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Περίληψη 

Η διπλωματική εργασία που ακολουθεί, αναφέρεται στην διερεύνηση του 

προβλήματος ροής ρευστού διαμέσου ενός σύνθετου υλικού. Το υλικό αποτελείται 

από πορώδεις δέσμες κυκλικής διατομής, οι οποίες είναι τοποθετημένες σε 

τετραγωνική διάταξη μέσα στην μάζα. Κάθε δέσμη απαρτίζεται από ίνες απείρου 

μήκους παρατεταγμένες σε εξαγωνική διάταξη. Ανάμεσα στις ίνες υπάρχει κενό, το 

οποίο κατά την διαδικασία του πειράματος καλύπτεται από ρευστό. Προκείμενου να 

αποφευχθεί υπολογιστικό φορτίο, εκμεταλλευόμενοι την συμμετρία του 

προβλήματος, απλοποιούμε τη γεωμετρία και περιοριζόμαστε στην μελέτη ενός 

μοναδιαίου κελιού δύο διαστάσεων. Στο  κέντρο του υπάρχει μία δέσμη από ίνες 

τοποθετημένες σε εξαγωνική διάταξη. Για να φέρουμε εις πέρας τους απαραίτητους 

υπολογισμούς και τις προσομοιώσεις, θα χρησιμοποιηθεί το υπολογιστικό εργαλείο 

OpenFOAM. Το χαρακτηριστικό της ροής που ερευνάται σε όλη την έκταση της 

εργασίας είναι η υδραυλική διαπερατότητα. Πιο συγκεκριμένα, θα εξεταστεί 

υπολογιστικά η περίπτωση που το υγρό ρέει ανάμεσα από τις ίνες, χωρίς να 

απορροφάται. Στη συνέχεια, χρησιμοποιούνται εμπειρικοί τύποι ώστε να 

επαληθεύουν οι πειραματικοί υπολογισμοί. Αυτή η διαδικασία στοχεύει στη βέλτιστη 

δυνατή εξοικείωση με τον OpenFOAM  και τα υπόλοιπα προγράμματα που 

χρησιμοποιούνται. Επιπλέον, εξετάζεται η περίπτωση ροής μέσα από το μοναδιαίο 

κελί με παράλληλη απορρόφηση των ινών. Σε αυτό το ενδεχόμενο παρατηρείται 

διόγκωση των ινών με αποτέλεσμα την αύξηση του στερεού κλάσματος όγκου μέσα 

στην δέσμη. Πρέπει να σημειωθεί ότι η απορρόφηση σταματά μόλις οι ίνες έρθουν σε 

επαφή μεταξύ τους, καθώς τότε είναι πρακτικά αδύνατη η ροή ρευστού ανάμεσα 

τους. Επομένως, με την συνεχή απορρόφηση  το πορώδες της δέσμης μειώνεται, 

γεγονός που φαίνεται να επηρεάζει την διαπερατότητα. Τελικώς, μέσα από 

γραφήματα και διαγράμματα, προσπαθήσουμε να χαρακτηρίσουμε και να 

προσδιορίσουμε την συμπεριφορά της ροής και της διαπερατότητας σε σχέση με τον 

χρόνο απορρόφησης. 
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Abstract. 

The following thesis is related to a computational analysis of viscous flow through a 

fibrous media. The latter are usually idealized as made up of square arrays of bundles 

in which individual fibers are packed I hexagonal arrangements. This dual porosity 

problem is characterized by different inter- and intra-tow porosities. In such 

arrangements a bi dimensional unit cell can be identified. Flow analysis through a unit 

cell provides the ability to compute the hydraulic permeability. To complete the 

necessary calculations and simulations, OpenFOAM will be used. In the first part the 

flow through rigid porous media, with no absorption, is examined. An empirical 

correlation will be used to verify the numerical experiments. This process aims at 

optimizing familiarity with OpenFOAM and rest of the programs that are used. In the 

second and last part the case flow through swelling porous media is studied. Swelling 

consists the result of fluid absorption by the fibers and seems to affect porosity and 

permeability. Through a number of simulations we try to determine behaviors of flow 

and permeability with respect to the time of absorption. 
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Chapter 1 

1.1Porosity 

Not all tangible objects are solid. Many of them contain void spaces. The percentage 

of the object that is empty of material defined as porosity. The visual symbol of 

porosity isφ and described mathematically by the following equation (Fetter, 2000). 

    𝜑 =
𝑉𝑣𝑜𝑖𝑑

𝑉𝑡𝑜𝑡𝑎𝑙
     (1.1) 

 where 

φ: porosity,[percentage] 

𝑉𝑣𝑜𝑖𝑑 : Volume of empty space of material, [𝑚3] 

𝑉𝑡𝑜𝑡𝑎𝑙 : Unit volume of material (solid and void), [𝑚3] 

We can also calculate the percentage of the object that is solid material. It is defined 

as volume fraction, symbolized with𝛷, and described mathematically by the equation  

    𝛷 =
𝑉𝑠

𝑉𝑡𝑜𝑡𝑎𝑙
     (1.2) 

𝛷 : Volume fraction, [percentage] 

𝑉𝑠: Volume of solid material [𝑚3] 
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The unit volume of material constitutes the sum of the void and solid space of the 

material: 

    𝑉𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑣𝑜𝑖𝑑 + 𝑉𝑠    (1.3) 

Using the above equations we infer the following formula, which connects porosity 

and volumetric flow rate 

    𝛷 = 1 − 𝜑     (1.4) 

1.2 Permeability 

We have seen that some material contain a percentage of empty space and thus exhibit 

porosity. The quantity (amount) of the moving liquid or gas is dependent upon the 

porosity.  For example, when the pores are too small the liquid flows through the 

medium with difficulty(Fetter, 2000). The ability of a porous media to allow fluids or 

gasses pass through is measured by coefficient called Permeability. The S.I. unit 

is 𝑚2. The study of permeability and its characteristics can contribute to studies 

relating to disciplines such as biology, industrial production or geology. Permeability 

depends on the materials that are interacting such as a fluid that cannot pass through a 

material while a gas can easily. For example, carbonate in a soft drink can diffuse, 

even very slowly, out of the plastic bottles, which is not the case with glass or 

aluminum bottles. By the same token, various fluids with different characteristics may 

have different permeability to the same obstacle. In the case of a porous medium we 

study, permeability is affected by porosity (Papathanasiou, 2001). Porous materials 

that have the ability to absorb a percentage of the flowing fluid swell. The result is 

that the material's porosity changes over time. Such swelling porous media will be 

studied, in order to observe how permeability behaves.  
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1.3 Swelling 

The majority of natural fiber materials undergo swelling when a wetting liquid comes 

in contact with the fiber. The crystallinity plays a major role in the swelling process. 

The amount of liquid retained by swollen fiber bundles varies from 5% to 100% of 

dry weight fibers. The retained liquid changes the porosity, the radius and the 

permeability of fibrous porous media. 

The wetting of the fibers set the start of swelling and ends when the fibers reach an 

equilibrium state. In conclusion swelling is a time related process which means that 

the porosity, capillary pore radius and permeability are functions of time. So the 

governing equations we are going to use should be modified to include the swelling 

effects, since the parameters of the fibrous media change due to swelling (Masoodi & 

Pillai, 2010). 

Swelling constitutes a special phenomenon that we encounter in our everyday life in 

wicking applications and products such as diapers, wipes and commercial wicks. 

Even inflammation is often characterized by swelling. When a finger start bleeding, 

for example, biochemical processes release proteins as "emergency signals" that bring 

in your body's immune cells, nutrients and hormones to fix the problem. Arteries 

swell, blood flow increases, and capillaries become more permeable so that, nutrients, 

white blood cells and hormones can move into the gap between cells. Hormones 

create blood clots to repair the damaged tissue and remove them when healing is 

completed. Swelling happens because fluid accompanies the hormones, nutrients and 

(white) blood cells. The fluid diffuses into the area and causes the swelling that can be 

the reason of increased pressure(Szalay, 2015). 
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1.4Study of Cases 

The cases we study is devoted to a computational analysis of viscous flow of 

Newtonian liquid across unidirectional (one way) arrays of infinite fiber bundles. In 

the analysis of flow through fibrous media, the latter are usually idealized as made up 

of cylinders arranged in space in a defined periodic order. We consider systems made 

of infinitely long cylindrical bundles arranged in a square packing and with their axes 

perpendicular to the direction of flow. Each bundle consists of a number N of solid 

individual cylindrical filaments of radius  𝑅𝑓. Permeability is independent of the 

number of fibers when it is large (N>300) and depends exclusively on the porosity. 

These filaments are arranged in hexagonal packing within the bundle (Fig.1). 

Therefore such systems are characterized by an inter-tow (gaps between bundles) and 

intra-tows (void space within a bundle) porosity. Inter-tow and intra-tows porosities 

symbolized with 𝜑𝑖 and 𝜑𝑡 respectively. At low values of 𝜑𝑡 practically no fluid 

passes through the bundle. In such arrangements, a bi-dimensional unit cell(Martins, 

Laranjeira, Braga, & Mata, 2009) can be identified (Fig.2). In such a case the flow of 

liquid is characterized by the Darcy’s law and the single phase continuity equation. 

 

Figure 1: Infinite bundles in square packing, filled with hexagonal arranged fibers. The square of two 
dimensions (gray color) formed is a unit cell. (Visualized using Salome software) 
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Figure 2: A two-dimensional unit cell (Visualized using Salome software) 

1.4.1 Flow across a rigid porous media 

In this case we study a flow through porous media that does not affect the fiber 

diameters. We ignore liquid absorption and swelling during the mold filling process. 

Furthermore the permeability remains the same (constant) in time. Therefore applies 

the following flow balance equation: 

    𝑄𝑖𝑛𝑙𝑒𝑡 = 𝑄𝑜𝑢𝑡𝑙𝑒𝑡    (1.5) 

Where 

𝑄𝑖𝑛𝑙𝑒𝑡: Volume flowrate of liquid at input[𝑚3 𝑠⁄ ] 

𝑄𝑜𝑢𝑡𝑙𝑒𝑡: Volume flowrate of liquid at output[𝑚3 𝑠⁄ ] 
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1.4.2 Flow across a swelling porous media. 

Applying the same approach with the exception that the fibrous media absorbs a fix 

percentage of the flowing liquid. The absorption leads to a swelling media during the 

mold filling process and as a result a continuous increase of the fiber diameters in 

time. So the following flow balance equation applies:  

    𝑄𝑖𝑛𝑙𝑒𝑡 = 𝑄𝑎𝑏 + 𝑄𝑜𝑢𝑡𝑙𝑒𝑡   (1.6) 

Where 

𝑄𝑎𝑏: Volume flowrate of liquid that the porous medium absorbs [𝑚3 𝑠⁄ ] 

1.5 Darcy’s law equation 

A single-phase flow of a Newtonian liquid in porous media can be described by 

Darcy’s law (Darcy,1856 as cited in (Vafai, 2015)) and the continuity equation. 

(Assume that we have a flow in the direction of the length of the porous medium and 

also this direction represents the x direction of a Cartesian coordinate system) 

Darcy’s law: 

    U =
K

𝜇

𝑑𝑃

dx
     (1.7) 

where 

𝑈 =velocity of liquid through the porous medium [𝑚/𝑠] 

𝐴 = cross-sectional are of sample [𝑚2] 
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𝐾 = permeability [𝑚2] 

𝜇 = viscosity  [𝑃𝑎 ∙ 𝑠] 

𝑑𝑃

dx
= derivative of pressure with respect to x direction 

Darcy’s law was established under certain circumstances: 

• Laminar flow  

• Steady-state flow conditions  

• Homogenous, isotherm and incompressible fluid 

• Neglecting kinetic energy 

In order to get this liquid to flow we need to apply pressure difference across this x 

direction (in order to get it to flow in x direction). Actually we are setting pressure 

boundary conditions. 

𝑃 = 𝑃1 𝑎𝑡 𝑥 = 0 

And 

𝑃 = 𝑃2 𝑎𝑡 𝑥 = 𝐿 

Darcy’s equation can be written as: 

     
𝑈𝜇

𝐴𝐾
dx = dP    (1.8) 

By the integration of the above equation, we get: 

     ∫
𝑈𝜇

𝐴𝐾
dx

𝑥=𝐿

𝑥=0
= ∫ dP

𝑃2

𝑃1
   (1.9) 
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In order to continue the solution of the above equation we must deepen the coefficient 

Q with the help of the equation of continuity, which is modeled on the previous 

assumptions. 

    ∇(𝑈𝜌) = 0     (1.10) 

Where 

𝜌 = 𝑙𝑖𝑞𝑢𝑖𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦[𝑘𝑔 𝑚3⁄ ] 

𝑈 = 𝑓𝑙𝑢𝑖𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 [𝑚 𝑠⁄ ] 

The density is fixed because the fluid is incompressible so the final form of the 

continuity equation is:   

    ∇(𝑈) = 0     (1.11) 

Zero divergence means that the amount going into a region equals the amount coming 

out. It is further concluded that the volumetric flow rate may be outside the equation's 

(1.9) totality as a constant value. Volumetric flow rate can alternative can be defined 

by: 

    𝑄 = ∬ 𝑈𝑑𝐴
𝐴

     (1.12) 

and for the flat cross-section we study the above equation can be written as : 

    𝑄 = 𝑈 ∙ 𝐴     (1.13) 

Consequently the Darcy’s law equation for a rigid porous medium can be written in 

the following forms: 
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    𝑄 = −𝐴
𝐾

𝜇

𝛥𝑃

𝐿
     (1.14) 

Or 

    𝑈 = −
𝐾

𝜇

𝛥𝑃

𝐿
     (1.15) 

In the case of a two-dimensional geometry or of a much greater width (infinite) than 

the length and height, the Darcy’s law must be differentiated. Such a category we are 

studying. The flow rate per unit width must be entered in the formula: 

    𝑞 =
𝑄

𝑊
  [𝑚2 𝑠⁄ ]    (1.16) 

where W=width of the medium [m] 

Therefore, by combining the equations we take the law of Darcy that can be applied to 

a unit cell of two dimensions. 

    𝐾 = −𝑞
𝜇

𝛨

𝐿

𝛥𝛲
     (1.17) 

Consequently Darcy's Law is valid only for laminar flow, which occurs for Reynold's 

number less than 1. Reynold’s number is a dimensionless quantity in fluid mechanics 

that helps to predict flow patterns in different fluid flow situations and for flow 

through a unit cell is defined as(Zhang, Simon, Li, & Van de Ven, 2015): 

    𝑅𝑒 =
𝜌𝑈𝐿

𝜇
=

𝑈𝐿

𝜈
    (1.18) 
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where 

ρ = fluid density [kg/m3] 

ν = kinematic viscosity [m2/s] 

U =fluid velocity [m/s] 

In first step our main goal is to calculate the permeability and compare the numerical 

results with analytical models for flow through rigid porous medium. The flow rate 

through a cell can be obtained by integration of the velocity profile along the inlet or 

outlet boundaries. The velocity profile is obtained by solving the pertinent flow 

problem. We use OpenFOAM, a computer-aided design model which can model 

porous media flows. In chapter 3 is studied a single phase flow though porous 

medium based on Darcy’s law without absorption. This means that the volume of 

fluid that passes through porous media per unit of time at the inlet is equal to the 

outlet.  The Reynold’s number is equal to zero because we study Newtonian liquids.  

Furthermore the cell geometry is standard (1x1) [in millimeters].  In chapter 4 we 

studied the flow of Newtonian liquid into a swelling porous medium. The geometry 

characteristics of the cell remain the same with the non-swelling study.  
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Chapter 2 

2.1 Introduction to OpenFOAM 

OpenFOAM foremost constitutes a C++ library (a toolbox), used to create 

executables, known as applications. The applications are divided into two 

parts/categories. The first category, the solvers, is designed to solve a specific 

problem in continuum mechanics; on the other the second category, the utilities, is 

designed to perform tasks that involve data manipulation. The OpenFOAM 

distribution falls into numerous solvers and utilities covering a wide range of 

problems (Greenshields, 2016). 

User can develop a direct relationship with the program, as they create additional 

solvers and utilities. OpenFOAM provides pre-processing and post-processing 

environments, while between the two processes the process of resolving takes place. 

The generally structure is illustrated in Figure 3. 

 

Figure 3: Overview of OpenFOAM operation (Greenshields,2015) 

OpenFOAM provides users with tutorial and instructions in order to help familiarize 

users with the environment. In addition, in terms of engraving and projection of the 

outcomes, OpenFOAM provides a design tool called as ParaView. 
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Moreover OpenFOAM approaches many different types of problems which render 

impossible to have only a general form of solver. Each one of the solvers corresponds 

to a different problem. Below is briefly outlined the range of the cases that solvers are 

applicable: 

• Incompressible flow 

• Compressible flow  

• Multiphase flow 

• Direct Numerical Simulation  

• Combustion 

• Heat transfer  

• Molecular dynamic methods 

• Electromagnetism 

• Stress analysis of solids 

• Finance 

• Monte Carlo methods simulation 

 

2.2 Familiarity with the environment 

This part describes how to pre-process, run and post-process a case involving 

incompressible flow in a bi-dimensional unit cell that in its center are located a 

number of solid cylindrical filaments arranged in periodic order (Fig.4). A pressure 

value is set at the left edge while at the right this value is zero. This pressure 

difference created between the two borders causes the flow of fluid to start. The flow 

is supposed laminar and will be worked out on a uniform mesh using the simpleFoam 

solver for laminar, incompressible liquid movement.  SimpleFoam is a steady state 

solver that is using the SIMPLE (Semi-Implicit Method for Pressure-Linked 

Equations) algorithm. Finally the fluid that flows across the unit cell is set to be 

Newtonian fluid this result in a low and fixed Reynolds number.  
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Figure 4: Filaments placed in the center of a cell in a periodic arrangement 

 

2.2.1 SimpleFoam 

Generally the flow of fluids is a phenomenon described by means of conservation of 

mass, momentum and energy. Because we have assumed incompressible flow the 

density is constant so the continuity equation limits to  

∇ · �̅� = 0 

�̅� = velocity [m/s] 

On the other hand, we have the Navier-stokes equations in a three-dimensional 

system, ignoring the effects of gravity, assuming permanent conditions and 

uncompressed fluid; we end up with the following equation 

L=1mm 

H=1mm 

P=1KPa 

 

P=0KPa 
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𝜌�̅�∇�̅� = −∇𝑝 + ∇ · 𝜏̿ 

where 

p=pressure 

ρ=density 

𝜏̿ = 𝜇(∇�̅� + ∇�̅�𝑇)

= Stoke′stress constitutive equation for incompressible viscous fluid 

As we mentioned earlier SimpleFoam uses the SIMPLE algorithm which allows 

coupling the Navier-Stokes equations with an iterative proceeding 

1. Setting boundary conditions. 

2. Solve the discretized momentum equation to compute the intermediate 

velocity field. 

3. Compute the mass fluxes at the cells faces. 

4. Solve the pressure equation and apply under-relaxation. 

5. Correct the mass fluxes at the cell faces. 

6. Correct the velocities on the basis of the new pressure field. 

7. Update the boundary conditions. 

8. Repeat till convergence. 

 

2.2.1.1 Pre-Processing 

Data for mesh, physical properties, fields, control parameters etc are involved in a 

case simulation. 
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Mesh Generation: 

The operations take place in a 3 dimensional Cartesian system. The geometries are 

also generated in 3D. OpenFOAM is a computational tool that is predetermined to 

solve in cases where its geometry is expanded into three dimensions. But it can be 

formulated to solve two-dimensional problems by defining an empty border in the 

third dimension boundary conditions, for which no solution is expected. OpenFOAM 

provides a mesh generator, blockMesh, which generates meshes form a description 

located in system folder, blockMeshDict file. Mesh generates by running on this file. 

134. frontAndBack 

135. { 

136. type empty; 

137. faces 

138. ( 

139. (22 28 29 23) 

140. (23 29 30 24) 

141. (24 30 31 25) 

142. (26 32 33 27) 

143. (27 33 34 28) 

144. (28 34 35 29) 

145. (29 35 36 30) 

146. (30 36 37 31) 

147. (32 38 39 33) 

148. (33 39 40 34) 

149. (34 40 41 35) 

150. (35 41 42 36) 

151. (36 42 43 37) 

152. (0 1 7 6) 

153. (1 2 8 7) 

154. (2 3 9 8) 

155. (4 5 11 10) 

156. (5 6 12 11) 

157. (6 7 13 12) 

158. (7 8 14 13) 

159. (8 9 15 14) 

160. (10 11 17 16) 

161. (11 12 18 17) 

162. (12 13 19 18) 

163. (13 14 20 19) 

164. (14 15 21 20) 

165. ); 

166. } 
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Boundary conditions: 

Each particular application will require appropriate conditions in order to various 

constants and functions of the solutions. The next step immediately afterwards the 

creation of the grid, the initial fields those are set up for our case, have to be checked. 

The case is plant to begin at time t=0s. That is the reason the initial field data is 

stored in directory called 0. Sub-directory 0 contains the pressure and velocity fields 

and the files named p and U respectively. In these files we can make interventions and 

changes in the initial and border conditions. Initial conditions amount to prescribe 

values of the unknowns at the start.  For example we examine file p: 

 

1.  dimensions      [0 2 -2 0 0 0 0]; 
2.   
3.  internalField   uniform 0; 
4.   
5.  boundaryField 
6.  { 
7.  left 
8.  { 
9.  type            fixedValue; 
10.  value           uniform 1; 
11.  } 
12.   
13.  right 
14.  { 
15.  type            fixedValue; 
16.  value           uniform 0; 
17.  } 
18.   
19.  top 
20.  { 
21.  type            cyclicAMI; 
22.  } 
23.   
24.  bottom 
25.  { 
26.  type            cyclicAMI; 
27.  } 
28.   
29.  internal 
30.  { 
31.  type            zeroGradient; 
32.  } 
33.   
34.  front 
35.  { 
36.  type   empty; 

37.  } 
38.   
39.  back 
40.  { 
41.  type   empty; 

42.  } 
43.  } 
44.   
45.  // ************************************************************************* // 
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cyclicAMI: enables two patched whose faces are non matching to be treated as they 

are  physically connected. This boundary condition is usually used for sliding 

interface in rotating geometry cases.  

zeroGradient: This boundary condition extrapolates the pressure (generally every 

quantity) to the boundary patch from the nearest cell value. The meaning is that the 

pressure is developed and its gradient is equal to zero in direction perpendicular to the 

boundary(
𝜕𝑃

𝜕𝑥
= 0). 

fixedValue: value of p is specified by a value ( In our case at left boundary field p=1 

and at right p=0 𝑚2 𝑠2⁄ ) 

empty: This condition characterizes the front and rear planes of the two-dimensional 

geometry, so they are posed as voids 

Physical properties: 

The physical properties are stored in directories whose name contains the word 

“Properties”. For a simpleFoam case, the property that has to be specifies is the 

kinematic viscosity, stored in transportProperties. In the file the kinematic viscosity,ν, 

is symbolized as nu. The case we study is characterized by low Reynolds number 

equal to 10−3 and defined as: 

𝑅𝑒 =
𝐿|𝑈|

𝜈
 

 where 

𝐿 is the characteristic length 
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|𝑈| is the velocity 

ν is the kinematic viscosity 

Here  𝐿 = 1 𝑚𝑚 ,|𝑈| = 1 𝑚/𝑠, so that for 𝑅𝑒 = 10−3, 𝜈 = 1 𝑚2𝑠−1 . Below is 

specified the file entry for kinematic viscosity: 

20.   

21.  nu              [0 2 -1 0 0 0 0] 1e-00; 

22.   

23.  // *************************************************************** // 

Control: 

Controlling time, reading and writing of the solution data are important factors and 

read in, as input data, from the controlDict. This is actually a case control file located 

in system directory. The run stats at time t=0 s, consequently we set the startForm as 

startTime and afterwards starTime specified to be zero. Also we set as endTime 2000 

steps if the case we are studying does not converge. Below are shown, in this case,the 

entries in the controlDict: 

17.  

18. application     simpleFoam; 

19.  

20. startFrom       startTime; 

21.  

22. startTime       0; 

23.  

24. stopAt          endTime; 

25.  

26. endTime         2000; 

27.  

28. deltaT          1; 

29.  

30. writeControl    timeStep; 

31.  

32. writeInterval   1; 

33.  
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34. purgeWrite      2; 

35.  

36. writeFormat     binary; 

37.  

38. writePrecision  6; 

39.  

40. writeCompression off; 

41.  

42. timeFormat      general; 

43.  

44. timePrecision   6; 

45.  

46. runTimeModifiable true; 

47.  

48. //functions 

49. //{ 

50. //   #includeFunc streamlines 

51. //} 

52.  

53. // ************************************************************************* // 

 

2.3.2.2 Running application 

We choose to run OpenFOAM applications in the foreground, as a Linux executable. 

On this occasion we run simpleFoam solver, which is executed by entering the case 

directory and typing to the terminal window: 

simpleFoam 

2.3.2.3 Post-processing 

By achieving convergence the results are saved to time directories and via a post-

processing open-source tool, named ParaView (Fig.5), they can be viewed. The 

application that openFOAM uses for reading the cases is identified as paraFoam and it 

is running by typing paraFoam on the command line. It is essentially an extension of 

ParaView only for openFOAM cases. 
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Figure 5:  ParaView environment that the user does the appropriate processes he wants (Here is for example 
the velocity profile of a unit cell) 

 

With the right use and experience paraView we can produce vector and streamline 

plots, through which we draw information on the problem. Furthermore by integrating 

over the inlet or the outlet surface we take the volumetric flow rate, Q. There is also 

an alternative solution to get the volumetric flow rate, by typing on the command line 

the next command. 

postProcess -func 'flowRatePatch(name=right)' –latestTime 

This function calculates the flow rate at the outlet for the latest simulation stored in 

time directory. 
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Chapter 3 

In this section a validation of the solver simpleFoam solving simple cases is done. 

The results of the numerical simulation are compared with analytical expressions. 

Subsequently the permeability is evaluated analyzing the solution accuracy for 

different configurations of the SIMPLE algorithm. 

3.1 Case description 

The case consist long cylindrical bundles, arranged in a square packing, and closed 

system. Within each bundle are located a number of 𝑁𝑓 = 500 rigid individual 

cylindrical filaments, arranged in hexagonal packing, of radius r. Our study is focuses 

on one of these square packaged bundles, which forms a unit cell. We assume that the 

dimensions of the cell are L=H=1mm, where L and H represent the length and height 

respectively. Priority constitutes to give substance to the problem and to do so, it must 

first be determined the volume fraction of the bundle (𝛷𝑖) and of each individual 

filament (𝛷𝑡). The volume fraction of the bundle in a two dimensional unit cell is 

defined as: 

    𝛷𝑖 =
𝜋𝑅𝑡

2

𝐻2      (3.1) 

where Rt is the radius of the tow. The volume fraction of the filaments is defined as: 

    𝛷𝑡 = 𝑁𝑓 [
𝑅𝑓

𝑅𝑡
]

2

     (3.2) 

where 𝑁𝑓 is the number and  Rf the radius of the cylindrical filaments in each tow.  

In order to solve the problem we will create a program that will accept the number of 

fibers, and volume fractions of the bundle and filaments as data. It will be able to 

create the cell containing the bundle and the fibers. Furthermore the program will be 
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capable of placing the filaments inside the bundle in hexagonal array. Follows an 

analysis of how the program places the fibers.  

 

Figure 6: 1D structure for hexagonal arrays of filaments. 

In Figure 6 appears a lattice of the filaments that are packed in hexagonal array. The 

horizontal distance between their centers is called L while the vertical h. To develop a 

relationship between these two dimensions, we need to deepen the geometry of the 

image. It is observed that between the two circles of the lower layer and the circle in 

the middle layer are created two isosceles right triangles, which allows us to apply the 

Pythagoras theorem to one of them and as a result we get: 

     ℎ = 𝐿
√3

2
    (3.3) 

In addition, calculating the area of the square created by joining the outer centers 

results: 

  4
𝜋𝑅𝑓

2

4
+ 𝜋𝑅𝑓

2 = 𝛷𝑡 ∙ 𝐿 ∙ 2ℎ → 𝐿 = (
2𝜋𝑅𝑓

2

𝛷𝑡√3
)

1

2
  (3.4) 
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The program works with coordinates, so starting from the point opposite the center of 

the big circle begins to place the fibers along the horizontal axis at a distance L 

between them. Just before the fibers get out of the bundle, the process of horizontal 

placement stops. Then we move at a height h in the next up and down levels and start 

the horizontal placement process on the new levels. With the only difference that the 

first point at which the positioning begins, shifts horizontally by L/2 relative to the 

first point from the previous layer. This happens only at the first point of each layer, 

so the distance between every fiber in each plane remains L. The output of the 

program is .geo format file, so mesh can be generated and be processed by the 

OpenFOAM. Even though we work in two dimensions, the program produces a three-

dimensional cell (L=H=W=1mm) in order to be able to run on the openFOAM (see 

Chapter 2.2).A part of the code is place in Appendix A.  

Ultimately, the user only needs to give values in the volume fractions and the number 

of the filaments and will get a visual result of the case we are studying as it appears in 

the Figure 7. 

 

Figure 7: Visual result of the program that creates the unit cell 

The user will notice that the number of filaments in the bundle, at fixed 𝑅𝑓 and 𝑅𝑓 , 

may vary a bit along with 𝜑𝑖  and 𝜑𝑡  because of the way the bundle is filled.  
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3.2 Parameters 

We are studying linear flow of a Newtonian fluid. Thus the following assumptions are 

made: 

Density: ρ= 103[𝑘𝑔 𝑚3⁄ ] 

Reynolds number: Re = 10−3 

Dynamic viscosity: μ=103[𝑃𝑎 ∙ 𝑠 = 𝑘𝑔 (𝑠 ∙ 𝑚)⁄ ] , calculated from eq. (1.18)  

3.3 Boundary conditions 

Pressure 

In order to make the fluid flow we have to apply pressure difference on the inlet (left 

border) and outlet (right border) .With openFOAM it is possible to determine the 

kinematic pressure values in the boundary layers border.  The kinematic pressure is 

given by the following relationship: 

     𝑝 = 𝜌 ∙ 𝑃    (3.5) 

Where 

𝑝= Kinematic Pressure [𝑚2 𝑠2⁄ ] 

We choose to set: 

𝑝 = 1 𝑎𝑡 𝑙𝑒𝑓𝑡 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

And 
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𝑝 = 0 𝑎𝑡 𝑙𝑒𝑓𝑡 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

That means the pressure difference 𝛥𝑝 = −1 𝑚2 𝑠2⁄  or 𝛥𝑃 = −1000 𝑃𝑎𝑠𝑐𝑎𝑙 

Velocity 

  The case we study has single phase flow across x direction as identifying trait. That 

means that setting the velocity in such direction perpendicular to the boundary, is a 

priority. That requirement is satisfied by setting the gradient of velocity equal to zero 

in x direction. 

     
𝜕𝑈

𝜕𝑥
= 0     (3.6) 

And because we study a plane cross-sectional that also means: 

     
𝜕𝑄

𝜕𝑥
= 0     (3.7) 

In detail, the boundary conditions directly applicable to Openfoam are set out in the 

Appendix B. 

3.4Mesh and Mesh Dependency 

Mesh generates a discrete illustration of the geometry we are dealing with. By 

dividing gap into elements, makes possible for the equations to be estimated. A 

boundary zone is able to depict inlet or outlet boundaries within the geometry. Mesh 

generates with utilizing the mesh generator provided supplied with OpenFOAM. This 

command runs the Gmsh, an implement that converts the .geo file format geometries, 

which have been created with the visual basic program, into .msh file format. 

Numerical results may vary depending on the elements number we are using. The 

more elements exist in our mesh the less is the grid spacing. The finest grid solution is 
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considered to be the one with zero grid spacing.  The computational load is heavy 

because simulations are part of a design study and more elements means additional 

calculations. Thus suitable solution will be a reliable and coarser grid, which as a 

result decreases considerably the time required for the simulations. In order to find the 

appropriate grid, spatial convergence must be studied. For the study of spatial 

convergence a method based on Richardson extrapolation is chosen(Slater, 2006). 

3.4.1Spatial grid convergence 

The Richardson extrapolation method allows us to obtain the highest order estimate 

for the value of the unknown (f) at zero grid spacing, from a range of lower order 

values, which are obtained using progressively finer meshes. 

The value of a function f yielded by a simulation can be expressed by the series: 

   𝑓 = 𝑓ℎ=0 + 𝑔1ℎ + 𝑔2ℎ2 + 𝑔3ℎ3 +  …  (3.8) 

where 

h is the grid spacing  

g1, g2, and g3 are functions independent of h. 

𝑓ℎ=0 is the continuum value at zero grid spacing. 

With the assumption of n-order solution and by computing the quantity f on two grids 

of spacing ℎ1 and ℎ2  where ℎ1<ℎ2 , a generalized form of Richardson extrapolation, 

that estimates the continuum value at zero grid spacing, is: 

    𝑓ℎ=0 ≅ 𝑓1 +
𝑓1−𝑓2

𝑟𝑛−1
    (3.9) 



37 

 

Where r is the grid refinement ratio: 𝑟 = ℎ2 ℎ1⁄  

For a large number of CFD computations are to be performed just like in the case we 

study, we may wish to use the coarser grid h. The continuum value 𝑓ℎ=0  considered 

to be n+1 order accurate. Richardson extrapolation can be applied for the solution at 

each grid point. 

The estimated fraction error for 𝑓2 coefficient defined as: 

    𝐸2 =

𝑓2−𝑓1
𝑓1

∙𝑟𝑛

𝑟𝑛      (3.10) 

where 
𝑓2−𝑓1

𝑓1
= 𝜀 is the relative error. 

The order of convergence n for three levels of grid is defined as: 

    𝑛 = 𝑙𝑛 (
𝑓3−𝑓2

𝑓2−𝑓1
) 𝑙𝑛(𝑟)⁄     (3.11) 

In the following we will assume that f is the volumetric flow rate calculated at the 

outlet border. The 𝑓ℎ=0 thenis an estimate of quantity f in the limit as the grid spacing 

goes to zero. By using 𝑓ℎ=0  we report the value as the finest estimate of another 

volumetric flow rate f with grid spacing h≠0 from the CFD study; an estimation of 

the discretization error between 𝑓ℎ=0  and f can also be obtained. 

By using a consistent numerical analysis that supplies an approach of the actual result 

as the grid resolution approaches zero (Roache, 1998). This analysis is based on a grid 

convergence index (GCV) that grants with a more consistent manner in presenting the 

results of grid convergence studies. The GCI can be computed by using two or three 

grid levels depending on the accuracy of the estimation of the order of the 

convergence we want to succeed. 
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The GCI measures the percentage the computed volumetric flow rate Q is away the 

asymptotic numerical value 𝑄ℎ=0. This percentage indicates the distance between the 

solution and the asymptotic value. If GCI has a minor value then the computation is 

within the asymptotic range. GCI on the fine grid is defined as: 

    𝐺𝐶𝐼𝑓𝑖𝑛𝑒 =
𝐹𝑆|𝜀|

(𝑟𝑛−1)
    (3.12) 

where 𝐹𝑆 is a factor of safety equal to 3.0 or 1.25 for two or three grid comparison 

respectively. The GCI on the coarser grid: 

   𝐺𝐶𝐼𝑐𝑜𝑎𝑟𝑠𝑒𝑟 =
𝑟𝑛𝐹𝑆|𝜀|

(𝑟𝑛−1)
= 𝑟𝑛𝐺𝐶𝐼12   (3.13) 

With the observation of two GCI values, computed over three grids, we can verify if 

each level of grid yield solutions which belong to the asymptotic range of 

convergence. 

   𝐺𝐶𝐼23 = 𝑟𝑛𝐺𝐶𝐼12 →  𝐺𝐶𝐼23 (𝑟𝑛𝐺𝐶𝐼12) = 1⁄   (3.14) 

If the result of the equation 𝐺𝐶𝐼23 (𝑟𝑛𝐺𝐶𝐼12) ≈ 1⁄  is true then the three grids selected 

can be considered reliable. 

For the case we study the finer grid considered to be twofold the previous coarser grid 

(ℎ3 = 2ℎ2 = 4ℎ1 → 𝑟 = 2). Mesh dependency study takes place in a unit cell with 

𝜑𝑖 = 0.5 and 𝜑𝑡 = 0.7 inter- and intra-tow porosities respectively.  
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Grid Normalized Grid Spacing Flow rate per unit width, q [2/𝑠] 

1 1 2.65373e-03 

2 2 2.66144e-03 

3 4 2.68732e-03 

Table 1: Contains flow rates for three normalized meshes. 

The first step is to determine the order of convergence adapting the eq. (3.11) to the 

numerical results of volumetric flow rate. 

𝑛 =
ln (

2.86732−2.66144

2.66144−2.65373
)

ln(2)
= 1.74705 

Now we are able to calculate the volumetric flow rate at zero grid spacing using the 

eq. (3.9): 

𝑄ℎ=0 = 2.650458 ∙ 10−3 

We have selected to estimation Q by using three levels of grid so the factor of safety 

has to be 𝐹𝑆 = 1.5 .Below are calculated the GCI for the grids 1 and 2 as well for 

grids 2 and 3, using eq. (3.13): 



40 

 

𝐺𝐶𝐼12 = 0.15409%  𝑎𝑛𝑑   𝐺𝐶𝐼23 = 0.515761% 

Now we are able to test if the calculated values were in the in the asymptotic range of 

convergence using the eq. (3.14)  

0.515761 (21.74705 ∙ 0.154097) = 1.002905⁄  

The result is approximately one. This means that solutions can be considered reliable 

since they are well within the asymptotic range of convergence. 

 

Figure 8: The convergence of computational results with respect to the normalized grid spacing 

Based on a FORTRAN program, we can save the computational load (see Appendix 

C). The program accepts the three solutions as data and calculates what we analyzed 

above. The output for the results of Table (1) is: 
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Figure 9: FORTRAN output 

An alternative method that in our case we will use it as verification is to solve the 

flow problem by continuously increasing the number of grid elements. Prices in the 

range of ±1% of the convergence value are considered acceptable.  Here is a diagram 

showing how the volumetric flow rate varies with the number of mesh elements. 

(Studying the same case with Richardson extrapolation) 

 

Figure 10: Convergence of values with the increase in the number of grid elements. 
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As we can notice the convergence value is the same. We choose to work our case 

study with grid number 3 from Richardson extrapolation study. The elements of this 

mesh are just over one hundred thousand and as a result we get reliable solutions and 

saving computational load. In the end, it is worth noting that the number of elements 

is varied depending on a coefficient, called Mesh.CharacteristicLengthFactor, which 

can be changed through the .geo format file.  
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3.5 Numerical Experiments 

Once the appropriate number of grid elements has been set, we can start running 

simulations for various loopholes. The cases we simulate will only differ in the 

proportion occupied by the porous medium in the unit cell (𝛷1 𝑜𝑟  𝜑𝑖) but also in the 

percentage occupied by the fibers within the porous medium (𝛷2 𝑜𝑟 𝜑𝑡). Having now 

defined all the parameters we can see the grid to understand how the void space of the 

cell divides into elements, before the simulation begins.  

 

Figure 11: Mesh of unit cell for 𝝋𝒊=0.5 and 𝝋𝒕=0.5 porosities 
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Figure 12: Zoom in mesh of unit cell for 𝝋𝒊=0.5 and 𝝋𝒕=0.5 

 

Figure 13: Zoom in internal mesh of unit cell for 𝝋𝒊=0.5 and 𝝋𝒕=0.5 
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After the simulation is completed, we can graphically present our numerical results 

using the design environment paraView. The following figures show how the velocity 

profile develops as well as how the relative drop in pressure. 

 

Figure 14: Velocity Profile of unit cell with 𝝋𝒊=0.5 and 𝝋𝒕=0.5 porosities 

 

Figure 15: Pressure Drop of unit cell with 𝝋𝒊=0.5 and 𝝋𝒕=0.5 porosities 
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Figure 16: Stream Lines of unit cell with 𝝋𝒊=0.5 and 𝝋𝒕=0.5 porosities 

 

 

Figure 17: Velocity Vectors (zoom in unit cell with 𝝋𝒊=0.5 and 𝝋𝒕=0.5 porosities) 
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Figure 18: Velocity Vectors (zoom in unit cell with 𝝋𝒊=0.5 and 𝝋𝒕=0.5 porosities). There is a recirculation of 
fluid 

At this stage, 60 cases were obtained, studied and their permeability calculated on the 

right border. To calculate the permeability we use Darcy’s law based eq. (1.17): 

𝑞 = −𝐻
𝐾

𝜇

𝛥𝑃

𝐿
 

From the data needed to calculate permeability most have already been reported and 

characterized. Only the volumetric flow rate is unknown, but as noted in a previous 

chapter, is calculated using Openfoam. Actually the flow rate is obtained by 

integration of the velocity profile along the outlet boundaries. By knowing that L =H 

=10−3m, A=10−6 𝑚2, μ = 103 Pa ∙ s, ΔP= −10−3 Pa, we are also able to determine 

the permeability K for all the 60 cases (see Appendix D). 

In the next section the experimental results will be compared to the analytical ones 

through Papathanasiou mathematical model.  
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3.6 Comparison with Earlier Results 

Numerical results are compared to earlier empirical models which have the form of a 

dimensionless correlation. The overall permeability (𝐾𝑝) of a dual porosity system is 

affected by the flow through the inter- and intra- tow spaces. The latter is related to 

the permeability of the tow itself (𝐾𝑡𝑜𝑤) while the former will be related to 

permeability of a system with the same inter-tow porosity but made up of 

impermeable tows (Ks).Consequently the overall permeability can be expressed in a 

general form: 

    𝐾𝑝=ƒ (𝐾𝑡𝑜𝑤, Ks)    (3.15) 

The work of Papathanasiou (Papathanasiou, 2001)suggests an empirical model with 

two adjustable parameters (α, n) to calculate the permeability,Kp,of the unit cell . 

   𝐾𝑝 = 𝐾𝑠 (1 + 𝛼 (
𝐾𝑠

𝐾𝑡𝑜𝑤
)

𝑛−1.5

)    (3.16) 

Or in terms of the dimensionless quantity 𝑌 = 𝐾𝑝𝐾𝑠
1 2⁄ (𝐾𝑡𝑜𝑤

3 2⁄ ) 

   𝑌 ≡
𝐾𝑝𝐾𝑠

0.5

𝐾𝑡𝑜𝑤
1.5 = 𝛼 (

𝐾𝑝

𝐾𝑡𝑜𝑤
)

𝑛

(1 +
1

𝛼
(

𝐾𝑠

𝐾𝑡𝑜𝑤
)

1.5−𝑛

)  (3.17) 

Ks and 𝐾𝑡𝑜𝑤can be calculated by Gebart’s model (Gebart,1992 as cited in (Ngo & 

Tamma, 2004)): 

    𝐾 = 𝐶 (√
𝑉𝑓𝑚𝑎𝑥

1−𝜑
− 1)

5 2⁄

𝑅2   (3.18) 
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Fiber arrangement 

C 𝑉𝑓𝑚𝑎𝑥 

Quadratic 

16

9𝜋√2
 

𝜋

4
 

Hexagonal 

16

9𝜋√6
 

𝜋

2√3
 

Table 2: Parameters of Permeability’s equation (3.18) 

To calculate Ks we set 𝜑 = 𝜑𝑖, 𝑅 = 𝑅𝑡𝑜𝑤 and 𝑉𝑓𝑚𝑎𝑥 =
𝜋

4
  depending on the square 

packing. To calculate 𝐾𝑡𝑜𝑤 we use 𝜑 = 𝜑𝑡, 𝑅 = 𝑅𝑓 and 𝑉𝑓𝑚𝑎𝑥 =
𝜋

2√3
  because of 

having hexagonal arrangement. The ratio Ks 𝐾𝑡𝑜𝑤⁄  is a function of 𝜑𝑖 and 𝜑𝑡 . For the 

SH arrays we study the ratio can be expressed in a general form: 

    
Ks

𝐾𝑡𝑜𝑤
= √3 (

𝑅𝑡𝑜𝑤

𝑅𝑓
)

2

(
√

𝜋

4(1−𝜑𝑖)
−1

√
𝜋

2√3(1−𝜑𝑡)
−1

)

2.5

  (3.19) 

In Appendix E the results of the equations (3.17), (3.18), (3.19) for a variety of 

porosity values, with parameters α= 3.0 and n = 0.56 are shown .It should be noted 

that the values for the parameters n and αobtained by Papathanasiou research. 

Figure 19 shows Papathanasiou model and experimental results plotted as suggested 

by eq.(3.17). 
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Figure 19: Numerical results for the permeability (K) of SQ arrays plotted on a log-log scale as suggested by 
Eq.(3.17) 

It can be seen that the numerical data collapse on a curve described by eq. (3.17) with 

α=3.0 and n=0.56. As anticipated, at high values of (Ks 𝐾𝑡𝑜𝑤⁄ ) the numerical data 

approach an asymptote with a slope of 1.5 on the log-log graph: 

  𝑌 → (
Ks

𝐾𝑡𝑜𝑤
)

1.5

    (3.20) 

At low values of (Ks 𝐾𝑡𝑜𝑤⁄ ) the higher scatter is observed and specially due to the 

lower values of inter-tow porosity 𝜑𝑖 combined also with lower values of intra-tow 

porosity  𝜑𝑡 . At low levels 𝜑𝑖  of, small changes in the location of the filaments in the 

parameter of the tow tend to have large influence on the flow resistance of the unit 

cell. Nevertheless this applies in individual cases and so most of the low values of 

(Ks 𝐾𝑡𝑜𝑤⁄ ) can be expressed as: 

  𝑌 → 𝛼 (
Ks

𝐾𝑡𝑜𝑤
)

𝑛−1.5

   (3.21) 
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As we can see at low values of (Ks 𝐾𝑡𝑜𝑤⁄ ), there is dependence on the parameters α 

and n, while at higher values this does not apply. 
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Chapter 4 

4.1 Case Description 

As in the previous chapter, it is also contemplated that the flow of a neuronal fluid 

through a unit cell. The difference is found in the boundary conditions applied to the 

bundle and hence to the fibers. Essentially, the fibers absorb a proportion of the fluid 

flowing between them. The consequence of this phenomenon is the increase in the 

diameter of the fibers, while the diameter of the bundle remains constant. The bundle 

stops absorbing fluid only when the radius of each filament begins to osculate each 

other. At that time, the bundle is filled and no fluid passes through the porous 

medium. For the purpose of this study, it is assumed that the flow at the input remains 

constant until the phenomenon is complete. As a consequence there is a limitation on 

the generalization of the results and is a flaw in the study. To make it more 

conspicuous, the fluid supply at the inlet for a stack of staggered dimensions is not 

entirely stable but varies within a small range that changes along with the fiber 

geometry. A representative value is selected within this range and is considered to be 

the flow rate used to determine the size absorbed by the porous medium. The rate of 

growth is linearly proportional to the percentage change of the volume fraction. 

 

Figure 20: Appears where flow rate is present 
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Therefore, for a steady flow, the absorbed flow rate per unit width is defined as: 

 𝑞𝑎𝑏 = 𝑎𝑏𝑟𝑎𝑡𝑒 ∙ 𝑞𝑖𝑛𝑙𝑒𝑡    (4.1) 

where 𝑎𝑏𝑟𝑎𝑡𝑒 =percent of inflow absorbed by the fibers. As mentioned in chapter 1.4, 

the amount of liquid retained by the expanded bundles of fibers ranges between 5.5 

and 100%. The flow rate is divided and absorbed equally by the fibers. With the 

assumption that the absorption of each fiber remains steady until complete blockage 

of the flow path by the expanding fibers, the rate of the increase of each fiber is given 

by the following equation: 

 𝛥𝑟 = 𝑞𝑎𝑏 (2𝜋𝑟𝛮𝑓)⁄     (4.1) 

where 𝛥𝑟 is the rate of the increase of the radius measured in m/s. Here it is also 

assumed that the density of the absorbed fluid is the same as the density of the 

flowing fluid, in other words, that the absorption coefficient of Pillai et al (2010) is 1. 

At each time step the radius value is defined by: 

 𝑟𝑡 = 𝑑𝑡 ∙ 𝛥𝑟 + 𝑟0    (4.3) 

Where 

𝑟0 is the initial radius [m] 

dt is the time step [s] 

𝑟𝑡 is the radius of the fiber after dt time steps .  

It should be noted that unlike the previous chapter, we will study the dimensionless 

permeability 𝐾 𝑅𝑓
2⁄ . Using the visual basic program, at each level of inter-tow 
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porosity the number of the fibers in the tow is varied along with 𝜑𝑡 , whereas in fact 

the number of fibers and their arrangement remain constant. With the study of 

dimensionless permeability, we emphasize each fiber separately, and we do not deal 

with number within the bundle. The behavior of the non-dimensional permeability for 

various inter-tow porosities and absorption rate values will be studied. Initial fibers’ 

porosity is large and the absorption continues until their radius are united (at that time 

no fluid passes through the bundle).  

.4.2 Boundary Conditions 

The only difference in boundary conditions with respect to Chapter 3 is at velocity. In 

particular, in the border conditions of velocity there is a change in the internal 

boundary. Once there is absorption of liquid from the fibers, which was not done in 

the previous chapter, a new boundary has to be set which will set the percentage 

absorbed by the porous medium. (For OpenFOAM’s U boundary conditions see 

Appendix F)  

4.3 Computational Results 

After the simulations have been completed, variations in the velocity profile and 

pressure distribution due to the absorption over time are observed. 

  

t=98 s t=0 s 
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t=882 s t=784 s 

t=686 s t=588 s 

t=490 s t=392 s 

t=294 s t=196 s 
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Figure 21:  Shows how velocity profile of a unit cell with 𝝋𝒊 = 𝟎. 𝟔  changes thought time  

It is noted that the velocity profile remains virtually unchanged, at the right boundary. 

The factor that determines the velocity, primarily, is the percentage occupied by the 

bundle within the unit cell (𝛷𝑖 𝑜𝑟 𝜑𝑖), which remains stable during the course of the 

study. 

  

  

t=294 s t=196 s 

t=98 s t=0 s 

t=980 s 
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Figure 22: Shows how pressure drop of a unit cell with 𝝋𝒊 = 𝟎. 𝟔  changes thought time 

Unlike the velocity profile, the pressure distribution shows obvious differences as 

time passes. By increasing the radius of the fibers render it more difficult for fluid to 

t=980 s 

t=882 s t=784 s 

t=686 s t=588 s 

t=490 s t=392 s 
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flow between them. However, the amount to be absorbed remains constant. For this 

reason, the pressure drop inside and outside the porous medium grows as the fiber 

radius increases. Therefore in conclusion the pressure distribution within the unit cell 

is distributed according to the percentage of fiber occupied within the 

bundle (𝛷𝑡 𝑜𝑟 𝜑𝑡). 

A taste of how the liquid moves into the cell is given by observing the vectors of the 

velocity and the stream lines.  

 

Figure 23: Velocity vectors of swelling porous media at random time 
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Figure 24: Velocity Vectors 

  

   

Figure 25: Zoom in the fluid flow between the fibers 

(b) Fluid flow inclined into the porous 

medium 

 

(a)  Horizontal flow of fluid into 

the porous medium 

 

(c) Vertical flow of liquid into the 

porous medium 

 

(d) Liquid flow when leaving the 

porous medium 
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Simulations show that not all inter-tow porosities give good results. This is for large 

𝛷𝑖 (or small 𝜑𝑖).Because of the large percentage occupied by the bundle within the 

cell; the flow does not advance fully developed, with the result that the medium in 

turn does not absorb the percentage set. The solver to cover the absorbed amount 

provides flow to the cell from the right border (Fig. 26). This phenomenon becomes 

more intense with the increase of 𝛷𝑡, with the result that more and more flow is 

provided from the right. The purpose is to avoid such cases because they give 

incorrect permeability measurements and for this reason cases with small inter-tow 

volume fractions will be studied (𝛷𝑖 < 0.5). 

i. Flow in a unit cell with 𝛷𝑖 = 0.4 ii.  Flow in a unit cell with 𝛷𝑖 = 0.5 

Figure 26: Shows that there is a flow rate from the right border for a fraction of volume greater than 50% 

For this reason the volume fraction of the bundle studied is equal to 40% (𝛷𝑖 =

0.4).The numerical experiments are plotted on a graph of axes 𝐾 𝑅𝑓
2⁄ 𝑣𝑠 𝑡, so can be 

observed how the dimensionless permeability changes over time. In the case below, 

the fibers absorb 5% of the flow (𝑎𝑏𝑟𝑎𝑡𝑒 = 5%). 
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Figure 27: Numerical experiments for the dimensionless permeability ( 𝑲 𝑹𝒇
𝟐⁄ ) of SQ arrays plotted versus 

time. The percent of inflow absorbed by the fibers is 5% and bundle’s porosity is 0.6. 

By observing figure 28 is obvious that the dimensionless permeability reduces to 

time. Such form charts can be described by power law equations (Appendix G for 

additional geometries). This becomes clearer if we observe the above diagram on 

logarithmic axes. 

 

Figure 28: Dimensionless permeability ( 𝑲 𝑹𝒇
𝟐⁄ ) versus time plotted on a ln-ln graph 
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Observing the logarithmic diagram it is concluded that for long times the 

dimensionless permeability decreases with a steady slope. Thus the points satisfy the 

same linear equation. The relationship that satisfies non-dimensional permeability in 

relation to time is as follows:  

  
𝐾

𝑅𝑓
2 =

𝐴

𝐵+𝑡𝑛    (4.4) 

where A, B, n are constants and in particular for the factor n claim it is smaller than 

the unit (n<1). 

We used Curve Expert, a program that helps to approach, by way of example, the 

equation that satisfies our results (Fig. 29). Giving different values to its constant 

equations, it is observed that the results of the experiment are approached by the 

equation, especially with the passage of time. 

 

Figure 29: Numerical results for the dimensionless permeability ( 𝑲 𝑹𝒇
𝟐⁄ ) of S-Q arrays plotted versus time as 

suggested by eq. (4.4). The final values of the variables A, B and n were given after testing with the program 
Curve Expert. 
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From a physical point of view, in the case we study some ambiguities are observed, 

such as the continuous absorption of a constant amount of liquid from the fibers 

throughout the experiment. Our experiment is computational and so we are allowed to 

do this without obstacles. What really deserves to be pointed out is that in real-time 

experiments, similar behavior of dimensionless permeability over time is being 

noticed. 

  

 

Figure (30) y-axis is characterized by the following relation Y ~ √
𝐾(𝑡)

𝑅𝑓
2 𝑡2 (In this 

particular case the rate of growth is linearly proportional to the percentage change of 

the volume fraction, just like in the case we study). Figure (31) y-axis is characterized 

by a dimensionless relation Y ~ ∫
𝐾

𝑅𝑓
2 𝑑𝑡  . In the first case to make a comparison, we 

set a y-axis equal to √
𝐾(𝑡)

𝑅𝑓
2 𝑡2  with [m] units and in the second y-axis equal to ∫

𝐾

𝑅𝑓
2 𝑑𝑡 

.The diagrams we get is similar to these of the figures (30) and (31) ,which gives us 

the conviction that further study will lead to a generalized model. 

Figure 30: The above diagram is encountered for 
wicking paper-like swelling porous media (Masoodi 

& Pillai, 2010) and the y axis of the diagram is a 
function of permeability. 

Figure 31: The above diagram is encountered in a 
study of swelling of cellulose fiber (Mantanis, Young, 

& Rowell, 1995) and the y axis of the diagram is a 
function of dimensionless permeability. 
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4.4 Proposals for further study 

As mentioned, the number of fibers is not a static and depends on the porosity. In later 

studies, it would be ideal that the way in which the fibers are placed in a hexagonal 

configuration is made in such a way that their number is stable. The result will be that 

the permeability can be directly studied, not its non-dimensional form.  

Another issue for discussion is the drop in pressure that drives the fluid. We can study 

scenarios with a greater pressure drop and see if the flow develops well enough to 

have proper results for even more porosities (for 𝛷𝑖 > 0.5). 

  

Figure 32: A similar behavior is observed with that of 

Figure 30, while Y=√
𝑲(𝒕)

𝑹𝒇
𝟐 𝒕𝟐. 

Figure 33: A similar behavior is observed with that of 

Figure 31, while Y=∫
𝑲

𝑹𝒇
𝟐 𝒅𝒕. 
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APPENDIX 

Appendix A 

Part of the Visual Basic program that results in the geometry of the cell. (The part that 

fills the bundle) 

PrivateSub Fill_Spheres(ByVal write AsBoolean, ByVal nm AsString) 
Dim i AsInteger, j AsInteger 
Dim x AsSingle, y AsSingle 
Dim pen AsNewPen(Color.Blue, 1) 
Dim e AsGraphics 
Dim vol AsSingle = H.Text() * H.Text() 
Dim Rc AsSingle, Veff AsSingle, Rc2 AsSingle 
Dim Ac AsSingle 
Dim Lh AsSingle, Hh AsSingle 
Dim iRf AsInteger 
Dim check AsSingle 
Dim cList AsNewList(OfPointF) 
Dim r_x1 AsSingle, r_x2 AsSingle, r_y1 AsSingle, r_y2 AsSingle 
Dim r_step AsSingle, caount AsSingle 
Dim cp AsPointF, cp2 AsPointF 
Dim k AsInteger 
 
        vol = Math.PI * R1.Text() * R1.Text() 
        Veff = vol * F2.Text() 
        Ac = Veff / CSng(N.Text()) 
 
        Rc2 = Math.Sqrt(Ac / Math.PI) 
 
        Veff = vol 
        Ac = Veff / N.Text() 
        Rc = Math.Sqrt(Ac / Math.PI) 
 
        check = 500 * Math.PI * Rc2 * Rc2 
If Rc2 = 0 ThenExit Sub 
 
        safe_r.Text() = (100 * (Rc - Rc2) / Rc2).ToString("0.000") 
        safe_r.BackColor = safe_r.BackColor 
        safe_r.ForeColor = Color.Black 
IfCSng(safe_r.Text()) <CSng(safe_limit.Text()) Then safe_r.ForeColor = 
Color.Red 
 
        e = pb.CreateGraphics 
        i = 1 
        iRf = 0 
 
If align_hex.Checked() = TrueThen 
            r_x1 = -(0.5 / Rc) : r_x2 = -r_x1 
            r_y1 = -(0.7 / Rc) : r_y2 = -r_y1 
            r_step = 0.5 
 
If strict.Checked() = FalseThen 
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                r_x1 = 0 : r_x2 = 1 / Rc 
                r_y1 = 0 : r_y2 = 1.4 / Rc 
                r_step = 1.5 
EndIf 
 
            Lh = 0 
Hh = 0 
            cp.Y = 0.5 
            cp.X = 0.5 
            caount = 0 
For i = r_y1 To r_y2 
 
                cp.Y = cp.Y + Hh 
                cp.X = -0.5 + (Lh / 2) * caount 
For j = r_x1 To r_x2 
 
 
 
If Rot_check.Checked() = TrueThen 
                        cp = RotatePoint(cp) 
EndIf 
 
IfMath.Sqrt((cp.X - 0.5) ^ 2 + (cp.Y - 0.5) ^ 2) < (CSng(R1.Text()) - Rc2) Then 
                        iRf += 1 
                        e.DrawEllipse(pen, 500 * (cp.X - Rc2) + 1, 500 * (cp.Y 
- Rc2) + 1, Rc2 * 1000, Rc2 * 1000) 
For k = 0 To Repeat.Text() - 1 
                            cp2 = cp 
                            cp2.X += k 
                            cList.Add(cp2) 
Next 
 
EndIf 
                    Lh = Math.Sqrt((2 * Math.PI * (Rc2 ^ 2)) / (F2.Text() * 
Math.Sqrt(3))) 
                    cp.X = cp.X + Lh 
Next 
                caount = caount - 1 
                Hh = (Lh * Math.Sqrt(3)) / 2 
Next 
            Lh = Math.Sqrt((2 * Math.PI * (Rc2 ^ 2)) / (F2.Text() * 
Math.Sqrt(3))) 
            Hh = (Lh * Math.Sqrt(3)) / 2 
            cp.Y = 0.5 
            cp.X = -0.5 
            caount = -1 
For i = r_y1 To r_y2 
 
                cp.Y = cp.Y - Hh 
                cp.X = -0.5 + (Lh / 2) * caount 
For j = r_x1 To r_x2 
 
 
 
If Rot_check.Checked() = TrueThen 
                        cp = RotatePoint(cp) 
EndIf 
 
IfMath.Sqrt((cp.X - 0.5) ^ 2 + (cp.Y - 0.5) ^ 2) < (CSng(R1.Text()) - Rc2) Then 
                        iRf += 1 
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                        e.DrawEllipse(pen, 500 * (cp.X - Rc2) + 1, 500 * (cp.Y 
- Rc2) + 1, Rc2 * 1000, Rc2 * 1000) 
For k = 0 To Repeat.Text() - 1 
                            cp2 = cp 
                            cp2.X += k 
                            cList.Add(cp2) 
Next 
 
EndIf 
                    Lh = Math.Sqrt((2 * Math.PI * (Rc2 ^ 2)) / (F2.Text() * 
Math.Sqrt(3))) 
                    cp.X = cp.X + Lh 
Next 
                caount = caount - 1 
                Hh = (Lh * Math.Sqrt(3)) / 2 
Next 
EndIf 
 
If align_square.Checked() = TrueThen 
            r_x1 = -(0.5 / Rc) : r_x2 = -r_x1 
            r_y1 = -(0.7 / Rc) : r_y2 = -r_y1 
            r_step = 0.5 
 
If strict.Checked() = FalseThen 
                r_x1 = 0 : r_x2 = 1 / Rc 
                r_y1 = 0 : r_y2 = 1.4 / Rc 
                r_step = 1.5 
EndIf 
 
For i = r_x1 To r_x2 
 
For j = r_y1 To r_y2 
 
                    cp.X = r_step - Rc * (2 * i) 
                    cp.Y = r_step - Rc * (2 * j) 
If Rot_check.Checked() = TrueThen 
                        cp = RotatePoint(cp) 
EndIf 
 
IfMath.Sqrt((cp.X - 0.5) ^ 2 + (cp.Y - 0.5) ^ 2) < (CSng(R1.Text()) - Rc2) Then 
                        iRf += 1 
                        e.DrawEllipse(pen, pb.Width() * (cp.X - Rc2) + 1, 
pb.Height() * (cp.Y - Rc2) + 1, Rc2 * pb.Width() * 2, Rc2 * pb.Height() * 2) 
For k = 0 To Repeat.Text() - 1 
                            cp2 = cp 
                            cp2.X += k 
                            cList.Add(cp2) 
Next 
EndIf 
Next 
Next 
EndIf 
 
        Real_f.Text() = (100 * (iRf * Rc2 * Rc2 * Math.PI) / (H.Text() * 
H.Text())).ToString("0.0000") 
        Real_N.Text() = iRf.ToString() 
        r.Text() = Rc2.ToString("0.0000") 
 
If write = TrueThen WriteMesh(cList, Rc2, nm) 
EndSub 
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Appendix B 

OpenFOAM’s boundary conditions for pressure and velocity for flow through porous 

media are listed: 

Velocity: 
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Pressure: 
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Appendix C 

Examing spatial grid convergence with the help of the following FORTRAN 

program: 

!-- File  verify.f90  -----------------------------------------------

------- 

! 

!  Performs several verification calculations given a file of grid 

spacings  

!  and some observed quantity corresponding to each grid spacing. 

! 

!  Computes: 

!  - order of convergence 

!  - Richardson extrapolation to zero grid spacing 

!  - grid convergence indices (GCI) 

! 

!--------------------------------------------------------------------

------ 

 

   PROGRAM verify 

 

IMPLICIT NONE 

 

   INTEGER :: n 

   INTEGER :: nd 

 

   INTEGER, PARAMETER :: ndmax = 10 

 

   REAL :: ratio 

   REAL :: fexact 

   REAL :: fsafe 

   REAL :: p 

 

   REAL, DIMENSION(ndmax) :: f 

   REAL, DIMENSION(ndmax) :: gcif 

   REAL, DIMENSION(ndmax) :: r 

   REAL, DIMENSION(ndmax) :: x 

 

!--------------------------------------------------------------------

------ 

 

!..Write Header. 

 

   WRITE(*,*) ' ' 

   WRITE(*,*) '--- VERIFY: Performs verification calculations ---' 

 

!..Read in the file, determine the number of data points, and output. 

 

   DO n = 1, ndmax 

     READ(*,*,end=10) x(n), f(n) 

   ENDDO 

 

10 CONTINUE 
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   nd = n - 1 

 

   WRITE(*,*) ' ' 

   WRITE(*,*) 'Number of data sets read = ', nd 

 

   WRITE(*,*) ' ' 

   WRITE(*,*) '     Grid Size     Quantity' 

   WRITE(*,*) ' ' 

 

   DO n = 1, nd 

     WRITE(*,'(2(F14.6))') x(n), f(n) 

   ENDDO 

 

!..Compute the grid refinement ratio, r, between each pair. 

 

   DO n = 1, nd-1 

     r(n) = x(n+1) / x(n) 

   ENDDO 

 

!..Estimate the order of convergence using the first three data pairs  

!..and assuming that the grid refinement ratio is constant, r(1) = 

r(2). 

!..This is done using Eqn. 5.10.6.1 of (Roache, 1998). 

 

   p = log( ( f(3) - f(2) ) / ( f(2) - f(1) ) )  /  log( r(1) ) 

 

   WRITE(*,*) ' ' 

   WRITE(*,*) 'Order of convergence using first three finest grid ' 

   WRITE(*,*) 'and assuming constant grid refinement (Eqn. 5.10.6.1) 

' 

   WRITE(*,*) 'Order of Convergence, p = ', p 

 

!..Perform Richardson extrapolation to estimate a zero grid value of 

f. 

 

   fexact = f(1) + ( f(1) - f(2) ) / ( r(1)**p - 1.0 ) 

 

   WRITE(*,*) ' ' 

   WRITE(*,*) 'Richardson Extrapolation: Use above order of 

convergence' 

   WRITE(*,*) 'and first and second finest grids (Eqn. 5.4.1) ' 

   WRITE(*,*) 'Estimate to zero grid value, f_exact = ', fexact 

 

!..Compute Grid Convergence Index (GCI) for each fine grid using Eqn. 

5.6.1 

!..from Roache's book. Use factor of safety as recommended on page 

123. 

 

   IF ( nd .ge. 3 ) then 

     fsafe = 1.25 

   ELSE 

     fsafe = 3.0 

   ENDIF 

 

   DO n = 1, nd-1 

     gcif(n) = fsafe * ( abs( f(n+1) - f(n) ) / f(n) ) / ( r(n)**p - 

1.0 ) 

   ENDDO 
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   WRITE(*,*) ' ' 

   WRITE(*,*) 'Grid Convergence Index on fine grids. Uses p from 

above.' 

   WRITE(*,*) 'Factor of Safety = ', fsafe 

   WRITE(*,*) ' ' 

   WRITE(*,*) '  Grid     Refinement            ' 

   WRITE(*,*) '  Step      Ratio, r       GCI(%)' 

   DO n = 1, nd-1 

     WRITE(*,'(2x,i2,i3,2(f14.6))') n, n+1, r(n), gcif(n)*100.0 

   ENDDO 

 

!..Examine if asymptotic range has been achieved by examining ratio  

!..of Eqn. 5.10.5.2 of Roache's book is one. 

 

   IF ( nd .ge. 3 ) then 

 

     WRITE(*,*) ' ' 

     WRITE(*,*) 'Checking for asymptotic range using Eqn. 5.10.5.2.' 

     WRITE(*,*) 'A ratio of 1.0 indicates asymptotic range.' 

     WRITE(*,*) ' ' 

     WRITE(*,*) ' Grid Range    Ratio' 

     DO n = 1, nd-2 

       ratio = r(n)**p * gcif(n) / gcif(n+1) 

       WRITE(*,'(2x,i1,i1,i2,i1,f14.6)') n, n+1, n+1, n+2, ratio 

     ENDDO 

 

   ENDIF 

 

 

!..Write Trailer. 

 

   WRITE(*,*) ' ' 

   WRITE(*,*) '--- End of VERIFY ---' 

   WRITE(*,*) ' ' 

 

!--------------------------------------------------------------------

------ 

 

    END PROGRAM verify 
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Appendix D 

 
Volume Fraction 

  
Porosity q[𝑚2 𝑠⁄ ] 

 
K[𝑚2] 

Φ1 Φ2 𝜑𝑖 𝜑𝑡    

0.7 0.4125 0.3 0.5875 0.000268 0.000268 

0.7 0.37125 0.3 0.62875 0.000238 0.000238 

0.7 0.33 0.3 0.67 0.000252 0.000252 

0.7 0.28875 0.3 0.71125 0.000267 0.000267 

0.7 0.2475 0.3 0.7525 0.000288 0.000288 

0.7 0.20625 0.3 0.79375 0.00031 0.00031 

0.7 0.165 0.3 0.835 0.000336 0.000336 

0.7 0.12375 0.3 0.87625 0.00037 0.00037 

0.7 0.0825 0.3 0.9175 0.000426 0.000426 

0.7 0.04125 0.3 0.95875 0.00059 0.00059 

0.65 0.4125 0.35 0.5875 0.000556 0.000556 

0.65 0.37125 0.35 0.62875 0.0005 0.0005 

0.65 0.33 0.35 0.67 0.000519 0.000519 

0.65 0.28875 0.35 0.71125 0.000539 0.000539 

0.65 0.2475 0.35 0.7525 0.000567 0.000567 

0.65 0.20625 0.35 0.79375 0.000596 0.000596 

0.65 0.165 0.35 0.835 0.000629 0.000629 

0.65 0.12375 0.35 0.87625 0.000671 0.000671 

0.65 0.0825 0.35 0.9175 0.000737 0.000737 

0.65 0.04125 0.35 0.95875 0.000801 0.000801 

0.6 0.4125 0.4 0.5875 0.001012 0.001012 

0.6 0.37125 0.4 0.62875 0.000924 0.000924 

0.6 0.33 0.4 0.67 0.000948 0.000948 

0.6 0.28875 0.4 0.71125 0.00098 0.00098 

0.6 0.2475 0.4 0.7525 0.001011 0.001011 

0.6 0.20625 0.4 0.79375 0.001047 0.001047 

0.6 0.165 0.4 0.835 0.001088 0.001088 

0.6 0.12375 0.4 0.87625 0.00115 0.00115 

0.6 0.0825 0.4 0.9175 0.001219 0.001219 

0.6 0.04125 0.4 0.95875 0.001277 0.001277 

0.5 0.4125 0.5 0.5875 0.00262 0.00262 

0.5 0.37125 0.5 0.62875 0.002449 0.002449 

0.5 0.33 0.5 0.67 0.002495 0.002495 

0.5 0.28875 0.5 0.71125 0.002538 0.002538 

0.5 0.2475 0.5 0.7525 0.002585 0.002585 

0.5 0.20625 0.5 0.79375 0.002637 0.002637 

0.5 0.165 0.5 0.835 0.002698 0.002698 
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0.5 0.12375 0.5 0.87625 0.002793 0.002793 

0.5 0.0825 0.5 0.9175 0.002883 0.002883 

0.5 0.04125 0.5 0.95875 0.002917 0.002917 

0.4 0.4125 0.6 0.5875 0.005643 0.005643 

0.4 0.37125 0.6 0.62875 0.005378 0.005378 

0.4 0.33 0.6 0.67 0.005428 0.005428 

0.4 0.28875 0.6 0.71125 0.005588 0.005588 

0.4 0.2475 0.6 0.7525 0.005549 0.005549 

0.4 0.20625 0.6 0.79375 0.005622 0.005622 

0.4 0.165 0.6 0.835 0.005736 0.005736 

0.4 0.12375 0.6 0.87625 0.005831 0.005831 

0.4 0.0825 0.6 0.9175 0.005949 0.005949 

0.4 0.04125 0.6 0.95875 0.006035 0.006035 

0.78 0.04125 0.22 0.95875 0.000237 0.000237 

0.77 0.0825 0.23 0.9175 0.000195 0.000195 

0.77 0.04125 0.23 0.95875 0.000256 0.000256 

0.75 0.04125 0.25 0.95875 0.000304 0.000304 

0.78 0.12375 0.22 0.87625 0.000134 0.000134 

0.78 0.4125 0.22 0.5875 4.99E-05 4.99E-05 

0.76 0.20625 0.24 0.79375 0.000124 0.000124 

0.77 0.165 0.23 0.835 0.000125 0.000125 

0.78 0.28875 0.22 0.71125 6.39E-05 6.39E-05 

0.76 0.04125 0.24 0.95875 0.000278 0.000278 
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Appendix E 

     𝜑𝑖 𝜑𝑡 Ks 𝐾𝑡𝑜𝑤⁄  𝐾𝑝 𝐾𝑝𝐾𝑠
1 2⁄ (𝐾𝑡𝑜𝑤

3 2⁄ ) 

0.22 0.95875 0.00057 0.0002344 0.045762 

0.22 0.87625 0.001302 0.0001078 0.07271 

0.22 0.71125 0.003997 3.762E-05 0.136429 

0.23 0.95875 0.007921 0.0002754 0.200431 

0.22 0.5875 0.00911 1.738E-05 0.216862 

0.23 0.9175 0.012544 0.0001791 0.25978 

0.23 0.835 0.024694 9.519E-05 0.381432 

0.24 0.95875 0.027985 0.0002994 0.409626 

0.25 0.95875 0.06493 0.0003192 0.665314 

0.24 0.79375 0.117526 8.023E-05 0.944765 

0.3 0.95875 0.682155 0.0004035 2.984972 

0.3 0.9175 1.085843 0.0002876 4.273087 

0.3 0.87625 1.580992 0.0002247 5.865134 

0.3 0.835 2.126706 0.0001886 7.679019 

0.35 0.95875 2.530417 0.0005788 9.070759 

0.3 0.79375 2.838362 0.0001618 10.16262 

0.3 0.7525 3.741495 0.0001422 13.51812 

0.35 0.9175 4.050517 0.0004637 14.71843 

0.3 0.71125 4.926474 0.0001272 18.2619 

0.35 0.87625 5.632072 0.0004086 21.26363 

0.4 0.95875 6.236452 0.0009259 23.93576 

0.3 0.67 6.416612 0.000116 24.7499 

0.35 0.835 7.699953 0.0003699 30.77568 

0.3 0.62875 8.330832 0.0001073 33.8789 

0.4 0.9175 10.19268 0.0008063 43.55049 

0.35 0.79375 10.42256 0.0003419 44.79595 

0.3 0.5875 11.00703 0.0001001 48.01146 

0.35 0.7525 13.63707 0.0003229 63.31831 

0.4 0.87625 14.38576 0.0007499 67.91567 

0.35 0.71125 17.85583 0.0003081 90.52206 

0.4 0.835 19.93829 0.000711 105.0596 

0.35 0.67 23.14434 0.000297 128.7706 

0.4 0.79375 26.12571 0.0006866 152.1872 

0.5 0.95875 26.2785 0.0023419 153.4214 

0.35 0.62875 30.40636 0.0002879 187.9706 

0.4 0.7525 34.68311 0.0006669 226.1139 

0.35 0.5875 40.00786 0.0002809 276.7335 

0.5 0.9175 41.94421 0.0022403 295.9608 
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0.4 0.71125 45.13904 0.0006528 328.6014 

0.5 0.87625 58.89765 0.0021901 481.4108 

0.4 0.67 59.24862 0.0006414 485.5551 

0.4 0.62875 77.44826 0.0006328 715.8553 

0.5 0.835 81.92664 0.0021544 776.9156 

0.6 0.95875 84.02536 0.0054371 806.0963 

0.4 0.5875 101.4483 0.000626 1061.67 

0.5 0.79375 107.653 0.0021322 1158.179 

0.6 0.9175 130.2571 0.0053554 1532.485 

0.5 0.7525 140.6143 0.0021153 1715.282 

0.5 0.71125 184.3047 0.0021021 2557.796 

0.6 0.87625 188.3249 0.0053084 2640.784 

0.5 0.67 243.8159 0.0020915 3872.233 

0.6 0.835 253.9616 0.0052807 4113.826 

0.5 0.62875 315.0653 0.002084 5667.636 

0.6 0.79375 344.2198 0.0052594 6465.388 

0.5 0.5875 415.6598 0.0020776 8562.188 

0.6 0.7525 450.8791 0.005245 9665.845 

0.6 0.71125 580.2121 0.0052345 14081.77 

0.6 0.67 757.1665 0.0052257 20957.57 

0.6 0.62875 1005.113 0.0052186 32009.62 

0.6 0.5875 1334.867 0.0052131 48939.3 
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Appendix F 
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Appendix G 

 

Figure 34: Numerical experiments for the dimensionless permeability ( 𝑲 𝑹𝒇
𝟐⁄ ) of SQ arrays plotted versus 

time. The percent of inflow absorbed by the fibers is 5% and bundle’s porosity is 0.7. 

 

Figure 35: Numerical experiments for the dimensionless permeability ( 𝑲 𝑹𝒇
𝟐⁄ ) of SQ arrays plotted versus 

time. The percent of inflow absorbed by the fibers is 5% and bundle’s porosity is 0.7. 
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