

Implementation of a Synthesizable MIPS

core in SystemVerilog

Υλοποίηση και σύνθεση του πυρήνα του

επεξεργαστή MIPS σε SystemVerilog

by

Stefanos Pistopoulos

A Thesis submitted to the Department of Electrical

and Computer Engineering in partial Fulfillment of the

Requirements for the

Diploma of Science in Computer and

Communication Engineering

Supervisors

Dr. Nikolaos Bellas, Associate Professor

Dr. Christos Sotiriou, Associate Professor

Volos, Greece

September 2016

i

Acknowledgments

After completing this project, I could not begin this diploma thesis report without

thanking my supervisor, Dr. Nikolaos Bellas. His helpful advices, trust and abiding

support were more than valuable for me in order to fulfill my goal. I would also like to

thank my family and especially Anastasia for being patient and always right there for

me. Finally, I have to thank my colleagues and friends, Dimitris and Sakis, for their

sincere friendship.

ii

Abstract

MIPS (Microprocessor without Interlocked Pipeline Stages) is a microprocessor that

was designed years ago but still remains one the most popular and ideal examples of

RISC architecture. The majority of universities and higher education colleges instruct

its instruction set architecture to students, introducing them into computer design

and organization.

A lot of tools and hardware description languages were created allowing engineers

to implement their designs in an easier and more efficient way. SystemVerilog is a

hardware description language that is mainly used for design verification. However,

it might as well be used for implementation of synthesizable complex designs.

The aim of this project is the design and implementation of a synthesizable MIPS

core that can be used for integration in Field-Programmable Gate Array based

systems. This thesis describes MIPS architecture, including memory hierarchy and

floating-point unit, and presents a way of implementation using SystemVerilog

hardware description language.

iii

Περίληψη

Ο μικροεπεξεργαστής MIPS σχεδιάστηκε πριν πολλά χρόνια, εντούτοις αποτελεί

ένα από τα πλέον δημοφιλή και ιδανικά παραδείγματα της αρχιτεκτονικής

επεξεργαστών RISC. Η πλειοψηφία των διεθνών πανεπιστημίων και των

ανωτάτων εκπαιδευτηρίων διδάσκουν την αρχιτεκτονική του, εισάγοντας τους

φοιτητές στην οργάνωση και σχεδίαση υπολογιστών.

Πολλά εργαλεία και γλώσσες περιγραφής υλικού έχουν δημιουργηθεί

επιτρέποντας στους μηχανικούς την υλοποίηση των σχεδίων τους με εύκολο και

αποδοτικό τρόπο. Η γλώσσα περιγραφής υλικού SystemVerilog χρησιμοποιείται

κυρίως για την επαλήθευση ψηφιακών κυκλωμάτων. Παρ’ όλα αυτά μπορεί

κάλλιστα να χρησιμοποιηθεί και για τη σχεδίαση και υλοποίηση συνθέσιμων

πολύπλοκων σχεδίων.

Σκοπός αυτής της εργασίας είναι η σχεδίαση, υλοποίηση και σύνθεση του

πυρήνα του μικροεπεξεργαστή MIPS, το οποίο μπορεί να χρησιμοποιηθεί σε

συστήματα που βασίζονται στη χρήση μιας πλατφόρμας FPGA. Στην παρούσα

διπλωματική εργασία θα περιγράψουμε την αρχιτεκτονική MIPS,

περιλαμβάνοντας την ιεραρχία μνήμης και τη μονάδα κινητής υποδιαστολής,

και θα παρουσιάσουμε τον τρόπο υλοποίησης του με τη χρήση της γλώσσας

περιγραφής υλικού SystemVerilog.

iv

Author’s declaration

I hereby declare that all information and work in this thesis, titled ’Implementation

of a Synthesizable MIPS core in SystemVerilog’, have been obtained and presented

by me in accordance with the regulations of University of Thessaly, academic rules

and ethical conduct. I also declare that, as required by these rules and conduct, I have

cited all material and results that are not original to this work.

v

Table of contents

List of figures ... vii

List of tables .. ix

List of abbreviations .. x

Introduction .. 1

2 MIPS Microprocessor .. 3

2.1 MIPS Instruction Set Architecture .. 4

2.1.1 Basic Instruction Set .. 4

2.1.2 MIPS instruction representation .. 6

2.2 MIPS Pipeline ... 10

2.2.1 Instruction pipeline datapath .. 10

2.2.2 Controlling pipeline .. 12

2.2.3 Pipeline hazards ... 14

3 Implementation of MIPS coprocessor 0 .. 20

3.1 Implementing pipeline stages ... 20

3.1.1 Instruction Fetch unit .. 20

3.1.2 Instruction Decode unit .. 21

3.1.3 Instruction Execution unit .. 24

3.1.4 Instruction Memory Access unit ... 25

3.2 Confronting Pipeline hazards.. 27

3.2.1 Data Forward unit ... 27

3.2.2 Data hazard stall unit .. 33

4 Memory System hierarchy ... 34

4.1 Cache memory ... 35

4.1.1 Multi-level cache .. 36

4.1.2 Cache memory mapping .. 36

4.1.3 Cache line replacement algorithms ... 40

4.1.4 Cache Write strategies... 41

vi

4.2 L1 cache implementation ... 42

4.2.1 Setting up cache ... 42

4.2.2 Implementing the interface .. 42

4.2.3 Implementing the cache controller.. 43

4.2.4 Implementing random replacement policy ... 45

4.3 Integrating cache into system .. 46

5 Implementation of MIPS coprocessor 1 .. 48

5.1 Floating Point formats in IEEE 754 standard .. 48

5.1.1 Single Precision format ... 49

5.1.2 Double Precision format ... 50

5.2 Fixed Point format ... 51

5.3 FP instruction format .. 52

5.4 FP instruction set ... 52

5.5 Implementing Floating Point Unit .. 53

5.5.1 Generating FP arithmetic operators .. 53

5.5.2 Floating Point arithmetic instructions .. 55

5.5.3 Confronting data hazards ... 57

5.5.4 Floating Point Unit data transfer instructions ... 61

5.5.5 MTC1 and MFC1 interaction with other instructions 65

6 Conclusion ... 69

6.1 Summary .. 69

6.1 Future Work ... 70

Appendix ... 71

Bibliography ... 73

vii

List of figures

2.1 R-Type format .. 6

2.2 Binary representation examples of R-type instructions ... 7

2.3 I-Type format ... 8

2.4 Binary representation examples of I-type instructions .. 9

2.5 J-Type format ... 9

2.6 Binary representation examples of J-type instructions .. 10

2.7 Basic Pipelined MIPS datapath .. 11

2.8 Multiple Clock-Cycle Pipeline diagram ... 12

2.9 Pipeline datapath control signals .. 13

2.10 ALU operation control signals ... 13

2.11 Pipelined MIPS datapath with control signals .. 14

2.12 Forward technique in MIPS pipeline .. 17

2.13 MIPS pipeline control hazard .. 18

2.14 Pipelined MIPS datapath with hazard detection and forwarding units 19

3.1 Fetch unit diagram .. 21

3.2 Fetch unit implementation pseudocode ... 21

3.3 Decode unit diagram ... 22

3.4 Decode unit implementation pseudocode ... 23

3.5 Execution unit diagram .. 24

3.6 Execution unit implementation pseudocode ... 25

3.7 Memory Access unit diagram .. 26

3.8 Memory Access unit implementation pseudocode .. 26

3.9 Data Forwarding paths ... 28

3.10 Data Forwarding paths including MEM to MEM data forward 29

3.11 Data Forward unit diagram ... 29

3.12 Forward Conditions .. 30

3.13 Data Forward unit implementation pseudocode .. 31

3.14 Modified Execution unit diagram ... 32

3.15 Modified Memory Access unit diagram .. 32

viii

4.1 Memory System Hierarchy .. 35

4.2 Direct-mapped Cache ... 37

4.3 Cache miss rate and cache line size relation .. 38

4.4 Organization of a 4-way set associative cache... 39

4.5 Cache controller FSM .. 45

4.6 Fibonacci LFSR diagram ... 46

4.7 Modified Instruction Fetch unit pseudocode to support caching 46

4.8 Modified Memory Access unit pseudocode to support caching 47

5.1 Single Precision IEEE 754 format .. 49

5.2 Double Precision IEEE 754 format .. 50

5.3 32-bit and 64-bit Fixed-Point Format ... 51

5.4 FR-Type instruction format .. 52

5.5 FI-Type instruction format ... 52

5.6 Single Precision FloPoCo format ... 54

5.7 FloPoCo final report .. 55

5.8 Floating-Point Operation control FSM ... 56

5.9 FPU Arithmetic Instruction Datapath .. 57

5.10 FPU Arithmetic Instruction Datapath with register read and write inspection ... 59

5.11 FPU Arithmetic instruction datapath implementation pseudocode 60

5.12 I-Type format for LWC1 and SWC1 instructions .. 62

5.13 RAW data dependency between LWC1 and FP arithmetic instructions............... 63

5.14 Operation sequence of MFC1 instruction .. 64

5.15 Operation sequence of MTC1 instruction .. 64

6.1 Synthesis Utilization Report .. 70

Α-1 Instructions supported by this MIPS core implementation 71

ix

List of tables

2.1 MIPS general-purpose registers .. 4

4.1 Interface between CPU, Cache and RAM .. 43

5.1 IEEE 754 encoding of special floating point values .. 51

x

List of abbreviations

MIPS Microprocessor without Interlocked Pipeline Stages

RISC Reduced Instruction Set Computer

ISA Instruction Set Architecture

CPI Clocks Per Instruction

IoT Internet of Things

OS Operating System

DSP Digital Signal Processor

FPGA Field-Programmable Gate Array

HDL Hardware Description Language

CPU Central Processing Unit

FPU Floating-Point Unit

CC Clock-Cycles

PC Program Counter

ALU Arithmetic Logic Unit

RAM Random Access Memory

MSB Most Significant Bit

LSB Least Significant Bit

RAW Read After Write

WAR Write After Read

WAW Write After Write

NOP No Operation

FSM Finite-State Machine

IEEE Institute of Electrical and Electronics Engineers

NaN Not a Number

LRU Least Recently Used

MRU Most Recently Used

LFSR Linear Feedback Shift Register

TRNG True Random Number Generator

FIFO First In First Out

EDA Electronic Design Automation

1

Chapter 1

Introduction

This thesis presents the way that theory of MIPS instruction set architecture can be

applied into practice by implementing a MIPS core. It can be divided in six major

parts. The first part describes MIPS microprocessor. This part begins with a quick

description of the instruction set architecture (Section 2.1) by referring the instruction

types that MIPS supports and the way they are encoded. Section 2.2 continues with a

presentation of pipelining technique and how it is applied and controlled in MIPS. In

section 2.2.3 specifically we analyze all hazards that may arise by given examples

and describe how we can confront these problems.

We continue in third chapter of this thesis by analyzing the way that CPU of MIPS

was implemented and illustrate an abstract way that code was written. Section 3.1

describes how every pipeline stage was implemented and section 3.2 analyzes how

we solved the structural and the control hazards, and how we implemented the data

hazard unit to deal with all data hazards including the way that pipeline is stalled.

After discussing all the theory background of MIPS architecture and presenting the

way that execution pipeline was implemented, we discuss about memory hierarch

and caching technique. We begin chapter 4 by describing the basic organization of

cache memories, what their purpose is, how memory is mapped to cache and how

cache lines are replaced and written. In next section we describe how we

implemented a parameterized set-associative cache and the way it interacts with

CPU and main memory. Moreover, in section 4.2.3 we explain how cache is

controlled and which cache line replacement policy was chosen to be implemented

and why.

In next chapter we begin with a short description of floating-point numbers’

representation formats including the IEEE-754 standard. In section 5.4 we discuss

2

about the floating-point instruction set and in section 5.5 we explain how we

designed and implemented floating-point unit. In this section we present the way

that floating-point arithmetic and data transfer instructions were implemented,

about how we control FPU and what problems and hazards were faced and solved

after integrating FPU into the core system.

Finally, in last chapter (Ch. 6) we come in conclusion, presenting the summary report

of synthesis and discussing about future work that can be done.

3

Chapter 2

MIPS Microprocessor

MIPS (Microprocessor without Interlocked Pipeline Stages) is a RISC (Reduced

Instruction Set Computer) instruction set architecture which was designed by John L.

Hennessy at Stanford University. As a RISC instruction set architecture, it consists of

a small non-complex instruction set, illustrating four underlying principles of

hardware design; simplicity favors regularity, smaller is faster, good design

demands compromise and make the common case fast [1]. It was developed by MIPS

Technologies (formerly MIPS Computer Systems, Inc.) and currently is in possession

of Imagination Technologies Group plc, a British-based company [3] [4]. MIPS

instruction set is very popular because it is widely used for academic purposes,

introducing students of Computer Engineering in Computer Design and

Architecture. MIPS implementations were widely used on early commercial RISC

CPUs and nowadays are mainly used in embedded systems, network, Internet of

Things (IoT), digital home and mobile applications [3].

Early MIPS architectures were 32-bits and later versions were 64-bits following the

progress of Computer Science. The first MIPS instruction set was MIPS I CPU

instruction set which was introduced in 1985. It has been extended in a backward-

compatible way; latest architecture versions include former ones. This allows

processors that implement the latest architecture versions to run binary programs

that are produced by previous processors [3]. The different revisions which have

been introduced are MIPS I (1985), MIPS II (1990), MIPS III (1992), MIPS IV (1994),

MIPS V (1996), MIPS32/MIPS64 (1999) and recent releases of MIPS32/MIPS64. There

are also plenty of application-specific extensions.

https://en.wikipedia.org/wiki/MIPS_Technologies
https://en.wikipedia.org/wiki/MIPS_Technologies

2.1. MIPS Instruction Set Architecture

4

2.1 MIPS Instruction Set Architecture

MIPS architecture supports up to 4 coprocessors. Coprocessor 0 is the system control

coprocessor, coprocessor 1 is an optional floating point unit and coprocessors 2 and 3

are undefined optional coprocessors [3]. It has 32 general-purpose registers (Table

2.1) and another 32 floating-point registers each one of 32 bits. Usually a 32-bits data

group is called word, representing the fundamental data unit in a computer.

Register

Name

Register

Number
Use Preserved across a call?

$zero 0 The constant value 0 N.A.

$at 1 Assembler temporary No

$v0-$v1 2-3
Values for function results

and expression evaluation
No

$a0-$a3 4-7 Arguments No

$t0-$t7 8-15 Temporaries No

$s0-$s7 16-23 Saved temporaries Yes

$t8-$t9 24-25 Temporaries No

$k0-$k1 26-27 Reserved for OS kernel No

$gp 28 Global pointer Yes

$sp 29 Stack pointer Yes

$fp 30 Frame pointer Yes

$ra 31 Return address Yes

2.1.1 Basic Instruction Set

The basic instruction set consists of arithmetic and logical instructions, control flow

instructions, memory access instructions, coprocessor and other miscellaneous

instructions [2] [3] [4].

Arithmetic and Logical instructions

The main purpose of using registers is to store data that processor needs in order to

complete an operation. Processor uses data from two registers and produces the

expected outcome storing it in the destination register. For instance, processor can

Table 2.1 MIPS general-purpose registers.

2.1. MIPS Instruction Set Architecture

5

add the data from two registers and store the result in another register,

implementing the operation of addition. All arithmetic and logical operations are

executed by a unit called Arithmetic Logic Unit (ALU). MIPS instruction set

architecture also supports operations between a register and a 16-bit immediate. This

immediate value is treated as signed integer for arithmetic and control flow

instructions and as unsigned for logical instructions.

Multiplication and division are more complicated arithmetic operations and require

many steps to be completed. Hence, processors have independent multiplication and

division units. Multiplying an m digit number by an n digit number results in an

m + n digit, at most. Dividing two numbers leads to the production of a quotient and

a remainder. Therefore, in MIPS architecture two 32-bit registers are used to contain

the result. These registers are not general-purpose and are called HI and LO.

Multiplication instruction produces a 64-bit result which is stored in these registers;

low half is stored in LO register and high half is stored in HI register. Division

instruction produces a 32-bit quotient and a 32-bit remainder that are stored in LO

and HI registers respectively.

Data Transfer instructions

General-purpose registers are used for simple and small operations satisfying the

first two principles of hardware design. This limits the amount and restricts the

structure of the data that can be processed. That’s why there is a crucial need for

more data space which can be found in the memory system of the processor.

Processor can use registers for computations and memory system for storing the

results and the processed data. This design rule is implemented with data transfers

between registers and memory. MIPS instruction set includes load and store

instructions that transfer data between coprocessor 0 and memory system and

between all coprocessors.

There are data transfer instructions for ranging size data transfers such as byte, half

word and word, for treating loaded data as signed or unsigned and for aligned or

unaligned memory access. This kind of data transfers use the base addressing mode

which in particular means that an offset is added to a base register in order to get the

memory access address. This offset must be sign extended before it is added to base

register. MIPS architecture uses byte addressing, thus words must be aligned

(multiples of 4) since MIPS addresses each byte. If a word memory access address is

not a multiple of 4 then an address access exception will be thrown [3]. Data transfers

can also be made between coprocessors and between coprocessors and memory

system. Moreover, special data transfer instructions allow access to HI/LO registers.

2.1. MIPS Instruction Set Architecture

6

31 26 25 21 20 16 15 11 10 6 5 0

R-Type format

Conditional branches and jumps

In computer science, programs are not executed in a straight-line way. Different

parts of a code need to be executed depending on the input data and on the data

created during the computation. The address of the instruction that is currently

executed is maintained in a special 32-bit register named Program-Counter (PC).

There are specific control flow instructions that guide the computer to execute

another part of the instruction space such as branches and jumps. Branch instructions

compare the data of two general-purpose registers and jump to an address

depending on the comparison result whereas jump instructions unconditionally

jump to that address. MIPS architecture supports PC-relative conditional branches

and unconditional jumps. Jump addresses can be given in a pseudo-direct way using

26 bits for the jump target or in an absolute way via a register that contains the jump

target. There is also support for saving a return link address in a general purpose

register for subroutines ($ra).

2.1.2 MIPS instruction representation

Basic MIPS instruction set was discussed above, and now we must analyze how

processor distinguishes and handles these instructions. Every instruction is a 32-bit

binary representation. This word is separated in a few bit fields. These fields define

the instruction category, the immediate values, the branch and jump offsets, the

source and destination registers, the instruction operations and the binary shift bit

amount (for constant shift operation instructions). There are three specific binary

instruction formats: the R-type, the I-type and the J-type format.

R-type format

In R-type instructions all data values that are used by these instructions are

maintained and stored in general-purpose registers. R-type instructions do not

require immediate value, jump target offset, memory address displacement or

memory address to specify an operand. R-type format includes all ALU instructions

except of immediate ALU instructions, register-direct jump instructions and HI/LO

data transfer instructions. Figure 2.1 illustrates the R-type instruction format.

Opcode Rs Rt Rd Shamt Funct

Figure 2.1

2.1. MIPS Instruction Set Architecture

7

We shall now describe what these fields represent:

 Opcode is the operation code of the instructions

 Rs indicates the first source register

 Rt indicates the second source register

 Rd indicates the destination register

 Shamt indicates the shift amount for constant shift instructions

 Funct specifies the ALU and shift operation

Every type of instruction has its own opcode distinguishing it from others. All R-type

instructions have opcode 000000. The funct field specifies which operation must be

made. In all constant shift instructions, Rt field indicates the register that contains the

word which will be shifted and specifically in variable shift instructions Rs field

indicates the shift amount value. Rs field also specifies the register that holds the

jump address in register-direct jump instructions and the data that is going to be

stored into HI/LO registers in HI/Lo data transfer instructions. Examples of how R-

type instructions are binary represented are given in Figure 2.2.

 Opcode Rs Rt Rd Shamt Funct

ADD $8, $7, $3 000000 00111 00011 01000 00000 100000

SRL $14, $8, 9 000000 00000 01000 01110 01001 000010

SRLV $2, $1, $3 000000 00001 00011 00010 00000 000110

JR $13 000000 01101 00000 00000 00000 001000

JALR $6 000000 00110 00000 11111 00000 001001

MFHI $9 000000 00000 00000 01001 00000 010000

MTHI $2 000000 00010 00000 00000 00000 010001

31 26 25 21 20 16 15 11 10 6 5 0

Figure 2.2 Binary representation examples of R-type instructions.

2.1. MIPS Instruction Set Architecture

8

31 26 25 21 20 16 15 0

I-Type format

I-type format

I-type instruction format (Figure 2.3) includes all the immediate arithmetic and

logical instructions, all branch instructions and all coprocessors-memory data

transfer instructions. All opcodes except 000000, 00001x, and 0100xx are used for I-

type instructions.

Opcode Rs Rt Immediate

The immediate value is represented by a 16-bit field, thus immediate value can be

defined in the signed values range of -215 up to +215- 1. So, immediate arithmetic and

logical instructions can have a minimum -32.768 and a maximum 32.767 immediate

value. Furthermore, that means that we can’t address ranges of memory larger than

32.768 bytes (or 8192 words). Branches use a PC-relative addressing mode because of

the fact that branch target address is always near to the current program counter.

Branch target address is computed in the following way:

PC = PC + 4 + sign extend (immediate ← 00)

This means that two zeros are inserted to the LSB end of the immediate value

(similar to shift left logical by two times) in order to create a value divisible by 4. It is

then sign extended to 32-bits and finally added to the next instruction address

(PC + 4). Thus, the range of possible addresses is PC - 217 up to PC + [217 – 4]. That

means that we can branch 128 KB backward and almost 128 KB forward to the

current PC.

Rs and Rt fields indicate the source and destination registers and immediate field

contains the 16-bit immediate value. In coprocessor’s 0 LW instructions the data

contents of Rs register are added with the sign extended immediate value to produce

the memory access address and the memory load data are stored in Rt register. In

SW instructions the data of Rt register is going to be stored in memory. Binary

representation examples of I-type instructions are shown below in Figure 2.4.

Figure 2.3

2.1. MIPS Instruction Set Architecture

9

31 26 25 0

J-Type format

 Opcode Rs Rt Immediate

ADDI $21, $3, 88 001000 00011 10101 0000000001011000

BEQ $17, $8, 2007 000100 10001 01000 0000011111010111

LW $14, 8 ($9) 100011 01110 01001 0000000000001000

SW $13, 92 ($6) 101011 01101 00110 0000000001011100

J-type format

J-type format (Figure 2.5) consists of jump and jump-and-link instructions. In MIPS

instruction set architecture designers have made a compromise that all instructions

would have a word size and a 6-bit opcode field, satisfying the third principle of

hardware design. Therefore jump instructions can have a 26-bit field for the jump

target address. All J-type instructions use the opcode values 00001x.

Opcode Address

Jump target address is computed by concatenating the 4 MSB bits of PC with the

word-aligned 26-bit immediate value; hence the maximum address value can be

226 - 1. In order to make the 26-bit word aligned we follow the same way as in

branches, therefore the range of possible addresses is PC - 228 up to PC + [228 – 4], so

we can have maximum jumps of 256 MB (or 64 million instructions).

PC = {PC [31:28] , (address ← 00)}

This addressing mode is called pseudo-direct addressing because 4 bits of the PC are

used to compute the address. For larger jumps we should use jump register

instructions where the jump address is 32-bits. Jump register instructions can jump

anywhere in the 4GB address space. We can see two examples of J-type instructions

in Figure 2.6.

Figure 2.5

31 26 25 21 20 16 15 0

Figure 2.4 Binary representation examples of I-type instructions.

2.2. MIPS Pipeline

10

 Opcode Immediate

J 19081966 000010 01001000110010101011101110

JAL 210388 000011 00000000110011010111010100

2.2 MIPS Pipeline

Single cycle processors execute every instruction in one cycle, achieving an optimal

CPI (Clocks Per Instruction) equal to 1. The clock period must be as large as the most

time-consuming instruction. In basic MIPS architecture this instruction is LW

instruction. Single cycle processors are easy to implement but they lack of

performance because clock cycle is too long. Moreover, memory and every functional

unit are not utilized efficiently. Therefore, multi cycle processors were implemented

for a better overall performance. The idea was to make simple and small operations

in a small clock cycle. Every instruction now is completed in more than one clock

cycles and each instruction’s individual operation is executed in one cycle. In

addition, every functional unit can be used more than once per instruction in

different clock cycles. Multi cycle processors can achieve better throughput but they

have higher CPI measure.

2.2.1 Instruction pipeline datapath

Instruction pipelining is a technique implemented in order to increase the

performance of multi cycle processors while maintaining a small clock period and a

CPI measure close to 1. Pipelining implements a parallel execution of instructions’

individual operations; multiple instructions are overlapped in execution [1].

MIPS instructions can take up to five steps in order to be executed, however as we

will see not all instructions really need five steps to be completed. These steps also

separate MIPS datapath (Figure 2.7) into 5 fundamental stages which have their own

functional units and need one cycle to perform all the individual operations needed.

31 26 25 0

Figure 2.6 Binary representation examples of J-type instructions.

2.2. MIPS Pipeline

11

These stages are defined as:

1. Instruction Fetch (IF): An instruction is read from memory and PC is

incremented.

2. Instruction Decode (ID): Fetched instruction is decoded into specific format

fields and opcode is translated into control signals and read registers.

3. Execution (EX): An ALU operation is performed and jump/branch addresses

are computed.

4. Memory (MEM): Read or Write data memory.

5. Write Back (WB): Result is stored in the destination register

We can see that in IF stage, the instruction that is read from instruction memory

(indexed from the current PC) and the next instruction address (PC+4) are stored in

IF/ID pipeline register. In ID stage IF/ID pipeline register is read to get the fetched

instruction. This instruction is decoded into the corresponding format fields and

register file is read in order to get the ALU execution operands. All necessary control

signals (we will discuss about control signal later) are generated in the meanwhile.

All the decoded information, the next instruction address, the control signals and the

register file read data are stored in ID/EX pipeline register for usage in next stage. In

EX stage, ID/EX pipeline register is read in order to get all useful data and control

Figure 2.7 Basic Pipelined MIPS datapath. Pipeline stages are separated by the

pipeline registers (in colour). Each pipeline register contains data useful to the next

stage. The name of a pipeline register defines the stage transition.

IF ID EX MEM WB

2.2. MIPS Pipeline

12

signals. This stage executes the ALU operation for ALU instructions, computes the

branch and jump target addresses and decides whether a branch is taken or not. The

ALU result, the jump and branch target addresses, the second register file data read

operand, the comparison result (Zero bit) of branch instructions and the control

information are stored in EX/MEM pipeline register for usage in next stages.

In MEM stage the data memory is accessed, hence we need the memory address and

the memory write data which are read from the EX/MEM pipeline register. Zero bit

and jump/branch target addresses are also read in order to complete the jump/branch

and transfer control to another part of the instruction space. The only operation left is

to write back the data loaded from memory or the ALU result into register file,

therefore these data and control information are stored in MEM/WB pipeline register

from the EX stage and read in WB stage. We can record every instruction’s stage at

every clock cycle in a diagram like the one shown in Figure 2.8.

 1 cc 2 cc 3 cc 4 cc 5 cc 6 cc 7 cc 8 cc 9 cc

LW $8, 0 ($9) IF ID EX MEM WB

ORI $16, $17, 28 IF ID EX MEM WB

ADD $14, $8, $9 IF ID EX MEM WB

SW $21, 88 ($3) IF ID EX MEM WB

SUB $21, $21, $14 IF ID EX MEM WB

2.2.2 Controlling pipeline

In ID stage the fetched instruction is decoded, generating all the necessary control

signals. These control signals enable the functional units, control their operation,

enable or disable their access and control all multiplexors preventing from pipeline

flow errors. Control signals are generated depending on the opcode of the

instruction; opcode value defines the operation and the format of the instruction.

Control signals are propagated to the stage needed through the pipeline registers.

There is a list of control signals in Figure 2.9 with a short description of their

operation.

Figure 2.8 Multiple Clock-Cycle Pipeline diagram. This diagram illustrates the cycle

by cycle execution flow of five instructions. Instructions are executed in a top-down

way and clock cycle moves from left to right. MEM stage of ORI, ADD and SUB

instructions is just for data propagation to WB stage, as these instructions do not

access data memory.

2.2. MIPS Pipeline

13

The ALU is controlled by a 2-bit control signal named ALUOp which is also

generated in ID stage. Depending on this signal, a 4-bit signal is generated, defining

the ALU operation in EX stage. Figure 2.10 shows the way that ALU is controlled

and Figure 2.11 shows the pipelined MIPS datapath including the control signals.

Figure 2.10 ALU operation control signals. In LW and SW instructions ALU

computes the memory access address by adding the offset and the base register. In

branch instructions, comparison is made by subtracting the values of the source

registers. Hence, in LW, SW and BEQ instructions the generated ALU control signal

does not depend on the function code. In all R-type instructions the ALU control

input depends on the function code.

Figure 2.9 Pipeline datapath control signals. The control unit generates three 1-bit

signals (RegDst, ALUSrc and PCSrc) to control multiplexors, three 1-bit signals

(RegWrite, MemRead and MemWrite) to control register file and data memory, and

a 2-bit signal (ALUOp) for the ALU operation control.

2.2. MIPS Pipeline

14

PCSrc signal is always set to 1 throughout all stages, except in jump or branch cases,

so that next instruction address is stored. In EX stage the RegDst, ALUOp and

ALUSrc signals must have proper values; in immediate operand instructions ALUSrc

must be 1 so that the 16-bit immediate operand is chosen. In MEM stage Branch

signal must be 1 in case of branch instructions and when the branch is taken (Zero

signal is set to 1) PCSrc sends the branch target address to the PC register. In

addition, MemRead and MemWrite signals should be set properly for a memory

read or write access. Finally, in WB stage RegWrite allows writes in register file when

is set, and MemtoReg signal chooses between the memory read data or the ALU

result.

2.2.3 Pipeline hazards

Despite the fact that every instruction is executed in order, there are cases that some

instructions cannot continue with their execution because they need data that

previous instructions produce. There are also cases that two or more instructions

need the same functional unit at the same clock cycle and cases that an instruction is

improperly fetched because of wrong control flow decisions; this means that the

Figure 2.11 Pipelined MIPS datapath with control signals. Control signals are

generated in ID stage by control unit and propagated to the next pipeline stages.

PCSrc is now generated by performing the AND logic operation on Zero bit and

Branch control signal.

2.2. MIPS Pipeline

15

correct instruction cannot be executed in the proper clock cycle. These cases lead to

an imperfect pipelined instruction execution and are called structural, data and

control hazards respectively [1].

Structural hazards

In MIPS microprocessor all functional units can be used once in a clock cycle. What if

two instructions need to use a functional unit in the same clock cycle? This problem

is called structural hazard and refer to the conflict of instructions for a functional unit

usage. MIPS instruction set was designed to be pipelined so that structural hazards

can be easily avoided. In addition, data memory and instruction memory are

separated so that there is no memory structural hazard.

Data hazards

These hazards arise from the data dependency between two instructions. More

specifically, an instruction cannot continue its execution because a data value that is

produced by a previous instruction is not available in the right clock cycle. Consider

the following examples with their pipeline diagrams:

 1 cc 2 cc 3 cc 4 cc 5 cc 6 cc

ADD $8, $7 ,$3 IF ID EX MEM WB

MUL $16, $8, $9 IF ID EX MEM WB

SLL $14, $8, 9 IF ID EX MEM WB

LW $20, 8 ($14) IF ID EX MEM WB

LW $20, 21388 ($9) IF ID EX MEM WB

ADD $21, $13, $20 IF ID EX MEM WB

LW $20, 21388 ($9) IF ID EX MEM WB

SW $20, 1048($7) IF ID EX MEM WB

We can easily notice that in the 4th clock cycle MUL instruction is going to use wrong

data because the $8 register is written in 5th clock cycle. Therefore, we have a data

dependency between ADD and MUL instructions. In second example, the memory

access address is computed in the EX stage (4th clock cycle) but the correct data of $14

register are available in the 5th clock cycle. In third example, LW writes the memory

2.2. MIPS Pipeline

16

read data in $20 register in the 5th clock cycle while ADD instruction uses the $20

contents in the 4th clock cycle leading to wrong result. In last example we have a data

dependency between MEM stages. This happens when a SW instruction is depended

on a LW instruction. In this example, the write data of SW instruction are available in

the end of the 5th clock. That means that wrong data are going to be stored in

memory.

Then how are we going to deal with this problem? There are three ways to eliminate

this problem. We can design compilers that re-order the instructions so that the

depended instruction is executed at least two clock cycles later; register file is written

in the first half of the clock cycle and read in second half, thus a register can be

written and then read in the same clock cycle. Compilers re-order the instructions

creating delay slots between the depended instruction and the instruction that

produces the wanted result, and fill them with other instructions. The main problem

of this approach is that there are much more data dependencies in a usual code than

compilers can handle.

The second approach is just to stall the depended instruction for 2 clock cycles

suspending the execution of the pending instruction and those that follow. This is an

easy solution but the overall delay is very long. We can imagine these stalls like

“bubbles”. Pipeline bubbles practically mean that there is not work to do. These

bubbles are implemented by inserting NOP (No Operation) instructions that simply

do not do anything.

 The best solution is to send the desired data, right after they are produced, to the

stage that they are needed. The technique that data is send from one pipeline stage to

another is called forwarding or bypassing. In our examples, we can send the result of

the ADD instruction from the EX stage to the EX stage of the depended MUL

instruction. In the second example, we can forward the result data from the EX stage

of SLL instruction to the EX stage of the LW instruction. In the third example though,

the desired data are available in the MEM stage of LW instruction. This means that

we cannot only forward them to the EX stage of ADD instruction because they are

available in the next clock cycle. Therefore, a stall is unavoidable. Data dependency

of R-type instruction after a LW instruction is settled by stalling the pipeline and

forwarding the desired data from the MEM stage of LW instruction to the EX stage of

R-type instruction. In the last example, we can send the memory read data from the

MEM stage of LW instruction to MEM stage of SW instruction so that the correct

data are written in memory. We can see the data forwards in the Figure 2.12.

2.2. MIPS Pipeline

17

 1 cc 2 cc 3 cc 4 cc 5 cc 6 cc 7 cc

ADD $8, $7, $3 IF ID EX MEM WB

MUL $16, $8, $9 IF ID EX MEM WB

SLL $14, $8, $9 IF ID EX MEM WB

LW $20, 8 ($14) IF ID EX MEM WB

LW $20, 21388 ($9) IF ID EX MEM WB

NOP

ADD $21, $13, $20 IF ID EX MEM WB

LW $20, 21388 ($9) IF ID EX MEM WB

SW $20, 1048($7) IF ID EX MEM WB

Control hazards

Control hazards refer to the hazards that arise from control flow instructions and the

fact that branch decision is made in the EX stage. More specifically, until branch

decision is made, two more instructions are fetched. That means that pipeline cannot

always fetch the right instruction. Thus, we need to settle this problem. There are two

main solutions; pipeline stall on every branch instruction and branch prediction. In

the first solution (see Figure 2.13) we just have to wait until branch outcome is

determined before fetching next instruction. In order to decrease pipeline stalls, the

branch decision is taken in the ID stage. This enhancement demands more hardware

for the branch condition check, the computation of the branch target address and for

the PC update. The main problem of this approach is that stalling the pipeline on

every conditional branch becomes unacceptable.

Figure 2.12 Forward technique in MIPS pipeline. Data forward is represented with

a green arrow from the stage that forwarded data is produced to the stage that is

received. We can forward data between EX stages, MEM stages and between MEM

and EX stage. In LW – R-type data dependency, bubbles are inserted for a single

cycle stall.

2.2. MIPS Pipeline

18

 1 cc 2 cc 3 cc 4 cc 5 cc 6 cc 7 cc 8 cc 9 cc

ADD $8, $7, $3 IF ID EX MEM WB

BEQ $16, $9, 1908 IF ID EX MEM WB

SUB $21, $4, $6 IF ID EX MEM WB

.

.

.

SLL $14, $8, $9 IF ID EX MEM WB

ADD $8, $7, $3 IF ID EX MEM WB

BEQ $16, $9, 1908 IF ID EX MEM WB

NOP

.

.

.

SLL $14, $8, $9 IF ID EX MEM WB

In real life every human can make decisions depending on some predictions he

makes. For example, someone decides to take an umbrella if the weather is cloudy

because it is possible to rain. Prediction can also be applied in branch instruction. In

branch predictions, we assume that every branch is always untaken. In this case if

the prediction is correct, there is no penalty in the execution time and pipeline

proceeds at full speed. With this approach we can noticeably decrease the pipeline

stalls. For a more realistic approach, because not all branches are untaken, we can

predict some branches as taken and some others as untaken. There are two methods

for more realistic branch prediction, the static and the dynamic methods. Static

branch prediction is based on typical branch behavior while dynamic records recent

history of a small amount of branches assuming that future behavior will continue

the trend. In all cases, when prediction is wrong, pipeline is stalled while fetched

instructions are flushed. The correct instruction is then fetched. Figure 2.14 shows the

pipelined MIPS datapath including the hazard detection and forwarding data units.

For further information about branch prediction and a more detailed description of

MIPS microprocessor you can refer to Computer Organization and Design 4th

edition, written by David A. Patterson and John L. Hennesy. A list of MIPS

instructions and their opcode values can be seen in Appendix.

Figure 2.13 MIPS pipeline control hazard. The branch decision is made in the ID

stage of BEQ instruction in 3rd clock cycle. We can see that SUB instruction is

incorrectly fetched in the first example. In the second example pipeline is stalled

preventing from fetching wrong instructions. Instruction is fetched right after branch

outcome is determined.

2.2. MIPS Pipeline

19

Figure 2.14 Pipelined MIPS datapath with hazard detection and forwarding units.

This figure does not include figure’s 1.15 control unit and connections for simplicity

reasons.

20

Chapter 3

Implementation of MIPS coprocessor 0

We have discussed about MIPS coprocessor 0 in chapter 2 and now it is time to

describe the way we implemented its architecture. The first thing we have to do is to

implement the pipeline stages. Therefore, we need to implement all four pipeline

registers and all the functional units such as instruction and data memories and the

ALU. The WB stage is just a selection of write back data that are sent to decode unit;

hence we do not implement it as a separate unit.

3.1 Implementing pipeline stages

MIPS coprocessor 0 begins an instruction execution by fetching it from instruction

memory. We consider instruction memory as a black box for now and we will

discuss about it in details later in memory hierarchy chapter (Ch. 4). Instruction

memory has a 32-bit memory address input and provides a 32-bit memory data read

output depending on this address.

3.1.1 Instruction Fetch unit

The fetch unit implements the instruction fetch logic. It has to read an instruction in

every clock cycle from instruction memory, increment PC by 4 and set the new PC.

The fetched instruction and the PC+4 values are stored in the IF/ID pipeline register.

New PC can be the next instruction address (PC+4), the branch target address or the

jump target address. Hence, the fetch unit should be implemented as shown below in

Figure 3.1. We can also see the pseudocode of this unit in Figure 3.2.

3.1. Implementing pipeline stages

21

3.1.2 Instruction Decode unit

Decode unit is in charge of the instruction decode, the control signals generation and

reading and writing the register file. This unit reads the fetched instruction from the

IF/ID pipeline register, decodes it, and generates the pipeline and ALU control

signals depending on the decoded instruction’s opcode field. The decoded

instruction’s fields and the pipeline control signals are maintained in SystemVerilog

Figure 3.1 Fetch unit diagram.

Figure 3.2 Fetch unit implementation pseudocode

3.1. Implementing pipeline stages

22

structures. The sign-extended immediate value is also stored as a decoded

instruction’s field. These structures are propagated to all pipeline stages through the

pipeline registers.

Register file is written in the WB stage and must be written only when it is permitted.

Therefore, decode unit should have a register file write enable input which is

practically a control signal read from MEM/WB pipeline register. Register file can be

written and read in the same cycle. That means that we must enable writing and

reading a register in the same clock cycle. This can be implemented by checking the

decoded source destination registers and the destination register. If one of the source

registers is equal to the write back destination register that means we need to write

and read in the same cycle, so we just have to send the write back data to the next

stage. Furthermore, $0 register has always a zero value; we must take care of not

writing data into $0 register. In link jumps we must write in register file the address

of next instruction. Do not forget that the destination register of link jump

instructions is register $31. A control signal that indicates a link jump will select $31

destination register. We can see the decode unit diagram and the implementation

pseudocode in Figures 3.3 and 3.4.

Figure 3.3 Decode unit diagram.

3.1. Implementing pipeline stages

23

Figure 3.4 Decode unit implementation pseudocode

3.1. Implementing pipeline stages

24

3.1.3 Instruction Execution unit

The execution’s unit main purpose is to perform the ALU operation. The ALU

operation is based on the ALUOp control signal and on the Funct field of the

decoded instruction. The ALU operation operands and control signals are read from

the ID/EX pipeline register. ALU operand B can be also the sign extended immediate

value and it is controlled by the ALUSrc control signal. Execution unit also computes

the branch and jump target addresses and decides whether the branch is taken or

not. Branch is taken for BEQ instruction when branch on equal signal is true and

Zero bit is set, whereas Branch is taken for BNE instruction when branch not equal

signal is true and zero bit is not set. For these computations, PC+4 (read from ID/EX

pipeline register) and PC values are needed. Based on the RegDst control signal,

execution unit decides whether destination register is Rd or Rt. Figure 3.5 illustrates

the diagram and Figure 3.6 the pseudocode of the execution unit.

Figure 3.5 Execution unit diagram.

3.1. Implementing pipeline stages

25

3.1.4 Instruction Memory Access unit

This unit implements the MEM stage logic of the pipeline. In this stage we need only

to access data memory. Data memory is read or written at a specified 32-bit address.

The memory data object that is read or written varies in size which is controlled by

control signals generated in the ID stage. This data size can be a byte, half-word or a

word. Simultaneous memory read and write are not allowed; an error signal is

generated otherwise. Memory write data is the register file operand B that is read

from EX/MEM pipeline register; Rt register of SW instruction contains the store data.

We consider data memory as a black box for the purposes of this chapter as we did

for the instruction memory. In chapter 4 we will describe in details the memory

hierarchy. Figures 3.7 and 3.8 show the diagram and the pseudocode of memory

access unit.

Figure 3.6 Execution unit implementation

pseudocode

3.1. Implementing pipeline stages

26

Figure 3.7 Memory Access unit diagram.

Figure 3.8 Memory Access unit implementation

pseudocode

3.2. Confronting Pipeline hazards

27

We now have to integrate those units in a bigger system that implements the

pipeline. We also insert pipeline registers between all stages and PC register. These

registers are just entities of SystemVerilog register data type.

3.2 Confronting Pipeline hazards

This datapath supports R-type signed and unsigned instructions, memory access

instructions, I-type signed and unsigned instructions, branches and all jumps

including register direct jumps. The next step is to take pipeline hazards into

consideration. At first, we will deal with the control hazards and then with the data

hazards. Branch instruction’s decision is taken in EX stage. When a branch is

detected, pipeline continues its execution, fetching the following instructions. When

the branch is taken, two instructions have been fetched and need to be flushed. In

this implementation, when the branch taken signal is set, we have to flush the IF/ID

and the ID/EX pipeline registers. This can be made easily by setting all their fields to

zero value. This action generates bubbles preventing from executing the instructions

that were incorrectly fetched. As regards to the structural hazards, we follow the

separate instruction and data memory model and take care that every functional unit

is used by only one instruction in a clock cycle, therefore structural hazards are

eliminated.

3.2.1 Data Forward unit

Data forward unit detects the data hazards and forwards the right data where they

are needed. We must first deal with the data dependencies after an ALU instruction.

ALU instructions produce their result in the EX stage. Therefore, we do not have to

wait for the result to be written in register file; we can forward it right after it is

produced instead. Moreover, ALU result is forwarded from the EX/MEM pipeline

register, where it is stored, to the EX stage of instructions that need it to continue

their execution. ALU data dependency can also exist between ALU instructions

where the ALU result is produced two cycles before the execution of the second

instruction, thus we need to forward ALU result data from MEM/WB to the EX stage

of the depended instruction. Execution stage data dependency is detected by

checking for register number equality. The first instruction’s destination register

must be at least equal to one source register of the depended instruction. We still

have to consider some restrictions of MIPS architecture; we know that register $0 has

always a zero value and that not all instructions write back data into register file.

Register file write back is controlled by a write enable control signal. Hence, we need

to forward only when the register file write enable signal and the destination

3.2. Confronting Pipeline hazards

28

2

register, both read from EX/MEM or MEM/WB pipeline registers, are 1 and not the

$0 register respectively.

ADD $8, $7, $3

MUL $16, $8, $9

SLL $14, $8, $9

LW $20, 8 ($14)

ADD $8, $7, $3

SUB $22, $22, $23

MUL $16, $8, $9

ADD $8, $7, $3

MUL $8, $8, $9

SUB $9, $21, $8

The second forward connection also resolves the load data dependency after a LW

instruction. In this case though, we forward the memory read data from the

MEM/WB pipeline stage to the EX stage of the depended instruction, instead of the

ALU result. If there is a load data dependency between LW and the right-following

instruction (load-use data dependency) we have to stall the depended instruction for

one cycle and then forward the memory read data from MEM/WB pipeline register

to the EX stage. Load-use data dependency is detected when the LW instruction is

decoded. In the ID stage we have to check if the generated memory read signal is set,

indicating a LW instruction. If it is set, we have to check then if there is a load-use

data dependency. This can be achieved by checking for equality between the

destination register of the decoded LW instruction and the source registers of IF/ID

pipeline registers.

If the instruction that immediately follows the LW instruction is SW and the

depended register is not the source register but the destination register of SW, we

have to forward the load data from MEM/WB pipeline register to the MEM stage of

SW instruction. We can detect this data hazard by checking the memory read control

signal of MEM/WB pipeline register (indicates a LW instruction), the memory write

control signal of EX/MEM pipeline register (indicates a SW instruction) and then

check if the destination register numbers of MEM/WB and EX/MEM pipeline

registers are equal which means that we have a dependency. The data forward

1

1

1

1

Figure 3.9 Data Forwarding paths Path 1 and 2 show the data forwarding to EX

stage from EX/MEM and MEM/WB pipeline registers. Notice in last example that the

most recent dependency has the biggest priority, therefore data is forwarded from

path 1.

IF

Unit

ID

Unit

EX

Unit

MEM

Unit

IF/ID ID/EX EX/MEM MEM/WB

1

2

3.2. Confronting Pipeline hazards

29

diagram contains one more connection from MEM/WB pipeline register to MEM

stage as shown in Figure 3.10.

We now have to implement the forward data unit. The inputs of this unit are the

source registers read from ID/EX pipeline register, the destination register and the

control signals read from EX/MEM and MEM/WB pipeline registers. It checks for the

forwarding conditions and generates forward signals that control multiplexors.

These multiplexors select the forwarded data in EX and MEM stage when there is a

data dependency. The diagram of the forward unit and the forward conditions can

be seen in Figures 3.11 and 3.12. Pseudocode is shown in Figure 3.13.

Figure 3.10 Data Forwarding paths including MEM to MEM data

forward

IF

Unit

ID

Unit

EX

Unit

MEM

Unit

3

2

1

IF/ID ID/EX EX/MEM MEM/WB

Figure 3.11 Data Forward unit diagram.

3.2. Confronting Pipeline hazards

30

Forward to EX

EX hazard

 if(EX/MEM.RegWrite and (EX/MEM.RegRd ≠ 0) and (EX/MEM.RegRd = ID/EX.RegRs))

then ForwardA = 10

 if(EX/MEM.RegWrite and (EX/MEM.RegRd ≠ 0) and (EX/MEM.RegRd = ID/EX.RegRt))

then ForwardB = 10

MEM hazard

 if(MEM/WB.RegWrite and (MEM/WB.RegRd ≠ 0)

 and (MEM/WB.RegRd) = ID/EX.RegRs)

 and not (EX/MEM.RegWrite and (EX/MEM.RegRd ≠ 0)

 and (EX/MEM.RegRd = ID/EX.RegRs)))

then ForwardA = 01

 if(MEM/WB.RegWrite and (MEM/WB.RegRd ≠ 0)

 and (MEM/WB.RegRd) = ID/EX.RegRt)

 and not (EX/MEM.RegWrite and (EX/MEM.RegRd ≠ 0)

 and (EX/MEM.RegRd = ID/EX.RegRt)))

then ForwardB = 01

Forward to MEM

 if(MEM/WB.RegWrite and (MEM/WB.RegRd ≠ 0)

 and (MEM/WB.RegRd) = EX/MEM.RegRd)

 and (not MEM/WB.ReadMem and EX/MEM.WriteMem))

then ForwardToMem = 01

 if(MEM/WB.RegWrite and (MEM/WB.RegRd ≠ 0)

 and (MEM/WB.RegRd) = EX/MEM.RegRd)

 and (MEM/WB.ReadMem and EX/MEM.WriteMem))

then ForwardToMem = 10

Figure 3.12 Forward Conditions Forward to EX conditions control the data forward to

EX stage and Forward to MEM conditions control the data forward to MEM stage.

Forwarding to MEM stage is needed for data dependency to SW instructions. Notice

that the second case of forwarding to MEM is a SW after LW destination register

dependency. Data is forwarded from MEM stage of LW to MEM stage of SW. There is

no need for pipeline stall.

3.2. Confronting Pipeline hazards

31

We now have to modify the execution and memory access units in order to use these

forwarded data correctly. Note that execution unit can use the forwarded data as

ALU operand A or ALU operand B. Hence, we have to insert multiplexors that

select data for ALU operand A and ALU operand B based on the ForwardA and

ForwardB signals. The same tactic is followed in the memory access unit; we insert

multiplexor to select the memory write data, based on the ForwardToMem signal.

Figure 3.13 Data Forward unit implementation pseudocode

3.2. Confronting Pipeline hazards

32

Figure 3.14 Modified Execution unit diagram. Data Forwarding to EX

stage is now supported. RF Write Back Data can be MEM/WB ALU out

or MEM/WB memory read data.

Figure 3.15 Modified Memory Access unit diagram. Data Forwarding

to MEM stage is now supported.

3.2. Confronting Pipeline hazards

33

3.2.2 Data hazard stall unit

We have implemented all the necessary data forwards but we also have to

implement the stall unit so that load-use data dependency is resolved. Data is

correctly forwarded to EX stage but we have to delay the depended instruction by 1

clock cycle. As mentioned before, the check for load-use data dependency is made

during the ID stage of LW instruction. Stall unit needs the Rs and Rt fields of the

fetched instruction that is read from IF/ID pipeline stage, the destination register of

the decoded instruction which is read from ID/EX pipeline register and the memory

read enable control signal read from ID/EX pipeline register. We also have to check if

the depended instruction is SW, because in that case we don’t have to stall the

pipeline; data is forwarded from MEM stage of LW to MEM stage of SW. Therefore,

the just generated memory write control signal is needed.

This unit generates an output stall signal when the ID/EX read memory control

signal is 1 (indicating a LW instruction) and the currently generated write memory

control signal is 0 (indicating that the depended instruction is not SW). At the same

time, ID/EX destination register and at least one of the source fields of the instruction

word must be equal. When stall signal is generated, pipeline must wait for one cycle.

We implement pipeline stall by setting the control signals of ID/EX pipeline register

to zero and preventing from PC update while the stall signal is set. The current

instruction and the following instruction are decoded and fetched again. Instruction

fetch unit must be also modified in order to read the instruction memory only when

there is no stall signal. So, line 15 of the instruction fetch unit implementation

pseudocode (Figure 3.2) is modified to:

34

Chapter 4

Memory System hierarchy

Till now we have assumed instruction and data memories as black boxes. In this

chapter we will discuss about memory hierarchy and memory implementation.

There are forms of data storage that vary in access time and size such as registers and

RAM that CPU can directly access. These are processor components that enable the

instruction’s execution.

Registers are very small and very expensive components because accessing them

must be very fast and multi-directional. On the contrary, RAM is a very big and at

the same time very slow data storage component. Registers are used as data storage

components in cases that fast access is needed and RAM memory in other cases.

RAM is the main memory component of CPU; it is a very big and slower than

registers memory component. The data produced by a program’s execution is

extremely larger than the data storage space that registers can provide, hence

continuously writing and reading RAM has a drastic impact on processor’s

performance. Therefore, a problem of an effectively fast and large enough data

storage component has arisen.

Engineers have come to a solution by designing a memory hierarchy model (Figure

4.1) which consists of several data storage levels; small and fast memory components

are combined and utilized with big and slow memory components giving the

impression of a single, very large and very fast memory. This solution is based on the

observation that programs tend to use the same set of data items or nearby sets over

and over again. The trend of using the same data item is known as temporal locality

and the trend of using nearby data items is known as spatial locality. These types of

data item reference locality form the principle of locality, a very crucial principle in

computer science. In practice, memory system hierarchy is a set of data storage

4.1. Cache memory

35

components with different storage capacities, costs and access times. Memory

hierarchy levels differ in speed and size; every level closer to CPU is smaller and

faster. In order to improve processor’s performance, one more memory level is

placed between CPU registers and RAM. This type of memory is called Cache

memory.

4.1 Cache memory

Cache memory is a smaller and faster than RAM memory component and is located

in CPU. It is practically a very fast copy of RAM. Cache memory is designed to

contain the data from frequently used memory locations, taking the advantages of

locality principles. The size of cache memory (usually 4, 8 and 16 KB or MB) is much

smaller than the main memory because it must be included in the processor chip and

because cache memories are really expensive. The minimum amount of information

that can be stored in cache is called block or line. A cache request means that

processor needs data that are very likely stored in cache. If the cache memory

contains indeed the requested data, we have a cache hit and request is quickly

served. If the cache memory does not contain the requested data then we have a

cache miss. When a cache miss occurs, processor requests the lower level of memory

hierarchy (main memory) for retrieving the line containing the requested data. The

critical problem of cache misses is that the lower memory level is much slower. That

means that there is a penalty in memory access time because the requested data must

be read from main memory. After lower memory level access, cache must be

updated with the requested data and finally data must be delivered to processor.

Figure 4.1 Memory System Hierarchy. Access time and cache size

increase as we go to lower levels. Lower levels are also cheaper to

implement. Data is copied between only two adjacent levels at a time [1].

4.1. Cache memory

36

4.1.1 Multi-level cache

In order to decrease the miss penalty, engineers have inserted additional levels of

caching. This technique uses a multi-level cache so that the requested data is found

in the next cache level avoiding the search in RAM. It is practically a cheap

expansion to the cache with slower, cheaper and bigger additional lower cache

levels, but still faster than the main memory. The multi-level cache can consist of

three levels; L1, L2 and L3 levels. If a cache miss is occurred in L1 cache then the

requested data is searched in L2 cache. If there is a hit in L2 cache, the requested data

is stored in L1 cache and delivered to processor. If there is a miss, the requested data

will be searched in L3 cache. If there is a miss in all three cache levels, the requested

data will be retrieved from main memory with a bigger penalty though.

4.1.2 Cache memory mapping

There are three techniques used to map memory lines to cache lines. These

techniques are direct mapping, fully associative mapping and set-associative

mapping [1] [2] [11].

Direct mapping

In direct mapping each memory line can be mapped directly to one and only location

in cache. This means that each location in RAM has one specific place in cache where

the data will be held. Memory lines are mapped to cache lines using the following

formula:

(Block address) modulo (Number of blocks in cache)

That means that memory line j is mapped to cache line j modulo 256 for a cache with

256 lines. In Figure 4.2 we can see the organization of a direct-mapped cache and the

way memory address is translated.

4.1. Cache memory

37

The memory address is divided in three fields; the tag, the index and the byte offset

field. The byte field defines the byte in the line. If the line size is M then the bits

needed to specify the byte offset are log2M. The index field defines the cache line. If

cache has N lines then the index field has log2N bits. Tag field contains the rest part

of the address and is used to check whether a word in the cache corresponds to the

requested word. If a memory address is L bits then tag bits are L – M – N. There is

also a valid bit entry. This flag indicates whether the cache line contains valid data or

not.

A cache entry search is made by comparing the tag field with the tag entry in the line

that is indexed by the index field. If valid bit is set and data is found request is served

and hit signal reports a cache hit. It is the simplest way of mapping but it has a high

miss rate. One solution to the high miss rates is to increase the cache line size [12]

[13]. Increasing the cache size though, results in less cache line entries. Therefore, the

competition for cache line entries is getting bigger. This can result in a very quick

replacement of cache lines, which is practically opposed to the locality principles,

Figure 4.2 Direct-mapped Cache This cache has 1024

lines, which means that log21024 = 10 bits are used for

index field. The line size is 32 bits, so we have 4 bytes in

a cache line and byte offset field is log24 = 2 bits. The

remaining 32 – 10 – 2 = 20 bits are the tag field bits.

4.1. Cache memory

38

limiting the benefits in the miss rate. Hence, reasonable cache line sizes are chosen.

Figure 4.3 shows the relation between cache miss rate and cache line size.

Fully associative mapping

Direct mapping has a major contention problem. Two memory lines can be mapped

in the same cache line, so one must take the place of the other even if cache is really

empty. Associative mapping technique deals with this problem; any memory line

can be mapped anywhere in cache. This technique has the best hit rate because there

is less competition for cache entries but another problem arises. How can we locate

the cache line where the data is stored since it can be stored in any cache line? This

means that we have to check all cache entries in order to locate the requested data.

Therefore, fully associative mapping improves cache utilization, as all cache lines

will be used, but at the expense of speed. Parallel check of all cache tags can be a

reasonable tactic to speed up the check but it is expensive and requires more circuit

complexity. This technique is feasible only for very small cache memories [10]. The

index field is no more useful, therefore memory address is divided into tag and byte

offset fields.

Set-associative mapping

The set-associative mapping is practically a compromise technique. It is a

combination of the direct mapping and the fully associative techniques. The cache is

now divided into sets and every set contains multiple cache lines. In this technique,

Figure 4.3 Cache miss rate and cache line size relation. This

diagram is based on the results of SPEC92 benchmark. Note that

increasing the cache line to a size nearly equal to the cache size

increases the miss rate.

4.1. Cache memory

39

every memory line is mapped to one and only set in cache (Direct mapping) but it

can be mapped to any line in the set (Fully associative). The cache lines that a set

consists vary from 2 to 16. This technique is surely cheaper and faster than the fully

associative mapping, has a lower miss rate, but it is yet slower than direct mapping.

The set that contains a requested memory line is given by the formula:

(Block address) modulo (Number of sets in the cache)

 A cache that contains M lines in total is called N-way set associative cache for some

N that divides M. Every set consists of N lines and is indexed by the index field of

memory address. Direct and fully associate mapping techniques are extreme

versions of set-associative technique. Direct mapping is the 1-way set associative

case; every set has one way, hence one cache line, so every memory line is mapped to

one cache line. On the other hand, fully associative is a set-associative case where N

is equal to the lines that cache contains in total. In that case cache consists of one set

and every memory line can be mapped anywhere in this set. Even though direct-

mapped caches have more conflict misses due to their lack of associativity, their

performance is still better than set-associative caches when the access time costs for

hits are considered [13]. Figure 4.4 illustrates a 4-way set-associative cache.

Figure 4.4 Organization of a 4-way set-associative cache. Index field

is used to select the set. Every tag in a set is compared to the given tag.

4.1. Cache memory

40

4.1.3 Cache line replacement algorithms

When a cache miss occurs, the requested data must be stored in cache after it is

retrieved from the lower level. In direct mapped caches, there is only one possible

cache line each time that will be replaced if occupied. In set-associative caches if all

the possible cache lines in the set are occupied, where will the requested data be

stored? The answer is given by an algorithm which defines the way that cache lines

are replaced. There are several cache line replacement algorithms because there is no

common wisdom about the best one [14]. We will discuss about Bélády's algorithm,

LRU, MRU, FIFO and random replacement algorithms. All these algorithms except

Bélády's and random replacement utilize a history of the references in cache. Note

that in fully associative caches, all cache lines are candidates for replacement.

Bélády's algorithm

Bélády's algorithm is an optimal replacement algorithm. In this algorithm the cache

line that is chosen to be bumped out of cache is the one that will not be used for the

longest time in the future. This algorithm is practically impossible to be implemented

because we are not able to know when a cache line will be needed in the future. In

some cases we can predict the behavior of a program but still it is not enough.

Bélády's algorithm is a very good metric though; we can compare the results of other

replacement algorithms and retrieve important information about the effectiveness

of a replacement algorithm.

Least Recently Used algorithm (LRU)

This algorithm is the most commonly used. The cache line that will be replaced is the

one not used for the longest time. In order to implement this algorithm, additional

complexity is added to the cache circuitry; we need flags that indicate when a cache

line was last referenced. The implementation of LRU is getting much more difficult

to implement as the associativity increases. Because of this fact, a lot of algorithms

such as PLRU (Pseudo LRU) were proposed to reduce the hardware cost of LRU by

approximating the LRU algorithm [14].

FIFO algorithm (First-In – First-Out)

FIFO algorithm just replaces the cache lines in a sequential order. The one that was

stored first in set (also the one that is the longest time in set) will be replaced.

4.1. Cache memory

41

Most Recently Used algorithm (MRU)

This algorithm is equivalent to the LRU with the difference that the cache line that

was last referenced will be replaced. The implementation is also similar to LRU.

MRU is the best algorithm for cycle references (e.g. loop) [15].

Random replacement algorithm

It is the simplest to implement algorithm because it does not take cache reference

history into consideration. In this algorithm the cache line that will be replaced is

chosen randomly. This algorithm has tolerable results in most cases.

4.1.4 Cache Write strategies

There are two main strategies for writing data in cache: write through and write back

strategies [1] [16].

Write through strategy

In write through strategy, data must be written in cache and in the lower memory

hierarchy level. This strategy is easy to implement, offers safety because the lower

memory hierarchy always contains a copy of the updated data, but it is quite slow

because two writes must be made each time.

Write back strategy

In write back strategy, data is written only in cache. The modified cache line is

written in lower memory hierarchy level only when the cache line is replaced. But

how hardware can know when cache line is modified? For this purpose, a flag bit

called dirty bit is inserted in cache. Dirty bit indicates, when set, that the cache line is

modified. If dirty bit is set, this strategy directs to write data in the lower memory

hierarchy level. This strategy offers very fast writes and low overall writes latency

because multiple writes are gathered and then performed together in one write.

However, it is very hard to implement and there is a risk because the lower memory

hierarchy is not always consistent with the cache.

4.2. L1 cache implementation

42

Write policies in case of write miss

In case of write miss, there are two policies that we can follow. Write allocate which

writes data in cache and then a write-hit operation follows and no-write allocate

which does not write data in cache but only in the lower memory hierarchy.

Therefore, write through strategy uses no-write allocate policy in order to avoid

back-to-back writes as write through strategy writes data in the lower memory

hierarchy level. Furthermore, write back strategy uses write allocate policy hoping

that there will be subsequent read or write hits [16].

4.2 L1 cache implementation

4.2.1 Setting up cache

The memory system consists of a L1 cache and the main memory. We are now ready

to implement the L1 cache which will be used in instruction and data memories. The

cache will be parameterized allowing us to choose the cache size, the line size and

the associativity. Cache size and cache line must be given in Bytes and the

association ways in integer value. In our design cache size is 4096 Bytes (4KBytes),

block size is 8 Bytes (2 words) and set associativity ways are 4.That means that we

need 3 bits for the byte offset field. We have 4KBytes/8Bytes = 512 cache lines, thus

we have 512 cache lines / 4 ways = 128 cache lines in each way; hence index field size

is 7 bits. Consequently, tag field size is 32 – 7 – 3 = 22 bits. In order to compute these

values a unit that computes a log2 value was implemented. This unit gets a 32-bit

vector, and outputs the log2 value of this vector. Cache is implemented with registers.

For the tag comparison, tag comparator units are dynamically generated depending

on the associativity. Every tag comparator compares the tag of one way to the tag

value of the given address. Hit signal is generated by checking all tag comparators

output and the valid bit of the requested cache line. Main memory is 1MB size

(parameterizable) and is implemented as a two dimensional array.

4.2.2 Implementing the interface

The next step is to implement the way CPU, Cache and RAM interact with each

other. For this purpose we implement an interface that consists of a few request and

response structures. When CPU requests to read or write cache we need the memory

address that will be translated, the write data and a read or write bit informing cache

for the operation service. In case of a read cache request, if cache contains the

requested cache line, a hit occurs and cache responses with the read data, hit signal

4.2. L1 cache implementation

43

and a bit that informs CPU that the request is served. For a cache read miss, cache

informs CPU by setting a miss signal. When a cache read miss occurs, then the

requested data must be retrieved from main memory and then written back in cache.

Cache generally must be able to read or write data in main memory. Therefore, cache

to main memory request contains two bits that define if we have to read or write the

main memory, a chip select signal, an output enable signal, a vector for the memory

access address and a vector for the write data. The main memory’s line is of two

words size. The main memory responses with the requested data, a valid bit that

indicates the validation of read data and a signal that informs that the memory

response is done. Table 4.1 shows the interface between CPU, cache and main

memory.

Request Structure Fields

CPU to Cache

32-bits Access address

64-bits Data to write in Cache

Read Signal

Write Signal

Cache to RAM

32-bits Access address

64-bits Data to write in RAM

Chip Select Signal

Write Enable Signal

Read Enable Signal

Output Enable Signal

Response Structure Fields

Cache to CPU

64-bits Data returned from Cache

Hit Signal

Miss Signal

Done Signal

RAM to Cache

64-bits Data returned from RAM

Valid Signal

Done Signal

4.2.3 Implementing the cache controller

Cache behavior is controlled by a controller. Controller is implemented as an FSM

determining about the operations of the cache. This FSM consists of five stages. On

reset signal cache is in an idle mode which means that there is no operation to be

made. After this idle stage, cache controller directs cache to be in a read or write

mode. Cache now is ready to accept read or write requests from CPU. If there is a

Table 4.1 Interface between CPU, Cache and RAM. All

vectors are parameterizable.

4.2. L1 cache implementation

44

read hit, requested data is outputted while the done bit is set indicating that cache

read is done successfully. Cache continues to be in read/write mode. If a read miss

occurs, cache controller directs cache to request the data in main memory.

Cache is now in a ram request mode, requesting for a read service. In this stage ram

is requested to return the data to cache and when data is ready (ram data is ready

when ram response valid and done bits are set), they are written in cache. Cache

controller searches for an empty cache line in the set by checking the valid bit in

every way. If there is not free cache line, cache controller writes the data in a random

chosen cache line in the set. We will describe later how random replacement policy is

implemented. When the requested data is successfully written in cache, cache is

again directed in the read/write mode and cache response done signal is set. In cases

that cache is in a read/write mode but neither hit nor miss signal is set, then cache

controller directs cache in an error stage informing CPU than a cache read/write error

occurred.

The requested data is now found, so there is read hit and cache read data is delivered

to CPU. Remember that cache line has a two-word size which means that it contains

two words while CPU utilizes 32-bit instruction or data vectors. Therefore, we must

select which word is needed from the data that was just read from the cache line.

This is implemented by selecting the needed bytes depending on the byte offset

value. If the MSB of the byte offset is 0 then we select the first word of the cache line

(Byte 0 – 3). If it is 1 we select the second word (Byte 4 – 7) instead.

The write strategy that we are going to follow is write through with write allocate

policy because our future goal is to support write back with write allocate strategy.

Therefore, when a write hit occurs, cache controller updates the cache line and

directs cache to request RAM for a write service while cache remains in a read/write

mode waiting for the next requests. When a write miss occurs, controller directs

cache to request RAM for a write service and brings the cache line in cache. When

writing data in RAM is done, controller directs cache to request a read service from

RAM. When RAM has served the request, data is written in cache by controller and

then cache returns again in the read/write mode waiting for the next request while

cache response done signal is set. In case that there is a write request but none of hit

or miss signals are set, cache is directed to an error stage. Note that simultaneous

read and write are not allowed. Figure 4.5 illustrates the cache controller FSM.

4.2. L1 cache implementation

45

4.2.4 Implementing random replacement policy

Random replacement policy is very easy to implement and has moderate results. In

our 4-way associative cache random policy works fine well. We don’t need to change

hardware in order to maintain a history of cache line references but we only need to

implement a random way to choose one of the four cache lines in a set to replace.

There are true random number generators (TRNG) that generate random numbers

from a physical process such as thermal or atmospheric noise. In our case, we will

implement a pseudo-random number generator; the same sequence of numbers is

repeated after time. In digital design, an entity called left feedback shift register

(LFSR) is used for pseudo-random number generation. This entity is just a shift

register whose input is a linear function of its previous state. There are two

commonly used LFSR formats; the Fibonacci and the Galois LFSR [17]. We will

implement a 4-bit Fibonacci LFSR (Figure 4.6). The initial state (also called seed) of

this LFSR is 1001 (9 in decimal system) and is set on reset signal. Note that generated

numbers are in the range of 1-15 so we need to restrict this range in 0-3, hence a

modulo operation is applied to the current state of LFSR.

Figure 4.5 Cache controller FSM

4.3. Integrating cache into system

46

4.3 Integrating cache into system

After implementation, we have to integrate cache in our system. An instruction cache

and a data cache are instantiated in fetch unit and memory access unit. Of course we

have to take care about connections. A ram response structure and a cache request

structure are respectively defined as input and output in fetch unit. We also have to

assign PC to the CPU request address and set the CPU request read signal in order to

read a cache line. Pipeline execution is continued only when instruction cache has

served the request, hence when cache response done signal is set. After reading a

cache line, we must select the right word depending on the MSB of the Byte offset.

Figure 4.7 shows how we should modify fetch unit pseudocode to support memory

cache.

Figure 4.6 Fibonacci LFSR diagram. The feedback

input is generated by an XOR gate.

Figure 4.7 Modified Instruction Fetch unit pseudocode to support

caching.

4.3. Integrating cache into system

47

Integrating data cache in our system is a similar process. We instantiate data cache in

memory access unit taking care for the connections. A CPU to data cache request

structure is defined and assigned with the correct values. A RAM response structure

is defined as an input, containing the RAM read data and the done signal, and a

cache response structure is defined as an output. We have to select again the right

data word. When a data cache miss occurs, pipeline must be stalled. Therefore, a stall

signal is generated for all the time that data cache miss signal is set. In Figure 4.8 we

can see the modified memory access unit pseudocode.

Figure 4.8 Modified Memory Access unit pseudocode to support caching.

48

Chapter 5

Implementation of MIPS coprocessor 1

As mentioned, MIPS coprocessor 0 is in charge of the system control and coprocessor

1 is a Floating-Point Unit (FPU) also called Floating-Point Accelerator (FPA). The

FPU instruction set includes all floating-point operations defined by the Floating-

Point Arithmetic IEEE Standard (IEEE-754). All coprocessor instructions use opcode

0100xx where last two bits specify the coprocessor number. Thus all floating-point

instructions use opcode 010001.

MIPS FPU has two 32-bits control registers for controlling the FPU and additional 32

registers of 32-bits each, called single precision registers. These registers are used

only for FPU operational purposes and are notated as $f0-$f31. $f0 register is not a

special register as $zero of coprocessor 0; it can hold any value, not just zero. The

IEEE-754 standard defines also an instruction group for double precision floating-

point arithmetic which needs 64-bit operands. Hence, in order to support double

precision arithmetic, recent MIPS architectures include 32 64-bits floating-point

registers however it is not backward-compatible [3]. Older versions can support

double-precision arithmetic by grouping single precision floating-point registers in a

pair of two. This technique results in 16 pairs of 64-bits in total, each one named by

the first register name; $f0 is the first double precision pair, $f2 is the second double

precision pair, $f4 is the third double precision pair, etc.

5.1 Floating Point formats in IEEE 754 standard

The IEEE-754 standard defines floating-point number formats, floating-point

arithmetic operations, conversions between other number formats, and floating-point

exceptions [3] [9]. It is the most common representation for real numbers on

computers. Floating-point numbers in IEEE-754 define single and double precision

5.1. Floating Point formats in IEEE 754 standard

49

Single Precision IEEE-754 format

 31 30 23 22 0

Figure 5.1

floating-point numbers. These numbers are stored following a scientific floating-

point number notation. Each floating-number can be formed by the below formula.

 (1)sign mantissa exponent

In this formula, sign indicates the sign, mantissa (also known as significand)

represents the precision and exponent represents the exponent of the real number.

Real numbers can have positive and negative exponents. Thus, a bias is added to the

actual exponent before it is stored. Bias value is 127 for single precision and 1023 for

double precision floating-point numbers. In IEEE-754 significand field has an implicit

MSB 1 for normalized floating-point numbers and now significand field can define a

24-bit value. Hence, the formula is transformed into the below form:

(1)sign (1 fraction) exponent

5.1.1 Single Precision format

1 bit 8 bits 23 bits

Sign Biased Exponent Fraction

In Figure 5.1 we can see the IEEE-754 binary representation format of single precision

floating-numbers. Single precision format can represent floating-point numbers in

the range of .0 10- up to .0 10 . The sign of the floating-number is stored in

the 1-bit sign field. Bit 0 indicates a positive number and bit 1 indicates a negative

one. The biased exponent is stored in the biased exponent field. The fraction field

contains the fraction value of floating-point number. Biased exponent is computed

easily by adding a value of 127 to the actual exponent. The 0 and 255 biased

exponents are used to indicate the floating-point underflow and overflow special

cases. Underflow refers to very small floating-point numbers and it means that the

non-zero floating-number cannot be represented because the exponent value is very

small to fit in the 8-bits field. Overflow on the other hand refers to very big floating-

point numbers and it means that the floating-number cannot be represented because

exponent is very big to fit in the 8-bits field. Therefore, the minimum and maximum

actual exponents that can be supported by single precision format are -126 and +127.

A floating-point underflow or overflow exception is thrown whenever an actual

exponent is smaller than -126 or bigger than +127.

5.1. Floating Point formats in IEEE 754 standard

50

Double Precision IEEE-754 format

 63 62 52 51 32

0

Figure 5.2

 31 0

5.1.2 Double Precision format

1 bit 11 bits 20 bits

Sign Biased Exponent Fraction

32 bits

Fraction (continued)

Double precision floating-point format is the solution to the underflow and overflow

problems of single precision format. The main idea was to enlarge the exponent and

fraction fields; larger and smaller values than single’s precision format exponent and

fraction can now fit. Figure 5.2 shows the double precision format where we can see

that the required bits are doubled to 64-bits (or 2 words). Double precision format

can represent floating-point numbers in the range of .0 10- 0 up to .0 10 0 . The

sign bit field remains 1 bit whereas biased exponent and fraction fields have turned

into 11 and 52 bits, respectively. Despite the fact that exponent and fraction fields

have been enlarged, underflow and overflow problems cannot be eliminated. Biased

exponent values from 0 up to 2047 now, indicating the floating-point underflow and

overflow special cases. Because bias value for double precision format is 1023, the

minimum and maximum actual exponents that can be supported are -1022 and

+1023.

In mathematics some values such as infinity and some special operations such as

division by zero are very crucial especially for approximate computation. IEEE-754

encodes and handles these special cases in a certain way. IEEE-754 reserves exponent

field values of all zeros and all ones to denote special values. These special values

and their IEEE-754 encoding are shown in table 5.1 below [2].

5.2. Fixed Point format

51

 31 30 0

Figure 5.3 32-bit and 64-bit Fixed-Point Format. Also called as Word type (or W- type)

and Longword type (or L type) format.

 31 0

 63 62 32

0

 Single Precision Double Precision

 Sign
Biased

Exponent
Fraction Special Value Sign

Biased

Exponent
Fraction Special Value

Positive Zero 0 0 0 0 0 0 0 0

Negative Zero 1 0 0 - 0 1 0 0 - 0

Positive Infinity 0 255 0 ∞ 0 2047 0 ∞
Negative

Infinity
1 255 0 - ∞ 1 2047 0 - ∞

Quiet NaN 0 or 1 255 ≠ 0 NaN 0 or 1 2047 ≠ 0 NaN

Signaling NaN 0 or 1 255 ≠ 0 NaN 0 or 1 2047 ≠ 0 NaN

Positive

Normalized

Non Zero

0 0 < e < 255 f 2e – 127(1.f) 0 0 < e < 2047 f 2e – 1023(1.f)

Negative

Normalized

Non Zero

1 0 < e < 255 f -2e – 127(1.f) 1 0 < e < 2047 f -2e – 1023(1.f)

Positive

Denormalized
0 0 f ≠ 0 2e – 126(0.f) 0 0 f ≠ 0 2e – 1022(0.f)

Negative

Denormalized
1 0 f ≠ 0 -2e – 126(0.f) 1 0 f ≠ 0 -2e – 1022(0.f)

5.2 Fixed Point format

MIPS FPU also supports fixed point arithmetic. Fixed-point representation is an easy

way to represent fractional numbers. Fixed-point values have the same format with

signed integers of coprocessor 0. To define a fixed-point number we need the width

of the number representation and the position of the binary point. Fixed-point format

is shown in Figure 5.3 below.

Sign Integer

Sign Integer

Integer (continued)

Table 5.1 IEEE-754 encoding of special floating-point values. A NaN (Not-a-Number) can be

produced by one of the following operations: ∞ − ∞, −∞ ∞, 0 ∞, 0 ÷ 0, ∞ ÷ ∞. Signaling NaN

signals an invalid operation exception whereas quiet NaN does not.

5.3. FP instruction format

52

31 26 25 21 20 16 15 0

FI-Type instruction format

31 26 25 21 20 16 15 11 10 6 5 0

FR-Type instruction format

5.3 FP instruction format

There are two FP instruction formats, the FR-type and FI-type format. These types of

format follow the same logic as in coprocessor’s 0 R-type and I-type formats but they

are reserved for use with floating-point numbers. FR-type format is used for floating-

point arithmetic instructions whereas FI-type is used for floating-point branches.

Opcode Fmt Ft Fs Fd Funct

Opcode Fmt Ft Immediate

The main difference is the Fmt field. Fmt field is used for specifying numerical data

type binary encoding. It specifies whether data type is single or double precision or

fixed-point. There are also reserved values of Fmt for certain instructions, such as

data transfer instructions between coprocessor 0 and FPU. These instructions use the

Fmt field as an extension to Funct field.

5.4 FP instruction set

FPU instruction set consists of arithmetic (including compare), conversion, data

transfer and conditional branch instructions. Arithmetic instructions use the FR-type

format and Fmt field specifies the operands’ and result’s data encoding. Fmt can be s

(Single precision), d (Double precision), w (Word fixed-point) and l (Longword

fixed-point) data binary encoding. Conversion instructions also use the FR-type

format and convert one data type to another. Hence, two operand fields of the FR-

type format are needed; the Fd and Fs fields. Fmt specifies the data type format of

the source register Fs. The unused Ft field is set to 0. Conversion can be made

between all formats.

Figure 5.5

Figure 5.4

5.4. FP instruction set

53

FPU has the ability to send and receive data to the system. Data can be transferred:

 Between FPU and coprocessor 0

 Between FPU and memory system

 Between all the floating-point registers (including the FPU control register)

Data transfer instructions for data transfer between FPU and memory system are

I-type instructions. Instructions for data transfer between FPU and coprocessor 0 are

FR-type instructions and they use two operand fields of the FR-type format; the Fd

and Fs fields. Data transfers between floating-point registers are also FR-type

instructions and take data type format of the transferred data into consideration.

Conditional floating-point branch instructions are equivalent to conditional branches

described before. The difference is that in floating-point conditional branches the

compare operands are floating-point values and instruction format is FI-type. These

branch instructions are also using a PC-relative addressing mode.

5.5 Implementing Floating Point Unit

We are now ready to describe the way that floating-point unit was designed and

implemented. The main idea was to find a generator that would create synthesizable

code for the floating-point arithmetic operations and to concentrate on the way that

all these operators would be combined and utilized efficiently. The next step was to

create all the data transfer instructions and finally to integrate successfully the FPU

in the system.

5.5.1 Generating FP arithmetic operators

FloPoCo is an open source generator of floating-point operators for FPGAs [18].

These operators are written in C++. It is a command-line tool and commands follow

the syntax: flopoco <options> <operator specification list>.

Command-line interface

FloPoCo options are the following [site]:

 target: Sets the target hardware family (e.g. target=virtex5).

 frequency: Sets the target in MHz (e.g. frequency=300).

 name: Replaces the name of the generated entity for the next operator(e.g.

name=fp_adder).

5.5. Implementing Floating Point Unit

54

Single Precision FloPoCo format Figure 5.6

 33 32 25 24 2 1 0

 plainVHDL: Instructs FloPoCo to output concise and readable VHDL, using

only + and * VHDL operators instead of FloPoCo adders and subtractors.

 useHardMult: Instructs FloPoCo not to use hard multipliers or DSP block.

 unusedHardMultThreshold: Instructs FloPoCo to use a hard multiplier

(or DSP block) if less than 30% of this hard multiplier are unused. The ratio is

between 0 and 1, such that 0 means: any sub-multiplier that does not fully fill

a DSP goes to logic; 1 means: any sub-multiplier, even very small ones, will

consume a DSP.

 pipeline: Requires the operators to be pipelined. If no, the operator will

be combinatorial. If yes, registers may be inserted if needed to reach the

target frequency

FloPoCo operators can be seen in this link: http://flopoco.gforge.inria.fr/operators.html

FloPoCo instruction representation format

FloPoCo format is practically an expansion to the IEEE-754 format. There are two

more LSB (exception field) bits that indicate whether the floating-point value is a

special case or not. The fraction and exponent fields are parameterized by two

integers wE and wF indicating the size of the exponent and fraction fields. For

instance, if we want to create a single precision FloPoCo formatted number we

should use wE=8 and wF=23 values.

1 bit 8 bits 23 bits 2 bits

Sign Biased Exponent Fraction Exception

The special value cases that Exception field encodes are the zero (00), normal

numbers (01), infinities (10) and NaN (11).

Installation and generating operators

We will use FloPoCo version 4. For the installation process you can visit the

following link: http://flopoco.gforge.inria.fr/flopoco_installation.html

We will create the arithmetic operators FPAddSub, FPMult, FPDiv, FPSqrt,

FPExp and FPLog. FloPoCo also provides operators for conversions between

FloPoCo and IEEE-754 formats, such as InputIEEE and OutputIEEE. All FloPoCo

operators use FloPoCo format, therefore we will use the InputIEEE to change the

FPU arithmetic operands from the given IEEE-754 format to FloPoCo format. When

FPU is done with the computation, the result needs to be converted again in IEEE-

http://flopoco.gforge.inria.fr/operators.html
http://flopoco.gforge.inria.fr/flopoco_installation.html

5.5. Implementing Floating Point Unit

55

754 format before it is stored in FPU register file. We can see the pipeline depth of the

generated entities in Figure 5.7.

5.5.2 Floating Point arithmetic instructions

We have generated the basic floating-point operators, now we have to design FPU.

FPAddSub, FPMult and FPDiv get two operand inputs in FloPoCo format and

produce a FloPoCo formatted result. FPSqrt, FPEx and FPLog need one FloPoCo

formatted operand input instead of two. We begin with instantiating all generated

modules. All floating-point instructions have the opcode 010001; when this opcode is

detected CPU sends a request signal, a FPU enable signal and the floating-point

instruction to FPU.

FPU then categorizes the incoming instructions. For this task, FPU stores the

incoming instruction in FIFO buffers for each type of floating-point instruction

operation. We have six operators, so we create six buffers. The size of these buffers is

parameterizable. Each buffer is controlled by a controller that gets the categorized

instruction and stores it in the corresponding buffer depending on the instruction’s

operation. This way we can execute floating arithmetic instructions in a parallel way,

if there is not data dependency of course. In addition, CPU can continue without

delays; it just sends the floating-point instruction without waiting an immediate

execution. Note that all FP arithmetic instructions in this design have a 10000 Fmt

field indicating single precision data type.

Figure 5.7 FloPoCo final report.

5.5. Implementing Floating Point Unit

56

The execution of arithmetic floating-point instructions begins by reading an

instruction from the buffers. Each buffer is read and every instruction that was just

read is executed in a specific pattern; instruction is decoded, executed and the result

is written back in the floating-point register file. In the FP decode stage every

instruction is split into the floating-point single precision IEEE-754 format fields. The

floating-point register file contains 32 registers of 32-bits each and is implemented in

a similar way with the CPU register file.

FloPoCo generated entities do not have a signal that reports the end of execution.

Therefore, the execution stage of floating-point arithmetic instructions is handled as

a stage of waiting FloPoCo operation entities to produce the result. The amount of

clock cycles, for the execution to be completed, depends on the pipeline depth of the

entity. For example, FPAddSub needs 10 clock cycles and FPExp needs 14 clock

cycles to produce their result. Every floating-point arithmetic operation is controlled

by a FSM which consists of four stages; idle, decode, wait for execution and write

back stages. This FSM can be seen in Figure 5.8.

What if a buffer cannot receive other instruction? If a buffer is full then we have to

inform CPU and wait for free space. We will use a 6-bit vector (equal to the amount

of buffers) and every j bit of this vector will indicate whether buffer j is full or not. If

a buffer’s index exceeds the size of the buffer, controller will set the corresponding

bit of the vector. The order of the arithmetic operation that corresponds to the vector

bits, beginning from the LSB, is addsub buffer, mult buffer, div buffer, sqrt buffer,

Figure 5.8 Floating-Point Operation control FSM The wait for execution stage

depends on the pipeline depth of the operation. In return stage the result is written

in floating-point register file. Every floating-point arithmetic instruction completes in

pipeline depth + 2 clock cycles from the time it is read from buffer.

5.5. Implementing Floating Point Unit

57

exp buffer and log buffer. When a buffer is full, CPU does not fetch another

instruction so that there is not big load. In case that all buffers are empty we have to

inform that there is no floating arithmetic instruction to execute. We create similarly

a 6-bit vector that indicates whether a buffer is empty or not. When all bits are set, all

buffers are empty and CPU will disable FPU. FPU arithmetic operation datapath and

control flow can be seen in Figure 5.9 below.

5.5.3 Confronting data hazards

Floating-point instructions need several and different amount of clock cycles to

execute. Therefore, a lot of dependencies need to be solved. Floating-point

instructions insert write after write and write after read data dependencies in our

system because every instruction has a different pipeline depth. For instance,

Figure 5.9 FPU Arithmetic Instruction Datapath. FP instruction is categorized

by the buffer controller and stored in the corresponding buffer. Buffer controller

generates the full and empty buffer vectors. FP instructions are executed in

parallel and results are stored in FP register file. The Floating point operation

controllers control the FP execution and also enable register file reads and

writes.

5.5. Implementing Floating Point Unit

58

consider an FPMul instruction after an FPExp instruction and the same destination

register. Because FPMul is completed earlier, this register is written in a wrong

sequence. Therefore, incorrect data will be read by a following instruction if FPExp

hasn’t completed its execution. In another scenario, FPMul instruction’s destination

register may be the same with one of the source registers of FPExp instruction. In

that case, FPExp can read wrong data if FPMul has completed its execution. Thus, we

need to deal with write after write (WAW), write after read (WAR) and read after

write (RAW) data hazards.

We need to inspect which FP register is written and read. For this reason, we will

make use of two vectors which will hold the floating-point registers’ usage. We

practically inspect when a FP register is written or read. Each vector is 32-bits of size

because we have 32 FP registers. Every vector’s j bit corresponds to the j floating-

point register. Let’s call the first vector floating-point read inspection vector and the

second one floating-point write inspection vector. We examine the received

instruction and all buffers and set the corresponding bits in two vectors. These

vectors are monitored by CPU, allowing it to decide if a data hazard between FP

arithmetic instructions occurs. Checking for data dependency is done right after a

floating-point instruction is detected. Whenever CPU detects a floating-point

instruction, it checks the corresponding bits of read and write inspection vectors.

RAW floating- point data hazards are detected by checking the source registers of the

currently detected floating-point instruction and the corresponding bit entries in the

write inspection vector. If there is a match (a corresponding bit is set) CPU must wait

for the pending instruction to complete its execution and not fetch other instructions.

When the execution is completed, FPU sets the corresponding bits to zero and CPU is

allowed to send the floating-point instruction to FPU for execution.

WAR data hazards are detected in a similar way by checking the destination register

of the currently detected floating-point instruction and the corresponding bits in the

read inspection vector. In WAW data hazards CPU checks for a match between write

destination register and the corresponding bit in write inspect vector. In both cases, if

there is a match CPU waits and resumes when the execution is completed and the

read registers (WAR case) and write registers (WAW case) are released. Figure 5.10

shows the modified FPU datapath for supporting register inspection and Figure 5.11

shows the implementation pseudocode of FPU.

5.5. Implementing Floating Point Unit

59

Figure 5.10 FPU Arithmetic Instruction Datapath with register read and write

inspection.

5.5. Implementing Floating Point Unit

60

5.5. Implementing Floating Point Unit

61

5.5.4 Floating Point Unit data transfer instructions

As previously mentioned, data transfers can be made between memory (specifically

the data cache) and FPU and between CPU and FPU. The first type of data transfers

is CPU instructions which transfer data between data cache and FPU. The second

type is FPU instructions which transfer data between CPU and FPU register files.

Implementing data transfers between FPU and Memory

These instructions are LWC1 and SWC1 which are I-type format instructions. LWC1

instruction reads data from data cache and stores it in the FPU register file whereas

Figure 5.11 FPU Arithmetic instruction datapath implementation

pseudocode.

5.5. Implementing Floating Point Unit

62

31 26 25 21 20 16 15 0

I-Type format for LWC1 and SWC1 instructions

SWC1 does the opposite transfer. The main difference of these instructions and other

I-type format instructions is that now the destination register field will indicate a FP

register (Figure 5.12).

Opcode Rs Ft Immediate

These instructions are detected in the decode stage of the pipeline where opcodes

110001 (LWC1) and 111001 (SWC1) are detected. By detecting these instructions,

decode unit will generate two new specific control signals which indicate a store in

FP register file (LWC1) and a load from FP register file (SWC1). Decode unit also sets

the memory read control signal for LWC1 instruction and the memory write control

signal for SWC1 instruction. In ID stage, the store in FP and load from register file

control signals are stored in ID/EX pipeline register and propagated through pipeline

registers to MEM stage. In MEM stage these instructions access the data cache; a read

access for LWC1 and a write access for SWC1. In WB stage of LWC1 instruction the

store in FP register file forces memory data out, read from MEM/WB pipeline

register, to be stored in the FP register file instead CPU register file. In ID stage of

SWC1 instruction the load from FP control signal indicates that data will be read

from FP register file instead of CPU register file. These data are stored in ID/EX

pipeline register and propagated to MEM stage through the pipeline where they are

stored in data cache.

After implementing data transfers between memory and FPU we need to check for

data dependencies that may occur. First of all, RAW FP data hazards after LWC1

instruction are eliminated due to the FPU design, because all FP instructions are

decoded in FR-format fields two clock cycles after they are detected. This means that

there is enough time-frame for LWC1 to write back data in FP register file. For

instance we can consider the RAW data dependency in Figure 5.13. We notice that

the decode of FPMul instruction is done 1 clock cycle after LWC1 has written the

data in FP register file ensuring that there is no RAW data hazard between LWC1

and FP arithmetic instructions. Notice that there is not also WAW data hazards

between LWC1 instruction and following FP arithmetic instructions because the

smallest (in clock cycles amount) FP arithmetic instruction FPMul will write back in

register file four clock cycles (two clock cycles to start execution and two clock cycles

of the FPMul entity pipeline) after LWC1’s write back stage.

Figure 5.12

5.5. Implementing Floating Point Unit

63

 1 cc 2 cc 3 cc 4 cc 5 cc 6 cc 7 cc

LWC1 F2, 0($18) IF ID EX MEM WB

MUL.S F3, F1,F2 IF

Detected

Sent to

FPU

Push in

MUL

buffer

Decode

Start

of

Execution

Let’s check now about RAW data dependency between LWC1 and SWC1

instructions. This really means that we have a MEM to MEM data dependency

because SWC1 needs to store in memory the data that LWC1 has read from memory.

So data forward unit detects the dependency and forwards the memory read data to

MEM stage of SWC1 instruction. Remember that both instructions have memory

access control signals as LW and SW instructions have.

There is also one more WAW data hazard that we need to check. Consider a FP

arithmetic instruction and a LWC1 instruction that write back in the same

destination register. We need to find a solution to this hazard. WAW data hazards

between FP arithmetic instructions were eliminated by implementing a FP write

inspection vector. So why don’t we just check this vector? Every time a LWC1

instruction is detected, CPU checks the floating inspection array and determines if

there is a WAW hazard. Remember that WAW will occur if there is a match between

the destination register of LWC1 and the corresponding bit of the vector. If a WAW

hazard is detected, then CPU stalls the pipeline and does not fetch another

instruction waiting for the write register release when the execution of the arithmetic

instruction is finished.

Implementing data transfers between FPU and CPU register files

There are two FP instructions that allow data transfers between FPU and CPU

register files. MFC1 instruction transfers data from FP register file to CPU register file

while MTC1 transfers data in the opposite direction. These instructions follow the

FR-type format and need two operands; the registers that take part in data transfer.

The destination register is always defined by the Fd field and the source register by

the Fs field. That means that these fields are handled differently because MFC1 has a

CPU destination register and a FPU source register whereas MTC1 has a FPU

destination register and a CPU source register.

Figure 5.13 RAW data dependency between LWC1 and FP arithmetic instructions. We

can see that there is no RAW data dependency because FP Arithmetic instructions are

decoded 2 cycles after they are detected.

5.5. Implementing Floating Point Unit

64

Because these instructions are FP instructions, CPU sends them to FPU for execution.

It is FPU’s turn to recognize them and execute them. How can FPU recognize MFC1

and MTC1 instructions? We can distinguish these instructions by the Fmt field;

MFC1’s Fmt value is 00000 and MTC1’s is 00100. We will modify FPU’s

implementation in order to support these instructions. We will implement these

instructions in a 5 clock cycle pattern so that we can avoid WAW dependencies with

previous CPU instructions. For instance, if MFC1 instruction needed less clock cycles

than the CPU pipeline depth to complete, this would result in a WAW data hazard if

the previous CPU instruction (e.g. a SUB instruction) writes back data in the same

destination register.

MFC1 instruction is first detected and sent to FPU. FPU has to recognize that the

incoming instruction is a MFC1 instruction, enable the FP register file read, output

these data and report that job is done. This done signal is sent with the FP register

read data to CPU and is used in order to enable a write in CPU register file. The

sequence of operations need to be done can be summarized in the Figure 5.14 below.

 1 cc 2 cc 3 cc 4 cc 5 cc

MFC1 $8, F3 IF

Detected

Sent to FPU

Recognize

and

enable FP

RF read

Output

done signal

and

read data

MTC1 is implemented in a similar way with the difference that now we have to write

FP register file. We also need to send the write data to FPU and inform when job is

done. The MTC1 operation sequence is shown in Figure 5.15.

 1 cc 2 cc 3 cc 4 cc 5 cc

MTC1 $8, F3 IF

Detected

Sent to

FPU

Recognize

and enable

FP RF write

Write

Completed

Output

done signal

Figure 5.14 Operation sequence of MFC1 instruction. $8 is the destination

register. Our MFC1 implementation imitates the flow of a LW instruction; the

FP RF read takes place in the 4th clock cycle (similar to memory read in LW

instruction) and write back in the 5th clock cycle.

Figure 5.15 Operation sequence of MTC1 instruction. F3 is the destination

register.

5.5. Implementing Floating Point Unit

65

Decode unit and FPU must be modified so that MFC1 and MTC1 can be supported.

Decode unit needs the MFC1 read data and done signal as inputs so that when done

signal is set, the MFC1 read data will be written in RF. Hence, we will use one more

multiplexor that selects between the MFC1 data and all the WB data that we have

previously mentioned. Two more simple controllers must be created in FPU to

control the operation sequences of these instructions. FPU also needs the CPU

register file read data as an input.

5.5.5 MTC1 and MFC1 interaction with other instructions

After implementing MTC1 and MFC1 instructions, the next step is to deal with data

hazards that arise. These instructions write and read in register files; hence it is sure

that data dependencies will occur. Remember that every incoming FP instruction’s

source and destination registers will set the corresponding bits in the inspection

vectors. Hence, MFC1’s source register will set the read inspection vector and

MTC1’s destination register will set the corresponding bit in the write inspection

vector.

Interaction between MTC1 and MFC1

A data dependency can occur if these instructions follow each other. Specifically,

consider the following examples:

A1 A2

MFC1 $7, F10 MTC1 $8, F10

MTC1 $7, F11 MFC1 $7, F10

In case A1 there is a RAW data hazard. MFC1 writes into $7 register while MTC1 has

to read $7 register. MFC1 instruction will read the FP register file in the 4th stage of its

execution before the WB in CPU register file takes place in 5th stage. MTC1 needs to

have that data available till the 4th stage of its execution; data must be sent to FPU in

4th stage in order to be written in FP register file in the 5th stage. So we will act as we

did before in load-use data dependency; we will stall pipeline and then forward that

data from the production stage to the stage that they are needed. Therefore, we need

to modify stall unit so that it can detect the dependency. This can be done by

detecting the opcode and fmt fields of MFC1 instruction (read from ID/EX pipeline

register) and the opcode and fmt fields of MTC1 instruction (read from IF/ID

pipeline register). We also need to check for register value equality; MFC1’s Fd field

must be equal to MTC’ Fs field. Now we have to send the FP register read data of

MFC1 instruction to FPU after RAW data hazard is detected.

5.5. Implementing Floating Point Unit

66

Thus, we need to modify data forward unit in order to detect this hazard, and in

order not to confuse this hazard with hazards between CPU instructions. The first

thing to do is to distinguish these instructions from others. The hazard is detected in

the same way with stall unit but MFC1 fields are now read from MEM/WB pipeline

register and MTC1 from EX/MEM pipeline register; opcode and fmt fields of MFC1

are 010001 and 00000 and MTC1’s are 010001 and 00100. Now we only have to check

if we have equality between destination register of MFC1 and the source register of

MTC1 and forward the data to FPU.

In case A2 a RAW hazard is also occurred. In this case, a stall is generated because

MTC1 has set the 10th bit in write inspection vector, indicating that F10 will be

written by a previous pending instruction. That means that MFC1 and next

instructions will have to wait until this FP register is released (when MTC1 writes the

data in FP register file) securing that MFC1 will read FP register file after MTC1’s

write stage.

Interaction with FP Arithmetic instructions

In this interaction all data hazards are avoided due to the FP register inspection.

Consider the following examples:

B1 B2 B3 B4

ADD.S F10, F1, F5 MFC1 $7, F10 MTC1 $7, F10 MUL.S F8, F10, F5

 MFC1 $7, F10 MUL.S F10, F1, F5 MUL.S F8, F10, F5 MTC1 $7, F10

In B1 example we have a RAW hazard because MFC1 needs to read F10 register and

ADD.S writes in F10 register. In B2 example there is a WAR hazard because MFC1

reads and MUL.S writes F10 register. In B3 example there is a RAW hazard because

MTC1 writes and MUL.S reads F10 register. In B4 example there is a WAR hazard

because MUL.S reads and MTC1 writes in F10 register. There are also WAW hazards

when MTC1 and other FP arithmetic instructions have the same destination register.

Every time that MTC1 or MFC1 instruction is sent to FPU, write and read inspection

vectors are checked in order to detect possible hazards. A stall signal is generated

whenever MTC1 or MFC1 need to access a binded FP register, securing that all

hazards between these instructions and FP arithmetic instructions are resolved.

Interaction with CPU instructions

MTC1 and MFC1 instructions’ destination and source registers pass through

EX/MEM and MEM/WB pipeline registers, hence we can use them for hazard

detection of hazards generated by the interaction with CPU instructions. All these

hazards are detected in the same way as the hazards between CPU instructions but

5.5. Implementing Floating Point Unit

67

we have to forward now data to FPU or from FPU. We also have to insert more

control information in forward and stall units in order to distinguish these hazards

from hazards between CPU instructions. Consider the following examples:

C1 C2 C3 C4

ADD $7, $20, $21 MFC1 $7, F10 LW $7, 0($18) MFC1 $7, F10

 MTC1 $7, F11 ADD $20, $7, $8 MTC1 $7, F11 SW $7, 0 ($18)

In C1 example we can see that there is a RAW hazard on register $7. ALU

instructions produce the result in EX stage; hence we need to forward the result to

FPU when the hazard is detected. This is similar to the data dependency where the

ALU out is forwarded from EX/MEM pipeline register to the EX stage of the

depended instruction. The difference though, is that we don’t want to forward data

to ALU but instead to FPU. Therefore, we need to distinguish this hazard by

checking also if the depended instruction is MTC1. If it is indeed MTC1, we forward

to FPU and not to ALU. We can distinguish MTC1 instruction by the opcode (010001)

and Fmt (00100) fields. These forwarded data are stored in a specific register in FPU

when forwarded, read in the next clock-cycle and stored in FP register file. If there

was one more independent instruction between ADD and MTC1 instruction then the

data would be forwarded from MEM/WB to FPU; similar to the data dependency

where the ALU out is forwarded from MEM/WB pipeline stage to the EX stage of the

depended instruction.

In C2 example we have a RAW data hazard on $7 register. Now we have to stall

pipeline and then forward data from FPU to ALU. The stall is generated in the same

way as in load-use data dependency; we modify stall unit to distinguish the RAW

data hazard between MFC1 and ALU instruction by using the opcode and fmt fields

of MFC1 instruction. We will also use these fields (now read from MEM/WB pipeline

register) in data forward unit to distinguish this hazard from a data hazard between

two CPU instructions. The depended instruction is read from EX/MEM pipeline

register. When data hazard is detected and when the opcode and Fmt fields of the

first instruction are 010001 and 00000 indicating that it is MFC1, we forward the data

that was read from FP register file to ALU. In case that there was one independent

instruction between MFC1 and ADD then this hazard would be detected as an EX

hazard where the depended instruction is read from ID/EX pipeline register. Again,

we would forward data from FPU to EX stage.

There are no WAW or WAR data hazards between MFC1/MTC1 and CPU

instructions because we have taken care to implement these instructions to be

5.5. Implementing Floating Point Unit

68

completed in 5 clock cycles in order to have the same pipeline depth with the CPU

instructions.

In case C3 we have a load-use data dependency because MTC1 needs to read the

contents of $7 register. This hazard is solved by forwarding the read data of LW

instruction from the MEM stage to FPU and stalling the depended instruction for 1

clock cycle as we did before. For this reason, we have to distinguish that the load-use

depended instruction is MTC1 by using the opcode and Fmt fields. So we can

forward the memory read data from MEM stage to FPU while preventing them to be

forwarded to MEM stage (LW-SW data dependency) and to EX stage (load-use data

dependency between LW and ALU instructions).

In case C4 there is a RAW data hazard because MFC1 writes and SW then reads $7

register. This hazard can be solved by forwarding the FP read data of MFC1 to MEM

stage of SW. In order to achieve this, we modify the control case of data forward unit

where destination registers of MEM/WB and EX/MEM pipeline registers are equal.

Now we have to check also the case where the instruction is MFC1 (again by

checking the opcode and Fmt field) and the depended instruction is SW (by checking

if there is a write control signal). When this hazard exists, then data from FPU is

forwarded to MEM stage.

Interaction with LWC1 and SWC1

LWC1 and SWC1 are handled by data hazard stall unit as LW and SW because they

have the same memory read and memory write control signals. So, in load-use data

dependency between LWC1 and MFC1 instructions, MFC1 is correctly stalled. The

only thing we have to do is to detect this hazard by distinguishing the MFC1

instruction by its opcode and Fmt field and data will be forwarded to FPU. The

MTC1 to SWC1 RAW data hazard is solved in the same way like the MFC1 to SW

data hazard.

69

Chapter 6

Conclusion

6.1 Summary

Nowadays, EDA industry has delivered higher-level tools to academics and

engineers so that they can make use of the FPGA technology benefits of

reprogrammable silicon. Moreover the industry invests billions in FPGA research

and targets to the production of more powerful FPGA platforms. Altera’s acquisition

by Intel Corporation reveals the significance of powerful reconfigurable platforms

and signifies a new promising era in digital and embedded systems.

 In this project we used Altera ModelSim Quartus Prime and Xilinx ISE Design Suite

tools for the design and simulation of the project. We started implementing the

pipeline and the basic instruction set of coprocessor 0. The next step was to

implement and integrate cache and the final step was to design, implement and

integrate FPU in the core system. The instructions that are supported are listed in

Appendix. The most difficult part of this project was the design and implementation

of FPU because issues about synchronizing and controlling the FPU entities were

difficult to be solved. In addition, a lot of effort was made in order to integrate all

these parts of the project. Every part was tested separately before being integrated in

the core system. After completing the design and integration all those parts, we

tested the functionality of the MIPS core by running several codes which consisted

all-types of functions and all data and control dependencies.

After completing all the necessary tests, we used Vivado Design Suite by Xilinx in

order to synthesize the core design. The device target was Virtex-7 VC709. We faced

a problem in this step because we used SystemVerilog classes in our design but

Vivado Design Suite does not support them. Therefore, we had to make a lot of

changes before synthesizing the core design.

70

You can contact me at stpistop(AT)uth(DOT)com for a copy of the source code. The

synthesis utilization report can be seen in Figure 6.1.

Completing this project helped me enrich my knowledge in computer architecture

and understand how processors are designed and implemented and improve my

skills in digital design by analyzing and confronting each arising problem.

6.1 Future Work

Despite all the hard work made on this project, we can continue its implementation

to a more complete level. Implementing floating-point branch and convert

instructions would complete the FP instruction set. We also like to expand the

memory hierarchy with a L2 cache level for more realistic approach and change the

write strategy into write back with write allocate. Finally, a branch prediction buffer

can be implemented for a better performance.

Figure 6.1 Synthesis Utilization Report

71

Appendix

R-type

Instruction Opcode/Function Operation
add 000000/100000 $d = $s + $t

sub 000000/100010 $d = $s - $t

mult 000000/011000 $d = $s * $t

div 000000/011010 $d = $s / $t

slt 000000/101010 $d = ($s < $t)

and 000000/100100 $d = $s & $t

or 000000/100101 $d = $s | $t

nor 000000/100111 $d = ~($s | $t)

xor 000000/100110 $d = $s ^ $t

sll 000000/000000 $d = $t << shamt

sllv 000000/000100 $d = $t << $s

srl 000000/000010 $d = $t >>> shamt

srlv 000000/000110 $d = $t >> $s

sra 000000/000011 $d = $t >>> shamt

srav 000000/000111 $d = $t >>> $s

jr 000000/001000 PC = $s

jalr 000000/001001 $31 = PC; PC = $s

I-type

Instruction Opcode/Function Operation
beq 000100 if ($s == $t) PC = PC + 4 + BranchAddr

bne 000101 if ($s != $t) PC = PC + 4 + BranchAddr

addi 001000 $d = $s + SignExtImm

andi 001100 $t = $s & SignExtImm

ori 001101 $t = $s | SignExtImm

xori 001110 $d = $s ^ SignExtImm

slti 001010 $t = ($s < SignExtImm)

lw 100011 $t = MEM [$s + SignExtImm]

sw 101011 MEM [$s + SignExtImm] = $t

lh 100001 $t = (15:0)MEM [$s + SignExtImm]

sh 101001 (15:0)MEM[$s + SignExtImm] = (15:0)$t

lb 100000 $t = (7:0)MEM [$s + SignExtImm]

sb 101000 (7:0)MEM [$s + SignExtImm] = (7:0)$t

lwc1 110001 ft = MEM [$s + SignExtImm]

swc1 111001 MEM [$s + SignExtImm] = ft

J-type

Instruction Opcode/Function Operation
j 000010 PC = jumpAddr

jal 000011 $31 = PC; PC = JumpAddr

72

FR-type

Instruction Opcode/Format/Function Operation
add.s 010001/10000/000000 fd = fs + ft

sub.s 010001/10000/000001 fd = fs - ft

mult.s 010001/10000/000010 fd = fs * ft

div.s 010001/10000/000011 fd = fs / ft

sqrt.s 010001/10000/000100 fd = sqrt(fs)

exp.s 010001/10000/000101 fd = exp(fs)

log.s 010001/10000/000110 fd = log(fs)

mfc1 010001/00000/000000 $d = fs

mtc1 010001/00100/000000 fd = $s

Α-1. Instructions supported by this MIPS core implementation

73

Bibliography

[1] Computer Organization and Design: The Hardware/Software Interface, David A

Patterson, John L. Hennessy, 4th Edition, Morgan Kaufmann, 2009

[2] Computer Architecture and Organization, William Stallings, PHI Pvt. Ltd.,

Eastern Economy Edition, Sixth Edition, 2003

[3] MIPS IV Instruction Set Revision 3.2, Charles Price, MIPS Technologies Inc,

September, 1995

[4] MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS ®

Revision 6.01, Imagination Technologies LTD , August 20, 2014

[5] MIPS® Architecture For Programmers Volume II-A: Introduction to the MIPS ®

Revision 6.05, Imagination Technologies LTD , May 20, 2016

[6] SystemVerilog 3.1a Language Reference Manual Accellera’s Extensions to

Verilog, Accellera Organization Inc, May 2004

[7] A Proposal for a Standard Synthesizable Subset for SystemVerilog-2005:What the

IEEE Failed to Define, Stuart Sutherland, DVCon-2006, San Jose, CA

[8] Synthesizing SystemVerilog Busting the Myth that SystemVerilog is only for

Verification, Stuart Sutherland, Don Mills, SNUG Silicon Valley 2013

[9] IEEE Standard for Binary Floating Point Arithmetic. ANSI/IEEE Std. 754-1985,

August 1985

[10] https://en.wikipedia.org/wiki/CPU_cache, What is Cache memory?

[11] http://www.pcguide.com/ref/mbsys/cache/funcMapping-c.html, Cache

Mapping and Associativity

[12] Cache Performance of the SPEC92 Benchmark Suite, Jeffrey Gee, Mark D. Hill,

Dionisios N. Pnevmatikatos, Alan Jay Smith, IEEE Micro, 1993

[13] Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-

Associative Cache and Prefetch Buffers, Norman P. Jouppi, ISCA '90

74

[14] Performance Evaluation of Cache Replacement Policies for the SPEC CPU2000

Benchmark Suite, H. R. Al-zoubi, Al. Milenkovic, M. Milenkovic, ACM Southeast

Conference, 2004

[15] J. M. Thorington, J. D. Irwin, An Adaptive Replacement Algorithm for Paged-

Memory Computer Systems, IEEE Transactions on Computers, vol C-21, no. 10, pp.

1053-1061, October 1972

[16] http://web.cs.iastate.edu/~prabhu/Tutorial/CACHE/interac.html, Interaction

Policies with Main Memory

[17] Fibonacci and Galois Representations of Feedback-With-Carry Shift Registers,

Mark Goresky, IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48,

NO. 11, NOVEMBER 2002

[18] Florent de Dinechin and Bogdan Pasca. Designing custom arithmetic data paths

with FloPoCo. IEEE Design & Test of Computers, 28(4):18--27, July 2011

