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ABSTRACT

Introduction: Chronic kidney disease (CKD) patients present with an increase of
waste products in the blood (uremia) which are purported to impact on skeletal
muscle causing “uremic myopathy” (incl. abnormalities such as atrophy, especially in
fast muscle types, weakness, fat infiltration, peripheral neuropathy, excess acidosis
and premature fatigue). A number of patient interventions implemented so far, while
greatly beneficial have failed to fully correct for muscular deficits. A host of
comorbidities adds complexity to the interpretation of existing results, while most
research has examined the end-stage of the disease and it is thus not known how and if
skeletal muscle is affected at earlier stages of disease progression.

This research aimed to examine the effect of chronic renal insufficiency on skeletal
muscle’s force generation capacity using an animal model of pre-dialysis CKD.
Therefore, to reveal if sarcomeric function per se may be affected by chronic renal
insufficiency, the single muscle fiber’s force generation capacity was examined at
resting conditions as well as in response to acidosis, its calcium sensitivity and its

resilience in the face of redox challenges, by examining:

1. force generation of isolated muscle fiber preparations in conditions mimicking the

resting state (_Study 1)

2.force generation of isolated muscle fiber preparations in conditions mimicking
acidosis (_Study 1)

3.force-pCa relationship of isolated muscle fiber preparations in conditions
mimicking the resting state (Study 2)

4.force-pCa relationship of isolated muscle fiber preparations in conditions

mimicking acidosis (Study 2)
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5.stretch activation kinetics relationship of isolated muscle fiber preparations in

conditions mimicking the resting state (Study 3)

6. morphology of isolated muscle fiber preparations (Study 1 and Study 3)
7.force generation of isolated muscle fiber preparations in conditions of acute redox
imbalance (Study 4)
Materials and Methods: Renal insufficiency was induced surgically in New Zealand
rabbits (UREM), with sham-operation for controls (CON), using ethically approved
procedures. At 3 months post-surgery, following euthanasia, psoas muscle samples
were excised, chemically skinned and stored in 50% glycerol solution at -20°C until
mechanical assessment using an Sl Heidelberg/WPI micro dynamometer. Fibers’
diameters were recorded using the eyepiece of a stereoscope. Sample treatments,
dissection and all evaluations were conducted in a blind fashion.
Study 1. Isometric forces (Po) were recorded from maximally calcium activated
single fibers (N=142 CON; N=240 UREM) at ‘standard’ baseline conditions (pH 7,
10°C), and at a near physiological temperature (pH 7, 30°C) in a subset of fibers; the
effect of acidosis (pH 6.2) was also evaluated.
Study 2. Isometric force was assessed in single psoas fibers (N=128 CON; N=195
UREM) in various concentrations of calcium, at 10°C, 30°C and at pH 7 and pH 6.2.
To facilitate comparison, force data expressed as percentage (%) of Po at 10°C and
pH 7 and free calcium expressed in pCa values were fitted in the Hill equation. The
value of pCa where 50% relative force was achieved (pCasp), was used as an index of
calcium sensitivity. Cooperativity was represented by the ny value of the fit.
Study 3: Single psoas fibers (N=21 CON; N=42 UREM) were maximally activated
under isometric conditions at 22°C, pH7. When force reached a plateau, step-like

stretches of 0.3% fiber length were performed to induce isometric force transients.
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The time to the peak of stretch-induced delayed force increase (t3) was evaluated as a
measure of cross-bridge Kinetics. Resting sarcomere lengths were also determined at a
near slack position by laser diffraction.

Study 4. Single psoas fibers’ (N=18 CON; N=19 UREM) force response to redox
changes [employing Hydrogen Peroxide (H.O,) and/or Dithiothreitol (DTT)] was
assessed in 2 experimental sets: A) Acute exposure to 10mM H,O, during full
activation followed by incubation in 10mM DTT during relaxation and a subsequent
activation in standard solutions (N=9 CON; N=9 UREM fibers); B) Exposure to
10mM H,0, during relaxation, preceded and followed by submaximal (pCasg) and
maximal activations in standard solutions (N=9 CON; N=10 UREM fibers).

Results: The results of the current thesis are summarized below:

Study 1. Renal insufficiency resulted in significantly smaller average CSA for UREM
muscle fibers compared to CON (by ~11%, P<0.01). At standard conditions UREM
fibers produced lower absolute and specific forces (P<0.01); this force disparity
remained also when measurements were performed at 30°C (P<0.01). For both
groups, acidosis significantly reduced force production (vs pH 7, 10°C, P<0.01), with
a similar percent force decline (UREM -48% vs CON -43%, P>0.05).

Study 2. At standard conditions (10°C, pH7), UREM fibers presented with quite
similar calcium sensitivity (pCasp UREM 6.12+0.02 vs CON 6.20+£0.03) and
cooperativity compared to CONs (ng UREM 2.11+0.14 vs CON 2.36+0.3). Acidosis
(pH 6.2) at 10°C caused a loss of calcium sensitivity for both groups, more so for
UREM (pCaso UREM 5.32+0.06 vs CON 5.58+0.02). At 30°C pH7, UREM fibers
presented with lower sensitivity than CON (pCasp UREM 6.00+£0.25 vs CON
6.42+0.19). At 30°C acidosis reduced calcium sensitivity similarly for both groups

(pCasp UREM 5.71+0.13 vs CON 5.80+0.05).
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Study 3. Fibers of the UREM animals exhibited larger t; values (UREM 67+18 ms vs
CON 57£16 ms; P<0.05). Furthermore, UREM fibers exhibited larger resting
sarcomere lengths (UREM 2.25+0.33 pum vs CON 2.05+0.17 pm; P<0.01) and
smaller mean diameters (UREM 70+19 pum vs CON 79+13 um; P<0.05).

Study 4. A) Acute exposure to H,O, during activation did not affect force generation
(P>0.05). DTT pre-incubation caused 12% force reduction (P>0.05) only in UREM
fibers B) H,0O, during relaxation reduced subsequent maximal isometric forces in the
Pool of fibers (UREM and CON) by 3.5% (P<0.05) but not in fiber groups separately
(UREM P>0.05; CON P>0.05).

Discussion: Chronic renal insufficiency induced significant impairments in single
psoas muscle fiber force that were only partially explained by atrophy. Further
investigation is warranted to pinpoint the contributions of possible changes in
sarcomeric protein properties to the evident functional deficit (Study 1). It appears
that chronic renal insufficiency may depress calcium sensitivity, the magnitude of this
depression being dependent on prevailing experimental conditions. It is important to
consider temperature and acidosis parameters when assessing calcium sensitivity in
chronic disease (Study 2). Chronic renal insufficiency can induce a slowing of myosin
head cross-bridge kinetics and remodelling changes concerning fiber diameters
(atrophy) and sarcomere structure. The larger sarcomere lengths in fibers of UREM
animals could be due to a decrease of forces restoring the sarcomere length at resting
conditions (Study 3). Force generation capacity of CON and UREM fibers is affected
by oxidation similarly. However the observation that UREM muscle may have been
in a more reduced state at baseline warrants further investigation as it could be linked

to disease induced effects (Study 4).
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Conclusion: For the first time, contractile properties of uremic muscle were assessed
at the single fiber level. Evaluation of maximal isometric force, force-pCa relationship
and stretch activation kinetics revealed important functional limitations in uremic
fibers which were partly accounted for by atrophy. The elastic elements of the
sarcomere could also be affected and explain some results. Extrapolating to the
human condition, we suggest that even at a pre-dialysis stage, chronic renal
insufficiency can severely disturb a muscle’s force generating capacity at the single
fiber level. Our findings provide new information to help explain muscle weakness

and fatigue in CKD.
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MEPINHYH

Elwoaywyn: Ztnv Xpovia veppikry vooo (XNN), ol aoBeveic mapouaidlovial e
au&€nuévn OUYKEVTIPWON TOPATPOIOVTIWYV Tou HETABOoAIoMOU (oupalyia) Tta omoia
@aivetal va emnPealovy OPVNTIKA TOV OKEAETIKO MU TIPOKOAWVTOC «OUPOIMIKY
HUOTABEIO» (CUPTIEP. OIOTOPOXEC OMWC OTPOQIO KULPIWG 0 PUIKO 10TO TOXEIOg
OLOTOANG, aduvapia, AwWoNG 61NBnaN, TEPIPEPIKI) VELPOTIABELN, QLENUEVN 0&EWaN
Kal mpéwpn Komwaon). Mia ogipd MApEUBACEWY TIOL €XOUV EQPOPUOCTEL OTNV
OUYKEKPIUEVN KAIVIKE] OJAdO EVW €XOUV QOVEL EVEPYETIKEG, dEV EXOLV KATAPEPEL VA
d10p0O0LY  EMAPKWE TO AEITOUPYIKO EAAEIYPA TV 00Bevwv. Agdopévng TG
ouwoonpOTNTOC TOUL  TOPOUCIAZETON 0TV VOC0, 1N EPUNVEI QULTWV  TWV
OMOTEAEOUOTWY  YIVETOL TIOAUTIAOKN €VW Ol  TIEPIOOOTEPEC MEAETEC  €XOULV
npayuatonoinbei o€ aoBevei¢ TEAIKOU oTadiov. Q¢ €K TOUTOL OV Eival yvwOTO TO v
KOl PE TIOI0 TPOTO €MNPEAOVTAl Ol OKEAETIKOI WUEC OE TPOYEVEDTEPA OTASIO TNC
e&EMENC NG vooou.

ZKOTIOC TNC OUYKEKPIUEVNC €peuvag NTav vo e€EETOoTel N emidpacn TNG Xpoviag
VEPPIKAG OVETAPKEIOG OTOV OKEAETIKO MU ¢ TPOC TNV IKAVOTNTA TOPOYWYNG
d0vapNg, XPNOILOTOIWVTOC VO {WIKO MOVTEAO TTPO-TEAIKOL otadiov XNN. Me okomo
AOITIOV va d1amIoTWOEL €AV N KOBALTH) COPKOPEPIKI AEITOLPYIa PTopEi va emnpeddeTal
amnd TNV XPOVIO VEQPIKI) AVETIAPKELX, EEETACTNKE 1 IKAVOTNTO AMOUOVWUEVWY JUTKWV
VWV OTNV Tapaywyr] 60VOUNG € OUVBNKEC NPEPIOG OAANG Kal 0TV AVTOMOKPIOTN O€
ouvBnNkee o&éwang, otnv eualobnaio 0to aoBE0TIO OAAG Kal OTnV  IKAvOTNTa
AEITOVPYIKIC OVTOTIOKPIONC O€ 0EEI000VAYWYIKEC HETOBOAEC, e€ETALOVTOC:

1. TNV IKAVOTNTO AMOUOVWHEVWY PUTKWY VWV 0TNV TTapaywyr) dUVOUNG 0 OUVONKEC

npepiac (MeAétn 1).
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2. TNV IKAVOTNTA AMOMOVWHEVWY MUTKWV VWV 0TNV Tapaywyr) d0vapng o€ oUVONKEC
o&éwang (MeAetn 1).

3. Vv oxéon dbvaunc-pCa AMOPOVWHEVWY HUTKWVY VWV OE CUVBNKEC npepiac
(MeAETn 2).

4. v oxéon d0bvaunc-pCa OMOPOVWUEVWY HUTKWV VWV OE CUVONKEC 0EEWONC
(MeAETn 2).

5. TNV OVTOTOKPION AMOMOVWHEVWY PUTKWV VOV GE aIQVIOIEC OAANOYEC TOU WIKOUC
TOUC 0€ OLVBNKEC Npepiag (MeAETN 3).

6. TNV HOPPOAOYIO OMOPOVWHEVWVY PUTKWV vV (MeAETEC 1 Kat 3).

7. TNV IKOVOTNTO AEITOVPYIKNAG OVTIOTOKPIONC OTOMOVWHUEVWY MUTKWV VWV 0TV
nopaywy dUVOUNG 0€ OLVBNKEC 0&eiag MPOKANGNC O&EIB0AVOYWYIKWY HETABOAWV
(MeAETn 4).

MeBodoAoyia: H veppiKr) avemApKeLa TIPOKANONKE XEIPOUPYIKA o€ KOVIKAOUC NEC
ZnAavdiag (UREM) eva mpayuaTomolnKe EIKOVIKNA XEIPOLPYIKN EMEUPATN Yia TOUC
KOVIKAOUC TNC opddag eAéyxou (CON). TpEIC PAVEC META TNV XEIPOUPYIKN TapEUBaon
Kal VoTepa and tnv evbavaacia Twv {WwV, TPAYUOTOTOINBNKE GUANOYH YoiTn PUTKol
10TO0. AKOAOUBNGE XNUIKI OTOUEURPAVKON TOU 1I6TOD KOl GTNV CUVEXELD T OEiyUATO
amoBNKeOTNKOV o€ SIOAUHA 50% YAUKEPOANG aToug -20°C, PEXPL TNV PNXAVIKA TOUC
a&loAdynan pe TNV xpron €€E1dIKELUEVOL IKpoduvapopeTpou (SI Heidelberg/WPI).
Ot daueTPOl TWV VWV 0&loAoyntnkav XPNOoIKOTIOIWVTAC TOV TPOCOPOAAUI0 PaKO
€VOC OTEPEOOKOTIOU. H eme€epyacia TwV dEIYUATWY, 0 OIOXWPIOHOE KOl OAEC Ol
a&loAoynoelc S1e€nxBnaav ae Evav TUPAO OXEJIATHO.

MeAétn 1. Mpayuatonoidnke a&loAdynaon ¢ PEYIOTNG ICOUETPIKAG duvaung (Po)

(N=142 CON, N=240 UREM) ot¢ ‘standard’ ouvlnkec (pH7, 10°C), kol ot
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Bepuokpacisc MANGiov Twv @ualoloyikav (pH7, 30°C) 0f I UTIOOPAdO VG-
a&loAoynbnke emiong n emidpaaon ¢ o&éwanc (pH 6.2).

MeAETn 2. H 100UETPIKN S0V OMOUOVWHEVWY HUTKWV Vv Poitn (N=128 CON,
N=195 UREM) a&lohoyrBnke o€ éva £0p0¢ GUYKEVTPWOEWY adBeatiov atoug 10°C,
30°C aAAd kai o pH 7 kat pH 6.2. o va 31eUKOALVBEi N alykpion, Ta ddopéva NG
SOVOHNG EKPPACTNKAV WG TOC0OTO (%) Twv TIHOVY Po atoug 10°C Kal pH 7 Kal To
eNe0OEPO  aOPBEOTIO  eKPPAOTNKE 0 TIWEC pCa. AUTEC Ol TIPEC  KOTOTIV
npocappdéotnkav otnv e€iowon Hill. H Tiur) pCa atnv onoia emitedxdnke T0 50% TNC
OXeTIKNAG dUvapn (pCasp) Xpnotuomnolnonke wg deiktng ¢ evalodnaiag oto aoBéatio.
H ouvepyoTIKOTNTO OVTOVOKAATOL OTIC TIHEG Ny,

MeAeTn  3: Ot omopovwpéveg iveg Woitn (N=21 CON, N=42 UREM)
EVEPYOTIOINONKOV PEYIOTO UTIO ICOUETPIKEG OLVONKeC atoug 22°C, pH 7. Otav n
d0vapn otabepomoInBnKe, TPOKANBNKE alevidia mPRKUVOT Twv VeV Katd 0,3% Tou
apxIKoD TOUC PAKOUG WOTE VO TIPOKANBOUV aAAayEC atnv mopayouevn dovaurn. O
XPOVOC TIOU XPEIAOTNKE OMO TNV EVOPEN TN EMIUNKUVONG MEXPL TNV KOPLUPWON TNC
KaBuatepnuévng avénong tng duvaung (tz), a&loAoyrnbnke wg OEiKTNG TN KIVNTIKAG
TWV EYKAPOIWV YEQUPWV. TO CAPKOUEPIKA UNKN NPEPIOG TwV VWV TTPoadlopioTnkav
eniong og B€an nou ol iveg Ppiokovtav ae xahaan, pe mepibAaan Acilep.

MeAETn 4. H AEITOUPYIKN QVTOTOKPION OMOPOVWHEVWY vy oitn (N=18 CON,
N=19 UREM) o¢ o&eidoavaywyikeg PETAPBOAEG [umepo&eidio Tou udpoyovou (H,0,)
Kal/y AiBe108peitoan (DTT)] a&lohoynBnke oe 2 melpoapatike opddeg: A) Oeia
ékBean oe 10mM H,0, Katd Tn dIdpKEID TTAIPOUE EVEPYOTIOINGNC IOV OKOAOLBEITaI
and enwoon o¢ 10mM DTT katd tv dldpkela XAAaonC Kol TV EMOKOAoLON

evepyomnoinon oe “standard” diaAvpata (N=9 CON, N=9 UREM) B) 'Ekfeon o€
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10mM H,0; katd 1 SIdpKeIa TNE XAAAONC, TPV Kol PETA amo unopéyioteg (pCaso)
Kal PéyloTec evepyomolnoelg o€ “standard” diaAvpota (N=9 CON, N=10 UREM).
AnoteAéopata:  To  OmMOTEAEOMATO  TNG  TOpPoLoaC OIOOKTOPIKNAG  €pyaaiog
guvoyidovtal TopaKATW:

MeAeTn 1. H VeQPIKN) OVEMAPKEID O0ONYNOE OF ONUAVTIKA MIKPOTEPN EYKAPTIO
diatopr) (CSA) tic UREM pUIKEG iveg ouykpITiKa pe Tig¢ CON (katd ~ 11%, P<0.01).
>¢ “standard” ouvlnke¢ ot UREM iveg mopriyayav XOpNAOTEPEC AMOAUTEC KO EIOIKEC
duvapelg (dlopbwpevec w¢ mpog CSA) ae ouykplon pe i CON (P<0.01). Auti n
dla@opa atnv OUvVOUN TOPEUEIVE, EMiong, OTaV Ol PETPAOEIC £yivav atou¢ 30°C
(P<0.01). Kat yio 11 6U0 OHAdEC, N 0&EWON MUEIWOE GNUAVTIKA TNV TOPOYyWYN
duvapng (vs pH7, 10°C P<0.01), e €va mapopolo mocooto peinong (UREM -48% vs
CON -43%, P>0.05).

MeAetn 2. e “standard” ouvebrike, ot UREM ive¢ mopouaoldotnkov pe mopouold
evaioBnoio oto aoBéotio (pCasy UREM 6.12+0.02 vs CON 6.20+0.03) kai
ouvepyoTikotnta (ny UREM 2.11+0.14 vs CON 2.36+0.3). H 0&€waon (pH6.2), atouc
10°C mpokdAeoe amwAela ¢ evaiobnaoiac Tou acBeotiov Kal yio TIC 000 OUAdEC,
Kupiwg Opwe yia i UREM (pCasy UREM 5.32+0.06 évavti CON 5.58+0.02). Ztoug
30°C, pH7, ot UREM iveg MOPouaIdoTnKOY He XOUNAOGTEPN €valadnaio amd 0,Tt ol
CON (pCasy UREM 6.00+0.25 évavti CON 6.42+0.19). Stouc 30°C, n o&wan
peiwae v evaiobnaia 0to aoBéaTio, mapduola Kat yia Ti¢ d0o opadec (pCasg UREM
5.71+0.13 évavti CON 5.80+0.05).

MeAetn 3. Ot UREM ive¢ mapouadiooav peyoAltepeg TIpEC t; (UREM 67+18 ms
évavti CON 57+16 ms, P<0.05). EmmA¢ov, ot UREM ive¢ ep@avicav peyaAlutepa

OOPKOUEPIKA PNAKN npepiag (UREM 2.25+0.33 pm évavtt CON 2.05+0.17 pm,
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P<0.01) kot pikpotepeg dapétpouc (UREM 70 + 19 um évavtt CON 79 + 13 pm,
P<0.05).

MeAetn 4. A) H o&eia ékBean oe H,O, Katd TNV €vepyomoinon dev EMnPEACE TNV
nopaywyn dovaung (P>0.05). Qotdoo, To DTT TMPOKAAEGE GNUAVTIKI HEIWON TNC
d0vapng Kota 12% (P<0.05) povo oti¢ UREM iveg. B) H enwoaon pe H,0, Katd
JIdpKEID TNC XOAOONG UEIWTE TNV PEYIOTN ICOUETPIKI) SUVAUN GTO GUVOAO TWV VRV
(CON kot UREM) katd 3.5% (P<0.05), oAAG OX1 OTIC 2 OPAdEC VWV EEXWPIOTA
(UREM P>0.05; CON P>0.05).

>ountnon: H xpovia VEEPIKN OVETAPKEIN TPOKAAEGE CNUAVTIKEC OIOTAPAXEC OTNV
dOVAUN OMOPOVWUEVWY HUTKWV VAV POITN IOV POVO eV PEPEL UTTOPOLV va €€nyndolv
and v MUIKN atpo@ia. Mepaltépw €peuva €ival avaykaio yla vo EVTOTIOEl TNV
OLMBOAN TBAVOV PETOROADY OTIC COPKOUEPIKEC TIPWTEIVEC OTO EUPAVES AEITOUPYIKO
EMeIPa (MeAETn 1). daivetal 0TI N XPOVIO VEPPIKN AVETAPKELQ UTIOPEL VA UEIWTEL
onUavVTIKA TNV evolobnoia oto aoBéoTio, Kal To péEyeBog OUTAC NG MEiwaNg
€€0PTATOL OO TIC TEIPAMOTIKEG OLVBNKEC. Eival onuavtikd va AauBavetar umogn n
onuacia ¢ Beppokpaciac Kal NG 0&Ewanc KATd TV a&loAdynan tng evaiobnaiog
Tou aofeotiov o€ Xpovieq acBévelec (MeAETn 2). H xpovia VEQPIKA QVETAPKELX
UTIOPEL EMMiONC va TPOKOAETEL EMIBPAJUVATN OTNV KIVNTIKI TWV EYKAPOIWV YEQPUPWV
TWV KEPOAWV TNE HLOCIVNG KABWC Kol HETOBOAEC GO0V a@OPA TNV JIAPETPO TWV VRV
(otpogia) Kai TV dour) TOU COPKOMEPIOL. Ta PEYOAUTEPO COPKOUEPIKA UNKN OTIC
ive¢ Twv UREM lwwv 6a pmopoloov vo o@Qeilovial o€ Peiwan Twv OUVAUEWY
QMOKOTAOTOONG TOU OOPKOUEPIKOU HAKOULG 0 ouvlnkeg npeuiac (MeAétn 3). H
IKavoTnTa mapaywync dovapng twv CON kat UREM vwv emnpedoTtnke and tnv
oéeidwan mapopola. Qotoc0, n mapatrpnon 6Tt ot UREM ivec pmopei va Bpiokovtav

g€ P10 TIO QaVOYWYIK KATAOTOON KOTA TNV €vopén Twv TMEIPAUATWY XPEIAeTal
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TEPAUITEPW OIEPELVNOT, KABWE OUTO Ba UmopolCE va CUVOEETAL PE TNV EMidpaacn TN
acbévelag (MeAETn 4).

Juumnepdopata: MNa mpwtn @opd, 0oloAoyndnkav ol CUCTAATIKEC 1O10TNTEC TOU
OUPAIUIKOU PUOC O€ EMTEDO AMOUOVWUEVWVY PUTKWV IVOV. H a&loAdynan Tng YEyIoTnc
ICOUETPIKAG dOvapng, NG oxéang duvaunc-pCa Kal TNG AVIOMOKPIONC TWV VWV OE
aIQVIOIO  EMIUNKLVAOT, AMOKAALYPE ONUAVTIKOUC AEITOLPYIKOUE TEPIOPIOHOUE OTIG
UREM iveg mou ev pépel e€nyolvtal amd tnv atpo@ia. Ta EAACTIKA OTOIXEIO TOU
oapKouepiov Ba umopoloav EMONG va EMNPENCTOVV KOl Vo €ENyroouv Kamola
anoteAéopota. METOQEPOVTOE TO OMOTEAECUATA OTNV OvOpwIvn  KatdoToon,
UTTIOOEIKVUOUE OTI OIKOMN KOl O€ £va TPO-TEAIKO aTAd10, N XNN pmopei va d10Tapagel
oofapd TNV IKavOTNTa Tapaywyng d0vVOpNG €VOC MUOC o€ EMIMEdO PUTKNC ivag. Ta
EUPNUOTA POC TIOPEXOLVY VEEC TTANPOPOPIEC YIa TNV EPUNVEIa TNC MUK aduvapiac Kal

TPOWPNE HUTKAG KOTIwaon¢ otn XNN.
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CHAPTER 1: INTRODUCTION

Chronic kidney disease (CKD) is increasingly recognized as a major global health
problem affecting 40-50% of EU and USA populations (Grams, Chow, Segev, &
Coresh, 2013; Zoccali, Kramer, & Jager, 2010), as well millions in Asia (Abraham et
al., 2016), Latin America (Cusumano & Gonzalez Bedat, 2008) and elsewhere.

CKD patients present with skeletal muscle structural and functional
abnormalities (Kaltsatou et al., 2015; Sakkas, Ball, et al., 2003; Sakkas, Sargeant, et
al., 2003a) with symptoms of muscle weakness, limited endurance and fatigue
intolerance (Campistol, 2002), neuropathy (Adams & Vaziri, 2006) and a host of
other striated muscle problems, collectively described as uremic myopathy
(Campistol, 2002). Uremic myopathy is a common abnormality presented in CKD
patients and is associated with muscle abnormalities, which in turn lead to morbidity
and mortality and worsen in patients undergoing hemodialysis therapy (Floyd, Ayyar,
Barwick, Hudgson, & Weightman, 1974).

It is also known that skeletal muscle structure and function is of major role not
only for body movement and control but also for many other vital body functions such
as protein and energy metabolism (Frontera & Ochala, 2014). Therefore, many
researchers have studied the effects of various interventions (pharmaceutical, non
pharmaceutical or combination) in preserving muscle quality and quantity of CKD
patients (Balakrishnan et al., 2010; Johansen et al., 2006; Sakkas, Sargeant, et al.,
2003b). Despite the improvements, CKD patients cannot restore their muscle structure
and function at the levels of age-matched healthy individuals with a sedentary
lifestyle (Sakkas, Hadjigeorgiou, et al., 2008; Sakkas, Sargeant, et al., 2003b).

Many factors have been reported to inhibit muscle function in CKD including

mitochondrial function, substrate availability and neuropathy (Adams & Vaziri,
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2006). In addition, CKD is accompanied by uremia, a condition which is caused by
the accumulation of toxic waste products due to impaired kidney function (Richet,
1988). This toxicity has been suggested to be implicated in the abnormal muscle
function and fatigue intolerance experienced by CKD patients (Campistol, 2002;
Davis, Karl, Goldberg, & Harter, 1983).

While both intramuscular energetics disturbances and central activation failure
are implicated (Johansen, Doyle, Sakkas, & Kent-Braun, 2005), the mechanisms
underlying peripheral fatigue in CKD have not yet been fully understood.
Additionally, along with the individual patient’s characteristics, the interaction of
disease specific and/or toxicity factors and disuse, as in other chronic conditions, is
not easily untangled (Malavaki et al., 2015). All of the above are adding on the
complexity of the challenge to explain and ultimately prevent and/or ameliorate
uremic myopathy. Given most research so far has been done at the end-stage, key
issues related to disease progression and contractile mechanisms are still unanswered.

Thus, there is an urgent need to generate new knowledge to enhance our
understanding of the characteristics and progression of striated muscle
pathophysiology in CKD in order to support the design of appropriate interventions to

prevent or alleviate its devastating impact.
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AIMS - SIGNIFICANCE

The mechanisms underlying muscle dysfunction in CKD have not yet been
fully understood and a number of interventions implemented so far, while greatly
beneficial have failed to fully correct for muscular deficits. The understanding of the
possible underlying mechanisms to explain muscle dysfunction in CKD is of major
clinical relevance as skeletal muscle is associated with many aspects of life and health
such as safe and adequate mobility and regulation of metabolism. Thus, any
abnormality of skeletal muscle status can lead to a series of physical disturbances, as
well as low quality of life, and dangerous falls. It is known that neuropathy can
contribute to muscle dysfunction in renal disease, especially at the end stage and its
effects have made difficult to distinguish excitation-contraction coupling from
sarcomeric function problems.

Therefore, the evaluation of contractile properties at the single fiber level
using techniques which overcome excitation contraction coupling (skinned fibers)
may lead to important conclusions regarding the factors implicated in muscle
dysfunction presented in CKD. Using such methods it is also possible to examine
contractile properties in conditions that mimic uremic environment such as acidosis

and oxidative stress.

Thus in the current PhD thesis we aimed to examine the effect of chronic renal

insufficiency on:

1. force generation of isolated muscle fiber preparations from an animal model of
uremia in conditions mimicking resting muscle
2. force generation of isolated muscle fiber preparations from an animal model of

uremia in conditions mimicking acidic muscle
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3. force-pCa relationship of isolated muscle fiber preparations from an animal
model of uremia in conditions mimicking resting muscle

4. force-pCa relationship of isolated muscle fiber preparations from an animal
model of uremia in conditions mimicking acidic muscle

5. stretch activation kinetics relationship of isolated muscle fiber preparations
from an animal model of uremia in conditions mimicking resting muscle

6. force generation of isolated muscle fiber preparations from an animal model of
uremia in conditions mimicking oxidized and reduced state of muscle

7. morphology of isolated muscle fiber preparations from an animal model of

uremia
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Skeletal Muscle - Structure and Function

The human body consists of three types of muscle tissue named cardiac
muscle, smooth muscle and skeletal muscle. Cardiac muscle is the main content of the
heart and is essential for circulating blood into the body. Smooth muscle is found in
the walls of most of our internal organs such as stomach and blood vessels and is
responsible for moving materials from, into and within the body. Skeletal muscles,
which make up about 40% of our body weight, are attached to our skeleton and they
support and control its movement while at the same time contributing to breathing,
thermoregulation, protein storage, immune function, blood circulation (venous return)
and metabolic health. Cardiac and smooth muscles can be characterized as
involuntary muscles as they are not directly under conscious control while skeletal
muscles as voluntary muscles. However this is not a very precise classification given
that skeletal muscles can be activated both voluntary and involuntary (Silverthorn,
2004; Wilmore & Costill, 1994), the latter for example as in shivering.

Each muscle is surrounded from connective tissue called epimysium and its
role is to hold the entire muscle together. If we take away the epimysium we can see
many groups of muscle bundles which are separated due to the presence of another
connective tissue called perimysium. These groups of muscle bundles (fascicles) are
composed of muscle fibers each one of them is also covered from a connective tissue

called endomysium (Wilmore & Costill, 1994).

Muscle Fiber
Skeletal muscles are composed of several hundred or thousand muscle cells

called muscle fibers depending on the size of a muscle. Each muscle fiber is
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surrounded of a cell membrane called sarcolemma (plasmalemma). The sarcolemma
is responsible for the connection of each fiber with the tendon of a muscle and for the
transmission of the force generation of each fiber and therefore for the movement of
the bone (Maclintosh, Gardiner, & McComas, 2006; Silverthorn, 2004; Wilmore &
Costill, 1994).

The largest subunit of a muscle cell is the myofibrils or myofilaments which
are responsible for the muscle contraction and relaxation. Between the myofibrils
there is the cytosol (the fluid part of the cell) which consists of inorganic ions, sugars,
peptides, amino acids and proteins. The myofibrils together with the cytosol and
organelles form the sarcoplasm (cytoplasm) (Maclntosh et al., 2006; Silverthorn,
2004; Wilmore & Costill, 1994).

The sarcoplasm houses also the sarcoplasmic reticulum (SR) and the
transverse tubules (T tubules) which are essential for the calcium storage and release
and therefore for the muscle contraction. The sarcoplasmic reticulum is an
endoplasmatic network which consists of longitudinal tubules which are wrapped
across a myofibril like a mesh and of the terminal cisternae and is responsible for the
Ca”" storage and release in the cytosol (Silverthorn, 2004). The T tubules are also an
extensive network which lies laterally through the fiber. They are an extension of the
sarcolemma and their role is to transmit nerve pulse from the sarcolemma to the
myofibrils of a fiber. By this way, the action potential (which starts from the
neuromuscular junction) can “travel” in a fast way from the cell membrane to the
sarcoplasm. In each sarcomere there are two zones of T tubules and together with the
terminal cisternae they form a triad (Maclintosh et al., 2006; Wilmore & Costill,

1994).
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Myofibrils

A muscle fiber contains hundreds or thousands of myofibrils which are the
contractile structures of a muscle cell. For example, a fiber of 50 ym diameter consists
of ~2000 myofibrils with a diameter of 1-2 ym. The myofibrils are separated through
the mitochondria, the sarcoplasmic and tubular system (Maclntosh et al., 2006). Each
myofibril consists of a thick and a thin filament; both of them contain the responsible
proteins for the muscle contraction and are located along a fiber. The thick filaments
consist mainly of the myosin and the thin filaments of the actin, troponin and
tropomyosin molecules.

If we look a muscle fiber under the microscope we can see light and dark
bands. The light bands correspond to the actin filaments (I-bands-Isotropic) and the

dark bands to the myosin filaments (A-bands-anisotropic) (Maclintosh et al., 2006).

Sarcomere

A myofibril contains many sarcomeres which are the basic functional units of
a fiber. Each one of them is connected and anchored to its neighbors through the Z
discs. Z discs are protein structures which lie vertically to the myofibril and each
sarcomere is composed of two Z disks and the thick and thin filaments between them
(Frontera & Ochala, 2014; Silverthorn, 2004). The length of a thick filament is
almost 1.6 pm while the length of a thin filament ranges between 1.0-1.3 ym
depending on the species and muscle type. Within a sarcomere each thick filament is
surrounded from six thin filaments which are also surrounded from six thick
filaments. By this way each thin filament is surrounded from three thick filaments.
According to the above thick and thin filaments form the “double hexagonal array of

the myofilament lattice” and the distance between the filaments is a key determinant

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



35

for myosin and actin content inside a muscle cell as well as for the force generation.
Almost the 70% of the total protein of a muscle cell is myosin and actin (43-50% is

myosin and 18-22% is actin) (Greising, Gransee, Mantilla, & Sieck, 2013).

Thick filament

Thick filaments are composed mainly from myosin which interacts with actin
in order to generate force. Myosin is a motor protein with two heads, a long tail and a
neck region which connect the heads with the tail. Myosin heads are also known as S1
fragments and together with the neck region form a cross bridge (Maclntosh et al.,
2006).

Myosin consists of 2 myosin heavy chains (MHCs) with molecular mass ~200
kDa which wrap around each other and they form a double helix which corresponds to
the tail region of the myosin molecule (Greising et al., 2013). Two pairs of myosin
light chains (MLCs) are also placed at the neck region of the molecule. Specifically
two essential or alkali myosin light chains (MLC37 or ELCs) with molecular mass of
17 kDa and 2 regulatory or phosphorylatable light chains (MLCy or RLCs) with
molecular mass of 20 kDa are also placed at the neck region of the molecule (
Greising et al., 2013; Gordon, Homsher, & Regnier, 2000; Schiaffino & Reggiani,
1996).

Each myosin head is the motor domain which holds both adenosine
triphosphate (ATP)-binding site and actin binding site and each pair of ELCs and
RLCs is close to the motor domain and the tail respectively (Schiaffino & Reggiani,
1996). ELCs play a crucial role in the structure and stabilization of the myosin head

while phosphorylation of RLCs lead to higher cross-bridge cycling and ATP
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consumption rates and therefore may affect force and calcium sensitivity (Greising et
al., 2013).

M-line is an additional protein of thick filament which is placed in the middle
of the thick filament and composed from two additional proteins known as M-protein
(only in fast fibers) and myomesin all contributing to the stabilization and alignment
of the sarcomeres. Additionaly, titin, the largest protein, is also part of the thick
filament and is placed between Z-line and M-line. The role of titin is essential in
stabilizing the thick filament and maintaining the sarcomere. Lastly, myosin binding
protein-C is located along the thick filament and its role is to contribute to the thick

filament backbone (Greising et al., 2013).

Thin filament

The main contractile protein of thin filament is actin with a molecular weight
of 40kDa and together with myosin make up the 70-80% of the protein content of a
muscle fiber. Actin is a globular protein containing the binding sites for myosin in
order to form cross bridges. Globular actin monomers (G-actin) are connected
forming a double-helical chain named filamentous actin (F-actin).

Another major protein of thin filament is tropomyosin. Tropomyosin dimers
are also associated forming a helical filament which lies along the F-actin. A
tropomyosin dimer covers 7 actin monomers and each group of seven actin contains
also a troponin complex (TnC, TnT, Tnl) (Schiaffino & Reggiani, 1996). Troponin
and tropomyosin regulate the exposure of actin to myosin heads and therefore are
essential for muscle contraction (Greising et al., 2013). Thin filament also contains

the giant protein named nebulin with a molecular weight of 0.6 to 0.9 MD. Nebulin
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lies along the thin filament and its role is to regulate the length of F-actin (Greising et

al., 2013).

Types of muscle fibers

All of our muscle fibers have not the same properties and they have been
classified into two major groups according to their speed of contraction and fatigue
resistance. Slow-twitch (type 1) muscle fibers need two to three-fold more time
compared to fast-twitch (type Il) fibers in order to contract. On the other hand slow
fibers are resistant to fatigue in contrast to fast fibers. In addition, fast fibers can be
classified into three main subgroups (Silverthorn, 2004; Wilmore & Costill, 1994).

According to the myosin heavy chain (MHC) isoforms’ expression, fast fibers
have been categorized into three main subcategories known as IIA, 11X and IIB.
Although all three isoforms of MHC are expressed in rodents, 1B is not expressed in
humans. However, there are fibers which express more than one MHC isoform termed
hybrid fibers. Except type | which is the slowest fiber type, type 11A is the slowest
form of fast fibers and it is followed by 11X and 11B which are the fastest (Westerblad,
Bruton, & Katz, 2010; Galler, Schmitt, & Pette, 1994).

The classification of fibers according to their MHC isoforms is in consistence
with the metabolic profile of the fiber types depending on the ATP consumption rate
from cross bridges. However, other proteins which also consume ATP in skeletal
muscle are not classified in the same way. For instance Sarcoplasmic Reticulum (SR)
calcium pumps have been classified into SERCA 1 and SERCA 2 isoforms. SERCA 1
exists in fast fibers while SERCA 2 in slow fibers. Furthermore, slow fibers have been

characterized as oxidative and fast fibers as glycolytic but in some cases oxidative
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capacity of 1A fibers has been observed to be better compared to I fibers (e.g. in rats)

(Westerblad et al., 2010).

Motor unit and motor impulse

As it has been described above, skeletal muscles consist of muscle cells or
muscle fibers which are under the control of motor neurons. A muscle is innervated
by various motor neurons, each one of them innervating a group of muscle fibers
through its ending (axon terminal). The number of fibers innervated by a single motor
neuron can range from a few to thousands of fibers depending on the muscle size and
the function to be performed (the finer the motor control required the fewer the
fibers). A motor neuron together with the group of fibers (all of fibers are of the same
type) which it supplies is called motor unit.

A motor unit is the smallest unit of motor system and is responsible for the
activation of the given group of fibers (Westerblad et al., 2010; Maclintosh et al.,
2006; Silverthorn, 2004; Wilmore & Costill, 1994). Motor neurons are located almost
at the middle of a single fiber and axon terminals near sarcolemma. Upon nerve
impulse arriving, a neurotransmitter substance named acetylcholine (ACh) is released
from axon terminal and it is binded to acetylcholine receptors which are placed on
sarcolemma. Therefore an electrical charge is transmitted along the muscle fiber
known as action potential generation and this is the beginning for the muscle

contraction (Wilmore & Costill, 1994).

Sliding filament theory and Cross bridge cycle
In relaxing conditions Ca** concentration is almost 50 nM. After action

potential, the electrical charge travels through the SR and T tubules into the muscle
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cell leading to release of stored calcium ions from SR to the sarcoplasm. The
mechanism by which this happens is part of a mechanism known as excitation-
contraction coupling. The first step of this mechanism is the depolarization of T
tubules and the activation of dihydropyridine receptors (DHPR). The second step is
the Ca’" release from SR in the sarcoplasm through specific channels known as
ryanodine receptors (RyR) elevating cytosolic calcium concentration to almost 100-
fold higher levels (MaclIntosh et al., 2006; Berchtold, Brinkmeier, & Muntener, 2000).

After Ca®* release, it binds to troponin causing a position change of
tropomyosin which holds the active sites of actin for binding from myosin heads
(forming a cross bridge). In relaxing conditions tropomyosin hides the active sites
from myosin heads but due to Ca** release and its binding to troponin, tropomyosin
uncovers the active sites of actin on the thin filament. By this way, myosin heads are
able to attach to thin filament (Wilmore & Costill, 1994).

After the attachment of thick to thin filament, myosin heads tilt causing the
movement of myosin and actin filaments in the opposite direction (power stroke).
After the tilt of the myosin head, it detaches from the specific active site of actin, it
goes back to its original position and it attaches in a new active site (sliding filament
theory). This is repeated until myosin head meets the Z disk of the sarcomere. Muscle
action ends when Ca** is depleted in the sarcoplasm and it goes back to the SR
(Wilmore & Costill, 1994).

This theory was based on the findings of 2 independent researchers, Andrew
Huxley and Hugh Huxley, in the early 1950’s. Andrew Huxley using an interference
microscope observed a shortening of light | band and a constancy of length in dark A
band during muscle contraction. At the same period Hugh Huxley using an electron

microscopy observed that the composition of a myofibril was of many myofilaments
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of two types. These two types of myofilaments referred to thick filaments with 1.6-
pum length in the A-band and thin filaments with 1-um length stretching from Z-disk
to H-zone. Both A. and H. Huxley also associated thick filaments with myosin and
thin filaments with actin. All these observations gave rise to the theory that sliding
force is generated between thick and thin filaments due to the action of cross-bridges
as they were the only point to connect the thin filaments (Ebashi & Ohtsuki, 2007;
Maclntosh et al., 2006; Szent-Gyorgyi, 2004). Until then it was believed that muscle
contraction occurs due to the lengthening of the filaments and the idea of sliding
filaments had not been yet considered (Szent-Gyoérgyi, 2004).

However the molecular mechanism underlying this theory was not yet known.
In 1957, A. Huxley gave the first explanation based on his structural observations
combined with force-velocity measurements. Since then, the molecular mechanism
underlying muscle contraction is known as the cross bridge cycle and it refers to the
mechanical and energetic events during muscle contraction. He also divided the cycle
in two main states: attachment and detachment. However many observations such as
fast force transients after a quick stretch could not be explained by the two-states
model. Later, in 1971, A. Huxley proposed a model consisting of 1 detached and
many attached states but this idea made the understanding of cross bridge cycle more
complex (Herzog, 2000).

Finally, in 1971 R. W. Lymn and E. W. Taylor (Lymn & Taylor, 1971)
proposed the cross bridge cycle model of 4 states based on two main findings. The
first one was the hydrolysis of ATP in the detached state (no bound of myosin to
actin) and the second one was the burst of ATP hydrolysis due to the addition of ATP
to myosin when active sites were unoccupied. The latter gave evidence that the

limiting reaction of the cross-bridge cycle was the adenosine diphosphate (ADP)
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dissociation. Thus, they presented the following 4 states: First, ATP binds to the
actomyosin complex, leading to the rapid detachment of actin from myosin cross
bridge before the hydrolysis of ATP (state 1). The cross bridge undergoes
conformational changes due to the hydrolysis of ATP (state 2). The cross bridge
reattaches to actin after product release (ADP-Pi) (state 3). The cross bridge moves
causing the drive stroke due to the displacement of products (state 4).

However, from the beginning to the end of muscle contraction, energy supply
is required and the energy source is ATP. In anaerobic conditions ATP is re-
synthesized using phosphocreatine (PCr) (ATP-Pc system) and in aerobic and
anaerobic conditions lasting longer than a few seconds energy ATP is maintained
using muscle glycogen (glycolytic system). ATP is placed in one of the two binding
sites of myosin heads. The first one is for the attachment of myosin head to actin and
the second one is the binding site for ATP. In addition to ATP, in the myosin
molecule there is an enzyme called myosin ATPase which is necessary for the
breakdown of ATP to ADP, Pi and energy. If ATP is not available or if it cannot been
hydrolyzed, thin and thick filaments remain “locked” together and this is known as

rigor state (as rigor mortis which occurs after death) (Wilmore & Costill, 1994).
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Muscle Fatigue

Definition and classification

Muscle fatigue is the inability to generate or sustain the expected power
(Edwards, 1981) and it has been classified into central and peripheral fatigue. Central
fatigue may occur due to disturbances in mechanisms of central nervous system and
especially due to the impaired activation of motor neurons (Westerblad et al., 2010).
On the other hand, peripheral fatigue may occur due to disturbances in any
mechanism between neuromuscular junction and the contractile machinery
(Silverthorn, 2004). It has been reported that central fatigue is more pronounced in
prolonged low intensity activities where metabolic changes are limited compared to
high intensity activities (Westerblad et al., 2010). However, it has been generally
accepted that muscle fatigue mainly arises at the muscle tissue level (Allen, Lamb, &

Westerblad, 2008).

Causes of fatigue
Energy depletion theory

Muscle fatigue may occur at the muscle tissue level through the depletion of
energy sources and particularly PCr and glycogen which lead to insufficient levels of
ATP inside the muscle. Regarding PCr, which is the main source of ATP in short
lasting and high intensity activities, it has been shown that PCr is depleted leading to
low muscle performance. PCr is depleted before ATP while ATP is being produced
from other systems too (glycolytic, oxidative). However, PCr depletion prevents the
fast replace of ATP leading to low levels of ATP and therefore exhaustion where both
PCr and ATP levels may be depleted (Karatzaferi, De Haan, Ferguson, Van

Mechelen, & Sargeant, 2001; Karatzaferi, de Haan, van Mechelen, & Sargeant, 2001).
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On the other hand, glycogen which is the main source of ATP in aerobic and
anaerobic conditions lasting more than a few seconds may also be depleted fast while
muscle glycogen reserves are limited. Glycogen depletion rate is higher in high
intensity activities and during the first minutes of the activity. Thus, in long lasting
activities exhaustion coincides with muscle glycogen levels’ decrease (Wilmore &
Costill, 1994). Glycogen depletion also depends on the fiber type which is recruited
during specific activities while different fiber types have different metabolic profile.
In light intensity exercise, slow fibers are recruited first and fast fibers are later
recruited if tension requirements are increased and glycogen is depleted in a relative
manner. In low intensity exercise slow fibers are mainly recruited and fast fibers are
almost inactive whereas at high intensity exercise, fast fibers are more frequently
recruited and depleted in a higher rate compared to slow fibers. This means that fast
fibers have a higher glycogen demand (Egan & Zierath, 2013; Westerblad et al., 2010;

Wilmore & Costill, 1994).

M etabolites accumulation theory (H*, Pi, ADP)

Accumulation of lactic acid, a by-product of glycolysis, has been considered
as a major cause of fatigue for many years. However, lactic acid accumulates in the
fibers only in brief and high intensity activities whereas at the end of long lasting and
low intensity activities lactic acid levels are equal to resting levels. Therefore, fatigue
in this kind of activities (long lasting and low intensity activities) is the result of
energy depletion. On the other hand, in brief and high intensity exercise, where lactic
acid accumulates in the fibers, excess of lactic acid per se is not the reason for muscle
fatigue. Instead, its breakdown to lactate causes accumulation of hydrogen ions H*

leading to lowering of intracellular pH (acidosis) (Wilmore & Costill, 1994).
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During fatigue, intracellular pH falls from about pH7 to pH6.2. Early studies
examining the contractile properties of permeabilized single muscle fibers, have
shown that acidosis (pH6.2) leads to major reductions in isometric force and
shortening velocity indicating that low pH inhibits muscle contraction at the motor
proteins level (Chase & Kushmerick, 1988; Cooke, Franks, Luciani, & Pate, 1988;
Metzger & Moss, 1987; Pate & Cooke, 1989). In more recent studies where the effect
of acidosis was examined at near physiological temperatures (=30°C) (see below for
the role of temperature) it was found a smaller effect of acidosis in muscle
contraction. For example, in the study of Pate et al (Pate, Bhimani, Franks-Skiba, &
Cooke, 1995), it was found that although at 10°C acidosis caused reductions in both
isometric force and maximal shortening velocity by about 55% and 30% respectively,
at 30°C isometric force was reduced by 20% without any change in shortening
velocity. However, even though recent studies have shown a smaller effect of acidosis
in muscle fatigue, low pH remains a key factor since in acidic conditions muscle
contraction of single muscle fibers is undoubtedly inhibited.

The mechanisms underlying inhibition of muscle contraction due to acidosis
remain complicated. However it has been shown that low pH inhibits the action of a
glycolytic enzyme (phosphofructokinase-PFK) causing a delay in the rate of
glycolysis and therefore ATP production (Nelson & Fitts, 2014; Wilmore & Costill,
1994). Besides the lower rate of ATP hydrolysis, low pH may also inhibit muscle
function due to its effect in the myofilament lattice spacing (Umazume, Onodera, &
Higuchi, 1986). In addition, during acidosis, force generation at high force states of
cross bridge cycle is significantly reduced, indicating a direct effect of H* in the
interaction between myosin-actin (Fabiato & Fabiato, 1978). Moreover the force per

cross-bridge and the number of cross-bridges that are in the high-force states have
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been found to be reduced in the presence of low pH (Metzger & Moss, 1990a, 1990b).
It has been also reported that low pH in combination with accumulation of inorganic
phosphate (Pi) plays a critical role in muscle fatigue (Karatzaferi, Franks-Skiba, &
Cooke, 2008).

In high energy activities, ATP concentration is initially constant and PCr
breaks down to creatine (Cr) and Pi. In resting conditions, Pi concentration is almost
5mM and during fatigue may reach 30mM. This increase is related to the intensity of
exercise and fiber type with the fast fibers showing the greatest values of Pi and
therefore the greatest levels of fatigue (Fitts, 2008). The accumulation of Pi at high
concentrations may inhibit muscle function by affecting the cross bridge cycle.
Specifically, under normal conditions, release of Pi turns the cross bridge into the
strongly bound high-force state leading to force increase. In contrast, during fatigue
the increase of Pi concentration accelerates a backward step in cross bridge cycle
leading to force reduction (Allen & Trajanovska, 2012). Furthermore, Fryer et al
(Fryer, Owen, Lamb, & Stephenson, 1995) first suggested that Pi may enter the
sarcoplasmic reticulum and precipitate calcium (CaPi) resulting in reduced calcium
availability for release. In later studies using permeabilized single muscle fibers it was
also suggested that accumulation of Pi leads to the reduction of calcium sensitivity
(Allen & Trajanovska, 2012) indicating again the critical role of Pi in muscle fatigue.

An additional factor which has been implicated in muscle fatigue is ADP. In
resting conditions, intracellular concentration of ADP is maintained almost at 20uM
due to the creatine kinase which contributes to the formation of ATP. In high intensity
activities where PCr is decreased and creatine is increased, concentration of ADP may
reach 200puM (Dawson, Gadian, & Wilkie, 1978; Karatzaferi, Myburgh, Chinn,

Franks-Skiba, & Cooke, 2003). Many studies using permeabilized muscle fibers have
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shown that ADP rise can cause a decrease in unloaded shortening velocity, increase in
isometric force and increase in calcium sensitivity. These opposite reactions can be
explained from the well known “competition” between ADP and ATP for the
nucleotide binding site of myosin. Therefore, when concentration of ADP is increased
it can bind to myosin pushing the cross bridge back to the strongly bound state which
slows down velocity and increases force and calcium sensitivity (Cooke, 2007;

Debold, Longyear, & Turner, 2012; Karatzaferi et al., 2003).

Other contributors (ROS, phosphorylation, temperature)

Others factors implicated in muscle fatigue include the reactive oxygen
species (ROS), phosphorylation of myosin light chains (MLC) and Ca®" availability.
ROS are molecules containing oxygen such as superoxide (O;) having unpaired
electrons and this makes them reactive enough to damage membranes and impair
contractile proteins (Debold, 2012). It is generally believed that mitochondria are the
main source of superoxide. High levels of superoxide may be broken down to H,O, or
enter in the myoplasm through the mitochondrial membrane even at resting conditions
(Allen et al., 2008). It has been well established that exercise leads to an increase in
ROS. In many studies using permeabilized single muscle fibers it has been observed
that ROS significantly contribute to the onset of muscle fatigue and their effect is
more intense in experiments conducted at high temperatures (Fitts, 2008). However,
at low concentrations (in resting conditions or early fatigue), ROS appear to enhance
muscle performance whereas high concentrations of ROS such as H,O, (in fatigue
conditions) appear to inhibit muscle function (Debold, 2012). It has been suggested

that the mechanism underlying muscle fatigue in the presence of ROS is the
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depression of Ca*" sensitivity and that myofibril proteins which may be affected from
ROS are troponin-C, troponin-I, tropomyosin, actin and myosin (Fitts, 2008).

Phosphorylatable regulatory myosin light chains (RLCs) are also involved in
muscle fatigue. Although at resting conditions RLCs remain unphosphorylated,
during repetitive muscle activation where Ca®* release increases, they are
progressively phosphorylated by myosin light chain kinase (MLCK). In contrast,
when Ca?* decreases, MLCK is deactivated and therefore RLCs are dephosphorylated
after a few minutes (Maclintosh, Holash, & Renaud, 2012). It has been observed that
after a tetanus of 1-second long, there is a twitch potentiation (post-tetanic twitch
potentiation) and this is the result of RLC phosphorylation. In addition, RLC
phosphorylation has been associated with a phenomenon known as staircase where in
repetitive low frequency activations, force is progressively higher in the first seconds.
Experiments in skinned fibers have also shown that RLC phosphorylation causes an
increase in calcium sensitivity and therefore can affect cross bridge kinetics. In the
study of Karatzaferi et al (Karatzaferi et al., 2008) it was found that although under
resting conditions phosphorylation of RLCs led to a faster rate of cross bridge cycle,
under fatigue conditions (low pH and high Pi concentration) RLC phosphorylation led
to an even lower rate of cross bridge cycle. All of the above, give evidence that RLC
phosphorylation plays a key role in muscle contraction and any abnormalities in
phosphorylation or dephosphorylation may lead to muscle fatigue (Maclntosh et al.,
2012).

Factors inhibiting muscle function or fatigue, including pH, Pi or ROS are
temperature sensitive and fatigue may occur faster at high temperatures. Therefore, it
is important to know the physiological temperature of an active muscle which

depends on many factors such as core temperature, environmental temperature, blood
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flow and the type of the activity. For this reason in studies examining mechanisms of
muscle function or muscle fatigue it is important to evaluate contractile properties at,
or near physiological temperatures when possible (Allen et al., 2008). In the case of
using isolated skinned muscle fibers (see below) this has become possible through the
use of the temperature jJump (t-jump) methodology (Coupland, Puchert, & Ranatunga,
2001; Karatzaferi, Chinn, & Cooke, 2004; Karatzaferi et al., 2008), in order to have

an in vitro assay that mimics well the physiological environment.

Understanding muscle contraction and fatigue
Skinned fibers

In order to understand the mechanisms of muscle contraction and fatigue,
researchers have used for many years a range of methods including the method of
skinned fibers. In this method the surface membrane of fibers is chemically or
mechanically skinned and muscle samples are stored at -20°C until functional
assessment. The main advantage of this method is the control of intracellular
solutions. Therefore, researchers can study the reactions of single muscle cells not
only in normal conditions but also in conditions that mimic fatigue by examining the
effects of many factors such as pH and Pi in contractile properties of single fibers
(Allen et al., 2008). Contractile properties include maximal isometric tension, force-
pCa relationship and stretch activation kinetics. Depending on the protocol it is
important to make conclusions with respect to morphological parameters of the fibers
such as diameter or cross sectional area (CSA) and sarcomere length. Temperature is
an additional important parameter in these studies while results from studies
performed at low temperatures have shown different results from studies conducted at

near physiological temperatures (>30°C) (Karatzaferi et al., 2008). The results of this
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kind of studies can lead to important conclusions about mechanisms of muscle

contraction and/or fatigue.

Maximal isometric tension (Po)

After determining the necessary morphological aspects with a cell in an ATP
containing relaxing solution (the degree of detail depending on microscopy resolution
and other technical prowess), a fiber is immersed in a solution containing ATP and
saturated calcium. Then, Po (mN) is recorded continuously through specific softwares
until reach a stable force. This is considered as the absolute force while specific force
is defined as PO/CSA (mN/mm?) (Malisoux, Francaux, & Theisen, 2007). The Po of a
single cell is determined from the number of active cross bridges during contraction
and the force exerted from each cross bridge (Huxley, 1957). An increase or decrease
of Po can be the result of muscle hypertrophy or muscle atrophy respectively.
However, changes in Po/CSA are independent from alterations in CSA and may

indicate alterations of the sarcomeric proteins (Malisoux et al., 2007).

Force-pCarelationship

Using the single fiber approach it is also possible to evaluate the isometric
force generated in various submaximal concentrations of Ca”*. Consequently, the
relationship between various Ca®* concentrations and generated force is determined
using the Hill equation. Specifically, the relationship which is usually determined is
between pCa and force where pCa= -log10[Ca*"] and the Hill equation is F=F/
[1+10"(PC2PCa] (Hill, 1913). The pCaso estimates the calcium concentration which is
required for muscle activation known as calcium sensitivity whereas ny estimates the

cooperativity of calcium activation.
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Increased Ca’* sensitivity may be the result of increased pH, sarcomere length,
MgADP as well as of decreased ionic strength, lattice spacing, Mg**, MgATP, Pi and
myosin RLC phosphorylation. Changes in pH and ions such as K" can lead to
alterations in Ca’* binding to TnC whereas Mg** is able to affect thin filaments’
protein interactions. Alterations in factors affecting the distance between myosin
heads and thin filament such as sarcomere length, lattice spacing and RLC
phosphorylation may also affect calcium sensitivity through the alterations in the level
of myosin binding to actin. In addition, decreases in ionic strength, Pi, MgATP and
increases in MgADP also lead to increased myosin binding to actin and therefore
force generation (A. M. Gordon et al., 2000).

The ny (steepness of force-pCa relationship) gives information about the
cooperativity between proteins of thin filament. High ny values correspond to high
levels of cooperativity. Thin filament cooperativity may be affected by many factors
including Ca®* binding on TnC or along the thin filament as well as level of Ca*

binding to regulatory units, movement of tropomyosin (A. M. Gordon et al., 2000)

and temperature.

Stretch activation kinetics

During maximal activation of a single fiber under isometric conditions, a
quick rectangular stretch of the fiber lasting only a few seconds (1-3 s) may be
performed. This length change results in a series of different functional reactions due
to stretch. Specifically, the stretch results in an immediate force increase (phase 1)
followed by a force decline (phase 2) and then by a delayed force increase (phase 3)
which is known as stretch activation (Galler, Hilber, & Pette, 1996). Phase 3 and

especially the time from the beginning of the stretch to the peak value of the delayed
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force increase (known as t3) has been studied a lot as it has been well established that
this length time is strongly associated with the myosin heavy chain isoforms of the
fibers (ie. smaller t3 values-faster myosins, larger t3 values-slower myosins) (Galler et
al., 1994). The mechanism underlying stretch activation kinetics has not been fully
understood but it is strongly believed that the delayed force increase is the result of
new actin-myosin cross bridges. According to Linari et al (Linari, Reedy, Reedy,
Lombardi, & Piazzesi, 2004), lengthening results in the displacement of tropomyosin

segments which uncovers new binding sites for myosin.
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Chronic Kidney Disease and Uremia
Definition

In general, the human body contains 2 kidneys with a critical role in many
vital body functions including the maintenance of solute and water transport balance,
excretion of metabolic waste products and regulation of acids and bases. When the
kidneys’ function is impaired, renal insufficiency develops which may gradually lead
to a chronic state known as chronic kidney disease (CKD) (Chikotas, Gunderman, &
Oman, 2006).

CKD is now recognized as a major global health problem, expected to affect
almost the 50% of European and American population during lifetime (Grams et al.,
2013; Zoccali et al., 2010). This “silent” epidemic leads 440.000 of patients to renal
replacement therapy (RRT) each year and it has been identified as one of the leading
causes of death worldwide (Ortiz et al., 2014).

The disease is also known as renal insufficiency, end stage renal disease
(ESRD) and uremia which are in general synonyms. Nevertheless, the term renal
insufficiency is usually referred to a moderate decline of renal function and is
presented with mildly high levels of creatinine, urea and potassium. The term
“chronic” is used when there is an additional loss of renal function (more than 25% of
the normal one) while ESRD is used when renal function finally remains in a
percentage of 10%. On the other hand, the term uremia is used to describe the
situations presented in patients due to the progressive accumulation of uremic toxins
in plasma which are the result of the progressive loss of renal function. These

situations include the accumulation of toxic wastes and electrolyte disorders which
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lead to symptoms such as fatigue, vomiting and loss of appetite (Chikotas et al.,
2006).

The disease has been categorized into five stages according to the level of
kidney function which is reflected in glomerular filtration rate (GFR) (Levey et al.,
2005). In the first two stages of kidney disease (stage 1 and 2) where GFR is above 60
mL/min/1.73 m?, renal function is adequate to maintain patients without symptoms.
Due to the progression of the disease (stage 3 and 4) where GFR is between 15-59
mL/min/1.73 m?, renal function is significantly reduced and at stage 5 where GFR is
up to 15 mL/min/1.73 m? (ESRD), the kidneys cannot perform almost any function
and RRT is required (Levey et al., 2005). There are three methods of RRT and
particularly hemodialysis (HD), peritoneal dialysis (PD) and kidney transplantation.
HD and PD are the most frequent treatment modalities and dialysates act as artificial
kidneys for the regulation of body fluids’ balance and excretion of uremic toxins
while kidney transplantation offers the possibility of a nature organ which offers a full
or partial correction of renal function (Gokal, Figueras, Ollé, Rovira, & Badia, 1999;

Sakkas et al., 2004).

Impact on health and functional capacity

CKD is associated with many comorbidities including diabetes mellitus,
anemia, chronic inflammation, sleep disorders, depression and cardiovascular disease
(CVD) with CVD being the most common cause of death in this clinical population
(Tonelli, 2006). Patients undergoing HD therapy present high percentages of coronary
artery disease and abnormalities in left ventricular structure and function (Foley et al.,

1995).
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Left ventricular hypertrophy (LVH), dilatation, systolic and diastolic
dysfunction, are components of the condition that is used to describe the effects of
CKD on myocardium, termed as uremic cardiomyopathy. Uremic cardiomyopathy
leads to changes in the systemic hemodynamics that in turn affect the structural and
functional characteristics of the myocardium. The main result of uremic
cardiomyopathy is LVH, which is manifested in 26% of patients in stage 3 of CKD
and in 75% of patients on hemodialysis therapy (Foley et al., 1995) and is considered
an independent predictor of survival in CKD patients (Silberberg, Rahal, Patton, &
Sniderman, 1989). LVH is the result of hypertension and arteriosclerosis, which occur
due to pressure and/or volume overload induced by anemia, arteriovenous fistula and
hypervolemia (Alhaj et al., 2013), while hypertension and increased volume overload,
probably induce cardiomyocyte hypertrophy and vascular remodeling (London,
2002).

A host of additional complications also influence the development of cardiac
diseases in CKD patients such as increased levels of homocysteine,
hyperparathyroidism, hypoalbuminemia, oxidative stress and inflammation (Rigatto
& Parfrey, 2001). Anemia and impaired mineral metabolism, stimulate
hyperphosphatemia and elevated parathyroid hormone levels, leading to vascular
calcification by altering the phenotype of vascular smooth muscle cells (Pecoits-Filho,
Bucharles, & Barberato, 2012). Hypovitaminosis D, which is a common disturbance
of CKD patients, contributes to myocardial hypertrophy and it has been associated
with cardiovascular mortality and sudden cardiac death (Drechsler et al., 2010).

Given the high prevalence of cardiac abnormalities and complications in blood
circulation, CKD patients are characterized by very low levels of aerobic and

functional capacity with many factors being implicated. For example, peak oxygen
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uptake (VO, peak) in ESRD patients is decreased by ~50% compared to healthy age-
matched individuals and therefore the activities of these patients are limited to those
intensities that require low levels of aerobic capacity (Painter, 1994). Limitations in
oxygen delivery during exercise training are considered the major causes of the
reduced VO, peak that CKD patients present. It has been suggested that many
parameters interact and are responsible for the low levels of aerobic capacity in CKD
patients including the decreased cardiac output, which is attributed to the low heart
rate, and the low arterial oxygen content induced from anemia and abnormal muscle
function, which is attributed to uremic myopathy and neuropathy (Alhaj et al., 2013;

Painter, 2009).

Impact on skeletal muscle

Uremia itself contributes to functional and structural muscle abnormalities in
patients with CKD, which are more conspicuous in ESRD patients and are considered
characteristics of uremic myopathy. Uremic myopathy is a common abnormality
presented in CKD patients and is strongly associated with muscle weakness, muscle
atrophy and cachexia, which in turn lead to morbidity and mortality and worsen in
patients undergoing HD therapy (Floyd et al., 1974). Specifically, muscle wasting,
limited endurance, exercise limitation and easy fatigability are common
characteristics of uremic myopathy with muscle weakness and muscle atrophy
running parallel to the decline of renal function (Campistol, 2002).

Morphological and physiological abnormalities met in CKD patients lead to
muscle wasting and loss of skeletal muscle strength. Many studies have shown
various factors involved in muscle dysfunction presented in CKD patients and most of

them agree that there are several morphological and metabolic factors implicated as
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well as other parameters including dialysis modality and stage of the disease. In the
following section, a variety of factors affecting muscle function in CKD are

presented.
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Factors Affecting Muscle Function in CKD

Cross sectional area (CSA) and muscle atrophy

Muscle area is an important determinant of force generation and it has been
widely evaluated in many studies. Reduced muscle area has been reported in all
muscle fibers types of CKD patients but mainly in type Il. Specifically, Crowe et al
(Crowe et al., 2007) found that type | and type Il fibers from quadriceps femoris
muscles had significantly smaller mean diameters in HD patients by 15% and 20%
respectively compared to healthy controls. Similarly, Wagner et al (Wagner et al.,
2001) who examined rectus femoris muscle biopsies from young HD patients
compared to healthy controls found that CSA of type | and type Il fibers were smaller
in patients by 5% and 18% respectively although the difference between groups was
not statistically significant. The histological assessments of Fahal et al 1997 (Fahal,
Bell, Bone, & Edwards, 1997) who examined muscle biopsies from the right
quadriceps of dialysis patients and healthy controls also showed that type I, 1A and
I1B fibers were more atrophic in dialysis patients by 13%, 26% and 31% respectively
with a significant difference between groups only in type 1A fibers. In contrast, in the
study of Molsted et al (Molsted et al., 2007) it was found that fiber areas from vastus
lateralis muscles were smaller in HD patients compared to controls by 21% and 14%
in fiber type I and Il respectively with significant differences between groups only in
type | fibers.

Muscle atrophy in HD patients was also reported in the study of Wang et al
(H.-L. Wang et al., 2013) who examined muscle quality and quantity, using magnetic
resonance imaging (MRI) and histochemical analysis. From MRI of right thigh

muscle it was found that HD patients had less muscle mass and muscle/total ratio
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compared to healthy controls. Similarly, histochemical analysis from biceps showed
atrophy and irregular fiber shape in HD patients compared to healthy controls (values
are not reported in this study).

It is obvious that most of the studies have shown that CKD patients present
with muscle atrophy but it has been also reported that CKD patients have larger CSAs
compared to controls. Specifically Lewis et al (Lewis et al., 2012) who studied muscle
biopsies from vastus lateralis muscle, reported that fibers® CSAs were significantly
larger in HD patients compared to controls by 33%, 26% and 28% in type I, IIA and
11X fibers respectively. The authors suggested that this was probably due to fiber

edema presented in HD patients but it represents “real life”.

Fat accumulation

Fat accumulation has also been observed in skeletal muscle of CKD patients
and is an additional factor contributing to muscle dysfunction observed in this clinical
population. Wang et al (H.-L. Wang et al., 2013) examined muscle samples of HD
patients using MRI and histochemical analysis. From MRI of right thigh muscle it
was found that HD patients had higher fat/muscle ratio and intermuscular adipose
tissue (IMAT) compared to healthy controls. Furthermore, histochemical analysis in
muscle samples from biceps showed an increased adipose accumulation in HD
patients. In this study it was also observed an increase in plasma fasting insulin and
homeostatic model assessment of insulin resistance (HOMA-IR) which had a positive
correlation with fat/muscle and a negative correlation with muscle/total ratio

evaluated from MRI.
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Capillaries

Capillarization is also a critical factor affecting muscle function since impaired
capillaries can impair energy production and oxygen delivery in muscle tissue. In the
study of Lewis et al (Lewis et al., 2012) it was found that the number of capillaries
contacting each fiber excised from vastus lateralis muscles was significantly higher in
HD patients compared to controls by 9%, 10% and 23% for type I, 1lA and 11X
respectively. Additionally, capillary/fiber ratio (total number of capillaries per total
number of fibers within a muscle section) was significantly greater in HD patients by
11% but capillary density (number of capillaries per square millimeter of fiber) was
significantly lower by 34% in HD patients. According to the authors, although
capillarity was found to be increased in HD patients, their larger fibers’ CSAs [see
“Cross sectional area (CSA) and muscle atrophy” section] was more intense finally
leading to low capillary density and therefore insufficient oxygen supply (oxygen and
nutrient exchange) especially under conditions with high oxygen demands (eg
exercise).

In contrast, Wagner et al (Wagner et al., 2001) who examined rectus femoris
muscle biopsies from young HD patients and healthy controls found that
mitochondrial oxidative capacity was not different between groups but
capillaries/fiber were reduced (not significantly) in patients by 10% and 14% in fiber
type | and Il respectively. Additionally, capillary density of HD patients was similar

to healthy controls (4% higher in patients).

Myosin Heavy Chain (MHC) expression
One of the well studied parameters in skeletal muscle of CKD patients is the

MHC composition and proportion but the results remain controversial. For example,
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Molsted et al (Molsted et al., 2007) who examined the MHC composition of vastus
lateralis muscle in HD patients found that the relative distribution of MHCI (type 1)
was significantly lower in HD patients (~35% vs ~59%) while MHCIIX (type 11X)
was significantly higher in HD patients (~29% vs ~7%) compared to controls.
Additionally, the relative distribution of MHCIIA (type I1A) was similar between
groups (~35%). Furthermore in HD patients, the number of muscle fibers expressed
MHCIIX was higher from the number of fibers expressed MHCI. As it is discussed by
the authors, an increase in fibers expressing MHCIIX has been linked to physical
inactivity in healthy individuals and the physical inactivity which has been observed
in HD patients probably leads to the higher content of this MHC isoform. In addition,
the low content of MHCI and high content of MHCIIX may affect muscle endurance,
aerobic capacity and insulin sensitivity (while type | fibers express higher levels of
GLUT4). The histochemical assessments of Fahal et al (Fahal et al., 1997) also
revealed a lower prevalence of type | (by 10%) and higher prevalence of type 1l1A (by
4%) and 1IB (by 6%) fibers in muscle biopsies from the right quadriceps of dialysis
patients when compared to healthy controls but without any significant difference
between groups.

In contrast, Lewis et al (Lewis et al., 2012) who studied individual muscle
fibers from biopsies of vastus lateralis muscle found different results. According to
their results, HD patients had a significantly higher proportion of type | fibers and
lower proportion of type 11X compared to controls while there was not observed any
difference in 1A fiber type between groups. As it is discussed, the higher proportion
of type | fibers may act as an adaptive response in order to maintain the endurance

oxidative capacity.
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On the other hand, in the study of Crowe et al (Crowe et al., 2007) who
examined muscle fibers’ type using staining for ATPase activity there was not found
any significant difference between HD and control subjects in the proportion of type |
nor of type Il fibers excised from quadriceps femoris muscles. Similarly, Wagner et al
(Wagner et al., 2001) who examined rectus femoris muscle biopsies from young HD
patients compared to healthy controls did not observe any difference in fiber type

composition between groups.

Oxidative stress

While oxidative stress is an additional factor which may lead to muscle
dysfunction, Crowe et al (Crowe et al., 2007) evaluated the generation of ROS in
skeletal muscle (quadriceps femoris) of HD patients. Regarding muscle antioxidant
enzymes, catalase activity was significantly reduced in HD patients but there was not
observed any difference in superoxide dismutase (SOD) activity. In addition, markers
of ROS activity and specifically total glutathione was significantly higher in HD
patients but the absolute amount of oxidized glutathione was not different between
groups. MDA content was lower in HD patients while protein thiol content was not
different between groups. Muscle heat shock protein HSP27 content was significantly
higher in HD patients but there was not any difference in HSP60 and HSP70. Laslty,
although it has been suggested that oxidative stress is partially responsible for muscle
loss presented in HD patients in this study there was not found any relationship
between oxidative stress markers and muscle atrophy (see at CSA section) probably
due to the muscle chronic adaptations to this stress. However, there is not enough

evidence regarding ROS in skeletal muscle of CKD patients.

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



62

Metabolic byproducts - Substrates

In 1994, Thomson and coworkers (Thompson et al., 1994) based on the idea
of hyperphosphataemia accompanying CKD, conducted a study to examine the
metabolism of uremic skeletal muscle at resting conditions and during exercise and
recovery using 31P magnetic resonance spectroscopy. The results from intracellular
high energy phosphates of patients were compared to age and activity-matched
healthy control subjects who underwent the same exercise session. At resting muscle
they found that the ration of cell Pi levels relative to ATP levels (Pi/ATP) was
significantly higher in CKD patients compared to controls by 25,6% while pH,
PCr/ATP, [ADP] and phosphorylation potential were not different between groups.
However, exercise duration was significantly lower in CKD patients by 24.8%. The
exercise included plantarflexion of the right ankle lifting a progressively higher
weight until complaints of fatigue. After the exercise and during recovery there was
not any significant difference between groups. It has to be noted that after exercise,
mitochondrial ATP synthesis was not different between CKD patients and healthy

subjects and this is in contrast with findings in hemodialysis patients.

Neuromuscular function

Another factor which has been studied in order to explain muscle dysfunction in CKD
is neuromuscular function. Z’Graggen et al (Z’Graggen et al., 2010) examined the
hypothesis that muscle function of HD patients is negatively affected from membrane
depolarization of muscle fibers. For the purpose of their study they recorded the
velocity recovery cycles (VRC) of brachioradialis muscle immediately before and
after HD as well as 1 hour after HD and they compared the results with healthy

control subjects. Evaluation of VRC consists of 4 parameters [relative refractory
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period (RRP), early supernormality (ESN), late supernormality (SN100) and extra late
supernormality (XSN100)] and all of them can provide information about axonal
membrane potential and ion channel function. According to the results, before HD
treatment RRP was significantly prolonged in HD patients compared to controls. In
contrast, ESN and XSN100 were significantly reduced in HD patients while SN100
tended to be significantly reduced in patients. Immediately after HD treatment all
parameters were corrected reaching control values except SN100 while 1 hour after
HD, RCV values tended to return at the pre HD values. Interestingly, ESN found to be
negatively correlated with serum potassium while XSN100 was negatively correlated
with sodium and chloride concentrations. Overall, HD patients presented with
depolarization of muscle membranes which was corrected immediately after HD
treatment. This leads to a small number of available sodium channels and therefore
supernormality and superexcitability reductions. The negative correlation between
serum potassium and early supernormality as well as the normalization of both of
them after HD suggest that depolarization is mainly caused by hyperkalemia. The
authors also suggested that the reduction of SN100 in HD patients revealed
abnormalities in t-tubule function and therefore in calcium release which is not

corrected sufficiently after HD treatment.

Dialysis modalities

It has been also reported that the stage of the disease as well the dialysis
modalities play a crucial role in muscle function through alterations in muscle
morphology. For example Mclntyre et al (Mcintyre et al., 2006) evaluated muscle and
fat CSAs in slices of thigh muscle from CKD (stage 4), PD and HD patients. Dialysis

patients (PD and HD) presented with significantly lower muscle CSAs compared to
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CKD patients by 9% without any difference between PD and HD patients. This lower
muscle mass of dialysis patients was also reflected at their lower (significantly only
for males) functional capacity assessed by sit to stand tests. It was also observed that
fat CSA tended to be significantly increased in PD patients compared to CKD and HD
patients by 9% and 15% respectively and as it is discussed by the authors this could
happen due to glucose-based dialysis solutions.

Sakkas et al (Sakkas et al., 2004) examined the effect of dialysis modality in
muscle morphology and capillarization of gastrocnemius muscle. It was not found any
difference in fiber type distribution and MHC expression nor in central nuclei
between PD and HD patients. Nevertheless, it was found a trend for larger CSAs in
HD patients which could be explained by the fact that most of the HD patients were
males. Furthermore HD patients presented with significantly higher capillary
contact/fiber by 33%, capillary to fiber ratio by 19% and cytochrome c activity in fast
fibers by 33% compared to PD patients. According to the authors this may be due to
heparin treatment in routine HD treatment and together with anemia and acidosis
which were more prominent in HD group may lead to angiogenesis. However, the
differences in capillarization were not reflected in physical capacity assessed by sit to
stand and walking tests while the results were similar between groups.

In addition it has been found that not only the uremic environment but also the
HD treatment per se leads to dynamic changes in genes responsible for inflammation
and apoptosis. Specifically, Shah et al (Shah et al., 2006) who examined vastus
lateralis muscle of HD patients before and after HD treatment found that before HD
treatment 91 genes (83 of them upregulated) were altered in HD patients’ skeletal
muscle compared to healthy controls. Furthermore, HD treatment caused changes in

23 genes (21 of them upregulated), 21 of them are biologically interactive and
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partially responsible for various processes such as cell signaling, cell proliferation,
protein metabolism, inflammation and apoptosis. Furthermore Raj et al (Raj et al.,
2005) also examined oxidative stress markers and cytokines in muscle biopsies from
vastus lateralis of HD patients. Hemodialysis led to a significant increase in skeletal
muscle interleukin-6 (IL-6) (from 0.028+0.02 to 6.69+0.21), heme oxygenase-1 (HO-
1) (0.96 + 0.01 to 5.08 £ 1.11) and suppressors of cytokine signaling (SOCS-2) (0.63
+ 0.12 to 0.82 = 0.14) mRNA levels indicating that HD treatment itself is a source of
inflammation and oxidative stress and therefore is responsible for muscle wasting
presented in this group of patients. Gene expression of additional markers of
inflammation in skeletal muscle was also increased but not significantly [IL-1 and
tumor necrosis factor-a (TNF-a)] while IL-10 was not detectable in skeletal muscle.
Lastly, expression of IL-6 in skeletal muscle of HD patients, examined by
immunohistochemical staining, was found to be increased compared to expression

before HD treatment and control subjects.

CKD patients also appear with low aminoacids’ (AA) concentrations leading
to decreased protein synthesis and propably to increased protein degradation and
therefore muscle weakness (Johansen, 2009). Asola et al (Asola et al., 2008)
compared the effects of two peritoneal dialysis modalities (1.1% AA solution and
glucose based solution, lasted six-weeks each one) in thigh skeletal muscle AA
uptake. AA uptake was evaluated at both fasting and insulin stimulation conditions
using positron emission tomography (PET). It was found that AA solution caused a
higher AA uptake by 32% and 26% in the fasting and insulin stimulation respectively
compared to glucose based solution. AA solution also caused a higher uptake of the
six “system A AAs” by 24% and 16% in fasting and during insulin stimulation

respectively compared to the conventional glucose based solution.
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The dialysis bath has also been examined as a possible factor affecting
neuromuscular function in HD patients. Coppolino et al (Coppolino et al., 2007)
examined the hypothesis that plasma potassium reduction due to standard acetate-free
biofiltration negatively affects neuromuscular function. Therefore they studied the
effect of 2 techniques of acetate-free biofiltration (AFB) on the motor action potential
(cMAP) and force production of HD patients before, during and at the end of HD
treatment (6 time points). Specifically the first one was the standard technique with
constant AFB and the second one with variable potassium concentration (AFBy) in the
hemodialysis bath. Neuromuscular excitability was assessed at the right abductor
digiti minimi muscle (ADM) which was stimulated from the wrist ulnear nerve of the
opposite arm and force generation was evaluated in the right index finger and thumb
using a dynamometer. It was found that in contrast to AFBk, AFB caused a significant
reduction in cMAP after 15 and 45 minutes from the beginning of dialysis treatment
where force was also significantly reduced (values are not reported). Additionally,
both techniques caused significant reductions in electrical membrane potential at rest
(REMP) in all time points (compared to baseline) but AFB caused a significantly
greater reduction at 15 and 120 minutes compared to AFBK. Potassium reduction
leads to membranes’ potential changes which depend on the potassium concentration.
According to the authors, AFB caused reductions in cMAP and force because of the
sudden drop of serum potassium concentrations which leads to the blocking of

cellular depolarization and sodium channel, finally leading to low force generation.

Other factors
In the study of Lewis et al (Lewis et al., 2012) muscle fibers of HD patients

from vastus lateralis muscle also presented with significantly lower succinate
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dehydrogenase (SDH) activity compared to control subjects by 29%, 40%, and 47%
in type I, 1A and 1IX fibers respectively. In this study a few biopsies were also
underwent an ultrastructural analysis in order to observe differences in mitochondria,
myocyte and Z-band disruptions as well as glycogen depletion. In two-thirds of
biopsies which were analyzed, the authors observed changes in mitochondria and this
IS in agreement with the low oxidative capacity observed from SDH activity in HD
patients. Furthermore, in the biopsies with mitochondrial abnormalities there was also
observed myocyte and Z band disruption by 9% and glycogen depletion by 18%.
Lopez et al (Lopez et al., 2005) evaluated the calcium concentration in skeletal
muscle of HD patients using Ca*" selective microelectrodes. It was found that resting
intracellular calcium concentration was significantly higher in all uremic muscle
fibers from intercostal muscle biopsies (48 hours after hemodialysis) compared to
controls by ~235% but resting membrane potential was not different between groups.
Additionally, removal of extracellular Ca** or incubation with a dihydropyridine
receptors’ specific antagonist (antagonist named nifedipine) did not affect
intracellular calcium neither in uremic nor in control fibers indicating that the source
of elevated intracellular calcium was mainly of intracellular origin. Indeed, the
intracellular calcium elevation was reversible after applying an antagonist of cyclic
adenosine diphosphate-ribose (CADPR) (antagonist named 8-bromo-cADPR)
indicating that impaired regulation of intracellular Ca®* was at least partially affected
by cADPR. cADPR is a regulator of intracellular Ca** concentration synthesized by
ADP-ribosul cyclases and degraded by c-ADPR-hydrolase to ADP- ribose. Therefore,
these results indicate that uremic toxins may affect the cADPR signaling pathway in
skeletal muscle causing elevated intracellular calcium concentration and therefore

impairing muscle function in CKD patients.
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Counteracting Measures - Exercise interventions

Many studies have studied the effect of exercise training in correcting muscle
function and morphology of CKD patients with encouraging results. For example
Molsted et al (Molsted, Andersen, Harrison, Eidemak, & Mackey, 2015) examined
the effect of a 16-week high intensity resistance exercise training (3 times per week)
in satellite cells’ (SC) content of muscle biopsies from vastus lateralis of HD patients.
Myonuclei content and domain were also assessed. At baseline, SC content was
significantly higher in type | compared to type Il fibers but after correcting for fiber
area the difference was not significant between fiber types. During the training period,
SC content was significantly increased by 15% in type | fibers without any change in
type Il fibers. On the other hand, myonuclei content of type | fibers did not alter after
the training period but in type Il fibers, myonuclei content was significantly increased
by 13%. Regarding myonuclei domain there was not found any difference before nor
after training period. Fiber size and distribution between fiber types also remained
unchanged but knee extension torque was significantly improved by ~23%.

Castaneda et al examined the effect of a low protein diet in combination with
resistance training or low protein diet alone for 3 months in vastus lateralis
morphology of pre-dialysis CKD patients. After the exercise period, CSAs of type |
and 11 fibers were significantly increased by 24% and 22% respectively compared to
non exercised patients. These improvements were accompanied by reductions in C-
reactive protein (CRP) and IL-6 (Castaneda et al., 2004). The same intervention also
led to a significant increase of total body potassium by 4% through the anabolic effect

of resistance training (Castaneda et al., 2001).
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Sakkas et al (Sakkas, Sargeant, et al., 2003b) studied the effect of a six-month
aerobic exercise training in skeletal muscle morphology of dialysis patients (HD and
PD). Gastrocnemius muscle biopsies were obtained and analyzed before and after the
training period. Although it was not found any change in MHC distribution and
cytochrome c oxidase concentration between pre and post training periods, fibers’
CSAs were significantly increased by 32% in type I, 54% in type 1lA and 36% in type
11X fibers. In addition, the proportion of atrophic fibers was also decreased from 51 to
15% in type I, from 58 to 21% in type lla and from 62 to 32% for type 11X muscle
fibers. Capillary contact was also improved by 24%. Thus, 6 months of aerobic
exercise training corrected muscle atrophy and capilarization in skeletal muscle fibers
of dialysis patients.

Wagner et al (Wagner et al., 2001) also examined the angiogenic growth
factor gene responses due to a session of exercise in young hemodialysis patients.
Patients underwent a one-hour training session at a leg-kick ergometer (50% of
maximal capacity). Rectus femoris muscle biopsies were collected during rest and
exercise. Although vascular endothelial growth factor (VEGF) mRNA was
significantly increased after exercise in both groups, basic fibroblast growth factor
(bFGF) and transforming growth factor (TGF-31) were not altered after exercise in
either group.

Balakrishnan et al (Balakrishnan et al., 2010) investigated the effect of a
twelve-week resistance exercise training program in mitochondrial biogenesis of
vastus lateralis muscle biopsies from CKD patients (stage 3 and 4). Patients, were
randomly assigned to the resistance training group or the attention control group (only
stretching and flexibility exercises) and both groups followed a low protein diet 2 to 8

week before the beginning and until the end of the exercise training period. In the
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current study CSAs of type | and type Il fibers, whole-body muscle strength and
metabolic factors (i.e. GFR, CRP, IL-6, HOMA-IR, IGF-1) were also assessed. At
baseline, mitochondrial DNA copy number (mtDNA copy number) was higher in the
attention control group (P=0.08) while IL-6 was higher in the training group (P=0.07).
After the 12-week period, exercise group presented with a significant increase in
median mtDNA copy number by 7.5% compared to baseline, while a significant
reduction was observed for the control group (18%). Additionally, the changes in
mtDNA copy number were significantly associated (positively) with alterations in
CSAs of both fiber types (values are not reported). Thus, despite the low protein diet,
resistance training improved mitochondrial content and muscle mass of patients.
However, in some patients the mtDNA copy number was reduced after exercise
period as it was observed in the control group (probably due to low protein diet
without exercise training).

Molsted et al (Molsted, Andersen, Eidemak, Harrison, & Jgrgensen, 2014)
examined the association of hormone levels [testosterone, luteinizing hormone (LH),
insulin-like growth factor 1 (IGF-1) and insulin-like growth factor-binding protein 3
(IGF-BP3)] with muscle fiber size and muscle strength before and after a 16-week
supervised heavy load resistance training program (3 times per week) of male dialysis
(HD and PD) patients. At baseline, total testosterone found to be in a normal range
compared to age-matched reference population (not from this study) and this finding
was in contrast to other studies reporting low levels of testosterone in dialysis
patients. In contrast, free testosterone, LH, IGF-1 and IGF-BP3 were higher in
patients compared to reference population. Regarding the association of hormone
levels with muscle fibers’ size from vastus lateralis muscle it was found that free

testosterone (but not age-adjusted free testosterone) had a significant positive
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association with type Il muscle fibers’ size whereas IGF-1 (and age-adjusted IGF-1
too) had a significant positive association with both type | and Il fiber size. After the
training period all hormones remained unchanged but when comparing delta values of
the control and training period total testosterone/LH was changed. Muscle strength
measured by knee extension improved after training period by 19-25% without any
significant change in muscle fibers’ size neither of type | nor of type Il fibers.
According to the authors this was an unexpected result while testosterone levels were
normal and it is known that resistance training causes an increase in muscle mass in
subjects with normal testosterone levels compared to subjects with low levels. The
authors also explain that since the increase in muscle strength was not due to an
increase in muscle mass it was probably due to neuromuscular improvements.

Molsted et al (Molsted, Eiken, Andersen, Eidemak, & Harrison, 2014) studied
the proinflammatory cytokine IL-6 and vitamin D (reflected in 25-OH D) and their
associations with muscle size and function of dialysis patients (HD and PD) after a
16-week high intensity resistance training. Muscle power (leg extensor power) was
significantly increased after training period by 20-23% and physical function
measured through the chair stand test was also significantly improved by ~22%.
However the training period had not significant effects on muscle fiber size of vastus
lateralis muscle. In addition, levels of IL-6 were not changed after training period but
according to the authors this could be explained by the type of exercise or the origin
of low grade inflammation. High levels of IL-6 were associated with older patients,
low muscle power, low protein intake but not with low muscle fiber size. As it is
suggested, the fact that IL-6 was not found to act as an inhibitor in muscle
hypertrophy it was surprising but it may act synergistically with other factors such as

uremia, insulin resistance, anabolic hormone deficiency and acidosis. Regarding
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levels of 25-OH D, at baseline, 51% of patients had vitamin D deficiency. 25-OH D
was significantly decreased after the 16-week training program but this may happened
because the end of the training program was during winter where 25-OH D was found
to be significantly lower. Normal values of 25-OH D were correlated with lower
percentage of type 11X fibers and increased size of type | fibers. After adjustment for
age and season, normal values of 25-OH-D were still associated with the reduced
percentage of type 11X fibers but reduced size of type I fibers. 25-OH-D had not any
correlation with muscle power and morphology throughout the study but lower levels
during training period had a correlation with an increase in type 1l muscle fiber size.
The improvements in muscle power and physical function after the training period

were not correlated with IL-6 nor with 25-OH D values.
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The Practicality of Animal Models

Several animal models of CKD have been introduced in order to overcome the
confounding factors of human disease (such as years from diagnosis, comorbidities,
pharmaceuticals and nutritional status) and to study particular mechanisms in a
limited time frame (Becker & Hewitson, 2013). Using such experimental models,
researchers are able to understand the physiology and pathophysiology of the disease
and therefore to examine potential novel therapies, or to improve the existing ones
(Becker & Hewitson, 2013).

Depending on the mechanism of interest, CKD can be induced by in vitro or in
vivo models and the choice of the model is of crucial role for the outcomes of each
study. In vitro models are of small utility while results may vary depending on the cell
type examined and therefore studies examined this kind of models are limited (Yang,
Zuo, & Fogo, 2010). On the other hand, in vivo models are of larger interest while
outcomes have a better reflection in in vivo physiology. As a result, a lot of in vivo
animal models of CKD have been introduced such as genetically engineered models,
spontaneous models and acquired models (immune or non-immune induced models).
Non-immune models can be induced in many ways including the reduction of renal
mass by surgical intervention, known as nephrectomy, which leads to a CKD animal
model of known etiology (Yang et al., 2010).

Another critical factor for animal models is the choice of the right animal.
There has been introduced a variety of species (mice, rats, rabbits, dogs) as animal
models of CKD, but the right choice depends on the particular aspect of the disease
which is going to be reproduced each time. Murine models of kidney disease are
increasingly preferred because of their small size, their low cost housing and the

genetically defined strains (Anders & Schléndorff, 2000). However, rodent models,
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remain the closest to human disease species (Becker & Hewitson, 2013) and
especially rabbits are viable and adequate models for surgical interventions (Calasans-
Maia, Monteiro, Ascoli, & Granjeiro, 2009).

One of the surgical interventions of renal mass reduction was developed in
1982 by a two-step partial nephrectomy (Gotloib et al.,, 1982). First, partial
nephrectomy of left kidney was induced by electrocauterization keeping 1/3 of the
kidney functional and after an interval of two weeks, a total removal of the right
kidney was performed through a flank incision and by extraperitoneal approach. In
this way the authors established a reliable animal model for investigating the
metabolic complications of continuous ambulatory peritoneal dialysis. This surgical
approach that aims reproducing CKD by reduction of renal mass has been achieved
by using different protocols and in various animal species (Dobbie, 1993; Gotloib et
al.,, 1982; Ma et al.,, 2005; Ma & Fogo, 2003; Oreopoulos, Balaskas, Rodela,
Anderson, & Oreopoulos, 1993; T. Wang et al., 1997).

Our research interest focuses on uremic myopathy. Therefore, we chose the
animal model of White New Zealand rabbit (WNZ) that could provide us the
necessary experimental material for a variety of experiments, while remaining were
shared for further experiments respecting the “Three R’s” (Institute for Laboratory

Animal Research, 2011).
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Unanswered Questions

From the current literature review, it can be concluded that while conditions
affecting muscle function in uremic patients have been widely described examining a
variety of possible factors implicated, results have been usually dealing with
macroscopic parameters, clouded by comorbidities, and there is not yet a clear
explanation about the exact mechanism underlying muscle dysfunction in CKD.
Specifically it is not clear whether the muscle cell per se is affected in early disease
and whether its mechanical operation, as for example reflected by its ability to
generate isometric force, may be discernibly impaired.

Clearly, there is a gap in the literature regarding the contractile properties of
uremic single muscle fibers not only in resting conditions but also in conditions
mimicking fatigue such as acidosis and oxidative stress.

To answer such questions it is important to use methodology that avoids
confounding factors (such as years from diagnosis, comorbidities, pharmaceuticals,
gender, and nutritional status) which are unavoidable when studying patients. This
issue can be satisfactorily addressed by employing an animal model mimicking
chronic renal insufficiency. Moreover, to exert precise control over the factors
affecting muscle function at rest and fatigue, independently of any degree of
neuropathy, we herein propose to address such questions using the skinned fiber
method where the surface membrane of fibers is chemically or mechanically skinned
and intracellular solutions can be altered and controlled according to the conditions
researchers need to mimic. The results of skinned fiber studies may lead to important
conclusions about mechanisms of muscle contraction and/or fatigue and give
information regarding the sarcomeric proteins’ function, an area which has not been

yet addressed in the literature.
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Evidence of muscle fiber functional deficits in experimentally-induced

renal insufficiency

Aims addressed in this paper: using tissue from an animal model of uremia to

examine the effect of chronic renal insufficiency on

1. force generation of isolated muscle fiber preparations in conditions mimicking
the resting state

2. force generation of isolated muscle fiber preparations in conditions mimicking
acidosis

3. morphology of isolated muscle fiber preparations
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ABSTRACT

Introduction: Chronic kidney disease (CKD) patients present with muscle
abnormalities (uremic myopathy) whose mechanisms have not yet been fully
elucidated. The aim of this study was to investigate whether renal insufficiency
affects skeletal muscle contractile properties at the cellular level. Materials and
Methods: Renal insufficiency was induced surgically in New Zealand rabbits
(UREM), with sham-operation for controls (CON), using ethically approved
procedures. At 3 months post-surgery, following euthanasia, psoas muscle samples
were excised. Sample treatments, dissection and all evaluations were conducted in a
blind fashion. Maximal isometric forces were recorded from maximally calcium
activated single fibers (n=142 CON, n=240 UREM) at ‘standard’ baseline conditions
(pH 7, 10°C), and at a near physiological temperature (pH 7, 30°C) in a subset of
fibers; the effect of acidosis (pH 6.2) was also evaluated. Results: Renal insufficiency
resulted in significantly smaller average CSA (~11%) for UREM muscle fibers
compared to CONs (P<0.01). At standard conditions, UREM fibers produced lower
absolute and specific forces (vs CON, P<0.01); force increased by exposure to 30°C
(P<0.01), percentage-wise more so in UREM fibers vs CONs, however the initially
observed force disparity remained significant. For both groups, acidosis significantly
reduced force production (vs pH 7, 10°C P<0.01), with a similar percent force decline
in both groups (UREM -48% vs CON -43%, P>0.05). Conclusion: Chronic renal
insufficiency induced significant impairments in single psoas muscle fibers’ tension
that were only partially explained by atrophy. Further investigation is warranted to
pinpoint the contributions of possible changes in sarcomeric protein properties to the

evident functional deficit.

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



79
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INTRODUCTION

Chronic kidney disease (CKD) is increasingly recognized as a major global health
problem affecting 40-50% of EU and USA populations (Grams et al., 2013; Zoccali et
al., 2010), as well millions in Asia (Abraham et al., 2016), Latin America (Cusumano
& Gonzalez Bedat, 2008) and elsewhere. Whole body function and skeletal muscle
phenotype are heavily impacted by CKD (Kaltsatou et al., 2015; Sakkas, Ball, et al.,
2003; Sakkas, Sargeant, et al., 2003a) with patients presenting with muscle weakness,
limited endurance and fatigue intolerance (Campistol, 2002), neuropathy (Adams &
Vaziri, 2006) and a host of other striated muscle problems. Collectively described as
uremic myopathy (Campistol, 2002), this muscular dysfunction promotes loss of
independence and contributes to patients’ high cardiovascular and metabolic
morbidity, resulting to poor quality of life and early mortality (Johansen, Chertow,
Jin, & Kutner, 2007; Pereira et al., 2015). Thus, there is an urgent need to generate
new knowledge to enhance our understanding of the characteristics and progression of
striated muscle pathophysiology in CKD in order to support the design of appropriate
interventions to prevent or alleviate its devastating impact.

The safeguarding of skeletal muscle mass and function has been recognized as
a critical challenge in the end-stage CKD, as indicated by the existing literature. In
patients, muscle pathology is exacerbated but only partly explained by inactivity
(Sakkas, Sargeant, et al., 2003a).

While both intramuscular energetics disturbances and central activation failure
are implicated (Johansen et al., 2005), the mechanisms underlying peripheral fatigue
in CKD have not yet been fully understood. A number of interventions implemented
so far, while greatly beneficial (P. L. Gordon, Sakkas, Doyle, Shubert, & Johansen,

2007; Johansen et al., 2006; Sakkas, Sargeant, et al., 2003a), have failed to fully
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correct for muscular deficits. Moreover, patients present with neurological and quality
of life problems (Giannaki et al., 2011), sleep disturbances (Sakkas, Karatzaferi, et al.,
2008), anxiety or symptoms of depression (Grigoriou, Karatzaferi, & Sakkas, 2015;
Mitrou et al., 2013). Additionally, along with the individual patient’s characteristics,
the interaction of disease specific and/or toxicity factors and disuse, as in other
chronic conditions, is not easily untangled (Malavaki et al., 2015). All of the above
are adding on the complexity of the challenge to explain and ultimately prevent
and/or ameliorate uremic myopathy. Given most research so far has been done at the
end-stage, key issues related to disease progression and contractile mechanisms are
still unanswered, such as; do sarcomeric muscle deficits develop early during the
disease progression? and, if yes, could they have a measurable effect on muscle
contractile properties per se?

To answer such questions it is important to use methodologies that a) avoid
confounding factors (such as years from diagnosis, comorbidities, pharmaceuticals,
gender, and nutritional status) which are unavoidable when studying patients, and b)
allow for the functional assessment of the contractile machinery per se and has
relevance to physiology in vivo.

The first issue can be adequately addressed by employing an animal model
mimicking chronic renal insufficiency [e.g. surgically induced (Gotloib et al., 1982)]
to provide muscle tissue. The second issue requires an evaluation that focuses on the
sarcomeric level of function (and is thus acutely independent of metabolic and neural
factors). This can be addressed by using the isolated single, muscle cell preparation
with a permeabilized sarcolemma (aka skinned fiber) to assess in vitro the effects of
selected conditions on muscle contraction at the single cell level (Cooke & Bialek,

1979). This type of cellular preparation allows for the reliable study of sarcomeric

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



82

function (e.g. by assessing maximal isometric tension and the evaluation of individual
or combinations of factors, such as pH (Fitts, McDonald, & Schluter, 1991),
temperature, etc (Karatzaferi et al., 2004; Ranatunga, 2010) with high physiological
relevance (Karatzaferi et al., 2004, 2008).

Therefore, the aim of this study was to evaluate, for the first time, the effects
of chronic renal insufficiency on the contractile properties of isolated muscle fiber
preparations from an animal model, in a blind design. We examined whether chronic
renal insufficiency affected the ability of the cell to produce maximal isometric force.
We also evaluated whether the contractile ‘response’ to acute acidosis was altered.
Moreover, considering the importance of temperature in translating our in vitro
findings to in vivo function we appropriately employed the temperature-jump method

to examine isometric tension at a temperature closer to physiological.
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MATERIALS AND METHODS
Animal model

All animal procedures, including surgery and euthanasia for this project were
approved by the ethics committee of the University of Thessaly (decision 2-1/10-10-
2012) and the scientific committee of the University Hospital of Larissa, Greece
(decision 1/4-1-2012). Animals were under veterinary care, in accordance to the
national directives for the care and use of laboratory animals. Nine New Zealand
young adult white female rabbits (N=9) with a body weight (BW) of ~ 3200g were
housed in a controlled environment with stable conditions (temperature 22-24°C,
12:12 h light-dark cycle) and were acclimatized for 48 hours. Rabbits were fed ad
libitum a special rabbit chow containing low levels of protein, potassium, calcium,
phosphorus and sodium (prepared by Research Diets, Inc. USA) and water ad libitum.

After acclimatization, surgical procedures were performed (sham operation for
control animals - CON and partial nephrectomy for experimental animals —-UREM).
Animals were anaesthetized by intravenous administration of a solution mixture of
ketamine hydrochloride 100 mg/ml (Imalgene® 1000; Merial, Duluth, Georgia, USA)
and xylazine 20 mg/ml (Rompun®; Bayer, Leverkusen, Germany), 87% and 13%
respectively (proportion 6.69:1 approximately). The initial dosage for the induction of
anesthesia was 0.3 ml/Kg BW of the above solution mixture, i.e. Imalgene® (87%)
and Rompun® (13%), intravenously (i.v.). The maintenance of anesthesia was
achieved by a dose of 0.2 to 0.3 ml i.v. of the solution mixture. Animal temperature
was maintained via a heating pad. Three hours before the intervention, each animal
had only access to water and its weight was measured on a precision scale. The
induction of renal insufficiency was performed surgically (using a surgical protocol

modified from Gotloib et al., 1982)(Gotloib et al., 1982). For the UREM group six
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animals (N=6) underwent removal of the left kidney after careful ligation of the left
renal artery and vein; and partial nephrectomy (%) of right kidney. For the CON
group, three age —matched animals (N=3) underwent sham operation and were
considered as the control group (CON animals). In a previous pilot study (data not
shown) sham-operated muscle contractility was comparable to non-procedure
animals. Thus, in agreement with the principle of Reduction in Animal Research
sham-operated animals were used as controls in the present study.

Twelve weeks after surgery, animals were weighted and then sacrificed by
injection of sodium pentobarbital solution (50 mg/ml) which was applied in a dosage
of 100 mg/Kg BW followed by bilateral thoracotomy. Immediately after cardiac
arrest, blood samples were collected from heart and aorta using a heparinized syringe
for subsequent serum urea and creatinine determination using standard photometric
protocols. Urea concentration in serum was determined with the colorimetric method
using a commercially available kit (ab83362, Abcam), a 96-well microtiter plate and a
programmable microplate reader (Biochrom, Asys Expert 96). Urea concentration in
unknown samples was determined by comparison with the standard curve. Creatinine
concentration in serum was determined with the colorimetric method using a
commercially available kit (ab65340, Abcam), a 96-well microtiter plate and a
programmable microplate reader (Biochrom, Asys Expert 96). Creatinine
concentration in unknown samples was determined by comparison with the standard
curve.

Psoas muscle was fast excised and processed for contractility studies (see
below) while the remaining of the animal’s tissues was shared for other approved

protocols. Sample collections were done in a blind fashion.
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Muscle Samples

Psoas muscle samples from UREM and CON animals were permeabilized as
previously described (Karatzaferi et al., 2008). Briefly, thin bundles of rabbit PSOAS
muscle (~2 mm diameter) were dissected and tied to wooden sticks using surgical
thread. The samples were placed in falcon tubes containing skinning buffer solution
(0°C) [120 mM KAc, 50 mM 3-(N-Morpholino) propanesulfonic acid (MOPS), 5 mM
MgAc,, 4 mM ethylene glycol tetraacetic acid (EGTA) and 50% glycerol (v/v); pH 7]
with the addition of 100 pl, per 50 ml end volume, of a protease inhibitor cocktail
(104 mM AEBSF, 80 microns Aprotinin, 4 mM Bestatin, 1.4 mM E-64, 2 mM
Leupeptin and 1.5 mM Pepstatin). Samples were placed on a vibrating platform
shaker (Heidolph-Titramax 100) in a parallel to the ground position and shaken at 350
rpm for 24 hours at 0°C. Thereafter the skinning solution was replaced with fresh
solution and muscle samples were stored at -20°C until mechanical assessments.
Chemicals were purchased from Sigma-Aldrich (via national retailers Life Science

Chemilab SA, Athens, Greece and Anadrasis, Thessaloniki, Greece).

Experimental setup for single fiber mechanics

For their mechanical assessment, each single fiber was dissected from the
muscle bundle on a cold stage under a stereomicroscope and the fiber ends were
attached between two tissue mounts of a muscle micro dynamometer. The tissue
mounts were connected to a force transducer and a motor arm (used as a fixed end).
The fiber was then immersed in baths each holding ~200 pl of experimental solution
(refer to the experimental solutions section). Data were continuously recorded and

later exported for further analysis.
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The customized micro dynamometer with a resolution of 0.4 uN to 4 N (SI
Heidelberg/WPI) consists of a horizontally translocating platform with five
independently temperature controlled baths (via peltier) supported by a cooling water
circulator (Thermo Electron Haake WKL 26 re-circulator chiller 3L capacity bath). A
He-Ne laser and a system of mirrors with the use of a camera allow for sarcomere
length measurements to be taken. Fibers can be switched between baths in less than
250 ms allowing for rapid temperature jumps (T-Jump).

For this study the temperature of the baths was maintained at 10°C and 30°C.
As detailed elsewhere (Karatzaferi et al., 2004), the advantage of the T-Jump method
is that the fiber may be first activated at a low temperature where the sarcomere
arrangement is stable and it can then be rapidly transferred to a higher, closer to
physiological, temperature in order to generate the maximal force without ruining the

sarcomere arrangement (for an indicative experiment see Figure 1).
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Figure 1. Indicative example of single fiber force recordings: A fiber was first
immersed in a relaxing solution with pH 6.2 and then in an activating solution with
pH 6.2, 10°C. Once a steady state force was reached, the fiber was transferred in the

activating solution with pH 7, 10°C and was allowed again to reach a steady state
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force. After the low temperature activation, the fiber was activated in an activating
solution with pH 7, 30°C (T-Jump). Fibers were returned to a relaxing solution of the
pH of interest in between and reactivated to verify stability (not shown). Up to five

maximal activations were possible.

Experimental solutions

For contractile assessments the basic rigor buffer contained 120 mM KAc, 50
mM MOPS, 5 mM MgAc; and 1 mM EGTA for pH 7 or 120 mM KAc, 50 mM MES,
5 mM MgAc; and 1 mM EGTA for pH 6.2. Relaxing solution was achieved with the
addition of 5 mM ATP in the corresponding rigor buffer (pH 7 or pH 6.2). Lastly,
maximal calcium activation was achieved with the addition of 1.1 mM CaCl; in the
relaxing solution. The ionic strength of the solutions was ~0.2 M.

To exclude the possibility that the calcium concentration used to maximally
activate control fibers might not be sufficient for uremic fibers, a small pilot study
was first undertaken where approx. 40 control and uremic fibers (data not shown)
were blindly assessed in three to four pCa concentrations at pH 7, 10°C. From that
pilot study it was concluded that the standard addition of 1.1 mM CaCl, (pCa 4.4)

provided maximal isometric tension for both groups and was thereafter used.

Maximal Isometric Tension measurements

All assessments and initial data reductions were done in a blind fashion.
Maximal isometric tension was first evaluated at resting conditions (pH 7) and 10°C
at resting sarcomere lengths (2.2-2.4 pm). Each fiber was first immersed for 1 minute
in a bath containing rigor solution (to wash out excess glycerol) and then it was
transferred and equilibrated for 2 minutes in a bath containing relaxing solution.

Average diameter was determined for subsequent cross-sectional area (CSA)
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calculations assuming a cylindrical shape. Consequently, a fiber was maximally
activated to contract isometrically at pH 7, 10°C and 30°C.

A subset of fibers underwent an assessment at 10°C, in both resting (pH 7) and
acidic (pH 6.2) conditions while few fibers were also assessed at 30°C. In this set of
measurements each fiber was maximally activated to contract isometrically first in
one pH condition, at 10°C and it was then activated in the other pH condition, at 10°C.
Thereafter, the fiber was maximally activated at 30°C for 3 to 5 sec at the
corresponding pH of the latter activating solution. Finally, the fiber was re-assessed in
the initial pH and temperature solution (to fulfill criteria of stability, e.g. <10% initial
force decline). To avoid an order effect, fibers were randomly assigned to be first
activated in pH 7 and then in pH 6.2 and vice versa. Depending on the pH of the first
activating solution (pH 7 or pH 6.2) the fibers were first immersed in the

corresponding rigor and relaxing solutions.

Statistical analysis

Force data distribution was tested using Kolmogorov-Smirnov test of
normality. Due to the normal data distribution, statistical analysis was performed
using parametric tests. Descriptive (Mean + SD) and Inferential (SEM and exact 95%
Cls) statistics of absolute and specific forces, as well as percentage force values are
reported. A General Linear Model (GLM) analysis was performed to examine main
effects of independent variables and their interaction. To examine possible differences
in the response to either temperature or pH, force change was calculated in
percentages and the differences between groups were tested using unpaired analysis

(t-test for independent samples). All statistical analyses were performed using a
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commercially available statistical package (SPSS 15.0 for Windows) and the

significance level was set at P<0.05.
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RESULTS

Both surgery procedures (¥ partial nephrectomy-UREM animals and sham
operation-CON animals) were well-tolerated and animals presented with a normal
after-surgery recovery. At the end of the twelve-week period post-surgery, body
weight ranged between 3,500-4,965 for CON (with mean + SD of 4,105 + 765) g and
1,970-4,585 (2,988 * 1,045) g for UREM animals (P>0.05). Renal insufficiency in
experimental animals, compared to controls, was reflected in raised serum creatinine
(CON, 1.38 = 0.09 mg/dl, vs UREM, 2.67 = 1.15 mg/dl, P<0.05) and urea levels
(CON 40.67 = 4.62 mg/dl vs UREM 67.33 £+ 32.02 mg/dl, P>0.05).

A total of 142 CON and 240 UREM single fibers were assessed at 10°C and
pH 7 (pH 7 representing a ‘resting’ state) under maximal calcium activation (‘pool of
fibers’ in “standard in vitro conditions’). Of those, a subset of 41 CON and 73 UREM
fibers were also assessed at 30°C using the t-jump method (‘temperature effect’).

In order to examine any differences in functional response to acidosis (pH
6.2), another subset of the pool fibers (25 CON and 48 UREM fibers) were exposed to
both resting (pH 7) and acidic (pH 6.2) conditions at 10°C. It was also possible for 13

CON and 21 UREM fibers to be assessed at 30°C, pH 6.2.

Morphological characteristics of single fibers

Average fiber diameters differed significantly between groups as revealed by
unpaired t-test analysis (Mean £ SD CON 84.5 = 9.3 vs 79.6 £ 9.4 ym, P<0.001).
Likewise, calculated cross sectional areas (CSAs) of UREM fibers were significantly
lower compared to CONs (CON 5,671 + 1,259 vs 5,040 + 1,189 pym? P<0.001),
indicating a level of ~11% atrophy. Thus, thereafter force analysis data will be

presented for both absolute and specific values (i.e. corrected for calculated CSA).
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Contractile properties of single fibers at resting conditions (pH 7)

Descriptive and inferential statistical analysis results of main data are
presented in Table 1 and Figure 2. Whether on absolute or specific force values, GLM
analysis indicated a statistically significant main effect of group [CON vs UREM,
F(1,492)=83.6, P<0.001 and F(1,492)=33.1, P<0.001 respectively] and temperature
[10°C vs 30°C, F(1,492)=114.6, P<0.001 and F(1,492)=108.2, P<0.001 respectively]
as well a significant interaction (group x temperature) [F(1,492)=19.9, P<0.001 and

F(1,492)=10.5, P=0.001 respectively].
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Table 1. Contractile properties of UREM and CON single psoas muscle fibers at 10°C

and 30°C, pH 7.

Dependent | Group Temperature | n Mean SD SEM 95% Confidence
Variable Interval
(*C)
Lower Upper
Bound Bound
Force (uN) CONTROL 10 142 434 171 17 400 468
30 41 780 216 32 717 844
UREMIC 10 240 327 203 13 301 353
30 73 470 263 24 423 517
Specific CONTROL | 10 142 76 25 3 70 83
Force
(mMN/mm2)
30 41 134 40 6 123 146
UREMIC 10 240 66 38 2 61 71
30 73 96 55 4 87 105

temperature and their interaction (group * temperature) (P<0.001).

Descriptive (Mean + SD) and Inferential statistics (SEM and exact 95% ClIs) are reported for the collected isometric force

data. The value for n represents fibers assessed. GLM analysis indicated a significant main effect of either group,

The pairwise comparisons showed consistent statistically significant

functional
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experimentation conditions of 10°C, pH 7, absolute isometric tension (Figure 2A) of
UREM fibers was significantly lower compared to CONs (P<0.001) roughly by
approx. -25%. After accounting for fiber CSA, UREM fibers were still found to
produce lower isometric forces compared to CON fibers (P<0.01), roughly by approx.

-14% (Figure 2B).
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Figure 2. Isometric force for CON (open bars) and UREM (filled bars) psoas muscle
fibers. Data collected at 10°C (10°C) and 30°C (30°C) pH 7 are presented as Mean
values with exact Upper and Lower 95% Cls for A. absolute and for B. specific

isometric forces. * Denotes significant difference from corresponding 10°C value
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(P<0.001); t Denotes significant difference from corresponding control values

(P<0.01).

Exposing fibers to a temperature jump from 10°C to 30°C caused an expected
significant force rise in both fiber groups (P<0.001). Still, at 30°C and pH 7, UREM
fibers (n=73) produced significantly lower forces (P<0.001) than CON fibers (n=41),
in both absolute force (lower by approx.-40%) and specific force levels (by approx.-
28%), (Figure 2). Examining the temperature effect as a percentage of a fiber’s own
baseline force value at pH 7 and 10°C, UREM fibers appeared to gain more, as their
average temperature-induced force increase (+167 £ 170%) was 2.2 fold that of CON
fibers (+76 = 42%) (P<0.005, unpaired t-test). However, the significant force disparity

between groups remained at 30°C, as mentioned above.

Contractile properties of single fibers in acidic conditions (pH 6.2)

In a different subset of fibers (n=25 CON and n=48 UREM) we assessed the
effect of lowering the pH (from 7 to 6.2) on isometric force, which caused an
expected significant force reduction in both groups (P<0.005). More specifically, for
CON fibers absolute and specific forces at pH 6.2, 10°C, were (Mean + SD) 316 +
116 pN and 55 + 20 mN/mm? respectively. For UREM fibers, absolute and specific
forces at pH 6.2, 10°C, were (Mean + SD) 211 + 125 pN and 46 + 26 mN/mm?
respectively.

Whether on absolute or specific force data, GLM analysis indicated a
statistically significant main effect of pH [pH7 vs pH 6.2, F(1,451)=22.9, P<0.001,
and F(1,451)=21.7, P<0.001 respectively], with the main effect of group being again

significant [F(1,451)=18.6, P<0.001 and F(1,451)=5.1, P<0.05 respectively]. A non-
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significant result was found for the interaction effect (group x pH) [F(1,451)=0.003,

P>0.05, and F(1,451)=0.028, P>0.05 respectively].

The pairwise comparisons showed consistent functional deficits in UREM

fibers compared to CONs in absolute values. At 10°C and pH 6.2, absolute isometric

tension (Figure 3A) of UREM fibers was significantly lower compared to CONSs

(P<0.05) roughly by approx. -33%. After accounting for fiber CSA, at 10°C pH 6.2

UREM fibers were still found to produce lower specific isometric forces compared to

CON fibers roughly by approx. -17% (Figure 3B) but non significantly (P>0.05).
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Figure 3. Effect of pH on isometric force for CON (open bars) and UREM (filled

bars) psoas muscle fibers. Data collected at standard (pH 7) and acidic (pH 6.2)
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conditions, at 10°C, are presented as Mean values with exact Upper and Lower 95%
Cls for A. absolute and for B. specific isometric forces. * Denotes significant
difference from corresponding pH 7 value (P<0.005); T Denotes significant difference

from corresponding control value (P<0.05).

When examining the pH effect as a percentage of a fiber’s own baseline force
value at pH 7 10°C the average % force decline due to the lowering of pH showed a
non-significant tendency to be larger for UREM (-43 £ 9% for CON vs -48 + 14% for
UREM, P=0.06, unpaired t-test).

It was possible in a small number of fibers (n=13 CON, n=21 UREM) to
examine the temperature effect at pH 6.2. Given that it was not possible to perform an
experiment of lowering the pH from 7 to 6.2 while at 30°C, we did not include those
values in the global statistical assessment mentioned above. The absolute and specific
force values at pH 6.2, 30°C, were 700 + 238 pN and 117 + 33 mN/mm? for CON and
550 + 248 uN and 114 + 52 mN/mm? for UREM fibers respectively. We also
expressed the effect of a temperature jump from 10°C to 30°C at pH 6.2 as a
percentage of a fiber’s own force value at pH 6.2, 10°C. In response to the
temperature jump, UREM fibers on average increased their force by +219 + 160%
while CON by +143 + 62% however no significant differences in this response were

found between groups (P>0.05, unpaired t-test).
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DISCUSSION
To the best of our knowledge this is the first study to examine the effect of

chronic renal insufficiency on the contractile properties of single muscle fibers in an
animal model mimicking CKD. We found that renal insufficiency not only induced
muscle remodeling as evidenced by atrophy, but that it also resulted in a significantly
impaired force generation capacity at the single fiber level. We provide, for the first
time, compelling evidence of uremia-induced direct effects on sarcomeric protein
interaction that could help explain aspects of the disturbed functional capacity and
muscle weakness often seen in CKD patients.

In our study UREM psoas fibers presented with significantly smaller CSAs
compared to CONs by ~11%. In CKD patients, muscle weakness may be partially
explained by atrophy which has been reported to be exacerbated but only partly
explained by inactivity (Sakkas, Sargeant, et al., 2003a), pointing to a disease specific
effect. It has been reported that atrophy in CKD is mainly presented in type Il fibers
(Sakkas, Ball, et al., 2003; Sawant, Garland, House, & Overend, 2011) and that was
an important reason for assessing psoas muscle in the current study [which in NZ
rabbits expresses > 95% the 11X(I1d) myosin heavy chain isoform (Aigner et al., 1993;
Hamaléinen & Pette, 1993)]. In an examination of the rectus abdominis muscle
(Sakkas, Ball, et al., 2003), it was reported that in end-stage pre-dialysis patients, fast
muscle fibers exhibited substantial atrophy (26% for those expressing type IIA
myosin and 28% atrophy for the type 11X), with slower fibers also affected, as
compared to matched-controls. A recent uremic rat study by Acevedo et al (Acevedo
et al., 2015), reported no significant differences in fiber CSA of tibialis anterior (a
mixed fast hindlimb muscle) of surgically-induced uremic vs control animals. In

contrast, Organ et al 2016 (Organ et al., 2016), using the Cy/+ CKD rat model
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reported that the extensor digitorum longus (another mixed fast muscle) of CKD rats
showed atrophy in all fiber types. As we studied a larger species and a muscle with
different metabolic properties and myosin composition our results are not directly
comparable, but together these findings could indicate a muscle type specificity of
early atrophy in CKD. Our findings are consistent with human studies reporting loss
of muscle mass and muscle atrophy in CKD patients (Johansen et al., 2003; Sakkas,
Ball, et al., 2003; Sawant et al., 2011). Our results support the notion that atrophy
could start earlier during the disease progress and could appreciably affect fast
muscles which are normally tasked to provide high levels of muscle power.

Regarding maximal isometric force at pH 7, 10°C and 30°C, our analysis
revealed statistically significant differences in both absolute and specific forces
between uremic and control fibers at both temperatures. Specifically, at 10°C, absolute
and specific forces were lower in uremic fibers compared to controls by 25% and
14%, respectively; at 30°C the corresponding values for uremic fibers were lower than
controls by 40% and 28%, respectively. The significantly smaller CSA of uremic
fibers vs control could not thus account for the depressed specific forces of uremic
fibers we observed. Organ et al (Organ et al., 2016), attributed the reduced ankle
dorsiflexion torque they observed in Cy/+ uremic rats mostly to atrophy. These
authors did not assess single cell contractile properties and their in vivo model and
muscle group studied differed from ours. The specific force deficit of single uremic
muscle fibers observed in our study could indicate a reduced capacity of cross bridges
to generate force or perhaps possible disturbances on how generated force is
transmitted across the sarcomeric arrangements. With regards to force transmission
across the sarcomere, possible changes in viscoelastic properties e.g. as indicated in

chronic heart failure (Miller et al., 2010), could play a role in reducing the measurable
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isometric force. We cannot exclude such changes in our study (see comments on
qualitative properties further on) and this remains a direction to pursue in the future.
The maximal isometric tension of a single muscle cell is ultimately determined
from the number of active cross bridges during contraction and the force exerted from
each cross bridge (Fitts et al., 1991) essentially dependent on the strength of the
actomyosin bond (Karatzaferi et al., 2004). Moreover, the ability of the cell to
produce force can be affected by modifications influencing actomyosin interaction
kinetics [such as the duty ratio e.g. in (Miller et al., 2010)]. With a turnover of approx.
30 days (Kay, 1978), myosin can be a target for posttranslational modifications that
affect its functional properties. One of the biochemical repercussions of renal
insufficiency is oxidative stress (Kaltsatou et al., 2015) which can act on its own or in
combination with other molecules to cause muscle dysfunction at multiple levels.
Studies with skinned fibers have indicated that acute oxidative stress can impair
isometric force (Gilliver, Jones, Rittweger, & Degens, 2010; Murphy, Dutka, &
Lamb, 2008) and actin activated myosin ATPase with measurable alterations in
transition from weak to strong binding states (Prochniewicz, Spakowicz, & Thomas,
2008) affecting perhaps the concerted strength production by active cross-bridges.
Whether chronic oxidative stress in renal insufficiency (Poulianiti et al., 2015) may
cause similar irreversible structural modifications affecting the actomyosin interaction
cannot be excluded. Oxidative stress can also affect function by promoting the
formation of advanced glycation end products, AGEs (Miyata et al., 1997). In an
examination of the effects of reversible glycation on myosin structural and functional
properties, Ramamurthi et al (Ramamurthy, H66k, Jones, & Larsson, 2001), observed
‘glycation-related structural alterations” which were paralleled by a significant

reduction in in vitro motility speed. The same group also observed that glutathione
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rescued myosin functional properties (Ramamurthy, Jones, & Larsson, 2003). As
glycosylation is often observed in renal disease (Thornalley, 2006) along with
oxidative stress (Kaltsatou et al., 2015) such combination of factors may lead to
AGEs formation causing structural alterations that could contribute to our
observations of lower isometric forces produced by uremic fibers.

Muscle contraction is temperature sensitive as it is driven by an enzymatic
reaction, the myosin ATPase (Ranatunga, 2010). Both uremic and control fibers
substantially increased force generation in response to temperature increase from
10°C to 30°C in agreement to previous observations by us (Karatzaferi et al., 2004,
2008) and others (Coupland et al., 2001; Pate et al., 1995). At pH 7, tension rise in
control fibers was ~76% which is consistent with other studies evaluating the
temperature effect on the contractile properties of rabbit psoas skinned fibers
(Coupland et al., 2001; Pate et al., 1995). Although the temperature-induced tension
rise was percent-wise higher in uremic fibers, force at 30°C values remained
significantly lower in uremic fibers than in control fibers. Thus the functional deficit
of the uremic fibers observed at standard experimental conditions held true in a
temperature closer to physiological.

Fatigue intolerance in CKD has also been associated with the rapid
development of acidosis (Johansen et al., 2005; Moore, Bertocci, & Painter, 1993).
This would be consistent to observations that low pH alone or in combination with
other metabolites (such as phosphate), plays a crucial role in the inhibition of muscle
contraction and force generation at the cross-bridge level (Allen et al., 2008;
Karatzaferi et al.,, 2008; Nelson & Fitts, 2014). We examined if uremic fibers
demonstrated a differential response to the low pH as compared to controls. Both

uremic and control fibers responded in a similar manner to the lowering of pH from 7
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to 6.2 (which reduced tension approx. 45%). Such magnitude of force decline is in
agreement to previous studies investigating the effect of pH in control psoas skinned
fibers (reporting declines in the range of 45-65%) (Cooke et al., 1988; Karatzaferi et
al., 2003; Pate et al., 1995). The effect of pH is less pronounced at more physiological
temperatures [in skinned fibers (Karatzaferi et al., 2008; Pate et al., 1995), in intact
fibers (Westerblad, Bruton, & Lannergren, 1997)] with temperature increases partially
negating its reductive effect on single fiber force, and this was also supported in the
present study. The functional consequence of acidosis-induced force reduction
however may well differ between control and uremic muscle in vivo. As uremic fibers
produce lower absolute and specific force even at baseline conditions, one can fathom
that in acidosis, which is rapidly developing in renal patients even during low to
moderate exercise intensities (Johansen et al., 2005), uremic muscle may be at a
severe disadvantage during any fatiguing activity.

Other factors, related to toxicity effects may be also at play, either promoting
atrophy or affecting muscle properties. As CKD progresses, uremia develops in
parallel with the accumulation of related toxic waste products (Richet, 1988). These
are implicated in the etiology of abnormal muscle function and fatigue intolerance
experienced by renal patients (Campistol, 2002; Davis et al., 1983) with research so
far indicating a multiple of candidates with a possible role (Vanholder et al., 2003,
2009). Not much is known about their possible direct role on skeletal muscle function,
however they have been shown to affect smooth muscle function via endothelium
mediated effects (Jourde-Chiche, Dou, Cerini, Dignat-George, & Brunet, 2011). The
so- called ‘uremic toxins’ (Vanholder et al., 2009) i.e. solutes that would be cleared
by the kidney but instead gradually accumulate, often protein-bound themselves, like

indoxyl sulfate which binds to albumin or p-cresyl sulfate, could worsen oxidative
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stress and inflammation and hasten muscle loss and mitochondrial dysfunction, thus
contributing to the moderate atrophy observed in this study as well as to further,
hitherto undefined, changes in sarcomeric protein properties.

Our study had many strengths but also some limitations that we have to
address. Despite implementing the same surgical approach, the biochemical responses
were somewhat variable which perhaps explains why the uremic fibers presented with
greater variability in force values than controls. Also, it was not possible to evaluate
all psoas fibers at 30°C since fibers often broke (or did not fulfill pre-set criteria upon
return to 10°C and were thus discarded). This is not surprising as exactly due to this
known sensitivity of skinned fibers we and others have developed such t-jump
protocols (Karatzaferi et al., 2004, 2008; Pate et al., 1995), while the majority of
skinned single fiber studies are performed at lower temperatures (e.g.10°C-20°C)
(Fitzsimons, Patel, Campbell, & Moss, 2001; Gilliver et al., 2010; Mollica et al.,
2012; Murphy, Stephenson, & Lamb, 2004; Reggiani et al., 1997; Stienen, Versteeg,
Papp, & Elzinga, 1992; Sweeney, Kushmerick, Mabuchi, Sréter, & Gergely, 1988).
Additionally, fibers’ cross sectional areas were calculated assuming a cylindrical and
not an elliptical shape and this may be why our baseline control force values were
lower compared to other studies (Coupland, Pinniger, & Ranatunga, 2005).
Nevertheless, this happened in a systematic way in all single fibers and could not
affect the interpretation of our results, as for example our control fibers response to
the drop of pH was similar to what observed previously (Cooke et al., 1988;
Karatzaferi et al., 2003; Pate et al., 1995). Another weakness of our study was that a
‘positive’ bias has been inadvertently introduced, due to the blind design, as uremic
fibers were in retrospect proven difficult to dissect and handle. l.e. the fibers that

withstood our handling were assessed but many more that could not be handled were
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not assessed due to the bad quality of muscle tissue. Also, given some standard
criteria that we and others use [e.g. (Karatzaferi et al., 2003; Liang et al., 2008)] for
force data quality, it later transpired that more uremic fibers were discarded than
controls. Thus, the *better’ fibers were measured by each round of assessments. If we
could ascribe ‘qualitative’ descriptors, we could describe the discarded psoas fibers as
‘mussy’, ‘messy’, ‘sticky’. In addition, although myosin heavy chain identification to
verify fiber typing was in our initial design, SDS-page analysis proved to be
unattainable since proteins from uremic fibers could not been resolved, instead a
smear was produced. When grouping fibers similar problems transpired. Upon un-
blinding the study this problem became apparent to us but we had not had available
tissue to further address it.

The latter two observations reveal important information regarding the quality
of uremic muscle, and point to new directions for further research. On the one hand
possible changes in passive elastic properties warrants further study [for example
changes in titin or nebulin may be implicated (Horowits, Kempner, Bisher, &
Podolsky, 1986)]. It is noteworthy that in studies evaluating properties of skeletal
muscle fibers from heart failure patients, sinusoidal analysis indicated changes in
viscoelastic properties at the sarcomere level (Miller et al., 2010; Toth et al., 2012),
thus such lattice properties changes could be possible in our model. On the other
hand, glycosylation which has been observed in uremia (Thornalley, 2006), might
have been at play affecting the resolving power of SDS page through the attachment
of sugar residues in proteins leading to changes in the proteins’ nature (Spiro, 2002).
Advanced glycosylation has also been associated with glycation of type IV collagen
of endothelial cells in ESRD (Thornalley & Rabbani, 2009) and further changes in

overall muscle elastic properties cannot be excluded.
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Our study had also some important strengths, foremost, the employment of an
animal model of chronic renal disease and not of acute kidney injury. Our animal
model was allowed to develop renal insufficiency for 3 months after nephrectomy
which corresponds to a sufficient period considering rabbit lifespan whereas an acute
model of CKD may not induce realistically relevant modifications on muscle
properties. Moreover, as the model was representative of a pre-dialysis stage, our
results may hold larger clinical relevance given the extent of “silent’ kidney disease
among the general population (Stenvinkel, 2010). Furthermore, we used the single
fiber technique, which allows forming conclusions about sarcomeric function by
acutely isolating other factors such as muscle atrophy and excitation-contraction
coupling issues. Another fact that strengthens our observations is that we examined
contractile properties of samples in a blind fashion and that we used sham operated
instead of purely control animals in order to avoid differences in results due to the
different animal handling.

The understanding of the possible underlying mechanisms to explain muscle
dysfunction in CKD is of major clinical relevance as skeletal muscle is associated
with many aspects of life and health. Not only skeletal muscle produces force, power,
to maintain body control and allows for safe mobility, it also plays a crucial role in the
regulation of protein and energy metabolism and many other vital body functions
(Frontera & Ochala, 2014). It is obvious from the above that any abnormality of
skeletal muscle status can lead to a series of physical disturbances, as well as low
quality of life, and dangerous falls (Wolfe, 2006). CKD is associated with serious
muscle abnormalities such as skeletal muscle atrophy, muscle weakness, limited
endurance and fatigue intolerance (Adams & Vaziri, 2006; Campistol, 2002). These

situations lead patients to reduced functional capacity, jeopardizing their
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independence in their daily life, leading to poor quality of life and in the long term
resulting in premature death (Johansen, 2007). It is known that neuropathy can
contribute to muscle dysfunction in renal disease, especially at the end stage (Adams
& Vaziri, 2006; Brouns & De Deyn, 2004) and its effects have made difficult to
distinguish excitation-contraction coupling from sarcomeric function problems.

Our study gives for the first time evidence that muscle contractile dysfunction
in renal insufficiency can manifest early at the single muscle fiber level. Given the
extent of ‘silent’ kidney disease among the general population (Stenvinkel, 2010) and
that our model was on a ‘pre-dialysis’ disease state, this and other observations from
our group [e.g. increased protein carbonylation (Poulianiti et al., 2015)] point to the
need to consider interventions early during kidney disease progression as to safeguard
skeletal muscle properties. Such measures would allow patients to reach the end-stage
at the best possible metabolic profile. Thus, on the one hand, future work should focus
on detailed examinations of the structure and function of uremic sarcomeric proteins
in order to understand the exact mechanisms leading to the observed muscle
dysfunction. In parallel, work is needed as well on developing interventions to
counteract functional deteriorations, and thus by ameliorating muscle weakness, to
prevent further atrophy and metabolic morbidity and mortality in CKD.

To conclude, in a model of chronic renal insufficiency, uremia can induce
some remodeling of muscle fiber size and significantly impair force generation at the
single muscle fiber level. The impairment in force generation of uremic muscle fibers
could not be explained by atrophy and was present in conditions mimicking the in
vivo cellular environment at rest and acidosis. Our observations indicate possible
uremia-induced changes in sarcomeric protein properties and warrant further

investigation.
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CHAPTER 4: RESEARCH PAPER 2
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Effect of chronic renal insufficiency on force-pCa relationship of

permeabilized single fibers

Aims addressed in this paper: using tissue from an animal model of uremia to

examine the effect of chronic renal insufficiency on

1. force-pCa relationship of isolated muscle fiber preparations in conditions
mimicking the resting state
2. force-pCa relationship of isolated muscle fiber preparations in conditions

mimicking acidosis
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ABSTRACT

Introduction: Chronic kidney disease (CKD) is highly associated with muscle
dysfunction, such as reduced tension generation and premature fatigue. The causes of
muscle dysfunction in CKD have not been yet established. We aimed to evaluate the
difference in force-pCa relationship of permeabilized single psoas fibers from healthy
and uremic rabbits. Materials and Methods: We induced renal insufficiency (via
partial nephrectomy) in 5 NZ rabbits. Psoas muscle samples harvested from control
(sham-operated, CON) and uremic (UREM) animals, at 3 months, were chemically
skinned and stored in 50% glycerol solution at -20°C until mechanical assessment.
Isometric tension was assessed in single psoas fibers (=128 CON; n=195 UREM) at
10°C, 30°C and at pH 7 and pH 6.2, using an SI Heidelberg micro dynamometer, in
various concentrations of calcium chloride. Force data expressed as percentage of Po
at 10°C and pH 7 and free calcium expressed in pCa values were fitted in the Hill
equation. Results: At standard conditions 10°C pH7, UREM fibers presented with
quite similar calcium sensitivity (pCasp UREM 6.12+0.02 vs CON 6.20+0.03) and
cooperativity (ny UREM 2.11+ 0.14 vs CON 2.36+0.3). Acidosis (pH 6.2) at 10°C
caused a loss of calcium sensitivity for both groups, more so for UREM (pCas
UREM 5.32+0.06 vs CON 5.58+0.02). At 30°C pH7, UREM fibers presented with
lower sensitivity than CON (pCaso UREM 6.00+0.25 vs CON 6.42+0.19). At 30°C
acidosis reduced calcium sensitivity similarly for both groups (pCasp UREM 5.71+
0.13 vs CON 5.80+ 0.05). Changes in cooperativity followed a similar pattern.
Conclusion: It appears that chronic renal insufficiency may depress calcium
sensitivity, the magnitude of this depression being dependent on prevailing
experimental conditions. It is important to consider temperature and acidosis

parameters when assessing calcium sensitivity in chronic disease.
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INTRODUCTION

Skeletal muscle form and function is heavily impacted from chronic kidney disease
(CKD). This “silent” epidemic leads 440.000 of patients to renal replacement therapy
each year and it has been identified as one of the leading causes of death worldwide
(Ortiz et al., 2014). The disease is characterized by many muscle abnormalities such
as skeletal muscle atrophy, muscle weakness, limited endurance and fatigue
intolerance (Adams & Vaziri, 2006; Campistol, 2002). These situations lead patients
to reduced functional capacity ameliorating their independency in their daily life,
leading to poor quality of life and in the long term to premature death (Johansen,
2007).

Many factors may inhibit muscle function in CKD including mitochondrial
dysfunction, substrate availability and neuropathy (Adams & Vaziri, 2006). In
addition, accumulation of toxic waste products (Richet, 1988) may be implicated in
the muscle abnormalities experienced by CKD patients which are collectively termed
as “uremic myopathy” (Campistol, 2002; Davis et al., 1983). Fatigue intolerance in
CKD has been also associated with acidosis (low pH) (Johansen et al., 2005; Moore et
al., 1993) which is well known to play a crucial role in the inhibition of muscle
contraction (Allen et al., 2008; Karatzaferi et al., 2008; Nelson & Fitts, 2014).

The mechanism underlying fatigue intolerance in CKD has not yet been fully
understood. Our previous data (Research paper 1) showed reduced maximally
activated isometric tension for uremic psoas skinned fibers. However, it is not clear
how uremic muscle responds in conditions of suboptimal calcium activation. Calcium
triggers contraction by binding to troponin and shifting the troponin-tropomyosin
complex uncovering actin binding sites to myosin heads. By determining the

relationship between the level of calcium activation and tension generation one can
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evaluate sarcomeric function at submaximal calcium levels (expressed as the negative
logarithm of free calcium). Thus, force-pCa data can be fit to the Hill equation to
obtain pCasp and Hill coefficient (ny) values as indicators of contractile proteins’
calcium sensitivity and thin filament cooperativity and can reveal functional and
structural alterations in sarcomeric proteins (Schiaffino & Reggiani, 1996).

Interestingly, intracellular measurements of calcium levels have shown that
low-frequency fatigue (a type of fatigue related to everyday activities and breathing)
is mostly due to a reduction in Ca®" release (Jones, 1996). Moreover, in heart failure
the sensitivity of contractile proteins to Ca®* appears to be reduced, as reflected by a
requirement for more calcium to achieve 50% relative force (pCasp), resulting in a
overall reduced force generation at a sub-maximal Ca®* level (e.g. in rat diaphragm
fibers (van Hees, Andrade Acufia, Linkels, Dekhuijzen, & Heunks, 2011).
Additionally, it has been proposed that myosin loss can be reflected by a disturbed
force-calcium (force-pCa) relationship (Ochala & Larsson, 2008), i.e. a rightward
shift in the force-pCa relationship.

If one considers that CKD patients present with excessive fatigue even during
moderate activity (Johansen et al., 2005), it becomes of interest to examine whether
force generation capacity at submaximal calcium activation may be affected, pointing
perhaps to functional and structural alterations in sarcomeric proteins (Schiaffino &
Reggiani, 1996). We employed the skinned fiber preparation using an animal model
mimicking CKD (Gotloib et al., 1982; Bagcivan et al., 2003) to examine the effects of
chronic insufficiency on the force-calcium relationship. To improve physiological
relevance of our results we examined calcium sensitivity at resting and acidotic

conditions at low (10°C) and high (30°C) temperatures.
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MATERIALS AND METHODS
Animal model

All animal procedures, including surgery and euthanasia were approved by the
ethics committee of the University of Thessaly (decision 2-1/10-10-2012) and the
scientific committee of the University Hospital of Larissa, Greece (decision 1/4-1-
2012). Animals were under veterinary care, in accordance to the national directives
for the care and use of laboratory animals. Eight New Zealand young adult white
female rabbits (N=8) with a body weight (BW) of ~3200g were housed in a controlled
environment with stable conditions (temperature 22-24°C, 12:12 h light-dark cycle)
and acclimatized for 48 hours. Rabbits were fed ad libitum a special rabbit chow
containing low levels of protein, potassium, calcium, phosphorus and sodium
(prepared by Research Diets, Inc. USA) and water ad libitum.

After acclimatization, surgical procedures were performed (sham operation for
control animals - CON and partial nephrectomy for experimental animals —-UREM).
Animals were anaesthetized by intravenous administration of a solution mixture of
ketamine hydrochloride 100 mg/ml (Imalgene® 1000; Merial, Duluth, Georgia, USA)
and xylazine 20 mg/ml (Rompun®; Bayer, Leverkusen, Germany), 87% and 13%
respectively (proportion 6.69:1 approximately). The initial dosage for the induction of
anesthesia was 0.3 ml/Kg BW of the above solution mixture, i.e. Imalgene® (87%)
and Rompun® (13%), intravenously (i.v.). The maintenance of anesthesia was
achieved by a dose of 0.2 to 0.3 ml i.v. of the solution mixture. Animal temperature
was maintained via a heating pad. Three hours before the intervention, each animal
had only access to water and its weight was measured on a precision scale. The
induction of renal insufficiency was performed surgically (using a surgical protocol

modified from Gotloib et al., 1982) (Gotloib et al., 1982). For the UREM group five
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animals (N=5) underwent removal of the left kidney after careful ligation of the left
renal artery and vein; and partial nephrectomy (%) of right kidney. For the CON
group, three age —matched animals (N=3) underwent sham operation and were
considered as the control group (CON animals). In a previous pilot study (data not
shown) sham-operated muscle contractility was comparable to non-procedure
animals. Thus, in agreement with the principle of Reduction in Animal Research
sham-operated animals were used as controls in the present study.

Twelve weeks after surgery, animals were sacrificed (after determining their
BW) by injection of sodium pentobarbital solution (50 mg/ml) which was applied in a
dosage of 100 mg/Kg BW followed by bilateral thoracotomy. Immediately after
cardiac arrest, blood samples were collected from heart and aorta using a heparinized
syringe and were placed into ethylene diamine tetra-acetic acid (K2EDTA)-containing
tubes (Vacutainer Plus Plastic K2EDTA; Becton Dickinson) for subsequent serum
urea and creatinine determination using standard photometric protocols. Thereafter,
psoas muscle fast excised and processed for contractility studies (see below) while the

remaining of the tissue was shared for other approved protocols.

Muscle Samples

Psoas muscle samples from UREM and CON animals were permeabilized as
previously described (Karatzaferi et al., 2008). Briefly, thin bundles of rabbit PSOAS
muscle (~2 mm diameter) were dissected and tied to wooden sticks using surgical
thread. The samples were placed in falcon tubes containing skinning buffer solution
(0°C) [120 mM KAc, 50 mM 3-(N-Morpholino) propanesulfonic acid (MOPS), 5 mM
MgAc,, 4 mM ethylene glycol tetraacetic acid (EGTA) and 50% glycerol (v/v); pH 7]

with the addition of 0.2% of a protease inhibitor cocktail (104 mM AEBSF, 80
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microns Aprotinin, 4 mM Bestatin, 1.4 mM E-64, 2 mM Leupeptin and 1.5 mM
Pepstatin). After a 24-hour permeabilization treatment [muscle samples (in falcon
tubes) were tied along a vibrating platform shaker (Heidolph-Titramax 100) in a
parallel to the ground position and shacked at 350 rpm for 24 hours at 0°C], skinning
solution was replaced with fresh solution and protease inhibitor cocktail and then the
muscle samples were stored at -20°C until mechanical assessments. All chemicals

were purchased from Sigma-Aldrich national retailer.

Experimental setup for single fiber mechanics

For the mechanical assessment, each single fiber was dissected from the
muscle bundle on a cold stage under a stereomicroscope and the fiber ends were
attached between 2 tissue mounts of a muscle micro dynamometer with resolution of
0.4 uN to 4 N (SI Heidelberg/WPI). The tissue mounts were connected to a force
transducer and a motor arm (used as a fixed end). The fiber was then immersed in
baths containing ~200 pl of various solutions (see in the solution section). This
procedure was achieved using an adapted stereomicroscope on the top of the micro
dynamometer. Data were continuously recorded in a computer using the particular
software of SI Heidelberg/WPI and later exported for further analysis.

The particular micro dynamometer consists of a platform with 5 baths and
fibers can be automatically switched between them in less than 250 ms allowing for
rapid temperature jumps (t-jumps). The temperature of the baths was adjusted at 10°C
and 30°C using a cooling/heating water circulator (Thermo Electron Haake WKL 26
Recirculator Chiller 3L Capacity Bath). The advantage of the T-Jump method is that
the fiber may be first activated at a low temperature where the sarcomere arrangement

is stable and it can then be rapidly transferred to a near-physiological temperature in

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



115

order to generate the maximal force without damaging the sarcomere arrangement

(Karatzaferi et al., 2004).

Experimental solutions

The basic rigor buffer contained 120 mM KAc, 50 mM MOPS, 5 mM MgAc;
and 1 mM EGTA for pH 7 or 120 mM KAc, 50 mM MES, 5 mM MgAc; and 1 mM
EGTA for pH 6.2. Relaxing solution was achieved with the addition of 5 mM ATP in
the corresponding rigor buffer (pH 7 or pH 6.2). Activating solutions: by mixing
relaxing solution with a 2 mM CaCl, activating solution to obtain various
concentrations. Total and free calcium concentrations were calculated according to
“Maxchelator” computer program (C. Patton, Stanford University, Pacific Grove, CA,

USA). The ionic strength of the solutions was ~0.2 M.

Force-pCa measurements

Maximal isometric tension (P,) was first evaluated at pH 7 and 10°C (control
conditions) at resting sarcomere lengths (no measurable tension vs slack, 2.2-2.4 um).
Specifically, each fiber was first immersed for 1 minute in a bath containing rigor
solution (to wash out excess glycerol) and then it was transferred and equilibrated for
2 minutes in a bath containing relaxing solution of pH 7. Average diameter was
determined assuming a cylindrical shape. Consequently, the fiber was maximally
activated in control conditions (pCa 4.4) and after equilibration in a fresh relaxing
solution of pH 7 it was submaximally activated in solutions with variable calcium
concentrations (pCa 7.2-pCa 4.7). Some of the fibers were also assessed at 30°C. In

this case, after each submaximal activation at 10°C the fiber was immediately
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activated in the same total calcium concentration at 30°C (which corresponded to a
range of pCa 5.8-pCa 4.02) for 3 to 5 sec using the t-jump protocol.

Measurements were also performed at pH 6.2. In this set of measurements a
fiber was first maximally activated in control conditions (10°C and pH 7- as described
above) and after equilibration in relaxing solution of pH 6.2 it was (submaximally
and/or maximally) activated in various calcium concentrations at 10°C and pH 6.2
(which corresponded to a range of pCa 5.6-pCa 3.96). Some of the fibers were also
assessed at 30°C. In this case after each submaximal activation at 10°C the fiber was
immediately activated in the same total calcium concentration at 30°C (pCa 5.8-pCa
4.02) using the t-jump protocol.

Except from the initial maximal activation, all measurements were performed
from low to high calcium concentrations. After each maximal or submaximal
activation, fibers were equilibrated in relaxing solution of the pH of interest. However
this could not happen in the case of a t-jump as the evaluation at 30°C had to occur
immediately after activation at 10°C. Each fiber was activated up to six times and the
final activation was achieved in control conditions to verify the condition of the fiber

(to satisfy criteria of stability).

Data and statistical analysis

Force data distribution was tested using the Kolmogorov-Smirnov test of
normality. Due to the normal data distribution, statistical analysis was performed
using parametric tests. Differences at baseline forces (pH 7, 10°C) between fiber
groups were estimated using unpaired analysis on absolute force and specific force,
i.e. force values corrected for cross-sectional area (t-test for independent samples).

The statistical analysis software used is commercially available (SPSS 15.0 for
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Windows). For the force-pCa analysis, and to facilitate comparisons, relative force
values were used. Thus, individual force data were expressed for each fiber as a
percentage of P, achieved by each fiber in control conditions (pH 7, 10°C, pCa 4.4)
and free calcium was expressed in pCa values. Force data were then averaged for each
pCa achieved for the two separate groups, per condition of pH and of temperature. In
plots force per pCa were plotted as Mean £ SD. Average force-pCa data were fitted
with the commercially available software (KaleidaGraph version 3.0.5) where the Hill
equation was expressed in “y=m1*(10"(-m0))*m3/(10"(-m2))"m3+(10"(-m0))*m3”

[m2=pCaso and m3=Hill coefficient].
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RESULTS

Both surgery procedures (% partial nephrectomy-UREM animals and sham
operation-CON animals) were well tolerated and animals presented with a normal
after-surgery recovery. At the end of the twelve-week period post-surgery, body
weight ranged between 1,970-4,585 (with mean + SD of 3,200 = 1,076) g for UREM
and 3,500-4,965 (4,105+£765) g for CON animals (P>0.05). Renal insufficiency in
experimental animals, compared to CONs, was reflected in raised blood creatinine
(UREM, 2.7+1.28 mg/dl vs CON, 1.43+0.04 mg/dl, P>0.05) and urea levels (UREM
70.0£37.7 mg/dl vs CON 42.0+5.66 mg/dl, P>0.05).

In order to express force data from various calcium concentrations as a
percentage of baseline forces, a total of 164 UREM and 109 CON single fibers were
first assessed at 10°C and pH 7 (baseline values) under maximal calcium activation.
Of those, 140 UREM and 86 CON fibers were also assessed submaximally at pH 7
and 10°C while 19 UREM and 18 CON fibers were also assessed at 30°C
(submaximally and maximally) using the t-jump method. In order to examine any
difference in force-pCa curves due to acidosis (pH 6.2), from the pool of fibers
reported above (164 UREM and 109 CON), 36 UREM and 30 CON fibers were also
assessed submaximally and/or maximally at pH 6.2 and 10°C while 24 UREM and 22

CONs were also assessed at 30°C (submaximally and/or maximally).

Morphological characteristics of single fibers

Average fiber diameters differed significantly between groups as revealed by
unpaired t-test analysis (Mean £ SD UREM 78.6 £ 9.7 vs CON 82.1 + 9.0 um,
P<0.005). Likewise, calculated cross sectional areas (CSAs) of UREM fibers were

significantly lower compared to CONs (UREM 4,916 + 1,217 vs CON 5,354 + 1,175
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um?, P<0.005), indicating a level of ~8% atrophy. Thus, force analysis data will be

presented for both absolute and specific values (i.e. corrected for calculated CSA).

Contractile properties of single fibers at resting conditions (pH 7)
Baseline force values (10°C, pH 7) of all fibers assessed at both pH 7 and pH
6.2 are presented in Table 1. UREM fibers presented with significantly lower absolute

isometric forces compared to controls by approximately 14% (P<0.05).

Table 1. Contractile properties of UREM and CON single psoas muscle fibers at

standard conditions (10°C, pH 7).

Group n Mean SD

CONTROL 109 385 168
Absolute Force (UN)

UREMIC 164 330 182
Specific Force CONTROL 109 71 24
(mN/mm2) UREMIC 164 67 33
Descriptive (Mean + SD) statistics are reported for the collected isometric force data. The value for n represents
fibers assessed. Unpaired analysis indicated a significant difference in forces (UN) between fiber groups (P<0.05)

Force-pCa relationship

Force values at variable pCa values were expressed as percentage of Po
achieved at maximal calcium activation. Best fits using the Hill equation ranged from
95 to 99%. At pH 7 and 10°C, UREM fibers presented with similar pCasy (UREM
6.12+0.02 vs CON 6.20+0.03) compared to CONs and slightly reduced cooperativity
ny (UREM 2.11+0.14 vs CON 2.36+0.30). Acidosis (pH 6.2 and 10°C) resulted in a
loss of calcium sensitivity, more so for UREM fibers (pCasp UREM 5.32+0.06 vs
CON 5.58+0.02). Cooperativity was also reduced for both groups, more so for UREM

fibers (ny UREM 1.08+0.16 vs CON 1.93+0.22) (Figure 1).
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When fibers were assessed at 30°C, UREM fibers presented with lower
calcium sensitivity (pCaso UREM 6.00£0.25 vs CON 6.42+0.19). For both groups ny
values indicated a loss of cooperativity, with UREM values being lower compared to
CONs (ny UREM 0.64+0.15 vs CON 0.75+0.21) respectively. Acidosis at 30°C
resulted again in a loss of calcium sensitivity, compared to 30°C pH7, for both groups
(pCaspUREM 5.71+0.13 vs CON 5.80+0.05) but ny values were ‘restored’ to values
close to those achieved in standard conditions (UREM 2.21+1.57 vs CON 2.14+0.88),

(Figure 2).
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Figure 1. Average relative forces (%) versus free Ca®* expressed in pCa at 10°C.
Data points are presented as Mean = SD for pH 7 (CON-blue; UREM-pink) and pH
6.2 (CON-green; UREM-light blue).
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Figure 2. Average relative forces (%) versus free Ca®" expressed in pCa at 30°C.
Data points are presented as Mean = SD for pH 7 (CON-blue; UREM-pink) and pH
6.2 (CON-green; UREM-light blue).
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DISCUSSION

We studied for the first time the effect of uremia on the force-pCa relationship
of skeletal muscle from an animal model of renal insufficiency at the single fiber
level. We assessed force generation in various calcium concentrations in two sets of
experiments. At the first set, force generation was assessed at resting conditions (pH
7) and at both 10°C and 30°C while at the second experimental set we assessed force
generation in acidic conditions (pH 6.2), at 10°C and 30°C. We found that overall
UREM fibers exhibited less calcium sensitivity than CONs as reflected by a
consistent rightward shift of the force-pCa relationship, with the magnitude of pCas
difference from CON being influenced by prevailing temperature and pH conditions.

According to the pCasp values in resting conditions (pH 7), UREM fibers
presented with lower calcium sensitivity compared to CONSs at both 10°C and 30°C
but the difference between fiber groups were more evident at 30°C. In acidosis UREM
fibers presented again with lower calcium sensitivity than CONs by -4.6% at 10°C
and by -1.5% at 30°C. The decrease in calcium sensitivity of a single fiber indicates
that more calcium is required in order to achieve the 50% of maximal isometric force
(Walker, Li, & Buttrick, 2011).

Our pCaso values of CON fibers were in agreement with previous studies
evaluating force-pCa relationship in skinned rabbit psoas fibers at both low (i.e. 5.35-
5.98 vs 6.2 at 10°C-15°C) (Lu, Swartz, Metzger, Moss, & Walker, 2001; Vinogradova
et al., 2005) and higher temperatures (i.e 5.76-5.86 vs 6.4 at 20°C-25°C) (Blanchard,
Pan, & Solaro, 1984; Morimoto & Ohtsuki, 1994; Palmer & Kentish, 1994). Our
CON ny values were also consistent with previous studies at 10°C (2.65 vs 2.36)
(Vinogradova et al., 2005) but at higher temperatures were lower compared to

previous studies (1.9-2.7 vs 0.75) (Blanchard et al., 1984; Morimoto & Ohtsuki, 1994;
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Palmer & Kentish, 1994). Furthermore, our values at pH 6.2 were consistent with
previous studies at 10°C and higher temperatures (1.92 vs 2.14) (Blanchard et al.,
1984; Palmer & Kentish, 1994). We cannot explain the discrepancy in ny values at the
high temperature. It should be noted though that as the Hill equation has a descriptive
role (Walker et al., 2011) it is possible that it cannot adequately fit data obtained at
high temperatures. Moreover, the high variability of force values and a difficulty in
obtaining measurements at pCa values in the range of 8 to 6.5 (data not shown) may
have contributed. Still, differences in cooperativity between UREM and CON were
mostly consistent.

Calcium sensitivity derived from the Hill equation is considered a robust index
to characterize functional properties (Walker et al., 2011). It depends mainly on the
function of troponin-C (TNC) protein which holds the regulatory calcium binding
sites. However, thin filament proteins may also affect calcium sensitivity such as
tropomyosin (TM) since, for example, overlap of adjacent TM ends may act as a
signal along the thin filament (cooperativity) (Schiaffino & Reggiani, 1996). Nebulin
also plays an important role while it has been reported that nebulin deficiency leads to
extremely low calcium sensitivity in mouse muscle (Lee et al., 2013). Thick filament
proteins are also implicated since strong cross bridge attachment causes the
stabilization of the thin filament in a state with high Ca®" affinity (Schiaffino &
Reggiani, 1996). Moreover, the sarcomere length can affect calcium sensitivity
(Stephenson & Williams, 1982). Given that we have observed slightly longer
sarcomere lengths in UREM fibers (Research paper 3), despite these being at the
optimal range for isometric force production, we cannot exclude that part of our
observations may reflect differences in elastic forces maintaining the sarcomere

length during contraction.
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In addition to calcium sensitivity, in resting conditions (pH 7), ny values
revealed a lower thin filament cooperativity for UREM fibers compared to CONs
which was more intense at 30°C. More precisely, ny values were lower in UREM
fibers compared to CONs by -10.3% and -15.1% at 10°C and 30°C respectively.
Interestingly, in acidic conditions and 10°C UREM fibers presented with lower ny
values by -44.2% compared to CONs. However, this important functional limitation
of UREM fibers disappeared when fibers were assessed at near physiological
temperature where UREM fibers had almost similar ny values with CONSs.

It is obvious from the above that although in resting conditions, the lowest
pCasp and ny values were observed at 30°C, in acidic conditions the lowest values
were observed at 10°C. This could be explained by the fact that in muscle mechanics
low pH causes significant functional deficits but at near physiological temperatures
the effect of pH is reduced (Karatzaferi et al., 2008; Pate et al., 1995; Westerblad et
al., 1997).

The cooperativity which is reflected in ny values depends on the thin filament
proteins tropomyosin, troponin complex (TNC, TNT, TNI), actin and myosin heads.
All of the above need to act cooperatively for the achievement of muscle contraction
(Boussouf & Geeves, 2007) and even a small degree of change in the ny value of the
force-pCa relationship can have profound implications. Decreases in ny have been
mainly correlated with alterations in troponin complex. For example, replacement of
TNC slow to TNC fast has led to ny reduction (Brandt, Diamond, Rutchik, &
Schachat, 1987; Moss, Lauer, Giulian, & Greaser, 1986). Similar results have been
reported for TNT, while replacement of slow to fast TNT isoform has caused a
significant increase in ny values in transgenic mouse cardiac muscle without changes

in calcium sensitivity (Huang, Brozovich, & Jin, 1999) and it is of interest that CKD
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has been associated with increased levels of cardiac serum TNT which has been
attributed to the uremic myopathy (Freda, Tang, Van Lente, Peacock, & Francis,
2002). Therefore, a possible explanation for the lower 4 values of UREM fibers may
be due to alterations in the troponin complex.

Regarding maximal baseline (control solutions) isometric forces at the pool of
fibers, unpaired analysis showed that UREM fibers had lower absolute forces by 14%
compared to CONSs. This functional limitation of uremic fibers was consistent with
our previous results (Research paper 1) and it is probably due to the atrophy of uremic
fibers which was reflected in the significantly smaller (by 8%) CSAs of UREM fibers
compared to CONSs. Specific forces produced by UREM fibers were not statistically
significantly lower than the values of the CON fibers but this could be due to the
smaller size of fibers used in this study. Moreover, if one source of tissue was
excluded (fibers originating from an animal that had a better biochemical, mechanical
and morphological profile), the extent and magnitude of force deficit was similar to
that of research paper 1. It appears that this one better maintained animal (ie that in
which for some technical or physiological reason the nephrectomy did not cause an
equal degree of overall renal impairment as to the other UREM animals) fiber
morphology and maximal force generation capacity was similar to that of fibers from
CON animals.

From a functional point of view, loss of sensitivity to calcium may render a
muscle effectively weaker in conditions where calcium availability may be low or
impaired. For example under normal conditions, diaphragm is submaximally activated
during normal breathing. Therefore reduced calcium sensitivity could lead to impaired
breath as reported by studies in patients with chronic obstructive pulmonary disease

(van Hees et al., 2011). Likewise, in CKD patients who experience functional
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incapacity and their daily activities include submaximal calcium activation, in fatigue
these 4.6% and 44.2% shifts on pCasp and ny values would make an appreciable
contribution to an overall disturbed functional profile.

From a therapeutic point of view, various medications exist to potentiate force
production at submaximal calcium. For example to better support respiratory function
in COPD patients, the calcium sensitizer levosimendan exerts its effects through
restoring of reduced calcium sensitivity of contractile proteins (van Hees, Dekhuijzen,
& Heunks, 2009). Levosindeman has also been found to improve calcium sensitivity
of diaphragm muscle fibers in heart failure (van Hees et al., 2011).

While at a first glance the observed differences in pCasg and ny may not
appear of a great magnitude one should consider the overall weakened and atrophic
status of skeletal muscle in chronic renal insufficiency.

Our study had many strengths but also some limitations that we have to
address and foremost, the employment of an animal model of chronic kidney disease
and not of acute kidney injury. Our animal model was allowed to develop renal
insufficiency for 3 months after nephrectomy which corresponds to a sufficient period
considering rabbit lifespan whereas an acute model of CKD may not induce
realistically relevant modifications on muscle properties. Moreover, as the model was
representative of a pre-dialysis stage our results may hold larger clinical relevance
given the extent of ‘silent’ kidney disease among the general population (Stenvinkel,
2010). Furthermore, we used the single fiber technique, which allows forming
conclusions about sarcomeric function by acutely isolating other factors such as
muscle atrophy and excitation-contraction coupling issues. We also considered the
importance of high temperature and we thus employed the Temperature-Jump (t-

jump) method. The advantage of t-jump is that the fiber may be first activated at low
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temperature where the sarcomere arrangement is stable and then it can be rapidly
transferred to a near-physiological temperature in order to generate the maximal force
without ruining the sarcomere arrangement (Karatzaferi et al., 2004). Another fact
that strengthens our observations is that we examined contractile properties of
samples in a blind fashion and that we used sham operated instead of purely control
animals in order to avoid differences in results due to the different animal handling.

In conclusion, force-pCa relationship was determined in CON and UREM
skinned psoas fibers at pH 7 and pH 6.2 and at both 10°C and 30°C. Our data imply a
reduction of calcium sensitivity and mainly of thin filament cooperativity in UREM
muscle without excluding the contribution of myosin loss or elastic proteins’
problems. Our results indicate that the acute effect of low pH in UREM muscle which
is a known condition in CKD patients (Moore et al., 1993) is of crucial role to
negatively affect the calcium regulation. However, the lower pCasy and ny values
also in normal pH indicate a chronic effect of uremia in contractile proteins which
seem to mainly affect thin filament cooperativity. Future studies could investigate the
possibility of alterations in sarcomeric proteins’ expression affecting thin filament
cooperativity such as troponin and tropomyosin (A. M. Gordon et al., 2000; Morimoto

& Ohtsuki, 1994).
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CHAPTER 5: RESEARCH PAPER 3
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Effects of chronic renal insufficiency on stretch induced force

potentiation

Aims addressed in this paper: using tissue from an animal model of uremia to

examine the effect of chronic renal insufficiency on

1. stretch activation kinetics relationship of isolated muscle fiber preparations in
conditions mimicking the resting state
2. morphology of isolated muscle fiber preparations from an animal model of

uremia
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ABSTRACT

Introduction: Chronic Kidney Disease is characterized by functional abnormalities
of skeletal muscle, such as muscle weakness and easy fatigability. These
abnormalities are strongly associated with an increase of waste products in the blood
(uremia). Chronic uremia can lead to reduced functional capacity and premature
death. The mechanisms underlying muscle dysfunction due to chronic uremia are
unclear. We investigated the effects of uremia on myosin head cross-bridge Kinetics,
sarcomere length and diameter of fibers from rabbit psoas muscle. Materials and
Methods: Renal insufficiency was induced surgically (removal of right kidney and
partial nephrectomy of left one) in New Zealand female rabbits. Surgery and
euthanasia protocols were approved by the University of Thessaly ethics committee.
Psoas muscle samples were excised from control (sham-operated, CON) and uremic
(UREM) animals at 3 months post-surgery. After 24-hour permeabilization treatment
fibers were stored in 50% glycerol solution at -20°C until mechanical assessment.
Single skinned fibers (n=21 CON; n=42 UREM) were investigated in solutions
containing 5 mM ATP, 10 mM phosphocreatine and 20 U/ml creatine kinase at pH 7
and 22°C. After attachment, the maximal and minimal diameter of the fiber and the
resting sarcomere length were measured in relaxation solution at a near slack position.
Subsequently, fibers were maximally activated under isometric conditions (pCa 4.4).
When force reached a plateau, step-like stretches of 0.3% fiber length were performed
to induce isometric force transients. The time to peak of stretch-induced delayed force
increase (t3) was evaluated as a measure of cross-bridge kinetics. Results: Our results
(meanxSD) derive from 42 UREM fibers and 21 CON fibers. Fibers of the UREM
animals exhibited significantly larger t; values (UREM: 67+18 ms, CON: 5716 ms;

P<0.05). Furthermore, fibers of the UREM animals exhibited larger resting sarcomere

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



132

lengths (UREM: 2.25+0.33 pm, CON: 2.05+£0.17 pm; P<0.01) and smaller mean
diameters (UREM: 70£19 pum, CON: 79+13 um; P<0.05). Conclusion: In conclusion,
our results suggest that uremia can induce a slowing of myosin head cross-bridge
kinetics and remodelling changes concerning fiber diameters (atrophy) and sarcomere
structure. The larger sarcomere lengths in fibers of UREM animals could be due to a

decrease of forces restoring the sarcomere length at resting conditions.

Key words: Chronic kidney disease, stretch activation kinetics, permeabilized fibers,

sarcomere length, animal model
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INTRODUCTION

Chronic kidney disease (CKD) is a new “epidemic’ across both sides of the Atlantic,
expected to affect millions during their life time (Grams et al., 2013; Zoccali et al.,
2010). CKD is characterized by skeletal muscle functional and metabolic
abnormalities, such as muscle weakness and easy fatigability collectively termed
uremic myopathy (Campistol, 2002; Fahal, 2014). Such functional abnormalities lead
patients to low mobility, low levels of independence and quality of life and, in the
long term, to premature death (Johansen et al., 2013).

Various factors have been reported to inhibit muscle function in CKD
including uremia (Richet, 1988). Uremia-associated toxicity has been suggested to be
implicated in the abnormal muscle function and fatigue intolerance experienced by
CKD patients (Campistol, 2002; Davis et al., 1983). Other factors implicated in the
etiology of uremic myopathy include inflammation, muscle atrophy, mitochondrial
and neural dysfunction as well as oxidative stress (Campistol, 2002; Davis et al.,
1983; Kaltsatou et al., 2015; Sakkas et al., 2004). However, it is not known if the
contractility of skeletal muscle per se is altered.

Force is produced via the cyclical interaction of myosin to actin and depends
on the number of formed cross-bridges, the force generated per cross-bridge and the
duty ratio (i.e. time spend with myosin bound on actin) (Fitts et al., 1991; Karatzaferi
et al., 2004; Miller et al., 2010). One approach to mechanically study cross-bridge
kinetics is to induce a rapid stretch in fully activated fibers. The time from the
beginning of the stretch to the peak value of the delayed force increase is known as t3
and can give important information regarding the cross bridge kinetics, with larger
values, thus slower kinetics, observed for the slower myosin isoforms (Galler et al.,

1994; Linari, Bottinelli, et al., 2004).
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From a functional point of view a muscle’s response to a sudden stretch is
crucial for an efficacious and safe locomotion. One should consider the important role
of fast-twitch muscle in locomotion and the loss or qualitative alterations of this
muscle type with ageing and/or disease (Lexell, 1995). A possible impairment in the
ability of a muscle to maintain its length and respond to sudden stretches in CKD
[where a preferentially atrophy of type 1l fibers has been reported (Sakkas, Ball, et al.,
2003)] could lead to injury and falls.

To investigate effects of uremia on muscle mechanics, while avoiding a
variety of confounding factors common in patient studies we employ a surgically
induced CKD animal model (Gotloib et al., 1982) and we use the skinned fiber
preparation (Cooke & Bialek, 1979; Degens & Larsson, 2007). This approach allows
us to study the contractile machinery directly under controlled conditions (Karatzaferi
et al., 2008). Using this approach we have observed that uremic muscle produces
lower maximally activated isometric force (Research paper 1), at rest and in acidosis,
which was only partially accounted by the observed moderate atrophy. We have also
observed a slowing of the velocity of contraction, whether in the resting state or
acidosis (Karatzaferi, Geeves, & Mitrou, 2014). We do not however know what the
force generation capacity of uremic fibers would be in response to a sudden stretch.

To our knowledge there have not been yet any studies examining the effect of
chronic renal insufficiency on stretch-potentiation and the underlying cross-bridge
kinetics of skeletal muscle. Thus, the aim of the study was to examine the effect of
chronic renal insufficiency on stretch-activation measurements of permeabilized

single muscle fibers.
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MATERIALS AND METHODS

All animal procedures, including surgery and euthanasia were approved by the
ethics committee of the University of Thessaly (decision 2-1/10-10-2012) and the
scientific committee of the University Hospital of Larissa, Greece (decision 1/4-1-
2012). Animals were under veterinary care, in accordance to the national directives
for the care and use of laboratory animals. Six New Zealand young adult white female
rabbits (N=6) with a body weight (BW) of ~3200g were housed in a controlled
environment with stable conditions (temperature 22—-24°C, 12:12 h light-dark cycle)
and acclimatized for 48 hours. Rabbits were fed ad libitum a special rabbit chow
containing low levels of protein, potassium, calcium, phosphorus and sodium
(prepared by Research Diets, Inc. USA) and water ad libitum.

After acclimatization, surgical procedures were performed (sham operation for
control animals - CON and partial nephrectomy for experimental animals —-UREM).
Animals were anaesthetized by intravenous administration of a solution mixture of
ketamine hydrochloride 100 mg/ml (Imalgene® 1000; Merial, Duluth, Georgia, USA)
and xylazine 20 mg/ml (Rompun®; Bayer, Leverkusen, Germany), 87% and 13%
respectively (proportion 6.69:1 approximately). The initial dosage for the induction of
anesthesia was 0.3 ml/Kg BW of the above solution mixture, i.e. Imalgene® (87%)
and Rompun® (13%), intravenously (i.v.). The maintenance of anaesthesia was
achieved by a dose of 0.2 to 0.3 ml i.v. of the solution mixture. Animal temperature
was maintained via a heating pad. Three hours before the intervention, each animal
had only access to water and its weight was measured on a precision scale. The
induction of renal insufficiency was performed surgically (using a surgical protocol
modified from Gotloib et al., 1982) (Gotloib et al., 1982). For the UREM group four

animals (N=4) underwent removal of the left kidney after careful ligation of the left
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renal artery and vein; and partial nephrectomy (%) of right kidney. For the CON
group, two age —matched animals (N=2) underwent sham operation and were
considered as the control group (CON animals). In a previous pilot study (data not
shown) sham-operated muscle contractility was comparable to non-procedure
animals. Thus, in agreement with the principle of Reduction in Animal Research
sham-operated animals were used as controls in the present study.

Twelve weeks after surgery, animals were sacrificed (after determining their
BW) by injection of sodium pentobarbital solution (50 mg/ml) which was applied in a
dosage of 100 mg/Kg BW followed by bilateral thoracotomy. Immediately after
cardiac arrest, blood samples were collected from heart and aorta using a heparinized
syringe and were placed into ethylene diamine tetra-acetic acid (K2EDTA)-containing
tubes (Vacutainer Plus Plastic K2EDTA; Becton Dickinson) for subsequent
serum urea and creatinine determination using standard photometric protocols.
Thereafter, psoas muscle was fast excised and processed for contractility studies (see

below) while the remaining of the tissue was shared for other approved protocols.

Muscle Samples

Psoas muscle samples from UREM and CON animals were permeabilized as
previously described (Karatzaferi et al., 2008). Briefly, thin bundles of rabbit PSOAS
muscle (~2 mm diameter) were dissected and tied to wooden sticks using surgical
thread. The samples were placed in falcon tubes containing skinning buffer solution
(0°C) [120 mM KAc, 50 mM 3-(N-Morpholino) propanesulfonic acid (MOPS), 5 mM
MgAc,, 4 mM ethylene glycol tetraacetic acid (EGTA) and 50% glycerol (v/v); pH 7]
with the addition of 100ul, per 50 ml end volume, of a protease inhibitor cocktail (104

mM AEBSF, 80 microns Aprotinin, 4 mM Bestatin, 1.4 mM E-64, 2 mM Leupeptin
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and 1.5 mM Pepstatin). Muscle samples underwent a 24-hour permeabilization
treatment [muscle samples (in falcon tubes) were placed on a vibrating platform
shaker (Heidolph-Titramax 100) in a parallel to the ground position and shacked at
350 rpm for 24 hours at 0°C]. Thereafter the skinning solution was replaced with

fresh solution and muscle samples were stored at -20°C until mechanical assessments.

Experimental setup for single fiber mechanics

Mechanical assessment was achieved using a home-made micro dynamometer
which included an 8-bath platform (Galler lab). Each single fiber was dissected from
the muscle bundle on a cold stage under a stereomicroscope. Consequently, the fiber
ends were glued between the arms of a Piezo stepping motor (Physik Instrumente,
Karlsruhe) and a force transducer (Scientific Instruments, Heidelberg) and manually
switched between solutions.

Each fiber was first immersed for 1 minute in a bath containing rigor solution
and then was incubated for 2 minutes in relaxing solution where fiber length and
diameter were measured using the eyepiece of the stereoscope. Resting sarcomere
length was also determined at a near slack position by laser diffraction (633 nm
wavelength).

The fiber was maximally activated in an activating solution and once steady
force was reached, a quick stretch of 0,3% fiber length was performed. Absolute
maximal isometric force was recorded in mN. The force was related to the cross-
sectional area of the muscle fiber to obtain the maximal isometric tension in mN/mm?2,
Also the time from the beginning of the stretch to the peak value of the delayed force

increase (t3) (Figure 1) and the time from the beginning of the stretch to the lowest

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



138

force before the onset of the delayed force increase were recorded (t2), using LabChart

software and home written routines. Experiments were performed at 22°C, pH 7.

Experimental solutions

The basic rigor buffer contained 120 mM KAc, 50 mM MOPS, 5 mM MgAc;
and 1 mM EGTA, pH 7. Relaxing solution was achieved with the addition of 5mM
ATP, 10mM PCr and 20 U/ml ck. Lastly, activating solution was achieved with the

addition of 1.1 mM CaCly; in the relaxing solution. The ionic strength of the solutions

was ~0.2 M.
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Figure 1. A representative experiment of stretch activation in a single fiber from
rabbit psoas muscle. Fibers were maximally activated under isometric conditions.
Once steady force was reached (maximal force), a quick stretch of 0.3% fiber length
was performed. t; is the time from the beginning of stretch imposed on an
isometrically contracting fiber to the peak value of the delayed force increase; X axis

represents the time (ms) and Y the force (mN).
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Data and Statistical analysis

Force transients were analyzed using the commercially available software
“LabChart”. Using this software we recorded force values (mN) in particular
activation states of a fiber as well as time (ms) from a particular state (e.g. beginning
of stretch) to another one (e.g. the peak value of the delayed force increase), as
described in Galler et al (Galler et al., 1994). Therefore, after determining the
maximal isometric force of each fiber, the time from the beginning of the stretch to
the peak value of the delayed force increase was manually determined. In cases where
force transients were unclear, t3 values could not be determined and these data were

not included in the analysis.

Force data distribution was tested using Kolmogorov-Smirnov test of
normality. Due to the normal data distribution, statistical analysis was performed
using parametric tests. Descriptive statistics (Mean £ SD) were first obtained for the
diameters, CSAs, sarcomere lengths, tension and stretch activation collected data of
CON and UREM single skinned psoas fibers. Differences between groups were tested
using unpaired analysis (t-test for independent samples). All statistical analyses were
performed using a commercially available statistical package (SPSS 15.0 for
Windows) and significance level was set at P<0.05. Values are presented as mean +

standard deviation (SD).
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RESULTS

Both surgery procedures (% partial nephrectomy-UREM animals and sham
operation-CON animals) were well-tolerated and animals presented with a normal
after-surgery recovery. At the end of the twelve-week period post-surgery, body
weight ranged between 3,500-4,965 g for CON (with mean +SD of 4,233 + 1,036) ¢
and 1,970-4,585 (3,200 + 1,076) g for UREM animals. Renal insufficiency in
experimental animals, compared to controls, was reflected in raised blood creatinine
(CON, 1.40 £ 0.0 mg/dl, vs UREM, 2.97 + 1.33 mg/dl) and urea levels (CON 46.0 +

0.0 mg/dl vs UREM 71.3 £ 43.4 mg/dl).

Morphological characteristics of single fibers

Fibers of the UREM animals (n=42) exhibited smaller mean diameters
compared to CONs (n=21) (Mean + SD UREM 70.0 = 19.0 vs 79.0 = 13.0 pm,
P<0.05). Calculated cross sectional areas of UREM fibers were also lower compared
to CONs but the difference between groups was not statistically significant (UREM
4,117 + 2,157 vs 5,020 + 1,727 ym? , P>0.05). Furthermore, UREM fibers presented
with significantly larger resting sarcomere lengths compared to CONs (UREM 2.25 +

0.33vs 2.05£0.17 ym, P<0.01).

Contractile properties of single fibers
Both absolute and specific forces were weaker in the UREM fibers studied but

not in a statistically significant way (Table 1).
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Table 1. Isometric tension of UREM and CON single psoas muscle fibers at baseline

(22°C, pH 7).
Force (uN) Specific Force (mN/mm?)
Control 326 £ 78 70+ 25
Uremic 287 + 167 72+32
Descriptive (Mean + SD) statistics are reported for the collected isometric force data.

However, CON fibers showed a better response to stretch activation compared
to UREMs as it is shown in representative experiments of Figure 2. On average CON
fibers achieved a higher delayed force increase (by ~8% of baseline force) while
UREM fibers often did not achieve a measurable delayed force increase (of those
measured, ~3% of baseline). Due to noise and the low resolution of our analysis tools
we could not reliably measure those small force differences. Thus force potentiation

values will not be discussed thereafter.
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Figure 2. Force response following a step like stretch in a CON (blue) and a UREM

(orange) fiber; X axis represents the time (ms) and Y the force (mN).
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Our analysis showed that average t; values were significantly larger in UREM
compared to CON fibers, P<0.05 (Figure 3). Values of t, did not differ between

groups (UREM 19.05+ 5.5 ms vs CON 20.55+6.3 ms, P>0.05).

100 =
90
80
70 T
60
50
40
30

20
10

t3(ms)

control uremic

Figure 3. Stretch activation (t3) in CON (open bars) and UREM (filled bars) fibers.
From measurements at 22°C, pH 7; Data are presented as MEAN+SD; * Indicates

statistically significant difference compared to CON (P<0.05).

The two stretch activation parameters t, and t; were strongly correlated (Pearson
correlation coefficient, r =0.60, P<0.01) for the CON fibers. However, this correlation

while remaining significant, became weaker for UREM fibers (r=0.37, P<0.05).

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



143

DISCUSSION

To the best of our knowledge, this is the first time that the effects of chronic
renal insufficiency on myosin head cross-bridge kinetics of skeletal muscle single
psoas fibers were examined. Uremic muscle fibers presented with slower cross bridge
kinetics compared to controls, indicating an impaired ability to effectively respond to
a sudden stretch while activated. Moreover, the observation of larger sarcomere
lengths and smaller cross sectional areas in uremic fibers provided evidence for
uremia-induced structural alterations in sarcomeric proteins.

Our stretch activation measurements revealed approx. 15% higher t3 values in
UREM fibers compared to CONs. A key parameter of the stretch activation protocol
used in this study, ts, has been proposed to primarily reflect cross bridge Kinetics of
myosin re-attachment and force development (Galler et al., 1994). Rapid stretches
lead to a series of events, i.e. initially a simultaneous force rise (due to stretch forces
on attached cross-bridges), followed by a sudden force reduction (as myosin heads are
forcibly dissociated from actin binding sites) and then a delayed force increase above
the initial force, i.e. force potentiation [due to cross-bridges re-attaching, (Kawai &
Zhao, 1993)], followed by stabilization on a new force level dependent on final
length. Assuming thus that stretch induced force transients are associated with the
elementary steps of cross bridge cycle then, the larger t; values may indicate slower
cross bridge kinetics and vice versa. Such kinetics are dependent on the myosin heavy
chain (MHC) isoforms of the fibers (ie. smaller t3 values-faster myosins, larger t;
values-slower myosins) (Galler et al., 1994) in accordance to the known differences in
myosin types with regards to mechano-chemical coupling steps of actomyosin
(Geeves, 2016). Thus, based on t3 results alone, UREM fibers’ slower kinetics could

indicate a shift to slower myosin properties.
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Moreover, t, and t; values correlated strongly and significantly in our CON
samples, as reported in other studies (Andruchova, Stephenson, Andruchov,
Stephenson, & Galler, 2006). However, while still significant that association was
weakened in UREM fibers. Past research using sinusoidal analysis and stretch
activation kinetics has provided strong evidence that the force decay after stepwise
stretch (t,) is associated with detachment of myosin heads following ATP binding and
the delayed force increase (t3) is associated with their re-attachment and force
generation prior to the release of phosphate [e.g. (Kawai & Zhao, 1993)] and are thus
expected to correlate well (Andruchova et al., 2006). The latter and others have
reported that, as these two time parameters reflect two distinct steps of the cross-
bridge cycle (detachment and attachment) and do not incorporate the whole cross-
bridge cycle sequence of steps (as e.g. when measuring velocity or the time
development of the twitch force response), there is a tight correlation between MHC
isoform and the values of both t, and t;. Our observation of a discrepancy in the
relationship between t; and t3 in UREM fibers may be suggestive of either changes in
MHC properties or other elements, such as elastic proteins, affecting sarcomeric
protein interactions, perhaps weaken.

Therefore our results could be initially explained by changes in cross bridge
kinetics due to some changes in myosin isoform properties of UREM fibers, with a
shift to slower myosin properties. Such change of properties could relate to either
MHC alterations (from a pure 11X to other type Il isoforms) or myosin light chain
changes (in the ratio of slow and fast isoforms). For the former, while we were
unsuccessful due to technical difficulties in determining MHC expression, these could
not be excluded in uremia [e.g. given the disturbed muscle type ‘mosaic’ observed in

human studies of end-stage patients, (Sakkas, Ball, et al., 2003)]. Moreover, slower
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cross bridge kinetics have also been observed in aged skeletal muscle fibers compared
to young (Ochala, Dorer, Frontera, & Krivickas, 2006). It is also noteworthy that
changes in the myosin light chain could affect the overall velocity of contraction of a
single fiber, which in turn relates to properties of actomyosin dissociation step and the
ability for rapid myosin binding in shortening conditions (Karatzaferi et al., 2008),
steps which were more specifically probed with the performed stretches. While not
shown here, we have observed a slowing of velocity of contraction of UREM fibers
vs CON in an earlier pilot study (Mitrou et al., 2014) in line with the present
observations.

Other changes in sarcomeric proteins of UREM fibers could occur. One site of
interest would be at the troponin-tropomyosin regulatory level considering that the
delayed force increase could be the result of problems in the displacement of
tropomyosin segments, which uncover new binding sites for myosin, and could allow
previously weakly bound cross-bridges to now attach strongly (Linari, Reedy, et al.,
2004).

At the whole fiber level but also at the single sarcomere level some
contribution of passive elastic elements should be considered, especially in larger
sarcomeric lengths (Edman & Tsuchiya, 1996) and an emerging role for titin has been
highlighted (Labeit et al., 2003), which could affect overall tension under stretch.
Titin tends to bind to actin (Li, Jin, & Granzier, 1995) and can increase its stiffness
when its PEVK and Ig domain binds calcium, as it can occur with their unfolding
during stretching (Labeit et al., 2003). We observed consistently larger resting
sarcomere lengths (despite those still being in the theoretical range of optimal force

production for rabbit psoas) which could reflect changes in sarcomeric elastic
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proteins. Thus a titin-mediated mechanism could in part be responsible for the overall
repressed tension under stretch observed in UREM fibers.

In some cases t3 values could not be determined due to the unclear signal.
More precisely, in these fibers the points of force transients which would indicate the
transition from the beginning of the stretch to the delay force increase (t3) were not
discernible. Upon unblinding it was revealed that this happened only in UREM fibers
indicating that in some cases cross bridges of UREM fibers were unable for
reattachment after a sudden lengthening. Thus our results regarding t3 values could be
even worse for UREM fibers if it was possible to determine these values in the
discarded data sets.

Our results gave also evidence for uremia-induced remodeling of UREM
fibers presented with 10% larger resting sarcomere lengths and 10% smaller
diameters (atrophy) compared to CONSs. Resting sarcomere length is mainly regulated
from the giant elastic protein titin (Kontrogianni-Konstantopoulos, Ackermann,
Bowman, Yap, & Bloch, 2009). Therefore the larger resting sarcomere lengths of
UREM fibers could be due to modifications in titin due to uremic toxicity.

Our findings regarding atrophy in uremic muscle are in accordance to previous
studies reporting significant atrophy in fast twitch fibers of uremic muscle (Diesel et
al., 1993; Fahal et al., 1997; Sakkas, Ball, et al., 2003). Psoas muscle is a fast-twitch
muscle expressing mainly 11X myosin heavy chain (MHC) isoforms [95% I11X(11d)]
(Aigner et al., 1993) and 11X fibers appear with greater atrophy among all fast MHC
isoforms in uremic muscle (Fahal et al., 1997; Sakkas, Ball, et al., 2003). The present
results are in accordance to previous observations (Research paper 1) of a significant

but moderate atrophy in UREM muscle fibers.
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Overall, uremic fibers exhibited lower absolute and specific forces (see
Research paper 1 and present results). This observation and the above, described
reduced ability to respond to stretch, leads to the conclusion that uremic muscle
suffers from severe functional problems. Our results are of major clinical relevance as
it is known that skeletal muscle is of crucial role in the maintenance of an independent
daily life and high levels of quality of life. In CKD weakness, early fatigue and injury
heavily impact on patients’ quality of life and overall health status (Go, Chertow, Fan,
McCulloch, & Hsu, 2004; Tonelli, 2006). As mentioned in the introduction, the
optimal functionality of fast skeletal muscle is crucial for a safe and efficacious
locomotion. Our findings could guide future interventions to improve skeletal
muscle’s mechanical function in CKD.

In conclusion, our kinetic measurements suggest a slowing of myosin head
cross-bridge Kinetics, indicating underlying post-translational modifications of
myosin, not excluding also some changes in the muscle’s elastic properties.
Moreover, our results show evidence of uremia-induced remodeling (atrophy). The
larger resting sarcomere lengths in fibers of uremic animals could be due to a decrease
of forces restoring the sarcomere length at resting conditions, i.e. also being linked to
some elastic structural change.

Future research should examine protein expression and isolated proteins
interactions (perhaps through fast kinetics assays). Our findings open new avenues in
the direction for designing rational interventions in promoting actomyosin interaction

and potentiating force in chronic disease.

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



148

CHAPTER 6: RESEARCH PAPER 4
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Functional responses of uremic single skeletal muscle fibers in

redox imbalances

Aims addressed in this paper: using tissue from an animal model of uremia to

examine the effect of chronic renal insufficiency on

1. force generation of isolated muscle fiber preparations in conditions of acute

redox imbalance
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ABSTRACT

Introduction: Chronic kidney disease is associated with accumulation of uremic
toxins, negatively affecting skeletal muscle. Uremic (UREM) muscle presents with
redox imbalances and functional incapacity. To understand whether UREM muscle
has acquired any sensitivity in redox imbalances we examined the functional
responses of UREM myocytes to an acute load of oxidized and/or reduced agents.
Materials and Methods: Single psoas fibers from 2 UREM animals (n=19 fibers)
and 2 sham-operated (CON, n=18 fibers), were assessed on 10mM Hydrogen
Peroxide (H2O;) and/or Dithiothreitol (DTT) in 2 experimental sets: A) Exposure to
H,0, during activation followed by DTT during relaxation and repeated activation
(n=9 CON; n=9 UREM fibers; B) Exposure to H,O, during relaxation preceded and
followed by submaximal (pCasp) and maximal activation (n=9 CON; n=10 UREM
fibers). Results: A) Acute exposure to H,O, during activation did not affect force
generation (P>0.05). DTT pre-incubation caused 12% force reduction (P<0.05) only
in UREM fibers. B) H,O, during relaxation reduced subsequent maximal isometric
forces in the Pool of fibers (both CON and UREM) by 3.5% (P<0.05) but not in fiber
groups separately (UREM P>0.05; CON P>0.05). Conclusion: Force generation
capacity of CON and UREM fibers is affected by oxidation similarly. However the
observation that UREM muscle may have been in a more reduced state at baseline

warrants further investigation as it could be linked to disease induced effects.

Key words: Chronic kidney disease, isometric tension, permeabilized fibers, redox

balance, animal model
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INTRODUCTION

Chronic kidney disease (CKD) is now recognized as a major global health problem,
expected to affect almost the 50% of European and American population during
lifetime (Grams et al., 2013; Zoccali et al., 2010). The disease is accompanied by a
variety of clinical implications, ameliorating independency and quality of life
including muscle abnormalities such as skeletal muscle atrophy, muscle weakness and
limited endurance collectively described as uremic myopathy (Adams & Vaziri, 2006;
Campistol, 2002). The term “uremic” is due to the association of CKD with uremia, a
condition which is caused by the accumulation of toxic waste products due to
impaired kidney function (Richet, 1988) and it is believed that uremic toxins may
affect muscle tissue (Campistol, 2002). Skeletal muscle structure and function is of
major role not only for body movement and control but also for many other vital body
functions such as protein and energy metabolism (Frontera & Ochala, 2014).
Therefore, many researchers have studied the effects of various interventions
(pharmaceutical, non pharmaceutical or combination) in preserving muscle quality
and quantity of CKD patients (Balakrishnan et al., 2010; Johansen et al., 2006;
Sakkas, Sargeant, et al., 2003b). Despite the improvements, CKD patients cannot
restore their muscle structure and function at the levels of age-matched healthy
individuals with a sedentary lifestyle (Sakkas, Hadjigeorgiou, et al., 2008; Sakkas,
Sargeant, et al., 2003b).

The mechanisms underlying uremic myopathy and especially muscle
dysfunction remain unknown with many factors being implicated including a reduced
antioxidant capacity (Hensley, Robinson, Gabbita, Salsman, & Floyd, 2000) and the
generation of excess reactive oxygen species (ROS) (Adams & Vaziri, 2006). The

antioxidant capacity (especially the levels of glutathione), has been shown to be
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reduced by fasting, low-protein diets, or diets limiting in sulfur amino acids (Paterson
& Juurlink, 1999). It is not unexpected thus that dietary restrictions and inter-
individual differences in antioxidant nutritional intakes affect antioxidant capacity in
pre-dialysis patients (Sahni, Gupta, Rana, Prasad, & Bhalla, 2012). On the other hand,
ROS, molecules containing oxygen such as superoxide (02°) with unpaired electrons,
can damage membranes and impair contractile proteins (Debold, 2012). In healthy
individuals, ROS production is a physiological outcome of activities such as exercise,
and play a role in adaptive mechanisms (Mgller, Wallin, & Knudsen, 1996) but in
disease states and especially in CKD, ROS over-production may be the result of
various additional endogenous and exogenous factors including uremic toxins,
inflammation and dialysis treatment (Massy, Stenvinkel, & Drueke, 2009). Among
the most important ROS are superoxide radical (O,) and hydrogen peroxide (H,0,),
which originates mainly from the mitochondria and from enzymatic activity (Allen et
al., 2008). H,0, can diffuse into cell membranes and act as a signal to the oxidation
of thiol groups of proteins (Allen et al., 2008). Oxidation is also associated with the
formation of advanced glycation products (AGEs) (Miyata et al., 1997), a condition
known as glycosylation which is common in CKD patients (Thornalley, 2006). It has
been reported that AGEs can induce modifications in myosin structure (Ramamurthy
et al., 2001) which could lead in a sensitivity to oxidative stress presented in uremic
muscle and therefore leading to muscle dysfunction.

It has been proposed that the negative effect of H,O, in muscle cells are
through the generation of hydroxide (OH) (Lamb & Posterino, 2003). In vitro studies
using single fiber preparations have shown that excess H,O, can cause significant
functional deficits (Lamb & Posterino, 2003; Murphy et al., 2008) which are fully or

partially reversible using antioxidant molecules such as dithiothreitol (DTT) (Lamb &
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Posterino, 2003; Murphy et al., 2008). It has been shown that fast twitch muscle fibers
are more prone to functional deficits in the presence of ROS (Spencer & Posterino,
2009). In a CKD animal model (Research paper 1) we reported that fast muscle fibers
(psoas) present with lower maximally activated force, compared to control. We also
showed (Research paper 2) that acidosis causes a greater loss of calcium sensitivity in
uremic fibers, but the degree of force decline was similar between uremic and control
fibers. Our group recently showed that uremic muscle presents with a disturbed redox
profile as reflected by increased protein carbonylation and a tendency for increase
glutathione content (Poulianiti et al, unpublished data). It is not however known
whether chronic renal insufficiency causes the sarcomeric functional unit to be more
sensitive to acute oxidative stress.

Therefore, the aim of the study was to examine for the first time whether
uremic skeletal muscle fibers from psoas fast-twitch muscle responded to an acute
load of oxidative stress and/or to reducing agent similarly compared to CON fibers.
To avoid a variety of confounding factors in human patients such as years in dialysis,
comorbidities and pharmaceuticals, we employ a surgically induced CKD animal
model (Gotloib et al., 1982) to investigate effects of uremia on muscle mechanics
using the skinned fiber preparation (Cooke & Bialek, 1979; Degens & Larsson, 2007).
The main advantage of this approach is that one can study the performance of
contractile machinery per se isolating factors such as excitation-contraction coupling
and atrophy. This method also allows for the control of intracellular content including
calcium concentration alone or in combination with other factors such as oxidized and
reducing agents which were the main issue of the present study (Karatzaferi et al.,

2008; Lamb & Posterino, 2003).
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MATERIALS AND METHODS
Animal model

All animal procedures, including surgery and euthanasia for this project were
approved by the ethics committee of the University of Thessaly (decision 2-1/10-10-
2012) and the scientific committee of the University Hospital of Larissa, Greece
(decision 1/4-1-2012). Animals were under veterinary care, in accordance to the
national directives for the care and use of laboratory animals. Four New Zealand
young adult white female rabbits (N=4) with a body weight (BW) of ~3200g were
housed in a controlled environment with stable conditions (temperature 22-24°C,
12:12 h light-dark cycle) and were acclimatized for 48 hours. Rabbits were fed ad
libitum a special rabbit chow containing low levels of protein, potassium, calcium,
phosphorus and sodium (prepared by Research Diets, Inc. USA) and water ad libitum.

After acclimatization, surgical procedures were performed (sham operation for
control animals - CON and partial nephrectomy for experimental animals —-UREM).
Animals were anaesthetized by intravenous administration of a solution mixture of
ketamine hydrochloride 100 mg/ml (Imalgene® 1000; Merial, Duluth, Georgia, USA)
and xylazine 20 mg/ml (Rompun®; Bayer, Leverkusen, Germany), 87% and 13%
respectively (proportion 6.69:1 approximately). The initial dosage for the induction of
anesthesia was 0.3 ml/Kg BW of the above solution mixture, i.e. Imalgene® (87%)
and Rompun® (13%), intravenously (i.v.). The maintenance of anaesthesia was
achieved by a dose of 0.2 to 0.3 ml i.v. of the solution mixture. Animal temperature
was maintained via a heating pad. Three hours before the intervention, each animal
had only access to water and its weight was measured on a precision scale. The
induction of renal insufficiency was performed surgically (using a surgical protocol

modified from Gotloib et al., 1982) (Gotloib et al., 1982). For the UREM group two
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animals (N=2) underwent removal of the left kidney after careful ligation of the left
renal artery and vein; and partial nephrectomy (%) of right kidney. For the CON
group, two age-matched animals (N=2) underwent sham operation and were
considered as the control group (CON animals).

Twelve weeks after surgery, animals were weighted and then sacrificed by
injection of sodium pentobarbital solution (50 mg/ml) which was applied in a dosage
of 100 mg/Kg BW followed by bilateral thoracotomy. Immediately after cardiac
arrest, blood samples were collected from heart and aorta using a heparinized syringe
for subsequent serum urea and creatinine determination using standard photometric
protocols. Urea and creatinine concentrations were determined using commercially
available kits (Abcam-ab83362 and ab65340for urea and creatinine respectively), a
96-well microtiter plate and a programmable microplate reader (Biochrom, Asys
Expert 96). Psoas muscle was fast excised and processed for contractility studies (see

below). Sample collections were done in a blind fashion.

Muscle Samples

Psoas muscle samples from UREM and CON animals were permeabilized as
previously described (Karatzaferi et al., 2008). Briefly, thin bundles of rabbit PSOAS
muscle (~2 mm diameter) were dissected and tied to wooden sticks using surgical
thread. The samples were placed in falcon tubes containing skinning buffer solution
(0°C) [120 mM KAc, 50 mM 3-(N-Morpholino) propanesulfonic acid (MOPS), 5 mM
MgAc,, 4 mM ethylene glycol tetraacetic acid (EGTA) and 50% glycerol (v/v); pH 7]
with the addition of 100ul, per 50 ml end volume, of a protease inhibitor cocktail (104
mM AEBSF, 80 microns Aprotinin, 4 mM Bestatin, 1.4 mM E-64, 2 mM Leupeptin

and 1.5 mM Pepstatin). Samples were placed on a vibrating platform shaker
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(Heidolph-Titramax 100) in a parallel to the ground position and shaken at 350 rpm
for 24 hours at 0°C. Thereafter the skinning solution was replaced with fresh solution
and muscle samples were stored at -20°C until mechanical assessments. Chemicals

were purchased from Sigma-Aldrich.

Experimental setup for single fiber mechanics

For the mechanical assessment, each single fiber was dissected from the
muscle bundle on a cold stage under a stereomicroscope and the fiber ends were
attached between 2 tissue mounts of a muscle micro dynamometer with resolution of
0.4 uN to 4 N (SI Heidelberg/WPI). The tissue mounts were connected to a force
transducer and a motor arm (used as a fixed end). The fiber was then immersed in
baths containing ~200 pl of various solutions (refer to the experimental solutions
section). This procedure was achieved using an adapted stereomicroscope on the top
of the micro dynamometer. Data were continuously recorded in a computer using the
particular software of SI Heidelberg/WPI and later exported for further analysis

The particular micro dynamometer consists of a platform with 5 baths and
fibers can be automatically switched between them in less than 250 ms allowing for
rapid changes such as calcium concentration (for an indicative experiment see Figure
1). The temperature of the baths was adjusted at 10°C using a cooling/heating water

circulator (Thermo Electron Haake WKL 26 Recirculator Chiller 3L Capacity Bath).
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Figure 1. Indicative example of single fiber force recordings at 10°C, pH 7: A fiber
was first immersed in a control relaxing solution and then in a submaximal activating

solution. Once a steady state force was reached, the fiber was transferred in the

maximal activating solution and was allowed again to reach a steady state force.

Experimental solutions

The basic rigor buffer contained 120 mM KAc, 50 mM MOPS, 5 mM MgAc;
and 1 mM EGTA, pH 7; Relaxing solutions. Standard: with the inclusion of 5 mM
ATP. Relaxing solution with reducing agent: addition of 10 mM dithiothreitol (DTT)
in standard relaxing solution; Relaxing solution with oxidizing agent: addition of 10
mM H,0; in standard relaxing solution; Activating solutions. Submaximal: addition
of 0.53 mM CaCl; in standard relaxing solution (pCa 6.2). Maximal: addition of 1.1
mM CaCl, in standard relaxing solution (pCa 4.4). Maximal activating solution with
oxidizing agent: addition of 10 mM H,0, in Maximal activating solution. The ionic
strength of the solutions was ~0.2M (Karatzaferi et al., 2004; Lamb & Posterino,

2003).
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To exclude the possibility that the calcium concentration used to maximally
activate CON fibers might not be sufficient for UREM fibers, a small pilot study was
first undertaken where approx. 40 CON and UREM fibers (data not shown) were
blindly assessed in three to four pCa concentrations in pH 7, 10°C. From that pilot
study it was concluded that the standard addition of 1.1 mM CaCl, (pCa 4.4) provided

maximal isometric tension for both groups and was thereafter used.

Isometric Tension measurements

A total of 37 fibers were first assessed under maximal isometric conditions at
10°C, pH 7 and baseline solutions. For this purpose, each fiber was first immersed for
1 minute in a bath containing rigor solution (to wash out excess glycerol) and then it
was transferred and equilibrated for 2 minutes in a bath containing standard relaxing
solution. Average diameter was determined assuming a cylindrical shape.
Consequently, the fibers underwent a full assessment in one of the two protocols

described below. Assessments were done in a blind fashion.

Experimental set A: “Exposure to H,O, during activation and DTT during
relaxation”. While fibers were maximally activated in standard solutions (n=18, 9
UREM and 9 CON) upon reaching a force plateau, 10mM H,O, were added and
forces were recorded for a further 5 minutes. After a wash-out fibers were returned to
a relaxing condition. They were then exposed to 10mM DTT for 10 min. Following
washing out, a final maximal activation in standard solutions was performed (Lamb &
Posterino, 2003).

Experimental set B. “Exposure to H,O, during relaxation-effect on
submaximal and maximal force”: Another subset of fibers (n=19, 10 UREM and 9

CON fibers) was submaximally (pCa 6.2) and maximally activated (pCa 4.4) under
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isometric conditions in standard activating solutions at resting sarcomere lengths.
Then, the fibers were returned to a relaxing condition and exposed for 5 min to 10mM
H,0,. After a wash-out, submaximal and maximal isometric forces were reassessed in
fresh standard solutions (Lamb & Posterino, 2003).

In the results’ section, force analysis data will be presented for both absolute
and specific values (i.e. corrected for calculated CSA). In addition, effects of H,O, or
DTT on force will be presented separately for CON and UREM fibers but also as the

pool of fibers.

Statistical analysis

Force data distribution was tested using Kolmogorov-Smirnov test of
normality. Due to the normal data distribution, statistical analysis was performed
using parametric tests. One-way repeated measures ANOVAs were performed to
examine the effects of experimental conditions in absolute and specific force of the
Pool of fibers and of fiber groups separately. To examine possible differences between
groups in their response to either H,O, or DTT, force changes were calculated in
percentage-change from respective standard force values and differences between
groups were tested using the t-test for independent samples. Data are reported as
MEAN+SEM. Statistical analyses were performed using SPSS 15.0 for Windows and

significance level was set at P<0.05.
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RESULTS

Both surgery procedures (¥ partial nephrectomy-UREM animals and sham
operation-CON animals) were well-tolerated and animals presented with a normal
after-surgery recovery. At the end of the twelve-week period post-surgery, body
weight ranged between 3,000-3,245 (3,123+123gr) for UREM and 3,500-3,850qgr for
CON (3,675+175gr) animals. Renal insufficiency in experimental animals, compared
to control, was reflected in raised serum creatinine (UREM 2.22+0.33 vs CON

1.46x0.00mg/dl) and urea levels (UREM 44.0+2.0 vs CON 38.0+0.0mg/dl).

Morphological characteristics of single fibers

Average fiber diameters differed significantly between groups (UREM
72.3£1.9 vs CON 77.9£2.0um, P<0.05). Likewise, calculated cross sectional areas
(CSAs) of UREM fibers were significantly lower compared to CONs (4,150+£220 vs

4,817+237um?, P<0.05), indicating a level of ~14% atrophy in UREM fibers.

Functional characteristics of single fibers

Standard Conditions (10°C, pH 7): Baseline absolute maximal isometric force
was significantly lower in UREM (n=19) fibers compared to CONs (n=18) by ~23%
(UREM 316£17uN vs CON 410£22uN, P<0.05). Moreover, specific forces of UREM
fibers tended to be lower (by ~9%) compared to CONs (UREM 78.2+4.4 vs CON
86.0+3.4 mN/mm?) but not significantly (P>0.05). Similarly, in a subset of fibers
(n=19, 9 CON/ 10 UREM) also assessed at standard submaximal calcium activation
(pCa 6.2), absolute force of UREM fibers was significantly lower compared to CONs

by ~33% (UREM 165+17 vs CON 248+15uN, P<0.05). Moreover, submaximal
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specific force tended to be lower in UREM fibers by ~15%, but not significantly
(UREM 40.1+3.3 vs CON 46.7+2.7uN, P>0.05).

Experimental set A: Addition of 10mM H,0O, during activation (n=18, 9
UREM/ 9 CON) did not affect maximal isometric forces in neither group (P>0.05)
nor in the Pool of fibers (-0.9+3.0%, P>0.05). Moreover, the magnitude of the effect
of H,O, on isometric force was not significantly different between groups (P>0.05).
Exposure to 10mM DTT during relaxation however, caused significant (P<0.05) force
reductions in UREM fibers compared to baseline values (by —12%) in subsequent
maximal activation (with the Pool of fibers -10.7+2.5%, P<0.05) but not in CON
fibers (P>0.05). However, the magnitude of the effect of DTT did not differ
significantly between fiber groups (P>0.05). To facilitate presentation, effects of H,0,
and DTT on maximal isometric force are presented as percent changes from baseline

(standard) forces (Figure 2).

H202 DTT

s] [ T
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X
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Figure 2. Force values expressed as % force change from baseline following

exposure to 10mM H,0O, during activation (H202) and 10mM DTT during relaxation
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(DTT). CON fibers are shown as open bars. * indicates the significant difference

(P<0.05) from baseline force for UREM (filled bars) fibers.

Experimental set B: In another subset of fibers (n=19, 9 CON/ 10 UREM) we
examined the effect of incubation with 10mM H,O; during relaxation on submaximal
(pCa 6.2) and maximal (pCa 4.4) force production. Pre-incubation with 10mM H,0,
did not cause any significant reduction in subsequent submaximal isometric forces
compared to standard conditions in neither of the groups (UREM -0.1+2.5%, P>0.05;
CON -4.7£4.3%, P>0.05) nor in the Pool of fibers (-2.3+2.4%, P>0.05). Nevertheless,
maximal isometric tension was significantly reduced in the Pool of fibers (-3.5£1.2%,
P<0.05) but not in groups separately (UREM P>0.05; CON P>0.05) after exposure to
H,0,. Lastly there was no significant difference between groups in their magnitude of
response to H,O, (P>0.05). To facilitate presentation, the effects of exposure to H,0,
during relaxation on submaximal and maximal isometric force are presented as

percent changes from baseline (Figure 3).
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Figure 3. Force values expressed as % force change from maximal baseline force
following submaximal activation before (Sub pre H202) and after exposure to H,0,
(Sub post H202) as well maximal activation after exposure to H,O, (Max post H202)
during relaxation. * indicates the significant difference (P<0.05) from baseline force

for CON (open bars) and UREM (filled bars) fibers.
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DISCUSSION

To our knowledge this is the first study to examine the effects of redox
challenges on force generation capacity of skeletal muscle fibers from an animal
model of uremia. Our results show that contractile properties of UREM fibers are
inhibited by an acute load of reduction rather than oxidation, which indicates that their
redox status at baseline may have shifted to reduction.

Regarding the effects of an oxidizing agent on maximal isometric force,
addition of 10mM H,0, during activation did not cause any appreciable change in
maximal isometric forces of UREM nor of CON fibers. This is in consistent with the
study of Lamb et al (Lamb & Posterino, 2003) who examined rat EDL muscle
skinned fibers using a similar H,O, treatment (10mM H,O, for 5 minutes during
activation). However, other studies using different methodology have found different
results in maximal isometric forces. For example Prochniewicz et al (Prochniewicz,
Lowe, et al., 2008) found that even 5mM H,0O, may cause significant reductions in
forces of skinned psoas fibers from New Zealand rabbits by ~31% while higher
concentrations of H,O, may cause larger reductions (e.g. 50mM H,0, lead to ~85%
force reduction). However in this study fibers were incubated in H,O, for 30 minutes
before functional assessment and it has been clearly reported that effect of oxidized
agents is time dependent (e.g. long lasting exposures lead to larger reductions in
maximal force) (Lamb & Posterino, 2003; Murphy et al., 2008). Other studies have
shown that extremely higher concentrations of H,O, (i.e. 50mM) lead to smaller force
reductions (e.g. 19%) in slow fiber types of rats (soleus slow-twitch muscle fibers)
(Gilliver et al., 2010).

In a subset of fibers, we examined the effects of pre-incubation to oxidizing

conditions during relaxation on subsequent submaximal and maximal force. We found
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no influence on submaximal isometric forces of either group. However, exposure to
10mM H,0, during relaxation for 5 minutes caused a significant reduction in absolute
maximal isometric forces for both CON and UREM fibers (by ~3.5%. in the Pool of
fibers). This is in agreement to Lamb et al (Lamb & Posterino, 2003) who have
reported that the effect of H,O, on force differs if the fiber is oxidized during
relaxation or activation. Indeed, other studies have also shown that exposure to H,0,
during relaxation leads to significant force reductions in maximal isometric forces
(Gilliver et al., 2010; Prochniewicz, Lowe, et al., 2008). It has been shown that the
negative effect of H,O, in maximal isometric force is due to modifications in myosin
heads causing force reductions per cross bridge (Murphy et al., 2008) It can be
appreciated that actin-binding sites of the myosin heads are continuously exposed
during relaxation while when myosin heads are attached to actin, these same binding
sites are intermittently exposed. However, since the magnitude of the effect of H,0,
on force did not significantly differ between fiber groups it could be surmised either
that the exposure had to be longer to reveal any differences or that the chronic uremia
had not caused the skeletal muscle to acquire any level of ‘sensitivity’ to H,0,
exposure. Moreover, the observation of Lamb et al (Lamb & Posterino, 2003)
suggesting that oxidation may cause an increase in calcium sensitivity which at
submaximal activation could prevent force reductions in the presence of H,O, can
explain the lack of appreciable effect of the oxidizing agent on submaximal force.

A 10-minute exposure to 10mM DTT during relaxation did not affect
significantly maximal forces of control fibers, in agreement to past reports (Lamb &
Posterino, 2003), however it significantly reduced force in uremic fibers by ~12%.
This was an unexpected and novel result. DTT is a strong reductant and the lack of

effect on maximal forces of CON skinned fibers indicate that those fibers were in
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balanced redox state (Lamb & Posterino, 2003) [considering the force-redox
relationship as an inverted U with a plateau, with either excess oxidation or reduction
reducing force, see also (Andrade, Reid, Allen, & Westerblad, 1998) and (Powers, Ji,
Kavazis, & Jackson, 2011)]. Thus given observations that uremic muscle presents
with a disturbed redox status (Poulianiti et al., 2015), and the fact that force reduction
due to DTT was significant only in UREM fibers it could not be excluded that UREM
muscle sarcomeric proteins may have acquired a reduced state. Thus addition of DTT
led to further reduction which could thus explain the observed force reduction more.

Regarding maximal baseline isometric forces, results showed that UREM
fibers had significantly lower absolute forces compared to CONSs. This functional
limitation of UREM fibers is in consistent with our previous results (Research paper
1) but after correcting for fibers’ CSA, specific forces were not significantly different
between fiber groups, probably due to the smaller number of fibers. Lower absolute
forces of UREM fibers can be explained from their significant atrophy manifested in
smaller CSAs compared to CONs while reduced fiber CSA is associated with reduced
contractile protein content and number of myosin cross bridges, leading to low force
generation per fiber (Fitts et al., 1991).

Our findings regarding atrophy of UREM psoas muscle fibers is in accord
with other studies indicating significant atrophy mainly in fast twitch fibers of uremic
muscle (Diesel et al., 1993; Fahal et al., 1997; Sakkas, Ball, et al., 2003). It has been
reported that 11X fibers appear with greater atrophy among all fast MHC isoforms in
uremic muscle (Fahal et al., 1997; Sakkas, Ball, et al., 2003) and this was why we
assessed psoas muscle which is a fast-twitch muscle expressing mainly 11X myosin

heavy chain (MHC) isoforms [95% I1X(11d)] (Aigner et al., 1993).
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Our study had a number of strengths and mainly the employment of an animal
model of CKD and not of acute kidney injury. Our animal model was allowed to
develop CKD for 3 months after nephrectomy which corresponds to a sufficient
period considering rabbit lifespan whereas an acute model of CKD may not induce
realistically relevant modifications on muscle properties. Furthermore, we used the
single fiber technique, which allows forming conclusions about sarcomeric function
by acutely isolating other factors such as abnormal intracellular content and
excitation-contraction coupling issues. Another strength of our study was its blind
design and the use of sham operated animals instead of non-surgery control animals.
By this way we avoided differences in results due to the different animal handling.
Our study had also some limitations that we have to address. First, despite
implementing the same surgical approach, the biochemical responses were somewhat
variable which perhaps explains why the UREM fibers presented with greater
variability in force values than CONs. Furthermore we did not assess contractile
properties at near physiological temperatures (ie. =230°C). At 30°C where sarcomere
derangement is common (Karatzaferi et al., 2008), our long and repetitive activations
could lead in fibers’ exhaustion. Lastly, fibers’ cross sectional areas were calculated
assuming a cylindrical instead of elliptical shape but this happened in a systematic
way and could not affect our results.

In conclusion, although functional response of uremic fibers to H,O, does not
differ compared to controls, DTT inhibited force only in uremic fibers indicating that
the initial redox status of uremic muscle is more in a reduced rather than oxidized
state. This finding, taken together with the presentation of moderate atrophy and the
tendency for lower specific forces in uremic muscle, point to possible explanations for

the muscle weakness observed in patients presenting with uremic myopathy. Further
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work is required to determine dose-response relationships between isometric,
maximal and submaximal, force and key redox constituents, to determine which
sarcomeric proteins are mostly affected, as well as to delineate the possible interaction

of redox imbalances to fatigue or toxicity factors.
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CHAPTER 7: GENERAL DISCUSSION
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To the best of our knowledge this is the first study to examine the effect of
chronic renal insufficiency on the contractile properties in combination to
morphological characteristics of single psoas muscle fibers in an animal model
mimicking CKD. Chronic renal insufficiency induced significant impairments in
contractile properties of single muscle fibers. Specifically, maximal isometric force
and calcium sensitivity were found to be lower in uremic muscle at standard and at
near physiological temperatures, at rest and acidosis. Furthermore, in experiments
carried out only in resting conditions (stretch activation) it was found that uremia may
induce a slowing of myosin head cross-bridge kinetics. Additionally, uremic muscle
found to enter experimentation in a more reduced state. Apart from functional deficits
of the uremic fibers, cross sectional areas and sarcomere lengths were also found with
significant impairments while CSAs were smaller and sarcomere lengths larger
compared to controls. The smaller CSAs of uremic fibers indicated the presence of
atrophy in uremic muscle which could however only partly explain their lower forces,
as specific forces of uremic fibers were still depressed. Our results indicate
significant functional deficits of uremic muscle at the single fiber level independently
of fiber atrophy and further investigation is warranted to pinpoint the contributions of
possible changes in sarcomeric proteins to the evident functional deficit.

A significant functional deficit for uremic muscle at the single fiber level was
first revealed from their impaired capacity to generate maximal isometric force at
standard conditions, as compared to control fibers. Moreover, the significant force
deficit was evident also at the temperature of 30°C, an observation with high
physiological relevance. Uremic fibers demonstrated a significant and moderate

atrophy which could not fully account for the reduced specific forces. It is indicative
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that the specific force deficit of uremic fibers was approximately -28% at 30°C. The
significantly smaller CSA of uremic fibers could not thus account for the depressed
specific forces of uremic fibers we observed.

The specific force deficit of single uremic muscle fibers observed in our study
could indicate a reduced capacity of cross bridges to generate force or perhaps
possible disturbances on how generated force is transmitted across the sarcomeric
arrangements. Such changes could be the result of alterations in sarcomeric proteins
such as myosin which can be a target for posttranslational modifications that affect its
functional properties (Kay, 1978). An additional factor which may be implicated is
maybe the oxidative stress which is one of the biochemical repercussions of renal
insufficiency (Kaltsatou et al., 2015) and can act on its own or in combination with
other molecules to cause muscle dysfunction at multiple levels. Oxidative stress can
also affect function by promoting the formation of advanced glycation end products
(AGEs) (Miyata et al., 1997), which have been shown to affect myosin structural and
functional properties (Ramamurthy et al., 2001). As glycosylation is often observed in
renal disease (Thornalley, 2006) along with oxidative stress (Kaltsatou et al., 2015),
whether chronic oxidative stress in renal insufficiency may cause irreversible
structural modifications affecting the actomyosin interaction cannot be excluded and
should be investigated in the future.

Other factors, related to uremic toxicity effects may be also at play, either
promoting atrophy or affecting muscle properties. As CKD progresses, uremia
develops in parallel with the accumulation of related toxic waste products (Richet,
1988). These are implicated in the etiology of abnormal muscle function and fatigue
intolerance experienced by renal patients (Campistol, 2002; Davis et al., 1983) with

research so far indicating a multiple of candidates with a possible role (Vanholder et
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al., 2003, 2009). Not much is known about their possible direct role on skeletal
muscle function, however the so- called ‘uremic toxins’ (Vanholder et al., 2009)
could worsen oxidative stress and inflammation and hasten muscle loss and
mitochondrial dysfunction, thus contributing to the moderate atrophy observed in this
study as well as to further, hitherto undefined, changes in sarcomeric protein
properties.

Limitations in force generation under submaximal calcium activation can
significantly reduce muscle performance in daily life, especially if one considers the
functional impairment presented in CKD patients. It was found that in resting
conditions uremic fibers presented with lower calcium sensitivity compared to
controls at both 10°C and 30°C but the difference between fiber groups were more
evident at 30°C. In acidosis, uremic fibers presented again with lower calcium
sensitivity than controls. The decrease in calcium sensitivity in uremic fibers indicated
that more calcium was required in order to achieve the 50% of maximal isometric
force.

Calcium sensitivity depends mainly on the function of troponin-C (TNC)
protein which holds the regulatory calcium binding sites. However, other thin
filament proteins may also affect calcium sensitivity such as tropomyosin (TM)
(Schiaffino & Reggiani, 1996) and nebulin (Lee et al., 2013). Thick filament proteins
are also implicated since strong cross bridge attachment causes the stabilization of the
thin filament in a state with high Ca*" affinity (Schiaffino & Reggiani, 1996).
Moreover, the sarcomere length can affect calcium sensitivity (Stephenson &
Williams, 1982). Given that we have observed slightly longer sarcomere lengths in
uremic fibers (Research paper 3), despite these being at the optimal range for

isometric force production, we cannot exclude that part of our observations may also
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reflect differences in elastic forces maintaining the sarcomere length during
contraction. In addition to calcium sensitivity, in resting conditions, ny values
revealed a lower thin filament cooperativity for uremic fibers compared to controls
which was more intense at 30°C. The cooperativity which is reflected in ny values
depends on the thin filament proteins tropomyosin, troponin complex (TNC, TNT,
TNI), actin and myosin heads. All of the above need to act cooperatively for the
achievement of muscle contraction (Boussouf & Geeves, 2007) and even a small
degree of change in the ny value of the force-pCa relationship could have profound
implications. However it has been reported that ny has a descriptive role and should
not be overestimated (Walker et al., 2011). Thus, given present results we cannot
form safe conclusions regarding the effects of uremia on cooperativity of calcium
activation. From a functional point of view, loss of sensitivity to calcium as shown by
the present work could make an appreciable contribution to an overall disturbed
functional profile in CKD muscle.

We evaluated our samples’ response to a stretch protocol. Our stretch
activation measurements revealed an approx. 15% higher average t; value in uremic
fibers compared to controls. The stretch activation protocol used in this study, in
which a sudden lengthening (stretch) is imposed on a fully activated muscle cell that
contracts under isometric conditions, with the time from the beginning of the stretch
to the peak value of the delayed force increase shown by t; has been proposed to
primarily reflect cross bridge kinetics of force development (Galler et al., 1994).

Therefore our results could be explained by changes in cross bridge kinetics
due to some changes in myosin isoform properties of uremic fibers, with a shift to
slower myosin properties. Such change of properties could relate to either myosin

heavy chain alterations or myosin light chain changes. Other changes in sarcomeric
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proteins of uremic fibers could also occur. One site of interest would be at the
troponin-tropomyosin regulatory level considering that the delayed force increase
could be the result of problems in the displacement of tropomyosin segments (Linari,
Reedy, et al., 2004). Another site of interest would be however at the properties of
the giant protein, titin. Titin tends to bind to actin (Li et al., 1995) as it can occur with
their unfolding during stretching (Labeit et al., 2003). The latter possibility is re-
enforced by our observation of some laxity in baseline sarcomere lengths of uremic
fibers. In in vivo conditions, an appropriate response to a sudden stretch is crucial for
an efficacious and safe locomotion and one should consider the important role of fast-
twitch muscle in locomotion and the loss of this type due to ageing and/or disease
(Lexell, 1995). A possible impairment in the ability of a muscle to maintain its length
and respond to sudden stretches in CKD [where a preferentially atrophy of type Il
fibers has been reported (Sakkas, Ball, et al., 2003)] could lead to injury and falls.
Thus our results point to a weakened response of uremic muscle to sudden stretch
which should be further explored in future work.

We also examined whether uremic skeletal muscle fibers responded to an
acute load of oxidative stress (H,O,) and/or to reducing agent (DTT) similarly
compared to control fibers. Acute exposure to H,O, during activation did not affect
force but DTT caused significant force reductions only in uremic fibers indicating that
the initial redox status of uremic muscle is more in a reduced rather than oxidized
state. On the other hand, incubation with H,O, during relaxation reduced maximal
isometric forces in the Pooled of fibers (both control and uremic fibers), but not
submaximal force production, without differences between groups. Our results may
suggest that chronic renal insufficiency has not caused such modifications in uremic

muscle fibers such as to make them more susceptible to an acute exposure of an
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oxidizing agent. It seems however that uremic fibers may have started off at a more
reduced state than controls [considering reports on the upregulation of the Reduced
form of Glutathione (GSH) in uremic tissues]. Such redox modifications and their
functional consequences should be explored in the future.

In parallel with functional properties of single fibers we also assessed their
morphological characteristics. Uremic psoas fibers presented with significantly
smaller CSAs compared to controls by ~11%. In CKD patients, muscle weakness
may be partially explained by atrophy which has been reported to be exacerbated but
only partly explained by inactivity (Sakkas, Sargeant, et al., 2003a), pointing to a
disease specific effect, mainly presented in type Il fibers (Sakkas, Ball, et al., 2003;
Sawant et al., 2011). Our results support the notion that atrophy could start earlier
during the disease progress and could appreciably affect fast muscles which are
normally tasked to provide high levels of muscle power.

Furthermore, we observed that uremic fibers presented with 10% larger resting
sarcomere lengths compared to controls. Such alterations could reflect changes in
sarcomeric elastic proteins. Thus a titin-mediated mechanism could in part be
responsible for the overall repressed tension under stretch observed in uremic fibers
since resting sarcomere length is mainly regulated from the giant elastic protein titin
(Kontrogianni-Konstantopoulos et al., 2009).

This PhD thesis had many strengths but also some limitations that we have to
address. Despite implementing the same surgical approach, the biochemical responses
were somewhat variable which perhaps explains why the uremic fibers presented with
greater variability in force values than controls. Also, it was not possible to evaluate
all psoas fibers at 30°C since fibers often broke (or did not fulfill pre-set criteria upon

return to 10°C and were thus discarded). This is not surprising as exactly due to this
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known sensitivity of skinned fibers, researchers have developed such t-jump protocols
(Karatzaferi et al., 2004, 2008; Pate et al., 1995), while the majority of skinned single
fiber studies are performed at lower temperatures (e.g. 10°C-20°C) (Fitzsimons et al.,
2001; Gilliver et al., 2010; Mollica et al., 2012; Murphy et al., 2004; Reggiani et al.,
1997; Stienen et al., 1992; Sweeney et al., 1988). Additionally, fibers’ cross sectional
areas were calculated assuming a cylindrical and not an elliptical shape and this may
be why our baseline control force values were lower compared to other studies
(Coupland et al., 2005). Nevertheless, this happened in a systematic way in all single
fibers and could not affect the interpretation of our results, as for example our control
fibers’ response to the drop of pH was similar to what observed previously (Cooke et
al., 1988; Karatzaferi et al., 2003; Pate et al., 1995). Another weakness of our study
was that a ‘positive’ bias has been inadvertently introduced, due to the blind design,
as uremic fibers were in retrospect proven difficult to dissect and handle. l.e. the
fibers that withstood our handling were assessed but many more that could not be
handled were not assessed due to the bad quality of muscle tissue. Also, given some
standard criteria that have been used [e.g. (Karatzaferi et al., 2003; Liang et al., 2008)]
for force data quality, it later transpired that more uremic fibers were discarded than
controls. Thus, the ‘better’ fibers were measured by each round of assessments.

This thesis had also some important strengths, foremost, the employment of an
animal model of chronic renal disease, and not of acute kidney injury, which we
consider to induce realistically disease relevant modifications on muscle properties.
Moreover, as the model was representative of a pre-dialysis stage our results may hold
larger clinical relevance given the extent of ‘silent’ kidney disease among the general
population (Stenvinkel, 2010). Furthermore, we used the single fiber technique, which

allows forming conclusions about sarcomeric function by acutely isolating other
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factors such as muscle atrophy and excitation-contraction coupling issues. Another
fact that strengthens our observations is that we examined contractile properties of
samples in a blind fashion and that we used sham operated instead of purely control
animals, under controlled diet, in order to avoid differences in results due to the

different animal handling.
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CHAPTER 8: CONCLUSIONS & FUTURE DIRECTIONS

To the best of our knowledge this is the first study that examined the effect of chronic
renal insufficiency on the contractile properties of skeletal muscle. We used an animal
model mimicking CKD and found that chronic renal insufficiency induced significant
impairments in contractile properties of single muscle fibers.

Specifically, maximal isometric force and calcium sensitivity were found to be
lower in uremic muscle at standard and at near physiological temperatures, at rest and
acidosis. Furthermore, it appeared that uremia may induce a slowing of myosin head
cross-bridge kinetics but uremic fibers did not differ in their response to acute
exposure to an oxidizing agent and pH challenges. However the significant effect of a
reducing agent only in uremic fibers indicates that uremic muscle is more in a reduced
rather than oxidized state.

Overall, uremic fibers presented with atrophy which however could not fully
account for the observed force deficit. Moreover, sarcomere lengths were larger in
uremic muscle fibers compared to controls.

In conclusion, our results indicate significant functional deficits of uremic
muscle at the single fiber level independently of fiber atrophy and further
investigation is warranted to pinpoint the contributions of possible changes in
sarcomeric proteins to the evident functional deficit. However, we should also
consider that in the literature there is enough evidence suggesting that muscle function
in this clinical population is also inhibited by other factors such as neural dysfunction
(Adams & Vaziri, 2006). Therefore, considering that our study showed significant

deficiencies at the single fiber level one cannot exclude that other parameters may act
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alone or synergistically with the possible functional abnormalities at the sarcomeric

level leading patients to even worse functional profile than predicted by our data.

Several outstanding questions were revealed with this work:
- It is not yet clear whether chronic oxidative stress in renal insufficiency may cause
irreversible structural modifications affecting the actomyosin interaction. This

cannot be excluded and should be investigated in the future.

- Present results do not allow us to form safe conclusions regarding the effects of
uremia on cooperativity of calcium activation. From a functional point of view,
loss of sensitivity to calcium as shown by the present work could make an
appreciable contribution to an overall disturbed functional profile in CKD muscle.
Whether regulatory proteins are to blame or other mechanisms should be

investigated.

- Muscle dysfunction of the kind observed in CKD can lead to injury and falls. Our
results point to a weakened response of uremic muscle to sudden stretch which

should be further explored in future work.

- Lastly, it seems that uremic fibers may have a more reduced state than controls.
Such redox modifications and their functional consequences should be explored in

the future.

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



180

REFERENCES

Abraham, G., Varughese, S., Thandavan, T., lyengar, A., Fernando, E., Nagvi, S. A.
J.,, ... Kafle, R. K. (2016). Chronic kidney disease hotspots in developing
countries in South Asia. Clinical Kidney Journal, 9(1), 135-41.

Acevedo, L. M., Peralta-Ramirez, A., Ldpez, 1., Chamizo, V. E., Pineda, C.,
Rodriguez-Ortiz, M. E., ... Rivero, J.-L. L. (2015). Slow- and fast-twitch
hindlimb skeletal muscle phenotypes 12 wk after [ nephrectomy in Wistar rats
of both sexes. American Journal of Physiology. Renal Physiology, 309(7), F638—
F647.

Adams, G. R., & Vaziri, N. D. (2006). Skeletal muscle dysfunction in chronic renal
failure : effects of exercise. American Journal of Physiology. Renal Physiology,
4560, 753-761.

Aigner, S., Gohlsch, B., Hamalainen, N., Staron, R. S., Uber, A., Wehrle, U., & Pette,
D. (1993). Fast myosin heavy chain diversity in skeletal muscles of the rabbit:
heavy chain Ild, not IlIb predominates. European Journal of Biochemistry,
211(1-2), 367-372.

Alhaj, E., Alhaj, N., Rahman, I, Niazi, T. O., Berkowitz, R., & Klapholz, M. (2013).
Uremic cardiomyopathy: an underdiagnosed disease. Congestive Heart Failure,
19(4), E40-E45.

Allen, D. G., Lamb, G. D., & Westerblad, H. (2008). Skeletal muscle fatigue: cellular
mechanisms. Physiological Reviews, 88(1), 287-332.

Allen, D. G., & Trajanovska, S. (2012). The multiple roles of phosphate in muscle
fatigue. Frontiers in Physiology, 3(463), 1-8.

Anders, H.-J., & Schlondorff, D. (2000). Murine models of renal disease: possibilities
and problems in studies using mutant mice. Experimental Nephrology, 8(4-5),
181-193.

Andrade, F. H., Reid, M. B., Allen, D. G., & Westerblad, H. (1998). Effect of
hydrogen peroxide and dithiothreitol on contractile function of single skeletal
muscle fibres from the mouse. The Journal of Physiology, 509(2), 565-575.

Andruchova, O., Stephenson, G. M. M., Andruchov, O., Stephenson, D. G., & Galler,
S. (2006). Myosin heavy chain isoform composition and stretch activation
kinetics in single fibres of Xenopus laevis iliofibularis muscle. The Journal of
Physiology, 574(Pt 1), 307-317.

Asola, M., Virtanen, K., Nagren, K., Helin, S., Taittonen, M., Kastarinen, H., ...
Nuutila, P. (2008). Amino-acid-based peritoneal dialysis solution improves
amino-acid transport into skeletal muscle. Kidney International. Supplement,
73(108), S131-S136.

Balakrishnan, V. S., Rao, M., Menon, V., Gordon, P. L., Pilichowska, M., Castaneda,
F., & Castaneda-Sceppa, C. (2010). Resistance training increases muscle
mitochondrial biogenesis in patients with chronic kidney disease. Clinical
Journal of the American Society of Nephrology, 5(6), 996-1002.

Becker, G. J., & Hewitson, T. D. (2013). Animal models of chronic kidney disease:
useful but not perfect. Nephrology Dialysis Transplantation, 28(10), 2432-2438.
http://doi.org/10.1093/ndt/gft071

Berchtold, M. W., Brinkmeier, H., & Muntener, M. (2000). Calcium lon in Skeletal
Muscle: Its Crucial Role for Muscle Function, Plasticity, and Disease.
Physiological Reviews, 80(3), 1215-1265.

Blanchard, E. M., Pan, B. S., & Solaro, R. J. (1984). The effect of acidic pH on the

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



181

ATPase activity and troponin Ca2+ binding of rabbit skeletal myofilaments.
Journal of Biological Chemistry, 259(5), 3181-3186.

Boussouf, S. E., & Geeves, M. A. (2007). Tropomyosin and Troponin Cooperativity
on the Thin Filament. In Regulatory Mechanisms of Striated Muscle Contraction
(pp. 99-109). Tokyo: Springer Japan.

Brandt, P. W., Diamond, M. S., Rutchik, J. S., & Schachat, F. H. (1987). Co-operative
interactions between troponin-tropomyosin units extend the length of the thin
filament in skeletal muscle. Journal of Molecular Biology, 195(4), 885-896.

Brouns, R., & De Deyn, P. P. (2004). Neurological complications in renal failure: A
review. Clinical Neurology and Neurosurgery, 107(1), 1-16.

Calasans-Maia, M. D., Monteiro, M. L., Ascoli, F. O., & Granjeiro, J. M. (2009). The
rabbit as an animal model for experimental surgery. Acta Cirurgica Brasileira,
24(4), 325-328.

Campistol, J. M. (2002). Uremic myopathy. Kidney International, 62(5), 1901-1913.

Castaneda, C., Gordon, P. L., Leigh Uhlin, K., Levey, A. S., Kehayias, J. J., Dwyer, J.
T., ... Fiatarone Singh, M. (2001). Article Resistance Training To Counteract the
Catabolism of a Low-Protein Diet in Patients with Chronic Renal Insufficiency.
Annals of Internal Medicine, 135(11), 965-976.

Castaneda, C., Gordon, P. L., Parker, R. C., Uhlin, K. L., Roubenoff, R., & Levey, A.
S. (2004). Resistance Training to Reduce the Malnutrition-Inflammation
Complex Syndrome of Chronic Kidney Disease. American Journal of Kidney
Diseases, 43(4), 607-616.

Chase, P. B., & Kushmerick, M. J. (1988). Effects of pH on contraction of rabbit fast
and slow skeletal muscle fibers. Biophysical Journal, 53(6), 935-946.

Chikotas, N., Gunderman, A., & Oman, T. (2006). Uremic syndrome and end-stage
renal disease: Physical manifestations and beyond. Journal of the American
Academy of Nurse Practitioners, 18(5), 195-202.

Cooke, R. (2007). Modulation of the actomyosin interaction during fatigue of skeletal
muscle. Muscle and Nerve, 36(6), 756—777. http://doi.org/10.1002/mus.20891

Cooke, R., & Bialek, W. (1979). Contraction of glycerinated muscle fibers as a
function of the ATP concentration. Biophysical Journal, 28(2), 241-258.

Cooke, R., Franks, K., Luciani, G. B., & Pate, E. (1988). The inhibition of rabbit
skeletal muscle contraction by hydrogen ions and phosphate. The Journal of
Physiology, 395, 77-97.

Coppolino, G., Bolignano, D., Parisi, S., Aloisi, E., Romeo, A., Quartarone, A., &
Buemi, M. (2007). Experimental Therapies in Renal Replacement: The Effect of
Two Different Potassium Acetate-free Biofiltration Protocols on Striated Muscle
Fibers. Therapeutic Apheresis and Dialysis, 11(5), 375-381.

Coupland, M. E., Pinniger, G. J., & Ranatunga, K. W. (2005). Endothermic force
generation, temperature-jump experiments and effects of increased [MgADP] in
rabbit psoas muscle fibres. The Journal of Physiology, 567(Pt 2), 471-492.

Coupland, M. E., Puchert, E., & Ranatunga, K. W. (2001). Temperature dependence
of active tension in mammalian (rabbit psoas) muscle fibres: effect of inorganic
phosphate. The Journal of Physiology, 536(Pt 3), 879-891.

Crowe, A. V, McArdle, A., McArdle, F., Pattwell, D. M., Bell, G. M., Kemp, G. J,, ...
Jackson, M. J. (2007). Markers of oxidative stress in the skeletal muscle of
patients on haemodialysis. Nephrology, Dialysis, Transplantation, 22(4), 1177-
1183.

Cusumano, A. M., & Gonzélez Bedat, M. C. (2008). Chronic kidney disease in Latin
America: time to improve screening and detection. Clinical Journal of the

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



182

American Society of Nephrology : CJASN, 3(2), 594-600.

Davis, T. A, Karl, I. E., Goldberg, A. P., & Harter, H. R. (1983). Effects of exercise
training on muscle protein catabolism in uremia. Kidney International.
Supplement, 16, S52-S57.

Dawson, M. J., Gadian, D. G., & Wilkie, D. (1978). Muscular fatigue investigated by
phosphorus nuclear magnetic resonance. Nature, 274(5674), 861-866.

Debold, E. P. (2012). Recent insights into muscle fatigue at the cross-bridge level.
Frontiers in Physiology, 3(151), 1-14.

Debold, E. P., Longyear, T. J., & Turner, M. A. (2012). The effects of phosphate and
acidosis on regulated thin-filament velocity in an in vitro motility assay. Journal
of Applied Physiology (1985), 113(9), 1413-1422.

Degens, H., & Larsson, L. (2007). Application of skinned single muscle fibres to
determine myofilament function in ageing and disease. Journal of
Musculoskeletal Neuronal Interactions, 7(1), 56-61.

Diesel, W., Emms, M., Knight, B. K., Noakes, T. D., Swanepoel, C. R., van Zyl Smit,
R., ... Sinclair-Smith, C. C. (1993). Morphologic features of the myopathy
associated with chronic renal failure. American Journal of Kidney Diseases,
22(5), 677-684.

Dobbie, J. W. (1993). Peritoneal ultrastructure and changes with continuous
ambulatory peritoneal dialysis. Peritoneal Dialysis International, 13(Suppl 2),
S585-5587.

Drechsler, C., Pilz, S., Obermayer-Pietsch, B., Verduijn, M., Tomaschitz, A., Krane,
V., ... Wanner, C. (2010). Vitamin D deficiency is associated with sudden
cardiac death, combined cardiovascular events, and mortality in haemodialysis
patients. European Heart Journal, 31(18), 2253-61.

Ebashi, S., & Ohtsuki, I. (Eds.). (2007). Regulatory mechanisms of striated muscle
contraction. Kato Bunmeisha, Japan: Springer.

Edman, K. A., & Tsuchiya, T. (1996). Strain of passive elements during force
enhancement by stretch in frog muscle fibres. The Journal of Physiology, 490(1),
191-205.

Edwards, R. H. (1981). Human muscle function and fatigue. Ciba Foundation
Symposium, 82, 1-18.

Egan, B., & Zierath, J. R. (2013). Exercise metabolism and the molecular regulation
of skeletal muscle adaptation. Cell Metabolism, 17(2), 162-184.

Fabiato, A., & Fabiato, F. (1978). Effects of pH on the myofilaments and the
sarcoplasmic reticulum of skinned cells from cardiace and skeletal muscles. The
Journal of Physiology, 276, 233-255.

Fahal, I. H. (2014). Full Review Uraemic sarcopenia: aetiology and implications.
Nephrology Dialysis Transplantation, 29(9), 1655-1665.

Fahal, I. H., Bell, G. M., Bone, J. M., & Edwards, R. H. T. (1997). Physiological
abnormalities of skeletal muscle in dialysis patients. Nephrology Dialysis
Transplantation, 12(1), 119-127.

Fitts, R. H. (2008). The cross-bridge cycle and skeletal muscle fatigue. Journal of
Applied Physiology, 104(2), 551-558.

Fitts, R. H., McDonald, K. S., & Schluter, J. M. (1991). The determinants of skeletal
muscle force and power: Their adaptability with changes in activity pattern.
Journal of Biomechanics, 24(Suppl 1), 111-122.

Fitzsimons, D. P., Patel, J. R., Campbell, K. S., & Moss, R. L. (2001). Cooperative
mechanisms in the activation dependence of the rate of force development in
rabbit skinned skeletal muscle fibers. The Journal of General Physiology,

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



183

117(2), 133-148.

Floyd, M., Ayyar, D. R., Barwick, D. D., Hudgson, P., & Weightman, D. (1974).
Myopathy in chronic renal failure. The Quarterly Journal of Medicine, 43(172),
509-524.

Foley, R. N., Parfrey, P. S., Harnett, J. D., Kent, G. M., Martin, C. J., Murray, D. C.,
& Barre, P. E. (1995). Clinical and echocardiographic disease in patients starting
end-stage renal disease therapy. Kidney International, 47(1), 186-192.

Freda, B. J., Tang, W. W. H., Van Lente, F., Peacock, W. F., & Francis, G. S. (2002).
Cardiac troponins in renal insufficiency. Journal of the American College of
Cardiology, 40(12), 2065-2071.

Frontera, W. R., & Ochala, J. (2014). Skeletal Muscle: A Brief Review of Structure
and Function. Calcified Tissue International, 96(3), 183-195.

Fryer, M. W., Owen, V. J., Lamb, G. D., & Stephenson, D. G. (1995). Effects of
creatine phosphate and P(i) on Ca2+ movements and tension development in rat
skinned skeletal muscle fibres. The Journal of Physiology, 482(1), 123-140.

Galler, S., Hilber, K., & Pette, D. (1996). Force responses following stepwise length
changes of rat skeletal muscle fibre types. The Journal of Physiology, 493(1),
219-227.

Galler, S., Schmitt, T. L., & Pette, D. (1994). Stretch activation, unloaded shortening
velocity, and myosin heavy chain isoforms of rat skeletal muscle fibres. The
Journal of Physiology, 478 Pt 3, 513-521.

Geeves, M. A. (2016). Review: The ATPase mechanism of myosin and actomyosin.
Biopolymers, 105(8), 483-491.

Giannaki, C. D., Sakkas, G. K., Karatzaferi, C., Hadjigeorgiou, G. M., Lavdas, E.,
Liakopoulos, V., ... Stefanidis, I. (2011). Evidence of increased muscle atrophy
and impaired quality of life parameters in patients with uremic restless legs
syndrome. PloS One, 6(10), e25180.

Gilliver, S. F., Jones, D. A., Rittweger, J., & Degens, H. (2010). Effects of oxidation
on the power of chemically skinned rat soleus fibres. Journal of Musculoskeletal
Neuronal Interactions, 10(4), 267-273.

Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E., & Hsu, C. Y. (2004). Chronic
kidney disease and the risks of death, cardiovascular events, and hospitalization.
New England Journal of Medicine, 351(13), 1296-1305.

Gokal, R., Figueras, M., OIllé, A., Rovira, J., & Badia, X. (1999). Outcomes in
peritoneal dialysis and haemodialysis--a comparative assessment of survival and
quality of life. Nephrology, Dialysis, Transplantation, 14(Suppl 6), 24-30.

Gordon, A. M., Homsher, E., & Regnier, M. (2000). Regulation of contraction in
striated muscle. Physiological Reviews, 80(2), 853-924.

Gordon, P. L., Sakkas, G. K., Doyle, J. W., Shubert, T., & Johansen, K. L. (2007).
Relationship between vitamin D and muscle size and strength in patients on
hemodialysis. Journal of Renal Nutrition, 17(6), 397-407.

Gotloib, L., Crassweller, P., Rodella, H., Oreopoulos, D. G., Zellerman, G., Ogilvie,
R., ... Vas, S. (1982). Experimental model for studies of continuous
peritoneal’dialysis in uremic rabbits. Nephron, 31(3), 254-259.

Grams, M. E., Chow, E. K. H., Segev, D. L., & Coresh, J. (2013). Lifetime Incidence
of CKD Stages 3-5 in the United States Morgan. American Journal of Kidney
Diseases, 62(2), 245-252.

Greising, S. M., Gransee, H. M., Mantilla, C. B., & Sieck, G. C. (2013). Systems
biology of skeletal muscle: fiber type as an organizing principle. Wiley
Interdisciplinary Reviews: Systems Biology and Medicine, 4(5), 1-26.

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



184

Grigoriou, S. S., Karatzaferi, C., & Sakkas, G. K. (2015). Pharmacological and Non-
pharmacological Treatment Options for Depression and Depressive Symptoms in
Hemodialysis Patients. Health Psychology Research, 3(1811), 1-6.

Hé&maléinen, N., & Pette, D. (1993). The histochemical profiles of fast fiber types 11B,
1D, and IlA in skeletal muscles of mouse, rat, and rabbit. The Journal of
Histochemistry and Cytochemistry . Official Journal of the Histochemistry
Society, 41(5), 733-743.

Hensley, K., Robinson, K. A., Gabbita, S. P., Salsman, S., & Floyd, R. A. (2000).
Reactive oxygen species, cell signaling, and cell injury. Free Radical Biology &
Medicine, 28(10), 1456-1462.

Herzog, W. (Ed.). (2000). Skeletal muscle mechanics: From mechanisms to function.
West Sussex, UK: John Wiley & Sons, Ltd.

Hill, A. V. (1913). The Combinations of Haemoglobin with Oxygen and with Carbon
Monoxide. Biochemical Journal, 7(1), 471-480.

Horowits, R., Kempner, E. S., Bisher, M. E., & Podolsky, R. J. (1986). A
physiological role for titin and nebulin in skeletal muscle. Nature, 323(6084),
160-4.

Huang, Q. Q., Brozovich, F. V, & Jin, J. P. (1999). Fast skeletal muscle troponin T
increases the cooperativity of transgenic mouse cardiac muscle contraction. The
Journal of Physiology, 520(1), 231-242.

Huxley, A. F. (1957). Muscle structure and theories of contraction. Progress in
Biophysics and Biophysical Chemistry, 7, 255-318. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/13485191

Institute for Laboratory Animal Research. (2011). Guide for the Care and Use of
Laboratory Animals. National Academies Press (US).

Johansen, K. L. (2007). Exercise in the end-stage renal disease population. Journal of
the American Society of Nephrology : JASN, 18(6), 1845-1854.

Johansen, K. L. (2009). Anabolic and Catabolic Mechanisms in End-Stage Renal
Disease. Advances in Chronic Kidney Disease, 16(6), 501-510.

Johansen, K. L., Chertow, G. M., Jin, C., & Kutner, N. G. (2007). Significance of
frailty among dialysis patients. Journal of the American Society of Nephrology -
JASN, 18(11), 2960-2967.

Johansen, K. L., Doyle, J., Sakkas, G. K., & Kent-Braun, J. A. (2005). Neural and
metabolic mechanisms of excessive muscle fatigue in maintenance hemodialysis
patients. American Journal of Physiology. Regulatory, Integrative and
Comparative Physiology, 289(3), R805-R813.

Johansen, K. L., Kaysen, G. A., Dalrymple, L. S., Grimes, B. A., Glidden, D. V,
Anand, S., & Chertow, G. M. (2013). Association of physical activity with
survival among ambulatory patients on dialysis: the Comprehensive Dialysis
Study. Clinical Journal of the American Society of Nephrology : CJASN, 8(2),
248-53.

Johansen, K. L., Painter, P. L., Sakkas, G. K., Gordon, P., Doyle, J., & Shubert, T.
(2006). Effects of resistance exercise training and nandrolone decanoate on body
composition and muscle function among patients who receive hemodialysis: A
randomized, controlled trial. Journal of the American Society of Nephrology :
JASN, 17(8), 2307-14.

Johansen, K. L., Shubert, T., Doyle, J., Soher, B., Sakkas, G. K., & Kent-Braun, J. A.
(2003). Muscle atrophy in patients receiving hemodialysis: effects on muscle
strength, muscle quality, and physical function. Kidney International, 63(1),
291-297.

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



185

Jones, D. A. (1996). High-and low-frequency fatigue revisited. Acta Physiologica
Scandinavica, 156(3), 265-270.

Jourde-Chiche, N., Dou, L., Cerini, C., Dignat-George, F., & Brunet, P. (2011).
Vascular Incompetence in Dialysis Patients-Protein-Bound Uremic Toxins and
Endothelial Dysfunction. Seminars in Dialysis, 24(3), 327-337.

Kaltsatou, A., Sakkas, G. K., Poulianiti, K. P., Koutedakis, Y., Tepetes, K.,
Christodoulidis, G., ... Karatzaferi, C. (2015). Uremic myopathy: is oxidative
stress implicated in muscle dysfunction in uremia? Frontiers in Physiology,
6(102), 1-7.

Karatzaferi, C., Chinn, M. K., & Cooke, R. (2004). The force exerted by a muscle
cross-bridge depends directly on the strength of the actomyosin bond.
Biophysical Journal, 87(4), 2532-2544.

Karatzaferi, C., De Haan, A., Ferguson, R. A., Van Mechelen, W., & Sargeant, A. J.
(2001). Phosphocreatine and ATP content in human single muscle fibres before
and after maximum dynamic exercise. Pflugers Archiv European Journal of
Physiology, 442(3), 467-474.

Karatzaferi, C., de Haan, A., van Mechelen, W., & Sargeant, A. J. (2001). Metabolic
changes in single human fibres during brief maximal exercise. Experimental
Physiology, 86(3), 411-415.

Karatzaferi, C., Franks-Skiba, K., & Cooke, R. (2008). Inhibition of shortening
velocity of skinned skeletal muscle fibers in conditions that mimic fatigue.
American Journal of Physiology. Regulatory, Integrative and Comparative
Physiology, 294(3), R948-R955.

Karatzaferi, C., Geeves, M. A., & Mitrou, G. I. (2014). Observations on “uremic”
muscle: Effect of pH on mechanical performance [Abstract]. Journal of Muscle
Research and Cell Motility, 36, 139.

Karatzaferi, C., Myburgh, K. H., Chinn, M. K., Franks-Skiba, K., & Cooke, R.
(2003). Effect of an ADP analog on isometric force and ATPase activity of
active muscle fibers. American Journal of Physiology. Cell Physiology, 284(4),
C816-C825.

Kawai, M., & Zhao, Y. (1993). Cross-bridge scheme and force per cross-bridge state
in skinned rabbit psoas muscle fibers. Biophysical Journal, 65(2), 638-651.

Kay, J. (1978). Intracellular protein degradation. Biochemical Society Transactions,
6(4), 769-797.

Kontrogianni-Konstantopoulos, A., Ackermann, M. A., Bowman, A. L., Yap,S. V., &
Bloch, R. J. (2009). Muscle Giants: Molecular Scaffolds in Sarcomerogenesis.
Physiological Reviews, 89(4), 1217-1267.

Labeit, D., Watanabe, K., Witt, C., Fujita, H., Wu, Y., Lahmers, S., ... Granzier, H.
(2003). Calcium-dependent molecular spring elements in the giant protein titin.
Proceedings of the National Academy of Sciences of the United States of
America, 100(23), 13716-21.

Lamb, G. D., & Posterino, G. S. (2003). Effects of oxidation and reduction on
contractile function in skeletal muscle fibres of the rat. The Journal of
Physiology, 546(1), 149-163.

Lee, E. J., de Winter, J. M., Buck, D., Jasper, J. R., Malik, F. I., Labeit, S., ...
Granzier, H. (2013). Fast Skeletal Muscle Troponin Activation Increases Force
of Mouse Fast Skeletal Muscle and Ameliorates Weakness Due to Nebulin-
Deficiency. PLoS ONE, 8(2).

Levey, A. S., Eckardt, K.-U., Tsukamoto, Y., Levin, A., Coresh, J., Rossert, J., ...
Eknoyan, G. (2005). Definition and classification of chronic kidney disease: a

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



186

position statement from Kidney Disease: Improving Global Outcomes (KDIGO).
Kidney International, 67(6), 2089-2100.

Lewis, M. L., Fournier, M., Wang, H., Storer, T. W., Casaburi, R., Cohen, A. H., &
Kopple, J. D. (2012). Metabolic and morphometric profile of muscle fibers in
chronic hemodialysis patients. Journal of Applied Physiology (Bethesda, Md.:
1985), 112(1), 72-78.

Lexell, J. (1995). Human aging, muscle mass, and fiber type composition. The
Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 50
Spec No, 11-16.

Li, Q., Jin, J. P., & Granzier, H. L. (1995). The effect of genetically expressed cardiac
titin fragments on in vitro actin motility. Biophysical Journal, 69(4), 1508-1518.

Liang, B., Chung, F., Qu, Y., Pavlov, D., Gillis, T. E., Tikunova, S. B., ... Tibbits, G.
F. (2008). Familial hypertrophic cardiomyopathy-related cardiac troponin C
mutation L29Q affects Ca2+ binding and myofilament contractility.
Physiological Genomics, 33(2), 257-266.

Linari, M., Bottinelli, R., Pellegrino, M. A., Reconditi, M., Reggiani, C., & Lombardi,
V. (2004). The mechanism of the force response to stretch in human skinned
muscle fibres with different myosin isoforms. The Journal of Physiology, 554(2),
335-352.

Linari, M., Reedy, M. K., Reedy, M. C., Lombardi, V., & Piazzesi, G. (2004). Ca-
activation and stretch-activation in insect flight muscle. Biophysical Journal,
87(2), 1101-1111.

London, G. M. (2002). Left ventricular alterations and end-stage renal disease.
Nephrology, Dialysis, Transplantation, 17(Suppl 1), 29-36.

Lopez, J. R., Mijares, A., Rojas, B., Linares, N., Allen, P. D., & Shtifman, A. (2005).
Altered Ca2+ homeostasis in human uremic skeletal muscle: Possible
involvement of cCADPR in elevation of intracellular resting [Ca 2+]. Nephron -
Physiology, 100(4), 51-61.

Lu, Z., Swartz, D. R., Metzger, J. M., Moss, R. L., & Walker, J. W. (2001).
Regulation of force development studied by photolysis of caged ADP in rabbit
skinned psoas fibers. Biophysical Journal, 81(1), 334-344.

Lymn, R. W., & Taylor, E. W. (1971). Mechanism of adenosine triphosphate
hydrolysis by actomyosin. Biochemistry, 10(25), 4617-4624.

Ma, L. J., & Fogo, A. B. (2003). Model of robust induction of glomerulosclerosis in
mice: Importance of genetic background. Kidney International, 64(1), 350-355.

Ma, L. J., Nakamura, S., Aldigier, J. C., Rossini, M., Yang, H., Liang, X, ... Fogo, A.
B. (2005). Regression of glomerulosclerosis with high-dose angiotensin
inhibition is linked to decreased plasminogen activator inhibitor-1. Journal of the
American Society of Nephrology - JASN, 16(4), 966-976.

Maclntosh, B. R., Gardiner, P. F., & McComas, A. J. (2006). Skeletal muscle: Form
and function (2nd ed.). Champaign, IL: Human Kinetics.

Maclntosh, B. R., Holash, R. J., & Renaud, J.-M. (2012). Skeletal muscle fatigue--
regulation of excitation-contraction coupling to avoid metabolic catastrophe.
Journal of Cell Science, 125(9), 2105-2114.

Malavaki, C. J., Sakkas, G. K., Mitrou, G. I., Kalyva, A., Stefanidis, I., Myburgh, K.
H., & Karatzaferi, C. (2015). Skeletal muscle atrophy: disease-induced
mechanisms may mask disuse atrophy. Journal of Muscle Research and Cell
Motility, 36(6), 405-21.

Malisoux, L., Francaux, M., & Theisen, D. (2007). What do single-fiber studies tell us
about exercise training? Medicine and Science in Sports and Exercise, 39(7),

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



187

1051-1060.

Massy, Z. A., Stenvinkel, P., & Drueke, T. B. (2009). The role of oxidative stress in
chronic kidney disease. Seminars in Dialysis, 22(4), 405-408.

Mclintyre, C. W., Selby, N. M., Sigrist, M., Pearce, L. E., Mercer, T. H., & Naish, P.
F. (2006). Patients receiving maintenance dialysis have more severe functionally
significant skeletal muscle wasting than patients with dialysis-independent
chronic kidney disease. Nephrology Dialysis Transplantation, 21(8), 2210-2216.

Metzger, J. M., & Moss, R. L. (1987). Greater hydrogen ion-induced depression of
tension and velocity in skinned single fibres of rat fast than slow muscles.
Journal of Physiology, 393, 727-742.

Metzger, J. M., & Moss, R. L. (1990a). Effects on tension and stiffness due to reduced
pH in mammalian fast-and slow-twitch skinned skeletal muscle fibres. Journal of
Physiology, 428, 737-750.

Metzger, J. M., & Moss, R. L. (1990b). pH modulation of the kinetics of a Ca2+
sensitive cross- bridge state transition in mammalian single skeletal muscle
fibres. Journal of Physiology, 428, 751-764.

Miller, M. S., VanBuren, P., LeWinter, M. M., Braddock, J. M., Ades, P. A,
Maughan, D. W., ... Toth, M. J. (2010). Chronic heart failure decreases cross-
bridge kinetics in single skeletal muscle fibres from humans. The Journal of
Physiology, 588(20), 4039-4053.

Mitrou, G. ., Grigoriou, S. S., Konstantopoulou, E., Theofilou, P., Giannaki, C. D.,
Stefanidis, 1., ... Sakkas, G. K. (2013). Exercise training and depression in
ESRD: a review. Seminars in Dialysis, 26(5), 604-613.

Mitrou, G. I., Poulianiti, K. P., Stefanidis, 1., Tepetes, K., Christodoulidis, G.,
Koutedakis, Y., ... Karatzaferi, C. (2014). Observations on the effect of uremia
on isometric force [Abstract]. Journal of Muscle Research and Cell Motility, 35,
140.

Miyata, T., Wada, Y., Cai, Z., lida, Y., Horie, K., Yasuda, Y., ... van Ypersele de
Strihou, C. (1997). Implication of an increased oxidative stress in the formation
of advanced glycation end products in patients with end-stage renal failure.
Kidney International, 51, 1170-1181.

Mgller, P., Wallin, H., & Knudsen, L. E. (1996). Oxidative stress associated with
exercise, psychological stress and life-style factors. Chemico-Biological
Interactions, 102(1), 17-36.

Mollica, J. P., Dutka, T. L., Merry, T. L., Lamboley, C. R., McConell, G. K.,
McKenna, M. J., ... Lamb, G. D. (2012). S-glutathionylation of troponin | (fast)
increases contractile apparatus Ca2+ sensitivity in fast-twitch muscle fibres of
rats and humans. The Journal of Physiology, 590(6), 1443-1463.

Molsted, S., Andersen, J. L., Eidemak, I., Harrison, A. P., & Jargensen, N. (2014).
Resistance training and testosterone levels in male patients with chronic kidney
disease undergoing dialysis. BioMed Research International, 2014, 1-7.

Molsted, S., Andersen, J. L., Harrison, A. P., Eidemak, I., & Mackey, A. L. (2015).
Fiber type-specific response of skeletal muscle satellite cells to high-intensity
resistance training in dialysis patients. Muscle & Nerve, 52(5), 736-45.

Molsted, S., Eidemak, I., Sorensen, H. T., Kristensen, J. H., Harrison, A., &
Andersen, J. L. (2007). Myosin heavy-chain isoform distribution, fibre-type
composition and fibre size in skeletal muscle of patients on haemodialysis.
Scandinavian Journal of Urology and Nephrology, 41(6), 539-45.

Molsted, S., Eiken, P., Andersen, J. L., Eidemak, I., & Harrison, A. P. (2014).
Interleukin-6 and vitamin D status during high-intensity resistance training in

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



188

patients with chronic kidney disease. BioMed Research International, 2014,
176190.

Moore, G. E., Bertocci, L. A., & Painter, P. L. (1993). 31P-magnetic resonance
spectroscopy assessment of subnormal oxidative metabolism in skeletal muscle
of renal failure patients. The Journal of Clinical Investigation, 91(2), 420-424.

Morimoto, S., & Ohtsuki, 1. (1994). Role of troponin C in determining the Ca(2+)-
sensitivity and cooperativity of the tension development in rabbit skeletal and
cardiac muscles. Journal of Biochemistry, 115(1), 144-146.

Moss, R. L., Lauer, M. R., Giulian, G. G., & Greaser, M. L. (1986). Altered Ca2+
dependence of tension development in skinned skeletal muscle fibers following
modification of troponin by partial substitution with cardiac troponin C. Journal
of Biological Chemistry, 261(13), 6096—6099.

Murphy, R. M., Dutka, T. L., & Lamb, G. D. (2008). Hydroxyl radical and
glutathione interactions alter calcium sensitivity and maximum force of the
contractile apparatus in rat skeletal muscle fibres. The Journal of Physiology,
586(8), 2203-2216.

Murphy, R. M., Stephenson, D. G., & Lamb, G. D. (2004). Effect of creatine on
contractile force and sensitivity in mechanically skinned single fibers from rat
skeletal muscle. American Journal of Physiology. Cell Physiology, 287(6),
C1589-C1595.

Nelson, C. R., & Fitts, R. H. (2014). Effects of low cell pH and elevated inorganic
phosphate on the pCa-force relationship in single muscle fibers at near-
physiological temperatures. American Journal of Physiology. Cell Physiology,
306(7), C670-C678.

Ochala, J., Dorer, D. J., Frontera, W. R., & Krivickas, L. S. (2006). Single skeletal
muscle fiber behavior after a quick stretch in young and older men: A possible
explanation of the relative preservation of eccentric force in old age. Pflugers
Archiv European Journal of Physiology, 452(4), 464-470.

Ochala, J., & Larsson, L. (2008). Effects of a preferential myosin loss on Ca2+
activation of force generation in single human skeletal muscle fibres.
Experimental Physiology, 93(4), 486—-495.

Oreopoulos, A. K., Balaskas, E. V, Rodela, H., Anderson, G. H., & Oreopoulos, D. G.
(1993). An animal model for the study of amino acid metabolism in uremia and
during peritoneal dialysis. Peritoneal Dialysis International : Journal of the
International Society for Peritoneal Dialysis, 13(Suppl 2), S499-S507.

Organ, J. M., Srisuwananukorn, A., Price, P., Joll, J. E., Biro, K. C., Rupert, J. E., ...
Allen, M. R. (2016). Reduced skeletal muscle function is associated with
decreased fiber cross-sectional area in the Cy/+ rat model of progressive kidney
disease. Nephrology, Dialysis, Transplantation, 31(2), 223-230.

Ortiz, A., Covic, A., Fliser, D., Fouque, D., Goldsmith, D., Kanbay, M., ... London,
G. M. (2014). Epidemiology, contributors to, and clinical trials of mortality risk
in chronic kidney failure. The Lancet, 383(9931), 1831-1843.

Painter, P. (1994). The importance of exercise training in rehabilitation of patients
with end-stage renal disease. American Journal of Kidney Diseases, 24(1 Suppl
1), S2-9-2.

Painter, P. (2009). Determinants of Exercise Capacity in CKD Patients Treated With
Hemodialysis. Advances in Chronic Kidney Disease, 16(6), 437-448.

Palmer, S., & Kentish, J. C. (1994). The role of troponin C in modulating the Ca2+
sensitivity of mammalian skinned cardiac and skeletal muscle fibres. The
Journal of Physiology, 480(1), 45-60.

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



189

Pate, E., Bhimani, M., Franks-Skiba, K., & Cooke, R. (1995). Reduced effect of pH
on skinned rabbit psoas muscle mechanics at high temperatures: implications for
fatigue. The Journal of Physiology, 486(3), 689-694.

Pate, E., & Cooke, R. (1989). Addition of phosphate to active muscle fibers probes
actomyosin states within the powerstroke. Pflugers Arch : European Journal of
Physiology, 414(1), 73-81.

Paterson, P. G., & Juurlink, B. H. (1999). Nutritional regulation of glutathione in
stroke. Neurotoxicity Research, 1(2), 99-112. Retrieved from

Pecoits-Filho, R., Bucharles, S., & Barberato, S. H. (2012). Diastolic heart failure in
dialysis patients: mechanisms, diagnostic approach, and treatment. Seminars in
Dialysis, 25(1), 35-41.

Pereira, R. A., Cordeiro, A. C., Avesani, C. M., Carrero, J. J., Lindholm, B., Amparo,
F. C., ... Kamimura, M. A. (2015). Sarcopenia in chronic kidney disease on
conservative therapy: prevalence and association with mortality. Nephrology,
Dialysis, Transplantation, 30(10), 1718-1725.

Poulianiti, K. P., Kaltsatou, A., Karioti, A., Jamurtas, A., Stefanidis, 1., Tepetes, K.,
... Karatzaferi, C. (2015). Systemic and Muscle Specific Redox and Biochemical
Status in Chronic Kidney Disease [Abstract]. Journal of Muscle Research and
Cell Motility, 36, 558.

Powers, S. K., Ji, L. L., Kavazis, A. N., & Jackson, M. J. (2011). Reactive Oxygen
Species: Impact on Skeletal Muscle. Comprehensive Physiology, 1(2), 941-9609.

Prochniewicz, E., Lowe, D. A., Spakowicz, D. J., Higgins, L., Conor, K. O,
Thompson, L. V, ... Thomas, D. D. (2008). Functional , structural , and chemical
changes in myosin associated with hydrogen peroxide treatment of skeletal
muscle fibers. American Journal of Physiology. Cell Physiology, 294(2), C613-
C626.

Prochniewicz, E., Spakowicz, D., & Thomas, D. D. (2008). Changes in actin
structural transitions associated with oxidative inhibition of muscle contraction.
Biochemistry, 47(45), 11811-11817.

Raj, D. S. C., Dominic, E. a., Pai, A., Osman, F., Morgan, M., Pickett, G., ...
Moseley, P. (2005). Skeletal muscle, cytokines, and oxidative stress in end-stage
renal disease. Kidney International, 68(5), 2338-2344. h

Ramamurthy, B., HO0k, P., Jones, a D., & Larsson, L. (2001). Changes in myosin
structure and function in response to glycation. FASEB Journal, 15(13), 2415-
2422.

Ramamurthy, B., Jones, a D., & Larsson, L. (2003). Glutathione reverses early
effects of glycation on myosin function. American Journal of Physiology - Cell
Physiology, 285(2), C419-C424.

Ranatunga, K. W. (2010). Force and power generating mechanism(s) in active
muscle as revealed from temperature perturbation studies. The Journal of
Physiology, 588(19), 3657-3670.

Reggiani, C., Potma, E. J., Bottinelli, R., Canepari, M., Pellegrino, M. A., & Stienen,
G. J. M. (1997). Chemo-mechanical energy transduction in relation to myosin
isoform composition in skeletal muscle fibres of the rat. Journal of Physiology,
502(2), 449-460.

Richet, G. (1988). Early history of uremia. Kidney International, 33(5), 1013-1015.

Rigatto, C., & Parfrey, P. S. (2001). Uraemic cardiomyopathy: An overload
cardiomyopathy. Journal of Clinical and Basic Cardiology, 4(2), 93-95.

Sahni, N., Gupta, K. L., Rana, S. V, Prasad, R., & Bhalla, A. K. (2012). Intake of
antioxidants and their status in chronic kidney disease patients. Journal of Renal

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



190

Nutrition, 22(4), 389-399.

Sakkas, G. K., Ball, D., Mercer, T. H., Sargeant, A. J., Tolfrey, K., & Naish, P. F.
(2003). Atrophy of non-locomotor muscle in patients with end-stage renal
failure. Nephrology, Dialysis, Transplantation, 18(10), 2074-2081.

Sakkas, G. K., Ball, D., Sargeant, A. J., Mercer, T. H., Koufaki, P., & Naish, P. F.
(2004). Skeletal muscle morphology and capillarization of renal failure patients
receiving different dialysis therapies. Clinical Science (London), 107(6), 617-
623.

Sakkas, G. K., Hadjigeorgiou, G. M., Karatzaferi, C., Maridaki, M. D., Giannaki, C.
D., Mertens, P. R., ... Stefanidis, 1. (2008). Intradialytic aerobic exercise training
ameliorates symptoms of restless legs syndrome and improves functional
capacity in patients on hemodialysis: a pilot study. ASAIO Journal, 54(2), 185—
190.

Sakkas, G. K., Karatzaferi, C., Zintzaras, E., Giannaki, C. D., Liakopoulos, V.,
Lavdas, E., ... Stefanidis, 1. (2008). Liver fat, visceral adiposity, and sleep
disturbances contribute to the development of insulin resistance and glucose
intolerance in nondiabetic dialysis patients. American Journal of Physiology.
Regulatory, Integrative and Comparative Physiology, 295(6), R1721-R1729.

Sakkas, G. K., Sargeant, A. J., Mercer, T. H., Ball, D., Koufaki, P., Karatzaferi, C., &
Naish, P. F. (2003a). Changes in muscle morphology in dialysis patients after 6
months of aerobic exercise training. Nephrology Dialysis Transplantation,
18(10), 1854-1861.

Sakkas, G. K., Sargeant, A. J., Mercer, T. H., Ball, D., Koufaki, P., Karatzaferi, C., &
Naish, P. F. (2003b). Changes in muscle morphology in dialysis patients after 6
months of aerobic exercise training. Nephrology Dialysis Transplantation, 18(9),
1854-1861.

Sawant, A., Garland, S. J., House, A. A., & Overend, T. J. (2011). Morphological,
electrophysiological, and metabolic characteristics of skeletal muscle in people
with end-stage renal disease: A critical review. Physiotherapy Canada, 63(3),
355-376.

Schiaffino, S., & Reggiani, C. (1996). Molecular diversity of myofibrillar proteins:
gene regulation and functional significance. Physiological Reviews, 76(2), 371—
423.

Shah, V. O., Dominic, E. a., Moseley, P., Pickett, G., Fleet, M., Ness, S., & Raj, D. S.
C. (2006). Hemodialysis Modulates Gene Expression Profile in Skeletal Muscle.
American Journal of Kidney Diseases, 48(4), 616—628.

Silberberg, J. S., Rahal, D. P., Patton, D. R., & Sniderman, A. D. (1989). Role of
anemia in the pathogenesis of left ventricular hypertrophy in end-stage renal
disease. The American Journal of Cardiology, 64(3), 222-224.

Silverthorn, D. U. (2004). Human physiology: An integrated approach (3rd ed.). San
Francisco, SA: Benjamin Cummings.

Spencer, T., & Posterino, G. S. (2009). Sequential effects of GSNO and H202 on the
Ca2+ sensitivity of the contractile apparatus of fast- and slow-twitch skeletal
muscle fibers from the rat. American Journal of Physiology. Cell Physiology,
296(5), C1015-C1023.

Spiro, R. G. (2002). Protein glycosylation: nature, distribution, enzymatic formation,
and disease implications of glycopeptide bonds. Glycobiology, 12(4), 43R-56R.

Stenvinkel, P. (2010). Chronic kidney disease: a public health priority and harbinger
of premature cardiovascular disease. Journal of Internal Medicine, 268(5), 456—
467.

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



191

Stephenson, D. G., & Williams, D. A. (1982). Effects of sarcomere length on the
force-pCa relation in fast- and slow-twitch skinned muscle fibres from the rat.
The Journal of Physiology, 333, 637-653.

Stienen, G. J., Versteeg, P. G., Papp, Z., & Elzinga, G. (1992). Mechanical properties
of skinned rabbit psoas and soleus muscle fibres during lengthening: effects of
phosphate and Ca2+. The Journal of Physiology, 451, 503-523.

Sweeney, H. L., Kushmerick, M. J., Mabuchi, K., Sréter, F. A., & Gergely, J. (1988).
Myosin alkali light chain and heavy chain variations correlate with altered
shortening velocity of isolated skeletal muscle fibers. The Journal of Biological
Chemistry, 263(18), 9034-9039.

Szent-Gyorgyi, A. G. (2004). The early history of the biochemistry of muscle
contraction. The Journal of General Physiology, 123(6), 631-641.

Thompson, C. H., Kemp, G. J., Barnes, P. R., Rajagopalan, B., Styles, P., Taylor, D.
J., & Radda, G. K. (1994). Uraemic muscle metabolism at rest and during
exercise. Nephrology, Dialysis, Transplantation, 9(11), 1600-1605.

Thornalley, P. J. (2006). Advanced Glycation End Products in Renal Failure. Journal
of Renal Nutrition, 16(3), 178-184.

Thornalley, P. J., & Rabbani, N. (2009). Highlights and hotspots of protein glycation
in end-stage renal disease. Seminars in Dialysis, 22(4), 400-404.

Tonelli, M. (2006). Chronic Kidney Disease and Mortality Risk: A Systematic
Review. Journal of the American Society of Nephrology, 17(7), 2034-2047.
Toth, M. J., Miller, M. S., VanBuren, P., Bedrin, N. G., LeWinter, M. M., Ades, P.
A., & Palmer, B. M. (2012). Resistance training alters skeletal muscle structure
and function in human heart failure: effects at the tissue, cellular and molecular

levels. The Journal of Physiology, 590(5), 1243-1259.

Umazume, Y., Onodera, S., & Higuchi, H. (1986). Width and lattice spacing in
radially compressed frog skinned muscle fibres at various pH values, magnesium
ion concentrations and ionic strengths. Journal of Muscle Research and Cell
Motility, 7(3), 251-258.

van Hees, H. W. H., Andrade Acufia, G., Linkels, M., Dekhuijzen, P. N. R., &
Heunks, L. M. A. (2011). Levosimendan improves calcium sensitivity of
diaphragm muscle fibres from a rat model of heart failure. British Journal of
Pharmacology, 162(3), 566-573.

van Hees, H. W. H., Dekhuijzen, P. N. R., & Heunks, L. M. A. (2009). Levosimendan
enhances force generation of diaphragm muscle from patients with chronic
obstructive pulmonary disease. American Journal of Respiratory and Critical
Care Medicine, 179(1), 41-47.

Vanholder, R., Abou-Deif, O., Argiles, A., Baurmeister, U., Beige, J., Brouckaert, P.,
... Wiecek, A. (2009). Progress in uremic toxin research: The Role of EUTox in
Uremic Toxin Research. Seminars in Dialysis, 22(4), 323-328.

Vanholder, R., De Smet, R., Glorieux, G., Argilés, A., Baurmeister, U., Brunet, P., ...
Zidek, W. (2003). Review on uremic toxins: Classification, concentration, and
interindividual variability. Kidney International, 63(5), 1934-1943.

Vinogradova, M. V, Stone, D. B., Malanina, G. G., Karatzaferi, C., Cooke, R.,
Mendelson, R. A., & Fletterick, R. J. (2005). Ca(2+)-regulated structural changes
in troponin. Proceedings of the National Academy of Sciences of the United
States of America, 102(14), 5038-5043.

Wagner, P. D., Masanés, F., Wagner, H., Sala, E., Miro, O., Campistol, J. M., ...
Roca, J. (2001). Muscle angiogenic growth factor gene responses to exercise in
chronic renal failure. American Journal of Physiology. Regulatory, Integrative

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



192

and Comparative Physiology, 281(2), R539-R546. Retrieved from

Walker, J. S., Li, X., & Buttrick, P. M. (2011). Analyzing force-pCa curves. J Muscle
Res Cell Motil, 31(1), 59-69.

Wang, H.-L., Ding, T.-T., Lu, S., Xu, Y., Tian, J., Hu, W.-F., & Zhang, J.-Y. (2013).
Muscle mass loss and intermuscular lipid accumulation were associated with
insulin resistance in patients receiving hemodialysis. Chinese Medical Journal,
126(24), 4612-4617.

Wang, T., Heimbirger, O., Cheng, H.-H., Waniewski, J., Bergstrom, J., & Lindholm,
B. (1997). Effect of increased dialysate fill volume on peritoneal fluid and solute
transport. Kidney International, 52(4), 1068-1076.

Westerblad, H., Bruton, J. D., & Katz, A. (2010). Skeletal muscle: Energy
metabolism, fiber types, fatigue and adaptability. Experimental Cell Research,
316(18), 3093-3099.

Westerblad, H., Bruton, J. D., & Lannergren, J. (1997). The effect of intracellular pH
on contractile function of intact, single fibres of mouse muscle declines with
increasing temperature. The Journal of Physiology, 500(1), 193-204.

Wilmore, J. H., & Costill, D. L. (1994). Physiology of sport and exercise. Champain,
IL: Human Kinetics.

Wolfe, R. R. (2006). The underappreciated role of muscle in health and disease. The
American Journal of Clinical Nutrition, 84(3), 475-482.

Yang, H.-C., Zuo, Y., & Fogo, A. B. (2010). Models of chronic kidney disease. Drug
Discov Today Dis Models, 7(1-2), 13-19.

Z’Graggen, W. J., Aregger, F., Farese, S., Humm, a M., Baumann, C., Uehlinger, D.
E., & Bostock, H. (2010). Velocity recovery cycles of human muscle action
potentials in chronic renal failure. Clinical Neurophysiology, 121(6), 874-881.

Zoccali, C., Kramer, A., & Jager, K. J. (2010). Epidemiology of CKD in Europe: An
uncertain scenario. Nephrology Dialysis Transplantation, 25(6), 1731-1733.

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



193

APPENDIXES

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



194

Appendix 1: Bioethics Approval

MANEMIZTHMIO OEZZAANIAZ
TMHMA EMIETHMHEI ®YIIKHI AFQrHI KAl AOAHTIZMOY

Eowrtepikry EmiTpotrr] Acovtohoyiag

Tpikaha: 10/10/2012
ApiBu. Mpwr.: 630

Aimon E&éraong e mporaong yia Siefaywyn ‘Epeuvag pe titho:
«Mnyavioyol g puiknc Aemoupyiag: H emidpaon g oupaipias oty poppooyia, Tov PeTaBoMous kal Ty
avoyr oV KoTwan»

Emotnpovikwe umreuBuvn / empBAémovoa: Ap. Xpiotiva Kaparlagépn
1B16TnTa: Emikoupn KaBnyhrpia, NO

1Bpupa: Navemompio Begoakiag

Tufpa: Tuqua Emoriung Puoikrg Aywyrg kal ABAnTapod

Kopia epeuviTpia | gormitpia: Mewpyla MriTpou

Mpoypappa Zroudwy: AiGakTopikoc KUKAOS amoudav

1Bpupa: Navemompio Occoakiag

Tunpa: Tuqua Emoriung Quoiknic Aywyns kal ABAnTiapod

H mwpoTeaivopevn épeuva Ba eivan:

EpeuvnTikd poypappa X Metamruyiakd Sarpip O Ammhwpanixn epyacio O AiBaxTopikr épeuva X

TnA. emkoivwyviag: 6948 176 157
Email emkoivwyviag: geomi_@hotmail.com

H Ecwrtepikri EmTpoTt) Acovrohoyiag Tou T.E.®.AA., Navemomuiov @cooaliag HeTa TNV
utr. ApiBu. 2-1/10-10-2012 ouvedpiacr) TNg eykpiver T BiEEaywyr] TNS TTPOTEIVOHEVIG

EpPEUVTC.

O MNpodedpog TG
Eowrtepikriic EmTpoTric
Acovtohoyiag — TEDAA

Towokavog ABavaoiog
Avatthnpwrrig Kabnynmig
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Appendix 2: Copyright Statement

Y1euBuvn ARAwaon
H kdtwbt umoyeypapuévn lewpyio Mrtpov pe AEM 17/2011, J100KTOPIKN
goitiTpla Tou Tpnuato¢ Emotiung Puoikng Aywync kot ABANTIOUoL Tou
TpoypappoToc "Acknaon Kail Yyeia’.
ONAWVW UTIELBUVO OTI ATOGEXOMOI TOUC TIAPAKATW GPOLCE TIOL APOPOLV

(0) oto TVELPOTIKA dIKOlWUATA TNG AIdAKTOPIKNAC dIaTPIBC POU HE TIiTAO
«Mnyxaviouoi NG YUTKAG Asttoupyiag: H emidpacn tng ovpaipiag atnv pop@eoAoyia,
TOV YETABOAIOUO KOl TNV AVOXH TNV KOTIWGOT)».

(B) otn dlaxeipon TWV EPELYVNTIKWY OEAOUEVWVY TTOU B GUAAEEW TNV TopEia
EKTIOVNONC TNG:

1. Ta TVELPATIKA JIKOIWUATO TOU TOWOU TNG METOMTUXIOKAC 1 O100KTOPIKNAG
dlatpIfig mou Ba mpokLYel Ba avikouv O€ pEva. Oa 0KOAOUBNOoW TIC 0ONnyieq
OLYYPAQAG, EKTUTWONG Kal KOTaBeong avTITUMWV TN¢ Ol0TPIBAC oTa avdioya
anoBetnpla (o€ EVTUTIN /KO OE NAEKTPOVIKI) HOPON).

2. H diaxeipion twv 6edopévwv TN SI0TPIPNC AVNKEL OO KOIVOU O€ EUEVO KOl
oTov/aTnV KOpIo EMIPBAETOVTA -0uoa KaBNyNnTh -TpIa.
3. OmolodnMoTe €MOTNUOVIKY dnuocicuon 1 avokoivwan (avaptnuévn N

TIPOQOPIKN), 1] OVAPOPA TIOU TIPOEPXETAL OTIO TO UAIKO/dEd0OPEVA TNE EPYATIaC QUTHC
Ba yivetal pe ouyypageic epeva tov id1o, Tov/TNV KUPLo-0 EMPBAETOVTA -0Vad /KOl
GAAOUC €peLVNTEC (TIX MEAN TNC TPIMEAOVLG OUUBOULAEUTIKAC EMITPOTAG, CUVEPYATEC
KATD), QvGAOyo YE Tr GUMPBOAN TOUC OTNV €PELVA KAl OTN GLUYYPAPH TWV EPELVNTIKWV
EPYOOIWV.

4, H og1ipd TV OVOPOTWV OTIC EMIOTNMOVIKEC ONMOCIEVCEIC 1) EMIOTNMOVIKEC
avoKOIVWOEIC Ba amo@aciletal amd Kool Omo EPEVA Kol TOv/Tnv KOPIO -O
eMPBAEMOVTA -0UCN TNE EPYOTiag, TPV apxioel n ekmovnor) ¢ H andéeaon auvtr Ba
ToTomoINBEl eyypa@w¢ HETagd POV Kal Tou/TNG KUPIOL-0G EMIPAETOVTOC -0LCAC.
TéNOC, dnAwvVw OTI yvwpilw TOLC KavoveC Tepi OgovtoAoyiag Kol Tepi
AOYOKAOTING KO TIVEUUOTIKNG 1810KTNOia¢ Kal 0Tt 6a TOug TNPW OMOPEYKAITA
KaB’ OAn tn Ol0pKeEld TNG @oitnong Kol KAALWNG TwV EKTOIOEVTIKWY
UTIOXPEWOEWV POV TIOU TIPOKUTITOUV OO To MMZ/Tuiua Kot Ko’ 6An tn didpKeLa
TV d1adIKOCIWV dnuoaicuong mov Ba TPOKOYOLV PETA TNV 0AOKANPWON TWV
OTIOLAWV HOU.

20/10/2012
H dnAoloa
ewpyia Mrtpou

Institutional Repository - Library & Information Centre - University of Thessaly
18/05/2024 19:20:54 EEST - 3.144.98.4



196

Appendix 3: Rabbit diet

D30006 and D07122101
Low Phytoestrogen Rabbit Diet and Same With Lower Protein, Potassium,
Calcium,Phosphorus, and Sodium

Product # D30006 D07122101
gm%  kcal% gm% kcal%
Protein 17.8 22 8.9 11
Carbohydrate 55.0 68 63.6 79
Fat 35 10 3.5 10
Total 100 100
kcal/gm 3.23 3.21
Ingredient gm kcal gm kcal
Casein, 30 Mesh 175 700 87.5 350
DL-Methionine 3 12 1.5 6
Corn Starch 390 1560 459 1836
MaltoDextrin 10 25 100 25 100
Sucrose 125 500 145 580
Cellulose, BW200 150 0 150 0
Inulin 25 0 25 0
Soybean Oil 35 315 35 315
Mineral Mix S30003 60 0 0 0
Mineral Mix S39102 0 0 60 0
Vitamin Mix V30002 10 40 10 40
Choline Bitartrate 2 0 2 0
Sodium Bicarbonate 0 0 4 0
Total 1000 3227 1004 3227
am%
Potassium 1.0 0.25
Calcium 0.8 0.4
Phosphorus 0.5 0.126
Sodium 0.2 0.2
Chloride 0.3 0.2
Iron 0.01 0.01

Formulated by E.A. Ulman, Ph.D., Research Diets, Inc., 7/9/01.
Using purified ingredients, this diet matches Purina 5321.1t is very low in phytoestrogens.
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