

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΠΜΣ «Μεθοδολογία Βιοϊατρικής Έρευνας,

Βιοστατιστική και Κλινική Βιοπληροφορική»

Develop software in Python for performing Independent t-test and One-way ANOVA with post hoc test considering the Bonferroni's adjustment.

by

Boltsi Aggeliki

(August, 2015)

Supervisor: Axel Kowald

Evaluators: Elias Zintzaras, George Rachiotis

Abstract

The independent t-test, also called the two sample t-test, is a statistical test that determines whether there is a statistically significant difference between the means in two unrelated groups. The independent-samples t test is commonly referred to as a between-groups design, and can also be used to analyze a control and experimental group. With an independent-samples t test, each case must have values on two variables, the grouping (independent) variable and the test (dependent) variable. The grouping variable divides cases into two mutually exclusive groups or categories, such as boys or girls for the grouping variable gender, while the test variable describes each case on some quantitative dimension such as test performance. The t test evaluates whether the mean value of the test variable (e.g., test performance) for one group (e.g., boys) differs significantly from the mean value of the test variable for the second group (e.g., girls).

The one-way analysis of variance (ANOVA) is used to determine whether there are any significant differences between the means of two or more independent (unrelated) groups. For example, you could use a one-way ANOVA to understand whether exam performance differed based on test anxiety levels amongst students, dividing students into three independent groups (e.g., low, medium and high-stressed students). Also, it is important to realize that the one-way ANOVA is an *omnibus* test statistic and cannot tell you which specific groups were significantly different from each other; it only tells you that at least two groups were different. Since you may have three, four, five or more groups in your study design, determining which of these groups differ from each other is important. You can do this using a post-hoc test.

Post hoc tests are designed for situations in which the researcher has already obtained a significant omnibus F-test with a factor that consists of three or more means and additional exploration of the differences among means is needed to provide specific information on which means are significantly different from each other. We do individual comparisons between groups, e.g.: To compare a group with the group b, using the t-test and adjust the sig values with a Bonferroni adjustment. For Bonferroni adjustment the p value (which must be achieved for significance) is divided by the number of paired comparisons.

Table of Contents

1	Introduction		4
	Hypothesis for the independent t-test		4
	The hypotheses of interest in an ANOVA		4
2	Methods – Theory		5
	Independent t Test		
	Sampling Distribution of the Difference between the Means $$		5
	Significance of the difference, P-value		6
	T Distribution Critical Values Table		6
	Confidence interval (CI) of the difference between two means		8
	Complete Example in SPSS		8
	One-way ANOVA		
	The basic logic behind the ANOVA		9
	Filling in the ANOVA's table	•	10
	Example on how we fill the ANOVA's table	•	11
	F-distribution	•	13 14
	Post Hoc Tests	•	14 14
	A complete example in SPSS.		15
3	Popults in Dython		16
3	Results in Python		10
	Software		16
	Examples	•	18
4	Conclusion		22
5	Acknowledgements		23
6	References		24

Chapter 1 - Introduction

Hypothesis for the independent t-test:

The null hypothesis for the independent t-test is that the population means from the two unrelated groups are equal:

• H_0 : $u_1 = u_2$

In most cases, we are looking to see if we can show that we can reject the null hypothesis and accept the alternative hypothesis, which is that the population means are not equal:

• H_A : $u_1 \neq u_2$

To do this, we need to set a significance level alpha that allows us to either reject or accept the alternative hypothesis. Most commonly, this value is set at 0.05.

Assume that we have two completely different (independent) groups of subjects that we want to compare and to determine if they are significantly different from one another: a between-groups design. A one sample t-test allows us to test whether a sample mean (of a normally distributed interval variable) significantly differs from a hypothesized value or population mean. An independent samples t-test is used when you want to compare the means of a normally distributed interval dependent variable for two independent groups. The classic example of this is when you have a sample and you randomly assign half of your subjects to the control condition and the other half to the experimental treatment condition. In this situation, we wish to compare the means of the two conditions/groups. We can no longer assume that we know a population mean / a hypothesized value and we must develop a new sampling distribution.

The hypotheses of interest in an ANOVA are as follows:

- $H_0: \mu_1 = \mu_2 = \mu_3 \dots = \mu_k$ (H_0 is the null hypothesis and k is the number of conditions).
- H₁: Means are not all equal.

where k = the number of independent comparison groups.

The null hypothesis tested by ANOVA is that the population means for all conditions are the same.

Analysis of variance is a method for testing differences among means by analyzing variance. The test is based on two estimates of the population variance (σ^2). One estimate is called the mean square error (MSE) and is based on differences among scores within the groups. MSE estimates σ^2 regardless of whether the null hypothesis is true (the population means are equal). The second estimate is called the mean square between (MSB) and is based on differences among the sample means. MSB only estimates σ^2 if the population means are equal. If the population means are not equal, then MSB estimates a quantity larger than σ^2 . Therefore, if the MSB is much larger than the MSE, then the population means are unlikely to be equal. On the other hand, if the MSB is about the same as MSE, then the data are consistent with the null hypothesis that the population means are equal.

Chapter 2 - Methods (Theory)

Independent t Test

Sampling Distribution of the Difference between the Means

To test for the potential statistical significance of a true difference between sample means, we need a sampling distribution of the difference between sample means (Difference (D) = Mean 1 – Mean 2). This would be a sampling distribution that will provide us with the probability that the difference between our two sample means differs from the null hypothesis population of sample mean differences: a population in which there is no difference between samples or, restated, the independent variable has no effect. The sampling distribution of the difference between the means can be created by taking all possible sample sizes of n1 and n2, calculating the sample means, and then taking the difference of those means. If you do this repeatedly for all of the possible combinations of your sample sizes, then you end up with a family of distributions of differences between the two means when they are randomly drawn from the same null hypothesis population.

- But, how confident are we that the difference between the means (D) deviates (is far way) from zero, i.e. is it significant? As we can see, in the following math formula, the t value, except from the difference between means, depends on the variability and the size of the trial n=n1+n2 patients (i.e. the error)

Where n1 is the sample size of participants in the first group and n2 in the second group. - Error has two factors: variability and size of the trials.

We must consider the difference between the two means (D) in conjunction with the error of this Difference (SE), i.e. the overall variability (the SD of the two statements) and the size of the trial (n).

Then, we could test statistically whether the difference between the two means deviates from zero (i.e. is significant) using the t-test:

$$\mathbf{t} = \frac{(\mathbf{mean} \, 1) - (\mathbf{mean} \, 2)}{\mathbf{SE}} = \frac{\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2}{\mathbf{SE}}$$

where
$$SE = \sqrt{s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$
 and $s^2 = \frac{\sum_{j=1}^{n_1} (x_j - X1)^2 + \sum_{i=1}^{n_2} (x_i - X2)^2}{(n_1 - 1) + (n_2 - 1)}$

In fact, what we do is estimate the true population variability (or variance, s^2) by taking the average variance of our samples but weighted by their respective sample sizes. Sample size or degrees of freedom affects the accuracy of our variance estimates, so an estimate from a sample with a large sample size would be more accurate than an estimated variance from a smaller sample. So we need to weight our average variance by the respective sample sizes of each sample. In using this approach, we are going to make a new assumption—that the sample variances are estimating the same underlying population variance, the variance of the null hypothesis population.

Significance of the difference, P-value

- We have to answer the following question: How confident are we that the value t is different from zero, i.e. significant; alternatively, what is the error probability (i.e. the P-value, or the probability of false-positive result) for claiming that the t is significant?

If t is different from zero then, we claim the difference between means (taking into account the variability of the data and the size of the trial) is significant (i.e. different from zero).

We could answer the question be comparing the value t (the sign is ignored) with the value 5% point of the t-distribution with n1+n2-2 df (see Table of t-distribution)

T Distribution Critical Values Table

(1 tell)	0.05	0.025	8.00	0.005	11.00125	0.000	0.0005								
(254)	0.1	0.05	0.02	0.01	0.005	0.000	5,003								
*															
4	6300	(0.786)	0.000	10.650	320,340	115.4031	400,0400	30	1,700	3,0780	1.7094	7,8100	3,1190	3.200	3,760
								34	Alten	Acres .	1,000	1200	3.000	3.000	3,30
3	3.4900	4,309	S. Essel.	91041	Armen	31.320	11. Years	19	0.7996	33900	1,000	2,900	3.040	3.400	31,95
2	3.3534	11.1224	4380	5348	24514	812195	12,4942	18	1,7661	34000	2-601	5384	3.81%	10450	3.79
	2.1319	27766	1700	6.0041	3,30%	23732	1400	140	1-	11000	1400	2.770	2000	1.000	1.59
	3.1050		1.5050	ARRE	4,720	3.000	1.000	10	1,5000	Active	1,4(0)	3290	3.000	(0.0)	3,300
		23700			4.77			38	3.7931	1,0494	3.0011	8750	3.0465	3.68	3.119
0	1,0432	2,4451	1349	3,7694	4.3168	3.00%	1.690	14	1,000	SAME	T-MEDI	3.794	108	1.960	1104
-3	1.0995	2,384	2.990	340	4.000	4.185	340	100	1-9103	3.0415	2.4633	1750	3.00	2.965	3.66
	1.8545	2.781	Appe	ERM	1805	43300	5006	-	1,0000	21000	1.00	3796	NAME OF	1,174	(1.01)
								36	1,000	Loss	1.007	37361	11180	3.305	3,414
	THERE	3.7621	3.8214	2,3486	1,0000	43100	4,7670	39	1,0004	100	1 1111	11100	3.040	3,560	3.44
10	3.80%	3.2151	27990	31963	5.5016	4.107	4.386	-	1,000	10000	Teett	2.7594	1.000	1344	1.60
11.	1,7956	1,000	3,7901	0.1659	3.600	43040	4.650	- 11	1,000	34004	1,4011	27186	1.001	1,340	3.101
								34	1000	9 (181	1.000	27100	3 peans.	2.000	3.000
(1)	3.7503	2.1189	2.690	21040	1.4294	1.076	4,3078	-	4,6871	91080	1.440	30139	1.000	3,109	3.279
13.	TAM	2.1094	41911	2012	1.1725	1100	4376	100	Lews	2,0044	DIEM	170.0	(1981)	1318	3,945
14	1.703	2.1446	106	2.0198	1100	3.2974	4,1404	- 10	1.000	2000	1400	5296	3404	1918	1.104
	1.7931	2.1110	TARR	2907	5,2800	1713	4000		1000	5 0001	1400	2.792	100	1.044	1 144
-11	11700					27300	a contra		1-	0000	2,4180	1,000	1800	1,000	1.00
35.	3.79099	7.1160	3.568	2009	3.2509	3.660	4.0050	- 10	1,0001	Lower	1,4460	2.6901	1.00	3,500	3.20
(2)	3.796	2.000	2.598	2981	2320	1.000	25900	- 11	1 1000	States.	DADAE	2000	2.000	1300	1.50
10	1.7941	2.006	0.5354	2276	3.189	1100	1901	-	Labor	2000	1440	1000	Line.	1,000	1.00
								-10	1 arms	1000	3400	3-	2 2400	12111	1.011
19	1.7281	2,0000	1336	188	1.1710	7500	1404	-	1,000	and .	1.000	1,000	1.000	6,2700	1.00
20	1,595	2,994	1200	2,904	1.3594	3.000	3.000	48	Agents	Louis	1,4000	1000	2,8400	3.2084	330
20	1,750	Attract	5.65W	2,0754	3.052	3.820	Amer		1000	TOMAN	Date:	1000	3.090	3,360	3.300

-	1,0750	2,0044	1,8400	4.679	3.407	2.2514	0.000		A.101E	1,800	4.076	0.0013	Admin	1.000	0.000
91	14791	1000	0.4917	1400	3.6543	1314	0.4407	- 14		1.000	2000	5.0004	3-8691	5.1964	0.610
194	1,4791	0.0044	9.4900	4400	2.9010	2.096	1,4671	14	1.4844	1.000	2000	1100	1000	1100	0-0100
211	0.0000	2,000	1.5650	8,8718	3.9788	2.2312	0.4656		1.1010	4.0001	10,000	2,640	1 Person	18.860	3.4104
34	1474	2-0095	8.3959	3.470m	3.92%	1,210	2.8691	- 10	LAND	a lesson	2,0765	1809	1 800	0.1640	2000
-	1370	Suppli	0.0007	5460	5.4547	3.5411	5-654		144	1.000	2000	34175	1 80Mi	2100	39101
-	1.670	1,000	1.7940	2.660	3.5015	1240	5.4751	-	2414	Jones :	2000	3,0004	1000	5100	0.0004
6	14700	1,000	3.9600	1.000	3.4654	1.094	2.000		0.4810	1-046	3 1714	1100	3-800)	0.100	0.000
-	3.4715	1555	8.2000	3.8679	2,0104	1100	1.000	10	1,1616	1000	1777	3.3440	2401	1100	144
100	31,071.1	10001	0.2810	2.6918	29104	1100	1.000	- 10	1.1018	1000	23/61	7,010	2001	0.4904	1911
-01	1,000	2,000	(0.0001	3.6404	3,5140	1.0117	0.4043		0.4010	1.00%	2.1164	14110	3.0000	3100	9.000
44	3.6700	Loose	A-1890	0.8366	5,410	11111	6,0074	10	5.4829	4,0010	2.3899	9.2529	24181	2.1844	24/8
40	1.500	1,000	A page	1.6179	294196	1100	1.404)	- 17	5.4010	1.000	1100	3410	AARTES	1,4944	6.000
30	1,000	1.000	2.797%	2.001	1441	1.1397	0.700	- 14		1.00	1166	3.603	34111	5.600	1.601
24	1.4-0	4,000,019	(1.0860	4.8340	1,902	P. FORT	0.4463	16.	1.4648	1000	2.080	1110	2 9775	3100	100
99	1.000	Transf	8.2868	3.8616	2.499	3.334	0.000	75	2,1616	1.00	199	2,9904	3.8751	0.1810	8.000
85	3.5900	1 (995)	2.7840	2.8516	2995	1.1100	0.8649	90	3.4834	1-040	236%	TOR	14791	3189	0.3961
67	3,6676	1-0000	17651	0.4813	2000	3.3144	heart	Art .	2.4812	1.600	3.7667	3.656	12144	3120	2305
-	3.86%	1-000	1.3839	0.8901	2.0045	3.3344	2.000	- 10	2,000	1	2.3897	0.1396	1000	3.1700	1,000
911	1,3111	1,000	1.2810	23400	2.496	3.4300	0.4075	- "	2.4648	1-860	1 1494	1100	34794	54711	9 3441
10	1 800	110040	1.000	0.00%	0.000	3,500	5.4990	-	1,480	100	2.2664	SARRY	2400	1100	1,000
ř.	1.000	10000	1200	2460	5.0074	1.1000	0.4529	- 4	1995	1990	2.000	3.000	1800	4470	6.000
11	1.1004	1.000	18,2101	1.400	1.00)	2.2211	0,4000	10	1.000	1-004)	33646	0.0004	14(1)	0.0760	4 3411
.0	1.4000	Acomoles	4.3(94)	1.649	2.0046	3,5100	0.4080	3.00	1,4860	1,000	1.1940	9.3336	2.8790	0.1700	2300
100	3-8407	1.00011	8.317W	1100	5.0044	1.1000	2.6100	200	1000	1,000	2200	3.0004	AATT	1470	0.0004
200	0.0004	1.000	6.2774	4 1400	2,4993	1310	0.4250	9.0	2.000	1460	2 0400	Stite	1,000	0.000	4 3000
	3.4403	1.000	3.3704	3.842	2442	3.5900	3.4636	300	54000	1000	23816	15.5000	2.6487	101717	1300
100	Letter	1,0000	1.3427	268	1,0002	3194	3,3800	101	1.000	Loren	1.00	23189	10014	THE	3.766
205	3.000	1,468	5.000	21115	2,0079	3.560	1304	100	100	1.1790	A.mey	marke	2.0556	3150	1.000
100	3,6983	1,903	1.5650	1400	2.8009	3300	3.3002	196	1.000	1,079	1.2947	0.0100	2394	1000	16,7950
									A distant						
1007	1,0500	1.9014	13007	1,418	3.000	3,586	3000	134		1,00%	5.2540	13100	3.0840	11110	11,709.00
146	1,4111	Last	2.1014	3.6031	2.808	3.5676	1.3629	110	1.0040	1991	1.1911	2,0115	2.0036	31117	5.046
Hit.	1,000	1.9000	0.3664	36011	0.8103	3.697	5300	176	31007	1,0779	1.790	3400	3.00%	2013	3,509
110	1,0000	1,460	4.5607	10111	2.8547	3.1466	0.3012	107	1.000	1000	3.200	0.400	2400	31,1006	3.2650
								116	6.0940	Larry	1.807	24119	2.6505	30.000	3,3624
HI.	3.0587	Laur	3.3004	1.000	3.8042	3.1007	3.3603	118	1.4000	1995	5,200	2407	2165	2166	3,948
115	1,4185	1.4614	1.7601	3.5386	3.8017	3.1096	3.3756								
110	3,0101	1/9012	1.1110	2400	31 89153	3399	33997	0.00	1.000	13079	1300	3404	2-6625	3.1406	3.3614
liet.	10000	1,4610	1.1990	4,0160	2.8647	3.0014	2,300	160	Costs	1,0754	7.100	0.0103	31004	2140	3,300
nn-	3,6982	Trend.	3.790	2000	1807	3.309	3.000	140	6.8800	1,1756	CLERK	3.0100	310016	33,1400	30,000
								143	LANCE	Liver	3.893	Lake	21012	3.140	3,000
110	1,0781	1.000	1.7999	24186	3.8017	3.1009	3.3764	144	1.000	12074	1.200	2.000	August .	2.000	3,000
117	1,0000	1,000	1.000	1.0101	3.8012	3,3074	3.3750								
1129	1.0579	1,460	0.350	20101	2.8999	3.107	53749	160	1.000+	1000	ATH	2.6165	2000	21479	1.000
100	1,000	1.000	2.000	corre	2000	Ables:	3,370)	100	1.000	1,1764	Ambr	3.000	3.8801	2.11(6)	0.000
							3.3719	DRF	Lake	1,996.6	3.3300	200	146.6	1140	12,31279
110	1,0517	4,9760	1.2679	2,60%	1,6009	3.1998		179.	same:	1,076	5.4110	13090	23907	1160	0.000
221	1,000	Tares	1.00%	3.80%	2.894	3.198	3310	100	1-001	1006	A-7510	1995	2000	20,000	0.000
122	10079	1.0700	CLIPPE	24000	1.6700	33.2394	33793								
123	10075	1.4794	1.0074	3.016	3.8965	31009	23714	104	Freed	13796	1.000	2 800	2000	11.000	1,7610
								160	LMN	1.000	3.8014	3.500	3.64%	3040	1,760
104	1,6573	Lane	2.7906	24311	2.8902	3.003	9.3000	176	1.010	1,0757	3.000	3440	2.0400	33407	LIMP.
195	1,6573	1/6/61	3.888	0.0100	1.8677	3.007	3.3700	0.0	1.00	1,0794	1.000	2100	2 10 400	33100	Lette
100	1,600	1.000	1,000	0.0394	3.8019	31394	3.3004	694	1,000	1070	1,100	0.0001	3 min	2340	5.296
HP.	1,000	1,0700	1,000	Leini	3,8500	3200	1200								
								156	1.664	1.12/4	1.350	2,619	2.0476	31496	1.1646
120	1000	Palat	2.7709	20166	1499	3-295	1.340	106	6.8841	4,000	1,190	5.6077	3.065	11.000	3,2000
130	1,0294	1,0760	1,3896	2016	3.890	3396	3.30%	187	1.00 m	430916	6.000	1,605	3.04%	23400	0.000
100	3,0967	1,9769	1.3309	-6400	1.6007	3.1040	3.000	2700	1.09	1000	4.1961	2,800	3.0474	31416	0.2024
MO.	1,4040	Lane	4,220	4.6671	4,0447	1.100	6.0000								
-	1.0704	1.004	1,000	1,000	1.000	0.0000	1 1991	187	1,6831	18727	2,345	2.924	2,9407	3396	3.342
101	Lines	Loring	15,7467	3.3407	5.3966.5	0.0407	1.2500	100	1 445	7 600	7.700	7.455	7000	10.0000	
144	1.110.0	4,4147	15.0000	2.4400	0.0400	9-1417	5.7510	188	Local	1,877	2,340	1.602	7.9%	71141	3.343
180	1,000	1.0110	2.140	3.9907	2,9400	83400	2.2962	460	HATTE	+ 1774	2200	2.0004	200402	2.432	2.00
194	1.6564	9,9399	3.3400	34462	3,6403	0.1467	1.150	100	1/679	1/1/26	2,340	19021	2.040	2109	3.343
145	Licent	1.0144	11,3450	3,000	2,9400	1340	3.35m	084	1450	yene	3.3461	19.000	2007	-3.199	9.949
aldi .	0.000	119704	3.3+00	3,6906	3.0400	5.000	3.3607	190	1,6529	1,1725	2341	3,600	3,8403	7.130	3,342
WT.	1.6960	1,070	1.790	2.0100	4,1944	1,1440	2.9407	181	0.6029	1000	2360	1.008	2960	1129	3.342
190	1-170-0	0.0740	3,340	4,9454	4.0000	6.3540	2.5454	111	1,0048	1,1725	2,3403	7,0008	7,3400	7.034	3.392
lett.	4-140-00	5,000	11,3400	3,0000	0.0000	0.1000	2,000	167	1.000	1604	7 100	2 000	3000	11 1100	3300
(10	0.000	1,0740	3,7400	3.099	3.000	0.1390	3.0467	192	1,0578	1.1724	2.3409	2.6007	2.00%	7135	3,340
101	1.000	1,000	0.5990	3.5190	4.000	4.1990	1.740	166	(Appe	1900	19466	Charles	10000	10000	9.60
100	1.0000	1.000	5.3400	1.000	6.0031	0.3340	1.1440	193	1,6528	3,8723	2368	2.665	2,8107	3.1330	3,340
100	1-keep	Lette	10,0400	2.64%	5.0005	1.1340	1,0407	100	1.000	1000	2207	2.000	1/20	2.65%	100
(As)	4.850	4-80460	11.0400	4,0000	5,0443	1100	3,5419	194	1.6538	1,8733	2367	1804	3.696	7135	3,340
776	1.000	4.000	0.000	3,000	1,000	8.1179	5,000	100	1 10000	1000	77.00	7400	2.000	0.125	200
-	1.670	1,000	3.8400	0.0041	5,0100	0.1450	0.0466	385	1,6527	1,4772	2366	2.913	2800	1.1128	3,341
in.	1.100	Lena	3.76%	3,4410	5.0107	4.100	Lines	100	14444	d hade	7.744	- Paris	2.000	1	-
100	1,490	1:0114	2340	2,6407	2,0404	8.1890	8.3400	195	1,8527	1822	2.3455	1.8612	2890	7.115	3,340
76	Legan	9,0733	2.3419	3.8600	3.8423	2.1365	3.0467	144	1.400	2.000	2200	2.4040	1000	2110	-
80	1.6504	2,0700	A.MITT	2.0000	2,9400	5.2001	0.0454	197	Learn	1870	2,364	2,600	2.076	1107	3,349
uin .	1.1410	1.000	3.1673	3,000	3,0416	5.7596	1,3401	100	1000	1 575	2200	200	2000	2.00	220
-	1.0100	1,000	2.5400	4,000	4,000	13.00	2.000	199	1,0576	1,8729	2.363	2.600	2,00%	7100	3,340
400	1,1000	1-8790	2.5400	34400	4,000	5.16te	1,000	199	1,6525	1,5729	2362	-1400	2.087	3.017	3.341

If we simulate the study 10000 times by randomly permuting all the numbers and after every permutation we calculate the t-test, we expect 5% of the random t-tests to be greater of + 5%point or less - 5%point.

If the value t is larger than 5%point, we can claim that the t is not a random value, but a significant one (i.e. different from zero), with a probability error (P-value) P<0.05 (i.e. a small error probability).

Thus, we may argue that the difference between the two means is significant with a probability error P<0.05.

Confidence interval (CI) of the difference between two means.

The significance of the difference between the two means D can also be assessed using the 95% CI. The 95% CI is defined as: (D-t*SE, D+t*SE) t is the 5% point of the t-distribution for n1+n2-2 df

If zero is not included in the 95% CI, there is significance difference between the two treatments.

Complete Example in SPSS

To test the effectiveness of treatment of RRMS in two groups of patients and whether it differs, we are checking the annual frequency of relapses with t-test for two independent samples.

	group	impovement
1	1.00	25.00
2	1.00	31.00
3	1.00	-12.00
4	1.00	43.00
5	1.00	-7.00
6	1.00	38.00
7	1.00	49.00
8	1.00	34.00
9	1.00	-11.00
10	2.00	30.00
11	2.00	27.00
12	2.00	42.00
13	2.00	32.00
14	2.00	31.00
15	2.00	28.00
16	2.00	39.00
17	2.00	45.00

T-TEST GROUPS=group(1 2) /MISSING=ANALYSIS /VARIABLES=impovement /CRITERIA=CI(,95).

T-Test

[DataSet0] C:\Users\Ayyého\Desktop\MME\ergasial\wimls8.sav

Group Statistics

	group	N	Mean	Std. Dewation	Std Error Mean
impovement	1.00	9	21:1111	24,33847	8.11292
	2.00	8	34.2500	6.79811	2.40349

Independent Samples Test

		Lavene's Test fo Variant		1-test for Equality of Means									
		F					Mean	Std. Error	95% Confidence Differe				
			Sig.	1	ď	Sig (2-tailed)	Difference	Difference	Lower	Upper			
impovement	Equal variances assumed	15.389	.001	-1.472	15	.162	-1313889	8.92669	-32:16567	5.88790			
	Equal variances not assumed			-1.553	9.383	.154	-13.13889	8.46136	-32.16129	5.88351			

Remark:

We see from the table above the 95% CI includes zero and the value of P = 0.162 > 0.05 so our initial hypothesis that the two treatments did not differ in their effectiveness is correct.

One-way ANOVA

Analysis of Variance is a test that looks at the variance, or ways in which data is different, for more than two groups. One-way ANOVA is used for groups that only have one independent variable. It checks if the scores within each group vary about the mean, which is called within group variance. It also checks if the means between the groups vary, which is called between group variance. When you do an one-way ANOVA and get significant results it means that there is some difference between the groups, you must do further tests to determine where the difference is.

The basic logic behind the ANOVA:

If we have 4 groups, group 1 could differ from groups 2-4, groups 2 and 4 could differ from groups 1 and 3, group 1 and 2 could differ from 3, but not 4, etc.

Since our hypothesis should be as precise as possible (presuming you're researching something that isn't completely new), you will want to determine the precise nature of these differences.

There are two sources of variation here, the *between group* and the *within group variation*. This gives us the basic layout for the ANOVA table.

Source	SS	df	MS	F
Between				
Within				
Total				

SS stands for Sum of Squares. It is the sum of the squares of the deviations from the means. In other words, each number in the SS column is a variation.

df stands for degrees of freedom.

MS stands for Mean Square. It is a kind of "average variation" and is found by dividing the variation by the degrees of freedom. So, each number in the MS column is found by dividing the number in the SS column by the number in the df column and the result is a *variance*.

F stands for an F variable. F was the ratio of two independent chi-squared variables divided by their respective degrees of freedom. So the F column will be found by dividing the two numbers in the MS column.

Filling in the ANOVA's table

Sum of Square = Variations

You can add up the two sources of variation, the between group and the within group.

df = Degrees of Freedom

Total degrees of freedom, N-1, where N is the number of treatments or groups.

If k groups were there in the problem (we are comparing between the group) there are k-1 degrees of freedom. In general, that is one less than the number of groups, since k represents the number of groups, that would be k-1.

This raises the question of how many degrees of freedom there are within the groups. Well, if there are N-1 degrees of freedom altogether, and k-1 of them were between the groups, then (N-1) - (k-1) = N-1-k+1=N-k of them are within the groups.

Mean Squares = Variances

The variances are found by dividing the variations by the degrees of freedom, so divide the SS(between) by the df(between) to get the MS (between) and divide the SS(within) by the df(within) to get the MS(within).

There is no total variance. Well, there is, but no one cares what it is, and it isn't put into the table.

F

Once you have the variances, you divide them to find the F test statistic.

So, divide MS(between) by MS(within) to get F.

Ideally we want to $\underline{\textit{maximize}}$ MS_{between} or MS_{treatment}, because we're predicting that our treatment will differentially effect our groups.

MS_{within} or MS_{error} = average variance among subjects in the same group

Ideally we want to <u>minimize</u> MS_{error}, because -ideally- our treatment influences everyone equally – everyone improves, and does so at the same rate (i.e. variability is low).

If F = MS_{treatment}/MS_{error}, then making MS_{treatment} large and MS_{error} small will result in a large value of F

Like t, a large value corresponds to small p-values, which makes it more likely to reject H₀

However, before we calculate MS, we need to calculate what are called sums of squares, or SS

Example for how we fill the ANOVA's table

Treatment	Measures
X	1 2 2
Υ	5 6 5
Z	2 1

Step1:

Meanx = (1+2+2)/3=1.667

Meany= 5.333

Meanz= 1.5

Overall mean = $\mu = (1+2+2+5+6+5+2+1)/8=3$

Estimated effects = Estimated treatment mean - Estimated overall mean

A1=Meanx-μ=-1.333

A2=2.333

A3=-1.5

Step 2: The ANOVA table

Cause of the variation	df	SS MS	F
Treatment			
Residuals			
Total			

dftreat=3-1=2

dftot=8-1=7

dfres=7-2=5

SStreat ="sum of squares between treatment groups"

=
$$\sum A_i^2 * n_i$$

= $(-1.33)^2 \cdot 3 + (2.33)^2 \cdot 3 + (1.5)^2 \cdot 2 = 26.17$

SSres ="sum of squares within treatment groups"

$$= \sum_{i} \sum_{j} (y_{ij} - mean_{i})^{2} = \sum_{i} ss_{rowi}$$
$$= (1 - 1.667)^{2} + (2 - 1.667)^{2} + (2 - 1.667)^{2} + [0.667] + [0.5] = 1.83$$

SStot ="Total sum of squares"

$$= \sum_{ij} (y_{ij} - \mu)^2$$
$$= (1-3)^2 + (2-3)^2 + \dots + (1-3)^2 = 28$$

Remark:

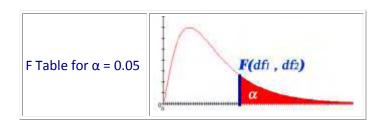
The total "SS" is always equal to the sum of the other "SS". SStot = SStreat + SSres

MS = SS/df, then:

MStreat = SStreat/ dftreat = 26.17/ 2 = 13.08

MSres = SSres /dfres = 1.83 /5 = 0.37

The F-value is just given by: F = MStreat / MSres = 13.08 / 0.37 = 35.68


Interpretation:

The F -value says us how far away we are from the hypothesis "we cannot distinguish between error and treatment", i.e. "Treatment is not relevant according to our data"! A big F-value implies that the effect of the treatment is relevant!

The significance of the value F is determined in a similar manner to t-test (ie. Simulate random 10000 times the study, assuming no different on the treatments and calculate the 10000 F-tests, which form the F-distribution, and we find the rate of F-tests that are larger than the F)

If F > 5% point of F-distribution we can claim that the treatments differ significantly (with a small probability of error P<0.05)

F-distribution

/	df1=	ı=1	2	3	4	5	6	7		8	9	10	12	1	15	20	24	3	30	40	60	120	0	∞
df ₂ =1		1.44 19	99.50	215.70 73	224.58 32	230.16 19	233.98		76 2	38.88	240.54 33	241.88 17	243.90		5.94 99	248.01 31	249.0		0.09	251.14 32	252.19 57	253.	25	254.3 144
2	18.5	.512 1	9.000	19.164 3	19.246 8	19.296 4	19.329		53 1	9.371 0	19.384 8	19.395 9	19.412		.429	19.445 8	19.45	4 19	.462	19.470 7	19.479 1	19.4	87	19.49 57
3	10.1	.128 9	.5521	9.2766	9.1172	9.0135	8.9406	8.88	67 8.	8452	8.8123	8.7855	8.7446	8.7	7029	8.6602	8.638	5 8.6	5166	8.5944	8.5720	8.54	94	8.526 4
4	7.70	7086 6.	9443	6.5914	6.3882	6.2561	6.1631	6.09	42 6.	0410	5.9988	5.9644	5.9117	5.8	3578	5.8025	5.774	4 5.7	7459	5.7170	5.6877	5.65	81	5.628 1
5	6.60	5079 5.	.7861	5.4095	5.1922	5.0503	4.9503	4.87	59 4.	8183	4.7725	4.7351	4.6777	4.6	5188	4.5581	4.527	2 4.4	4957	4.4638	4.4314	4.39	85	4.365 0
6	5.98	9874 5	.1433	4.7571	4.5337	4.3874	4.2839	4.20	67 4.	1468	4.0990	4.0600	3.9999	3.9	381	3.8742	3.841	.5 3.8	8082	3.7743	3.7398	3.70	147	3.668 9
7	5.59	5914 4	.7374	4.3468	4.1203	3.9715	3.8660	3.78	70 3.	7257	3.6767	3.6365	3.5747	3.5	5107	3.4445	3.410	3.3	3758	3.3404	3.3043	3.26	74	3.229 8
8	5.31	3177 4.	4590	4.0662	3.8379	3.6875	3.5806	3.50	05 3.	4381	3.3881	3.3472	3.2839	3.2	184	3.1503	3.115	2 3.0	0794	3.0428	3.0053	2.96	69	2.927 6
9	5.11	174 4.	.2565	3.8625	3.6331	3.4817	3.3738	3.29	27 3.	2296	3.1789	3.1373	3.0729	3.0	0061	2.9365	2.900	5 2.8	8637	2.8259	2.7872	2.74	75	2.706 7
10	4.96	9646 4.	.1028	3.7083	3.4780	3.3258	3.2172	3.13	55 3.	.0717	3.0204	2.9782	2.9130	2.8	3450	2.7740	2.737	2 2.6	5996	2.6609	2.6211	2.58	01	2.537 9
1	4.844	3.9823	3.58	3.3	567 3.2	2039 3.0	1946	3.0123	2.9480	2.89	162 2.8	536 2.7	876	2.7186	2.64	64 2.6	090	2.5705	2.530	09 2.4	901 2	.4480	2.4045	5
1 2	4.747 2	3.8853	3.49	003 3.2	592 3.1	1059 2.9	961	2.9134	2.8486	2.79	164 2.7	534 2.6	866	2.6169	2.54	36 2.5	055	2.4663	2.425	59 2.3	842 2	.3410	2.2962	2
1 3	4.667 2	3.8056	3.41	.05 3.1	791 3.0	0254 2.9	153	2.8321	2.7669	2.71	.44 2.6	710 2.6	037	2.5331	2.45	89 2.4	202	2.3803	2.339	2.2	966 2	.2524	2.2064	4
1 4	4.600 1	3.7389	3.34	3.1	122 2.9	9582 2.8	477	2.7642	2.6987	2.64	58 2.60	022 2.5	342	2.4630	2.38	79 2.3	487	2.3082	2.266	54 2.2	229 2	.1778	2.1307	7
1 5	4.543 1	3.6823	3.28	3.0	556 2.9	9013 2.7	905	2.7066	2.6408	2.58	2.54	137 2.4	753	2.4034	2.32	75 2.2	878	2.2468	2.204	13 2.1	601 2	.1141	2.0658	8
1 6	4.494 0	3.6337	3.23	3.0	069 2.8	3524 2.7	413	2.6572	2.5911	2.53	2.49	935 2.4	247	2.3522	2.27	56 2.2	354	2.1938	2.150	07 2.1	058 2	.0589	2.0096	6
1 7	4.451 3	3.5915	3.19	968 2.9	647 2.8	3100 2.6	987	2.6143	2.5480	2.49	143 2.44	199 2.3	807	2.3077	2.23	04 2.1	898	2.1477	2.104	10 2.0	584 2	2.0107	1.9604	4
1 8	4.413 9	3.5546	3.15	599 2.9	277 2.3	7729 2.6	613	2.5767	2.5102	2.45	663 2.4:	117 2.3	421	2.2686	2.19	06 2.1	497	2.1071	2.062	2.0	166 1	9681	1.9168	8
1 9	4.380	3.5219	3.12	2.8	951 2.3	7401 2.6	283	2.5435	2.4768	2.42	27 2.3	779 2.3	080	2.2341	2.15	55 2.1	141	2.0712	2.026	64 1.9	795 1	.9302	1.8780	0

2	4.351 2	3.4928	3.0984	2.8661	2.7109	2.5990	2.5140	2.4471	2.3928	2.3479	2.277	6 2.20	33 2.1	242 2.0	825 2	2.0391	1.9938	1.9464	1.8963	1
21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.3660	2.3210	2.2504	2.1757	2.0960	2.0540	2.0102	1.964	1.916	55 1.865	57 1.81	117
22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2.3419	2.2967	2.2258	2.1508	2.0707	2.0283	1.9842	1.938	1.889	1.838	30 1.78	831
23	4.2793	3.4221	3.0280	2.7955	2.6400	2.5277	2.4422	2.3748	2.3201	2.2747	2.2036	2.1282	2.0476	2.0050	1.9605	1.913	39 1.864	1.812	28 1.75	570
24	4.2597	3.4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	2.3002	2.2547	2.1834	2.1077	2.0267	1.9838	1.9390	1.892	20 1.842	1.789	96 1.73	330
25	4.2417	3.3852	2.9912	2.7587	2.6030	2.4904	2.4047	2.3371	2.2821	2.2365	2.1649	2.0889	2.0075	1.9643	1.9192	1.871	1.821	1.768	84 1.71	110
26	4.2252	3.3690	2.9752	2.7426	2.5868	2.4741	2.3883	2.3205	2.2655	2.2197	2.1479	2.0716	1.9898	1.9464	1.9010	1.853	33 1.802	1.748	1.69	906
27	4.2100	3.3541	2.9604	2.7278	2.5719	2.4591	2.3732	2.3053	2.2501	2.2043	2.1323	2.0558	1.9736	1.9299	1.8842	1.836	51 1.785	1.730	06 1.67	717
28	4.1960	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.2360	2.1900	2.1179	2.0411	1.9586	1.9147	1.8687	1.820	1.768	1.713	38 1.65	541
29	4.1830	3.3277	2.9340	2.7014	2.5454	2.4324	2.3463	2.2783	2.2229	2.1768	2.1045	2.0275	1.9446	1.9005	1.8543	1.805	55 1.753	1.698	81 1.63	376
30	4.1709	3.3158	2.9223	2.6896	2.5336	2.4205	2.3343	2.2662	2.2107	2.1646	2.0921	2.0148	1.9317	1.8874	1.8409	1.791	1.739	1.683	35 1.62	223
40	4.0847	3.2317	2.8387	2.6060	2.4495	2.3359	2.2490	2.1802	2.1240	2.0772	2.0035	1.9245	1.8389	1.7929	1.7444	1.69	928 1.63	373 1.57	766 1.5	5089
60	4.0012	3.1504	2.7581	2.5252	2.3683	2.2541	2.1665	2.0970	2.0401	1.9926	1.9174	1.8364	1.7480	1.7001	1.6491	1.59	943 1.53	343 1.46	573 1.3	3893
120	3.9201	3.0718	2.6802	2.4472	2.2899	2.1750	2.0868	2.0164	1.9588	1.9105	1.8337	1.7505	1.6587	1.6084	1.5543	1.49	952 1.42	290 1.35	519 1.2	2539
∞	3.8415	2.9957	2.6049	2.3719	2.2141	2.0986	2.0096	1.9384	1.8799	1.8307	1.7522	1.6664	1.5705	1.5173	1.4591	1.39	940 1.31	180 1.22	214 1.0	0000

Bonferroni adjustment

For Bonferroni adjustment you divide the p value to be achieved for significance by the number of paired comparisons to be made. So if you have three groups, and the overall test of significance between them comes out significant (using .05 as the threshold value), you might want to compare all the pairs to see which are significantly different. How many possible pairs are there to compare? The formula k(k-1)/2 tells you — where k is the number of groups or conditions. So here k(k-1)/2 = 3 * 2 / 2 = 3. So any pair has to achieve a sig value on a paired test smaller than .05/3 = .017 to be sig at the .05 level. With four groups, and again wanting to compare all possible pairs (k(k-1)/2 = 6), then p for any pair has to be smaller than .05/6 = .0083 to be sig. Put simply, the adjusted p value (or alpha level as it is sometimes called) for n paired comparisons is:

Target p value

n

Bonferroni adjustment is often seen as a bit <u>too</u> conservative, however, I.e. it protects against the danger of <u>overclaiming</u> the number of significant differences between pairs of values/ conditions/ groups when doing multiple followup comparisons, but it does so at the cost of possibly <u>underclaiming</u>.

Post Hoc Tests

If the ANOVA show that there are significant differences between the groups then we can make individual comparisons between groups, e.g. To compare a group with the group b, using the t-test. However, this t-test differs from the previous in SE [here calculated using the random variation, the error].

A complete example in SPSS

	(group)	handre	mirdmonth	dif
1	1.00	150.00	120 80	30 00
2	1.00	157.50	126.67	30.83
3	1.00	153 33	120.00	33.33
4	1.00	165.17	113.33	51.84
5	1.00	165.00	120.00	45.90
6	1.00	150.00	120.00	40.00
7	1.00	165.00	136 67	28.33
	1.00	150.00	118.33	31.67
9	1.00	147.50	133 33	14.17
10	2.00	158.33	130.00	26.33
11	2.00	160.00	133.33	26.67
12	2.00	150.00	12.33	147.67
13	2 00	151.67	120 00	31.67
14	2.00	154.17	123 33	. 30.94
15	2.00	155.00	126.67	28.33
16	2.00	155.63	116.57	39.16
17	200	151.67	116.67	35.00
18	3.00	163.33	165.77	2.44
19	3.00	157.21	159.34	2.13
20	3.00	176.63	176.5E	2.27
21	3.90	167.98	157.37	10 61
22	3.00	157.90	161.22	-3.32
21	3.00	169:34	171.56	-2.22
24	3.00	156.45	170.23	28.22
25	3.00	158.68	162 34	-3.66

Oneway

ANOVA

diff

alli					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	7729.135	2	3864.568	6.192	.007
Within Groups	13730.900	22	624.132		
Total	21460.035	24			

We observe that the Pvalue = 0.007 < 0.05 so our assumption is wrong since there is a difference in the effectiveness between drugs and placebo. In the post-hoc tests we will find detailed comparisons between drugs and placebo.

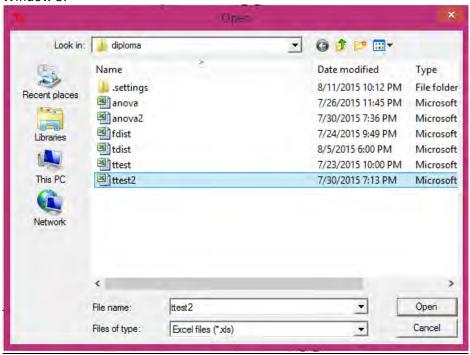
<u>Chapter 3 – Results in Python</u>

<u>Software</u>

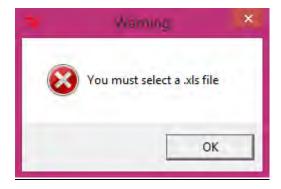
Our application works as follows:

Window 1:

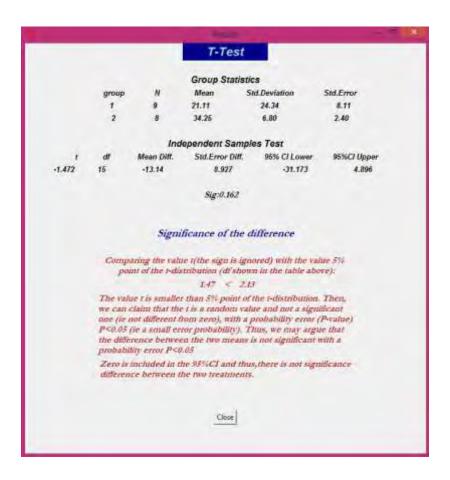
The user can press one of the 2 Buttons Independent T-test or One-Way Anova:



We saved our measures in a excel file. The second window, which automatically opens when the user press one of the 2 buttons above, helps us to browse in our hard disk(window 3) and open it then click Ok. With this click, we close the window 1 and appears the following window 3, the application keeps the file's path and then we can select between the two buttons for a t-test or an one-way anova.


Window 2:

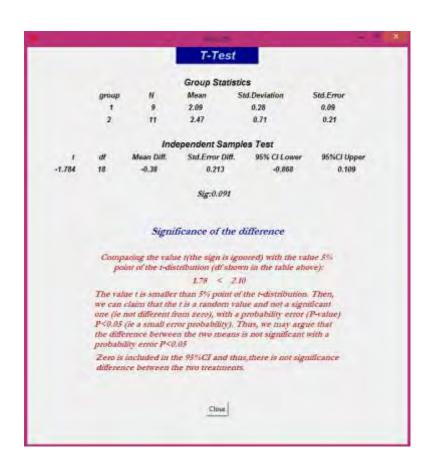
Window 3:


If we press the OK button (window 2) without selecting a file at first, a warning message appears that reminds us to select one file if we want to continue.

If we press the Button: Independent T-test

We will run the same example of page 8

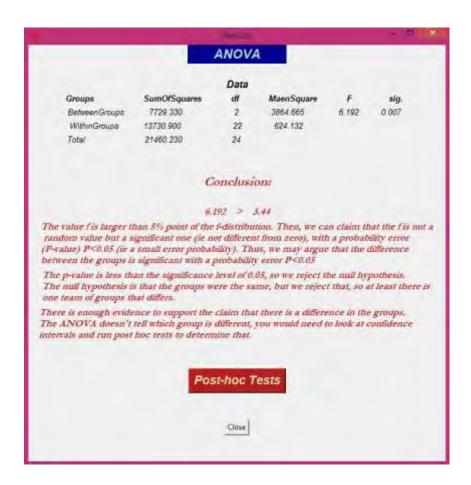
The results with our application are the same and shown below

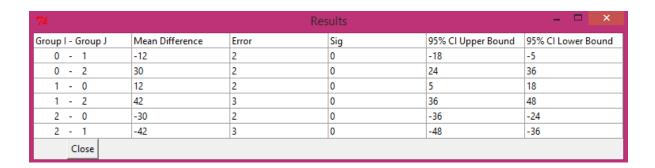

We run and another one example with SPSS and with our application.

		fev	
	group		
1	1.00	2.12	
2	1.00	1.63	
3	1.00	2.00	
4	1.00	2.30	
5	1.00	2.02	
6	1.00	1.74	
7	1.00	2.49	
8	1.00	2.30	
9	1.00	2.19	1
10	2.00	2.22	
11	2.00	2.20	
12	2.00	3.71	
13	2.00	2.49	
14	2.00	2.64	1
15	2.00	1.38	
16	2.00	2.95	
17	2.00	2.49	
18	2.00	2.68	
19	2.00	2.42	
20	2.00	1.96	

/30	T GROUPS TESTING-AM ATABLES: TTESTA-C	ALYSIS Sevi	(2)			
→ T-Te	st					
[Deta	Set1] C:	(Users)A	gytla\Je	ektop/mm/al	ergasial/won	128.00
		1	ionap Stati	tics		
	gua	10	innup State	ites ites Devation	SM Grai Mose	
fest	greaz 1.00	N .			SM Grai Mean S9175	

		nelec	


		Levene's Test to Varian					Hestrix Equally	officians		
		F.	Big.	t-		Sg (2-taled)	Mean Ofference	Std Biror Difference	SdA Confidence interval of the Difference	
									TIMBL	Uppar
tert	Equalistations assumed	1.489	.741	-1.784	ig	7091	-32140	21271	-10650	16754
L	Equal variances not assumed			-1 90T	11714	.076	-37549	.19895	- 80408	84509



If we press the Button: One-way Anova

We will execute the same example of page 14

The results with our application are the same and shown below

We run and another one example with SPSS and with our application.

	treatment	data
1	1.00	62.00
2	1.00	74.00
3	1.00	86.00
4	1.00	74.00
5	1.00	91.00
6	1.00	37.00
7	2.00	69.00
8	2.00	43.00
9	2.00	100.00
10	2.00	94.00
11	2.00	100.00
12	2.00	98.00
13	3.00	50.00
14	3.00	120.00
15	3.00	100.00
16	3.00	288.00
17	3.00	4.00
18	3.00	76.00

Oneway

ANOVA

data

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	3897.333	2	1948.667	.558	.584
Within Groups	52388.667	15	3492.578		
Total	56286.000	17			

The P-value between groups (Sig.) P = 0.584, so there is no significant difference between groups (P < 0.05). From the 95% CI the difference between groups are compared in pairs is containing zero.

Chapter 4 - Conclusion

<u>The independent samples t-test</u> is used to test the hypothesis that the difference between the means of two samples is equal to 0 (this hypothesis is therefore called the null hypothesis). The program displays the difference between the two means, and the 95% Confidence Interval (CI) of this difference. Next follow the test statistic t, the Degrees of Freedom (DF) and the two-tailed probability P. When the P-value is less than the conventional 0.05, the null hypothesis is rejected and the conclusion is that the two means do indeed differ significantly.

<u>The purpose of ANOVA</u> is almost the same as the t tests. The goal is to determine whether the mean differences that are obtained for the sample data are sufficiently large to justify a conclusion that there are mean differences between the populations from which the samples were obtained

ANOVA allows researcher to evaluate all of the mean differences in a single hypothesis test using a single alphalevel (in our examples a=0.05) and, thereby, keeps the risk of a Type I error under control no matter how many means are being compared ②. However, what if we just compared each of the groups in a pairwise manner like the Bonferroni's correction, using a 'testwise' alpha-level = alpha-level / (number of tests)

Chapter 5 - Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Dr. habil. Axel Kowald for the continuous support of my study and related research, for his patience, motivation, and immense knowledge. His guidance assisted me in writing of this thesis.

Besides my supervisor, I would like to thank the rest of my thesis committee: Prof. Elias Zintzaras and Prof. George Rachiotis, for their insightful comments and encouragement, but also for the hard question which incented me to widen my research from various perspectives and gave me the opportunity to join their team as PhD student.

I also thank my fellow labmates for the stimulating discussions, for the sleepless nights we were working together before deadlines, and for all the fun we had this year.

Last but not the least, I would like to thank my family: my parents and my brother and my best friends, for supporting me spiritually throughout writing this thesis and my life in general.

Chapter 6 -References

http://biomath.med.uth.gr/

https://statistics.laerd.com

http://oak.ucc.nau.edu

http://uk.sagepub.com/sites/default/files/upm-binaries/33663_Chapter4.pdf

http://pip.ucalgary.ca/psyc-312/multiple-group-experiments-and-analysis-of-variance/one-way-analysis-of-variance/anova2.html

https://people.richland.edu/james/lecture/m113/anova.html

http://www.java2s.com

https://stat.ethz.ch/education/semesters/as2010/anova/ANOVA how to do.pdf

https://onlinecourses.science.psu.edu/stat800/book/export/html/58