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Abstract 

The field of rarefied gas flow modeling is a gradually growing field of engineering. This is 

due to the scientific need for accurate results is the fields of vacuum technology, processes 

and pumping, high altitude aeronautics, space applications and gaseous micro/nano-

electromechanical systems. Due to the nature of these flows, typical CFD models based on 

the Navier-Stokes-Fourier approach are not suitable, and a kinetic approach based on the 

Boltzmann equation has to be introduced. 

Currently two are the leading approaches based purely on kinetic theory, the deterministic 

solution of the Boltzmann equation using the appropriate kinetic models and the stochastic 

flow simulation using the Direct Simulation Monte Carlo method (DSMC). Although the 

deterministic approaches offer great accuracy they are hard to implement in complex 

geometries or for complicated cases and therefore a very big part of large scale simulations 

for technological applications is performed using the DSMC method. 

In the past, particle-in-cell (PIC) methods have been used to obtain computational results 

for problems where the typical numerical schemes had proved ineffective. Such methods are 

relatively easy to implement in complex geometries and owning to their imitative nature 

complicated particle interaction can be modeled in a straightforward manner. 

The present work is an introductory study for the application of particle-in-cell methods 

for the deterministic simulation of rarefied gas flows. The main steps towards such codes are 

described and the algorithms for simple cases are formulated. The developed algorithms are 

benchmarked, using prototype nonlinear problems in plane geometry namely a) the 

compressible Couette flow, b) the Fourier flow and c) the Poiseuille flow. In all cases very 

good agreement with published results is achieved, validating the implemented particle-in- 
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cell methodology and programming codes. This study is a first step towards deterministic 

particle-in-cell modeling in rarefied gas flows. The potential establishment of PIC methods 

for deterministically solving such flows is demonstrated. 
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Πεπίληψη 

Η πξνζνκνίσζε αξαηνπνηεκέλσλ ξνώλ απνηειεί έλα αλαπηπζζόκελν αληηθείκελν ηεο 

κεραληθήο. Τν θίλεηξν είλαη ε αλάγθε γηα αθξηβή απνηειέζκαηα ζε πεξηνρέο όπσο ε 

ηερλνινγία θελνύ, δηαζηεκηθή θαη αεξνλαππεγηθή ζε κεγάια πςόκεηξα θαη ξνέο αεξίσλ ζε 

κίθξν/λάλν-ειεθηξνκεραλνινγηθά ζπζηήκαηα θαη ζπζθεπέο. Λόγσ ηεο θπζηθήο πνπ δηέπνπλ 

απηέο ηηο πεξηνρέο, ηα ηππηθά κνληέια ηεο ππνινγηζηηθήο κεραληθήο ησλ ξεπζηώλ πνπ 

βαζίδνληαη ζηελ πξνζέγγηζε Navier-Stokes-Fourier δελ είλαη θαηάιιεια, θαη θηλεηηθέο 

πξνζεγγίζεηο κε βάζε ηελ εμίζσζε Boltzmann πξέπεη λα ρξεζηκνπνηεζνύλ. 

Γύν είλαη νη θπξίαξρεο κέζνδνη επίιπζεο βαζηζκέλεο ζηελ θηλεηηθή ζεσξία, ε 

ληεηεξκηληζηηθή επίιπζε ηεο εμίζσζεο Boltzmann ρξεζηκνπνηώληαο θάπνην θηλεηηθό 

κνληέιν θαη ε ζηνραζηηθή πξνζνκνίσζε κε ηε κέζνδν Direct Simulation Monte Carlo 

(DSMC). Παξόιν πνπ νη ληεηεξκηληζηηθέο κέζνδνη πξνζθέξνπλ θαιύηεξε αθξίβεηα, είλαη 

πξνβιεκαηηθή ε εθαξκνγή ηνπο ζε πνιύπινθεο γεσκεηξίεο ή ζε πεξηπηώζεηο ζύλζεησλ 

ξνώλ, έηζη έλα πνιύ κεγάιν ηκήκα ησλ πξνζνκνηώζεσλ κεραλνινγηθνύ εμνπιηζκνύ γίλεηαη 

κε ηε κέζνδν DSMC. 

Σηε βηβιηνγξαθία, πνιιέο θνξέο ζσκαηηδηαθέο κέζνδνη (Particle-in-Cell) έρνπλ 

ρξεζηκνπνηεζεί γηα ηελ ππνινγηζηηθή κειέηε πξνβιεκάησλ ζηα νπνία νη ζπλήζεο 

αξηζκεηηθέο κέζνδνη απνδείρζεθαλ αλεπαξθείο. Τέηνηεο ζσκαηηδηαθέο κέζνδνη είλαη ζρεηηθά 

εύθνιν λα εθαξκνζηνύλ ζε πνιύπινθεο γεσκεηξίεο θαη ιόγσ ηνπ κηκεηηθνύ ραξαθηήξα ηνπο 

είλαη εύθνιν λα κνληεινπνηήζνπλ πνιύπινθα θπζηθά θαηλόκελα. 

Σηελ παξνύζα εξγαζία γίλεηαη κία εηζαγσγηθή κειέηε ηεο εθαξκνγήο ληεηεξκηληζηηθώλ 

ζσκαηηδηαθώλ κεζόδσλ ζε πεξηπηώζεηο αξαηνπνηεκέλεο ξνήο. Τα θύξηα ζηάδηα ηεο επίιπζεο 

πεξηγξάθνληαη θαη γίλεηαη ε κνξθνπνίεζε θάπνησλ αιγνξίζκσλ γηα απιέο πεξηπηώζεηο. Οη 
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αιγόξηζκνί απηνί ειέλρνληαη σο πξνο ηελ αθξίβεηα ζε ηξία πξνβιήκαηα αλαθνξάο. 

Σπγθεθξηκέλα εμεηάδνληαη ηα κε γξακκηθά πξνβιήκαηα ηεο ζπκπηεζηήο ξνήο Couette, ηεο 

κεηαθνξάο ζεξκόηεηαο αλάκεζα ζε πιάθεο (ξνή Fourier) θαη ηεο ξνήο Poiseuille. Τα 

απνηειέζκαηα είλαη ζε πνιύ θαιή ζπκθσλία κε αληίζηνηρα ηεο βηβιηνγξαθίαο πνπ 

πξνέθπςαλ κε άιιεο κεζόδνπο. Με ηνλ ηξόπν απηό απνδεηθλύεηαη ε νξζόηεηα ηεο 

πξνηεηλόκελεο Particle-in-Cell κεζνδνινγίαο θαη ησλ θσδίθσλ πνπ έρνπλ αλαπηπρζεί ζην 

πιαίζην ηεο κεηαπηπρηαθήο εξγαζίαο. Απηή ε εξγαζία απνηειεί έλα αξρηθό βήκα ζηελ 

ληεηεξκηληζηηθή επίιπζε απηώλ ησλ πξνβιεκάησλ κε ρξήζε ζσκαηηδηαθώλ κεζόδσλ. 

Δπίζεο, παξνπζηάδεηαη ε δπλεηηθή θαζηέξσζή ησλ ζσκαηηδηαθώλ κεζόδσλ σο 

ληεηεξκηληζηηθή κεζνδνινγία επίιπζεο. 
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1. Introduction and literature review 

1.1 Origin of kinetic theory 

Kinetic theory first originated in 1738 when Daniel Bernoulli stated in his book 

Hydrodynamica [1] that gases consist of large amounts of molecules travelling in all 

directions, that pressure is the force exerted by those molecules to a surface during a collision 

and that heat is just the kinetic energy of the molecules. Great advances in kinetic theory 

came much later, when in 1878 Clausius [2] introduced the mean free path and Maxwell in 

1860 [3] who laid the road for a statistical description of gasses, introducing the concept of 

the velocity distribution function, a tool that could be used to compute the probability of 

finding a molecule in a certain range of velocities. Although Maxwell came very close to 

extraction the expression for the evolution of this function (the Boltzmann equation), it was 

Boltzmann in 1872 [4] that made the final steps to its derivation and the expressions is 

accorded to him. 

Kinetic theory approaches the gas not as a continuous medium, by rather than a huge 

amount of atoms, moving randomly in all directions and colliding with each other. This is the 

reason that in the beginning of the 20
th

 century it was criticized, as atoms were considered by 

many physicists to be purely hypothetical. It was after the first papers on Brownian motion 

[5,6], where accurate predictions based on kinetic theory were made, that the scientific 

community accepted it. Initially, kinetic theory was utilized in order to obtain closed form 

expressions for the transport coefficients, rather than simulate problems. In the second part of 

the 20
th

 century, following the development of computers some simple problems were 

simulated. As will be discussed in the next section, kinetic theory is applied in certain cases 

where the conventional approaches fail, mainly in vacuum conditions or for phenomena 

taking place in very small dimensions. Recently, kinetic theory was even utilized to study 

historical processes [7]. 

1.2 Knudsen number and flow regimes 

One of the main advantages of kinetic theory is that the only assumption that needs to be 

made is the specification of the intermolecular interaction model, instead of the transport 

coefficients needed for conventional CFD approaches. However, kinetic simulations are 

associated with high computational load, and are used when absolutely necessary and that is 

when the gas is very far from equilibrium. The dimensionless parameter that quantifies the 

departure from local equilibrium is the Knudsen number. 
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The Knudsen number is defined as the ratio of the mean free path of the molecules over a 

characteristic length of the problem [8] 

Kn
L


   (1.1) 

The mean free path for the Hard Sphere model for a single gas can be expressed as [8] 

22

m

d


 
   (1.2) 

where m  is the molecular mass, d  is the diameter of the molecule and   is the gas mass 

density. It is seen that for a specific gas the mean free path is a function only of density, and 

is inversely proportional to it. The Knudsen number is a measure of the gas rarefaction and a 

measure of the departure from local equilibrium. 

Table 1.1: Direct and cross effects. 

 Heat flux Momentum flux Mass flux 

T  Heat conduction Thermal creep Thermal diffusion 

P  Mechanocaloric effect Poiseuille flow Baroeffect 

C  Duffour effect Diffusion baroeffect Diffusion flow 

 

The Knudsen number is related to other important dimensionless parameters, such as the 

rarefaction parameter 

0 2

PL

Kn





    (1.3) 

and the Mach and Reynolds numbers [8] 

Re 2

Ma
Kn


   (1.4) 

where P  is the gas pressure,   is the dynamic viscosity, 0 2 /Bk T m   is the most 

probable velocity, Bk  is the Boltzmann constant and   is the ratio of the specific heats of the 

gas. 

According to the Knudsen number the flow regimes can be defined, as shown in Table 1.2. 

The Boltzmann equation, although valid in the whole range of the Knudsen number, is 

utilized only in the transition and free molecular regimes because of the high computational 

cost it requires. 
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When the Knudsen number is small and the flow is in the continuum regime, the 

macroscopic approach of the Euler and Navier Stokes equations can be used with very good 

accuracy. As the Knudsen number is increased and we move to the Slip regime, the no-slip 

boundary conditions associated with the Navier Stokes equations start to collapse. This can 

be treated with velocity slip and temperature jump boundary conditions [9], and the range of 

their application is extended. In those regimes the flow is near local equilibrium. 

As the Knudsen number is further increased and the flow further departs from local 

equilibrium, the Newton, Fourier and Fick laws do not hold and the continuum approach 

collapses. It is in those regimes, the transition and free molecular, that very interesting non-

equilibrium phenomena start to appear, and the flow can only be simulated using kinetic 

approaches [10,11]. 

Table 1.2: The flow regimes according to the Knudsen number. 

Range of Kn Regime Governing Equations Numerical approach 

0Kn  Continuum 

(inviscid) 

Euler  

 

 

Typical CFD schemes 

310Kn   Continuum 

(viscous) 

Navier Stokes 

3 110 10Kn    Slip 

(viscous) 

Navier Stokes with 

slip boundary conditions, 

Generalized equations. 

110 10Kn    Transition 

(Knudsen) 

Boltzmann 

Kinetic models 

Analytical methods, 

Variational methods, 

Discrete velocity 

method 

Integro-moment method 

DSMC 

10 Kn  Free molecular Boltzmann and kinetic 

models without collisions 

Method of 

characteristics 

Test particle Monte 

Carlo 
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If we consider the three driving forces acted on gases being temperature gradient, pressure 

gradient and concentration gradient, then the results of those forces according to continuum 

approaches will be heat flux, momentum flux and mass flux respectively. Those are called 

direct effects. In flows far from local equilibrium six more effects are present, the cross 

effects. They are shown in Table 1.1. The mechanocaloric and Duffour effects give a heat 

flux due to pressure and concentration gradients respectively, thermal creep and diffusion 

baroeffect give momentum flux due to temperature and concentration gradients and finally 

the thermal diffusion and baroeffect give mass fluxes due to temperature and pressure 

gradients. Those effects are beyond the range of the continuum models, can however be 

modeled by kinetic approaches and although negligible at small Knudsen numbers, are very 

important in rarefied flows. 

The direct solution of the Boltzmann equation is a very hard and computationally 

demanding process. To overcome this, certain methods are used in order to obtain kinetic 

solutions without solving the exact Boltzmann equation. One of them is the use of kinetic 

models, the most well-known are the BGK [12], the Shakhov [13] and Ellipsoidal [14] 

models for monatomic single gas flows, the Rykov [15] and Holway [16] models for 

polyatomic single gas flows and the McCormak [17] model for gas mixtures. In order for a 

model to be accepted it must satisfy the collision invariants, satisfy the H-theorem and 

provide the correct expressions for the transport coefficients. 

Another very widely used method for the simulation of such flows is the Direct Simulation 

Monte Carlo method (DSMC) [10]. This is a stochastic method, in contrast to the direct 

solution of the BE or model equations. For the simulation the flow domain is discretized and 

a big number of fictional (simulator) particles are distributed on the field, each corresponding 

to a large number of real particles. Then the real motion of particles is divided into two parts, 

the free motion according to a distance proportional to their velocities and the time step, and 

a collision part where the collisions are simulated in a stochastic manner. This way the free 

motion and the collisions are decoupled, during the time step. The macroscopic quantities are 

sampled for a large number of time steps, and are calculated using the simulator particles’ 

microscopic quantities. It should be noted that since it is a stochastic method, it suffers from 

statistical noise and a lot of work is done in order to decrease it [18]. 

A number of methods have been proposed, using high-order equations [19] derived from 

the BE. Those methods are able to simulate flows in the slip and early transition regimes, 

capturing effects that are beyond the NSF (Navier-Stokes-Fourier) analysis. The most known 
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of them are the Burnett equations. Those methods have some known problems, like stability 

issues, and can be misleading when used in the whole transition regime.  

1.3 Particle in cell methods 

Particle-in-cell is a class of numerical methods used to solve partial differential equations. 

In those methods the equation to be solved is decomposed into auxiliary problems, typically 

one in a Lagrangian frame and one in Eulerian. The phase space is discretized and unlike 

other methods, the solution is not performed on the nodes or elements of the computational 

mesh. Instead, a large number of fictional (simulator) particles is created and their motion is 

tracked on a Lagrangian frame. Each of those particles carries the information of the 

quantities of interest. The particles can interact with the Eulerian grid through average fields 

(PM, particle-mesh interaction), with other particles (PP, particle-particle) as in cases of 

charged plasma, or include both types of interaction (PP-PM or P
3
M). In all cases considered 

in this work the PM interaction is used. The solution is then performed following some steps, 

the motion of all particles, the interaction of particles with the mesh or other particles, the 

calculation of field variables (e.g. Maxwell equations for plasma) and finally the weighting of 

the particle microscopic properties in order to derive the macroscopic quantities of interest 

[20]. 

Particle-in-cell methods are well known in the scientific community. They offer a degree 

of intuition and are usually straightforward to implement, a fact that made those methods 

quickly popular as they provided solutions to complex effects based on their imitative 

properties. They were very successful in plasma simulation, and magnetohydrodynamics for 

applications involving tokamaks [21], and are the leading method for simulating such 

problems. Initially those methods were oriented to solving problems with great bulk 

deformation, strong shears, instabilities on the interfaces of various media, turbulent mixing 

and other cases were finite difference schemes proved to be inapplicable [22]. Great progress 

was made when the splitting up into the auxiliary problems scheme was introduced [23], and 

great steps for the computational aerodynamics were made when the “large” particle method 

was introduced [24] that enabled simulation of transonic flows past bodies and two-phase 

flows. 

In the field of rarefied gas dynamics, particle in cell methods were developed in the 

sixties-seventies, at the time when rarefied gas dynamics became a separate branch of 

engineering, due to the development of space science and vacuum technologies. Statistical 

particle in cell methods were developed, as imitation algorithms for such flows, mostly by 
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G.A. Bird [10] and contribution was also made by O.M. Belotserkovsky and B. Ye. Yanitsky 

[25,26]. Since then, this statistical particle-in-cell method (DSMC) is still used massively for 

engineering applications involving rarefied gases. 

1.4 Thesis objectives and structure 

Rarefied gas flow simulation is an emerging field of engineering. There is an increasing 

interest in the fields of microfluidics [27] and vacuum packed MEMS [28,29] as well as 

micropumps [30,31], microactuators/microsensors [32,33], and vacuum systems simulation. 

Only recently however, have large scale simulations become possible, due to the high 

computational cost associated with it, and as time goes by more and more complex 

simulations are demanded. Nowadays, the most widely used method used to tackle complex 

engineering problems involving rarefied flows is the DSMC method, which however suffers 

from statistical noise, and in some cases (e.g. creeping flows) fails to correctly reproduce the 

flow field due to this noise. 

Particle-in-cell methods provide great advantages as the simulation of complex geometries 

becomes easier and since they are imitative techniques, the particle interaction becomes 

easier to model (e.g. external fields). The large linear systems that are inherent in finite 

elements methods do not exist in PIC methods, decreasing the computational cost. Particle-

in-cell methods are not new in rarefied gas dynamics, as the DSMC itself is such a method. 

However, DSMC suffers from certain problems that are not present in deterministic methods. 

On the other hand, deterministic techniques of solving rarefied flows, using the typical 

numerical schemes, are hard or very computational demanding to implement on complicated 

problems. An effort is made in the present work to develop a methodology for the 

deterministic simulation of rarefied gas flows, using particle-in-cell methods. This could 

potentially increase the range of application of deterministic techniques, to problems 

currently tackled by DSMC. In the context of the present work, some basic algorithms are 

developed and the general guidelines of such a solver are given, while a few simple problems 

are simulated in order to verify and benchmark the method.  

The thesis is outlined as follows: 

 The basic concepts of kinetic theory are given in Chapter 2. The Boltzmann equation, 

along with the kinetic models, boundary conditions and macroscopic quantities are 

presented and the mathematical manipulation of the equations to be solved is made. 
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 The description of the PIC method used in the present work is presented in Chapter 3. 

The basic aspects of the method as well as the formulation of the test algorithms are 

given. 

 In Chapter 4 the formulation of the benchmark problems is presented. 

 In Chapter 5 the results of the benchmark problems are presented and the comparison 

with published results is made. 

 Closing the thesis some concluding remarks are made in Chapter 6. 
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2. Basic concepts of kinetic theory  

2.1 Boltzmann equation 

Kinetic theory simulations are based on the velocity distribution function  , ,f tr , 

where r  is the physical space position vector,   is the molecular velocity vector and t  is 

time. The velocity distribution function (or simply distribution function) is defined so that 

 , ,f t d d r r  is the expected number of particles that are in the physical space element of 

volume dr  around r  and have velocities in d  around   at time t . The six dimensional 

space formed by the three physical space vectors and the three molecular velocity vectors is 

called the phase space and the quantity d dr  is a phase space differential element. The 

distribution function is a fundamental quantity in kinetic theory and all macroscopic 

quantities of interest can be derived from the distribution function. As it can be seen the 

distribution function, in the general case, depends on seven independent variables and this 

makes simulations hard and computationally demanding. The evolution equation for the 

distribution function is the Boltzmann equation (BE), that for the case of monatomic single 

gases can be written as [8] 

   
4

* *

1 1 1

0

rate of change rate of change due rate of change due rate of change due to collisionsto free motion to field forces

f f f
f f f f d d J f

t








  
     

     


rF c
r

  (2.1) 

The left hand side of the BE is the streaming term, the change due to the free motion and 

the right hand side is the collision term, the change due to collisions. The collision integral 

gives the rate of change due to collisions of the particles inside the phase space element d dr  

with particles of all other phase space elements 1d dr . The quantities with the superscript 

 *  are the post collision quantities and those with the subscript  1  refer to the phase space 

elements 1d dr . The relative velocity of the colliding particles is denoted as 1  rc , 

while   denotes the differential cross section and d  is the differential element of the solid 

angle in which the molecule will scatter after the collision. Those two parameters  (  and 

d ) are the only parameters that need to be specified in advance and they are derived from 

the molecular interaction model chosen, the most common being the Hard Sphere, Inverse 

Power Law, Variable Hard Sphere, Variable Soft Sphere, Generalized Hard Sphere and 

Generalized Soft Sphere models. This is one of the advantages of kinetic theory, the in order 
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to simulate the flow we do not need to specify any transport coefficients, but instead only the 

molecular interaction model. 

Deriving the BE two main assumptions have to be made, both regarding the collision part. 

The first assumption is that only binary collisions, that is collisions between two particles, are 

taken into account. This limits the applicability of the BE to dilute gasses (a gas is considered 

dilute when the distance between molecules is much larger than the molecular diameter). It is 

noted that gases in atmospheric pressure are dilute. The second assumption is the molecular 

chaos or Stosszahlansatz, which states that the velocities of the colliding molecules are 

uncorrelated.    

One particular solution of the BE when external forces are absent and for an equilibrium 

state is the global Maxwellian distribution 

 
2

3/2
exp

22

M

B
B

N
f

kk TT
mm



 
 

  
   
    

 U
  (2.2) 

where   N, T, U  are the constant number density, temperature and velocity while ,  Bk m  are 

the Boltzmann constant and molecular mass respectively. When the macroscopic quantities 

  N, T, U  are not constant but depend on time and physical space then the distribution of the 

same form is the local Maxwellian distribution. 

2.2 Kinetic models 

As can be seen in Eq. (2.1) the collision part of the BE is, in the general case, given by a 

five-fold integral. The simulation of gas flows using the BE in the form given in Eq. (2.1) is a 

very cumbersome and computationally demanding task, because of this complex collision 

part. In order to simplify the simulation it is common to replace the collision integral with 

simpler expressions, the kinetic models. In essence kinetic models provide a relaxation to the 

collision term and have proven to be adequately accurate for flow simulation.  

The most basic and well known kinetic model is the BGK model, which is given by [12] 

   MP
J f f f


    (2.3) 

where P  is the local pressure,   is the viscosity at local temperature and 
Mf  is the local 

Maxwellian distribution. This model, although relatively simple, has been extensively used to 

model isothermal gas flows, with considerable success. The main drawback of the BGK 

model is that it cannot provide the correct expressions for viscosity and thermal conductivity 
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coefficients simultaneously, as it yields a Prandtl number of Pr 1  instead of 2 / 3  for ideal 

gases, making it unsuitable for non-isothermal flows. 

An extension of the BGK model, able to handle non-isothermal flows is the Shakhov 

model, which provides the correct value of the Prandtl number and has been used extensively 

for non-isothermal flows. The Shakhov model is given by [13] 

   S

eq

P
J f f f


   (2.4) 

where 

 

 
 

 
2

2

1 Pr2 5
1

5 2 2

S M

eq

BB

m m
f f

k TN k T

   
      

    




U
Q U  (2.5) 

where Pr  is the Prandtl number and Q  is the heat flux vector. Both of the above models, 

BGK and Shakhov are limited to monatomic gas flows.  

2.3 Boundary conditions 

The boundary conditions for flows simulated using the BE are part of the solution. Their 

main objective is to correlate the distribution of the molecules departing from the boundary 

with that of the incoming molecules. The most widely used type of boundary conditions is the 

Maxwell diffuse-specular. In the case of purely diffuse boundary conditions the distribution 

of the molecules departing from the boundary is in the form of the Maxwellian distribution 

characterized by the wall temperature and velocity. Specular reflection assumes that 

molecules arriving to the boundary collide with it in an elastic way, and are reflected without 

exchanging energy with the boundary. If we consider n  as unit normal to the boundary 

vector with direction towards the flow field, we can denote the incoming distribution as 

 'f    when 
' 0  n  and the outgoing as  f    when 0 n > . A general expression for 

the boundary conditions is [8] 

     
'

'
' ' '

0

f W f d 

 


  





    


n

n

n
  (2.6) 

where  'W    is the scattering kernel and it is the probability that a molecule arriving at 

the boundary with velocity 
'  will depart with velocity  . 

In the case of specular reflection only the velocity component normal to the boundary will 

change (and become opposite) that is 

    2f f      n n  (2.7) 
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leading to the scattering kernel 

   ' ' 2sW             n n   (2.8) 

where   is the Dirac function according to      d    r a r r a  . 

In the case of purely diffuse boundary conditions, the outgoing distribution is of the form 

of the Maxwell distribution characterized by the wall conditions, 

 
 

2

3/2
exp

22

ww

B
B

w
w

N
f

kk TT
mm





 
 

  
   
    




U
 (2.9) 

where wT  is the boundary temperature, wU  is the boundary velocity and wN  is a parameter 

ensuring the impermeability condition. The above expression gives the scattering kernel 

 
 

 
2

'

3/2

1
exp

2
2

w

d
B

B w
w

m
W

kk T T
m



 
 

    
 
 


  

U
n  (2.10) 

In practice the boundary interaction is not purely specular neither purely diffusive. It is 

more accurate to assume that a portion a  of the molecules is reflected diffusively and the 

remaining  1 a  undergoes specular reflection, leading to the diffuse-specular scattering 

kernel 

       ' ' '1dW aW a W           . (2.11) 

2.4 Macroscopic quantities 

Macroscopic quantities of practical interest can be obtained as moments of the distribution 

function using the following expressions [8] 

Number density    
3

, , ,

R

N t f t d r r     (2.12) 

Velocity vector  
 

 
3

1
, , ,

,
R

t f t d
N t

 U r r
r

     (2.13) 

Stress tensor       
3

, , ,ij i i j j

R

P t m U U f t d   r r     (2.14) 

Temperature  
 

   
3

2
, , ,

3 ,B R

m
T t f t d

k N t
 r U r

r
     (2.15) 

Heat flux vector        
3

2
, , ,

2
R

m
t f t d  Q r U U r      (2.16) 
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2.5 Projection procedure 

Although the distribution function can be a function of only one or two physical space 

dimensions, it still is a function of all three molecular velocity components. In order to reduce 

the computational cost it is possible, depending on the problem to be simulated, to eliminate 

one or two molecular velocity components using the projection procedure. During the 

projection procedure the kinetic model equation along with the expressions for the 

macroscopic quantities and the boundary conditions are accordingly integrated in order to 

eliminate the dependence on some of the molecular velocity components. Then instead of the 

kinetic equation a system of integrodifferential equations has to be solved, increasing the 

complexity, but the computational cost is reduced by at least one order of magnitude. Of 

course during the projection procedure some information is lost, but this is of no practical 

interest. Before applying the projection procedure it is convenient to introduce the following 

dimensionless quantities 

0 0

0 0 0 0 0 0 0 0 0

3

0

0

'
,  τ ,  ,  ,  ,  υ 2 ,  ,  

ijB
ij

B B

PkT N
n T p

L T N m N k T u N k T

u
g f

N

 
       



r U Q
r u q




  (2.17) 

where 0 0,  T N  are the reference temperature and number density respectively, while the 

reference pressure 0P  is taken from the state equation as 0 0 0BP N k T . The reference speed is 

the mean thermal velocity 0  at reference temperature and g  denotes the dimensionless 

distribution function.  

Two cases of the projection procedure will be shown here. In the first case, two 

components  ,z x  of the molecular velocity will be eliminated and in the second only one 

component  z . In both cases the distribution function will only depend on one direction  y  

of the physical space and the steady state equation will be used. Under those assumptions the 

BE can be written as 

 y x

x

f f
F J f

y




 
 

 
  (2.18) 

if we introduce the dimensionless quantities of Eq. (2.17) then the BE is written as 

 y

x

g g
F J g

y




 
 

 
 (2.19) 
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where 
2

0

x

L
F F


  is the inverse of the Froude number and  J g  is the dimensionless 

collision operator. The dimensionless collision operator for the BGK and Shakhov models 

can be written as 

   M
BGKJ g g g   (2.20) 

and 

   S
SJ g g g   (2.21) 

where 
Mg  is the dimensionless Maxwellian distribution and 

Sg  is the dimensionless 

Shakhov equilibrium distribution given by 

 
 

2

3/2
exp /M n

g 


  
 

u  (2.22) 

and 

 
 

 
2

2

1 Pr4 5
1

5 2

S Mg g q
n 

   
      

  
  

u
u


  (2.23) 

The parameter   in Eqs. (2.20) and (2.21) is the local rarefaction parameter, which is 

proportional to the inverse of the Knudsen number, and is given by 

0

PL



   (2.24) 

and is connected to the reference rarefaction parameter 0
0

0 0

P L


 
  by 

1

0n
      (2.25) 

where   is the viscosity index, 0

0

T

T



 
 

  
 

 , and the two limiting cases of 0.5   and 1 

correspond to hard sphere and Maxwell molecules respectively. 

The dimensionless expressions for the macroscopic quantities are summarized bellow 

Number density    
3

,

R

n g d r r     (2.26) 

Velocity vector  
 

 
3

1
,

R

u g d
n

 r r
r

     (2.27) 

Stress tensor       
3

2 ,ij i i j j

R

p u u g d   r r     (2.28) 
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Temperature  
 

   
3

22
,

3
R

g d
n

  r u r
r

     (2.29) 

Heat flux vector        
3

2
,

R

g d  q r u u r      (2.30) 

Finally the expressions for the boundary conditions become 

 

 
2

3/2
exp

ww

ww

n
g




 

  
  

u
 for 0 n  (2.31) 

with 

   

 

 

 

0

2

3/2

0

,

exp

w

w

ww

g r d

n

d




 





 
  
 
  





n

n>

n

n u





  

 


  (2.32) 

The projection procedure will now be applied on the dimensionless BE as well as the 

expressions for the macroscopic quantities and boundary conditions. Two different projection 

procedures will be shown here, in the first one two components  ,z x  of the molecular 

velocity will be eliminated, while in the second only one  z . 

2.5.1 Projection on   and   components 

In order to eliminate those two components of the molecular velocity we need to specify 

the following reduced distribution functions 

   , , , ,y x y z x zY y g y d d     
 

 

    (2.33)  

   , , , ,y x x y z x zy g y d d       
 

 

    (2.34) 

   2 2, , , ,y x z x y z x zX y g y d d       
 

 

      (2.35) 

   2, , , ,y x x y z x zy g y d d       
 

 

    (2.36) 

and 

   2 2, , , ,y x x z x y z x zy g y d d         
 

 

     . (2.37) 

Then we apply the following integral operators 
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  x zd d    (2.38) 

  x x zd d     (2.39) 

  2 2

x z x zd d       (2.40) 

  2

x x zd d     (2.41) 

   2 2

x x z x zd d        (2.42) 

on the kinetic equation (2.19) which, for this case, is taken omitting the external acceleration 

term. For the BGK model this equation becomes 

   1

0

M M

y

g
g g n g g

y

    
   


 (2.43) 

and if we apply the integral operators (2.38)-(2.42) we get the following system for the 

reduced distribution functions 

 1

0

M

y

Y
n Y Y

y

   
 


 (2.44) 

 1

0

M

y n
y


    

 


 (2.45) 

 1

0

M

y

X
n X X

y

   
 


 (2.46) 

 1

0

M

y n
y


    

 


 (2.47) 

 1

0

M

y n
y


    

 


 (2.48) 

where the reduced Maxwellians are given by 

 
2

exp
πτ

y yM
un

Y
τ

 
  
 
 

 (2.49) 

 
2

exp
πτ

y yM M

x x

un
u Y u

τ




 
   
 
 

 (2.50) 

 
2

2 2τ exp τ
πτ

y yM M

x x

un
X u Y u

τ

 
            
 

 (2.51) 
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 
2

2

2
2 τ

2 τ exp
22 πτ

xy yM M

x

uun
u Y

τ




             
 

 (2.52) 

 
2

2 22τ exp 2τ
πτ

y yM M

x x x

un
u u u

τ


 

 
            
 

 (2.53) 

For the Shakhov model, the kinetic equation becomes 

 1

0

S

y

g
n g g

y

   
 


 (2.54) 

and applying the integral operators (2.38)-(2.42) to this equation and setting Pr 2 / 3  we get 

the following system for the reduced distribution functions 

 2

1

0 3

2 2 3
1

15

y y yM

y

qY
n Y Y

y n


  

  



  
    
     

 (2.55) 

 3 2

1

0 3

4 2 3
1

15

y y x y y x y x xM

y

x

q u q q u q
n

y nu


    

    



    
    
     

 (2.56 

   
 

2 2 3 2 2

1

0 2 3

4 2 4 2 3
1

15

y x x x x y y x y y xM

y

x

q u q u q u q uX
n X X

y n u


       

  
 


      
    
     

 (2.57) 

   
 

2 2 3 2 2

1

0 2 3

8 4 4 2 2 6
1

15 2

y x x x x y y x y y xM

y

x

q u q u q u q u
n

y n u


       

    
 


      
    
     

 (2.58) 

  1

0 1M

y n
y


    

  


K  (2.59) 

where 

      
 

2 2 3 2 2 2

2 3

3 2 4 2 2 2 3 2

15 2

x x y y x x y x y y x x

x x

q u q u u q q u u

nu u

        

 

      



K  

The expressions for the macroscopic quantities (2.26)-(2.30), in terms of the reduced 

distribution functions can be written as 

   , y yn y Y y d 




   (2.60a) 

   
1

,x y yu y y d
n

  




   (2.60b) 
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   
1

,y y y yu y Y y d
n

  




   (2.60c) 

     2 2 22 2 2

3 3 3
y y x yτ y Y X d u y u y

n
 





       (2.60d) 

   2 3 2 2 22 3 2 2x x x x y x y x y y x y y y x yq y u u u Y u Y u X u u u Y u u Y d         




         

 (2.60e) 

   3 2 2 2 2 32 3 2 3y y y x y y y y x y y y x y x y y yq y Y X u u X u Y u u u Y u u Y u Y u Y d        




         

 (2.60f) 

   2xy y y x y x y yp y u u Y u u Y d     




    (2.60g) 

  22xx y xp y d u  




   (2.60h) 

   
2

2yy y y yp y u Yd 




   (2.60i) 

   2zz yp y X d 




   (2.60j) 

The outgoing distribution at the boundaries after the projection procedure, for each of the 

reduced distribution functions, is of the form of the corresponding reduced Maxwellian 

distribution Eqs.(2.49)-(2.53) for 0 n , where 
y y
e , characterized by the wall 

temperature  w  , the wall velocity and the wn  parameter of Eq. (2.32), that can be 

obtained in terms of the reduced distribution functions as 

 

 

 

 

0

2

1/2

0

exp

y

w

y

y

ww

Y d

n

d










 





 
 
 
 





n

n>

n

n








  (2.61) 

The system of kinetic equations for the reduced distribution functions Eqs. (2.44)-(2.48) 

for the BGK model or Eqs. (2.55)-(2.59), coupled with the expressions for the macroscopic 

quantities Eqs. (2.60), under the boundary conditions given in terms of Eq. (2.61) are solved. 
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2.5.2 Projection on   component 

In order to eliminate only the z  component of the molecular velocity the following two 

reduced distribution functions need to be specified. 

   , , , , ,x y x y z zY y g y d     




   (2.62) 

and 

   2, , , , ,x y z x y z zy g y d       




   (2.63) 

In this case the kinetic equation is taken with the external acceleration term, and for the BGK 

model the system for the two reduced distribution functions becomes 

 1

0

M

y

x

Y Y
F n Y Y

y

  


 
  

 
 (2.64) 

and 

 1

0

M

y

x

F n
y

 
    



 
  

 
 (2.65) 

while for the Shakhov model the system becomes 

       
22

1

0 2

4
1 2

15

x x x y y y x x y yM

y

x

q u q u u uY Y
F n Y Y

y n


   

  
  



                             

 (2.66) 

and 

       
22

1

0 2

4
1 1

15

x x x y y y x x y yM

y

x

q u q u u u
F n

y n


    

    
  



                             

 (2.67) 

where the reduced Maxwellians are 

   
22

exp
x x y yM

u un
Y

πτ τ

    
  
 
 

 (2.68) 

and 

   
22

exp
2

x x y yM M
u un τ

Y
2π τ

 


   
   
 
 

 (2.69) 

The macroscopic quantities can be expressed in terms of those two reduced distribution 

functions in the following way 
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  x yn y Yd d 
 

 

    (2.70a) 

 
1

x x x yu y Yd d
n

  
 

 

    (2.70b) 

 
1

y y x yu y Yd d
n

  
 

 

    (2.70c) 

   2 2 2 22 2 2
τ

3 3 3
x y x y x yy Y d d u u

n
    

 

 

         (2.70d) 

        
22

x x x y y x x x yq y u u Y u d d     
 

 

      
     (2.70e) 

        
22

y x x y y y y x yq y u u Y u d d     
 

 

      
     (2.70f) 

   
2

2xx x x x yp y u Yd d  
 

 

    (2.70g) 

   
2

2yy y y x yp y u Yd d  
 

 

    (2.70h) 

    2xy x x y y x yp y u u Yd d   
 

 

     (2.70i) 

  2zz x yp y d d  
 

 

    (2.70j) 

The outgoing distribution at the boundaries is of the form of the reduced Maxwellian 

distributions (2.68) and (2.69) characterized by the wall temperature and velocity and the wn  

parameter is taken in terms of the reduced incoming distributions in the following way 

   

     
0

22

, ,y

0

,

exp

x y

w

x w x y w

x y

w w

Y r d d

n
u u

d d

 

 
 

 



 





 
   
 
 
 









 



n

n>

n

n

 (2.71) 

 

The system of kinetic equations for the reduced distribution functions Eqs. (2.64),(2.65) for 

the BGK model or Eqs. (2.66),(2.67), coupled with the expressions for the macroscopic 

quantities Eqs. (2.70), under the boundary conditions given in terms of Eq. (2.71) are solved. 
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3. Description and formulation of the method 

3.1 Formulation of the non-linear BE 

The non-linear Boltzmann equation is  

x y z x y z

x y z

f f f f f f f
F F F Q

t x y z
  

  

      
      

      
  (3.1) 

the left hand side of Eq. (3.1) is the streaming part, describing how the distribution function 

changes due to the free motion of particles due to their velocities and how it changes due to 

some external force field F . We can group together the terms of the left hand side of Eq. 

(3.1) introducing the following two operators 

r
x y z

  
   

  
x y z

e e e    (3.2) 

and  

x y z


  

  
   

  x y zξ ξ ξ
e e e  (3.3) 

Now Eq. (3.1) can be rewritten as 

   r

f
f f Q

t



      


F  (3.4) 

the first term of the left hand side of Eq. (3.4) is the change of the distribution function with 

time, the second is the change due to free motion and the third the change due to external 

fields. The left hand side is essentially the material derivative of f , so we can replace it 

using the operator 

   r

D

Dt t



      


F   (3.5) 

and Eq. (3.4) can now be written as 

Df
Q

Dt
   (3.6) 

The right hand side of Eq. (3.1) denotes the change of f due to intermolecular collisions, 

and according to the Boltzmann equation it is given, for the general case, by a five-fold 

integral. This is exactly the reason why the direct solution of BE is a cumbersome and very 

demanding task. In order to simplify it we make use of the so-called kinetic models that 

provide much simpler expressions for the right hand side. For the formulation of the method 

we need to refer to only some properties they have. Kinetic models can be represented by 

modQ f f      (3.7) 
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where ,f f 
 are the “gain” and “loss” parts respectively, that is the particles entering a 

particular phase space element and the particles departing from it. It is typical for models to 

approach f 
 as a function of only macroscopic quantities, while f 

 is a function of the 

distribution function of the phase space element that we are solving for. So the distribution 

function in the phase space element that we are solving for does not directly depend on the 

value of the distribution function at other phase space elements, but is only connected to them 

through the macroscopic quantities. This particular property makes it possible to decrease the 

computational effort and memory requirement for steady-state simulations and also to make 

the parallelization of the method easy and effective as only PM (particle-mesh) interaction is 

considered. This property will be used later in this chapter. 

3.2 Basic description of the PIC method 

In order to solve the problem using PIC methods, Eq. (3.6) is split into a system of 

equations that for a time step  k  can be represented in the form of the following two 

auxiliary problems 

1 0
Df

Dt
  , ( ) ( )

1

k kf f   (3.8a) 

2
mod

f
Q

t





 , ( ) ( 1)

2 1

k kf f    (3.8b) 

Using this splitting method, at each time step we solve problem (3.8a) with the initial 

condition ( ) ( )

1

k kf f  and find the auxiliary solution ( 1)

1

kf   . The solution of problem (3.8a) 

gives us the new position and velocity of the particles of the initial distribution 
( )kf . Then we 

use this solution ( 1)

1

kf   as an initial condition for problem (3.8b) and find the new value of 

the distribution function after the collisions. The solution of problem (3.8b), ( 1)

2

kf  , is the 

distribution function at the end of the time step 
( 1)kf 

. The solution is now found at two 

steps. The first step (3.8a) is a Lagrangian step, while the second step (3.8b) is an Eulerian 

step. Those steps are solved in a different way. 

 

Solution of the Lagrangian step: 

It is seen from (3.8a) that during the Lagrangian step the value of the distribution function 

does not change, the only change is in the position and velocity. In order to simulate this step, 

assuming a time step t , the laws of motion are used, essentially, following the 
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characteristics. For a case where external forces are absent   0F , the initial  ir  and final 

 fr  position vectors are connected by 

 f i t  r r    (3.9) 

and the distribution function is transferred (without changing its value). In this step the 

application any discrete differencing techniques is avoided. 

 

Solution of the Eulerian step: 

For the solution of the Eulerian step, the value of the distribution function due to collisions 

is altered. The distribution function at the new location is altered through problem (3.8b). It is 

seen that in this step discrete differencing techniques have to be used. Using a first order 

approach the Eulerian step can be treated as 

   
   

1
12 2 2

mod mod 2 2 mod

k k
k kf f f

Q Q f f tQ
t t


 

     
 

 (3.10) 

It should also be noted that the Lagrangian step is conservative, but this is not ensured for the 

Eulerian step. During the simulation this has to be checked, and if needed a conservative 

scheme has to be used. 

In the following sections the way this method is applied to several cases will be presented. 

Section 3.3 is dedicated to time dependent flows, 3.4 to force driven flows and finally the 

steady state solution method will be presented in section 3.5 

3.3 Time dependent flows 

Time dependency is inherent in this method, even if the steady state solution is desired. 

However, it is distinguished here from the steady state simulations, as for the latter some 

modifications and simplifications will be made, allowing us to reduce memory requirements 

and computational cost. For time dependent simulations it is required to know the value of 

the distribution function at each point of the phase space at all times. The simulation starts by 

generating simulator particles, according to the initial distribution at various points inside the 

flow field, typically several at each cell and for each molecular velocity. For this initial 

distribution of particles the velocities are assigned in a deterministic way. This process is 

repeated for all considered velocities and several particles are created for each velocity. The 

position inside the cells can be given either in a deterministic way (at given locations inside 

the cell) or in a stochastic way, at random points inside the cell. Either way the results of the 

simulation should not be altered drastically. The magnitude of the distribution carried by each 
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particle is determined by the initial distribution function, typically a Maxwellian distribution. 

For cases where more than one distribution functions have to be determined (reduced 

distributions, mixture flows, polyatomic gasses), two or more values can be assigned to each 

particle and then the Lagrangian step is not altered, while the Eulerial step is performed once 

for each of the distributions associated with the particle. This attribute, that one particle can 

carry more than one distributions cannot be applied when the Lagrangian step cannot be done 

only once, i.e. when the method is applied in a mixture flow with one electrically charged 

component and one neutral in the presence of an electric or magnetic field.  

After the initial condition has been applied the simulation can start. At each time step 

several events have to take place.  

 

Step 1: For each molecular velocity and for each boundary cell a simulator particle is created. 

Step 2: The Lagrangian step is carried out according to Eq. (3.8a) for each simulator particle. 

Step 3: The particles that have exited the flow field are determined and are moved at the 

boundary position. 

Step 4: The Eulerian step is carried out according to Eq. (3.8b) for each simulator particle. 

Step 5: For those particles that have exited the flow field in step 3, step 4 is altered to account 

for the portion of the time that they traveled outside of the flow field. 

Step 6: For the particles that exited the flow field in step 3 and have been position on the 

boundary according to step 3, based on the new value determined at step 5, the 

integrals for the boundary condition parameters are determined and then they are 

deleted. 

Step 7: For each cell, the value of the distribution function is determined by averaging the 

values of all simulator particles in this cell, for each velocity, and using this value the 

integrals for the macroscopic quantities are determined. Then we move to step 1 for 

the next time step. 

 

One issue that has to be determined is the characteristic time. For the Lagrangian step the 

characteristic time is 0/L L  , where L  is a characteristic length and 0  is the 

characteristic velocity, which is the mean thermal velocity. For the Eulerial step the 

characteristic time is E  that is of the order of the mean free time and the inverse of the 

collision frequency, that is 0/E   , where   is the mean free path. The ratio between 

those two characteristic times is / /E L L Kn     which is of the order of the Knudsen 
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number. So the two characteristic times can vary greatly, for very rarefied flows the Eulerial 

characteristic time is much larger than the Lagrangian and the opposite is the case for near 

continuum flows. For flows in the transition regime the two time intervals are close. In the 

simulations the Lagrangian characteristic time is used as the characteristic time. 

3.4 Flows with external force fields 

The simulation of flows with external fields by the direct simulation of Eq. (3.1) with the 

appropriate kinetic model is a difficult task. Using the currently described method this task 

becomes much easier. The Eulerian step is not affected and the only change has to be done in 

the Lagrangian step. Previously the solution of the Lagrangian step was described by Eq. 

(3.9) for cases without external fields. When an external force field is present the equations of 

motion have to include this external acceleration, so instead of Eq. (3.9) the following initial 

value problem has to be solved  

d

dt


r
   (3.11a) 

d

dt
 F


 (3.11b) 

so instead of just the position, the velocity is also updated. The values of position and 

velocity at the start of the time step are known     ,t tr   and the values at the end of the 

time step are to be found     ,t t t t r  . Steps 6 and 7, where integrals of the 

distribution function have to be calculated, should also be changed. In step 7 the value of the 

distribution function at each cell is found by averaging the simulator particle values for each 

velocity. This value now has to be multiplied by the determinant of the Jacobian matrix, in 

order to use the same weighting factors. This Jacobian is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x x x

x y z

y y y

x y z

z z z

x y z

d t t d t t d t t

d t d t d t

d t t d t t d t t
J

d t d t d t

d t t d t t d t t

d t d t d t

  

  

  

  

  

  

      
 
 
      
 
 
 

      
 
 

  (3.12) 

or in a more compact form 

 

 
i

ij

j

d t t
J

d t





 
   (3.13) 
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3.5 Steady state flows 

When only the steady state solution is required several modifications can be made in order 

to reduce memory requirements and computational effort. It is not required to use the same 

time step for all particles. Different time steps can be used for each of the molecular 

velocities, in such a way that it is smaller than the cell transversal time (the time needed to 

cross one cell, with the given velocity), but since it is not needed to tune all particles in order 

to get the time evolution, it can be much larger for small velocities compared to large 

velocities. Another thing is that the initial condition does not have to be specified in terms of 

the initial distribution function and create a large number of particles that simulate the flow. It 

is sufficient to specify the initial conditions only at a macroscopic quantities level and then, 

instead of having a very big number of simulator particles, the evolution of one particle at a 

time can be studied. The simulation for the steady state flows can be summarized in the 

following pseudocode: 

Step 1: Apply initial conditions. 

Step 2: Store old values of macroscopic quantities. 

Step 3: Iterate for every molecular velocity. 

Step 4: Iterate for every boundary cell that has an outgoing distribution at the current 

molecular velocity. 

Step 5: Repeatedly apply (3.8a) in order to find the new position and velocity and (3.8b) in 

order to find the new value of the distribution function until a boundary edge has been 

reached. During the application of (3.8) the values of the particle are averaged at its 

travel in a cell, and when it has exited the cell the partial sums of the macroscopic 

quantities integrals are calculated. 

Step 6: When a boundary has been reached, the integrals for the boundary condition 

parameters are calculated. 

Step 7: End of iteration for all boundary cells (4). 

Step 8: End of iteration for all molecular velocities (3). 

Step 9: Check for convergence and end the simulation or go to step 2. 

3.6 PIC codes 

In the framework of this thesis only some basic codes have been developed in order to 

check the applicability and accuracy of the method for rarefied gas flows. The main 

characteristics distinguishing the codes are the number of physical space coordinates and the 

number of molecular velocity coordinates. The codes are named as PmVn where m is the 
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number of physical space coordinates and n is the number of molecular velocity coordinates, 

so P1V2 is a code that solves flows that are dependent on one physical space direction and 

two molecular velocity directions. It should be noted that for all codes both the physical space 

and molecular velocity coordinate systems are Cartesian. Moreover, this simple four symbol 

name implies that the code simulates steady state flows.  

All pic codes, during each time step, follow some basic steps that can be summarized as: 

move the simulator particle in the flow field using the laws of free motion (Lagrangian step), 

find the new cell that particle has traveled into, find the new value of the distribution 

(Eulerial step), calculate the partial sums of the integrals. The above steps are applied to all 

particles. Below, a brief description of the developed codes is given. 

3.5.1 The P1V1 code 

The P1V1 code is used to simulate problems where the distribution function depends on 

one physical space component  y  and one molecular velocity component  y  , as can be 

seen in Figure 3.1. Since one molecular velocity component is taken into consideration, it is 

implied that the projection procedure described in section 2.5.1 on both x  and z  has been 

applied. This code simulates the flow solving the system of Eqs. (2.44)-(2.48) for the BGK 

and Eqs.(2.55)-(2.59) for the Shakhov model, under the boundary conditions specified in Eq. 

(2.61) and the macroscopic quantities are taken from Eqs. (2.60). This system of the 

integrodifferential equations for the reduced distribution functions is solved using the PIC 

method described in section 3.4. 

In order to apply this method, the physical and molecular velocity spaces have to be 

discretized. The physical space is divided into IN  equally spaced cells of length 1/ Iy N  , 

while the roots of a Legendere polynomial of order mN  , accordingly mapped from  1, 1   

to  ,  , are used as the discrete values of the molecular velocity.  

The P1V1 algorithm is summarized in the flow chart of Figure 3.3, where the main aspects 

of the algorithm are shown. The initial conditions are applied at a macroscopic quantities 

level, and not as an initial distribution, then for each iteration of the method, the code iterates 

for all discrete values of the molecular velocity and depending on whether the velocity is 

positive or negative a particle is created at the bottom or top wall respectively. Then this 

particle is moved through the flow field and the values of the distribution functions it carries 

are constantly changed. During the motion inside a cell, at each time step, the values it carries 

are averaged and when it leaves the cell the partial sums of the macroscopic quantities are 
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calculated. When the particle reaches a boundary the partial sums of Eq. (2.61) are calculated 

and the next particle is created to repeat the process. When the iteration for all molecular 

velocities is finished, the macroscopic quantities are calculated using the partial sums and 

then a check for convergence is performed. 

 

Figure 3.1: The geometry solved by P1V1. 

 

 

Figure 3.2: The geometry solved by P1V2. 

 

3.5.2 The P1V2 code 

The P1V2 algorithm simulates problems where the distribution functions depends on only 

one physical space direction  y  and two molecular velocity components  x  and  y  as 

is shown in Figure 3.2. The P1V2 code can simulate all the cases that can be solved by P1V1, 

but the opposite is not possible. Of course as P1V2 has one more independent variable than 

P1V1 the computational cost associated with it is much larger. The set of integrodifferential 

equations solved by P1V2 is Eqs. (2.64) and (2.65) for the BGK model and Eqs. (2.66) and 

(2.67) for the Shakhov model, under the boundary conditions given in terms of Eq. (2.71), 

while the macroscopic quantities are calculated for Eqs. (2.70). 

The physical space discretization is the same as for P1V1. For the molecular velocity 

space, the same as in P1V1 discretization, using the roots of a Legendre polynomial is used 

for the y-direction of the molecular velocity space, but the x-direction is simply divided into 

equally spaced intervals. The reason for this is that an external acceleration in the x-direction 

acts on the particles. So particles departing from the boundary can be accelerated to very high 

velocities as they travel in the flow field, but the particles coming from collisions have 

relatively small velocities. In order to cover the whole range of molecular velocities, the 

upper and lower limits have to be adjusted as the external acceleration is changed and in 

order to achieve this, this kind of discretization has to be used. 
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The P1V2 algorithm is summarized in the flow chart of Figure 3.4. This algorithm is very 

similar to the P1V1 algorithm, with one significant difference. While for P1V1 has one 

component of the molecular velocity, P1V2 has two, so an additional iteration exists. 

 

Figure 3.3: The P1V1 algorithm flow chart 

 

Figure 3.4: The P1V2 algorithm flow chart. 
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3.5.3 Extensions of P1V1 and P1V2 codes 

In sections 3.5.1 and 3.5.2 two very simple cases of the described algorithm are realized, 

the P1V1 and P1V2. Those two simple codes are able to simulate rarefied gas flows with 

very good accuracy, as will be shown in the next chapters. Moreover, rarefied gas flows with 

external acceleration, a case hard to model using the conventional deterministic methods, has 

been simulated with considerable success. A potential future extension of this method is the 

P2V2 code, a code able to simulate two dimensional in the physical space problems, and 

since it is relatively easy to apply PIC methods to arbitrary geometries, a mesh independent 

code using the P2V2 algorithm could be created and even such a code using P3V3. 

Another interesting field is axisymmetric rarefied gas flows, where an axisymmetric 

version of P1V2, the P1V2a, could be created simulating such flows. In this case, where the 

y -direction in the direction of the radius after the Lagrangian step, the particle has moved for 

the old  position  0, oldy  to the new position  , olddx y dy  it should be relocated to  0, newy  

so that it is on the radial direction Figure 3.5. Of course after the relocation of the particle the 

molecular velocity vector should also be rotated. It is noted that this way of solving 

axisymmetric flows may potentially offer advantages compared to the typical deterministic 

methods as this way the modeling of the free motion is closer to the real physical problem as 

the value of the distribution function is not altered in order to account for the symmetry but 

the position and molecular velocity are. Another advantage is that this way the discontinuities 

associated with the curvature at the convex boundary are not present. 

A final potential extension, which however is not compatible with the simplifications for 

the steady state flows mentioned above, is the solution of the BE without substituting the 

collision integral with kinetic models. The using purely deterministic methods is hard and 

computationally demanding, due to the five-fold solution of the BE using stochastic methods 

(DSMC) is not a very hard task, but the solution collision integral. If however, the scheme 

remains deterministic, but the collision integral is calculated in a stochastic manner, (Monte 

Carlo integration) then the complexity of the simulation would be significantly lower, the 

solution would still be obtained in a deterministic manner (small statistical noise) and the 

exact BE would be solved, instead of a kinetic model. 
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Figure 3.5: The Lagrangian step for axisymmetric flows. 

  

3.6 Advantages of PIC codes 

As can be seen from the above PIC codes offer some advantages, compared to typical 

discrete difference or elements methods. One of the main advantages is that PIC methods are 

easy to program and implement, as is the case for the described codes. Computationally 

expensive solution of linear systems is not required for the simulation. A great advantage 

comes from the way the Lagrangian step is solved, based on the laws of free motion. This 

makes the simulation of force driven flows and the simulation of complex geometries easy. 

Usually, PIC codes are hard to parallelize, but due to the property of the kinetic models 

discussed in section 3.1, this obstacle can be overcome, and in fact the PIC codes described 

above can be parallelized in a very straightforward manner. One disadvantage is that they 

usually require larger computational time than the alternatives. In typical deterministic 

algorithms, the travel from one node to the next is done in one step, but in PIC codes several 

steps are required. However, with the use of parallel computing this can be overcome.  

. 
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4. Flow configuration and basic parameters of prototype problems 

In this chapter the formulation of the benchmark problems, solved to test the accuracy of 

the developed methodology is presented. Three problems were chosen as test cases, the non-

linear Couette flow and non-linear Fourier flow between parallel plates, which are solved 

using the P1V1 algorithm and the non-linear force driven Poiseuille flow between parallel 

plates solved using the P1V2 algorithm. The first two cases have also been solved using the 

P1V2 algorithm, but the results presented were obtained using the P1V1. 

4.1 Non-linear Couette flow 

 

 

 

The plane Couette flow is one of the traditional problems of fluid mechanics. The 

geometric configuration, shown in Figure 4.1, is relatively simple. Two infinitely long 

parallel plates are kept at a distance L , while a rarefied monatomic gas is confined between 

them. Initially the plates are still and the gas is at pressure 0P  and temperature 0T , while the 

gas is at rest. Then the plates start moving in opposing directions with velocity of magnitude 

WU  and due to this motion of the plates a symmetric velocity profile is formed and due to 

compressibility a parabolic temperature profile is also developed. This flow is called pure 

shear flow, as the shear stress has a constant value at all points of the flow domain. After an 

appropriate amount of time, a steady state is reached and our objective is to find this steady 

state solution. 

The problem is characterized by two parameters, the dimensionless magnitude of the wall 

velocity    

0y 

1 Wu u 

2 Wu u 

1y 

y

x

Figure 4.1: The Couette flow configuration. 
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0/w Wu U    (4.1) 

and the reference rarefaction parameter 

0
0

0 0

P L


 
   (4.2) 

The molecular interaction model is chosen to be Hard Spheres, leading to 0.5  , while the 

BGK model is used. The problem is solved for a wide range of the reference rarefaction 

parameter  0 0,10   ranging from the free molecular to near continuum regimes and for a 

wide range of the velocity magnitude  0.1,2Wu   and the shear stress is used in order to 

benchmark the accuracy of the results. The P1V1 algorithm will be used for this case. 

4.2 Non-linear Fourier flow 

 

 

 

This problem is pure heat transfer, meaning there is no gas flow. The geometric 

configuration, shown in Figure 4.2, is very close to that of the Couette flow, however the 

boundaries here are still and are maintained at different temperatures 1T  and 2T . Initially the 

gas is at a uniform temperature  0 1 2 / 2T T T   and then, due to the temperature difference 

of the two walls, a temperature profile is formed as well as a constant heat flux in the y  

direction. The parameters characterizing the problem are the reference rarefaction parameter 

0
0

0 0

P L


 
  (4.3) 

and the dimensionless temperature difference 

02

T

T



   (4.4) 

0y 

2 0 / 2T T T 

1 0 / 2T T T 

1y 

y

x

Figure 4.2: The Fourier flow configuration. 
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The molecular interaction model is again chosen to be the Hard Sphere model, while 

simulation is based on the Shakhov kinetic model. A large range of the reference rarefaction 

parameter  0 0,10 
 
as well as three values of the dimensionless temperature difference 

0.1,  0.5 and 0.9   corresponding to small, medium and large temperature differences is 

simulated. The constant heat flux in the y  direction was used in order to benchmark the 

accuracy of the results. The P1V1 algorithm will be used for this case. 

4.3 Non-linear Poiseuille flow 

 

 

 

A more advanced benchmark problem is that of the force driven Poiseuille flow, shown in 

Figure 4.3. A monatomic rarefied gas is confined between two infinite parallel plates, the 

boundaries are kept still and have the same temperature. Initially the gas is at rest, with 

pressure 0P  and temperature 0T . Then a uniform and constant external acceleration starts 

acting on the gas molecules in the x  direction, setting the gas in motion. The parameters 

characterizing the flow are the reference Knudsen number 

0 0
0

0

2
Kn

P L

 


   (4.5) 

and the magnitude of the dimensionless external acceleration F .  The reference Knudsen 

number is connected to the reference rarefaction parameter as 

0

0

2 1

Kn



  (4.6) 

According to the definition of the rarefaction parameter given in the previous chapters the 

expression connecting it with the Knudsen number should be 
0

0

1

2 Kn


  , however, in 

0y 

1y 

y

x

F 

Figure 4.3: The Poiseuille flow configuration. 
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order to make the comparison with published results easier, the definition of the Knudsen 

number given in [34] was used for this problem. In this problem the BGK model was used, 

with Maxwell molecules, 1  , while simulations where conducted for 0 0.1,  1 and 10Kn   

covering the whole transition regime and for 0.05 and 0.5F   corresponding to small and 

large external accelerations respectively. In order to benchmark the results, the normalized 

flow rate 

0.5 1

0 0.5

x xM nu dy nu dy     (4.7) 

was used. The P1V2 algorithm will be used for this case. 

4.4 Free molecular solutions 

For the Couette and Fourier flows between parallel plates, closed analytical solutions in 

the free molecular regime can be derived, while for the Poiseuille problem as described in 

section 4.3 it is not possible to obtain free molecular solutions. For the Couette flow the free 

molecular values of the shear stress are used for comparison purposes, while for the Fourier 

flow, the values of the heat flux are used. 

In order to obtain the analytical solution in the free molecular regime for the Couette flow, 

he kinetic equation is written as 

0y

g

y






  (4.8) 

and distinguishing for positive and negative velocities we get 

1

2

,  0

,  0

y

y

g
g

g






 


  (4.9) 

and due to the boundary conditions we have 

 
2

2 21
1 3/2

exp x y w z

n
g u  


     
  

  (4.10) 

 
2

2 22
2 3/2

exp x y w z

n
g u  


     
  

 (4.11) 

Applying the impermeability condition at the bottom wall we have 

 
3

0

1 2

0

0 0 0 0y y y x y z y x y z

R

u gd g d d d g d d d        
    

    

               

1 2n n  (4.12) 

Moreover the density profile is 
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3

0

1 2
1 2

0
2 2

fm

x y z x y z

R

n n
n gd g d d d g d d d     

    

    

             (4.13) 

and since the average number density is unity 

1

1 2

0

1 1
2 2

fm n n
n dy      (4.14) 

and combining Eqs.(4.12) and (4.14) we get 

1 2 1n n    (4.15) 

The shear stress is now calculated as 

3

0

1 2

0

2 2 2 2fm W
xy x y x y x y z x y x y z

R

u
p gd g d d d g d d d           



    

    

            (4.16) 

The numerical results obtained using the developed algorithm for the free molecular cases 

will be compared to the results of Eq.(4.16). 

For the Fourier flow, the kinetic equation is again Eq. (4.8) and for positive and negative 

velocities we get Eq. (4.9), but for the two different cases we now have 

 

2 2 2

1
1 3/2

exp
11

x y zn
g
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 

  
  
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  (4.17) 
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x y zn
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 

  
  

     

 (4.18) 

Applying the impermeability condition we now get 

1 21 1n n      (4.19) 

and for the average number density we have 

1 2 1
2 2

n n
    (4.20) 

and combining Eqs.(4.19) and (4.20) we get 

1

1
2

1 1
n



 



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 (4.21) 

and 

2

1
2

1 1
n



 




  
  (4.22) 

For the heat flux we get 

3

0

2 2 2

1 2

0

fm

y y y x y z y x y z

R

q gd g d d d g d d d           
    

    

           
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1 14

1 1

fm

yq
  

  

 


  
 (4.23) 

The numerical results obtained using the developed algorithm for the free molecular cases 

will be compared to the results of Eq.(4.23). 
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5. Results and discussion 

In this chapter results are presented for the three benchmark problems presented in chapter 

4. The results presented are not very extensive, as all three of these problems have been 

extensively studied in the literature and our objective here is to test the accuracy of the 

presented algorithm. Comparison is performed with published results, as well as the 

analytical results for the free molecular regime derived in section 4.4. 

5.1 Non-linear Couette flow 

The first problem is that of the plane non-linear Couette flow, between two parallel plates, 

described in section 4.1. Simulations were conducted using the P1V1 code for a range of 

reference rarefaction parameters  0 0,10   and for various values of the wall velocity 

 0.1,2Wu  . The BGK kinetic model was used, and the molecular interaction model was the 

Hard Spheres. For the molecular velocity discretization, the roots of the Legendre polynomial 

of order 80 were used, while the physical space was divided into 41.5 10  equally spaced 

intervals. The simulation ended when a convergence criteria of the form 

 ( ) ( 1) ( ) ( 1) ( ) ( 1) 6

, ,max 10k k k k k k

i i x i x i i i

i

n n u u             (5.1) 

was met. 

The shear stress for all cases simulated is shown in Table 5.1, which is constant along the 

flow domain. We observe that as the dimensionless wall velocity increases, the shear stress 

increases, while as the reference rarefaction parameter is increased the shear stress decreases. 

The velocity profiles for various values of the reference rarefaction parameter and wall 

velocity are shown in Figure 5.1. It is seen that for small values of 0  near the boundaries the 

slope of the velocity is not constant, although the shear stress is constant. This is natural for 

non-equilibrium flows, as the Newton law fails in such cases. Moreover, the failure of the no-

slip boundary conditions is also observed. What is even more interesting is that for 0 0  , 

although the macroscopic velocity is zero, the shear stress has non-zero values. The 

temperature profiles for a range of the reference rarefaction parameter and wall velocity 

values are presented in Figure 5.2. Due to compressibility effects, a non-uniform temperature 

profile is formed, having a maximum at the middle of the flow domain. For small values of 

the wall velocity, when the flow is almost linear, the temperature does not depart a lot from 

the equilibrium temperature, but for fast flows due to non-linear phenomena the temperature 

increases greatly. Finally, as the degree of rarefaction increases, the temperature profile 
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becomes flat. The distributions of velocity and temperature have also been compared with 

results of [35], and are in good agreement. 

The analytical free molecular results for the shear stress given by Eq. (4.16) are shown in 

Table 5.2. We observe that there is very good agreement with the numerical results shown in 

Table 5.1. The shear stress results for larger values 0  were compared to the results of [35] 

shown in Table 5.3 and the relative error was less that 0.04% , giving a very good agreement. 

It is noted that in order to compare the current results for the shear stress with those of [35], 

the values of Table 5.3 have been multiplied by the factor  2 , due to the different 

conventions used. This problem was also simulated using the P1V2 algorithm, for limited 

cases, and those results were also in very good agreement with [35], however here only the 

results of P1V1 are shown. 

5.2 Non-linear Fourier flow 

The results for the heat transfer between parallel plates problem described in chapter (4.2) 

are presented here. Simulations were conducted using the P1V1 algorithm, with the Shakhov 

model and Hard Sphere molecules. Simulations were conducted for  0 0,10   and 

0.1,  0.5 and 0.9  , corresponding to small, medium and large temperature differences. For 

the molecular velocity space discretization the roots of the Legendre polynomial of order 80 

were used, and the physical space was divided into 31.5 10  equally spaced intervals for 

small values of 0  and into 35 10  for larger. The simulation ended when a convergence 

criteria of the form  

 ( ) ( 1) ( ) ( 1) ( ) ( 1) 6

y, y,max 10k k k k k k

i i i i i i

i

n n q q           (5.2) 

was met. 

The heat flux shown in Table 5.4 is constant along the flow domain and as expected the 

value of the heat flux increases as   increases, but decreases as 0  is increased for small 

temperature differences. For large temperature differences, the heat flux exhibits a non-

monotonic behavior with respect to  , something that has been reported in the literature. The 

temperature profiles, for various values of 0  and the three simulated values of   are shown 

in Figure 5.3. We observe the temperature jump at the boundaries and that the slope of the 

temperature is not constant. Moreover, for 0 0  , while the temperature is constant, a heat 

flux exists. In Figure 5.4 the density profiles are presented. The density is inversely 
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proportional to the temperature, lower at the hot plate and higher at the cold one. The 

distributions of temperature and density are in good agreement with [36]. 

In Table 5.5 the free molecular results for the heat flux are presented, which are in very 

good agreement with the numerical results of Table 5.4. The numerical results for larger 

values of 0  were compared to the results of [36] shown in Table 5.6 and the relative 

difference was less than 0.08% giving a very good agreement. This problem was also 

simulated with the P1V2 algorithm, but here only the results of P1V1 are presented. 

5.3 Poiseuille flow 

The third benchmark problem, described in chapter 4.3, is the force driven Poiseuille flow 

between parallel plates. Simulations were conducted using the P1V2 algorithm, with the 

BGK model and Maxwell molecules, for small  0.05F   and large  0.5F   values of the 

external acceleration magnitude and covering the whole transition regime 0 0.1,  1Kn  and  

10 . The small value of the external acceleration corresponds to close to linear flow, while the 

large one to non-linear flow. For the molecular velocity space discretization the roots of the 

simple polynomial of order 16 were used in the y  direction, while the velocity space in the x  

direction was divided into 34 10  equally spaced intervals. The physical space was also 

divided into 34 10  intervals. The simulation ended when a convergence criteria of the form 

 ( ) ( 1) ( ) ( 1) ( ) ( 1) 6

, ,max 10k k k k k k

i i x i x i i i

i

n n u u            (5.3) 

was met. 

The dimensionless mass flow rate defined in Eq. (4.7) is shown in Table 5.7, for all cases 

simulated. As expected, as the magnitude of the external force increases, the mass flow rate 

also increases, but the behavior with respect to the reference Knudsen number is not 

monotonic, as the mass flow rate has a minimum value inside the transitional regime, known 

as the Knudsen minimum. The results of Table (5.7) were compared with results of [34] 

shown in Table 5.8 and the relative difference is less that 0.8% . This difference can be 

tolerated, especially considering that solving this problem using the typical deterministic 

schemes is very hard. In Figure 5.5 the velocity profiles for the cases simulated are shown, 

which are in good agreement with [34]. 
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Table 5.1: Shear stress for the Couette flow, current work. 

wu    0  

0 0.001 0.01 0.1 1 10 

0.1 1.1284(-1) 1.1274(-1) 1.1187(-1) 1.0449(-1) 6.7830(-2) 1.6638(-2) 

0.5 5.6419(-1) 5.6382(-1) 5.6006(-1) 5.2510(-1) 3.4468(-1) 8.6132(-2) 

0.9 1.0156 1.0153 1.0106 9.5482(-1) 6.4114(-1) 1.6635(-1) 

1.1 1.2412 1.2413 1.2371 1.1743 7.9982(-1) 2.1236(-1) 

1.5 1.6926 1.6937 1.6927 1.6231 1.1413 3.1862(-1) 

2 2.2568 2.2602 2.2672 2.2028 1.6165 4.8082(-1) 

 

 

Table 5.2: The analytical free molecular values of shear stress. 

wu  0.1 0.5 0.9 1.1 1.5 2 

fm

xyp  1.1284(-1) 5.6419(-1) 1.0155 1.2412 1.6926 2.2568 

 

 

Table 5.3: Shear stress of the Couette flow [35]. 

wu  
0  

0 0.1 1 10 

0.1 1.128(-1) 1.044(-1) 6.78(-2) 1.66(-2) 

0.5 5.642(-1) 5.25(-1) 3.446(-1) 8.62(-2) 
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Table 5.4: Heat flux for the Fourier flow, current work.. 

  0  

0 0.01 0.1 1 10 

0.1 1.124(-1) 1.117(-1) 1.067(-1) 7.981(-2) 2.696(-2) 

0.5 5.058(-1) 5.037(-1) 4.839(-1) 3.700(-1) 1.307(-2) 

0.9 5.224(-1) 5.260(-1) 5.266(-1) 4.675(-1) 2.096(-1) 

 

 

Table 5.5: The free molecular values of the heat flux. 

  fm

yq  

0.1 1.124(-1) 

0.5 5.058(-1) 

0.9 5.224(-1) 

 

Table 5.6: Heat flux for the Fourier flow [36]. 

  
0  

0 0.01 0.1 1 10 

0.1 1.124(-1) 1.117(-1) 1.067(-1) 7.981(-2) 2.694(-2) 

0.5 5.058(-1) 5.037(-1) 4.839(-1) 3.700(-1) 1.307(-1) 

0.9 5.224(-1) 5.260(-1) 5.266(-1) 4.675(-1) 2.096(-1) 
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Table 5.7: Normalized flow rate for the Poiseuille flow, current work. 

 F  

0Kn  0.05 0.5 

0.1 7.419(-2) 5.319(-1) 

1 3.848(-2) 3.498(-1) 

10 4.972(-2) 4.397(-1) 

 

Table 5.8: Normalized flow rate for the Poiseuille flow, [34]. 

 F  

0Kn  0.05 0.5 

0.1 7.374(-2) 5.280(-1) 

1 3.841(-2) 3.492(-1) 

10 4.961(-2) 4.400(-1) 
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Figure 5.1: Velocity profiles for                        and   and for                 and    , for the 

Couette flow. 
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Figure 5.2: Temperature profiles for                        and   and for                 and    , for 

the Couette flow. 
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Figure 5.3: Temperature profiles for           and     and                 and   , for the Fourier flow. 
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Figure 5.4: Density profiles for           and     and                 and   , for the Fourier flow. 
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Figure 5.5: Velocity profiles for        and     and           and   , for the Poiseuille flow. 
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6. Concluding remarks 

Rarefied gas dynamics is a very active field of research, driven by the need for accurate 

modeling and simulation in a number of fields, including vacuum technology, micro/nano-

electromechanical systems and microfluidics. Currently, the two leading methods for flow 

simulation are the deterministic solution of the Boltzmann equation with the appropriate 

kinetic models and the stochastic simulation using the DSMC method. The deterministic 

methods, although very accurate have proven to be problematic to apply to complex 

geometries or for complicated particle interaction, cases where the DSMC method is widely 

used. 

In the present work an introductory study on the application of particle-in-cell methods for 

deterministic simulation of rarefied gas flows is performed. Particle-in-cell methods have 

proven to be very effective and successful for the simulation of otherwise very demanding 

problems in the past and their application for rarefied flows is an interesting subject. In the 

context of this work, the basic aspects of Particle in Cell (PIC) codes for such flows are given 

and some basic algorithms are created. The algorithms developed are able to simulate 

compressible flows that depend on one physical space direction and one or two molecular 

velocity directions. 

In order to test the accuracy of the method three prototype problems were used, the 

compressible plane Couette flow, the non-linear Fourier flow between parallel plates and the 

non-linear Poiseuille flow between parallel plates. The numerical results obtained using the 

developed PIC codes were compared to results found in the literature and analytical solutions 

at the free molecular limit. In all cases a very good agreement has been observed. 

The accurate simulation of those three benchmark problems leads the way for the 

extension of the developed methodology. Some potential extensions include PIC codes for 

2D or 3D flows as well as for axisymmetric flows. Another interesting extension could be to 

solve the exact Boltzmann equation, without using kinetic models and instead by estimating 

the collision integral using Monte Carlo integration.  
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