number notation. Each floating-number can be formed by the below formula. 

 ( 1)sign   mantissa    exponent 

In this formula, sign indicates the sign, mantissa (also known as significand) 

represents the precision and exponent represents the exponent of the real number. 

Real numbers can have positive and negative exponents. Thus, a bias is added to the 

actual exponent before it is stored. Bias value is 127 for single precision and 1023 for 

double precision floating-point numbers. In IEEE-754 significand field has an implicit 

MSB 1 for normalized floating-point numbers and now significand field can define a 

24-bit value. Hence, the formula is transformed into the below form: 

( 1)sign   (1   fraction)    exponent 

 

5.1.1 Single Precision format 

 

1 bit 8 bits 23 bits 

Sign Biased Exponent Fraction 

  

  

In Figure 5.1 we can see the IEEE-754 binary representation format of single precision 

floating-numbers. Single precision format can represent floating-point numbers in 

the range of  .0   10-   up to  .0   10  . The sign of the floating-number is stored in 

the   1-bit sign field. Bit 0 indicates a positive number and bit 1 indicates a negative 

one. The biased exponent is stored in the biased exponent field. The fraction field 

contains the fraction value of floating-point number. Biased exponent is computed 

easily by adding a value of 127 to the actual exponent. The 0 and 255 biased 

exponents are used to indicate the floating-point underflow and overflow special 

cases. Underflow refers to very small floating-point numbers and it means that the 

non-zero floating-number cannot be represented because the exponent value is very 

small to fit in the 8-bits field. Overflow on the other hand refers to very big floating- 

point numbers and it means that the floating-number cannot be represented because 

exponent is very big to fit in the 8-bits field. Therefore, the minimum and maximum 

actual exponents that can be supported by single precision format are -126 and +127. 

A floating-point underflow or overflow exception is thrown whenever an actual 

exponent is smaller than -126 or bigger than +127. 



 

5.1. Floating Point formats in IEEE 754 standard 

50 
 

Double Precision IEEE-754 format 
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Figure 5.2 
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5.1.2 Double Precision format 

1 bit 11 bits 20 bits 

Sign Biased Exponent Fraction 

   

32 bits 

Fraction (continued) 

  

  

Double precision floating-point format is the solution to the underflow and overflow 

problems of single precision format. The main idea was to enlarge the exponent and 

fraction fields; larger and smaller values than single’s precision format exponent and 

fraction can now fit. Figure 5.2 shows the double precision format where we can see 

that the required bits are doubled to 64-bits (or 2 words). Double precision format 

can represent floating-point numbers in the range of  .0   10- 0  up to  .0   10 0 . The 

sign bit field remains 1 bit whereas biased exponent and fraction fields have turned 

into 11 and 52 bits, respectively. Despite the fact that exponent and fraction fields 

have been enlarged, underflow and overflow problems cannot be eliminated. Biased 

exponent values from 0 up to 2047 now, indicating the floating-point underflow and 

overflow special cases. Because bias value for double precision format is 1023, the 

minimum and maximum actual exponents that can be supported are -1022 and 

+1023. 

 

In mathematics some values such as infinity and some special operations such as 

division by zero are very crucial especially for approximate computation. IEEE-754 

encodes and handles these special cases in a certain way. IEEE-754 reserves exponent 

field values of all zeros and all ones to denote special values. These special values 

and their IEEE-754 encoding are shown in table 5.1 below [2]. 
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Figure 5.3 32-bit and 64-bit Fixed-Point Format. Also called as Word type (or W- type) 

and Longword type (or L type) format. 
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 Single Precision Double Precision 

 Sign 
Biased 

Exponent 
Fraction Special Value Sign 

Biased 

Exponent 
Fraction Special Value 

Positive Zero 0 0 0 0 0 0 0 0 

Negative Zero 1 0 0 - 0 1 0 0 - 0 

Positive Infinity 0 255 0 ∞ 0 2047 0 ∞ 
Negative 

Infinity 
1 255 0 - ∞ 1 2047 0 - ∞ 

Quiet NaN 0 or 1 255 ≠ 0 NaN 0 or 1 2047 ≠ 0 NaN 

Signaling NaN 0 or 1 255 ≠ 0 NaN 0 or 1 2047 ≠ 0 NaN 

Positive 

Normalized 

Non Zero 

0 0 < e < 255 f 2e – 127(1.f) 0 0 < e < 2047 f 2e – 1023(1.f) 

Negative 

Normalized 

Non Zero 

1 0 < e < 255 f -2e – 127(1.f) 1 0 < e < 2047 f -2e – 1023(1.f) 

Positive 

Denormalized 
0 0 f ≠ 0 2e – 126(0.f) 0 0 f ≠ 0 2e – 1022(0.f) 

Negative 

Denormalized 
1 0 f ≠ 0 -2e – 126(0.f) 1 0 f ≠ 0 -2e – 1022(0.f) 

 

 

 

 

5.2 Fixed Point format 

MIPS FPU also supports fixed point arithmetic. Fixed-point representation is an easy 

way to represent fractional numbers. Fixed-point values have the same format with 

signed integers of coprocessor 0. To define a fixed-point number we need the width 

of the number representation and the position of the binary point. Fixed-point format 

is shown in Figure 5.3 below. 

 

Sign Integer 

  

Sign Integer 

   

Integer (continued) 

 

Table 5.1 IEEE-754 encoding of special floating-point values. A NaN (Not-a-Number) can be 

produced by one of the following operations: ∞ − ∞, −∞   ∞, 0   ∞, 0 ÷ 0, ∞ ÷ ∞. Signaling NaN 

signals an invalid operation exception whereas quiet NaN does not. 
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FR-Type instruction format 

 

5.3 FP instruction format 

There are two FP instruction formats, the FR-type and FI-type format. These types of 

format follow the same logic as in coprocessor’s 0 R-type and I-type formats but they 

are reserved for use with floating-point numbers. FR-type format is used for floating- 

point arithmetic instructions whereas FI-type is used for floating-point branches. 

 

Opcode Fmt Ft Fs Fd Funct 

 

 

 

Opcode Fmt Ft Immediate 

 

 

 

The main difference is the Fmt field. Fmt field is used for specifying numerical data 

type binary encoding. It specifies whether data type is single or double precision or 

fixed-point. There are also reserved values of Fmt for certain instructions, such as 

data transfer instructions between coprocessor 0 and FPU. These instructions use the 

Fmt field as an extension to Funct field. 

 

5.4 FP instruction set 

FPU instruction set consists of arithmetic (including compare), conversion, data 

transfer and conditional branch instructions. Arithmetic instructions use the FR-type 

format and Fmt field specifies the operands’ and result’s data encoding. Fmt can be s 

(Single precision), d (Double precision), w (Word fixed-point) and l (Longword 

fixed-point) data binary encoding. Conversion instructions also use the FR-type 

format and convert one data type to another. Hence, two operand fields of the FR-

type format are needed; the Fd and Fs fields. Fmt specifies the data type format of 

the source register Fs. The unused Ft field is set to 0. Conversion can be made 

between all formats. 

Figure 5.5 

Figure 5.4 
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FPU has the ability to send and receive data to the system. Data can be transferred:  

 Between FPU and coprocessor 0 

 Between FPU and memory system  

 Between all the floating-point registers (including the FPU control register) 

Data transfer instructions for data transfer between FPU and memory system are      

I-type instructions. Instructions for data transfer between FPU and coprocessor 0 are        

FR-type instructions and they use two operand fields of the FR-type format; the Fd 

and Fs fields. Data transfers between floating-point registers are also FR-type 

instructions and take data type format of the transferred data into consideration.  

Conditional floating-point branch instructions are equivalent to conditional branches 

described before. The difference is that in floating-point conditional branches the 

compare operands are floating-point values and instruction format is FI-type. These 

branch instructions are also using a PC-relative addressing mode. 

  

5.5 Implementing Floating Point Unit 

We are now ready to describe the way that floating-point unit was designed and 

implemented. The main idea was to find a generator that would create synthesizable 

code for the floating-point arithmetic operations and to concentrate on the way that 

all these operators would be combined and utilized efficiently. The next step was to 

create all the data transfer instructions and finally to integrate successfully the FPU 

in the system.  

 

5.5.1 Generating FP arithmetic operators  

FloPoCo is an open source generator of floating-point operators for FPGAs [18]. 

These operators are written in C++. It is a command-line tool and commands follow 

the syntax: flopoco <options> <operator specification list>. 

Command-line interface 

FloPoCo options are the following [site]: 

 target: Sets the target hardware family (e.g. target=virtex5). 

 frequency: Sets the target in MHz (e.g. frequency=300). 

 name: Replaces the name of the generated entity for the next operator(e.g. 

name=fp_adder).
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Single Precision FloPoCo format Figure 5.6 
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 plainVHDL: Instructs FloPoCo to output concise and readable VHDL, using 

only + and * VHDL operators instead of FloPoCo adders and subtractors. 

 useHardMult: Instructs FloPoCo not to use hard multipliers or DSP block. 

 unusedHardMultThreshold: Instructs FloPoCo to use a hard multiplier 

(or DSP block) if less than 30% of this hard multiplier are unused. The ratio is 

between 0 and 1, such that 0 means: any sub-multiplier that does not fully fill 

a DSP goes to logic; 1 means: any sub-multiplier, even very small ones, will 

consume a DSP. 

 pipeline: Requires the operators to be pipelined. If no, the operator will 

be combinatorial. If yes, registers may be inserted if needed to reach the 

target frequency 

 

FloPoCo operators can be seen in this link: http://flopoco.gforge.inria.fr/operators.html 

FloPoCo instruction representation format 

FloPoCo format is practically an expansion to the IEEE-754 format. There are two 

more LSB  (exception field) bits that indicate whether the floating-point value is a 

special case or not. The fraction and exponent fields are parameterized by two 

integers wE and wF indicating the size of the exponent and fraction fields. For 

instance, if we want to create a single precision FloPoCo formatted number we 

should use wE=8 and wF=23 values. 

 

1 bit 8 bits 23 bits 2 bits 

Sign Biased Exponent Fraction Exception  

  

  

The special value cases that Exception field encodes are the zero (00), normal 

numbers (01), infinities (10) and NaN (11). 

Installation and generating operators 

We will use FloPoCo version 4. For the installation process you can visit the 

following link: http://flopoco.gforge.inria.fr/flopoco_installation.html 

We will create the arithmetic operators FPAddSub, FPMult, FPDiv, FPSqrt, 

FPExp and FPLog. FloPoCo also provides operators for conversions between 

FloPoCo and IEEE-754 formats, such as InputIEEE and OutputIEEE. All FloPoCo 

operators use FloPoCo format, therefore we will use the InputIEEE to change the 

FPU arithmetic operands from the given IEEE-754 format to FloPoCo format. When 

FPU is done with the computation, the result needs to be converted again in IEEE-

http://flopoco.gforge.inria.fr/operators.html
http://flopoco.gforge.inria.fr/flopoco_installation.html


 

5.5. Implementing Floating Point Unit 

55 
 

754 format before it is stored in FPU register file. We can see the pipeline depth of the 

generated entities in Figure 5.7. 

 

 

 

 

 

 

 

 

 

 

 

5.5.2 Floating Point arithmetic instructions 

We have generated the basic floating-point operators, now we have to design FPU. 

FPAddSub, FPMult and FPDiv get two operand inputs in FloPoCo format and 

produce a FloPoCo formatted result. FPSqrt, FPEx and FPLog need one FloPoCo 

formatted operand input instead of two. We begin with instantiating all generated 

modules. All floating-point instructions have the opcode 010001; when this opcode is 

detected CPU sends a request signal, a FPU enable signal and the floating-point 

instruction to FPU. 

FPU then categorizes the incoming instructions. For this task, FPU stores the 

incoming instruction in FIFO buffers for each type of floating-point instruction 

operation. We have six operators, so we create six buffers. The size of these buffers is 

parameterizable. Each buffer is controlled by a controller that gets the categorized 

instruction and stores it in the corresponding buffer depending on the instruction’s 

operation. This way we can execute floating arithmetic instructions in a parallel way, 

if there is not data dependency of course. In addition, CPU can continue without 

delays; it just sends the floating-point instruction without waiting an immediate 

execution. Note that all FP arithmetic instructions in this design have a 10000 Fmt 

field indicating single precision data type. 

Figure 5.7 FloPoCo final report. 
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The execution of arithmetic floating-point instructions begins by reading an 

instruction from the buffers. Each buffer is read and every instruction that was just 

read is executed in a specific pattern; instruction is decoded, executed and the result 

is written back in the floating-point register file. In the FP decode stage every 

instruction is split into the floating-point single precision IEEE-754 format fields. The 

floating-point register file contains 32 registers of 32-bits each and is implemented in 

a similar way with the CPU register file.  

FloPoCo generated entities do not have a signal that reports the end of execution. 

Therefore, the execution stage of floating-point arithmetic instructions is handled as 

a stage of waiting FloPoCo operation entities to produce the result. The amount of 

clock cycles, for the execution to be completed, depends on the pipeline depth of the 

entity. For example, FPAddSub needs 10 clock cycles and FPExp needs 14 clock 

cycles to produce their result. Every floating-point arithmetic operation is controlled 

by a FSM which consists of four stages; idle, decode, wait for execution and write 

back stages. This FSM can be seen in Figure 5.8. 

 

 

 

 

What if a buffer cannot receive other instruction? If a buffer is full then we have to 

inform CPU and wait for free space. We will use a 6-bit vector (equal to the amount 

of buffers) and every j bit of this vector will indicate whether buffer j is full or not. If 

a buffer’s index exceeds the size of the buffer, controller will set the corresponding 

bit of the vector. The order of the arithmetic operation that corresponds to the vector 

bits, beginning from the LSB, is addsub buffer, mult buffer, div buffer, sqrt buffer, 

Figure 5.8 Floating-Point Operation control FSM The wait for execution stage 

depends on the pipeline depth of the operation. In return stage the result is written 

in floating-point register file. Every floating-point arithmetic instruction completes in 

pipeline depth + 2 clock cycles from the time it is read from buffer. 
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exp buffer and log buffer. When a buffer is full, CPU does not fetch another 

instruction so that there is not big load. In case that all buffers are empty we have to 

inform that there is no floating arithmetic instruction to execute. We create similarly 

a 6-bit vector that indicates whether a buffer is empty or not. When all bits are set, all 

buffers are empty and CPU will disable FPU. FPU arithmetic operation datapath and 

control flow can be seen in Figure 5.9 below. 

 

 

 

 

 

5.5.3 Confronting data hazards 

Floating-point instructions need several and different amount of clock cycles to 

execute. Therefore, a lot of dependencies need to be solved. Floating-point 

instructions insert write after write and write after read data dependencies in our 

system because every instruction has a different pipeline depth. For instance, 

Figure 5.9 FPU Arithmetic Instruction Datapath. FP instruction is categorized 

by the buffer controller and stored in the corresponding buffer. Buffer controller 

generates the full and empty buffer vectors. FP instructions are executed in 

parallel and results are stored in FP register file. The Floating point operation 

controllers control the FP execution and also enable register file reads and 

writes. 
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consider an FPMul instruction after an FPExp instruction and the same destination 

register. Because FPMul is completed earlier, this register is written in a wrong 

sequence. Therefore, incorrect data will be read by a following instruction if FPExp 

hasn’t completed its execution. In another scenario, FPMul instruction’s destination 

register may be the same with one of the source registers of FPExp instruction. In 

that case, FPExp can read wrong data if FPMul has completed its execution. Thus, we 

need to deal with write after write (WAW), write after read (WAR) and read after 

write (RAW) data hazards. 

We need to inspect which FP register is written and read. For this reason, we will 

make use of two vectors which will hold the floating-point registers’ usage. We 

practically inspect when a FP register is written or read. Each vector is 32-bits of size 

because we have 32 FP registers. Every vector’s j bit corresponds to the j floating- 

point register. Let’s call the first vector floating-point read inspection vector and the 

second one floating-point write inspection vector. We examine the received 

instruction and all buffers and set the corresponding bits in two vectors. These 

vectors are monitored by CPU, allowing it to decide if a data hazard between FP 

arithmetic instructions occurs. Checking for data dependency is done right after a 

floating-point instruction is detected. Whenever CPU detects a floating-point 

instruction, it checks the corresponding bits of read and write inspection vectors.  

RAW floating- point data hazards are detected by checking the source registers of the 

currently detected floating-point instruction and the corresponding bit entries in the 

write inspection vector. If there is a match (a corresponding bit is set) CPU must wait 

for the pending instruction to complete its execution and not fetch other instructions. 

When the execution is completed, FPU sets the corresponding bits to zero and CPU is 

allowed to send the floating-point instruction to FPU for execution. 

WAR data hazards are detected in a similar way by checking the destination register 

of the currently detected floating-point instruction and the corresponding bits in the 

read inspection vector. In WAW data hazards CPU checks for a match between write 

destination register and the corresponding bit in write inspect vector. In both cases, if 

there is a match CPU waits and resumes when the execution is completed and the 

read registers (WAR case) and write registers (WAW case) are released. Figure 5.10 

shows the modified FPU datapath for supporting register inspection and Figure 5.11 

shows the implementation pseudocode of FPU. 
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Figure 5.10 FPU Arithmetic Instruction Datapath with register read and write 

inspection. 
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5.5.4 Floating Point Unit data transfer instructions 

As previously mentioned, data transfers can be made between memory (specifically 

the data cache) and FPU and between CPU and FPU. The first type of data transfers 

is CPU instructions which transfer data between data cache and FPU. The second 

type is FPU instructions which transfer data between CPU and FPU register files. 

 

Implementing data transfers between FPU and Memory 

These instructions are LWC1 and SWC1 which are I-type format instructions. LWC1 

instruction reads data from data cache and stores it in the FPU register file whereas 

Figure 5.11 FPU Arithmetic instruction datapath implementation 

pseudocode. 
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I-Type format for LWC1 and SWC1 instructions 

SWC1 does the opposite transfer. The main difference of these instructions and other 

I-type format instructions is that now the destination register field will indicate a FP 

register (Figure 5.12). 

 

Opcode Rs Ft Immediate 

 

 

 

These instructions are detected in the decode stage of the pipeline where opcodes 

110001 (LWC1) and 111001 (SWC1) are detected. By detecting these instructions, 

decode unit will generate two new specific control signals which indicate a store in 

FP register file (LWC1) and a load from FP register file (SWC1). Decode unit also sets 

the memory read control signal for LWC1 instruction and the memory write control 

signal for SWC1 instruction. In ID stage, the store in FP and load from register file 

control signals are stored in ID/EX pipeline register and propagated through pipeline 

registers to MEM stage. In MEM stage these instructions access the data cache; a read 

access for LWC1 and a write access for SWC1. In WB stage of LWC1 instruction the 

store in FP register file forces memory data out, read from MEM/WB pipeline 

register, to be stored in the FP register file instead CPU register file. In ID stage of 

SWC1 instruction the load from FP control signal indicates that data will be read 

from FP register file instead of CPU register file. These data are stored in ID/EX 

pipeline register and propagated to MEM stage through the pipeline where they are 

stored in data cache. 

After implementing data transfers between memory and FPU we need to check for 

data dependencies that may occur. First of all, RAW FP data hazards after LWC1 

instruction are eliminated due to the FPU design, because all FP instructions are 

decoded in FR-format fields two clock cycles after they are detected. This means that 

there is enough time-frame for LWC1 to write back data in FP register file. For 

instance we can consider the RAW data dependency in Figure 5.13. We notice that 

the decode of FPMul instruction is done 1 clock cycle after LWC1 has written the 

data in FP register file ensuring that there is no RAW data hazard between LWC1 

and FP arithmetic instructions. Notice that there is not also WAW data hazards 

between LWC1 instruction and following FP arithmetic instructions because the 

smallest (in clock cycles amount) FP arithmetic instruction FPMul will write back in 

register file four clock cycles (two clock cycles to start execution and two clock cycles 

of the FPMul entity pipeline) after LWC1’s write back stage.  

 

Figure 5.12 
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 1 cc 2 cc 3 cc 4 cc 5 cc 6 cc 7 cc 

LWC1 F2, 0($18)   IF ID EX MEM WB   

MUL.S F3, F1,F2  IF 

 

Detected  

 

Sent to 

FPU  

Push in 

MUL 

buffer 

Decode 

Start  

of 

Execution 

 

 

 

Let’s check now about RAW data dependency between LWC1 and SWC1 

instructions. This really means that we have a MEM to MEM data dependency 

because SWC1 needs to store in memory the data that LWC1 has read from memory. 

So data forward unit detects the dependency and forwards the memory read data to 

MEM stage of SWC1 instruction. Remember that both instructions have memory 

access control signals as LW and SW instructions have.  

There is also one more WAW data hazard that we need to check. Consider a FP 

arithmetic instruction and a LWC1 instruction that write back in the same 

destination register. We need to find a solution to this hazard. WAW data hazards 

between FP arithmetic instructions were eliminated by implementing a FP write 

inspection vector. So why don’t we just check this vector? Every time a LWC1 

instruction is detected, CPU checks the floating inspection array and determines if 

there is a WAW hazard. Remember that WAW will occur if there is a match between 

the destination register of LWC1 and the corresponding bit of the vector. If a WAW 

hazard is detected, then CPU stalls the pipeline and does not fetch another 

instruction waiting for the write register release when the execution of the arithmetic 

instruction is finished. 

Implementing data transfers between FPU and CPU register files 

There are two FP instructions that allow data transfers between FPU and CPU 

register files. MFC1 instruction transfers data from FP register file to CPU register file 

while MTC1 transfers data in the opposite direction. These instructions follow the 

FR-type format and need two operands; the registers that take part in data transfer. 

The destination register is always defined by the Fd field and the source register by 

the Fs field. That means that these fields are handled differently because MFC1 has a 

CPU destination register and a FPU source register whereas MTC1 has a FPU 

destination register and a CPU source register. 

Figure 5.13 RAW data dependency between LWC1 and FP arithmetic instructions. We 

can see that there is no RAW data dependency because FP Arithmetic instructions are 

decoded 2 cycles after they are detected. 
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Because these instructions are FP instructions, CPU sends them to FPU for execution. 

It is FPU’s turn to recognize them and execute them. How can FPU recognize MFC1 

and MTC1 instructions? We can distinguish these instructions by the Fmt field; 

MFC1’s Fmt value is 00000 and MTC1’s is 00100. We will modify FPU’s 

implementation in order to support these instructions. We will implement these 

instructions in a 5 clock cycle pattern so that we can avoid WAW dependencies with 

previous CPU instructions. For instance, if MFC1 instruction needed less clock cycles 

than the CPU pipeline depth to complete, this would result in a WAW data hazard if 

the previous CPU instruction (e.g. a SUB instruction) writes back data in the same 

destination register.  

MFC1 instruction is first detected and sent to FPU. FPU has to recognize that the 

incoming instruction is a MFC1 instruction, enable the FP register file read, output 

these data and report that job is done. This done signal is sent with the FP register 

read data to CPU and is used in order to enable a write in CPU register file. The 

sequence of operations need to be done can be summarized in the Figure 5.14 below.  

 1 cc 2 cc 3 cc 4 cc 5 cc 

MFC1 $8, F3   IF 

 

Detected  

 

Sent to FPU  

Recognize 

and 

enable FP 

RF read 

 

Output 

done signal 

and  

read data 

  

 

 

 

 

MTC1 is implemented in a similar way with the difference that now we have to write 

FP register file. We also need to send the write data to FPU and inform when job is 

done. The MTC1 operation sequence is shown in Figure 5.15. 

 1 cc 2 cc 3 cc 4 cc 5 cc 

MTC1 $8, F3   IF 

 

Detected  

 

Sent to 

FPU  

Recognize 

and enable 

FP RF write 

 

 

Write 

Completed 

Output 

done signal 

 

  

 

Figure 5.14 Operation sequence of MFC1 instruction. $8 is the destination 

register. Our MFC1 implementation imitates the flow of a LW instruction; the 

FP RF read takes place in the 4th clock cycle (similar to memory read in LW 

instruction) and write back in the 5th clock cycle. 

Figure 5.15 Operation sequence of MTC1 instruction. F3 is the destination 

register.  
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Decode unit and FPU must be modified so that MFC1 and MTC1 can be supported. 

Decode unit needs the MFC1 read data and done signal as inputs so that when done 

signal is set, the MFC1 read data will be written in RF. Hence, we will use one more 

multiplexor that selects between the MFC1 data and all the WB data that we have 

previously mentioned. Two more simple controllers must be created in FPU to 

control the operation sequences of these instructions. FPU also needs the CPU 

register file read data as an input. 

5.5.5 MTC1 and MFC1 interaction with other instructions 

After implementing MTC1 and MFC1 instructions, the next step is to deal with data 

hazards that arise. These instructions write and read in register files; hence it is sure 

that data dependencies will occur. Remember that every incoming FP instruction’s 

source and destination registers will set the corresponding bits in the inspection 

vectors. Hence, MFC1’s source register will set the read inspection vector and 

MTC1’s destination register will set the corresponding bit in the write inspection 

vector. 

Interaction between MTC1 and MFC1 

A data dependency can occur if these instructions follow each other. Specifically, 

consider the following examples: 

A1 A2 

MFC1 $7, F10 MTC1 $8, F10 

MTC1 $7, F11 MFC1 $7, F10 

 

In case A1 there is a RAW data hazard. MFC1 writes into $7 register while MTC1 has 

to read $7 register. MFC1 instruction will read the FP register file in the 4th stage of its 

execution before the WB in CPU register file takes place in 5th stage. MTC1 needs to 

have that data available till the 4th stage of its execution; data must be sent to FPU in 

4th stage in order to be written in FP register file in the 5th stage. So we will act as we 

did before in load-use data dependency; we will stall pipeline and then forward that 

data from the production stage to the stage that they are needed. Therefore, we need 

to modify stall unit so that it can detect the dependency. This can be done by 

detecting the opcode and fmt fields of MFC1 instruction (read from ID/EX pipeline 

register) and the opcode and fmt fields of MTC1 instruction (read from IF/ID 

pipeline register). We also need to check for register value equality; MFC1’s Fd field 

must be equal to MTC’ Fs field. Now we have to send the FP register read data of 

MFC1 instruction to FPU after RAW data hazard is detected.  
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Thus, we need to modify data forward unit in order to detect this hazard, and in 

order not to confuse this hazard with hazards between CPU instructions. The first 

thing to do is to distinguish these instructions from others. The hazard is detected in 

the same way with stall unit but MFC1 fields are now read from MEM/WB pipeline 

register and MTC1 from EX/MEM pipeline register; opcode and fmt fields of MFC1 

are 010001 and 00000 and MTC1’s are 010001 and 00100. Now we only have to check 

if we have equality between destination register of MFC1 and the source register of 

MTC1 and forward the data to FPU. 

In case A2 a RAW hazard is also occurred. In this case, a stall is generated because 

MTC1 has set the 10th bit in write inspection vector, indicating that F10 will be 

written by a previous pending instruction. That means that MFC1 and next 

instructions will have to wait until this FP register is released (when MTC1 writes the 

data in FP register file) securing that MFC1 will read FP register file after MTC1’s 

write stage. 

Interaction with FP Arithmetic instructions 

In this interaction all data hazards are avoided due to the FP register inspection. 

Consider the following examples:  

B1 B2 B3 B4 

ADD.S F10, F1, F5     MFC1 $7, F10     MTC1 $7, F10 MUL.S F8, F10, F5 

    MFC1 $7, F10 MUL.S F10, F1, F5 MUL.S F8, F10, F5 MTC1 $7, F10 

 

In B1 example we have a RAW hazard because MFC1 needs to read F10 register and 

ADD.S writes in F10 register. In B2 example there is a WAR hazard because MFC1 

reads and MUL.S writes F10 register. In B3 example there is a RAW hazard because 

MTC1 writes and MUL.S reads F10 register. In B4 example there is a WAR hazard 

because MUL.S reads and MTC1 writes in F10 register. There are also WAW hazards 

when MTC1 and other FP arithmetic instructions have the same destination register.  

Every time that MTC1 or MFC1 instruction is sent to FPU, write and read inspection 

vectors are checked in order to detect possible hazards. A stall signal is generated 

whenever MTC1 or MFC1 need to access a binded FP register, securing that all 

hazards between these instructions and FP arithmetic instructions are resolved. 

Interaction with CPU instructions 

MTC1 and MFC1 instructions’ destination and source registers pass through 

EX/MEM and MEM/WB pipeline registers, hence we can use them for hazard 

detection of hazards generated by the interaction with CPU instructions. All these 

hazards are detected in the same way as the hazards between CPU instructions but 



 

5.5. Implementing Floating Point Unit 

67 
 

we have to forward now data to FPU or from FPU. We also have to insert more 

control information in forward and stall units in order to distinguish these hazards 

from hazards between CPU instructions. Consider the following examples: 

 

C1 C2 C3 C4 

ADD $7, $20, $21        MFC1 $7, F10 LW $7, 0($18) MFC1 $7, F10 

     MTC1 $7, F11 ADD $20, $7, $8 MTC1 $7, F11 SW $7, 0 ($18) 

 

In C1 example we can see that there is a RAW hazard on register $7. ALU 

instructions produce the result in EX stage; hence we need to forward the result to 

FPU when the hazard is detected. This is similar to the data dependency where the 

ALU out is forwarded from EX/MEM pipeline register to the EX stage of the 

depended instruction. The difference though, is that we don’t want to forward data 

to ALU but instead to FPU. Therefore, we need to distinguish this hazard by 

checking also if the depended instruction is MTC1. If it is indeed MTC1, we forward 

to FPU and not to ALU. We can distinguish MTC1 instruction by the opcode (010001) 

and Fmt (00100) fields. These forwarded data are stored in a specific register in FPU 

when forwarded, read in the next clock-cycle and stored in FP register file. If there 

was one more independent instruction between ADD and MTC1 instruction then the 

data would be forwarded from MEM/WB to FPU; similar to the data dependency 

where the ALU out is forwarded from MEM/WB pipeline stage to the EX stage of the 

depended instruction. 

In C2 example we have a RAW data hazard on $7 register. Now we have to stall 

pipeline and then forward data from FPU to ALU. The stall is generated in the same 

way as in load-use data dependency; we modify stall unit to distinguish the RAW 

data hazard between MFC1 and ALU instruction by using the opcode and fmt fields 

of MFC1 instruction. We will also use these fields (now read from MEM/WB pipeline 

register) in data forward unit to distinguish this hazard from a data hazard between 

two CPU instructions. The depended instruction is read from EX/MEM pipeline 

register. When data hazard is detected and when the opcode and Fmt fields of the 

first instruction are 010001 and 00000 indicating that it is MFC1, we forward the data 

that was read from FP register file to ALU. In case that there was one independent 

instruction between MFC1 and ADD then this hazard would be detected as an EX 

hazard where the depended instruction is read from ID/EX pipeline register. Again, 

we would forward data from FPU to EX stage. 

There are no WAW or WAR data hazards between MFC1/MTC1 and CPU 

instructions because we have taken care to implement these instructions to be 
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completed in 5 clock cycles in order to have the same pipeline depth with the CPU 

instructions. 

In case C3 we have a load-use data dependency because MTC1 needs to read the 

contents of $7 register. This hazard is solved by forwarding the read data of LW 

instruction from the MEM stage to FPU and stalling the depended instruction for 1 

clock cycle as we did before. For this reason, we have to distinguish that the load-use 

depended instruction is MTC1 by using the opcode and Fmt fields. So we can 

forward the memory read data from MEM stage to FPU while preventing them to be 

forwarded to MEM stage (LW-SW data dependency) and to EX stage (load-use data 

dependency between LW and ALU instructions). 

In case C4 there is a RAW data hazard because MFC1 writes and SW then reads $7 

register. This hazard can be solved by forwarding the FP read data of MFC1 to MEM 

stage of SW. In order to achieve this, we modify the control case of data forward unit 

where destination registers of MEM/WB and EX/MEM pipeline registers are equal. 

Now we have to check also the case where the instruction is MFC1 (again by 

checking the opcode and Fmt field) and the depended instruction is SW (by checking 

if there is a write control signal). When this hazard exists, then data from FPU is 

forwarded to MEM stage. 

Interaction with LWC1 and SWC1 

LWC1 and SWC1 are handled by data hazard stall unit as LW and SW because they 

have the same memory read and memory write control signals. So, in load-use data 

dependency between LWC1 and MFC1 instructions, MFC1 is correctly stalled. The 

only thing we have to do is to detect this hazard by distinguishing the MFC1 

instruction by its opcode and Fmt field and data will be forwarded to FPU. The 

MTC1 to SWC1 RAW data hazard is solved in the same way like the MFC1 to SW 

data hazard. 
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Chapter 6 

 

Conclusion 
 

6.1 Summary 

Nowadays, EDA industry has delivered higher-level tools to academics and 

engineers so that they can make use of the FPGA technology benefits of 

reprogrammable silicon. Moreover the industry invests billions in FPGA research 

and targets to the production of more powerful FPGA platforms. Altera’s acquisition 

by Intel Corporation reveals the significance of powerful reconfigurable platforms 

and signifies a new promising era in digital and embedded systems. 

 In this project we used Altera ModelSim Quartus Prime and Xilinx ISE Design Suite 

tools for the design and simulation of the project. We started implementing the 

pipeline and the basic instruction set of coprocessor 0. The next step was to 

implement and integrate cache and the final step was to design, implement and 

integrate FPU in the core system. The instructions that are supported are listed in 

Appendix. The most difficult part of this project was the design and implementation 

of FPU because issues about synchronizing and controlling the FPU entities were 

difficult to be solved. In addition, a lot of effort was made in order to integrate all 

these parts of the project. Every part was tested separately before being integrated in 

the core system. After completing the design and integration all those parts, we 

tested the functionality of the MIPS core by running several codes which consisted 

all-types of functions and all data and control dependencies. 

After completing all the necessary tests, we used Vivado Design Suite by Xilinx in 

order to synthesize the core design. The device target was Virtex-7 VC709. We faced 

a problem in this step because we used SystemVerilog classes in our design but 

Vivado Design Suite does not support them. Therefore, we had to make a lot of 

changes before synthesizing the core design. 
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You can contact me at stpistop(AT)uth(DOT)com for a copy of the source code. The 

synthesis utilization report can be seen in Figure 6.1. 

 

 

 

Completing this project helped me enrich my knowledge in computer architecture 

and understand how processors are designed and implemented and improve my 

skills in digital design by analyzing and confronting each arising problem. 

 

 

6.1 Future Work 

Despite all the hard work made on this project, we can continue its implementation 

to a more complete level. Implementing floating-point branch and convert 

instructions would complete the FP instruction set. We also like to expand the 

memory hierarchy with a L2 cache level for more realistic approach and change the 

write strategy into write back with write allocate. Finally, a branch prediction buffer 

can be implemented for a better performance. 

Figure 6.1 Synthesis Utilization Report 
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Appendix 

 

R-type 

Instruction Opcode/Function Operation 
add 000000/100000 $d = $s + $t 

sub 000000/100010 $d = $s - $t 

mult 000000/011000 $d = $s * $t 

div 000000/011010 $d = $s / $t 

slt 000000/101010 $d = ($s < $t) 

and 000000/100100 $d = $s & $t 

or 000000/100101 $d = $s | $t 

nor 000000/100111 $d = ~($s | $t) 

xor 000000/100110 $d = $s ^ $t 

sll 000000/000000 $d = $t << shamt 

sllv 000000/000100 $d = $t << $s 

srl 000000/000010 $d = $t >>> shamt 

srlv 000000/000110 $d = $t >> $s 

sra 000000/000011 $d = $t >>> shamt 

srav 000000/000111 $d = $t >>> $s 

jr 000000/001000 PC = $s 

jalr 000000/001001 $31 = PC; PC = $s 

I-type 

Instruction Opcode/Function Operation 
beq 000100 if ($s == $t) PC = PC + 4 + BranchAddr 

bne 000101 if ($s != $t) PC = PC + 4 + BranchAddr 

addi 001000 $d = $s + SignExtImm 

andi 001100 $t = $s & SignExtImm 

ori 001101 $t = $s | SignExtImm 

xori 001110 $d = $s ^ SignExtImm 

slti 001010 $t = ($s < SignExtImm) 

lw 100011 $t = MEM [$s + SignExtImm] 

sw 101011 MEM [$s + SignExtImm] = $t 

lh 100001 $t = (15:0)MEM [$s + SignExtImm] 

sh 101001 (15:0)MEM[$s + SignExtImm] = (15:0)$t 

lb 100000 $t = (7:0)MEM [$s + SignExtImm] 

sb 101000 (7:0)MEM [$s + SignExtImm] = (7:0)$t 

lwc1 110001 ft = MEM [$s + SignExtImm] 

swc1 111001 MEM [$s + SignExtImm] = ft 

J-type 

Instruction Opcode/Function Operation 
j 000010 PC = jumpAddr 

jal 000011 $31 = PC; PC = JumpAddr 
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FR-type 

Instruction Opcode/Format/Function Operation 
add.s 010001/10000/000000 fd = fs + ft 

sub.s 010001/10000/000001 fd = fs - ft 

mult.s 010001/10000/000010 fd = fs * ft 

div.s 010001/10000/000011 fd = fs / ft 

sqrt.s 010001/10000/000100 fd = sqrt(fs) 

exp.s 010001/10000/000101 fd = exp(fs) 

log.s 010001/10000/000110 fd = log(fs) 

mfc1 010001/00000/000000 $d = fs 

mtc1 010001/00100/000000 fd = $s 

 

 

 

 

Α-1. Instructions supported by this MIPS core implementation 
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