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ΠΕΡΙΛΗΨΗ ΣΗ ΔΙΑΣΡΙΒΗ 

Χρονοχωρική Οργάνωση Διεργασιών και Κυκλωμάτων σε 

Τπολογιστικό Νέφος 

Η ταχεία και συνεχιζόμενη ανάπτυξη των υπολογιστικών συστημάτων έχει αλλάξει τον 

τρόπο με τον οποίο οι ερευνητές αντιμετωπίζουν τα προβλήματα ελαχιστοποίησης της 

κλάσης NP-hard. Οι απαιτήσεις των χρηστών για ταχύτερες ηλεκτρονικές συσκευές και πιο 

ποιοτική εμπειρία στο διαδίκτυο επηρεάζουν όλο και περισσότερο τις σύγχρονες 

αρχιτεκτονικές υπολογιστών και δικτύων ενώ οδηγεί στην επίλυση νέων προβλημάτων 

(βελτιστοποίησης). Οι λύσεις σε τέτοια προβλήματα μπορεί να έχουν σημαντικές 

ομοιότητες και διαφορές σχετικά με τις χρησιμοποιούμενες τεχνικές, καθώς και στο γενικό 

πλαίσιο στο οποίο έχει τεθεί το πρόβλημα. Για παράδειγμα, το πρόβλημα του IC 

placement εμφανίζει χωρικές πτυχές, ενώ ο χρονοδρομολόγηση εργασιών σε υπολογστικό 

νέφος αποτελείται από χρονικά χαρακτηριστικά. Στην παρούσα Διατριβή προτείνουμε και 

αξιολογούμε αποτελεσματικές εναλλακτικές λύσεις και στις δύο κατευθύνσεις (χωρικές και 

χρονικές) με στόχο την ελαχιστοποίηση του χρόνου εκτέλεσης, τη βελτίωση των λύσεων και 

τη ταυτόχρονη μείωση της κατανάλωσης ενέργειας και της διαδικτυακής κίνησης. 
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ABSTRACT 

Temporospatial Organization of Circuits and Tasks over the 

Cloud  

The rapid and on-going spread of computational systems has changed the way that 

researchers tackle minimization problems of NP-hard class. Users demand on faster 

electronic devices and better online experience increasingly affects modern computer and 

network architectures while it triggers new (optimization) problems to be solved. 

Solutions to such problems may have substantial similarities and differences regarding 

the techniques which are used as well as the general framework in which the problem is 

set. For instance, IC placement problem exhibit spatial aspects while Cloud scheduling 

consists of temporal ones. In this thesis we propose and evaluate efficient alternatives to 

both directions (spatial and temporal) under the objective to minimize running time, to 

improve solutions quality and to reduce simultaneously energy consumption and inter-

node network traffic, while meeting the quality requirements. 
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CHAPTER 1. INTRODUCTION 
 

  10 

1. Introduction 

1.1. Objectives and contribution of the thesis 

A plethora of classic optimization problems exhibit spatial or temporal properties. An 

example of the first, is the 2D Knapsack problem [67] where the target is to place 

rectangles within a fixed sized plain so that no overlaps occur and the total benefit 

(summation of the benefits of the placed objects) is maximized. Concerning the temporal 

property, perhaps the 2-processor scheduling problem [63] and its various variants 

studied in the field of parallel and distributed computing, e.g., [123], [28], are the most 

prominent representatives in this category. Inspired by the importance of the spatial and 

temporal aspects rising in optimization problems, but also by modern problem settings 

of high practical value that came along with the popularity of the Computational Cloud, 

in this thesis we focus on providing contributions towards both directions (spatial and 

temporal). Specifically, we provide contributions to the field of standard cell placement in 

IC circuits [106] and to the field of Cloud scheduling [122].  

In standard cell placement, the cells of a circuit (rectangles of equal height but 

different length) must be placed on a chip area that is split into fixed equally height rows 

such that: (i) all cells rest within the chip area, (ii) no cells overlap, (iii) cell positions are 

row aligned and (iv) some target function is optimized, e.g., total wire length [103], 

congestion [147] etc. It is straightforward that (i)-(iii) impose constraints of spatial nature 

that can be seen as special variants of the 2D Knapsack constraints. Quite surprisingly, it 

turns out that depending on the optimization function (iv), the standard cell placement 

problem might also exhibit a temporal aspect, distinctly linking it to scheduling problems, 

as discussed in Chapter 3. 

Concerning scheduling problems per se, we focused on modern settings involving the 

Computational Cloud. Rather than assuming generic job tasks or scientific workflows 

that apply on a rather restricted audience we tackled the problem of scheduling tasks 

related to video encoding and transcoding [60].  Video encoding refers to the process of 

compressing an initially raw video sequence using some standard, e.g., H.264 [146], while 

transcoding refers to producing multiple outputs from an initial (compressed) sequence, 

that correspond to various quality levels/bitrates and might even involve a change in 
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standard e.g., from H.264 to VP9 [49] or HEVC [133]. Since the vast majority of Internet 

traffic is video related [40] and users access it through devices and network connections 

of various capabilities, the need for efficient video coding and transcoding is becoming of 

paramount practical importance. This is also manifested by the number of related 

companies offering video transcoding as a service, e.g., Amazon Elastic Transcoder [11].               

1.2. Contributions 

The contributions of the thesis can be summarized as follows.  

 Concerning the cell placement problem we show its relation to scheduling 

and provide scheduling heuristics for the case where voltage drop is taken 

into account. 

 We develop fast but efficient legalization heuristics, i.e., heuristics that start 

from an initial invalid placement and attempt to perform small changes so 

that spatial constraints are fulfilled. The heuristics developed are shown to 

achieve comparable solution quality with a state of the art method [128] but 

at almost two orders of magnitude less running time. 

 We provide a fast parallel implementation for a state of the art legalization 

method [128] that achieves good speedup without affecting solution quality.    

 We consider the case of scheduling video transcoding tasks between a 

network edge and a central datacenter and develop heuristics to maximize 

edge usage assuming different QoS levels. 

 We consider the case of scheduling transcoding tasks among the various 

datacenters available for a related service. Quite surprisingly the current state 

of the art even for the most elaborated services, e.g., Amazon Elastic 

Transcoder [11] involves manual decisions. We develop heuristics that 

distribute the load so that network usage (among others) is minimized.   
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1.3. Outline 

The rest of the thesis is organized in the following manner. 

Chapter 2 provides a comprehensive literature survey concerning Integrated Circuit 

(IC) placement on Electronic Design Automation (EDA).  

Chapter 3 illustrates the IC Placement problem relevance to job scheduling. 

Specifically, a detailed formulation of the placement problem is given and steps to reduce 

its inherent difficulty are illustrated. Additionally, we model the resulting problem 

rigorously and discuss its complexity, we also demonstrate its relation to the job 

scheduling problem and outline directions for heuristic design and finally, we evaluate the 

merits of a greedy approach that takes advantage of the formulation. Parts of this chapter 

appeared in [114]. 

Chapter 4 examines the evaluation of standalone variations to the basic Tetris 

algorithm that aim at significantly improving its performance. Furthermore, we introduce 

combinations of the standalone heuristics while all of them are evaluated with commonly 

used benchmark circuits. Parts of this chapter appeared in [44]. 

Chapter 5 presents the procedure of speeding up the legalization algorithms that offer 

top quality solutions, such as Abacus, using parallelization. Concretely, we propose a 

lock-free parallelization framework that can be applied over various legalization schemes, 

also, we implemented and tested the framework over a legalization algorithm (Abacus) 

known for its solution quality but also slow running time. Parts of this chapter appeared 

in [112]. 

Chapter 6 provides a survey concerning Cloud scheduling, especially under the light 

of video transcoding jobs.  

Chapter 7 analyses the case of live video transcoding on Cloud Edges by way of 

scheduling heuristics that decide on which jobs should be assigned to an edge mini-

datacenter and which to a backend datacenter. Through simulation experiments with 
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different QoS requirements we conclude on the best alternative. Parts of this chapter 

appeared in [113]. 

Chapter 8 investigates the problem of scheduling transcoding jobs over a distributed 

system comprising of processing nodes that are geographically dispersed and might be 

whole clusters or even separate data centers. In this chapter we propose algorithms to 

minimize both the inter-node network traffic and the intra-node energy consumption, 

while meeting the deadlines and quality requirements. Parts of this chapter are submitted 

to the ACM Symposium on Cloud Computing 2017 (SoCC'17). 

Chapter 9 provides a study about combinatorial optimization. This study consists of 

four well known optimization problems. 

Finally, Chapter 10 summarizes the thesis and provides directions for future work.  
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2. Placement in Electronic Design Automation 

2.1. Overview 

Integrated circuit (IC) Placement is a major design problem, especially with the 

continuous growth in the complexity of modern integrated circuits there is an urgent 

need for fast placers offering good quality results. Placement is an essential step in 

Electronic Design Automation (EDA) and an important part in the Physical Design 

procedure. An indicative abstract description of a Placer, as seen in Figure 2-1, could be a 

machine that takes as an input a net list and a cell specification library and produces the 

exact location of each cell while minimizing a number of objective functions such as Half 

Perimeter Wire Length (HPWL), congestion and power consumption to ensure that a 

circuit meets its performance demands. IC placement is a difficult problem to solve, an 

ineffective placer usually leads to more wire which affects the performance and the 

timing of the circuit. Also, if placement is inefficient next tool in the flow, the router, will 

become unable to connect all wires or to meet timing. 

 

Figure 2-1 IC Placement-Routing workflow 
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Cell placement has attracted much research interest in the past where a variety of 

standard cell placers has been proposed by the EDA industry and academia. Placement 

methodologies can be crudely divided in three major categories based on the way they 

tackle the problem. The global placement where an initial solution, that contains overlaps 

and minimizes the cost function, is produced. An intermediate step named legalization 

that removes all the cell overlaps and finally the detailed placement that refines the final 

solution to achieve better results. 

Global placers solve the problem of placing and spreading cells sufficiently while 

optimizing the cost function. Various cost functions were considered in the literature 

such as wire length, routability, time delay, voltage drop and power consumption. 

Optimization in the global phase is most commonly done without enforcing validity 

constraints and by incorporating in the model some kind of a repelling force among cells 

in order to spread them in the chip area. Global placement is the intermediate step 

between logic synthesis and routing which generates a first and sometimes congested cell 

distribution in which placement constrains are violated. Such violations include but are 

not limited to cell overlaps, exceeding critical path delay and net congestion. Global 

placers can be divided into three major categories: simulated annealing, min-cut 

partitioning and analytical approaches. 

Simulated annealing is a mathematical scheme which can be applied to a number of 

optimization problems. It starts by calculating a feasible solution and through iterative 

local changes it computes a better solution. The main drawback of simulated annealing is 

that it experiences slow convergence rate in large problem set. Timberwolf [125] it was 

applied as a local optimizer of sub problems. Timberwolf is a probabilistic, iterative 

improvement technique which approximates the global optimal through iterative cell 

swaps and moves.  

The main idea behind min-cut partitioning is the recursive dividing of the chip area 

and the design's components, until the regions are small enough to apply a legalization 

algorithm. Capo [135] is one of the most known placement algorithms that exploit this 

technique. Dragon2005 [136] and Feng Shui [6] both perform min-cut multi-way 
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partitioning using hMetis [1] to spread the cells in the chip area, with the former applying 

simulated annealing to pinpoint the optimal locations 

Quadratic and nonlinear techniques constitute the two main subcategories in 

analytical approaches whereby optimization objectives are modelled by sets of 

mathematical equations. In Quadratic Optimization the circuit's connectivity is used for 

the formulation of a quadratic problem and the subsequent minimization of an overall 

cost function. Examples of this category are: GORDIAN [88], BornPlace [25] and 

FastPlace [147]. The GORDIAN algorithm is a divide-and-conquer global placement 

method that is composed of alternating and interacting optimization and partitioning 

steps that are followed by an optimization of the area utilization. GORDIAN’s operation 

can be divided into three steps, area partitioning, cell partitioning and quadratic 

calculations.  The iterations conclude when there are no sub-partitions left that meet the 

cell and area constraints we have set (sub-partition dimensions and cell count) while at 

each iteration a constrain is calculate the center of gravity for the cells belonging to the 

specific partition. Bonnplace [25] also uses a min-cost flow formulation. The algorithm 

iteratively augments flows along paths, ensuring that the only flow augmentations that are 

chosen and applied before the next augmentation step are the ones than can be realized 

exactly by cell movements. In this way finding the optimal flow isn’t guaranteed, 

nevertheless, the produced solution is always feasible. 

In Non-Linear Optimization an approximation of the total wire length is calculated 

together with cell density using high order models in order to produce better solutions at 

the expense of runtime. Examples here include: [29], [75], [84], [103] and [110]. White-

space reallocation together with force directed placement were used as sub-components 

of a multilevel optimization approach whereby starting from an initial nonlinear 

optimization problem that is hard to solve, successive relaxation steps involving cell 

clustering were applied in an iterative manner. More recent trends include force directed 

placers whereby cells are spread using a mixture of repelling and attractive forces. 

Through an iterative procedure equilibrium is reached so that design constraints are 

satisfied. Two well-known force directed placers are Kraftwerk2 [129] and ePlace [103]. 
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Taking into consideration geometrical constrains in a design, min-cut placers such as [29], 

[5] and [7] attempt to identify components that should be placed together. 

The output of global placement as seen in Figure 2-2 doesn’t align cells with rows and 

might also contain overlaps. Therefore a second legalization step is necessary to meet 

constraints. An approach is to have as goal the minimum cell displacement between the 

global placement and the final one (abacus)-(tetris). It is in our best interest to perturb as 

little as possible each cell's position during legalization, hence the importance of the 

displacement metric. Contributions in the area of legalization can be classified in two 

major categories, local and global legalizers.  

 

Figure 2-2 Global Placement of ibm05 circuit using NTUplace3 

Local approaches achieve legalization by moving cells separately in free spaces or in a 

ripple motion [77] while the overall congestion is controlled based on white space 

reallocation [33] or by iterative local refinement algorithms [147]. Some local legalizers 

Institutional Repository - Library & Information Centre - University of Thessaly
10/04/2024 15:15:51 EEST - 3.233.222.249



CHAPTER 2. PLACEMENT IN ELECTRONIC DESIGN AUTOMATION 

  18 

such as [74] and [98] include wire length and displacement minimization using clustering 

and bin division techniques. Others, such as [114] focus on voltage drop optimization. 

Dynamic programming is used in [5] and [85] for row fragmentation and placement and 

in [128] to identify the most promising cell-row assignments. The above methods mainly 

consider cell placement in a one by one fashion. The simplest and fastest legalization 

method is the Tetris [73] approach which is used as a yardstick for the performance 

evaluation of more complex methods that sacrifice running time to achieve better 

placement. Tetris still remains a popular choice for legalization since it burdens total 

runtime at a minimum degree, a critical issue for billion cells designs. Abacus [128] also 

places cells one by one in order of their position on the x-axis. However, in case the 

vertical alignment of a cell with a candidate row incurs overlaps, a cluster is formed 

between the cell that is inserted and the ones with which it overlaps and the best position 

of the cluster is defined through a quadratic formulation. In other terms the key 

difference of the algorithms is that Abacus might move previously placed cells whereas 

Tetris doesn’t do so. This explains the fact that Abacus achieves lower displacement 

compared to Tetris but at the cost of increased runtime. In HiBin [98] a bin merged 

procedure is incorporated, where two different shapes of integrated bins are developed in 

order to limit the movable scope of each cell. A similar to Abacus approach was followed 

in [74] with the objective being to minimize cell displacement and HPWL. The presented 

algorithm uses a row indexing scheme to speed-up the process of finding the best row to 

insert a cell. In [38] an extension of the clustering method of Abacus is presented that 

takes into account existing obstacles in the chip area, i.e., preplaced modules that are 

immoveable. Contrary to Abacus cells are examined in order of their length rather than 

their position in the x axis as Abacus and Tetris does. In [46] the Abacus legalization 

scheme was adapted in order to tackle fence regions whereby certain cells must be placed 

within while others should be excluded. In [118] an Abacus inspired legalization scheme 

called Jezz is proposed. Jezz considers for row insertion cells, white spaces and blockage 

nodes in order to cope with obstacles. The resulting scheme was shown to achieve a 

better performance compared to Abacus but is considerably slower by roughly 20 times. 

On the other hand global legalization techniques determine on the positions of 

multiple cells in a single iteration. Examples of this category are [22], [24], [37] and [53] to 
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name a few, whereby network flows are used to obtain solution and [42] and [86] that 

perform cell clustering to reduce search space. Finally, for some restricted problem 

versions optimal solutions can be found. For instance, for the case of a single row where 

the assigned cells and their order (left to right) are known, the optimal placement can be 

found as per [23], while optimal area partitioning is possible in order to offload high 

density regions as described in [27]. In [37] a history-based legalization scheme is 

proposed. Min-cost flow formulation is used in order to find a legal placement that 

presents minimal displacement. Once a viable flow solution is obtained, it is translated to 

cell movements. During iterations, legalization failures are recorded, and subsequently 

used in future iterations by a history engine, in order to avoid similar flow realization 

attempts. In [24] each cell is assigned to a specific region based on its location after the 

global placement step. A min-cost flow problem is formulated with region boundaries 

considered as a soft constraint. Dynamic programming is used to decide which cells are 

going to be moved, therefore realizing the flow.  
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3. On Formulating and Tackling IC Placement as a 

Scheduling Problem 

3.1. Motivation 

Most research on cell placement focused on minimizing the total wire length, hoping 

to optimize simultaneously the critical path delay as a byproduct. Ideally, a cell placement 

optimizer should take into account both goals, i.e., wire length and critical path delay 

offering a set of viable pareto optimal solutions for the designer to choose. One way of 

tackling the aforementioned two-function optimization problem is to start with one (or 

more) initial ―promising‖ placements and alter them presumably to gain more towards 

one or both of the optimization goals. Developing an optimizer with the above 

characteristics is part of our ongoing work.  

In this chapter we present a novel formulation of the cell placement problem with the 

goal of deriving fast heuristics to output initial placements that have the potential of 

acting as ―good‖ starting points in a more complex optimization process. Towards this 

end, we consider optimizing critical path delay in the cell interconnection graph based on 

individual cell delay characteristics and the premise that placing cells near power sources 

results in better performance.  

Our contributions include the following: (a) we give a detailed formulation of the 

placement problem and illustrate steps to reduce its inherent difficulty (asymptotic 

complexity remains the same); (b) we model the resulting problem rigorously and discuss 

its complexity; (c) we demonstrate its relation to job scheduling problem and outline 

directions for heuristic design and (d) we evaluate the merits of a greedy approach that 

takes advantage of the formulation.  

3.2. Problem Formulation 

3.2.1. Preliminary Definitions  

Let C be the set of cells in the circuit we want to place. Cells are the minimal circuit 

components and can correspond to gates, latches etc. Let ci denote the ith cell assuming a 

total order of them. Wired connections exist between cells. We can represent the circuit 

structure using a graph G(C, E) with vertices depicting cells and edges depicting direct 
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connections between cells. For most circuit inputs the resulting graph G is undirected 

and contains circles.   

Each ci is a rectangle of fixed width (let n) and varying length mi and is associated with 

a nominal delay value ti. The chip we wish to design is represented by an N×M 2D-plane 

with N showing width and M showing length in the same measurement unit used in w 

and mis.  

A chip contains a set P of pins. Each pin might be connected with one or more cells. 

Positions of pins in the plane are assumed to be fixed and part of the input, while pin 

sizes and delays are considered to be zero. To represent the above, we augment the 

previous graph forming a new weighted graph G’(V, E’) with the set of vertices CPV   

and E’ depicting both cell and pin connections. Each vertex u in the graph is associated 

with a weight w(u) = ti if it corresponds to the ith cell, otherwise (it corresponds to a pin) 

w(u) = 0. Henceforth, for simplicity, we will refer to G’ as G(V, E), replacing the 

previous definition of G which is not further needed. We refer to the chip plane together 

with the pin placement as Plane_Input and to the graph G together with cell sizes as 

Circuit_Input. 

3.2.2. Generic Problem Statement 

Let pk = {u1, u2,.., uk} be a path in G involving k vertices, not necessarily distinct. Path 

weight w(pk) is the aggregate weight of vertices in the path, i.e.,  


k

i kk uwpw
1

)()( . We 

define the critical (longest) path to be the path p in G of maximum weight. Notice that if 

G contains circles the longest path weight is infinite. Therefore, we define the critical 

path in G to be the maximum weight path among the paths satisfying the property that 

each vertex is visited at most once.  

We can now give the generic statement of the placement problem studied in this 

chapter as follows: Given Circuit_Input and Plane_Input place the cells in the plane so that: (a) no 

cell exceeds plane boundaries, (b) no cells overlap and (c) critical path delay is minimized . Criteria (a) 

and (b) impose validity constraints, while (c) is the optimization target. In the absence of 

further details (given in the following subsection), all possible valid placements regarding (a) 
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and (b), result in the same performance concerning (c) which is equivalent to finding the 

critical path in G.  

Notice that even by ignoring validity constraints (a) and (b), the problem is still 

intractable since it is equivalent to finding the longest path in an undirected graph which 

is known to be NP-hard. On the other hand, we claim (proof omitted) that ignoring the 

optimization criterion (c) also results in a relevant decision problem (placing all cells so as 

to satisfy (a) and (b)) that is NP-complete in general, having a knapsack component. 

Summarizing the above remarks we can state that even with the simplest of the 

assumptions concerning path delays, the problem discussed in this chapter is hard and 

requires clever heuristics to master.  

As a last remark we would like to mention that in practice, the Knapsack component 

of the problem is not expected to be the primary challenge. This is because cell sizes do 

not vary arbitrarily and chip plane usually has significant extra space compared to the 

total cell area. The methodology presented in section 3.2.4 takes advantage of the above 

observations.        

3.2.3. Time Delay Estimation 

The actual delay experienced in a path of the circuit is affected by a plethora of 

parameters e.g., wire lengths, gate (cell) type etc. Analytical calculations are performed by 

commercial CAD tools to obtain accurate enough estimations. However, in most cases 

such calculations can only be performed after the circuit is placed on the chip plane. This 

is due to the fact that voltage drop depends (aside from other parameters) on the density 

of placement in a specified region. Given the above remark and the problem’s toughness 

even in the simplest scenario, we decided that adopting sophisticated analytical delay 

calculations hinters the ability to develop fast and elegant heuristics for the problem, 

thus, exceeds the scope of this chapter. 

Instead, we followed a simple intuitive approach to model the dependencies between 

cell placement and path delays. Namely, we assume that the ―sweetest‖ spot for placing a 

particular cell is as close to a power pin as possible. We also assume that the performance 
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drop is linear to the distance from the power source up to a maximum predefined value 

d. In the presence of multiple power sources we consider the distance from the closest 

one. 

3.2.4. Reducing Problem Complexity 

Here, we present the decisions taken in order to reduce the complexity of the 

placement problem to allow for efficient heuristics. 

3.2.4.1. Removing the Knapsack Component 

We start by completely removing the knapsack component of the problem namely, 

criteria (a) and (b). Specifically, from the initial N×M plane area we only consider for 

placement reasons the Rn×M space, where n is the cell width and R an integer such as: 

nRNRn )1(  . In other words we split the chip plane in rows such that cells fit exactly 

in every row width-wise. In case the plane cannot be divided exactly in rows of width n, 

the last row that is a fraction of n in width is discarded. Next, we split the Rn×M plane in 

RCD /  columns of equal length M/D. Essentially, this splits the whole plane in equally 

sized slots arranged in R rows and D columns such that their number equals the number 

of circuit cells C and that a cell can fit in a slot width wise. In general, a circuit cell can be 

placed anywhere in the plane accounting for increased complexity regarding the three 

problem criteria. Let sj denote the jth slot in a total ordering of them. By assuming all cells 

to be of equal size length-wise and fit exactly to the slot length, i.e., CiDMmi  1/  

the potential placement positions of a cell equal C , the number of slots. This 

significantly reduces search space and can be elegantly encoded in a CC   placement 

matrix X of Boolean values, whereby Xij=1 iff ci is placed in slot sj, 0 otherwise. 
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longestPathCalculation(DAG(G)) 

M:=Topological sort array of DAG(G); 
for all 1 ≤ i ≤ |C| visit[i]:=false; endfor 
longestPath:=NINF; 
while (exists i: visit[i]=false) do 
          s:=min{i: visit[i]=false};  
          cost:=calculateCost(s); 
          if (cost>longestPath) then longestPath:=cost; endif 
endwhile 
return longestPath; 

 
calculateCost(s) 

u:=M[s]; Visit[s]:=true; cost:=w(u); 
if (u has no outgoing edges in DAG(G)) then 
          return cost; 
endif 
for all v: (u, v) exists in DAG(G) 
          temp:= w(u) + calculateCost(v); 
          if (temp>cost) cost:=temp; endif 
endfor 
return cost; 

  

Figure 3-1 Pseudocode for longest path calculation in DAG(G). 

3.2.4.2. Making Critical Path Calculation Tractable 

As mentioned in section 3.2.1 longest path calculation in a weighted undirected graph 

is NP-hard. Therefore, in order to make critical path calculation tractable, we transform 

the graph G that is part of the Circuit_Input, into a directed acyclic graph DAG(G) using 

the following steps. First we run DFS starting from all input pins. The result of this step 

is a forest of DFS trees in which some of the original edges are missing. Then we 

perform topological sort and construct DAG(G) by taking every undirected edge (u, v) in 

G and adding a directed edge (u, v) in DAG(G) iff (u, v) doesn’t already exist and u 

appears before v in the topological order. Otherwise, in case (v, u) doesn’t exist in 

DAG(G) and u appears after v in the topological order, the directed edge (v, u) is added in 

DAG(G).  
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Having constructed DAG(G) in a preprocessing step and calculated its topological 

order, longest path calculation can be performed in O(|DAG(E)|) time where DAG(E) 

is the set of edges in DAG(G). Notice that from the DAG construction process 

|DAG(E)| = |E|/2, where E is the set of edges in G. Figure 3-1 shows longest path 

calculation in pseudocode. As a final note we would like to note that the longest path 

computed in DAG(G) needs not be equal to the longest path that exists in G (in fact the 

opposite would imply that P=NP). In constructing DAG(G) we lost some of the 

information graph G contained. Figure 3-2 illustrates an example. Assuming all vertex 

weights to equal 1, the initial undirected graph G (Figure 3-2-a) has a longest path of 5 

shown in dashed lines. One possible outcome of applying DFS in G starting from the 

grey vertex, is shown in Figure 3-2-b which depicts the DFS tree in bold lines. Based on 

this tree the final constructed DAG is given in Figure 3-2-c.As it can be observed the 

resulting graph has a longest path of 3.      

(a) Undirected graph (b) DFS tree (c) DAG  

Figure 3-2 An example of DAG construction 

3.2.4.3.   Slot Speedup Calculations 

As mentioned in section 3.2.3 we assume that the time delay introduced in a cell is 

linear to the distance from the closest power source. Here, we model the 

interdependence of the placement decision and cell delay as a speedup factor of slots. As 

it will be discussed in following sections this modeling allows us to view the cell 

placement problem as a scheduling problem, thus, being able to benefit from the rich 
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literature that exists in scheduling, e.g., [95] for a somehow old survey. We illustrate the 

process through the following example.  
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Figure 3-3 An example of distance calculation with 4 sources. 

Consider the case where a circuit of 64 cells, each being a perfect square with edge 

size of 1, must be placed in a chip plane of size 8×8. Figure 3-3 shows the plane arranged 

in 8×8 slots. Let there be 4 power sources with their places shown as an x mark in Figure 

3-3. Slots containing power sources are assumed to have a distance of zero. For the 

remaining (slot, source) pairs, the Euclidean distance is calculated between the slot’s 

center and the center of the slot containing the power source. In the example, 4 such 

distances will be calculated per slot (one for each source). Figure 3-3 records for each slot 

the smallest of the four calculated distances (let distj for slot sj).  

Afterwards, for each slot sj a speedup factor (let fj) is calculated as follows. The slot 

with the largest distance distmax (grey slot in the example) is assumed to have a speedup 

factor of 1 and decrease performance compared to a slot with distance 0 by a factor of 

]1,..0[d . This means that the speedup factor of a distance 0 slot (let fmax) is set to 1/(1-

d). The remaining fj factors (see Figure 3-4) are calculated proportionally as follows:  
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Figure 3-4 An example of speedup factor calculation. 

Notice that Eq. 3.1 implies that jf j  1 . Slot speedups depict the potential benefit 

(delay wise) of placing a cell in a particular slot. In particular, assigning cell ci to slot sj 

leads to a delay: jiij ftt / . Put it in other terms, by placing ci at sj, the weight w(ci) of the 

corresponding vertex at DAG(G) will become w(ci)/fj.  

3.2.5. The Relaxed Cell Placement Problem 

Instead of viewing the cell placement problem as a problem of placing cells in a plane 

(section 3.2.2), we use the methodology of section 3.2.4 to formulate it as a problem of 

placing speedup factors (essentially slots) to cells (graph vertices).  

Relaxed Cell Placement Problem (RCPP): Given Circuit_Input and Plane_Input, place slot 

speedup factors fjs in the vertices of DAG(G) so that: (a) each factor is placed at exactly one vertex, (b) 

each vertex gets exactly one factor and (c) the longest path in DAG(G) is minimized.  
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Equivalently, using placement matrix X (introduced in Sec. 3.4.1), path cost definition 

becomes:  

1|/)()(  


ij
pu

ij Xucfuwpw  (3.2) 

and (RCPP) can be stated more formally as: Given Circuit_Input and Plane_Input find the 

values of X so that: (a)



i

ij jX ,1 , (b) 



j

ij iX ,1 and (c) )}(|)(max{)( GDAGppwlpw   

is minimized. 

We would like to point out that a solution to RCPP is not necessarily a valid solution 

for the statement of section 3.2.2 since a cell might not fit in a single slot. Therefore a 

legalization step is required, whereby cells are moved in the plane in order to satisfy the 

validity constraints of section 3.2.2. This can be done using one of the existing techniques 

in the related literature, e.g., [82]. After legalization, it is likely that a cell will overlap 

multiple slots, in which case we assume that the speedup factor assigned to the cell equals 

the lowest speedup of the slots it overlaps. It is also worth mentioning that the 

legalization step is required not only to restore validity constraints, but also to exploit the 

optimization potential that exists when cell size is less than slot size (through suitable 

alterations a cell might be able to move to a better slot in terms of speedup). Due to 

space limitations we omit a detailed discussion on legalization. 

3.2.6. Complexity 

RCPP doesn’t suffer from the intractability of longest path calculation and bears no 

Knapsack component as the initial problem statement of section 3.2.2 did. Proving 

complexity when speedups obey Eq. 3.1 is part of ongoing work. With the assumption 

that slot speedups can be arbitrary, the relevant decision RCPP can be proved to be NP-

complete having a 2-processor scheduling component..  

Given a scheduling problem instance, we construct a graph component consisting of 

two disjoint paths. Let |p1(V)| be the number of vertices in the first path, |p2(V)| in the 

second, then |p2(V)| is set to |J| - |p1(V)|, i.e., both paths in total have vertices 
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corresponding to the number of jobs |J| in the scheduling instance. Then for each job 

we create a speedup factor )(/)( jobtimejobtimeT
job




 , for a total of |J| factors. By 

assuming that the initial weight at each vertex equals 
job

jobtime )(  we end up after the 

assignment of speedups to vertices with the two disjoint paths having vertex weights 

corresponding to job times. It is then easy to argue on the equivalence between asking 

for the longest path and minimizing the time of the most loaded processor. However, 

such equivalence exists only by assuming that jobs are split into processors so that one 

processor gets |p1(V)| jobs and the other |p2(V)|. Therefore, in order to be able to 

calculate the job make-span regardless of the split, we construct all possible distinct graph 

components (  2/|| J  in number), corresponding to splits: (1, |J|-1), (2, |J|-2) etc. We 

then make  2/|| J  copies of the speedup factors used above and suitably combine graph 

components so that a solution to RCPP gives both the best split and the best job 

assignment, thus, a solution to scheduling. 

3.3. Heuristics 

Having identified in section 3.2.5 that RCPP has a scheduling component, we can use 

it to design efficient heuristics. The intuition behind them is to identify a set of ―heavy‖ 

paths in DAG(G) and judiciously split the set of available speedups among them. 

Discussing and evaluating such heuristics is left for an extended version.  

Greedy  

//f: array with speedups sorted in decreasing order 
for all 1 ≤ i ≤ |C|  
          assignVertex[i]:=false;  
          speedupCounter:=1;  
endfor 
stop:=false; 
while (!stop) do 
          cost:=longestPathCalculation(DAG(G)); 

   vSet:={vertices in the above longest path}; 
          if (exists i such that ci belongs in vSet and  
          assignVertex[i]=false) then 
           candidate:= i: ti=max{tj for every cj belonging in vSet}; 
           tcandidate:=tcandidate/f[speedupCounter]; 
           speedupCounter++; assignVertex[candidate]:=true; 
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          else  
           stop:=true; 
          endif 
endwhile 
return cost; 

  

Figure 3-5 Pseudocode for the greedy heuristic. 

Here, we evaluate a greedy heuristic that consists of calculating the longest path and 

assigning the largest speedup factor to its heaviest vertex. The process is repeated 

iteratively until no further improvement can be obtained (i.e., the vertices of the 

calculated longest path have already speedup assignments). Figure 3-5 shows the 

pseudocode of the algorithm.  

 

Figure 3-6 Performance improvement of Greedy vs. Initial longest path (d=0.3, 0.5, 0.7, 0.9).  

3.4. Experiments 

This section presents our experimental findings. It is organized as follows. Section 

3.4.1 illustrates the experimental setup. Section 3.4.2 and section 3.4.3 illustrate the results 

under two comparison scenarios. Section 3.4.4 gives the runtime performance. Finally, 

section 3.4.5 includes a small discussion. 
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3.4.1. Experimental Setup 

We used 23 circuits from the ISCAS’89 benchmark. We performed experiments with 

the parameter d taking the following values: 0.3, 0.5, 0.7 and 0.9. Recall that d depicts how 

bad the worst slot placement is, compared to the best one. We consider the following 

placement alternatives:  

Greedy. The output of the algorithm presented in section 3.3.  

Random. Randomly assigns cells to slots. We record the best result obtained from 100 

different runs. 

Initial. This is the initial longest path that exists in DAG(G) before assigning any 

speedup factor. 

In all the experiments we record performance as a percentage of improvement 

compared to a base placement. The smallest dataset is dataset_1 consisting of 19 cells 

and the largest dataset_20 consisting of 741 cells.  

 

Figure 3-7 Performance improvement of Greedy vs. Random  (d=0.3, 0.5, 0.7, 0.9).  
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Figure 3-8 Runtime of Greedy (secs). 

3.4.2. Greedy vs. Initial Critical Path 

Here we compare the performance of the greedy heuristic versus the longest path that 

exists before any speedup operator is assigned. Figure 3-6 shows the percentage of 

improvement by the Greedy algorithm compared to the initial. As expected considerable 

performance improvements are achieved by Greedy. Furthermore, the potential 

optimization gains increase to the slot speedup difference (in d=0.3 improvement is 

between 20-30%, while for the extreme case of d=0.9 improvement is close to 90% in 

the majority of the cases).    

3.4.3. Greedy vs. Random 

Next, we compare Greedy against Random. Figure 3-7 presents the results for all 

circuit datasets as the percentage of improvement of the Greedy heuristic compared to 

the Random. Greedy is a clear winner with performance improvement varying from 10% 

up to 70% depending on the case. This result is particularly encouraging since it means 

that even when slot speedup differences are small random cell placement at slots is 

clearly inferior compared to the greedy approach. 
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3.4.4. Execution Time 

Figure 3-8 illustrates the runtime of Greedy algorithm. Results were obtained using a 

laptop carrying an Intel Core i5 processor running in 2.4 GHz with 6GB memory. It can 

be noted that the runtime never exceeded a couple of seconds.  

3.4.5. Discussion 

Summarizing the experimental results we can say that: The Greedy heuristic is fast 

enough and the optimization margin using our formulation on its dataset appears to be 

of significance. Finally, Greedy outperforms Random. 
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4. Heuristics for IC Legalization 

4.1. Motivation 

Cell placement is the problem of placing the cells of a VLSI circuit over a chip area, 

such that no cell exceeds area boundaries, no two cells overlap and cells are aligned 

into the rows that the chip area is split into. In standard cell placement, all cells have 

the same width (potentiallly different lengths) and the chip area is split into equally 

sized rows. Most commonly, the final cell placement is defined using a two step 

approach. First, a global placer spreads the cells across the chip area so that one or more 

target functions are optimized. Targets such as wire length, routability, critical path 

length and cell congestion have been considered in the past as optimization targets for 

the global placement step (a survey can be found in [106]). 

The output from the global placement process does not necessarily satisfy the 

constraints, e.g., it might contain overlaps or unaligned cells. Therefore, at a second 

stage the output from global placement is legalized. Figure 4-1and Figure 4-2 depicts an 

example with the ibm05 benchmark circuit [83]. Figure 4-1 shows the global placement 

performed by NTUplace3 [33], while Figure 4-2 the output of legalization using the 

Tetris approach [73]. The usual performance metrics of algorithms in this category 

include the optimization targets of the global placement, most commonly wire length 

measured as follows: for each net in the circuit, the half perimeter length of the minimum 

bounding box totally enclosing the net is added. In order to have a performance metric 

that is oblivious to the particulars of the global placement, cell displacement is also used, 

measured as the Manhattan distance of the cell center before and after legalization. 

Intuitively, displacement declares that a legalization algorithm is efficient if it marginally 

disturbs the global placement. In this chapter we use both half perimeter wire length 

(HPWL) and displacement as performance metrics. 

Although the circuit legalization problem forms the final step of the placement 

process, a number of circuit placers that work in an iterative manner such as 

NTUplace3 [33] and ePlace [103], incorporate a legalization step at the end of each 

iteration in order to estimate a ―goodness‖ function for the global placement found so 

far. When used as an intermediate cost estimator, the time complexity of the 
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legalization algorithm is of critical importance. Thus, it is not unusual to select for the 

 

Figure 4-1 The output of NTUplace3 global placer 

 

Figure 4-2 The output after legalization with Tetris algorithm 
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task a rather simple but fast legalization algorithm, e.g., Tetris [73], instead of a more 

complex option, e.g., Abacus [128] that is capable of achieving significantly better 

placement quality at the expense of execution time that is orders of magnitude higher.  

Furthermore, in sub-90nm processes gate capacitances scale faster than 

interconnect capacitances, making the latter an ever-increasing component of the total 

switched capacitance, reaching over 20% in current process nodes. Since standard cell 

placement has a direct effect on the interconnect capacitance, it is becoming a power 

reduction vehicle targeting high activity factor nets such as nets on the clock 

distribution network [34], [121] and [145]. Weighing the capacitance of each net with 

the corresponding activity factor can lead to significant improvements as shown in 

[34]. Yet further research is warranted given the increased impact to total circuit power 

especially for interconnect dominated circuits such as networks-on-chip. As motivation 

and reference, the total switched capacitance and the total interconnect capacitance for 

a 45nm implementation of the ISCAS89 benchmark circuits are presented in Table 4-1. 

However, the total switched capacitance could not be obtained for the placement 

benchmarks (used by the placement community as reference) since they are not 

associated with an actual netlist. 

Motivated by the aforementioned observation, in this chapter we focus on the 

legalization problem from the standpoint of providing sufficient solution quality at a 

small running time. In particular, we introduce heuristics that improve upon the 

solution quality of one of the fastest existing legalization algorithms (Tetris), while 

maintaining the distinct advantage of the algorithm in running time terms compared to 

the more complex methods. Our contributions include the following: 

 We propose and evaluate 4 different heuristic adaptations of the basic 

Tetris algorithm, referred to as Classic Tetris (CT) algorithm. The heuristics are 

easy to implement and attack the problem of improving CT’s performance 

from different angles. 

 Aside from evaluating each heuristic as standalone we also evaluate their 
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combined effects. It turns out that the best performance is achievable through 

such combinations, while they also offer a variety of trade-offs between 

solution quality and execution time to choose from. 

 All heuristics are evaluated over the 18 IBM benchmark circuits [83], with 

global placements obtained by Gordian [88] and NTUplace3 [33] algorithms. 

As there are no gate-level netlists for the aforementioned circuits, Activity 

Factors (AFs) of 1.0 have been assigned to nets that appeared to be parts of the 

clock network, while AFs of 0.1 have been assigned to the rest. Comparing the 

results against a state of the art legalization algorithm (Abacus [88]) and for 

NTUplace3 input, the performance achieved by one of the proposed heuristics 

(CC8-LR) was impressive. Specifically, whereas Abacus improvement over CT 

was 78.5% in HPWL, 97.5% in displacement and 86.7% in interconnect power, 

the heuristic achieved 75.1% in HPWL, 94.9% in displacement and 83.7% in 

interconnect power, but with a running time more than two orders of 

magnitude faster compared to Abacus. Similar (but to a lesser extent) large 

improvements over CT both in HPWL and displacement were also achievable 

with input from Gordian. 

 We identified that certain heuristics were able to improve significantly the 

performance of CT in all four dimensions (HPWL, displacement, power, time), 

with the gains for the AC4-RR10% (Area Cut 4 – Restricted Row 10%) 

heuristic reaching (66%, 80%, 78%, 71%) with NTUplace3 input and (53%, 

77%, 74%, 73%) with Gordian. 

Although the CT legalizer is a rather old method, to the best of our knowledge this 

is the first work discussing heuristics to the basic algorithmic scheme that can 

significantly boost its performance quality wise while maintaining its fast running time. 

In [43] we presented a first limited report on the performance of the standalone 

heuristics. As it is shown in this chapter the combination of the heuristics is the one 

that leads to a drastic performance improvement capable of placing CT almost in par 

with the more sophisticated Abacus algorithm, particularly in the case of NTUplace3.  
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4.2. Tetris Heuristics 

In this section we present the basic Tetris algorithm together with four proposed 

heuristics. We consider standard cell placement legalization whereby all cells have equal 

height and a solution consists of placing cells into rows of height equal to cell height. 

4.2.1. Classic Tetris (CT) 

The CT algorithm works as follows. First, it sorts all cells in increasing order of the x-

coordinate of their center. Then assuming an initially empty chip area, it places the sorted 

cells consecutively starting from the one with the minimum x-coordinate. Once a cell is 

placed it is never again moved. In order to decide a single cell placement, CT calculates 

for each row the first available free position scanning the row from left to right, i.e., the 

first free position with the minimum x-coordinate. Some of these positions may be 

invalid because placing the cell there would result in exceeding the available chip area. 

Among the valid positions the one resulting in the minimum displacement, i.e., the one 

with the minimum Euclidean distance from the starting cell position, is selected. 

We illustrate the process through an example that shows the CT legalization process 

over the initial placement depicted by Figure 4-3. The 6 cells involved in the example are 

named in order of their x-coordinates, therefore CT will first place cell A then cell B etc. 

Cell A will be placed at the beginning of the 4th row since its center lies within, thus, 

incurring the minimum displacement among all leftmost row positions. The process 

continues in a similar manner until the final placement is performed (Figure 4-5). Figure 

4-4 illustrates the decision concerning cell D (cells E and F are omitted for clarity). The 

figure shows that once cells A, B and C are placed, among the 6 valid positions 

considered by the algorithm the one at the 4th row incurs the minimum displacement 

and is thus selected. 
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Figure 4-3 Initial placement 

 

Figure 4-4 Possible positions for D cell 
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4.2.2. Restricted Row Heuristic (RR) 

This approach works in the same manner as CT, with the exception being that rather 

than having all the rows as possible candidates, only p% of the rows are considered based 

on their proximity to the row where the cell’s center initially resides. The rationale of the 

heuristic is two-fold. First, in CT (depending on the initial input) it is likely that a cell is 

placed in a row far away from the one it starts, due to the fact that the starting row as 

well as the ones close to it are relatively empty, while the distant one is more filled. 

Revisiting the example of Figure 4-4, cell D starts at the 3rd row but it is placed at the 4th 

row because this row is already filled up to a certain point while the 3rd one is empty. 

Even if CT decides on placement based on the smallest displacement, moving a cell far 

away from its original row might have adverse effects for the placement quality of 

subsequent cells. The second premise of the RR heuristic is orthogonal to the first one 

and aims at reducing the runtime of CT by limiting the number of rows the algorithm 

considers as placement candidates. 

  

 

Figure 4-5 Final placement by CT 
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4.2.3. Left-Right Heuristic (LR) 

The LR heuristic partitions the chip area in two. Cells with centers belonging to the 

left partition will be placed identically to CT, while the ones belonging to the right 

partition are placed in a similar to CT manner with the exception being that they will be 

sorted in decreasing (instead of increasing) order of x-coordinates and instead of placing 

them towards the leftmost legal positions, they will be placed towards the rightmost. We 

use the same example circuit of Figure 4-3 to illustrate the LR heuristic. Cells A and B 

belong to the left partition while the remaining to the right (Figure 4-6). In the final 

placement A and B will be placed as per CT, but the rest will be placed towards the right 

side of the chip area in reverse order, i.e., F first followed by E, D and C, resulting in the 

placement showed in Figure 4-7. The intuition behind the heuristic is that cells residing 

to the right partition probably have higher affinity with pins located at the right circuit 

edge. Therefore, moving them towards the right edge instead of the left one will result in 

smaller HPWL. 

4.2.4. Area Cut-k Heuristic (ACk) 

Under this approach the chip area is split into a k×k grid of equally sized rectangles. 

The algorithm then proceeds by performing CT for the local cells of each separate 

rectangle. Using the example circuit of Figure 4-3, Figure 4-8 shows the final placement 

produced by AC2. Notice that cells A and B belong to the bottom-left rectangle, C, E to 

the bottom-right and D, F to the top-right and are thus, placed in the aforementioned 

rectangles. Since cells might exceed rectangle boundaries (cell B in Figure 4-8) a strict 

order with which rectangles are considered is enforced. Namely, CT is applied starting 

from the top-left rectangle and continuing in a line by line manner. In the extreme case 

where a cell can’t be placed within its rectangle because the whole rectangle area is filled, 

all circuit rows are considered as placement candidates.  The premise of this heuristic is 

that by vertically splitting the chip area a bound on the displacement over the x-axis is 

essentially introduced. The same holds true for the y-axis displacement and the 

horizontal partitioning, an idea that is also captured by RR heuristic. 
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Figure 4-6 The initial placement and the virtual 

split of the chip area in two equal partitions.  

 
Figure 4-7 Final placement by LR heuristic 

Institutional Repository - Library & Information Centre - University of Thessaly
10/04/2024 15:15:51 EEST - 3.233.222.249



CHAPTER 4. HEURISTICS FOR IC LEGALIZATION 
 

  43 
  

 

Figure 4-8 The split in 2×2 grid and the output of AC2 heuristic. 

 

Figure 4-9 The vertical split in two areas and 
the placement performed by CC2 
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4.2.5. Cell Cut-k Heuristic (CCk) 

This heuristic splits the sorted by x-coordinate cell list into k equally populated lists 

(let Li, 1 ≤ i ≤ k). For each Li it calculates the aggregated area of its cells (let area(Li)). 

It then splits the chip area vertically into k partitions (let Ri, 1 ≤ i ≤ k), such that the 

area of Ri is given by (4.1): 

    (  )  (    (  )      (    )) ∑     (  )
 

   
 (4.1) 

  

The heuristic proceeds by applying CT in order to place the cells belonging to Li at 

Ri. Figure 4-9 illustrates for the example circuit of Figure 4-3 the final placement 

produced by CC2. Notice, the vertical partitioning into two unequal areas that follows 

the size proportion of cells A, B and C versus the size of cells D, E and F. The 

intuition behind this heuristic is that by defining vertical splits in a proportional 

manner, partitions will have equal density (as opposed to ACk heuristic), thus, leading 

to better results. 

4.3. Experiment Results 

We evaluated the performance of the heuristics using the ISPD04 dataset and in 

particular the ibm01 – ibm18 circuits [83]. Global placements were produced by running 

Gordian and NTUplace3. Three performance criteria were used, namely: total cell 

displacement (Displace) measured using Manhattan distance, total net half perimeter wire 

length (HPWL) and running time (Time). For each circuit we recorded the percentage of 

performance improvement of each heuristic (H) over CT as follows: 

improvement = (performance(CT) – performance(H)) / performance(CT). 

In order to characterize the total performance of the heuristics over the entire dataset 

we used the average improvement experienced over all circuits. 

4.3.1. Evaluating heuristics combinations 

Motivated by the results of Table 4-2 we proceeded by evaluating heuristic 

combinations. Namely, for each of the partitioning heuristics (ACk and CCk) we tested 
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the performance when combined with LR and RR. The rationale was the following: 

since LR, RR and the partitioning heuristics all managed to improve HPWL and 

displacement when used in standalone mode and they attack the problem from 

different angles, it is likely that their combination will further improve performance on 

these two metrics. Furthermore, for the case of RR combinations it is likely that it will 

further improve time performance of the partitioning heuristics. Based on Table 4-2 

we only considered the application of RR10% which was shown to be the most 

promising RR alternative. 

We tested two-part combinations whereby for instance AC2-LR and AC2-RR10% 

denote that the chip area is split according to AC2 and for each resulting rectangle 

legalization is performed using LR and RR10% respectively (similarly for CCk 

heuristic). We also included in the experiments three part combinations whereby for 

instance AC2-LR-RR10% means that the chip area is partitioned according to AC2 and 

at each rectangle, LR was used for legalization but with the constraint implied by 

RR10%. Table 4-3 summarizes the results for ACk based combinations, while Table 

4-4 for CCk based. In both tables LR and RR10% were also included for comparison 

reasons. Boldfaced values indicate dominating heuristics on each table separately.  

As observed in Table 4-3 and IV, applying both LR and RR10% simultaneously 

over ACk and CCk heuristics gave results that were constantly dominated by the ones 

produced when applying RR10% only. Thus, the three-part heuristics don’t account for 

valid alternatives. Concerning ACk alternatives, the ones based on AC4 seem to offer 

the most viable solutions. Notice, that AC3-RR10% belongs in the dominating set due 

to a marginally better performance by 0.19% against AC4-RR10% in the Gordian case. 

Furthermore, the application of LR and RR10% works as per our motivation. Namely, 

comparing AC4-RR10% against AC4 improved performance is achieved across all 

three metrics, while the time gains are particularly impressive with an extra of roughly 

20% in NTUplace3 and 26% in Gordian. AC4-LR achieves the best performance 

HPWL and displacement wise with an extra of at least 10% compared to standalone 

AC4 in all cases. 
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Similar observations hold for CCk based combinations in Table 4-4. The best 

performance in HPWL and displacement is obtained by applying LR over CC8, but at 

a high time performance degradation compared to CT. Applying RR10% drastically 

cuts down time cost. For instance whereas CC8 accounts for a time increase compared 

to CT of 67.58% and 53.77% with Gordian and NTUplace3 input respectively, CC8-

RR10% accounts for 45.53% and 42.42% time reduction. 

In order to clarify which heuristics account for the best alternatives, in Table 4-5 we 

record the heuristics that produced dominating results over Table 4-2, Table 4-3 and 

Table 4-4 cumulatively. We also recorded the performance of the Abacus legalization 

method for comparison reasons. Boldfaced are heuristic results that provide the most 

interesting trade-offs. CC4-LR is excluded from this list because it offers only marginal 

improvement of less than 1% in HPWL and displacement terms compared to AC4-LR 

while its time degradation is roughly 100% compared to the latter. AC3-RR10% is also 

excluded since compared to AC4-RR10% it only provides an extra 0.19% 

improvement in time for the Gordian case while losing in all other comparisons. Lastly, 

CC8-RR10% is excluded because compared to AC4-LR it is slightly better time wise, 

but worse in HPWL and displacement. 

From Table 4-5 it is evident that the best performance on HPWL and displacement 

is offered by the Abacus algorithm, however, its time cost is larger by two orders of 

magnitude compared to CT. For the best performing heuristics and NTUplace3, 

interconnect power is presented in Table 4-6 as a fraction of the one achieved by CT. 

As far as the heuristics of this chapter are concerned, CC8-LR and AC4-RR10% offer 

different trade-offs between HPWL/displacement and time. CC8-LR has the best 

performance in HPWL and displacement terms but incurs an extra running cost, 

whereas AC4-RR10% offers the best time improvement while also improving (to a 

lesser extend) HPWL and displacement. AC4-LR offers a trade-off in between CC8-

LR and AC4-RR10%. Summarizing the results we can state the following: 
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 Compared to CT, CC8-LR, AC4-LR and AC4-RR10% all offer significantly 

better performance in terms of placement quality (HPWL and displacement) 

while the AC variants greatly outperform CT also in running time; 

 Compared to Abacus, CC8-LR offers the best Tetris heuristic alternative. It is 

noteworthy that in the case of NTUplace3 the performance of CC8-LR in 

HPWL and displacement is very close (less than 4%), while its running time is 

still faster by two orders of magnitude; 

 Lastly, all the proposed heuristics are simple in nature and can be easily 

incorporated in current placement suits. 
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Circuit Interconnect 

Capacitance 

Diffusion 

Parasitics 

Pin 

Parasitics 

Load 

Capacitance 

Interconnect 

Contribution 

s27 7.82 0.21 0.08 40.59 15.6% 

s298 114.56 1.00 1.20 476.74 19.0% 

s344 117.34 1.00 2.13 487.69 18.9% 

s349 113.86 1.48 2.09 450.31 19.5% 

s382 159.30 1.13 3.36 622.27 19.8% 

s400 157.15 0.97 1.55 633.44 19.6% 

s420 165.20 1.74 2.17 612.37 20.7% 

s526 213.89 1.60 2.15 831.85 20.1% 

s641 255.99 6.67 5.49 1032.50 18.9% 

s713 275.59 6.99 5.74 1079.60 19.4% 

s820 415.13 3.29 3.73 1339.54 23.3% 

s953 443.86 3.10 4.09 1277.94 25.4% 

s1196 656.49 3.62 3.92 1546.06 29.5% 

s1238 670.32 3.66 3.71 1587.70 29.4% 

s1423 479.44 4.59 3.03 1600.04 22.7% 

s1488 843.36 6.14 5.72 2038.09 28.9% 

s5378 2338.24 15.76 16.33 7142.01 24.3% 

s9234 1799.21 24.02 15.53 7471.00 19.0% 

s13207 5662.73 50.13 44.86 17455.81 24.1% 

s15850 6795.52 75.66 54.23 20618.92 24.3% 

s35932 14742.85 101.24 144.25 41960.02 25.6% 

s38417 15849.30 130.49 117.95 51730.57 23.1% 

Average     22.3% 

Table 4-1 Contribution of interconnect capacitance to total switched capacitance (in pF) 

  

Institutional Repository - Library & Information Centre - University of Thessaly
10/04/2024 15:15:51 EEST - 3.233.222.249



CHAPTER 4. HEURISTICS FOR IC LEGALIZATION 
 

  49 

Table 4-2 Performance improvement of standalone heuristics over CT 

Table 4-3 Performance improvement of AC heuristic combinations over CT 

Heuristics 
Gordian NTUplace3 

HPWL Displace Time HPWL Displace Time 

LR 35.54% 49.10% -9.04% 46.14% 48.09% -11.41% 

RR10% 20.26% 12.22% 61.43% 30.36% 11.62% 40.30% 

RR20% 13.22% 7.66% 44.85% 18.60% 7.21% 24.80% 

RR30% 7.85% 4.33% 29.03% 10.89% 4.02% 3.13% 

AC2 36.51% 52.77% 12.15% 45.42% 56.30% 21.28% 

AC3 47.75% 69.74% 34.78% 57.19% 71.89% 43.62% 

AC4 49.65% 74.19% 47.23% 61.84% 78.28% 51.13% 

CC2 35.34% 51.94% -62.30% 43.52% 55.74% -62.30% 

CC4 50.38% 74.55% -63.66% 60.40% 77.90% -51.58% 

CC8 57.11% 85.69% -67.58% 68.66% 88.55% -53.77% 

Heuristics 
Gordian NTUplace3 

HPWL Displace Time HPWL Displace Time 

LR 35.54% 49.10% -9.04% 46.14% 48.09% -11.41% 

RR10% 20.26% 12.22% 61.43% 30.36% 11.62% 40.30% 

AC2 36.51% 52.77% 12.15% 45.42% 56.30% 21.28% 

AC2-RR10% 44.58% 58.41% 68.07% 56.84% 61.52% 67.72% 

AC2-LR 56.04% 77.38% 1.29% 67.24% 80.45% -8.29% 

AC2-LR-RR10% 22.51% 46.96% 62.58% 24.70% 48.86% 63.25% 

AC3 47.75% 69.74% 34.78% 57.19% 71.89% 43.62% 

AC3-RR10% 51.76% 73.00% 74.14% 63.75% 74.99% 69.27% 

AC3-LR 59.66% 85.82% 23.63% 71.49% 87.78% 19.22% 

AC3-LR-RR10% 37.03% 62.80% 67.28% 41.75% 65.06% 68.55% 

AC4 49.65% 74.19% 47.23% 61.84% 78.28% 51.13% 

AC4-RR10% 53.55% 77.29% 73.95% 66.54% 80.58% 71.38% 

AC4-LR 59.87% 87.40% 43.99% 72.81% 90.66% 34.55% 

AC4-LR-RR10% 43.64% 70.70% 72.39% 50.59% 73.07% 67.01% 
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Table 4-4  Performance improvement of CC heuristic combinations over CT 

Table 4-5 Dominating heuristics 

  

Heuristics 
Gordian NTUplace3 

HPWL Displace Time HPWL Displace Time 

LR 35.54% 49.10% -9.04% 46.14% 48.09% -11.41% 

RR10% 20.26% 12.22% 61.43% 30.36% 11.62% 40.30% 

CC2 35.34% 51.94% -62.30% 43.52% 55.74% -62.30% 

CC2-RR10% 41.96% 56.10% 48.53% 52.75% 59.75% 46.73% 

CC2-LR 55.81% 77.11% -60.59% 67.23% 80.56% -59.64% 

CC2-LR-RR10% 18.92% 44.42% 47.58% 19.07% 46.31% 44.26% 

CC4 50.38% 74.55% -63.66% 60.40% 77.90% -51.58% 

CC4-RR10% 51.55% 75.31% 51.82% 62.38% 78.69% 45.89% 

CC4-LR 60.41% 87.58% -60.93% 72.84% 90.74% -60.68% 

CC4-LR-RR10% 41.53% 68.76% 49.88% 45.87% 70.84% 42.82% 

CC8 57.11% 85.69% -67.58% 68.66% 88.55% -53.77% 

CC8-RR10% 57.15% 85.72% 45.53% 68.73% 88.56% 42.42% 

CC8-LR 61.87% 91.85% -72.18% 75.15% 94.89% -63.20% 

CC8-LR-RR10% 53.10% 82.01% 42.97% 61.64% 84.28% 38.75% 

Heuristics 
Gordian NTUplace3 

HPWL Displace Time HPWL Displace Time 

Abacus 83.06% 98.08% -2587.94% 78.82% 97.53% -5481.04% 

AC3-RR10% 51.76% 73.00% 74.14% 63.75% 74.99% 69.27% 

AC4-RR10% 53.55% 77.29% 73.95% 66.54% 80.58% 71.38% 

AC4-LR 59.87% 87.40% 43.99% 72.81% 90.66% 34.55% 

CC4-LR 60.41% 87.58% -60.93% 72.84% 90.74% -60.68% 

CC8-RR10% 57.15% 85.72% 45.53% 68.73% 88.56% 42.42% 

CC8-LR 61.87% 91.85% -72.18% 75.15% 94.89% -63.20% 
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Circuit Abacus AC4-RR10% CC8-LR 

ibm01 18% 28% 21% 

ibm02 15% 23% 17% 

ibm03 21% 31% 24% 

ibm04 19% 27% 22% 

ibm05 15% 20% 17% 

ibm06 13% 20% 15% 

ibm07 13% 24% 18% 

ibm08 15% 24% 17% 

ibm09 17% 29% 21% 

ibm10 11% 18% 13% 

ibm11 11% 19% 13% 

ibm12 14% 23% 17% 

ibm13 17% 30% 20% 

ibm14 8% 16% 12% 

ibm15 8% 16% 10% 

ibm16 9% 18% 11% 

ibm17 10% 19% 16% 

ibm18 8% 17% 10% 

Average 13.3% 22.2% 16.3% 

Table 4-6 Interconnect power of heuristics as a fraction of CT interconnect power 
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5. Parallelizing Legalization Procedure 

5.1. Motivation 

In standard cell placement, cells are assumed to be of equal height (different width) 

and the chip area is split into rows of height equaling cell height. The target of placement 

is to arrange all the cells of the circuit within the chip area so that they are aligned to 

rows, no overlaps exist and some target function is optimized. Candidates for 

optimization include wire length, cell congestion, routability, critical path length etc. [106] 

provides a comprehensive survey on cell placement. 

The final placement of a circuit is most commonly achieved in stages. The first stage 

(global placement) produces an arrangement of cells on the chip plane so that cells are 

sufficiently spread from each other and the optimization criteria are met. This output, is 

seldom a valid placement and usually contains overlaps and misaligned cells. For this 

reason the final stage in the placement process is legalization whereby the target is to 

restore validity constraints while reaching a final placement that is as close as possible to 

the one produced by the global placer. 

Legalization algorithms can also be found as components of iterative global placers, 

whereby they are applied in order to estimate the ―goodness‖ of intermediate solutions. 

Especially in this case, the trade-off between solution quality and running time is 

particularly important, since the legalization scheme isn’t meant to produce a final 

solution once, but will be called repeatedly to get an estimation of the actual performance 

achieved by each iteration. Different approaches to deal with this trade-off can be found 

in the literature. On one extreme ePlace [103] adopts a variant of a simple greedy method 

called Tetris [73] that is known to be very fast but produce low quality solutions. On the 

other hand global placers such as Kraftwerk2 [129] use the more sophisticated Abacus 

[128] method that is known to achieve top quality solutions but at runtime that is roughly 

two orders of magnitude compared to Tetris. 

In this chapter we turn our focus on speeding up the legalization algorithms that offer 

top quality solutions, such as Abacus, using parallelization. Our approach is based on 
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splitting the chip area vertically into subareas to be considered independently. Clearly, the 

algorithmic details might preclude the existence of purely independent subareas. In this 

case any conflicts that exist are resolved in a sequential manner. We demonstrate the 

efficacy of our parallelization approach by implementing it over the Abacus algorithm. 

For ease of reference we term the resulting method Domocus. Our contributions include 

the following: 

 We propose a lock-free parallelization framework that can be applied over 

various legalization schemes. 

 We implemented and tested the framework over a legalization algorithm 

(Abacus) known for its solution quality but also slow running time. 

Results indicate that Domocus achieves good scalability, while retaining at large the 

solution quality of the Abacus scheme, even improving it from certain performance 

aspects. 

5.2. ABACUS overview 

Here we provide a brief overview of Abacus’ functionality through the illustrative 

example of Figure 5-1. A comprehensive description can be found in [128]. The Abacus 

algorithm works as follows. First all cells are sorted according to their x-axis coordinates. 

[128] indicates that the algorithm should be run both by sorting in increasing and in 

decreasing order (choosing the best among the two). In this chapter we only consider for 

simplicity increasing order. The algorithm then proceeds by placing cells one by one. 

Each cell placement is performed as follows. The algorithm starts with the row where the 

cell center currently belongs and attempts to place it there calculating an initial 

displacement cost C. It then examines the cost of placing the cell in the rows lying above 

the starting one and then the ones that rest downwards. If at any point when considering 

a direction (upwards or downwards) the row examined incurs a higher cost than the 

minimum one calculated already, the algorithm stops examining any more rows on this 

direction. The aim of this early termination criterion is to reduce the running time of the 

algorithm. 
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Figure 5-1 Initial global placement. 

 

Figure 5-2 Placement of A and B cells. 
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Calculating row displacement cost involves finding the best cell position within the 

examined row. The first step towards this is to consider the ideal placement which is the 

one obtained by moving the cell vertically so that it is row aligned. In case this position 

incurs no overlaps with previously placed cells the position is retained. Otherwise, a 

cluster is formed with the overlapping cells (or clusters) and then the best cluster position 

is calculated within the specified row. Cells within a cluster maintain their x-coordinate 

order. 

Considering the example global placement of Figure 5-1, whereby the four cells are 

named in order of increasing x-coordinates, cell A will be placed first, followed by cell B, 

resulting in the intermediate instance shown by Figure 5-2. When cell C will be 

considered for placement at row 2 it is evident that its ideal position at row 2 overlaps 

with cell B. For this reason C is in a sense appended at the end of cell B and the two cells 

form a cluster Figure 5-3. Continuing the example, when cell D will be considered for 

placement at row 2, it will be added to the (B, C) cluster as shown in Figure 5-4. As a  

 

Figure 5-3 Cluster formation with B and C cells 
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final  step, the whole cluster (B, C, D) will be moved towards the position that minimizes 

the cumulative distance of all cluster cells from their ideal positions in the row.  

 

Figure 5-4 D is appended to the cluster 

 

Figure 5-5 Cluster moved to optimal position. 
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5.3. DOMOCUS parallel algorithm 

Parallelizing Abacus poses interesting dilemmas. Recall that the algorithm considers 

cells in a sorted manner and for each cell, potentially all candidate rows are checked, 

using an early termination criterion. It is apparent that two possible parallelization 

granularities can be used. The first is at the group of cells level, whereby each thread will 

be tasked with the placement of different cells (coarse grained parallelism) and the other 

one is at a cell level, whereby the threads will be tasked to cumulatively calculate a single 

cell’s placement (fine grained parallelism). Although the fine grained approach requires 

no particular synchronization overhead (one can assign different threads for different 

row cost calculations), it doesn’t scale well, due to the early termination criterion. 

Consider for instance the case where the best displacement is given by forming a cluster 

in the row where the cell currently resides. In this case three rows will be totally checked 

(the current row, the one above it and the one below it), which means that in systems 

with more than three CPU cores, the remaining cores will stay idle. For this reason we 

chose to follow the coarse grained approach. 

Using coarse grained parallelism in a straightforward manner introduces significant 

synchronization overhead, since it must be ensured that no two threads will place their 

cells in overlapping positions or incorporate them at the same cluster. Instead, we 

decided to follow an alternative lock-free approach. Specifically, we partition the chip 

area into N equally sized vertical zones, with N equaling the number of available CPU 

cores. Each zone is processed by a separate thread by applying the Abacus algorithm 

over the cells contained in the zone sorted by x-coordinate.  

When considering a specific cell-row placement on the zone it belongs to, two cases 

rise: (i) the cell is placed in the row so that neither the cell, nor the cluster it was added to 

(if it did) exceeds zone boundaries; (ii) the placement results in the cell or a cluster 

exceeding zone boundaries. In case of (i) the placement is considered valid, otherwise if 

(ii) holds, the placement is invalid and discarded. In this manner it is possible that for 

some cells no eligible positions are found. Once all threads finish with their assigned 

placements, any cells that remain unplaced are handled in a second sequential step 

without zone boundary restrictions.   
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With the aforementioned methodology zones (and the placements within them) are 

completely independent thus, no synchronization is required and the scheme is 

completely lock free. It is worth noting that the previously described mechanism that 

consists of zone partitioning and a second sequential step to deal with unplaced cells can 

be applied to other legalization schemes (aside from Abacus) provided the schemes 

themselves don’t follow their own chip area partitioning. For instance another 

straightforward candidate is [73].   

In this chapter we focused on speeding up the execution of Abacus legalization. The 

resulting parallel algorithm Domocus, might divert in performance from the sequential 

Abacus due to two reasons. First, candidate rows deemed ineligible due to boundary 

restrictions, might have been used by the sequential scheme. Secondly, the existence of 

unplaced cells that are handled at the end, changes the order with which Abacus 

considers cells for placement. In the following section we evaluate any possible negative 

effects on solution quality due to parallelization, but also the achievable speed-up. 

5.4. Experiment 

We implemented Domocus and compared its performance to sequential Abacus 

across the following three metrics: displacement, half perimeter wire length (HPWL) and 

time. Displacement was measured using the Manhattan distance between the initial cell 

position as defined by the global placer and the resulting one by the legalization process. 

HPWL is a commonly used metric in the literature in order to estimate the total required 

wire length. Namely, for each net in the circuit the minimum bounding rectangle that 

encloses all its cells is calculated and its half perimeter is accumulated. We used the 18 

ibm circuits as benchmarks [83], assuming an initial global placement obtained by the 

algorithm in [88]. Experiments were run on a Linux server with two 6-core Intel Xeon 

E5-2630 CPUs running at 2.3GHz using hyper threading (12 physical cores total). 

Parallelization was done using OpenMP.   

Figure 5-6 presents the performance in HPWL and displacement terms of Domocus 

(for 1, 2, 4, 8 and 12 threads) as a percentage improvement over Abacus, using the 

following formula:  
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100(perf(Abacus) - perf(Domocus)) / perf(Abacus) 

The figure shows the averaged improvement results over all 18 circuits. First, it is 

clear that any performance difference is rather small which is particularly encouraging for 

our method. To explain the results we should notice that as the number of zones 

(threads) increases, so will the number of unplaced cells. These cells are placed in a 

sequential out of order manner. This out of order placement seems to have a small 

negative effect on HPWL while in displacement terms it doesn’t have a great impact. In 

fact the Domocus accounts for a small improvement in displacement. This is presumably 

due to the fact that by enforcing zone boundaries, a constraint is effectively imposed on 

the maximum displacement along the x-axis. 

Figure 5-7 plots the speedup of Domocus over sequential Abacus. Observe that with 

2 and 4 threads super-linear speedup is achievable, highlighting the merits of our 

approach. With 8 and 12 threads the performance is not similarly outstanding since the 

size of the second sequential part increases (more cells are left unplaced as previously 

explained). However, this observation doesn’t diminish the value of our approach which 

is solidly built upon the super-linear speedups experienced with 2 and 4 threads. Rather, 

it provides a direction for future work whereby the second sequential step will be also 

parallelized in a similar lock-free manner.  
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Figure 5-6 Average performance improvement 
(%) for the HPWL and displacement metrics 

(x-axis shows thread number). 

 

Figure 5-7 Speedup over the sequential 
execution (x-axis shows thread number). 
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5.5. IC Placement over the Cloud 

Domocus performance was also tested using Google Cloud Engine (GCE) [68]. GCE 

provides high-performance virtual machines with predefined configurations. 

Experiments were run on a Linux standard machine type with 8 virtual CPUs, 30 GB of 

memory and 20GB SSD persistent disk (n1-standard-8). The virtual CPU is implemented 

as a single hardware hyper-thread on a 2.6 GHz Intel Xeon E5 (Sandy Bridge). Europe-

west1-b zone was selected to host our experiments. Choosing a region which is close to 

our point of service might decrease network latency. Figure 5-8 shows the algorithmic 

performance regarding running time using ISCAS89 benchmark circuits (for 1, 2, 4 and 8 

threads). The first machine (mcA) was described in 5.4 while mcB is the aforementioned 

one. Despite that there are no significant differences between the two instances it is 

obvious that GCE is a good alternative. Beside execution time, GCE gives users the 

possibility to rapidly build and test legalizers. In most cases Cloud’s expenses can be a 

block for users, however, bandwidth, database storage and disc space is not IC placement 

concern. Aside of typical operation costs like benchmark downloading and essential 

application installation. Figure 5-9 presents the overall testing cost at n1-standards-8 

instance. Results point out that Cloud environment fits the requirements of IC placement 

with faint expenses.   

 

Figure 5-8 Cloud vs. Dedicated instance execution time 

0

5

10

15

20

25

30

35

40

45

1 2 4 8

Ex
ec

u
ti

o
n

 T
im

e 
(m

in
s)

 

Number of threads 

mcA

mcB

Institutional Repository - Library & Information Centre - University of Thessaly
10/04/2024 15:15:51 EEST - 3.233.222.249



CHAPTER 5. PARALLELIZING LEGALIZATION PROCEDURE 
 

  62 

 

 

Figure 5-9 Cloud expenses testing Domocus legalizer
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6. Job Scheduling over the Cloud 

6.1. Overview 

The main goal of a job scheduling algorithm is to provide a high computation 

performance in parallel with optimal system efficiency and profit. Traditional scheduling 

algorithms don’t meet Cloud environment requirements since users have to pay for 

resources used, based upon time and due to high communication cost. In the Cloud, 

clients may use thousands of different type of resources, as a result job scheduling is 

quite challenging affecting servers’ utilization, energy efficiency, load balancing of data 

centers and QoS which is determined by the user which usually includes execution time. 

Job scheduling in Cloud environment is primarily achieved via  batch mode heuristic 

scheduling algorithms (BMHA) [155].  

In BMHA jobs are grouped, queued and combined when they arrive to the system. 

These types of algorithms start after a fixed time period and constitute variations of well-

known scheduling algorithms like First Come First Server algorithm (FCFS) and Round 

Robin (RR). In [4] authors show that a generalized priority scheduling algorithm which 

considers execution cost and execution time is more efficient than FCFS and RR. The 

min-min algorithm is extremely simple and is used as a basis for many others. It works 

fast and chooses small tasks to be executed first. The algorithm starts with a list of tasks 

and a list of virtual machines (VMs). Afterwards, finds the VM in which all tasks have the 

smallest completion time and assign to this VM the smallest task.  Max-min algorithm 

works in the same manner as min-min except that it chooses large task to be executed 

first. Heterogeneous Earliest Finish Time (HEFT) [142] differs from the aforementioned 

two algorithms since it use an Directed Acyclic Graph (DAG) according to which each 

task is given an priority which is used for the VM selection and submission. SHEFT 

[101] is an expansion of [142] where compute resources are unbound. Cloud 

environment is modelled by partitioning all resources into a number of clusters. Reliable 

Scheduling Distributed in Cloud Computing [50] is used for both load balancing and 

processing time reduction by dividing the major jobs into sub jobs. Scheduling of each 

job is achieved by calculating the request and acknowledge time in the form of a shared 

job. In [43] a priority and admission control based service scheduling policy is proposed 
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which targets QoS satisfaction and systems throughput maximization. Scheduling group 

of tasks is achieved in [126] where two objectives are taking into account, resource cost 

and computation performance. Multi-objective optimization used in [151], [132] and 

[137]. [151] use map reduce to improve energy efficiency in data centers in conjunction 

with system performance. Using two interdependent strategies [132] is a cost-efficient 

scheduling algorithm in Cloud environment. At first, it maps tasks to most cost-efficient 

VMs and continues by reducing the operation cost of non-critical tasks. Makespan and 

energy consumption constitute the optimization objectives in [137] where a hybrid 

Genetic algorithm is used to provide pareto solutions. Finally, probabilistic-nature 

inspired techniques are used in [4], [139] and [97] where Particle Swarm, Ant Colony and 

Artificial Bee Colony optimization are applied respectively.  
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6.2. Overview on Scheduling Heuristics for Live Video Transcoding on Cloud 

Edges 

Efficient video delivery involves the transcoding of the original sequence into various 

resolutions, bitrates and standards, in order to match viewers’ capabilities. Since video 

coding and transcoding are computationally demanding, performing a portion of these 

tasks at the network edges promises to decrease both the workload and network traffic 

towards the data centers of media providers. The number of transcoding tasks hosted by 

edges is dictated by their processing requirements concerning speeding up of video 

coding and transcoding. An avid research exists on parallelizing video coding with 

approaches varying from coarse grained parallelism, whereby parallelism is considered at 

the level of group of Macroblocks (H.264/AVC) or Coding Tree Units (CTUs in 

HEVC), to finer grained parallel approaches implementable within a block of pels. 

Examples of coarse grained parallelization include slices, tiles and wavefront in the 

HEVC standard. Efficient implementations of these parallel options are described in [90] 

for slices, [127] for tiles and [35] for wavefront. Fine grained techniques usually consist of 

applying the Single Instruction Multiple Data (SIMD) paradigm at various levels of the 

encoding [8] and decoding stages [92].  

As far as transcoding is concerned, a straightforward method is to first decode fully 

the input sequence, scale its resolution and then re-encode it. More efficient approaches 

target at utilizing the information already coded in the input, most noticeably the one 

concerning motion estimation, in order to reduce the search space when transcoding to 

another standard. Example works in the area include [60] where an H.264/AVC to 

HEVC transcoding architecture is presented that achieves a nominal speedup reaching 

8x, when compared to re-encoding from scratch. If bitrate changes rather than a change 

in standard is needed, the process is often referred to as transrating. A survey on fast 

transrating methods can be found in [7]. In the experiments, as shown in the chapter 7.4 

we obtained transcoding task weights by using the straightforward approach of re-

encoding without using the information already coded. This was done both for reasons 

of simplicity and due to code availability (ffmpeg and x264 used). However, based on the 

aforementioned research we scaled the values obtained to depict the case where a more 

efficient transcoder is used. 
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Concerning Cloud transcoding, most works focused on providing job scheduling 

techniques at the level of a server cluster or a data center. In [13] the authors considered 

the case of live video transcoding and proposed an integer linear program (ILP) 

formulation to tackle scheduling decisions. An online algorithm that schedules jobs 

among the servers of a datacenter with the target of satisfying delay requirements while 

using minimum energy was proposed in [157]. In [102] the scope was a single cluster and 

the optimization target was to keep the servers load balanced. In [14] an admission 

control algorithm was developed that differs or rejects requests that can’t be satisfied 

based on current workload. It is worth noting that this is the contrary approach to the 

one used in this chapter for the case of edges, whereby it might be viable to reduce 

quality by over-assigning tasks to servers if the relevant benefits from edge processing are 

deemed sufficient. Finally, in [62] a combined caching, transcoding approach is discussed, 

whereby transcoding jobs are partially processed to allow for efficient caching. The target 

considered in this chapter, i.e., live transcoding excludes partial transcoding as an option. 

Caching and replication techniques in the Cloud are surveyed in [105], while [79] and [80] 

concern efficient video delivery.  

Overall, compared to [13], [157], [102], [14] and [62], we differ in scope since in 

section 7.3 we examine transcoding at edges while we view [105], [79] and [80] as 

orthogonal to our approach. Perhaps the closest work in the literature is [16], where 

system architecture for edge transcoding is described. Nevertheless, scheduling issues 

were not tackled in the manner done in this chapter.  
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6.3. Overview on Scheduling Video Transcoding Jobs over the Cloud 

Video transcoding is the process of producing from an original input video sequence, 

multiple output sequences, each at potentially different bitrate, resolution and/or format. 

Transcoding is essential to support video delivery towards clients that use different 

players and have different network access capabilities. In the most basic scheme the input 

sequence is decoded and then re-encoded at the desired levels. Although significant 

research on fast transcoding schemes exists, the transcoding process is still 

computationally intensive. For this reason parallelization is typically used both at the core 

level of a single server and among the servers of a cluster. On top, efficient scheduling 

methods that allocate resources to transcoding jobs are necessary to achieve good overall 

performance. Such policies usually aim at allocating transcoding jobs over co-located 

servers, thus, they typically overlook parameters such as network traffic. Motivated by the 

case of transcoding in the Cloud, in chapter 8 we investigate the problem of scheduling 

transcoding jobs over a distributed system comprising of processing nodes that are 

geographically dispersed and might be whole clusters or even separate data centers. We 

propose algorithms to minimize both the inter-node network traffic and the intra-node 

energy consumption, while meeting the deadlines and quality requirements. Through 

simulation experiments we conclude on the best alternatives.         

6.3.1. Energy Efficiency in Datacenters 

Building energy efficient data centers has attracted much research effort recently, with 

the scope varying all the way from the case of optimizing single clusters to holistic data 

center design. In [141] energy efficient scheduling algorithms for heterogeneous clusters 

are proposed, while [96] and [99] characterize the energy efficiency of Hadoop clusters. 

In [30] a comparative study between 13 scheduling algorithms is done with an interest on 

energy consumption, while [19] focuses on comparison among DVFS techniques. 

Applications of DVFS but for Hadoop clusters are also studied (among others) in [81]. 

Finally, [158] discusses energy efficient in Hadoop clusters both from the standpoint of 

minimizing the total consumed energy and the peak power.  

As far as data center level optimizations are concerned, [47] provides a thorough 

survey on modeling energy consumption, while [51] focuses on design principles for 
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energy efficiency with a special interest on data centers providing video related services. 

A key component to reducing data center power consumption is the successful 

implementation of server consolidation. Server consolidation is the process of 

maintaining in active state the minimum set of servers that meet workload demands, 

placing the rest in hibernating mode or completely turning them off in order to save 

energy. In order to do so, VMs are migrated from the servers that will be switched off to 

other destinations that will remain active. A plethora of algorithms was proposed that 

decide when and where to perform such migrations. Examples include [17] where online 

bin packing techniques are examined and [144] where process migration decisions are 

taken based both on server load but also on communication overhead. The interested 

reader is referred to [18] and [72] for related surveys.  

In chapter 8.3 we don’t aim to model the effects of particular strategies within a data 

center, but we are rather interested in proposing policies that are applicable regardless of 

the local strategies followed each time. As such, we don’t assume that any particular 

mechanism for energy efficiency is implemented (DVFS, server consolidation). 

Nevertheless, the system model presented in 8.2 can be extended with minimum effort 

to capture such cases if required, while the global strategies proposed in that chapter 

remain unaffected. 

6.3.2. Video Coding and Transcoding 

A lot of research efforts were devoted into reducing the computational burden 

imposed by video codecs, usually by taking advantage of parallelism. Examples on the 

category include for instance [90], [117], [127], [8] and [92] each tackling parallelism at a 

different level. Slice level parallelism was studied for instance in [90] and [117] whereby a 

frame is split into independent regions (slices) that can be encoded separately and each 

slice is assigned to a separate CPU core. Tile level parallelism, another method to split a 

frame into independent regions introduced by High Efficiency Video Coding (HEVC), 

was discussed in [127]. These methods are rather coarse grained since they provide 

parallelism at the level of group of Macroblocks (H.264/AVC) or CTUs (blocks in 

HEVC). Finer grained approaches rely to SIMD instructions in order to parallelize the 

various components of the codec (motion estimation, compensation and transform are 
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usual candidates). Example works include [8] where SIMD parallelism is discussed for 

HEVC encoding and [92] where the focus was to parallelize the various parts of an AVS 

decoder. 

The aforementioned works aim at speeding up the coding process when the input is a 

raw video sequence. Efficient transcoding solutions that operate over already coded 

sequences were also proposed. Examples include [60] where the transcoding from 

H.264/AVC to HEVC is discussed and [49] where an HEVC to VP9 transcoder is 

proposed. Research in this area, usually aims at reusing the prediction information of the 

standard the sequence is already coded in order to avoid the prediction overhead in the 

targeted standard. Thus, impressive speedups (of 7x, even more) can be achieved 

compared to the process of decoding completely the original sequence, obtain the raw 

file and then encoding it to the required target standard. 

Since the focus of chapter 8 is not to optimize a particular transcoding task, but rather 

to schedule transcoding jobs efficiently at a higher level, we don’t take any particular 

assumptions on the optimizations that take place at a video coding level. Furthermore, 

real world service providers might use their own codecs for which details are unavailable. 

In the experiments, we used the very popular x264 [146] and x265 [154] codecs for 

H.264/AVC and HEVC standards respectively, in order to obtain realistic values for our 

simulations. 

6.3.3. Cloud Transcoding 

Contrary to video delivery that has been the target of extensive research effort, see 

[150] for a recent survey, few works relatively exist on Cloud provisioning for video 

coding jobs. In [156] the parallelization of an encoding task over a Hadoop cluster is 

proposed at a Group of Pictures (GOP) level. GOPs are mapped to the various 

processing nodes and are independently encoded. The reduction phase includes 

synthesizing the final coded sequence from its sub-parts. Although this approach 

promises a high parallelization degree for a standalone video sequence, its performance is 

questionable in the presence of high load due to the overheads incurred with Map-

Reduce. For this reason, in chapter 8 we assume that parallelization (if any) occurs within 
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a single server. In other words a transcoding task is executed by a single server and not 

multiple ones. 

Closer to chapter 8 are the works in [157], [13] and [62]. In [157] the authors propose 

an online algorithm to decide about the server that will host a transcoding job. 

Parameters such as video resolution, server power and queue lengths are taken into 

account in order to optimize both processing delay and energy consumption. In [13] the 

case of live video streaming is tackled. The authors proposed an ILP formulation to 

decide about the transcoding rates of each stream that could be achieved based on the 

available processing capacity, having as a final goal the optimization of user experience.  

Chapters’ 8 work differs from the aforementioned papers in scope. Namely, whereas 

the focus of related work was on optimization at the level of a single cluster or at best on 

a single data center, we aim at investigating the performance of global scheduling 

schemes that distribute jobs over different distributed data centers. That said, we use the 

same dataset as in [13] to simulate the case of live transcoding jobs.   

In [62] the focus is to decide on which video parts to transcode and cache them, 

based on the observation that users seldom view a video sequence completely. This work 

is mostly applicable to service providers offering video downloading, e.g., YouTube. In 

the chapter we target at developing a unified scheduler to be used by services offering 

both live (e.g., Wowza Streaming Cloud) and video file transcoding (e.g., Amazon Elastic 

Transcoder). In both scenarios the possibility of partial transcodings doesn’t exist.  

 
Figure 6-1 Spatial-time representation of video 

coding in layers according to SVC. 
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Last but not least we would like to mention that an alternative to transcoding is 

provided by SVC (Scalable Video Coding) [123], whereby a video sequence is encoded in 

multiple layers. The base layer accounts for the minimal supported quality, while the 

other layers, called enhancement layers, encode additional information in order to 

account for increased quality. Figure 6-1  provides a graphical representation of this with 

3 layers. As it can be viewed by the dependencies showed with directed edges, in order to 

decode layer 2, layers 1 and 0 are needed. Compared to transcoding, SVC doesn’t require 

multiple files to be maintained, instead a single stream is sent and each decoder decides 

up to which layer it will decode (depending on the required quality). Despite its potential, 

SVC doesn’t account for transcoding between different standards, while it also requires 

extensive coordination overhead. Therefore in chapter 8 we focus on transcoding jobs 

that account for the majority of related Cloud services. 
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7. Video Transcoding on Cloud Edges 

7.1. Motivation 

Modern applications built on top of an integrated Internet of Things (IoT) 

environment [71], together with Cyber Physical Systems (CPSs) [87], involve heavy video 

traffic, e.g., in smart vehicle traffic management. At the same time, the proliferation of 

smart mobile devices carrying cameras of continuously higher resolution, together with 

the explosive growth in the popularity of social media platforms, poses great challenges 

in cloud resource management. As an indication, Cisco reported in [40] that during 2015, 

mobile Internet traffic experienced a growth of 74%, the majority of which (>50%) was 

video transmissions. Therefore, minimizing video related network traffic becomes of 

paramount importance. 

Video coding is the process of compressing a raw video sequence using some 

standards. Examples of such standards are H.264/AVC [152] which is the most popular 

(but aging) standard currently in use, High Efficiency Video Coding (HEVC) [133] and 

VP9 [70], which are newer standards achieving higher compression ratios compared to 

H.264/AVC. Although video coding is a computationally demanding task, it is usually 

performed at the point where the initial video is captured (camera, smart device etc.), 

often with the aid of specialized hardware. Thus, the initial coding of a video sequence 

does not hinder a cloud based social media platform (SMP) from being computationally 

wise and the only overhead is the consumed bandwidth for uploading. However, in order 

to be able to deliver the video sequence to a variety of clients differing in screen 

resolutions, decoders and network capabilities, the originally uploaded sequence must be 

encoded into multiple output sequences of various resolutions, bitrates, quality levels and 

perhaps coding standards. This process is called transcoding and burdens the 

computational and network-wise SMP’s cloud. In particular, the case of live casting 

offers the most challenges since real time performance is a requirement. 

Motivated by the above, we investigate the case where an SMP can take advantage of 

mini-data centers existing at network edges in order to offload live transcoding jobs, thus, 

saving resources and bandwidth. Figure 7-1 illustrates an example whereby two 

broadcasts are performed, one at 1080p and the other at 720p from two different edges.  
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In the first case (1080p), the sequence is not transcoded at the edge but transmitted to 

one of the SMP’s data centers for processing. Then two different outputs (720p and 

480p) are sent to some Content Delivery Network (CDN). In contrast to this, the other 

input sequence (720p) is transcoded into two output sequences at the edge. Copies of the 

outputs are sent to the CDN and also used to satisfy local demands (480p). Clearly, the 

second alternative of using edge transcoding reduces both the processing and network 

resource consumption at the SMP’s Cloud.  

In this chapter, we tackle the associated scheduling problem induced by the scenario 

of Figure 7-1. Namely, given edge resources and the characteristics of arriving 

transcoding tasks, task-server assignment must be made so that the percentage of tasks 

not processed by the edge (satisfied with overhead by SMP’s Cloud) is minimized. We 

evaluate different scheduling heuristics for the scheduling problem under the constraint 

that each assigned task must obtain the required processing power to exhibit real time 

behavior. We then examine the case where the aforementioned constraint is softened, 

 

Figure 7-1 Example system model with edge transcoding 
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allowing for some quality loss in order to increase the number of tasks assigned to the 

edge. All heuristics are evaluated using a dataset of Twitch broadcasts [13] and realistic 

values for transcoding job characteristics obtained by using x264 codec [146] over class B 

and class A common test video sequences [21].  

7.2. Problem definition 

We consider the case of a media provider receiving requests for live video casting, 

whereby the input stream must be transcoded into a set of output streams with different 

resolution, bitrate and quality demands. We consider two options for the set of 

transcoding tasks associated with each input. Either they are all assigned to a mini-

datacenter existing at the edge of the network or they are all assigned to the backend 

main datacenter of the media provider. Clearly, if the tasks are processed at the edge, the 

processing workload at the backend datacenter is reduced and the network overhead for 

transmitting the input sequence is avoided. 

Let the mini-datacenter consist of S servers, with Si denoting the ith of them, 

assuming a total ordering (1≤i≤S). Each server has an associated processing capacity (let 

Ci), which denotes the number of baseline transcoding tasks that can be processed 

concurrently at real time.  Baseline tasks are the ones requiring the minimum power to 

process. Let Bj be the jth broadcast, assuming an ordering of the B total broadcasting 

events (1≤j≤B). Similarly, let sj and dj be the arrival time and duration of Bj, respectively. 

Each broadcast entails a set of transcoding tasks. Let T be the total number of 

transcoding tasks for all broadcasts, and Tk be the kth such task, assuming a total 

ordering of them (1≤k≤T). We represent whether Tk is a task of Bj or not, using a 

Boolean matrix A of B×T size, whereby Ajk=1 if and only if (iff) Bj has task Tk and 0 

otherwise. Moreover, Wk depicts the relevant weight of Tk in processing terms over the 

baseline task. Put in other terms, Wk shows how much more computationally demanding 

Tk is, compared to the baseline scenario. Last, let X be an S×T Boolean matrix used to 

encode task server assignments as follows: Xik=1 iff Tk is assigned for processing at Si, 

otherwise  Xik=0. We assume that once assigned, a task cannot be preempted and will 

remain for the whole duration [sj, .., sj+dj]. We consider that we want to optimize the 

system starting from a clean state (no task assignments exist) over a time frame divided 
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into E equally sized slots (sj and dj values are now measured in time slot terms). Let et be 

the tth such time slot, with a corresponding assignment matrix Xt. We typically formulate 

the problem as follows: Find all values in the E total matrices Xt, so that the objective 

function f given in (7.1) is maximized: 

  ∑ ∑ ∑    
  

   
 
   

 
   (     

   ), (7.1) 

subject to the following constraints:      

(∑∑   

 

   

 

   

   
  ∑   

 

   

)∑∑   

 

   

 

   

   
                  (7.2) 

   
     

                                  (7.3) 

∑∑   

 

   

 

   

   
                           (7.4) 

∑   
   

 

   

              (8.5) 

∑    
  

              . (7.6) 

The objective function encodes the tasks that will be assigned to the edge. Eqs. (7.2)–

(7.6) give the main constraints of the problem. Constraint (7.2) states that either all tasks 

of a broadcast Bj will be assigned to the edge at the time the broadcast arrives or none.  

Constraint (7.3) enforces that the decision taken for a transcoding task at the time of its 

broadcast arrival remains for the duration of the broadcast. Constraint (7.4) ensures that 

neither before a broadcast arrival, nor after its end time, can a corresponding task be 

scheduled for edge transcoding. Constraint (7.5) dictates that a server can exceed its 

capacity at no point in time. Finally, (7.6) states that a task can only be scheduled at one 

server.  
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Clearly, the fact that broadcasts are known in advance reduces the applicability of the 

presented problem formulation to cases of prescheduled event covering, e.g., sports. 

Nevertheless, the formulation provides a thorough definition of the optimization target 

and the related constraints. These remain the same both in the static problem variation 

presented and in the dynamic case. A last note concerns complexity. It can be shown that 

the relevant decision problem is NP-complete since the processing capacity constraint at 

the servers effectively introduces a (0, 1) Knapsack component. Next, we present 

heuristics for dynamic scheduling of transcoding tasks at the network edge. 

7.3. Scheduling heuristics 

7.3.1. Scheduling with Tight Task QoS Requirements 

The proposed heuristics tackle the dynamic version of the scheduling problem 

presented in the previous section. Specifically, upon the arrival of a broadcast request, 

the necessary transcoding tasks are defined. Then, they are sorted according to their 

weight and considered either in increasing order (MIN policy) or in decreasing (MAX 

policy). Each task is assigned to a server (using one of the policies described in the 

sequel) provided the task computational demands can be met by the server as per (7.5). 

If a suitable server is found for every transcoding task of the broadcast under 

consideration, the assignments are committed; otherwise, even if one task fails to find a 

hosting server, all the tasks are sent to the SMP’s datacenter for processing. The 

assignment policies considered are based on the well-known bin-packing heuristics: 

 Best Fit (BF): Select the server where the remaining capacity, left after task 

assignment, is the minimum possible. 

 Worst Fit (WF): Similar to BF only that the server with the maximum remaining 

capacity will be selected. 

 First Fit (FF): The first server where the task fits will be selected. 

The corresponding heuristics are named after the order with which the task list is 

considered and the packing method followed. For instance MAX-BF refers to the 

heuristic that considers the heaviest task first and assigns it using Best Fit.  
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7.3.2. Scheduling with Relaxed Task QoS Requirements 

The motivation for the relaxed QoS case is the following. Assume that all but one 

task of a broadcast could fit to the available servers of the edge. With strict QoS 

requirements, none of these tasks will be assigned. However, it might be possible to 

assign the remaining task to one server so that its processing capacity is exceeded by a 

very small margin. In practice, this means that all the tasks processed by this server will 

exhibit a small quality drop. For instance, if a broadcaster transmits at 30 fps (frames 

per second) then a 3.3% drop at the processing rate of one of its transcoding tasks 

means that roughly the output stream will be at 29 fps. Depending on decoder 

characteristics, such a drop might not even be noticeable by a human viewer. Assuming 

that p denotes the maximum percentage of allowable performance drop, (7.5) becomes: 

∑    
   

 
    (   )           . (7.7) 

 The heuristics first attempt to allocate all the tasks of a broadcast as per Section 

7.3.1. In case a task does not fit, it is considered for assignment using (7.7) as server 

capacity constraint and one of the below described policies.  

 Min Quality Decrease (MQD): Selects the server that incurs the minimum 

proportional capacity violation (equivalent to asking for the minimum quality penalty 

for its hosted tasks). 

 First Fit (FF): The first server where the task fits as per (7.7) will be selected. 

 View Weighted Penalty (VWP): Weights the quality penalty of each task by the 

number of its viewers. The server with the minimum aggregated weighted quality 

penalty value is selected.   

7.4. Experiments 

Here we illustrate our simulation results. We begin by presenting the experimental 

setup and proceed with the performance of the heuristics under the strict and soft 

quality requirement scenarios.  
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7.4.1.  Setup  

To simulate broadcasting activity, we used the same dataset from Twitch as the one 

described in [13]. We kept the portion of the dataset representing one day activity (Jan. 

6th, 2014). We then filtered it by deleting entries with broadcasts having no viewers and 

the broadcasts of resolution less than 220p. To keep the simulation time manageable we 

considered the following 5 resolutions: 240p, 360p, 480p, 720p and 1080p. In case a 

broadcast in the trace did not follow one of the previously mentioned resolutions, we 

clustered it to its closest matching. We assumed that a broadcast must be transcoded to 

all the resolutions that were lower than the one it used. Clearly, with this setting the 

maximum number of transcoding tasks incurred by a broadcast is 4, corresponding to a 

1080p stream that must be downscaled to 720p, 480p, 360p and 240p. Upscaling was not 

considered in the experiments. Finally, for simulation purposes we assumed that all 

videos used 30 fps. Furthermore, the recorded in the dataset viewing demand was split 

equally among the resolutions used by a broadcast, i.e., the input and all lower ones. 

Table 7-1 summarizes some of the dataset characteristics, while Figure 7-2 plots the 

broadcasting job arrival rates as a histogram of a 1000 seconds (s) step. As it can be seen, 

the arriving jobs do not exhibit sharp peaks (at least with the used interval), but the 

distribution is rather uniform. This favors job scheduling at edges since it makes sizing 

decisions for edges less demanding. However, duration of broadcasts does not follow a 

similar trend. As noted in Table 7-1, the difference between the average and maximum 

duration is two orders of magnitude, implying a heavy tailed distribution. This hinders 

scheduling decisions, since it means that duration estimation will be hard to achieve in 

the general case. For this reason, none of the scheduling heuristics described in Section 

7.3 uses such estimates. 

Next, we needed to characterize the weights of the transcoding tasks. For this 

reason we used class A and class B common test video sequences and transcoded them 

to the levels for which we wanted to obtain weight values. To do so, a sequence was 

first fully decoded, then scaled to the desired resolution using ffmpeg and then 

encoded using x264. The encoding settings followed the Peak Signal to Noise Ratio 

(PSNR) tailored scenario of [48], which aims at maximizing quality in PSNR terms.  
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Name Value 

Dataset duration 75,079 s 

Average broadcast duration 23,263.4 s 

Max broadcast duration 1.05E6 s 

Number of broadcasts 786,100 

Total transcoding tasks 1,244,450 

Percentage of braodcasts at 1080p 26.21% 

Percentage of braodcasts at 720p 53.24% 

Percentage of braodcasts at 480p 11.18% 

Percentage of braodcasts at 360p 7.49% 

Percentage of braodcasts at 240p 1.86% 

Table 7-1 Dataset for broadcasters (general characteristics) 

 

Figure 7-2 Histogram for broadcasting arrival rates. 
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The exact parameters are given below (Kimono example): x264 --input-depth 8 --frames 

0 --input-res 1920x1080 --fps 24 --input-csp i420 --log-level debug --tune psnr --psnr --

profile high --preset placebo --keyint 96 --min-keyint 96 --me umh --merange 240 --ref 4 

--partitions all --threads 1 --subme 9 --aq-mode 0 --aq-strength 0.0 --psy-rd 0.0 --output 

kimono_out.264 Kimono_in.yuv. 

Table 7-2 summarizes the general characteristics of the test sequences, together with 

the coding time for each targeted resolution, measured as the number of frames per 

second processed by the codec. The case of 240p forms the baseline transcoding 

scenario, with the remaining resolutions assigned proportional weights.  

Having defined the time of the baseline scenario and task weights accordingly, next 

we define server capacity in the following manner. In order to fully control the system 

environment we used a dedicated server for which we had full ownership. The server 

used for the x264 coding jobs carried two 6-core Intel Xeon E5-2630 CPUs running at 

2.3 GHz. Since the coding speeds at Table 7-2 used one thread and the nominal rate 

considered for the simulation is 30fps, each core of the server accounts for a 

processing capacity of 21.6/30 (the baseline scenario). The total server capacity is then 

calculated by multiplying with 12 (the total number of physical cores) and equals 8.64. 

Name Resolution Frames 
Time 

240p (fps) 

Time 360p 

(fps) 

Time 480p 

(fps) 

Time 720p 

(fps) 

BasketballDrive 1920×1080 500 15.78 5.37 3.78 1.47 

BQTerrace 1920×1080 600 29.10 9.11 6.42 2.37 

Cactus 1920×1080 500 25.48 8.77 5.09 1.96 

Kimono 1920×1080 240 18.54 6.05 4.33 1.62 

ParkScene 1920×1080 240 24.95 7.62 5.28 1.94 

PeopleOnStreet 2560×1600 150 10.01 2.82 2.00 0.74 

Traffic 2560×1600 150 27.36 8.06 5.77 2.17 

Average - - 21.60 6.82 4.66 1.75 

Weights - - 1.00 3.16 4.63 12.34 

Table 7-2 Video sequences used for weight calculation 
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Since our server setting is not of generic use, we translate it into one of the Amazon 

EC2 instances [12] to make our simulation setting more applicable. Specifically, we 

consider the C3 instances which are recommended for video coding. Comparing the 

processor passmark ratios between the CPU of our server and the one used in the C3 

instances, i.e., Intel Xeon E5-2680 v2 (Ivy Bridge), it can be estimated that the instance 

c3.4xlarge will account for a speedup of 2.2x compared to our server. Since video 

coding is CPU-bound, the aforementioned methodology (i.e., comparing CPUs) 

provides a good estimation on relative performance. Last, we consider the case where 

specialized transcoding software is available, which accounts for a speedup of 8x (same 

as in [60]) compared to the simple methodology used to obtain the processing rates of 

Table 7-2. 

7.4.2. Results for Tight QoS Requirements 

Here we present results for the case where the assigned transcoding tasks at the 

edge must be satisfied at their nominal rate (30 fps). We consider two scenarios. In the 

first (homogeneous), 1000 servers each of capacity described in Section 7.4.1 exist in 

the micro datacenter of the edge, while in the second scenario (heterogeneous) 500 

servers have the aforementioned capacity and 500 half of it (presumably equivalent to a 

c3.2xlarge EC2 instance). Figure 7-3 plots the performance of the scheduling 

heuristics, measured in terms of the percentage of broadcasts that are assigned for edge 

transcoding. Results show that the same trends are exhibited both in the homogeneous 

and the heterogeneous cases. The later achieves lower performance since it accounts 

for smaller total capacity. Furthermore, sorting the transcoding tasks of a broadcast has 

marginal effect. This is presumable due to the fact that the tasks are scheduled as soon 

as a broadcast arrives and are rather small in number, compared to the available 

servers. Clearly the WF policy outperforms the other alternatives by a substantially 

large margin (an extra 5% roughly of the arriving requests can be accommodated by 

the edge). 

Having identified WF to be the most promising heuristic, we evaluated the impact of 

the arrival rate on the achievable performance. To do so, we used the same trace with 

above, but sampled it every 1, 2 and 3 entries. Clearly, a sampling rate of 1 is equivalent 
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to using the whole dataset (Figure 7-3), while 2 and 3 effectively account for 1/2 and 1/3 

of the arrival rate. Figure 7-4 plots the performance of the WF scheme for the three 

arrival rates and for both the homogeneous and heterogeneous cases. As expected, the 

percentage of jobs that can be satisfied by the edge increases as the arrival rate decreases. 

It is worth noting that with 1/3 arrival rate which accounts for roughly 262,000 daily 

requests, roughly 60% of them (homogeneous case) can be satisfied by the edge. This 

translates for great load reduction at the back end datacenters.      

7.4.3. Results for Soft QoS Requirements 

We consider that the processing requirement of real time performance is relaxed as 

per Section 7.3.2. We evaluated the performance of the algorithms of Section 7.3.2 

when combined with MAX-WF for various levels of QoS reduction, namely: 0% (no 

reduction-real time performance), 5%, 10%, 15% and 20%. Figure 7-5 plots the 

percentage of broadcasts having their transcoding jobs assigned to the micro 

datacenter, for the heterogeneous case used in Figure 7-3 and Figure 7-4 and with the 

whole trace as input. All three heuristics assign to the edge an increasing number of 

jobs as QoS requirements are reduced. Among the algorithms, MQD achieves the best 

performance, followed by VWP and FF. As it can be observed, with a 5% decrease in 

processing rate, an extra 2% of jobs can be assigned to the edge, while with 20% an 

extra 4.5%. Although a 20% reduction seems impractical at first glance, it roughly 

means that instead of processing a stream at 30 fps, the stream might be processed at 

24 fps. It is worth noting that this is the lowest rate for 1080p TV sets. Overall, by 

relaxing the nominal real time processing rate for transcoding jobs, significant extra 

load could be offset from back end datacenters. 

In order to further quantify the impact of QoS reduction, in Figure 7-6 we plot the 

average viewing quality (for the viewers satisfied by the edge) as a percentage of the 

achieved fps when compared to real time 30 fps. VWP achieves the best performance, 

which for a 15% allowable reduction (0.15 point in x-axis) leads to an average viewing 

quality of 93%. Put it in other terms the average processing rate will be almost 28 fps. 

For the same QoS reduction (15%), Figure 7-5 depicts that VWP assigns an extra 

~3.5% of jobs, or roughly 27,000 more broadcasts at the edge micro datacenter. Thus, 
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an interesting tradeoff is present whereby VWP can offset substantial load towards the 

edge micro datacenter at only a small decrease on average viewing quality. 

 

BF: Best Fit 
FF: First Fit 

WF: Worst Fit  

Figure 7-3 Percentage of broadcasts processed by the edge (1000 servers, full dataset). Two different 

cases: homogeneous and heterogeneous. 

 

Figure 7-4 Percentage of broadcasts processed by the edge for decreasing arrival rate (1000 servers). 
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Figure 7-5 Percentage of broadcasts processed by the edge for varying QoS reduction percentages 
(full dataset, heterogeneous servers). 

FF: First Fit 
MQD: Min Quality Decrease 
VWP: View Weighted Penalty 

 

Figure 7-6 Average QoS of viewers as the allowable reduction in QoS for edge transcoding jobs is 
increased (full dataset, heterogeneous servers). 

Institutional Repository - Library & Information Centre - University of Thessaly
10/04/2024 15:15:51 EEST - 3.233.222.249



CHAPTER  8. SCHEDULING VIDEO TRANSCODING OVER THE CLOUD 

  85 

8. Scheduling Video Transcoding Jobs over the Cloud 

8.1. Motivation 

Video uploading and downloading is one of the most popular activities among social 

media users. Cisco reported in [40] that in 2015 a year whereby mobile Internet traffic 

experienced a rise by 74%, 55% of it accounted for video. These trends will likely 

continue, even intensify, as modern smart devices with 4K cameras are established in the 

market and 8K TV screens replace older ones. To cope with an everlasting demand for 

higher resolution, new video coding standards such as VP9 [49] and HEVC [133] were 

introduced in recent years, while the quest for future generation standards have already 

begun, e.g., AV1 [9], JVET [61]. All these new standards aim at replacing the long 

standing H.264/AVC standard [152], by offering increased compression ratios without 

sacrificing quality. 

At the same time, the delivery of video streams towards end devices of different 

screen and processing capabilities that use different players and reside on networks of 

various bandwidth capacities, poses a major challenge. To cope with the problem, 

transcoding is used whereby from the initial video sequence, a set of output sequences is 

produced, each potentially at different resolution, transmission rate and quality level. On 

top, transcoding might also involve the change of the coding standard, e.g., from 

H.264/AVC to HEVC [90]. The various rates and qualities on which an original 

sequence is transcoded (also called the encoding ladder) can be of large number. For 

instance, in Netflix a ladder of at least 10 different levels (probably more) is advocated in 

[1]. It is evident that even with such a conservative ladder, the processing demands posed 

by the transcoding needs of large media providers can’t be met without taking advantage 

of Cloud resources. For this reason a number of Cloud service providers, include 

nowadays video coding services, e.g., Amazon Elastic Transcoder [11], or transcoding 

services as part of their live casting service, e.g., Wowza Streaming Cloud [141]. 

In this chapter we consider the case of a Cloud service provider offering video coding 

and transcoding services and tackle the related scheduling problem. In particular we 

discuss the case whereby the provider owns a number of geographically distributed data 
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centers and coding jobs arrive from different locations. An example of such a system is 

given in Figure 8-1 that shows an arriving video at data center D3, being transcoded at 

various targeted resolutions and delivered in multiple end points. We focus on 

investigating global scheduling approaches whereby it is decided in which data center to 

assign each transcoding job so as to optimize completion time, energy efficiency and 

network traffic. Our contributions include the following: 

 We use a system model that captures the practical case of interest of Cloud 

transcoding service providers operating over different data centers. 

Furthermore, the model and subsequently the algorithms, capture both the 

case of live transcoding tasks and the case of offline video sequence coding; 

 We develop dynamic global scheduling algorithms that have different 

optimization goals, i.e., processing time, energy and network overhead, and 

incur minimum coordination overhead with the datacenters involved; 

 

Figure 8-1 An example of a Cloud transcoding service 
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 We also propose a scheme that involves closer cooperation between the 

global scheduler and the local schedulers at datacenters, and investigate the 

most promising trade-offs between solution quality and coordination 

overhead; 

 We conducted two sets of simulation experiments, one tailored to capture 

the system’s behavior in live casting scenarios and the other one the system’s 

performance when a large set of H.264/AVC sequences must be transcoded 

into HEVC; 

Results indicate that a global scheduler that decides based on pareto optimality upon 

the three parameters: time, energy, network offers the best approach, while incurring 

small coordination overhead. 

8.2. System Model 

We assume a Cloud transcoding service with computational resources spanning 

across different geographically distributed data centers. In order to facilitate description 

throughout this section we introduce some notations that are summarized in Table 8-1. 

Let D be the total number of available data centers and Di denote the ith such assuming a 

total ordering of them (1≤i≤D). Each data center contains a number of servers. Such 

servers might in fact be virtual machines running over physical ones. As already 

mentioned we refrained from tackling the implementation particulars of data centers, e.g., 

VM allocation and migration policies. Therefore, for all purposes, the servers are 

assumed to be dedicated for transcoding jobs only. Let S be the total number of servers 

across all the available data centers dedicated for transcoding. We denote by Sk the kth 

such server assuming a total ordering of them (1≤k≤S). 

Each server potentially has its own characteristics concerning processing capacity and 

power consumption. We denote server processing capacity by Cj. It is straightforward 

that this capacity can be measured as CPU speed, FLOPS or any other similar metric in 

the literature. However, in order to both simplify the model but also be able to capture 

the required performance characteristics without introducing additional parameters such 
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as memory or number of cores, we measure processing capacity as the number of 

baseline video sequences that can be handled concurrently by the server. The baseline is 

assumed to be a raw 240p video that must be encoded in 30 frames per second using 

H.264/AVC (the particular coding settings used are detailed in 8.4). 

Each server is also characterized by its energy efficiency (let Ek). As already stated we 

don’t consider DVFS since we focus on a higher than a cluster scheduling level. Instead 

we measure energy efficiency at each server based on its maximum processing capacity. 

Symbol Meaning 

D Total number of data centers 

Di The ith data center 

S Total number of servers in all D data centers 

Sk The kth server 

Ck Processing capacity of Sk 

PWk Power consumption of Sk 

Ek Energy efficiency of Sk 

hij Distance between Di and Dj (in hops) 

J Total number of jobs 

Jx The xth job 

JTx The number of tasks associated with Jx 

Txy The yth task of Jx 

Wxy Processing load incurred by Txy 

lx Time length of input file/stream of Jx 

b(Jx) Total size length of input file/stream of Jx 

b(Txy) Total size length of output file/stream of Txy 

qxyk Service quality of live transcoding Txy at Sk  

AJx Arrival time of Jx 

ETxyk End time of Txy assigned to Sk 

Aix Boolean variable denoting whether Jx first arrives at Di  

Oixy Boolean variable denoting whether the output of Txy is required by end users in the 

region of Di  Pxyk Boolean variable denoting whether Txy is assigned for execution in Sk 

INix Boolean denoting whether Di must get the input stream of Jx 

Bik  Boolean variable denoting whether Sk belongs to Di. 

Table 8-1 Notation Used in this Chapter 
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Assuming PWk to be the corresponding power consumption rate (Watts) the energy 

efficiency of each server is given by: 

        ⁄  (8.1) 

We assume that the data centers are connected with high speed network links, 

effectively forming a network graph. Among others we are interested in reducing the 

network overhead due to transcoding jobs. We measure this overhead as the mere 

amount of bytes passing through each link (totaled for all links). We decided to follow a 

conservative estimation whereby the communication between Di and Dj always occurs 

along the shortest path of hij hops.   

Coding job requests arrive (presumably at some edge point) and are directed towards 

the closest data center. Let Jx denote the xth coding job assuming a total order over the J 

total jobs that exist. Depending on whether the job represents a standalone file 

transcoding or a live casting event, it might result into one or more transcoding tasks 

respectively. Let JTx be the number of transoding tasks associated with Jx and Txy be the 

yth such transoding task assuming a total ordering of them (1≤y≤JTx). 

All the tasks of Jx are associated with the same input file or stream but with different 

outputs. Depending on the type (raw, H.264/AVC etc.) and the resolution of the input 

file, as well as the resolution and the type of the required output by a particular task, 

different processing capacity is required to achieve real time performance (e.g., 30 fps). 

Let Wxy denote the processing capacity required by Txy measured as the ratio of load 

incurred by this particular transcoding versus the baseline case. Both the input sequence 

of Jx and all output sequences of the associated tasks have the same length (in secs), 

denoted by lx. Nevertheless, they have different total sizes (in bytes). Let b(Jx) denote the 

size of the input in Jx and b(Txy) the size of the output of Txy. 

Assuming Txy is assigned to an initially empty Sk, we distinguish two cases: (a) Txy 

corresponds to live transcoding in which case for a duration of lx, and assuming Wxy ≤ 

Ck, Wxy out of Ck total processing capacity will be reserved by Txy, leaving a remaining 
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capacity of Ck-Wxy to be assigned to other tasks. Also we will denote that the quality (let 

qxyk) at which Txy was served equaled 1. In case Wxy > Ck all the server capacity will be 

occupied and the corresponding service quality will be:   

          ⁄  (8.2) 

(b) Txy is a standalone file transcoding in which case all Ck will be reserved and Txy 

that arrived at time AJx (all the tasks of a job are assumed to arrive at the same time) will 

have an end time (let ETxyk) equaling: 

                 ⁄  (8.3) 

We should notice that (8.2) and (8.3) hold for tasks arriving at empty servers. In case a 

server is assigned more than one task then it is assumed that its processing power Ck is 

evenly split among the hosted tasks. 

An arriving request for Jx might not necessarily be satisfied by the data center it first 

arrives. Furthermore, it isn’t necessary that all its tasks will be assigned to the same data 

center for processing. To calculate the network overhead incurred by Jx one must add the 

overhead for fetching the input stream to the position(s) where task processing will occur 

and the overhead for sending the outputs of the transcoding tasks to the necessary 

destinations. 

Let Aix be a boolean variable, with Aix=1 iff Jx first arrives in Di and 0 otherwise. Let 

Oixy be a boolean variable, whereby Oixy=1 iff the output sequence of Txy must be sent to 

satisfy viewers that are located in the geographic neighbor of Di and 0 otherwise. Let Pxyk 

be a boolean variable depicting whether Txy is assigned to Sk (Pxyk=1) or not (Pxyk=0).  

Furthermore, let INix=1, if the input stream of Jx must be made available at Di and 0 

otherwise. Obviously, INix=1 iff at least one of the tasks of Jx are assigned for processing 

at a server located in Di. Last, let Bik=1 iff Sk belongs to Di and 0 otherwise. Then we can 

typically define the network overhead (let Nx) incurred by Jx as: 
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subject to the constraints:         

(      )∑∑         

 

   

   

   

           (8.7) 

∑∑        

 

   

   

   

                (8.8) 

In (8.4) the overhead incurred by the input stream is captured; in (8.5) the overhead 

of all output streams, while (8.6) gives the total overhead for Jx as the summation of the 

two. (8.7) and (8.8) are necessary to ensure INjx takes valid values. Specifically (8.7) states 

that if at least one task of Jx is assigned for processing to one of the servers of Dj then 

INjx will equal 1. (8.8) forbids the case of having INjx=1 without assigning any of Jx’s 

tasks at Dj. 

We further illustrate network overhead calculation through Figure 8-2 which is similar 

to Figure 8-1 but simplified. The figure shows a transcoding job arriving at D3 that 

consists of two tasks, one being to transcode from WQXGA to FullHD and another one 

to HD. Assume for the sake of the example that WQXGA size is b bytes, FullHD output 

is b/2 and HD b/4. By assigning the FullHD transcoding to be performed by D2 and the 

HD transcoding by D1, the network overhead is calculated as follows. The input 

overhead will be 3b (2b to send to D2 and b to send to D1). The output overhead will be 0 

for the transcoding of HD (only needed by the region of D1) and b/2 for the FullHD 
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transcoding (must be sent from D2 to the region of D1). The total network overhead in 

this case equals 7b/2. On the other hand if all the transcoding tasks were assigned to D4, 

the input sequence overhead would be b (D3 to D4 transfer) and the output overhead 

would be (2+1)b/2 for FullHD output and 2b/4 for HD, for a total overhead of 3b. 

8.3. Scheduling algorithms 

We consider a two level scheduling scheme. In the top level a global scheduler 

intercepts all job requests and assigns the corresponding tasks to data centers. At every 

data center a local scheduler is responsible to assign the tasks allocated by the global 

scheduler onto the available servers of the data center. Before proceeding with the 

description of local and global scheduling policies, we would like to mention that in 

practice a global scheduler isn’t required to really intercept all job requests submitted by 

end users. Rather a policy can be implemented whereby the local scheduler of the data 

center a request arrives at, asks the global scheduler whether it should redirect the request 

or handle it itself, thus, realizing the global scheduler in an indirect manner. We refrain 

 

 

Figure 8-2 An example transcoding job with two corresponding tasks 
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from discussing such details, instead focusing on the questions of what information 

should be used by the global scheduler, what levels of cooperation (if any) with local 

schedulers are desirable and what selection policies to follow. 

8.3.1. Local Scheduling 

We experimented with HEFT-like local schedulers working as follows. Tasks are 

considered for scheduling one by one in order of their arrival time. In order to assign the 

task under examination to a server, all servers are examined with the aim of finding one 

that satisfies the processing time criterion. In case more than one such server exists, the 

more energy efficient one according to (8.1) is selected. For the case of live transcoding 

jobs the processing time criterion dictates finding the server such that qxyk is maximized, 

while for non-live tasks, we consider a deadline that must be met. It is worth noting that 

as far as the global scheduler is concerned, local schedulers are mere black boxes that 

might even follow different strategies at different data centers. Thus, the particular 

selection (HEFT-based) made in the chapter is for simulation experiments purpose and 

doesn’t restrict global scheduling choices. 

8.3.2. Non Coordinated Global Scheduling 

To be feasible, global schedulers must work without having full knowledge of data 

center details. For instance knowing server queues would require an unrealistically high 

monitoring effort. In this chapter we only consider the following information to be 

available at the global scheduling level: (a) the hop distance between any two data centers, 

i.e., hij values; (b) the total number of servers at each data center; (c) the average energy 

efficiency and processing capacity of the servers residing at each data center; (d) for each 

job Jx its characteristics and (e) for each data center, the tasks currently assigned to it that 

haven’t finished yet. Information (a), (b) and (c), can be made available during a 

preprocessing step and doesn’t change throughout system’s operation time. Knowledge 

of (d) is straightforward requiring only the information available with each job request. 

Finally, (e) can be made available by having each local scheduler notifying the global 

scheduler upon a task’s completion.  
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Using the above described information, the global scheduler estimates for each data 

center three values (e1, e2 and e3) each for the criteria of processing time, energy 

efficiency and network cost, measuring how ―good‖ it would be to assign a particular 

task at the data center in question. For the first two criteria the following estimations are 

used: 

  (  )  ∑    
                

 ∑  

 

   

    (8.9) 

  (  )    (  )(
∑    
 
   

∑      
 
   

) (8.10) 

The third estimator e3, i.e., the one for network, is actually calculated in an exact 

manner using (8.4)-(8.8) since the necessary information to do so is available by (a) and 

(d).   

The non-coordinating global scheduler works in the following manner. Upon a job’s 

arrival, and for every possible task-data center assignment, it calculates estimators e1, e2 

and e3. The smaller the value of an estimator is, the better the assignment for this 

particular performance metric. Various policies can then be acted upon. For instance, the 

scheduler might choose based on e1 only, e2, or e3, termed the resulting scheme 

accordingly as P (processing), E (energy), N (network). Another policy is to rate the best 

solution across all three metrics. For this reason data centers are sorted three times (for 

e1, e2 and e3) and the best Pareto optimal candidate is defined as the one with the 

minimum cumulative rank across all the three lists. Hence forth for sort, by Pareto 

optimal we will denote a solution with minimum cumulative ranking. We term this policy 

as PEN. Once a data center is selected, the global scheduler informs the relevant local 

scheduler upon its decision. The local scheduler can’t deny a task assigned by the global 

one. 
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8.3.3. Coordinated Global Scheduling  

Clearly, even if P and E heuristics indicate that a data center is a good choice for 

particular task allocation, it is possible that when the task is actually assigned there, the 

performance exhibited would be inferior to the one estimated. Therefore all policies (but 

N) might involve bad allocation decisions. To ameliorate the situation, here coordination 

strategies are discussed.  

The scheme works as follows. First, e1 and e2 are estimated together with e3 which is 

accurately calculated. However, instead of deciding afterwards upon the datacenter to use 

for task processing, it asks the k most promising Pareto-wise local schedulers while 

making sure that the one with the best e1 value is included in this contact list. The local 

schedulers reply by sending the actual values that will incur (time and energy wise). 

Having gathered these replies, the coordination scheme decides the final assignment, 

using similar methods to the one described for the non-coordinating case, but having as 

candidates only the data centers conducted and using the actual values obtained from 

their answers instead of the estimations. The resulting schemes are termed accordingly as 

P-k, E-k, N-k, PEN-k. 

8.4. Experiments 

8.4.1. Simulation setup 

Datacenters: To generate the network of datacenters we used the 30 regions where 

Azure was available as of November 2016 [15] assuming the existence of a single data 

center at each of them as shown in Figure 8-4. Due to absence of relevant connectivity 

information, we created the network as follows. First, we calculated for every Azure 

region pair, its geographic distance. Then at the resulting graph we run MST. 

Servers: We performed simulation experiments on a Linux server with two 6-core Intel 

Xeon E5-2630 CPUs running at 2.3GHz. Since our server setting is not of generic use, 

we translated results into one of the Amazon EC2 instances to make our simulation 

setting more applicable. Specifically, we consider the C3 instances which are 

recommended for video coding. Comparing the processor passmark ratios between the 

CPU of our server and the one used in the C3 instances, i.e., Intel Xeon E5-2680 v2 (Ivy  
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 Resolution 
Frames per 
second (fps) 

Total 
frames 

CTUs 

per 
frame 

PeopleOnStreet 2560×1600 30 150 1000 

Traffic 2560×1600 30 150 1000 

BasketballDrive 1920×1080 50 500 510 

BQTerrace 1920×1080 60 600 510 

Cactus 1920×1080 50 500 510 

Kimono 1920×1080 24 240 510 

ParkScene 1920×1080 24 240 510 

Table 8-2 Video Sequences 

 

Figure 8-3 Frame rate coding times for common test video sequences in various resolutions 

 

Figure 8-4 Azure regions 
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Bridge) it can be estimated that the instance c3.4xlarge will account for a speedup of 2.2x 

compared to our server. Thus, we estimated the coding times over C3 instances using the 

actual values obtained by our server factored by the aforementioned speedup. 

Live casting dataset: To simulate broadcasting activity, we used the same dataset from 

Twitch as the one described in [13]. We kept the portion of the dataset representing one 

day activity (Jan. 6th, 2014). We then filtered it by deleting entries with broadcasts having 

no viewers and the broadcasts of resolution less than 220p. To keep the simulation time 

manageable we consider the following 5 resolutions: 240p, 360p, 480p, 720p and 1080p. 

In case a broadcast in the trace doesn’t follow one of the previously mentioned 

resolutions, we cluster it to its closest matching. We assume that a broadcast must be 

transcoded to all the resolutions that are lower than the one it uses. Clearly, with this 

setting the maximum number of transcoding tasks incurred by a broadcast is 4, 

corresponding to a 1080p stream that must be downscaled to 720p, 480p, 360p and 

240p. Upscaling, isn’t considered in the experiments. For simulation purposes we 

assumed that all videos used 30 fps. 

In the live casting scenario all arriving sequences were in H.264/AVC and should be 

transmitted in the same standard but at different resolution/rate. Since in the dataset of 

[13] no relevant information existed concerning transcoding times, we resorted to 

estimating them as follows. We used Class A and B common test (raw) video sequences 

with characteristics summarized in Table 8-2. Using ffmpeg we adjusted the resolution to 

the desired ones and encoded them using x264 with parameters suggested for PSNR 

tailored performance in [48]. Figure 8-3 plots the frame rate achieved by the encoder 

using one core. We then used the average value for its resolution case as a baseline 

estimator of the actual transcoding time. This baseline refers to the process of completely 

decoding the arriving sequence and re-encoding it from scratch, a strategy that is less 

than optimal as described in Section 2.2. To capture the case where a more efficient 

transcoder would be available we considered a speedup of 7x in the process similarly to 

the performance achieved in [60]. Finally we factored in the number of available cores in 

a C3 instance and the relevant speedup against our server. 
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File transcoding dataset: We consider the case where a large social media provider wants 

to translate a portion of its videos from H.264/AVC into HEVC as motivated in [90]. In 

lack of a suitable dataset we created one as follows. We selected one of the most popular 

video publishers in Facebook, NowThis, which accounted during a 6 month time period 

(July 2016 –Dec. 2016) for roughly 6 billion views according to [143]. We random 

sampled 20 videos that accounted for roughly 200M views and downloaded them in both 

available resolutions, 240p and 720p (2 of them were 1080p instead of 720p). We then 

transcoded them from H.264/AVC into HEVC using x265 with the PSNR tailored 

settings suggested in [48] and recorded the transcoding time for the two resolution levels. 

In the relevant experiment we assume a dataset size of multiple of these 40 files (20 

videos in 2 resolutions) arrive in the system for processing. 

8.5. Results 

First we evaluated the performance of the algorithms in the live casting scenario. 

Broadcasters and viewers were randomly distributed over the available datacenters for 

the purpose of calculating network overhead. We measured the performance of the 

algorithms as the number of servers per datacenter increases from a baseline value 

obtained uniformly between 50 and 200 up to a 2x, 4x and 8x case (random between 400 

and 1,600).  

Figure 8-5 shows the percentage of live casting streams that were processed 

successfully, i.e., at their nominal rate of 30fps. As expected with increased processing 

power per data center the acceptance rate increases as well reaching 100% for all 

heuristics in the 8x case. Among single criterion options, the algorithm that favors 

processing time (P) over all other metrics achieves the best performance, followed by the 

network only metric (N) and the energy (E). It is worth noting, that the PEN algorithm 

that is based on identifying Pareto-optimality achieves comparable to P results in terms 

of accepted jobs. However, the merits of PEN are clearly shown in Figure 8-6 and Figure 

8-7 that plot network overhead and energy consumption respectively. PEN achieves 

almost in par performance concerning the energy criterion against P while as far as 

network overhead is concerned, it accounts for a dramatic improvement over both P and 

E heuristics (about 4x less overhead). Compared to N that assigns jobs to the optimal 
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(network-wise) datacenters, PEN incurs roughly between 2x and 2.5x network cost 

(Figure 8-6), but accounts for better acceptance rates as shown in Figure 8-5. As far as 

the energy criterion is concerned, Figure 8-7 shows that especially when computational 

resources are limited (1x, 2x and 3x cases), E achieves the best performance with no clear 

winner for the second place.  

Viewing the first results in retrospect, we can state that the merits of a scheduler 

operating with PEN are demonstrated by the fact that maximum job acceptance rate was 

achievable while cutting down significantly network overhead and without affecting at 

large energy consumption. 

In the second experiment we evaluated the performance of the algorithms for the file 

transcoding Facebook scenario. We considered 20 servers per datacenter assigned for the 

transcoding service and plotted results as the number of arrived jobs increases. For each 

job we assumed a deadline equaling the sequence duration plus 10 minutes. Figure 8-8, 

Figure 8-9 and Figure 8-10, depict the percentage of jobs that meet their deadlines, the 

network and energy overhead respectively. Again PEN achieves top performance as far 

as processing time and deadlines are concerned (Figure 8-8) but at a smaller network 

overhead (Figure 8-9) compared to the other alternatives. 

Last, we evaluated the performance of PEN-k that involves accurate estimations for 

the three metrics by coordinating with the k most promising datacenters. For the live 

casting scenario and for the 2x case, Figure 8-11 shows the expected improvement in 

terms of accepted jobs when using k=5, k=10 and k=15. Results show a small 

performance increase which might be deemed necessary in certain administration cases 

since it refers to acceptance rate. Nevertheless it should be noted that this improvement 

comes with a coordination overhead that increases linear to the number of datacenters 

involved (k), incurring an extra of 2k messages per task. 
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Figure 8-5 Percentage of accepted jobs as the number of servers per datacenter increases (live casting 
scenario). 

 

Figure 8-6 Network cost as the number of servers per datacenter increases (live casting scenario). 
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Figure 8-7 Energy consumption as the number of servers per datacenter increases (live casting 
scenario). 

 

Figure 8-8 Percentage of jobs finishing within their deadlines as the number of servers per datacenter 

increases (Facebook scenario). 
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Figure 8-9 Network cost as the number of servers per datacenter increases (Facebook scenario). 

 

Figure 8-10 Energy consumption as the number of servers per datacenter increases (Facebook 
scenario). 
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Figure 8-11 Improvement in accepted jobs (live casting scenario, PEN-k). 
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9. Combinatorial Optimization 

9.1. Quadratic Assignment Problem (QAP) 

Quadratic Assignment Problem (QAP) is one of the fundamental problems in the 

area of Combinatorial Optimization. It was originated [89] as a problem of allocating a 

finite set of facilities into a set of locations targeting the minimization of the overall 

allocation cost. Allocation cost is defined as the total sum, over all pairs, of the workflow 

between interconnected facilities multiplied by their distance respectively. Workflow 

costs and distances are known a priori while each facility can be assigned in exactly one 

location. 

Given a set of positive integers   *       + and a set of all permutations 

         a formal mathematical definition of the QAP can be: 

   ∑∑      ( ) ( )

 

   

 

   

 (10.1) 

over all permutations        Parameters   (   ) and   (   ) are     

matrices denoting the required workflow between facilities i,j as well as the distance 

between them. 

Considering the following Quadratic Assignment Problem consists of four facilities 

(f1, f2, f3, f4) and four locations (l1, l2, l3, l4). Table 9-1 and Table 9-2 denote the 

workflow and the distance respectively. 

0 22 53 53 

22 0 40 62 

53 40 0 55 

53 62 55 0 

Table 9-1 Facilities Workflow F 

 

Institutional Repository - Library & Information Centre - University of Thessaly
10/04/2024 15:15:51 EEST - 3.233.222.249



CHAPTER  9. COMBINATORIAL OPTIMIZATION 

  105 

0 22 53 53 

22 0 40 62 

53 40 0 55 

53 62 55 0 

Table 9-2 Facilities Distance D 

A possible facilities placement is μ={4,3,1,2}  indicating that facility f4 is placed into 

location l1, facility f3 is placed into location l2 and so on. The overall assignment cost, as 

show in Figure 9-1 is                                            . 

However, placement μ is a local optimal. Figure 9-2 shows the global optimal 

μ={3,4,1,2} resulting a total assignment cost equal to 395, while the individual cost 

between interconnected facilities is presented over the edges. 

 

Figure 9-1 Local optimal assignment μ={4,3,1,2} 
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Figure 9-2 Global optimal assignment μ={3,4,1,2} 

Aforementioned example practicality is two folded. On the one hand it clarifies the 

usefulness on applying QAP into real world problems; on the other hand it reveals the 

difficulty on finding an optimal solution even for a small case of four facilities. 

Meanwhile, for large number of test cases n>30 solving QAP in a reasonable time seems 

impossible [120]. Methods used on solving QAP can be classified into two major 

categories [104]. Approaches in the first category comes up with optimal solution using 

Branch and Bound strategies [111], [69] and Dynamic Programming [36] while, in the 

second category heuristic methods used where optimal solution is not guaranteed [26], 

[119]. QAP was also widely used by consolidating metaheuristic techniques such as 

simulated annealing [116], Genetic algorithms [138] and swarm intelligence [107]. 

In the years to come, this optimization model will prove particularly important on 

solving complex problems that will belong to different research areas. Steinberg [131] 

apply QAP for the problem of placing interconnecting computer components into a 

backboard so as to minimize the total amount of wire needed which affects the timing 

and the overall performance of the circuits. Particular emphasis was given to solving 

problems that affects the everyday life such as the hospital layout problem [56], [108] and 

the arrangement of campus buildings [93]. Besides that QAP used in the field of 

architecture [93] and sports [55] giving optimal designs of a structure’s layout subject to 

certain conditions as well as maximizing the overall risk taken by a player. As far as the 

hospital layout problem is concerned QAP was proposed for the minimization of the 
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total annual distance covered by patients formed through the allocation of 17 

departments into 17 clinics. In the same manner the weekly distance covered among 

departments in a campus was decreased thus bottlenecks have been rooted out [52]. In 

light of parallel and distributed systems [20], [41] QAP used to increase solvable 

capability in complex benchmarks [111], while in a scheduling problem [69] integrated 

with dynamic programming led to a reduction in production cost. 

9.2. File Allocation Problem (FAP) 

File Allocation Problem (FAP) is a well-known combinatorial optimization problem 

concerning the optimal distribution of files among different computers in a distributing 

environment. Different parameters are considered in the FAP for instance the number of 

file copies to be stored and the copies locations both with respecting the minimization of 

operation costs like file storage, query, update and communication [54]. FAP initially 

formulated via integer programing or via linear programing ignoring integer restrictions 

in terms of different objective functions and constrains [31], [39]. Heuristics like efficient 

Branch and Bound and greedy algorithms revealed in the near future [66], [148] some of 

them tackle the FAP assuming tractable assumptions and scenarios [32]. 

9.3. Capacitated Plant Location Problem 

Capacitated Plant Location Problem (CPLP) falls in the area of combinatorial 

optimization since the middle of the previous century [130]. It concerns the optimal 

distribution of plants into potential locations over a distributed production network 

targeting the minimization of two significant operation costs. Supplying commodities to 

clients through the network yields a noticeable operation cost while opening, maintain 

and running a plant in a specific location is a key issue in the CPLP. Aforementioned 

operation costs differ on various locations and plant sizes; meanwhile each plant has an 

upper bound on the amount of demand it can service and customer demands must be 

fulfilled. Solving CPLP is usually accomplished in two phases. In the first one a subset of 

plants is considered to be open while in the second phase customers are assigned into 

opened plants. Solving CPLP poses interesting dilemmas. Exact algorithms don’t scale 

well for large number of inputs while heuristics algorithms may not converge to global 

optimal. ADD, DROP [94], [65] procedures and generalizations of them [78] belongs in 
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the area of greedy heuristics where once a decision is made it doesn’t change while 

interchange heuristics [57], [134], [140] attempt to alter decisions in an overall 

minimization manner. Applications of CPLP are not restricted into industry related 

problems. For instance in routing decision [59] CPLP used for the minimization of the 

total delivery cost which occurs by chauffeuring demand in different locations. Lock box 

location problem [109] is another example where CPLP was successfully leading banks to 

manage efficient their profit. CPLP is also used for the installation of databases [58]. 

Accessing remote databases, especially with the continuous growth in the wide area 

networks raises significant communication and operation costs thereby assigning copies 

of important databases into different locations potentially minimize the aforementioned 

costs. 

9.4. Web proxy placement 

Effective use of network bandwidth is a significant concern the last decades especially 

with an ever increasing demands on users using the internet and on data that being saved 

and transferred all over the world. Satisfying users demand while preserving bandwidth 

usage and traffic congestion as low as possible act as a cutting edge for both researchers 

and internet server providers (ISPs) Web cashing is a technology used for better 

bandwidth allocation in conjunction with response time minimization for the common 

good of users and companies requirements. Essentially, web cache technology deals with 

the creation of temporary data copies usually contain html files and images which may be 

needed frequently over the internet. In this way data is transferred to clients via cache 

instead of transferring data from actual locations, as a result data transmission to end 

users is done faster and servers load – bandwidth allocation is decreased. Cashing data 

close to clients is considered an effective solution for bandwidth management problems 

and for server scalability [149]. Installing caching schemes near clients is usually tackled 

via establishing proxy on firewall machines as seen in Figure 9-3. In more generic models 

as presented in Figure 9-4, upon a client request a proxy that doesn’t have the required 

information communicates with others affiliated proxies. In doing so, in an efficient 

manner a proxy placement methodology must be used. In [100] authors use dynamic 

programming to deal with optimal placement of multiple proxies among different 

locations (sites) based on a given traffic. Cache replacement techniques also used for the 
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minimization of different objectives. Namely, traditional techniques like selecting the data 

which was requested the least recently, key based approaches such as LRU-MIN and 

LRU-Threshold [3] and cost based policies where potential costs are assigned to the 

metrics we want to optimize. Efficient placement affects the overall web performance as 

it reduces latency access, the bandwidth consumption and the workload of remote 

servers especially in the case where a remote server is unreachable. 

 

Figure 9-3 Installing Proxy on a firewall machine 
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Figure 9-4 A generic cashing scheme. 
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10. Concussions and Future Research 

In this chapter we summarize the contributions of this thesis and discuss the 

important directions of future work. Main conclusions emerging from this work are the 

following: 

 Tackling IC placement as a scheduling problem is feasible. Critical path delay 

optimization can be achieved by placing potentially slow components, being 

individual cells or paths, close to power sources. 

 Performance of a classic legalization algorithm, Tetris, can be augmented, 

while retaining its fast execution time. It turns out that drastic performance 

improvement in HPWL (which directly translates to power improvement) 

and displacement terms is achievable by AC4-LR, AC4-RR10% and CC8-

LR. The first two heuristics also improve execution time, while the last 

heuristic achieves placement quality that puts it almost in par with a more 

complex legalization scheme (Abacus) for NTUplace3 input but at a two 

orders of magnitude less runtime. Thus, whenever fast legalization is needed, 

the heuristics presented in the thesis offer better alternatives compared to 

both Tetris and Abacus. 

 High execution time of state of the art legalizers can be decreased via 

parallelism (coarse grained parallelization). Instead of following a one pass 

approach that needed extensive synchronization overhead, we followed a 

two pass approach, consisting of a first parallel, lock-free step followed by a 

sequential one. The same methodology with minimal or no changes can be 

applied on most legalization algorithms of the literature given that they don’t 

form their own partitioning. Its particular implementation on Abacus, called 

Domocus, proved to augment the time performance of the sequential 

scheme, without seriously affecting solution quality, even improving it in 

certain cases. Furthermore, Cloud environment fits IC placement 

requirements. 
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 Video coding and transcoding are computationally demanding, performing a 

portion of these tasks at the network edges decrease both the workload and 

network traffic towards the data centers of media providers. Also, a small 

quality degradation of the output video streams leads to an increasing 

number of jobs assigned to the edge datacenter. 

 Scheduling transcoding jobs over the cloud poses interesting dilemmas. 

Different strategies can be applied including light and strong cooperation 

mechanisms and multiple objective functions like processing time, energy 

consumption and network cost. Results show that a heuristic that tackles all 

three optimization targets using a Pareto-optimal approach can lead to 

significant network savings with marginal effects on task completion time. 

As part of our future work we plan to study and implement more sophisticated 

parallel heuristics which can prone sufficiently the search space without significant losses 

and incorporate multi-objective optimizers that take into account various objective 

functions Moreover, we will focus on creating cloud application services (SaaS) which 

will use the web to deliver IC placement and video transcoding applications to clients. 

These services will serve the needs of both researchers and academia. 
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