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Abstract

The field of rarefied gas flow modeling is a gradually growing field of engineering. This is
due to the scientific need for accurate results is the fields of vacuum technology, processes
and pumping, high altitude aeronautics, space applications and gaseous micro/nano-
electromechanical systems. Due to the nature of these flows, typical CFD models based on
the Navier-Stokes-Fourier approach are not suitable, and a kinetic approach based on the
Boltzmann equation has to be introduced.

Currently two are the leading approaches based purely on Kinetic theory, the deterministic
solution of the Boltzmann equation using the appropriate kinetic models and the stochastic
flow simulation using the Direct Simulation Monte Carlo method (DSMC). Although the
deterministic approaches offer great accuracy they are hard to implement in complex
geometries or for complicated cases and therefore a very big part of large scale simulations
for technological applications is performed using the DSMC method.

In the past, particle-in-cell (PIC) methods have been used to obtain computational results
for problems where the typical numerical schemes had proved ineffective. Such methods are
relatively easy to implement in complex geometries and owning to their imitative nature
complicated particle interaction can be modeled in a straightforward manner.

The present work is an introductory study for the application of particle-in-cell methods
for the deterministic simulation of rarefied gas flows. The main steps towards such codes are
described and the algorithms for simple cases are formulated. The developed algorithms are
benchmarked, using prototype nonlinear problems in plane geometry namely a) the
compressible Couette flow, b) the Fourier flow and c) the Poiseuille flow. In all cases very

good agreement with published results is achieved, validating the implemented particle-in-
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cell methodology and programming codes. This study is a first step towards deterministic
particle-in-cell modeling in rarefied gas flows. The potential establishment of PIC methods

for deterministically solving such flows is demonstrated.
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Hepiinyn

H mpocopoimon apotomompéveov podv amotelel £vo OVOTTUGCOUEVO OVTIKEILEVO TNG
pnyoavikng. To kivntpo eivor M avayxn ywoo okpip] amoteAéopato o€ TEPLOYES OMMOC M
TEYVOLOYIOL KEVOV, SLOGTNIIKT KOl OEPOVOLTNYIKN OE LEYOAN VYOUETPO Kol POEC OEPI®V GE
UIKPO/VAVO-NAEKTPOUNYOVOLOYIKG GUGTHUATO KOl GLGKEVEC. ADY® TNG PLGIKNG TOV SETOVY
OUTEG TIC TMEPLOYES, TOL TUMIKEL LOVIEAQ TNG LTOAOYIGTIKNG UNYOVIKNG TOV PEVGTMOV TOV
Bacilovtor otnv mpocéyyion Navier-Stokes-Fourier dgv eivor kotdAAnia, Kot KIvNTIKES
npoceyyioelg pe Paon mv e&icwon Boltzmann mpénet va ypnoipomomOovyv.

Avo eivon ot wvplapyeg péBodor emidvong Poocwopévec oty kwvnTiky Oswpia, 1N
vietepuvioTikn  emidvon g e€icwong Boltzmann ypnowonoidvrog kdmolo  Kivntikod
LOVTEAO KOl 1) OTOYOOTIKN mpocopoiwon ue ) pébodo Direct Simulation Monte Carlo
(DSMC). TTaporo mov Ol VIETEPUIVIOTIKEG HEDOSOL TPOGPEPOVY KaADTEPT OKpifeta, givat
TPOPANUATIKY] 1| EPOPUOYN TOVG GE TOADTAOKES YEMUETPIEG 1| OE MEPIMTMOELS CLVOETWOV
POMV, £TG1 £Vl TOAD HEYOAO TUNLO TOV TPOGOUOIDGEMY UNYOVOAOYIKOD eE0TAMGHOD YiveTal
pe ) pébodso DSMC.

¥  Piproypaeio, moAAEG @opéc ocwopatdiokég uébodol (Particle-in-Cell)  €youvv
ypnopomombel yioo v LIOAOYIOTIKY) UEAETN TpoPAnudtov oto omoi ot cuvnONg
apOunTcéc péBodot amodelynkav avemapkeic. Tétoleg copoTidtoKeég peBodot eitvar GyeTIKa
€0KOAO VO EQOPLOCTOVV GE TOADTAOKES YEMUETPIEG Kot AOY® TOL LUNTIKOD YOPUKTNPO TOVGS
etvat €0K0A0 VO LOVTEAOTOMGOLY TOADTAOKN PUGTKA POLVOLLEVA.

v mopovoa epyacio yivetar pio ElGOY®YIKN HEAETN TNG EQOPUOYNG VIETEPUIVICTIKAOV
COUATIOOKOV HEBOOWV GE TEPIMTMOCELS APULOTOMUEVNS ponc. Ta KupLa 6TAdI0L TNG ETIAVONG

TEPLYPAPOVTOL KO YIVETOL 1] LOPPOTOINGT KATolwv adyopiBumy yia aniég mepurtooetg. Ot
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alyopifpol avtoi elévyovion ®¢ mpog TV okpifeln oe Tpiot TPOPANUATA AVOPOPAC.
JuyKkeKPUEVO €EETALOVTOL TOL U1 YPOUIKA TpoPANato TG cvpmiestng pong Couette, tng
uetapopds Oepudmrag avaueso oe mAdkeg (por Fourier) woi g pong Poiseuille. Ta
amoTEAECUOTO €lval 6€ TOAD KOAN ocvpeovio pe oviiotoyo e Piproypapiog mwov
Tpoékvyav pe GAAeG pneBOdovs. Me Tov TpOTO avTO amodelkvVeTal 1 opfoTNTA NG
npotewvopevng Particle-in-Cell pebodoroyiog ko Tov kodikmv mov &yovv avomtvybel oto
TAQICL0 TNG HETOMTUYIOKNG epyaciag. Avt m epyocio amotelel éva apywkd Prpo otnv
VIETEPUIVIOTIKY EMAVGT OLTOV TOV TPOPANUATOV HE YPON COUATIOWKOV HEBOI®V.
Emiong, moapovoidletor 1 ovvntiky  kafi€pmon 1oV coOpaTdek®v  pefddov  ®g

vteteppviotikny pebodoroyio emilvong.
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1. Introduction and literature review

1.1 Origin of Kinetic theory

Kinetic theory first originated in 1738 when Daniel Bernoulli stated in his book
Hydrodynamica [1] that gases consist of large amounts of molecules travelling in all
directions, that pressure is the force exerted by those molecules to a surface during a collision
and that heat is just the kinetic energy of the molecules. Great advances in Kkinetic theory
came much later, when in 1878 Clausius [2] introduced the mean free path and Maxwell in
1860 [3] who laid the road for a statistical description of gasses, introducing the concept of
the velocity distribution function, a tool that could be used to compute the probability of
finding a molecule in a certain range of velocities. Although Maxwell came very close to
extraction the expression for the evolution of this function (the Boltzmann equation), it was
Boltzmann in 1872 [4] that made the final steps to its derivation and the expressions is
accorded to him.

Kinetic theory approaches the gas not as a continuous medium, by rather than a huge
amount of atoms, moving randomly in all directions and colliding with each other. This is the
reason that in the beginning of the 20™ century it was criticized, as atoms were considered by
many physicists to be purely hypothetical. It was after the first papers on Brownian motion
[5,6], where accurate predictions based on kinetic theory were made, that the scientific
community accepted it. Initially, kinetic theory was utilized in order to obtain closed form
expressions for the transport coefficients, rather than simulate problems. In the second part of
the 20" century, following the development of computers some simple problems were
simulated. As will be discussed in the next section, kinetic theory is applied in certain cases
where the conventional approaches fail, mainly in vacuum conditions or for phenomena
taking place in very small dimensions. Recently, kinetic theory was even utilized to study

historical processes [7].

1.2 Knudsen number and flow regimes

One of the main advantages of kinetic theory is that the only assumption that needs to be
made is the specification of the intermolecular interaction model, instead of the transport
coefficients needed for conventional CFD approaches. However, kinetic simulations are
associated with high computational load, and are used when absolutely necessary and that is
when the gas is very far from equilibrium. The dimensionless parameter that quantifies the

departure from local equilibrium is the Knudsen number.

1
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The Knudsen number is defined as the ratio of the mean free path of the molecules over a

characteristic length of the problem [8]

Kn=" (1.1)

The mean free path for the Hard Sphere model for a single gas can be expressed as [8]

m
A= 1.2
\/Eﬂ'dzp (1.2

where m is the molecular mass, d is the diameter of the molecule and o is the gas mass

density. It is seen that for a specific gas the mean free path is a function only of density, and
is inversely proportional to it. The Knudsen number is a measure of the gas rarefaction and a

measure of the departure from local equilibrium.

Table 1.1: Direct and cross effects.

Heat flux Momentum flux Mass flux
VT | Heat conduction Thermal creep Thermal diffusion
VP | Mechanocaloric effect | Poiseuille flow Baroeffect
VC | Duffour effect Diffusion baroeffect | Diffusion flow

The Knudsen number is related to other important dimensionless parameters, such as the
rarefaction parameter

5= PL _ ﬂ (1.3)
Huu,  2Kn
and the Mach and Reynolds numbers [8]

_Ma [ym
Re \ 2

Kn (1.4)

where P is the gas pressure, x is the dynamic viscosity, v, :,/2kBT/m is the most

probable velocity, kg is the Boltzmann constant and y is the ratio of the specific heats of the

gas.

According to the Knudsen number the flow regimes can be defined, as shown in Table 1.2.
The Boltzmann equation, although valid in the whole range of the Knudsen number, is
utilized only in the transition and free molecular regimes because of the high computational

cost it requires.

2
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When the Knudsen number is small and the flow is in the continuum regime, the

macroscopic approach of the Euler and Navier Stokes equations can be used with very good

accuracy. As the Knudsen number is increased and we move to the Slip regime, the no-slip

boundary conditions associated with the Navier Stokes equations start to collapse. This can

be treated with velocity slip and temperature jump boundary conditions [9], and the range of

their application is extended. In those regimes the flow is near local equilibrium.

As the Knudsen number is further increased and the flow further departs from local

equilibrium, the Newton, Fourier and Fick laws do not hold and the continuum approach

collapses. It is in those regimes, the transition and free molecular, that very interesting non-

equilibrium phenomena start to appear, and the flow can only be simulated using kinetic

approaches [10,11].

Table 1.2: The flow regimes according to the Knudsen number.

models without collisions

Range of Kn Regime Governing Equations Numerical approach
Kn—0 Continuum Euler
(inviscid)
Kn<1073 Continuum Navier Stokes
(viscous) Typical CFD schemes
10 <Kn<10?t Slip Navier Stokes with
(viscous) slip boundary conditions,
Generalized equations.
10t < Kn <10 Transition Boltzmann Analytical methods,
(Knudsen) Kinetic models Variational methods,
Discrete velocity
method
Integro-moment method
DSMC
10<Kn Free molecular | Boltzmann and kinetic Method of

characteristics
Test particle Monte

Carlo

3
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If we consider the three driving forces acted on gases being temperature gradient, pressure
gradient and concentration gradient, then the results of those forces according to continuum
approaches will be heat flux, momentum flux and mass flux respectively. Those are called
direct effects. In flows far from local equilibrium six more effects are present, the cross
effects. They are shown in Table 1.1. The mechanocaloric and Duffour effects give a heat
flux due to pressure and concentration gradients respectively, thermal creep and diffusion
baroeffect give momentum flux due to temperature and concentration gradients and finally
the thermal diffusion and baroeffect give mass fluxes due to temperature and pressure
gradients. Those effects are beyond the range of the continuum models, can however be
modeled by kinetic approaches and although negligible at small Knudsen numbers, are very
important in rarefied flows.

The direct solution of the Boltzmann equation is a very hard and computationally
demanding process. To overcome this, certain methods are used in order to obtain kinetic
solutions without solving the exact Boltzmann equation. One of them is the use of kinetic
models, the most well-known are the BGK [12], the Shakhov [13] and Ellipsoidal [14]
models for monatomic single gas flows, the Rykov [15] and Holway [16] models for
polyatomic single gas flows and the McCormak [17] model for gas mixtures. In order for a
model to be accepted it must satisfy the collision invariants, satisfy the H-theorem and
provide the correct expressions for the transport coefficients.

Another very widely used method for the simulation of such flows is the Direct Simulation
Monte Carlo method (DSMC) [10]. This is a stochastic method, in contrast to the direct
solution of the BE or model equations. For the simulation the flow domain is discretized and
a big number of fictional (simulator) particles are distributed on the field, each corresponding
to a large number of real particles. Then the real motion of particles is divided into two parts,
the free motion according to a distance proportional to their velocities and the time step, and
a collision part where the collisions are simulated in a stochastic manner. This way the free
motion and the collisions are decoupled, during the time step. The macroscopic quantities are
sampled for a large number of time steps, and are calculated using the simulator particles’
microscopic quantities. It should be noted that since it is a stochastic method, it suffers from
statistical noise and a lot of work is done in order to decrease it [18].

A number of methods have been proposed, using high-order equations [19] derived from
the BE. Those methods are able to simulate flows in the slip and early transition regimes,

capturing effects that are beyond the NSF (Navier-Stokes-Fourier) analysis. The most known

4
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of them are the Burnett equations. Those methods have some known problems, like stability

issues, and can be misleading when used in the whole transition regime.

1.3 Particle in cell methods

Particle-in-cell is a class of numerical methods used to solve partial differential equations.
In those methods the equation to be solved is decomposed into auxiliary problems, typically
one in a Lagrangian frame and one in Eulerian. The phase space is discretized and unlike
other methods, the solution is not performed on the nodes or elements of the computational
mesh. Instead, a large number of fictional (simulator) particles is created and their motion is
tracked on a Lagrangian frame. Each of those particles carries the information of the
quantities of interest. The particles can interact with the Eulerian grid through average fields
(PM, particle-mesh interaction), with other particles (PP, particle-particle) as in cases of
charged plasma, or include both types of interaction (PP-PM or P®M). In all cases considered
in this work the PM interaction is used. The solution is then performed following some steps,
the motion of all particles, the interaction of particles with the mesh or other particles, the
calculation of field variables (e.g. Maxwell equations for plasma) and finally the weighting of
the particle microscopic properties in order to derive the macroscopic quantities of interest
[20].

Particle-in-cell methods are well known in the scientific community. They offer a degree
of intuition and are usually straightforward to implement, a fact that made those methods
quickly popular as they provided solutions to complex effects based on their imitative
properties. They were very successful in plasma simulation, and magnetohydrodynamics for
applications involving tokamaks [21], and are the leading method for simulating such
problems. Initially those methods were oriented to solving problems with great bulk
deformation, strong shears, instabilities on the interfaces of various media, turbulent mixing
and other cases were finite difference schemes proved to be inapplicable [22]. Great progress
was made when the splitting up into the auxiliary problems scheme was introduced [23], and
great steps for the computational aerodynamics were made when the “large” particle method
was introduced [24] that enabled simulation of transonic flows past bodies and two-phase
flows.

In the field of rarefied gas dynamics, particle in cell methods were developed in the
sixties-seventies, at the time when rarefied gas dynamics became a separate branch of
engineering, due to the development of space science and vacuum technologies. Statistical

particle in cell methods were developed, as imitation algorithms for such flows, mostly by

5
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G.A. Bird [10] and contribution was also made by O.M. Belotserkovsky and B. Ye. Yanitsky
[25,26]. Since then, this statistical particle-in-cell method (DSMC) is still used massively for
engineering applications involving rarefied gases.

1.4 Thesis objectives and structure

Rarefied gas flow simulation is an emerging field of engineering. There is an increasing
interest in the fields of microfluidics [27] and vacuum packed MEMS [28,29] as well as
micropumps [30,31], microactuators/microsensors [32,33], and vacuum systems simulation.
Only recently however, have large scale simulations become possible, due to the high
computational cost associated with it, and as time goes by more and more complex
simulations are demanded. Nowadays, the most widely used method used to tackle complex
engineering problems involving rarefied flows is the DSMC method, which however suffers
from statistical noise, and in some cases (e.g. creeping flows) fails to correctly reproduce the
flow field due to this noise.

Particle-in-cell methods provide great advantages as the simulation of complex geometries
becomes easier and since they are imitative techniques, the particle interaction becomes
easier to model (e.g. external fields). The large linear systems that are inherent in finite
elements methods do not exist in PIC methods, decreasing the computational cost. Particle-
in-cell methods are not new in rarefied gas dynamics, as the DSMC itself is such a method.
However, DSMC suffers from certain problems that are not present in deterministic methods.
On the other hand, deterministic techniques of solving rarefied flows, using the typical
numerical schemes, are hard or very computational demanding to implement on complicated
problems. An effort is made in the present work to develop a methodology for the
deterministic simulation of rarefied gas flows, using particle-in-cell methods. This could
potentially increase the range of application of deterministic techniques, to problems
currently tackled by DSMC. In the context of the present work, some basic algorithms are
developed and the general guidelines of such a solver are given, while a few simple problems
are simulated in order to verify and benchmark the method.

The thesis is outlined as follows:

e The basic concepts of kinetic theory are given in Chapter 2. The Boltzmann equation,
along with the kinetic models, boundary conditions and macroscopic quantities are
presented and the mathematical manipulation of the equations to be solved is made.

6
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e The description of the PIC method used in the present work is presented in Chapter 3.
The basic aspects of the method as well as the formulation of the test algorithms are
given.

e In Chapter 4 the formulation of the benchmark problems is presented.

e In Chapter 5 the results of the benchmark problems are presented and the comparison
with published results is made.

e Closing the thesis some concluding remarks are made in Chapter 6.

7
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2. Basic concepts of Kinetic theory

2.1 Boltzmann equation

Kinetic theory simulations are based on the velocity distribution function f(r,f,t),
where r is the physical space position vector, & is the molecular velocity vector and t is
time. The velocity distribution function (or simply distribution function) is defined so that
f (r,.f,t)drdé is the expected number of particles that are in the physical space element of

volume dr around r and have velocities in d& around & at time t. The six dimensional

space formed by the three physical space vectors and the three molecular velocity vectors is

called the phase space and the quantity drd& is a phase space differential element. The

distribution function is a fundamental quantity in Kinetic theory and all macroscopic
quantities of interest can be derived from the distribution function. As it can be seen the
distribution function, in the general case, depends on seven independent variables and this
makes simulations hard and computationally demanding. The evolution equation for the
distribution function is the Boltzmann equation (BE), that for the case of monatomic single

gases can be written as [8]

Y4
of of of s M-
— + &= = =] J(Hf - 1ff)codadg =I(f) 2.1)
at or o 4
rate of change  rate of change due o
to free motion {gt%;fdcfrgﬁggg due rate of change due to collisions

The left hand side of the BE is the streaming term, the change due to the free motion and
the right hand side is the collision term, the change due to collisions. The collision integral

gives the rate of change due to collisions of the particles inside the phase space element drdé&

with particles of all other phase space elements drd&, . The quantities with the superscript
(*) are the post collision quantities and those with the subscript (1) refer to the phase space

elements drdé . The relative velocity of the colliding particles is denoted as ¢, =&—-¢&,

while o denotes the differential cross section and dQ is the differential element of the solid
angle in which the molecule will scatter after the collision. Those two parameters (o and
dQ) are the only parameters that need to be specified in advance and they are derived from
the molecular interaction model chosen, the most common being the Hard Sphere, Inverse
Power Law, Variable Hard Sphere, Variable Soft Sphere, Generalized Hard Sphere and

Generalized Soft Sphere models. This is one of the advantages of kinetic theory, the in order

8
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to simulate the flow we do not need to specify any transport coefficients, but instead only the
molecular interaction model.

Deriving the BE two main assumptions have to be made, both regarding the collision part.
The first assumption is that only binary collisions, that is collisions between two particles, are
taken into account. This limits the applicability of the BE to dilute gasses (a gas is considered
dilute when the distance between molecules is much larger than the molecular diameter). It is
noted that gases in atmospheric pressure are dilute. The second assumption is the molecular
chaos or Stosszahlansatz, which states that the velocities of the colliding molecules are
uncorrelated.

One particular solution of the BE when external forces are absent and for an equilibrium
state is the global Maxwellian distribution

fM =L3/gexp _@;—U) (22)

K 2-BT7
where N, T, U are the constant number density, temperature and velocity while k;, m are

the Boltzmann constant and molecular mass respectively. When the macroscopic quantities
N, T, U are not constant but depend on time and physical space then the distribution of the

same form is the local Maxwellian distribution.

2.2 Kinetic models

As can be seen in Eq. (2.1) the collision part of the BE is, in the general case, given by a
five-fold integral. The simulation of gas flows using the BE in the form given in Eq. (2.1) is a
very cumbersome and computationally demanding task, because of this complex collision
part. In order to simplify the simulation it is common to replace the collision integral with
simpler expressions, the kinetic models. In essence kinetic models provide a relaxation to the
collision term and have proven to be adequately accurate for flow simulation.

The most basic and well known kinetic model is the BGK model, which is given by [12]

J(f)z%(f“"—f) (2.3)

where P is the local pressure, z is the viscosity at local temperature and f" is the local

Maxwellian distribution. This model, although relatively simple, has been extensively used to
model isothermal gas flows, with considerable success. The main drawback of the BGK

model is that it cannot provide the correct expressions for viscosity and thermal conductivity
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coefficients simultaneously, as it yields a Prandtl number of Pr=1 instead of 2/3 for ideal
gases, making it unsuitable for non-isothermal flows.

An extension of the BGK model, able to handle non-isothermal flows is the Shakhov
model, which provides the correct value of the Prandtl number and has been used extensively

for non-isothermal flows. The Shakhov model is given by [13]

P
J(f)=—(f5—f 2.4
(f) ﬂ( o) (2.4)
where
S _£M Em(l_Pr) (E_ m(f—U)Z_E
fog = 1 g N(kBT)ZQ@ U)[ 2k T 2}] (2:5)

where Pr is the Prandtl number and Q is the heat flux vector. Both of the above models,

BGK and Shakhov are limited to monatomic gas flows.

2.3 Boundary conditions

The boundary conditions for flows simulated using the BE are part of the solution. Their
main objective is to correlate the distribution of the molecules departing from the boundary
with that of the incoming molecules. The most widely used type of boundary conditions is the
Maxwell diffuse-specular. In the case of purely diffuse boundary conditions the distribution
of the molecules departing from the boundary is in the form of the Maxwellian distribution
characterized by the wall temperature and velocity. Specular reflection assumes that
molecules arriving to the boundary collide with it in an elastic way, and are reflected without
exchanging energy with the boundary. If we consider n as unit normal to the boundary

vector with direction towards the flow field, we can denote the incoming distribution as
f‘(.f') when & -n<0 and the outgoing as f* (5) when &£-n>0. A general expression for
the boundary conditions is [8]

. E-ny( s (V£
t(&)=-| W (& —>¢&)f (£)dE (2.6)

£.n<0 ¢-n

where W ((_f' —>§) Is the scattering kernel and it is the probability that a molecule arriving at
the boundary with velocity & will depart with velocity & .

In the case of specular reflection only the velocity component normal to the boundary will
change (and become opposite) that is

fr(&)="1"(£-2(&-n)n) 2.7)
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leading to the scattering kernel
W, (& >¢&)=0[&-&+2(&-n)n] (2.8)
where § is the Dirac function according to jé(r —a)p(r)dr=gp(a) .

In the case of purely diffuse boundary conditions, the outgoing distribution is of the form

of the Maxwell distribution characterized by the wall conditions,

f+(§)=%exp —(fl;—UW) (29)

K 2-BT
(Zﬂ'mT‘Nj m w
where T, is the boundary temperature, U, is the boundary velocity and N, is a parameter
ensuring the impermeability condition. The above expression gives the scattering kernel

exp —w (2.10)

. 1
(e ﬁf)zgg'nw 2Ke
m w

In practice the boundary interaction is not purely specular neither purely diffusive. It is

more accurate to assume that a portion a of the molecules is reflected diffusively and the
remaining (1—a) undergoes specular reflection, leading to the diffuse-specular scattering

kernel

W(E >&)=aw, (& >&)+(1-a)W (& > ¢&). (2.11)

2.4 Macroscopic quantities
Macroscopic quantities of practical interest can be obtained as moments of the distribution

function using the following expressions [8]

Number density N (r,t)= j f(r,&t)dé& (2.12)
Velocity vector U (r,t)= N(lr,t)lff (r,&t)dé& (2.13)
Stress tensor Pij(r,t)=mj;(§i ~U,)(&-U,) F(r.&t)dg (2.14)
Temperature T(r’t):%BNL(r,t)!g(f_U)z f(r,&t)de (2.15)
Heat flux vector Q(r,t):gst((:—u)Z (£-U)f(r,&1)de (2.16)
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2.5 Projection procedure

Although the distribution function can be a function of only one or two physical space
dimensions, it still is a function of all three molecular velocity components. In order to reduce
the computational cost it is possible, depending on the problem to be simulated, to eliminate
one or two molecular velocity components using the projection procedure. During the
projection procedure the Kkinetic model equation along with the expressions for the
macroscopic quantities and the boundary conditions are accordingly integrated in order to
eliminate the dependence on some of the molecular velocity components. Then instead of the
Kinetic equation a system of integrodifferential equations has to be solved, increasing the
complexity, but the computational cost is reduced by at least one order of magnitude. Of
course during the projection procedure some information is lost, but this is of no practical
interest. Before applying the projection procedure it is convenient to introduce the following

dimensionless quantities

1 P
r:r_"[:l,nzﬁ’u:g’gzé’ 1)0: 2k—BTO’q:L’ le= Y
L T, N, U, Uy \J m N Kz T U, NoKgT,

3
UO

N,

(2.17)
g=f
where T,, N, are the reference temperature and number density respectively, while the
reference pressure P, is taken from the state equation as P, = N k;T,. The reference speed is

the mean thermal velocity v, at reference temperature and g denotes the dimensionless

distribution function.

Two cases of the projection procedure will be shown here. In the first case, two

components (z,x) of the molecular velocity will be eliminated and in the second only one

component (2). In both cases the distribution function will only depend on one direction (y)

of the physical space and the steady state equation will be used. Under those assumptions the
BE can be written as
of of

E—+F —=J(f (2.18)
y ay agx ( )
if we introduce the dimensionless quantities of Eq. (2.17) then the BE is written as

a9 =09 =

—~ 4+ F—==] 2.19
<y YRS (9) (2.19)
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where E:FXL2 is the inverse of the Froude number and j(g) is the dimensionless

Uy
collision operator. The dimensionless collision operator for the BGK and Shakhov models

can be written as

EBGK(9)=5(9M—Q) (2.20)
and
Js(9)=5(g°-9g) (2.21)

where g" is the dimensionless Maxwellian distribution and g° is the dimensionless

Shakhov equilibrium distribution given by

M n 2

s =Wexp[(§—u) /r} (2.22)
and

s |, 4(@=Pr) (g—u)2_§

9°=g¢ [1+§ — q-(¢ u)[—T ZD (2.23)

The parameter ¢ in Egs. (2.20) and (2.21) is the local rarefaction parameter, which is

proportional to the inverse of the Knudsen number, and is given by

s—PL (2.24)
HU,
and is connected to the reference rarefaction parameter &, = Rl by
HoUy
S=o,n"" (2.25)

where @ is the viscosity index, u =y, (le , and the two limiting cases of @w=0.5 and 1
0

correspond to hard sphere and Maxwell molecules respectively.

The dimensionless expressions for the macroscopic quantities are summarized bellow

Number density n(r)= j g(r.&)d¢ (2.26)

Velocity vector u(r)zﬁjg’g(r,{)d{ (2.27)

Stress tensor p; (r)=2 (& -u)(¢;-u;)g(r.¢)ds (2.28)
13
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2

Temperature 7(r)= (") !3(5_”)2 g(r.&)dg (2.29)
Heat flux vector q(r)= J‘(g’—u)2 (&-u)g(r,£)d¢ (2.30)
R3
Finally the expressions for the boundary conditions become
2
g = M 577 EXp —@ for £-n>0 (2.31)
(”TW) bu
with

] (¢:mg(rg)dg

n,=— (2.32)

(¢n) ex{_(c—uwf}d;

a0 (72"Z'W )3/2

w

The projection procedure will now be applied on the dimensionless BE as well as the

expressions for the macroscopic quantities and boundary conditions. Two different projection

procedures will be shown here, in the first one two components (z,x) of the molecular

velocity will be eliminated, while in the second only one (z).

2.5.1 Projection on x and z components
In order to eliminate those two components of the molecular velocity we need to specify

the following reduced distribution functions

400 +00

Y(v.¢,)= [9(v.¢.¢,¢,)d¢de, (2.33)
o(v.¢,)= | [.0(v.6.¢,.4)dc¢, (2:34)
x(y,g)zfj[gfwf]g(y,:x,g,:z)dcxdéz (2.35)
v (v.¢,)= [ [ 20(v.¢08,6.)dc4, (2:36)
and

2(v.¢,)- [ [e[&+¢2a(v.¢.¢, 8 )dc,0c, . (237)

—00 —00

Then we apply the following integral operators
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JJ(Hgag, (2.38)
[J()¢dcac, (2.39)
[[()(¢2+¢7)dgde, (2.40)
[I0)eidsde, (2.41)
[[()x(¢2+¢7)dgde, (2.42)

on the kinetic equation (2.19) which, for this case, is taken omitting the external acceleration

term. For the BGK model this equation becomes

; 5(g" -g)=6,nr""(g" -9) (2.43)
ay

and if we apply the integral operators (2.38)-(2.42) we get the following system for the

reduced distribution functions

¢, % =gz (YM -Y) (2.44)
g, %@ =5ne (0" - @) (2.45)
¢, % =g,net (XM = X) (2.46)
<, %U =5 (P -) (2.47)
¢, %Q =5 (2" - Q) (2.48)
where the reduced Maxwellians are given by
2
-u
yM =Lexp _M (2.49)

Jnt :

2
~u
oM =y exp —M =Y"u (2.50)

\/E X c X

xM =L[uf+t}exp —w =YM[UX2+I] (2.51)

Jnt
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pm N [2uf+r]exp[@]=YMM (2.52)

2t 7 2
o LALIY [u2+2r]exp —M =M [u2+2r] (2.53)
\ja X X T X

For the Shakhov model, the kinetic equation becomes
0 o
nyagzé'onrl (9°-9) (2.54)

and applying the integral operators (2.38)-(2.42) to this equation and setting Pr=2/3 we get

the following system for the reduced distribution functions

2 2023
gy%zéonrlw[YMllJr équyl(sngi T)]Y} (2.55)
T
A7%q.u, +2 —3q.u, )7 —0q,7°
Q%_@)nflw[dﬂ” {1+ o5t éyg:]ixrs ) }@J (2.56
X o ol om A%qu,r-2q,u,r° +4¢70, (uf +7)-24,0,7(30; +7)
&, — = XM |1+ . - —X
oy 15n(ux+r)r
(2.57)
oW ol 8Claur—4qu,2 +445q, (20 +7)-24,0,7(6u] +7)
&, —=onr | M1+ . - —y
oy 15n(2ux+2')r
(2.58)
o0 Y
QE:%”Tl (_(2"" [1+7(]—_Q) (2.59)
where
a,z” (-3uf +27)+4Z70,u, (Ul +27)+(2¢70,7 - 2£,q,u,7)(3u] +27)

= 15nu, (uf + 22')13

The expressions for the macroscopic quantities (2.26)-(2.30), in terms of the reduced

distribution functions can be written as

+00

n(y)=[Y(y.¢,)d¢, (2.60a)
ux(y)=% fqﬁ(y,éy)dé“y (2.60b)
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0, (V== [ &Y (v.¢,)de, (2.600)

r(y)=%j[ygj+x]d§y—§uf (y)—%uf, () (2.60d)

—00

q,(y)= .[(Q—Zux_‘l’+3ufcp—ufY +D-u Y —u X -2u,8,@+2uu.8Y —ujuxY)dgy

(2.60€)

+00

q,(y)= j({YSY +{, X =20,8,@—u X -3u, 7Y +2uu @ +3u7dY —uiuY +uil Y —uiY)dgy

—00

(2.60f)
Py (V)= 2T(§yq>—uyq>—uxgyv +u,0,Y)dg, (2.60g)
P (Y)= Zif:S” dg, —uip (2.60h)
p,, (V)= ZI(Q ~u, ) vdg, (2.60i)
P, (V)= ZI[X -#]dg, (2.60))

The outgoing distribution at the boundaries after the projection procedure, for each of the
reduced distribution functions, is of the form of the corresponding reduced Maxwellian
distribution Eqs.(2.49)-(2.53) for £-n>0, where ¢ =¢ e , characterized by the wall
temperature (rzrw), the wall velocity and the n, parameter of Eq. (2.32), that can be

obtained in terms of the reduced distribution functions as

j (¢-n)Y-de,
n,=-— (fgf’ ) - (2.61)
J. ‘n1/2 exp|:_y}dély
£n>0 (7Z'TW) Tw

The system of kinetic equations for the reduced distribution functions Eqgs. (2.44)-(2.48)
for the BGK model or Egs. (2.55)-(2.59), coupled with the expressions for the macroscopic
quantities Egs. (2.60), under the boundary conditions given in terms of Eq. (2.61) are solved.
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2.5.2 Projection on z component
In order to eliminate only the z component of the molecular velocity the following two

reduced distribution functions need to be specified.

+00

Y(v.¢0¢,)=[9(¥.¢0¢,.¢,)de, (2.62)
and
@(m;ng=f2ﬁxy¢;§w§Jda (2.63)

In this case the kinetic equation is taken with the external acceleration term, and for the BGK
model the system for the two reduced distribution functions becomes
oY —=oY

y5+ Ffzaonrl-w (YM-Y) (2.64)
and
y%§+E%?:%m4%¢M—@) (2.65)
while for the Shakhov model the system becomes
2 2

_ A< —u, )+ -u —u ) +(<, —u

Q%HZ%:@JWH) yM 1+%[q € )nrfy<§y y)]{(g ) T(g“y ) 2] -Y
(2.66)
and
2 2

_ S, —u )+ -u —Uu ) +(<, —u

L i
(2.67)
where the reduced Maxwellians are
2 2
-u ) +(<,—u

VL (Gmu) (g myy) (2.68)

T T
and

(¢ u)2+(4“ u)2

oM = Moxp| 2x ) Ty ) | _ym T (2.69)

2n T 2

The macroscopic quantities can be expressed in terms of those two reduced distribution

functions in the following way
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+00 +00

= [ [vd¢de,

—00 —00

+00 +00

ux(y):%j [ cyde,de,

—00 —00

+OO +00

[ [ ey,

—00 —00

+00 +00 2

_ 2 IH CE+ gt Y+cD}d§d§ ——u —guj

—00 —00

400 +00

= I[((é”x —u,) +(¢, —uy)z)Y +qb}(§x —u,)d¢dg,

—00 —00

+00 +00

= j[((gx —u) +(g,-u ) )Y +<D}(§y ~u,)d¢,de,

—00 —00

2” )’ Yd¢,d¢,
y)=2 [ (¢, ngdg

:2_[ J.(gx _ux)(gy _uy)ngxdgy

—00 —00

+00 +00

p.(y)=2] [ @dg,dg,

—00 —00

(2.70a)

(2.70b)

(2.70c)

(2.70d)

(2.70e)

(2.70f)

(2.709)

(2.70h)

(2.70i)

(2.70j)

The outgoing distribution at the boundaries is of the form of the reduced Maxwellian

distributions (2.68) and (2.69) characterized by the wall temperature and velocity and the n,,

parameter is taken in terms of the reduced incoming distributions in the following way

J (€)Y (r¢)dgde,

¢£-n<0

. J‘ Mexp[_(gx_uW'X)z+(§y_uwvy)2]dg§d§y

¢-n>0 ﬂ-TW Tw

(2.71)

The system of kinetic equations for the reduced distribution functions Egs. (2.64),(2.65) for

the BGK model or Egs. (2.66),(2.67), coupled with the expressions for the macroscopic

quantities Egs. (2.70), under the boundary conditions given in terms of Eq. (2.71) are solved.
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3. Description and formulation of the method

3.1 Formulation of the non-linear BE
The non-linear Boltzmann equation is

of _of _of _of _of _ of _ of
T e e TG F F F—= 3.1
o oy e g T TRiag 0 (3.0)

the left hand side of Eq. (3.1) is the streaming part, describing how the distribution function
changes due to the free motion of particles due to their velocities and how it changes due to
some external force field F . We can group together the terms of the left hand side of Eq.

(3.1) introducing the following two operators

Vrzﬁex+£e +£eZ (3.2)
OX oy ' oz

and

V.= 0 et 0 e, + 0 e (3.3)
08, ¢, s,

Now Eg. (3.1) can be rewritten as

of

E+§-(Vrf)+F-(V§f)=Q (3.4)

the first term of the left hand side of Eq. (3.4) is the change of the distribution function with
time, the second is the change due to free motion and the third the change due to external

fields. The left hand side is essentially the material derivative of f , so we can replace it

using the operator

D 0

E:§+§'(Vr)+|:'(v§) (35)
and Eq. (3.4) can now be written as

Df

= — 3.6
5 =0Q (36)

The right hand side of Eq. (3.1) denotes the change of f due to intermolecular collisions,
and according to the Boltzmann equation it is given, for the general case, by a five-fold
integral. This is exactly the reason why the direct solution of BE is a cumbersome and very
demanding task. In order to simplify it we make use of the so-called kinetic models that
provide much simpler expressions for the right hand side. For the formulation of the method

we need to refer to only some properties they have. Kinetic models can be represented by

Qrog = 7 — 1~ (3.7)

20

Institutional Repository - Library & Information Centre - University of Thessaly
10/04/2024 14:00:12 EEST - 3.230.173.4



where f*, f~ are the “gain” and “loss” parts respectively, that is the particles entering a
particular phase space element and the particles departing from it. It is typical for models to
approach f* as a function of only macroscopic quantities, while f~ is a function of the
distribution function of the phase space element that we are solving for. So the distribution
function in the phase space element that we are solving for does not directly depend on the
value of the distribution function at other phase space elements, but is only connected to them
through the macroscopic quantities. This particular property makes it possible to decrease the
computational effort and memory requirement for steady-state simulations and also to make
the parallelization of the method easy and effective as only PM (particle-mesh) interaction is

considered. This property will be used later in this chapter.

3.2 Basic description of the PIC method

In order to solve the problem using PIC methods, Eg. (3.6) is split into a system of
equations that for a time step (k) can be represented in the form of the following two

auxiliary problems

Df,

Z1_0, f0=f® 3.8a
Dt : (3.82)
e Qg 10 = (3.80)

Using this splitting method, at each time step we solve problem (3.8a) with the initial

condition % = f® and find the auxiliary solution £ The solution of problem (3.8a)
gives us the new position and velocity of the particles of the initial distribution f® . Then we
use this solution fl(le) as an initial condition for problem (3.8b) and find the new value of
the distribution function after the collisions. The solution of problem (3.8b), &, is the

distribution function at the end of the time step f**. The solution is now found at two

steps. The first step (3.8a) is a Lagrangian step, while the second step (3.8b) is an Eulerian

step. Those steps are solved in a different way.

Solution of the Lagrangian step:

It is seen from (3.8a) that during the Lagrangian step the value of the distribution function
does not change, the only change is in the position and velocity. In order to simulate this step,

assuming a time step At, the laws of motion are used, essentially, following the
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characteristics. For a case where external forces are absent (F =0), the initial (r;) and final
(r, ) position vectors are connected by
ro=r+&At (3.9)

and the distribution function is transferred (without changing its value). In this step the
application any discrete differencing techniques is avoided.

Solution of the Eulerian step:

For the solution of the Eulerian step, the value of the distribution function due to collisions
is altered. The distribution function at the new location is altered through problem (3.8b). It is
seen that in this step discrete differencing techniques have to be used. Using a first order

approach the Eulerian step can be treated as

of, fz(k+1) _ fz(k)
_—= - —
ot Qnos At

It should also be noted that the Lagrangian step is conservative, but this is not ensured for the

~ Qmod = f2(k+l) ~ fz(k) +AtQ (310)

mod

Eulerian step. During the simulation this has to be checked, and if needed a conservative
scheme has to be used.

In the following sections the way this method is applied to several cases will be presented.
Section 3.3 is dedicated to time dependent flows, 3.4 to force driven flows and finally the

steady state solution method will be presented in section 3.5

3.3 Time dependent flows

Time dependency is inherent in this method, even if the steady state solution is desired.
However, it is distinguished here from the steady state simulations, as for the latter some
modifications and simplifications will be made, allowing us to reduce memory requirements
and computational cost. For time dependent simulations it is required to know the value of
the distribution function at each point of the phase space at all times. The simulation starts by
generating simulator particles, according to the initial distribution at various points inside the
flow field, typically several at each cell and for each molecular velocity. For this initial
distribution of particles the velocities are assigned in a deterministic way. This process is
repeated for all considered velocities and several particles are created for each velocity. The
position inside the cells can be given either in a deterministic way (at given locations inside
the cell) or in a stochastic way, at random points inside the cell. Either way the results of the

simulation should not be altered drastically. The magnitude of the distribution carried by each
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particle is determined by the initial distribution function, typically a Maxwellian distribution.
For cases where more than one distribution functions have to be determined (reduced
distributions, mixture flows, polyatomic gasses), two or more values can be assigned to each
particle and then the Lagrangian step is not altered, while the Eulerial step is performed once
for each of the distributions associated with the particle. This attribute, that one particle can
carry more than one distributions cannot be applied when the Lagrangian step cannot be done
only once, i.e. when the method is applied in a mixture flow with one electrically charged
component and one neutral in the presence of an electric or magnetic field.

After the initial condition has been applied the simulation can start. At each time step

several events have to take place.

Step 1: For each molecular velocity and for each boundary cell a simulator particle is created.

Step 2: The Lagrangian step is carried out according to Eq. (3.8a) for each simulator particle.

Step 3: The particles that have exited the flow field are determined and are moved at the
boundary position.

Step 4: The Eulerian step is carried out according to Eq. (3.8b) for each simulator particle.

Step 5: For those particles that have exited the flow field in step 3, step 4 is altered to account
for the portion of the time that they traveled outside of the flow field.

Step 6: For the particles that exited the flow field in step 3 and have been position on the
boundary according to step 3, based on the new value determined at step 5, the
integrals for the boundary condition parameters are determined and then they are
deleted.

Step 7: For each cell, the value of the distribution function is determined by averaging the
values of all simulator particles in this cell, for each velocity, and using this value the
integrals for the macroscopic quantities are determined. Then we move to step 1 for

the next time step.

One issue that has to be determined is the characteristic time. For the Lagrangian step the

characteristic time is 7, =L/v,, where L is a characteristic length and v, is the

characteristic velocity, which is the mean thermal velocity. For the Eulerial step the

characteristic time is r. that is of the order of the mean free time and the inverse of the
collision frequency, that is 7. =A/v,, where A is the mean free path. The ratio between

those two characteristic times is z. /7, =A/L=Kn which is of the order of the Knudsen
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number. So the two characteristic times can vary greatly, for very rarefied flows the Eulerial
characteristic time is much larger than the Lagrangian and the opposite is the case for near
continuum flows. For flows in the transition regime the two time intervals are close. In the

simulations the Lagrangian characteristic time is used as the characteristic time.

3.4 Flows with external force fields

The simulation of flows with external fields by the direct simulation of Eq. (3.1) with the
appropriate kinetic model is a difficult task. Using the currently described method this task
becomes much easier. The Eulerian step is not affected and the only change has to be done in
the Lagrangian step. Previously the solution of the Lagrangian step was described by Eqg.
(3.9) for cases without external fields. When an external force field is present the equations of
motion have to include this external acceleration, so instead of Eq. (3.9) the following initial

value problem has to be solved

dr
dé _
¢ (3.11b)

so instead of just the position, the velocity is also updated. The values of position and

velocity at the start of the time step are known (r(t),&(t)) and the values at the end of the

time step are to be found (r(t+At),§(t+At)). Steps 6 and 7, where integrals of the

distribution function have to be calculated, should also be changed. In step 7 the value of the
distribution function at each cell is found by averaging the simulator particle values for each
velocity. This value now has to be multiplied by the determinant of the Jacobian matrix, in

order to use the same weighting factors. This Jacobian is

[ dg (t+At) dE (t+At) dE, (t+At)
de () dg () da()
d&, (t+At) d& (t+At) dg, (t+At)

J= 3.12
0 A0 e o
d&, (t+At) d&, (t+At) dg, (t+At)
d5 () a5 da()
or in a more compact form
) :M 3.13
1 dg] (t) ( " )
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3.5 Steady state flows

When only the steady state solution is required several modifications can be made in order
to reduce memory requirements and computational effort. It is not required to use the same
time step for all particles. Different time steps can be used for each of the molecular
velocities, in such a way that it is smaller than the cell transversal time (the time needed to
cross one cell, with the given velocity), but since it is not needed to tune all particles in order
to get the time evolution, it can be much larger for small velocities compared to large
velocities. Another thing is that the initial condition does not have to be specified in terms of
the initial distribution function and create a large number of particles that simulate the flow. It
is sufficient to specify the initial conditions only at a macroscopic quantities level and then,

instead of having a very big number of simulator particles, the evolution of one particle at a

time can be studied. The simulation for the steady state flows can be summarized in the

following pseudocode:

Step 1: Apply initial conditions.

Step 2: Store old values of macroscopic quantities.

Step 3: Iterate for every molecular velocity.

Step 4. Iterate for every boundary cell that has an outgoing distribution at the current
molecular velocity.

Step 5: Repeatedly apply (3.8a) in order to find the new position and velocity and (3.8b) in
order to find the new value of the distribution function until a boundary edge has been
reached. During the application of (3.8) the values of the particle are averaged at its
travel in a cell, and when it has exited the cell the partial sums of the macroscopic
quantities integrals are calculated.

Step 6: When a boundary has been reached, the integrals for the boundary condition
parameters are calculated.

Step 7: End of iteration for all boundary cells (4).

Step 8: End of iteration for all molecular velocities (3).

Step 9: Check for convergence and end the simulation or go to step 2.

3.6 PIC codes

In the framework of this thesis only some basic codes have been developed in order to
check the applicability and accuracy of the method for rarefied gas flows. The main
characteristics distinguishing the codes are the number of physical space coordinates and the

number of molecular velocity coordinates. The codes are named as PmVn where m is the
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number of physical space coordinates and n is the number of molecular velocity coordinates,
so P1V2 is a code that solves flows that are dependent on one physical space direction and
two molecular velocity directions. It should be noted that for all codes both the physical space
and molecular velocity coordinate systems are Cartesian. Moreover, this simple four symbol
name implies that the code simulates steady state flows.

All pic codes, during each time step, follow some basic steps that can be summarized as:
move the simulator particle in the flow field using the laws of free motion (Lagrangian step),
find the new cell that particle has traveled into, find the new value of the distribution
(Eulerial step), calculate the partial sums of the integrals. The above steps are applied to all

particles. Below, a brief description of the developed codes is given.

3.5.1 The P1V1 code

The P1V1 code is used to simulate problems where the distribution function depends on

one physical space component (y) and one molecular velocity component (g”y) , as can be

seen in Figure 3.1. Since one molecular velocity component is taken into consideration, it is

implied that the projection procedure described in section 2.5.1 on both £, and &, has been

applied. This code simulates the flow solving the system of Eqgs. (2.44)-(2.48) for the BGK
and Egs.(2.55)-(2.59) for the Shakhov model, under the boundary conditions specified in Eq.
(2.61) and the macroscopic quantities are taken from Egs. (2.60). This system of the
integrodifferential equations for the reduced distribution functions is solved using the PIC
method described in section 3.4.

In order to apply this method, the physical and molecular velocity spaces have to be

discretized. The physical space is divided into N, equally spaced cells of length Ay =1/N,,
while the roots of a Legendere polynomial of order N_ , accordingly mapped from (—1, +l)

to (—o0,+00), are used as the discrete values of the molecular velocity.

The P1V1 algorithm is summarized in the flow chart of Figure 3.3, where the main aspects
of the algorithm are shown. The initial conditions are applied at a macroscopic quantities
level, and not as an initial distribution, then for each iteration of the method, the code iterates
for all discrete values of the molecular velocity and depending on whether the velocity is
positive or negative a particle is created at the bottom or top wall respectively. Then this
particle is moved through the flow field and the values of the distribution functions it carries
are constantly changed. During the motion inside a cell, at each time step, the values it carries

are averaged and when it leaves the cell the partial sums of the macroscopic quantities are
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calculated. When the particle reaches a boundary the partial sums of Eq. (2.61) are calculated
and the next particle is created to repeat the process. When the iteration for all molecular
velocities is finished, the macroscopic quantities are calculated using the partial sums and

then a check for convergence is performed.

NIONONNNNNNNN NONUNININANNNNN
y=1 y=1
v,Z\,/]\ v,Z\,/IE
U
y=0 y=0
=TT ANNN N NN NN\
Figure 3.1: The geometry solved by P1V1. Figure 3.2: The geometry solved by P1V2.

3.5.2 The P1V2 code
The P1V2 algorithm simulates problems where the distribution functions depends on only

one physical space direction (y) and two molecular velocity components (¢, ) and (¢,) as

is shown in Figure 3.2. The P1V2 code can simulate all the cases that can be solved by P1V1,
but the opposite is not possible. Of course as P1V2 has one more independent variable than
P1V1 the computational cost associated with it is much larger. The set of integrodifferential
equations solved by P1V2 is Egs. (2.64) and (2.65) for the BGK model and Egs. (2.66) and
(2.67) for the Shakhov model, under the boundary conditions given in terms of Eq. (2.71),
while the macroscopic quantities are calculated for Egs. (2.70).

The physical space discretization is the same as for P1V1. For the molecular velocity
space, the same as in P1V1 discretization, using the roots of a Legendre polynomial is used
for the y-direction of the molecular velocity space, but the x-direction is simply divided into
equally spaced intervals. The reason for this is that an external acceleration in the x-direction
acts on the particles. So particles departing from the boundary can be accelerated to very high
velocities as they travel in the flow field, but the particles coming from collisions have
relatively small velocities. In order to cover the whole range of molecular velocities, the
upper and lower limits have to be adjusted as the external acceleration is changed and in

order to achieve this, this kind of discretization has to be used.
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The P1V2 algorithm is summarized in the flow chart of Figure 3.4. This algorithm is very
similar to the P1V1 algorithm, with one significant difference. While for P1V1 has one

component of the molecular velocity, P1V2 has two, so an additional iteration exists.

Apply initial conditions

»|

i

Store old values of the
macroscopic quantities

v

Loop for all discrete values me[1,N]
of the g, molecular velocity

IAppIy initial conditions |

Iy |
¥
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¥

Loop for all discrete values ng[1,N,]
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v
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A
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¢ ¢ no yes

Generate a particle Generate a particle v ¥
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,r 1

Assign the value of the boundary
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Generate a particle
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¥

Assign the value of the boundary
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convergence | no
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Figure 3.4: The P1V2 algorithm flow chart.

Figure 3.3: The P1V1 algorithm flow chart
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3.5.3 Extensions of P1V1 and P1V2 codes

In sections 3.5.1 and 3.5.2 two very simple cases of the described algorithm are realized,
the P1V1 and P1V2. Those two simple codes are able to simulate rarefied gas flows with
very good accuracy, as will be shown in the next chapters. Moreover, rarefied gas flows with
external acceleration, a case hard to model using the conventional deterministic methods, has
been simulated with considerable success. A potential future extension of this method is the
P2V2 code, a code able to simulate two dimensional in the physical space problems, and
since it is relatively easy to apply PIC methods to arbitrary geometries, a mesh independent
code using the P2V2 algorithm could be created and even such a code using P3V3.

Another interesting field is axisymmetric rarefied gas flows, where an axisymmetric
version of P1V2, the P1V2a, could be created simulating such flows. In this case, where the

y -direction in the direction of the radius after the Lagrangian step, the particle has moved for
the old position (0, Y4 ) to the new position (dx, y,4 +dy) it should be relocated to (0, Y, )

so that it is on the radial direction Figure 3.5. Of course after the relocation of the particle the
molecular velocity vector should also be rotated. It is noted that this way of solving
axisymmetric flows may potentially offer advantages compared to the typical deterministic
methods as this way the modeling of the free motion is closer to the real physical problem as
the value of the distribution function is not altered in order to account for the symmetry but
the position and molecular velocity are. Another advantage is that this way the discontinuities
associated with the curvature at the convex boundary are not present.

A final potential extension, which however is not compatible with the simplifications for
the steady state flows mentioned above, is the solution of the BE without substituting the
collision integral with kinetic models. The using purely deterministic methods is hard and
computationally demanding, due to the five-fold solution of the BE using stochastic methods
(DSMC) is not a very hard task, but the solution collision integral. If however, the scheme
remains deterministic, but the collision integral is calculated in a stochastic manner, (Monte
Carlo integration) then the complexity of the simulation would be significantly lower, the
solution would still be obtained in a deterministic manner (small statistical noise) and the

exact BE would be solved, instead of a kinetic model.
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Figure 3.5: The Lagrangian step for axisymmetric flows.

3.6 Advantages of PIC codes

As can be seen from the above PIC codes offer some advantages, compared to typical
discrete difference or elements methods. One of the main advantages is that PIC methods are
easy to program and implement, as is the case for the described codes. Computationally
expensive solution of linear systems is not required for the simulation. A great advantage
comes from the way the Lagrangian step is solved, based on the laws of free motion. This
makes the simulation of force driven flows and the simulation of complex geometries easy.
Usually, PIC codes are hard to parallelize, but due to the property of the kinetic models
discussed in section 3.1, this obstacle can be overcome, and in fact the PIC codes described
above can be parallelized in a very straightforward manner. One disadvantage is that they
usually require larger computational time than the alternatives. In typical deterministic
algorithms, the travel from one node to the next is done in one step, but in PIC codes several

steps are required. However, with the use of parallel computing this can be overcome.
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4. Flow configuration and basic parameters of prototype problems

In this chapter the formulation of the benchmark problems, solved to test the accuracy of
the developed methodology is presented. Three problems were chosen as test cases, the non-
linear Couette flow and non-linear Fourier flow between parallel plates, which are solved
using the P1V1 algorithm and the non-linear force driven Poiseuille flow between parallel
plates solved using the P1V2 algorithm. The first two cases have also been solved using the

P1V2 algorithm, but the results presented were obtained using the P1V1.

4.1 Non-linear Couette flow

Figure 4.1: The Couette flow configuration.

The plane Couette flow is one of the traditional problems of fluid mechanics. The
geometric configuration, shown in Figure 4.1, is relatively simple. Two infinitely long
parallel plates are kept at a distance L, while a rarefied monatomic gas is confined between

them. Initially the plates are still and the gas is at pressure P, and temperature T,, while the

gas is at rest. Then the plates start moving in opposing directions with velocity of magnitude

U,, and due to this motion of the plates a symmetric velocity profile is formed and due to

compressibility a parabolic temperature profile is also developed. This flow is called pure
shear flow, as the shear stress has a constant value at all points of the flow domain. After an
appropriate amount of time, a steady state is reached and our objective is to find this steady
state solution.

The problem is characterized by two parameters, the dimensionless magnitude of the wall

velocity
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u, =Y, /v, (4.2)
and the reference rarefaction parameter
_ Rl
- Hoby

The molecular interaction model is chosen to be Hard Spheres, leading to @ =0.5, while the

5, 4.2)

BGK model is used. The problem is solved for a wide range of the reference rarefaction

parameter &, e[O,lO] ranging from the free molecular to near continuum regimes and for a

wide range of the velocity magnitude u,, €[0.1,2] and the shear stress is used in order to

benchmark the accuracy of the results. The P1V1 algorithm will be used for this case.

4.2 Non-linear Fourier flow

T,=T,-AT /2 | |

T =T,+AT/2 | , y=0

Figure 4.2: The Fourier flow configuration.

This problem is pure heat transfer, meaning there is no gas flow. The geometric
configuration, shown in Figure 4.2, is very close to that of the Couette flow, however the
boundaries here are still and are maintained at different temperatures T, and T, . Initially the

gas is at a uniform temperature T, =(T,+T,)/2 and then, due to the temperature difference

of the two walls, a temperature profile is formed as well as a constant heat flux in the y

direction. The parameters characterizing the problem are the reference rarefaction parameter

PL
Oy = 0 (4.3)
HoUy
and the dimensionless temperature difference
AT
=— 4.4
B o (4.4)
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The molecular interaction model is again chosen to be the Hard Sphere model, while

simulation is based on the Shakhov kinetic model. A large range of the reference rarefaction
parameter &, €[0,10] as well as three values of the dimensionless temperature difference
£ =0.1, 0.5and 0.9 corresponding to small, medium and large temperature differences is
simulated. The constant heat flux in the y direction was used in order to benchmark the

accuracy of the results. The P1V1 algorithm will be used for this case.

4.3 Non-linear Poiseuille flow

Figure 4.3: The Poiseuille flow configuration.

A more advanced benchmark problem is that of the force driven Poiseuille flow, shown in
Figure 4.3. A monatomic rarefied gas is confined between two infinite parallel plates, the
boundaries are kept still and have the same temperature. Initially the gas is at rest, with

pressure P, and temperature T,. Then a uniform and constant external acceleration starts

acting on the gas molecules in the x direction, setting the gas in motion. The parameters

characterizing the flow are the reference Knudsen number

Kn, = -2 #a% (4.5)

° Jr PL
and the magnitude of the dimensionless external acceleration F. The reference Knudsen
number is connected to the reference rarefaction parameter as
2 1

~Jx Kn,

According to the definition of the rarefaction parameter given in the previous chapters the

Jr

. T 1 .
expression connecting it with the Knudsen number should be &, :TK_’ however, in
r-]O

5, (4.6)
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order to make the comparison with published results easier, the definition of the Knudsen

number given in [34] was used for this problem. In this problem the BGK model was used,

with Maxwell molecules, @ =1, while simulations where conducted for Kn, =0.1, 1and 10

covering the whole transition regime and for F =0.05and 0.5 corresponding to small and

large external accelerations respectively. In order to benchmark the results, the normalized

flow rate
05 1

M = J. nu,dy = I nu, dy (4.7)
0 0.5

was used. The P1V2 algorithm will be used for this case.

4.4 Free molecular solutions

For the Couette and Fourier flows between parallel plates, closed analytical solutions in
the free molecular regime can be derived, while for the Poiseuille problem as described in
section 4.3 it is not possible to obtain free molecular solutions. For the Couette flow the free
molecular values of the shear stress are used for comparison purposes, while for the Fourier
flow, the values of the heat flux are used.

In order to obtain the analytical solution in the free molecular regime for the Couette flow,

he kinetic equation is written as

, 9 _ 0 (4.8)
oy
and distinguishing for positive and negative velocities we get
g, ¢, >0
= ! y (4'9)
gZ' ély < O
and due to the boundary conditions we have
n 2
g, =—roxp| <1 =(¢,-u,) ~¢7 (410
_n 2 2 2
9, _Fexp[_é/x _(é/y +uw) _élz } (411)

Applying the impermeability condition at the bottom wall we have

0 0 oo o 0 o«

u,(0)=0= [¢,0d¢ =0= [ [ [ ¢,0,d¢,d¢,d¢, + | [ [ £,0,d¢,d¢,d¢, =0=

-0 0 —0 —00 —00 —00
h =N, (4.12)

Moreover the density profile is
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0 00 o 0 «©

—jgdc []]adcdg,ds,+ [ [ [ o.dsdsd5, =2 2 (4.13)

—0 0 —0 —00 —00 —00

and since the average number density is unity
1
n n
1=|nMdy= 2L +-=2=1 4.14
! =27 (4.14)

and combining Egs.(4.12) and (4.14) we get
n=n,=1 (4.15)

The shear stress is now calculated as

© 0 00 o 0 o

P = 2]4490!4 2[ [ [ ¢¢,00¢,d¢,0¢,+2] [ [ £,¢,0,06,d¢,d¢, = 23““- (4.16)

The numerical results obtained using the developed algorithm for the free molecular cases
will be compared to the results of Eq.(4.16).

For the Fourier flow, the kinetic equation is again Eq. (4.8) and for positive and negative
velocities we get Eq. (4.9), but for the two different cases we now have

n R Yoyl
_ L ayp| x5y T 4.17
% [7[(1+ﬂ):|3/2 eXp_ 145 | (4.17)
N, P+
_SxFoyTos 4.18
[7[ 1-p ]3/2 e 1-p } ( )

Applying the impermeability condition we now get

n1+8=n,\1-8 (4.19)

and for the average number density we have

nl r-]2

d42q 4.20

> (4.20)

and combining Egs.(4.19) and (4.20) we get

n, =2 1=/ (4.21)
1-p+J1+ /5

and

n, =2 1TA (4.22)
1-p+y1+p

For the heat flux we get

0 00 o 0 «©

—j:ggdg [[]¢%¢,0dcdedg, + [ [ [¢%¢,0,d¢,d¢,d¢, =

—o0 0 —o0 —00 —00 —00
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q" = 4 P1-pL+p (4.23)
Yo Jr g+ \1-p

The numerical results obtained using the developed algorithm for the free molecular cases
will be compared to the results of Eq.(4.23).

36

Institutional Repository - Library & Information Centre - University of Thessaly
10/04/2024 14:00:12 EEST - 3.230.173.4



5. Results and discussion

In this chapter results are presented for the three benchmark problems presented in chapter
4. The results presented are not very extensive, as all three of these problems have been
extensively studied in the literature and our objective here is to test the accuracy of the
presented algorithm. Comparison is performed with published results, as well as the
analytical results for the free molecular regime derived in section 4.4.

5.1 Non-linear Couette flow
The first problem is that of the plane non-linear Couette flow, between two parallel plates,

described in section 4.1. Simulations were conducted using the P1V1 code for a range of

reference rarefaction parameters &, €[0,10] and for various values of the wall velocity

Uy € [0.1, 2]. The BGK kinetic model was used, and the molecular interaction model was the

Hard Spheres. For the molecular velocity discretization, the roots of the Legendre polynomial
of order 80 were used, while the physical space was divided into 1.5x10* equally spaced

intervals. The simulation ended when a convergence criteria of the form

X1

max {0~ |u Ul % — Y]} <10 (5.
i

was met.

The shear stress for all cases simulated is shown in Table 5.1, which is constant along the
flow domain. We observe that as the dimensionless wall velocity increases, the shear stress
increases, while as the reference rarefaction parameter is increased the shear stress decreases.

The velocity profiles for various values of the reference rarefaction parameter and wall

velocity are shown in Figure 5.1. It is seen that for small values of &, near the boundaries the

slope of the velocity is not constant, although the shear stress is constant. This is natural for
non-equilibrium flows, as the Newton law fails in such cases. Moreover, the failure of the no-

slip boundary conditions is also observed. What is even more interesting is that for 6, =0,

although the macroscopic velocity is zero, the shear stress has non-zero values. The
temperature profiles for a range of the reference rarefaction parameter and wall velocity
values are presented in Figure 5.2. Due to compressibility effects, a non-uniform temperature
profile is formed, having a maximum at the middle of the flow domain. For small values of
the wall velocity, when the flow is almost linear, the temperature does not depart a lot from
the equilibrium temperature, but for fast flows due to non-linear phenomena the temperature

increases greatly. Finally, as the degree of rarefaction increases, the temperature profile
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becomes flat. The distributions of velocity and temperature have also been compared with
results of [35], and are in good agreement.
The analytical free molecular results for the shear stress given by Eq. (4.16) are shown in

Table 5.2. We observe that there is very good agreement with the numerical results shown in

Table 5.1. The shear stress results for larger values J, were compared to the results of [35]

shown in Table 5.3 and the relative error was less that 0.04%, giving a very good agreement.

It is noted that in order to compare the current results for the shear stress with those of [35],

the values of Table 5.3 have been multiplied by the factor (—2), due to the different

conventions used. This problem was also simulated using the P1V2 algorithm, for limited
cases, and those results were also in very good agreement with [35], however here only the

results of P1V1 are shown.

5.2 Non-linear Fourier flow
The results for the heat transfer between parallel plates problem described in chapter (4.2)

are presented here. Simulations were conducted using the P1V1 algorithm, with the Shakhov
model and Hard Sphere molecules. Simulations were conducted for &, €[0,10] and
£ =0.1, 0.5and 0.9, corresponding to small, medium and large temperature differences. For
the molecular velocity space discretization the roots of the Legendre polynomial of order 80
were used, and the physical space was divided into 1.5x10° equally spaced intervals for
small values of &, and into 5x10° for larger. The simulation ended when a convergence

criteria of the form

e {89 -9+ — 9] |o gt V) <10° (52)
i

was met.

The heat flux shown in Table 5.4 is constant along the flow domain and as expected the

value of the heat flux increases as £ increases, but decreases as o, is increased for small

temperature differences. For large temperature differences, the heat flux exhibits a non-

monotonic behavior with respect to S, something that has been reported in the literature. The
temperature profiles, for various values of ¢, and the three simulated values of £ are shown

in Figure 5.3. We observe the temperature jump at the boundaries and that the slope of the

temperature is not constant. Moreover, for 6, =0, while the temperature is constant, a heat

flux exists. In Figure 5.4 the density profiles are presented. The density is inversely
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proportional to the temperature, lower at the hot plate and higher at the cold one. The
distributions of temperature and density are in good agreement with [36].

In Table 5.5 the free molecular results for the heat flux are presented, which are in very
good agreement with the numerical results of Table 5.4. The numerical results for larger

values of &, were compared to the results of [36] shown in Table 5.6 and the relative

difference was less than 0.08% giving a very good agreement. This problem was also

simulated with the P1V2 algorithm, but here only the results of P1V1 are presented.

5.3 Poiseuille flow
The third benchmark problem, described in chapter 4.3, is the force driven Poiseuille flow

between parallel plates. Simulations were conducted using the P1V2 algorithm, with the

BGK model and Maxwell molecules, for small (F =0.05) and large (F =0.5) values of the

external acceleration magnitude and covering the whole transition regime Kn, =0.1, 1 and

10. The small value of the external acceleration corresponds to close to linear flow, while the
large one to non-linear flow. For the molecular velocity space discretization the roots of the

simple polynomial of order 16 were used in the y direction, while the velocity space in the x

direction was divided into 4x10° equally spaced intervals. The physical space was also

divided into 4x10° intervals. The simulation ended when a convergence criteria of the form

max {0~ |u Ul ] - ]} <10 (5.3
i

was met.

The dimensionless mass flow rate defined in Eq. (4.7) is shown in Table 5.7, for all cases
simulated. As expected, as the magnitude of the external force increases, the mass flow rate
also increases, but the behavior with respect to the reference Knudsen number is not
monotonic, as the mass flow rate has a minimum value inside the transitional regime, known
as the Knudsen minimum. The results of Table (5.7) were compared with results of [34]
shown in Table 5.8 and the relative difference is less that 0.8% . This difference can be
tolerated, especially considering that solving this problem using the typical deterministic
schemes is very hard. In Figure 5.5 the velocity profiles for the cases simulated are shown,

which are in good agreement with [34].
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Table 5.1: Shear stress for the Couette flow, current work.

[
Uy,
0 0.001 0.01 0.1 1 10
0.1 1.1284(-1) | 1.1274(-1) | 1.1187(-1) | 1.0449(-1) 6.7830(-2) 1.6638(-2)
05 5.6419(-1) | 5.6382(-1) | 5.6006(-1) | 5.2510(-1) | 3.4468(-1)| 8.6132(-2)
0.9 1.0156 1.0153 1.0106 | 9.5482(-1) | 6.4114(-1) | 1.6635(-1)
11 1.2412 1.2413 1.2371 1.1743 7.9982(-1) 2.1236(-1)
1.5 1.6926 1.6937 1.6927 1.6231 1.1413 | 3.1862(-1)
2 2.2568 2.2602 2.2672 2.2028 1.6165 | 4.8082(-1)
Table 5.2: The analytical free molecular values of shear stress.
u, 0.1 0.5 0.9 11 1.5 2
pr;“ 1.1284(-1) |5.6419(-1) | 1.0155 1.2412 1.6926 2.2568

Table 5.3: Shear stress of the Couette flow [35].

%
uW
0 0.1 1 10
01 | 1.128(-1)| 1.044(-1)| 6.78(-2)| 1.66(-2)
05 | 5.642(-1)| 525(-1)| 3.446(-1)| 8.62(-2)
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Table 5.4: Heat flux for the Fourier flow, current work..
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B )
0 0.01 0.1 1 10
0.1 1.124(-1) 1.117(-1) 1.067(-1) 7.981(-2) 2.696(-2)
0.5 5.058(-1) | 5.037(-1) | 4.839(-1)| 3.700(-1) | 1.307(-2)
0.9 5.224(-1) | 5.260(-1) | 5.266(-1) | 4.675(-1) | 2.096(-1)
Table 5.5: The free molecular values of the heat flux.
fm
B a
0.1 1.124(-1)
0.5 5.058(-1)
0.9 5.224(-1)
Table 5.6: Heat flux for the Fourier flow [36].
Vi %
0.01 0.1 10
0.1 1.124(-1) 1.117(-1) 1.067(-1) 7.981(-2) 2.694(-2)
0.5 5.058(-1) 5.037(-1) 4.839(-1) 3.700(-1) 1.307(-1)
0.9 5.224(-1) 5.260(-1) 5.266(-1) 4.675(-1) 2.096(-1)
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Table 5.7: Normalized flow rate for the Poiseuille flow, current work.

Table 5.8: Normalized flow rate for the Poiseuille flow, [34].

Institutional Repository - Library & Information Centre - University of Thessaly
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F
Kn, 0.05 05
0.1 | 7.419(-2) | 5.319(-1)
1 | 3.848(-2) | 3.498(-1)
10 | 4.972(-2) | 4.397(-1)

F
Kn, 0.05 05
0.1 | 7.374(-2) | 5.280(-1)
1 | 3.841(-2) | 3.492(-1)
10 | 4.961(-2) | 4.400(-1)
42




=0

——c—— 8=0.01
= —-_a—— §=0.1
s o =1

—a— 8=10

5=0

—o—— 6=0.01

—— =

—o—— 6=0.01

1.5 - — 5=0.1 2

5=0
——o—— 5=0.01
e 5=0.1

Figure 5.1: Velocity profiles for uy, =0.1,0.5,0.9,1.1,1.5 and 2 and for §, = 0, 0.01,0.1, 1 and 10, for the

Couette flow.
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Figure 5.2: Temperature profiles for uy, = 0.1,0.5,0.9,1.1,1.5 and 2 and for §, = 0, 0.01,0.1, 1 and 10, for

the Couette flow.
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Figure 5.3: Temperature profiles for § = 0.1,0.5 and 0.9 and §, = 0,0.01,0.1, 1 and 10, for the Fourier flow.
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6. Concluding remarks

Rarefied gas dynamics is a very active field of research, driven by the need for accurate
modeling and simulation in a number of fields, including vacuum technology, micro/nano-
electromechanical systems and microfluidics. Currently, the two leading methods for flow
simulation are the deterministic solution of the Boltzmann equation with the appropriate
kinetic models and the stochastic simulation using the DSMC method. The deterministic
methods, although very accurate have proven to be problematic to apply to complex
geometries or for complicated particle interaction, cases where the DSMC method is widely
used.

In the present work an introductory study on the application of particle-in-cell methods for
deterministic simulation of rarefied gas flows is performed. Particle-in-cell methods have
proven to be very effective and successful for the simulation of otherwise very demanding
problems in the past and their application for rarefied flows is an interesting subject. In the
context of this work, the basic aspects of Particle in Cell (PIC) codes for such flows are given
and some basic algorithms are created. The algorithms developed are able to simulate
compressible flows that depend on one physical space direction and one or two molecular
velocity directions.

In order to test the accuracy of the method three prototype problems were used, the
compressible plane Couette flow, the non-linear Fourier flow between parallel plates and the
non-linear Poiseuille flow between parallel plates. The numerical results obtained using the
developed PIC codes were compared to results found in the literature and analytical solutions
at the free molecular limit. In all cases a very good agreement has been observed.

The accurate simulation of those three benchmark problems leads the way for the
extension of the developed methodology. Some potential extensions include PIC codes for
2D or 3D flows as well as for axisymmetric flows. Another interesting extension could be to
solve the exact Boltzmann equation, without using kinetic models and instead by estimating

the collision integral using Monte Carlo integration.
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